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Abstract. Let Sω f =
∫

ω
f̂(ξ)eixξ dξ be the Fourier projection opera-

tor to an interval ω in the real line. Rubio de Francia’s Littlewood–Paley
inequality (Rubio de Francia, 1985) states that for any collection of dis-
joint intervals Ω, we have∥∥∥∥∥

[∑
ω∈Ω

|Sω f |2
]1/2∥∥∥∥∥

p

� ‖f‖p, 2 ≤ p < ∞.

We survey developments related to this inequality, including the higher
dimensional case, and consequences for multipliers.

Mathematics Subject Classification. Primary: 42B25. Secondary: 42B30, 42B35.
Key words and phrases. Littlewood–Paley inequality, multipliers, square function,

BMO.
Research supported in part by a National Science Foundation Grant. The author is a

Guggenheim Fellow.



NYJM Monographs

Volume 2 2007

Contents

1. Introduction 2
2. The one-dimensional argument 4

2.1. Classical theory 5
2.2. Well-distributed collections 7
2.3. The tile operator 9
2.4. Proof of Lemma 2.14 12

3. The case of higher dimensions 18
4. Implications for multipliers 24

4.1. Proof of Theorem 4.2 25
4.2. The higher dimensional form 27
4.3. Proof of Theorem 4.7 27

5. Notes and remarks 30
References 34

1. Introduction

Our subject is a group of topics related to Rubio de Francia’s extension
[36] of the classical Littlewood–Paley inequality. We are especially interested
in presenting a proof that highlights an approach in the language of time-
frequency analysis, and addresses the known higher dimensional versions of
this theorem. It is hoped that this approach will be helpful in conceiving of
new versions of these inequalities. A first result in this direction is in the
result of Karagulyan and the author [27]. These inequalities yield interesting
consequence for multipliers, and these are reviewed as well.

Define the Fourier transform by

f̂(ξ) =
∫

Rd

f(x)e−ix·ξ dx.

In one dimension, the projection onto the positive frequencies

P+ f(x) :=
∫ ∞

0
f̂(ξ)eixξ dξ

is a bounded operator on all Lp(R), 1 < p < ∞. The typical proof of this
fact first establishes the Lp inequalities for the Hilbert transform, given by

H f(x) := lim
ε→∞

∫
|y|>ε

f(x− y)
dy

y
.
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The Hilbert transform is given in frequency by a constant times

H f(x) = c

∫
f̂(ξ) sign(ξ) eixξ dξ.

We see that P+ is linear combination of the identity and H. In particular
P+ and H enjoy the same mapping properties.

In this paper, we will take the view that Lp(Rd) is the tensor product of
d copies of Lp(R). A particular consequence is that the projection onto the
positive quadrant

P+ f(x) :=
∫

[0,∞]d
f(ξ) eix·ξ dξ

is a bounded operator on all Lp(Rd), as it is merely a tensor product of the
one-dimensional projections.

A rectangle in Rd is denoted by ω. Define the Fourier restriction operator
to be

Sω f(x) =
∫

ω
eix·ξ f̂(ξ) dξ.

This projection operator is bounded on all Lp(Rd), with constant bounded
independently of ω. To see this, define the modulation operators by

Modξ f(x) := eix·ξ f(x).(1.1)

Observe that for ξ = (ξ1, . . . , ξd), the interval ω =
∏d

j=1[ξj ,∞), we have
Sω = Mod−ξ P+ Modξ. Hence this projection is uniformly bounded. By
taking linear combinations of projections of this type, we can obtain the Lp

boundedness of any projection operator Sω, for rectangles ω.
The theorem we wish to explain is:

1.2. Theorem. Let Ω be any collection of disjoint rectangles with respect
to a fixed choice of basis. Then the square function below maps Lp(Rd) into
itself for 2 ≤ p <∞:

SΩ f(x) :=

[∑
ω∈Ω

|Sω f(x)|2
]1/2

.

In one dimension this is Rubio de Francia’s Theorem [36]. His proof
pointed to the primacy of a BMO estimate in the proof of the theorem. The
higher dimensional form was investigated by J.-L. Journé [26]. His original
argument has been reshaped by F. Soria [40], S. Sato, [37], and Xue Zhu [43].
In this instance, the product BMO is essential, in the theory as developed
by S.-Y. Chang and R. Fefferman [21, 14, 13].
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We begin our discussion with the one-dimensional case, followed by the
higher dimensional case. We adopt a ‘time-frequency’ approach to the the-
orem, inspired in part by the author’s joint work with Christoph Thiele
[29, 28]. The same pattern is adopted for the multiplier questions. The
paper concludes with notes and comments.

We do not keep track of the value of generic absolute constants, instead
using the notation A � B iff A ≤ KB for some constant K. Write A � B
iff A � B and B � A. For a rectangle ω and scalar λ > 0, λω denotes the
rectangle with the same center as ω but each side length is λ times the same
side length of ω. We use the notation 1A to denote the indicator function
of the set A, that is, 1A(x) = 1 if x ∈ A and is otherwise 0. Averages of
integrals over a set are written as

−
∫

A
f dx := |A|−1

∫
A
f dx.

For an operator T , ‖T‖p denotes the norm of T as an operator from Lp(Rd)
to itself. In addition to the Modulation operator defined above, we will also
use the translation operator

Try f(x) := f(x− y).

We shall assume the reader is familiar with the norm bounds for the one-
dimensional maximal function

M f(x) = sup
t

−
∫

[−t,t]
|f(x− y)| dt

The principal fact we need is that it maps Lp into itself for 1 < p < ∞. In
d dimensions, the strong maximal function refers to the maximal function

M f(x) = sup
t1,...,td>0

−
∫

[−t1,t1]×···[−td,td]
|f(x1 − y1, . . . , xd − yd)| dy1 · · · dyd

Note that this maximal function is less than the one-dimensional maximal
function applied in each coordinate in succession.

Acknowledgment. An initial version of these notes was prepared while in
residence at the Schrödinger Institute of Vienna Austria. The paper has
been improved by the efforts of a conscientious referee.

2. The one-dimensional argument

In this setting, we give the proof in one dimension, as it is very much
easier in this case. In addition, some of the ideas in this case will extend
immediately to the higher dimensional case.
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2.1. Classical theory. We should take some care to recall the classical
theory of Littlewood and Paley. Let Δ denote the dyadic intervals

Δ :=
{
ε[2k, 2k+1) : ε ∈ {±1}, k ∈ Z

}
.

The classical theorem is that:

2.1. Theorem. For all 1 < p <∞, we have∥∥SΔ f
∥∥

p
� ‖f‖p.(2.2)

We will not prove this here, but will make comments about the proof. If
one knows that ∥∥SΔ f

∥∥
p

� ‖f‖p, 1 < p <∞,(2.3)

then a duality argument permits one to deduce the reverse inequality for
Lp′ norms, p′ = p/(p − 1). Indeed, for g ∈ Lp′ , choose f ∈ Lp of norm one
so that ‖g‖p′ = 〈f, g〉 Then

‖g‖p′ = 〈f, g〉

=
∫ ∑

ω∈Δ

Sω fSω g dx

≤ 〈SΔ f,SΔ g〉
≤ ‖SΔ f‖p‖SΔ g‖p′

� ‖SΔ g‖p′ .

One only need prove the upper inequality for the full range of 1 < p <∞.
In so doing, we are faced with a common problem in the subject. Sharp

frequency jumps produce kernels with slow decay at infinity, as is evidenced
by the Hilbert transform, which has a single frequency jump and a noninte-
grable kernel. The operator SΔ has infinitely many frequency jumps. It is
far easier to to study a related operators with smoother frequency behavior,
for then standard aspects of Calderón–Zygmund Theory are at one’s dis-
posal. Our purpose is then to introduce a class of operators which mimic
the behavior of SΔ, but have smoother frequency behavior.

Consider a smooth function ψ+ which satisfies 1[1,2] ≤ ψ̂+ ≤ 1[ 1
2
, 5
2 ]

. No-

tice that ψ ∗ f is a smooth version of S[1,2]f . Let ψ− = ψ+. Define the
dilation operators, of scale λ, by

Dil(p)
λ f(x) := λ−1/pf(x/λ), 0 < p ≤ ∞, λ > 0.(2.4)

The normalization chosen here normalizes the Lp norm of Dil(p)
λ to be one.
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Consider distributions of the form

K =
∑
k∈Z

∑
σ∈{±}

εk,σ Dil(1)
2k ψσ, εk,σ ∈ {±1},(2.5)

and the operators T f = K ∗ f . This class of distributions satisfies the stan-
dard estimates of Calderón–Zygmund theory, with constants independent of
the choices of signs above. In particular, these estimates would be

sup
ξ
|K̂(ξ)| < C ,

|K(y)| < C|y|−1 ,

| d
dyK(y)| < C|y|−2 ,

for a universal constant C. These inequalities imply that the operator norms
of T on Lp are bounded by constants that depend only on p.

The uniformity of the constants in the operator norms permits us to
average over the choice of signs, and apply the Khintchine inequalities to
conclude that∥∥∥∥∥

[∑
k∈Z

∑
σ∈{±}

∣∣∣Dil(1)
2k ψσ ∗ f

∣∣∣2]1/2∥∥∥∥∥
p

� ‖f‖p, 1 < p <∞.(2.6)

This is nearly the upper half of the inequalities in Theorem 1.2. For historical
reasons, “smooth” square functions such as the one above, are referred to
as “G functions.”

To conclude the theorem as stated, one method uses an extension of
the boundedness of the Hilbert transform to a vector-valued setting. The
particular form needed concerns the extension of the Hilbert transform to
functions taking values in �q spaces. In particular, we have the inequalities

‖‖H fk‖�q‖p � Cp,q‖‖fk‖�q‖p, 1 < p, q <∞.(2.7)

Vector-valued inequalities are strongly linked to weighted inequalities, and
one of the standard approaches to these inequalities depends upon the beau-
tiful inequality of C. Fefferman and E.M. Stein [19]∫

|H f |qg dx �
∫

|f |q(M|g|1+ε)1/(1+ε) dx, 1 < q <∞, 0 < ε < 1.(2.8)

The implied constant depends only on q and ε. While we stated this for the
Hilbert transform, it is important for our purposes to further note that this
inequality continues to hold for a wide range of Calderón–Zygmund opera-
tors, including those that occur in (2.5). This is an observation that goes
back to J. Schwartz [38], with many extensions, especially that of Benedek,
Calderón and Panzone [2].
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The proof that (2.8) implies (2.7) follows. Note that we need only prove
the vector-valued estimates for 1 < q ≤ p < ∞, as the remaining estimates
follow by duality, namely the dual estimate of H : Lp(�q) −→ Lp(�q) is
H : Lp′(�q

′
) −→ Lp′(�q

′
), in which the primes denote the conjugate index,

p′ = p/(p − 1). The cases of q = p are trivial. For 1 < q < p < ∞, and
{fk} ∈ Lp(�q) of norm one, it suffices to show that∥∥∥∥∑

k

|H fk|q
∥∥∥∥

p/q

� 1.

To do so, by duality, we can take g ∈ L(p/q)′ of norm one, and estimate∑
k

∫
|H fk|qg dx �

∑
k

∫
|fk|q(M|g|1+ε)1/(1+ε) dx

�
∥∥∥∥∑

k

|fk|q
∥∥∥∥

p/q

‖(M|g|1+ε)1/(1+ε)‖(p/q)′

� 1

provided we take 1 + ε < (p/q)′.
Now, the Fourier projection onto an interval ω can be obtained as a linear

combination of modulations of the Hilbert transform. Using this, one sees
that the estimate (2.7) extends to the Fourier projections onto intervals.
Namely, we have the estimate

‖‖Sω fω‖�2(Ω)‖p � ‖‖fω‖�2(Ω)‖p, 1 < p <∞.

This is valid for all collections of intervals Ω. Applying it to (2.6), with
Ω = Δ, and using the fact that Sσ[2k,2k+1)f = Sσ[2k,2k+1) Dil(1)

2k ψσ ∗ f proves
the upper half of the inequalities of Theorem 2.1, which what we wanted.

For our subsequent use, we note that the vector-valued extension of
the Hilbert transform depends upon structural estimates that continue to
hold for a wide variety of Calderón–Zygmund kernels. In particular, the
Littlewood–Paley inequalities also admit a vector-valued extension,

‖‖SΔ fk‖�q‖p � ‖‖fk‖�q‖p, 1 < p, q <∞.(2.9)

2.2. Well-distributed collections. We begin the main line of argument
for Rubio de Francia’s inequality in one dimension. The first step, found by
Rubio de Francia [36], is a reduction of the general case to one in which one
can square function by a smoother object.
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Say that a collection of intervals Ω is well-distributed if∥∥∥∥∑
ω∈Ω

13ω

∥∥∥∥
∞

≤ 100.(2.10)

Thus, after dilating the intervals in the collection by a factor of (say) 3, at
most 100 intervals can intersect.

The well-distributed collections allow one to smooth out Sω, just as one
does S[1,2] in the proof of the classical Littlewood–Paley inequality. The
main fact we should observe here is that

2.11. Lemma. For each collection of intervals Ω, we can define a well-
distributed collection Well(Ω) for which∥∥SΩ f

∥∥
p
�
∥∥SWell(Ω) f

∥∥
p
, 1 < p <∞.

Proof. The argument here depends upon inequalities for vector-valued sin-
gular integral operators. We define the collection Well(Ω) by first consider-
ing the interval [−1

2 ,
1
2 ]. Set

Well([−1
2 ,

1
2 ]) =

{
[− 1

18 ,
1
18 ],±[12 − 4

9(4
5)k, 1

2 − 4
9(4

5)k+1] : k ≥ 0
}
.

It is straightforward to check that all the intervals in this collection have
a distance to the boundary of [−1

2 ,
1
2 ] that is four times their length. In

particular, this collection is well-distributed. It has the additional property
that for each ω ∈ Well([−1

2 ,
1
2 ]) we have 2ω ⊂ [−1

2 ,
1
2 ].

It is an extension of the usual Littlewood–Paley inequality that∥∥S[−1/2,1/2] f
∥∥

p
�
∥∥SWell([−1/2,1/2]) S[−1/2,1/2]f

∥∥
p
, 1 < p <∞.

This inequality continues to hold in the vector-valued setting of (2.9).
We define Well(ω) by affine invariance. For an interval ω, select an affine

function α : [−1
2 ,

1
2 ] −→ ω, we set Well(ω) := α(Well([−1

2 ,
1
2 ])). For col-

lections of intervals Ω, we define Well(Ω) :=
⋃

ω∈Ω Well(ω). It is clear that
Well(Ω) is well-distributed for collections of disjoint intervals Ω. By a vector-
valued Littlewood–Paley inequality, we have∥∥SΩ f

∥∥
p
�
∥∥SWell(Ω) f

∥∥
p
, 1 < p <∞.

This completes the proof of our lemma. �
In the proof of the lemma, we see that we are ‘resolving the frequency

jump’ at both endpoints of the interval. In the sequel however, we don’t
need to rely upon this construction, using only the general definition of
well-distributed.

For the remainder of the proof, we assume that Ω is well-distributed.
We need only consider a smooth version of the square function SΩ, with
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the well-distributed assumption being critical to boundedness of the smooth
operator on L2.

Let ϕ be a Schwartz function so that

1[−1/2,1/2] ≤ ϕ̂ ≤ 1[−1,1].(2.12)

Set ϕω = Modc(ω) Dil(2)|ω|−1 ϕ, and

GΩ f =

[∑
ω∈Ω

|ϕω ∗ f |2
]1/2

.

We need only show that

‖GΩ f‖p � ‖f‖p, 2 ≤ p <∞,(2.13)

for well-distributed collections Ω. Note that that the well-distributed as-
sumption and the assumptions about ϕ make the L2 inequality obvious.

2.3. The tile operator. We use the previous lemma to pass to an operator
that is easier to control than the projections Sω or ϕω ∗ f . This is done in
the time frequency plane. Let D be the dyadic intervals in R, that is

D :=
{
[j2k, (j + 1)2k : j, k ∈ Z

}
.

Say that s = Is × ωs is a tile if Is ∈ D, ωs is an interval, and 1 ≤ |s| =
|Is| · |ωs| < 2. Note that for any ωs, there is one choice of |Is| for which
Is × ωs will be a tile. We fix a Schwartz function ϕ, and define

ϕs := Modc(ωs) Trc(Is) Dil(2)|Is| ϕ,

where c(J) denotes the center of J . We take ϕ as above, a Schwartz function
satisfying 1[−1,1] ≤ ϕ̂ ≤ 1[−2,2].

Choosing tiles to have area approximately equal to one is suggested by
the Fourier uncertainty principle. We sometimes refer to Is and ωs as dual
intervals. With this choice of definitions, the function ϕs is approximately
localized in the time frequency plane to the rectangle Is × ωs. This local-
ization is precise in the frequency variable. The function ϕ̂s is supported in
the interval 2ωs. But, ϕs is only approximately supported near the interval
Is. Since ϕ is rapidly decreasing, we trivially have the estimate

|ϕs(x)| � |Is|−1/2(1 + |Is|−1 |x− c(Is)|)−N , N ≥ 1.

This is an adequate substitute for being compactly supported in the time
variable.

For a collection of intervals Ω, we set T (Ω) to be the set of all possible
tiles s such that ωs ∈ Ω. Note that for each ω ∈ Ω, the set of intervals
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T ({ω}) = {I : I × ω ∈ T (Ω)} is a a partition of R into intervals of equal
length. Associated to T (Ω) is a natural square function

TΩ f =

[ ∑
s∈T (Ω)

|〈f, ϕs〉|2
|Is|

1Is

]1/2

.

Our main lemma is that:

2.14. Lemma. For any collection of well-distributed intervals Ω, we have

‖TΩ f‖p � ‖f‖p, 2 ≤ p <∞.

Let us argue that this lemma proves (2.13), for a slightly different square
function, and so proves Rubio de Francia’s Theorem in the one-dimensional
case. One task is to pass from a sum of rank one operators to a convolution
operator. This is in fact a general principle, that we can formulate this way.

2.15. Lemma. Let ϕ and φ be real-valued Schwartz functions on R. Then

−
∫

[0,1]

∑
m∈Z

〈f,Try+m ϕ〉Try+m φ dy = f ∗ Φ,

where Φ(x) =
∫
ϕ(u)φ(x+ u) du.

In particular, Φ̂ = ϕ̂φ̂.

The proof is immediate. The integral in question is∫∫
R

f(z)ϕ(z − y)φ(x− y) dydz

and one changes variables, u = z − y.

Proof of (2.13). We need to pass from the discrete operator to a square
function of convolution operators. Let

χ(x) := (1 + |x|)−10, χ(I) = Dil(1)|I| Trc(I) χ,

and set for ω ∈ Ω,

Hω f =
∑

s∈T (Ω)
ωs=ω

〈f, ϕs〉ϕs .
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By Cauchy–Schwarz, we may dominate

|Hω f | ≤
∑

s∈T (Ω)
ωs=ω

|〈f, ϕs〉ϕs|

�
∑

s∈T (Ω)
ωs=ω

|〈f, ϕs〉|√
|Is|

|χ(Is) ∗ 1Is |2

�

⎡⎢⎣ ∑
s∈T (Ω)
ωs=ω

|〈f, ϕs〉|2
|Is|

|χ(Is) ∗ 1Is |

⎤⎥⎦
1/2

.

We took some care to include the convolution in this inequality, so that we
could use the easily verified inequality

∫
|χ(I) ∗ f |2g dx ≤

∫
|f |2χ(I) ∗ g dx in

the following way: the square function ‖Hω f‖�2(Ω) is seen to map Lp into
itself, 2 < p < ∞ by duality. For functions g ∈ L(p/2)′ of norm one, we can
estimate∑

s∈T (Ω)

|〈f, ϕs〉|2
|Is|

∫
|χ(Is) ∗ 1Is |g dx ≤

∑
s∈T (Ω)

|〈f, ϕs〉|2
|Is|

∫
1Isχ(Is) ∗ g dx

≤
∫

|TΩ f |2 sup
I
χ(I) ∗ g dx

� ‖TΩ f‖2
p‖M g‖(p/2)′

� ‖f‖2
p.

Here, (p/2)′ is the conjugate index to p/2, and M is the maximal function.
Thus, we have verified that

‖‖Hω f‖�2(Ω)‖p � ‖f‖p, 2 < p <∞.

We now derive a convolution inequality. By Lemma 2.15,

lim
T→∞

−
∫

[0,T ]
Tr−y Hω Try f dy = ψω ∗ f

for all ω, where ψ̂ω = |ϕ̂ω|2. �

Thus, we see that a square function inequality much like that of (2.13)
holds; this completes the proof of Rubio de Francia’s Theorem in the one-
dimensional case, aside from the proof of Lemma 2.14.
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2.4. Proof of Lemma 2.14. The proof of the boundedness of the tile
operator TΩ on L2 is straightforward, yet finer facts about this boundedness
are very useful in extending the boundedness to Lp for p > 2. This is the
subject of the next proposition.

2.16. Proposition. Let ψ be a smooth, rapidly decreasing function, satis-
fying in particular ∣∣ψ(x)

∣∣ � (1 + |x|)−20.(2.17)

For any interval ω, we have∑
s∈T ({ω})

|〈f, ψs〉|2 � ‖f‖2
2.(2.18)

Moreover, if 1[−1,1] ≤ ψ̂ ≤ 1[−2,2] we have the following more particular
estimate. For all intervals ω, I satisfying ρ := |I||ω|−1 > 1, and t > 0,∑

s∈T ({ω})
Is⊂I

|〈f, ψs〉|2 � (tρ)−5‖ψ3ω ∗ f‖2
2 f supported on [tI]c.(2.19)

In the second inequality observe that we assume |I||ω|−1 > 1, so that the
rectangle I×ω is too big to be a tile. It is important that on the right-hand
side we have both a condition on the spatial support of f , and in the norm
we are making a convolution with a smooth analog of a Fourier projection.

Proof. The hypothesis (2.17) is too strong; we are not interested in the
minimal hypotheses here, but it is useful for this proof to observe that we
only need ∣∣ψ(x)

∣∣ � (1 + |x|)−5(2.20)

to conclude the first inequality (2.18).
The inequality (2.18) can be seen as the assertion of the boundedness of

the map f → {〈f, ψs〉 : s ∈ T ({ω})} from L2 to �2(T ({ω})). It is equivalent
to show that the formal dual of this operator is bounded, and this inequality
is ∥∥∥∥∥ ∑

s∈T ({ω})
asψs

∥∥∥∥∥
2

� ‖as‖�2(T ({ω}) .(2.21)

Observe that

〈ψs, ψs′〉 � Δ(s, s′) := (1 + |Is|−1|c(Is) − c(Rs′ |)−5.
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Estimate ∥∥∥∥∑
s∈Z

asψs

∥∥∥∥
2

≤
∑

s

|as|
∑
s′

|as′ |Δ(s, s′)(2.22)

≤ ‖as‖�2

[∑
s

∣∣∣∣∑
s′

|as′ |Δ(s, s′)
∣∣∣∣2
]1/2

� ‖as‖�2

[∑
s

∑
s′

|as′ |2Δ(s, s′)
]1/2

≤ ‖as‖2
�2 .

Here, we use Cauchy–Schwarz, and the fact that the L2 norm dominates the
L1 norm on probability spaces.

Turning to the proof of the more particular assertation (2.19), we first
note a related inequality. Assume that ψ satisfies (2.17).∑

s∈T ({ω})
Is⊂I

|〈f, ψs〉|2 � (tρ)−5‖f‖2
2 , f supported on (tI)c.(2.23)

As in the statement of the lemma, ρ = |I||ω|−1 > 1. Here, we do not assume
that ψ has compact frequency support, just that it has rapid spatial decay.
On the right-hand side, we do not impose the convolution with ψ3ω.

For an interval I of length at least one, and t > 1, write ψ = ψ0 + ψ∞
where ψ∞(x) is supported on |x| ≥ 1

4 tρ, equals ψ(x) on |x| ≥ 1
2 tρ, and

satisfies the estimate

|ψ∞(x)| � (tρ)−10(1 + |x|)−5 .

That is, ψ∞ satisfies the inequality (2.20) with constants that are smaller
by an order of (tρ)−10.

Note that if f is supported on the complement of tI, we have 〈f, ψs〉 =
〈f, ψ∞〉 for λs ∈ I. Thus, (2.23) follows.

We now prove (2.17) as stated. We now assume that ψ is a Schwartz
function satisfying 1[−1,1] ≤ ψ̂ ≤ 1[−2,2]. Then certainly, it satisfies (2.17),
so that (2.23) holds. We also have that for all tiles s ∈ T ({ω}),

〈f, ψs〉 = 〈ψ3ω ∗ f, ψ〉 = 〈ψ3ω ∗ ψ3ω ∗ f, ψ〉 .

Write ψ3ω ∗ ψ3ω ∗ f = F0 + F∞, where F0 = [ψ3ω ∗ f ]1 t
2
I .

Then, since ψ is decreasing rapidly, we will have

‖F0‖2 � (tρ)−10‖ψ3ω ∗ f‖2.
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Therefore, by the L2 inequality (2.18)∑
s∈T ({ω})

|〈F0, ψs〉|2 � (tρ)−10‖ψ3ω ∗ f‖2
2 .

On the other hand, the inequality (2.23) applies to F∞, so that∑
s∈T ({ω})

Is⊂I

|〈F∞, ψs〉|2 � (tρ)−5‖F∞‖2
2 .

But certainly ‖F∞‖2 ≤ ‖ψ3ω ∗ f‖2 � ‖f‖2. So our proof of the more partic-
ular assertation (2.19) is finished. �

Let us now argue that the tile operator TΩ maps L2 into itself, under
the assumption that Ω is well-distributed. For ω ∈ Ω, let T (ω) be the tiles
s ∈ T (Ω) with ωs = ω. It follows from Proposition 2.16 that we have the
estimate ∑

s∈T (ω)

|〈f, ϕs〉|2 � ‖f‖2
2 .

For a tile s, we have 〈f, ϕs〉 = 〈S2ω f, ϕs〉, where we impose the Fourier
projection onto the interval 2ωs in the second inner product. Thus, on the
right-hand side above, we can replace ‖f‖2

2 by ‖S2ω f‖2
2.

Finally, the well-distributed assumption implies that∑
ω∈Ω

‖S2ω f‖2
2 � ‖f‖2

2 .

The boundedness of the tile operator on L2 follows.

To prove the remaining inequalities, we seek an appropriate endpoint
estimate. That of BMO is very useful. Namely for f ∈ L∞, we show that

‖(TΩf)2‖BMO � ‖f‖2
∞ .(2.24)

Here, by BMO we mean dyadic BMO, which has this definition.

‖g‖BMO = sup
I∈D

−
∫

I

∣∣∣∣g −−
∫

I
g

∣∣∣∣ dx.(2.25)

The usual definition of BMO is formed by taking a supremum over all inter-
vals, not just the dyadic ones. It is a useful simplification for us to restrict
the supremum to dyadic intervals. The Lp inequalities for TΩ are deduced
by an interpolation argument, which we will summarize below.
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There is a closely related notion, one that in the one-parameter setting
coincides with the BMO norm. We distinguish it here, as it is a useful
distinction for us in the higher parameter case. For a map α : D −→ R, set

‖α‖CM = sup
J∈D

|J |−1
∑
I⊂J

|α(I)|.(2.26)

“CM” is for Carleson measure. The inequality (2.24) is, in this notation∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩
∑

s∈T (Ω)
Is=J

|〈f, ϕs〉|2 : J ∈ D

⎫⎪⎪⎬⎪⎪⎭
∥∥∥∥∥∥∥∥

CM

� ‖f‖2
∞.(2.27)

Or, equivalently, that we have the inequality∑
s∈T (Ω)
Is�J

|〈f, ϕs〉|2 � |J |‖f‖2
∞ .

Notice that we can restrict the sum above to tiles s with Is � J as in the
definition of BMO we are subtracting off the mean.

Proof of (2.24). Our proof follows a familiar pattern of argument. Fix a
function f of L∞ norm one. We fix a dyadic interval J on which we check
the BMO norm. We write f =

∑∞
k=1 gk, where g1 = f12J , and

gk = f12kJ−2k−1J , k > 1.

The bound below follows from the L2 bound on the tile operator.

σ(k) :=
∑

s∈T (Ω)
Is�J

|〈gk, ϕs〉|2 � ‖gk‖2
2 � 2k|J |.

For k > 5, we will use the more particular estimate (2.19) to verify that

σ(k)2 :=
∑

s∈T (Ω)
Is�J

|〈gk, ϕs〉|2 � 2−4k‖gk‖2
2 � 2−4k|J |.(2.28)

Yet, to apply (2.19) we need to restrict attention to a single frequency in-
terval ω, which we do here.∑

s∈T (Ω)
Is�J ,ωs=ω

|〈gk, ϕs〉|2 � 2−10k‖ϕ3ω ∗ gk‖2
2 , ω ∈ Ω .
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This is summed over ω ∈ Ω, using the estimate∑
ω∈Ω

‖ϕ3ω ∗ gk‖2
2 � ‖gk‖2

2 � 2k|J |

to prove (2.28).
The inequality (2.28) is summed over k in the following way to finish the

proof of the BMO estimate, (2.24).∑
s∈T (Ω)
Is�J

|〈f, ϕs〉|2 =
∑

s∈T (Ω)
Is�J

∣∣∣∣ ∞∑
k=1

k−1 · k1 · 〈gk, ϕs〉
∣∣∣∣2(2.29)

�
∞∑

k=1

k2σ(k)2 � |J | . �

We discuss how to derive the Lp inequalities from the L2 estimate and
the L∞ −→ BMO estimate.

The method used by Rubio de Francia [36], to use our notation, was
to prove the inequality [(TΩ f)2]� � M|f |2, where g� is the (dyadic) sharp
function defined by

g�(x) = sup
x∈I
I∈D

−
∫

I

∣∣∣∣g(y) −−
∫

I
g(z) dz

∣∣∣∣ dy.
One has the inequality ‖g�‖p � ‖g‖p for 1 < p < ∞. The proof we have
given can be reorganized to prove this estimate.

We have not presented this argument since the sharp function does not
permit a good extension to the case of higher parameters, which we discuss in
the next section. On the other hand, a proof of the (standard) interpolation
result between Lp and BMO [3] is based upon the John–Nirenberg inequality,
Lemma 2.30 below; a proof based upon this inequality does extend to higher
parameters. We present this argument now.

One formulation of the inequality of F. John and L. Nirenberg is:

2.30. Lemma. For each 1 < p < ∞, we have the estimate below valid for
all dyadic intervals J ,∥∥∥∥∑

I⊂J

α(I)
|I| 1I

∥∥∥∥
p

� ‖α‖CM|J |1/p.

The implied constant depends only on p.

Proof. It suffices to prove the inequality for p an integer, as the remaining
values of p are available by Hölder’s inequality. The case of p = 1 is the
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definition of the Carleson measure norm. Assuming the inequality for p,
consider∫

J

[∑
I⊂J

α(I)
|I| 1I

]p+1

dx ≤ 2
∑
J ′⊂J

|α(J ′)|
|J ′|

∫
J ′

[∑
I⊂J ′

α(I)
|I| 1I

]p

dx

� ‖α‖p
CM

∑
J ′⊂J

|α(J ′)|

� ‖α‖p+1
CM |J |.

Notice that we are strongly using the grid property of the dyadic intervals,
namely that for I, J ∈ D we have I ∩ J ∈ {∅, I, J}.

For an alternate proof, see Lemma 3.11 below. �

We prove the following for the tile operator TΩ:

‖TΩ 1F ‖p � |F |1/p, 2 < p <∞,(2.31)

for all sets F ⊂ R of finite measure. This is the restricted strong type
inequality on Lp for the tile operator—that is we only prove the Lp estimate
for indicator functions.

The Lp inequality above is obtained by considering subsets of tiles, T ⊂
T (Ω), for which we will need the notation

TT 1F :=

[∑
s∈T

|〈1F , ϕs〉|2
|Is|

1Is

]1/2

.

As well, take sh(T ) :=
⋃

s∈T Is to be the shadow of T .
The critical step is to decompose T (Ω) into subsets Tk for which

‖(TTk 1F )2‖BMO � 2−2k, |sh(Tk)| � 22k|F |, k ≥ 1.(2.32)

We have already seen that the BMO norm is bounded, so we need only
consider k ≥ 1 above. Then, by the John–Nirenberg inequality,

‖TTk 1F ‖p � 2−k(1−2/p)|F |1/p.

This is summable in k for p > 2.
The decomposition (2.32) follows from this claim. Suppose that T ⊂ T (Ω)

satisfies ∥∥(TT 1F )2
∥∥

BMO
� β.

We show how to write it as a union of Tbig and Tsmall where∥∥(TTsmall 1F )2
∥∥

BMO
� β

4 , |sh(Tbig)| � β−1|F | .



18 M.T. Lacey

The decomposition is achieved in a recursive fashion. Initialize

J := ∅, Tbig := ∅, Tsmall := ∅, Tstock := T .

While
∥∥(TTstock 1F )2

∥∥
BMO

≥ β
4 , there is a maximal dyadic interval J ∈ D

for which ∑
s∈Tstock

Is⊂J

|〈1F , ϕs〉|2 ≥ β
4 |J |.

Update

J := J ∪ {J}, Tbig := Tbig ∪ {s ∈ Tstock : Is ⊂ J},
Tstock := Tstock − {s ∈ Tstock : Is ⊂ J}.

Upon completion of the While loop, update Tsmall := Tstock and return the
values of Tbig and Tsmall.

Observe that by the L2 bound for the tile operator we have

β|sh(Tbig)| � β
∑
J∈J

|J |

�
∑

s∈Tbig

|〈1F , ϕs〉|2

� |F |.
This completes the proof of (2.32). Our discussion of the restricted strong
type inequality is complete.

3. The case of higher dimensions

We give the proof of Theorem 1.2 in higher dimensions. The tensor
product structure permits us to adapt many of the arguments of the one-
dimensional case. (Some arguments are far less trivial to adapt however.)
For instance, one can apply the classical Littlewood–Paley inequality in each
variable separately. This would yield a particular instance of a Littlewood–
Paley inequality in higher dimensions. Namely, for all dimensions d,∥∥SΔd

f
∥∥

p
� ‖f‖p, 1 < p <∞,(3.1)

where Δd =
⊗d

1 Δ is the d–fold tensor product of the lacunary intervals Δ,
as in Theorem 1.2.

Considerations of this type apply to many of the arguments made in the
one-dimensional case of Theorem 1.2. In particular the definition of well-
distributed, and the Lemma 2.11 continues to hold in the higher dimensional
setting.
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As before, the well-distributed assumption permits defining a “smooth”
square function that is clearly bounded on L2. We again choose to replace
a convolution square function with an appropriate tile operator.

The definition of the smooth square function—and of tiles—requires a
little more care. For positive quantities t = (t1, . . . , td), dilation operators
are given by

Dil(p)
t f(x1, . . . , xd) =

⎡⎣ d∏
j=1

t
−1/p
j

⎤⎦ f(x1/t1, . . . , xj/td), 0 ≤ p ≤ ∞ ,

with the normalization chosen to preserve the Lp norm of f .
A rectangle is a product of intervals in the standard basis. Writing a

rectangle as R = R(1) × · · · × R(d), we extend the definition of the dilation
operators in the following way:

Dil(p)
R := Trc(R) Dil(p)

(|R(1)|,...,|R(d)|) .

For a Schwartz function ϕ on Rd, satisfying

1[−1/2,1/2]d ≤ ϕ̂ ≤ 1[−1,1]d

we set

ϕω = Modc(ω) Dil(1)
(|ω(1)|−1,...,|ω(d)|−1)

ϕ.(3.2)

For a collection of well-distributed rectangles Ω, we should show that the
inequality (2.13) holds.

We substitute the smooth convolution square function for a sum over tiles.
Say that R×ω is a tile if both ω and R are rectangles and for all 1 ≤ j ≤ d,
1 ≤ |ω(j)| · |R(j)| < 2, and R(j) is a dyadic interval. Thus, we are requiring
that ω and R be dual in each coordinate separately. In this instance, we
refer to ω and R as dual rectangles.

Write s = Rs × ωs. As before, let T (Ω) be the set of all tiles s such that
ωs ∈ Ω. Define functions adapted to tiles and a tile operator by

ϕs = Modc(ωs) Dil(2)Rs
ϕ

TΩ f =

⎡⎣ ∑
s∈T (Ω)

|〈f, ϕs〉|2
|Rs|

1Rs

⎤⎦1/2

.

The main point is to establish the boundedness of this operator on L2 and
an appropriate endpoint estimate. The analog of Proposition 2.16 is in this
setting is:



20 M.T. Lacey

3.3. Proposition. Assume only that the function ϕ satisfies

|ϕ(x)| � (1 + |x|)−20d .(3.4)

Let Ω = {ω}. Then, we have the estimate∑
s∈T ({ω})

|〈f, ϕs〉|2 � ‖f‖2
2 .(3.5)

Now let ϕ be a smooth Schwartz function satisfying 1[−1,1]d ≤ ϕ̂ ≤ 1[−2,2]d.
For a subset U ⊂ Rd of finite measure, 0 < a < 1, and a function f supported
on the complement of {M1U > a}, we have the estimate∑

Rs⊂U
ωs=ω

|〈f, ϕs〉|2 � a15d‖ϕ3ω ∗ f‖2
2 .(3.6)

The more particular assertation (3.6) has a far more complicated form
than in the one-dimensional setting. That is because when we turn to the
endpoint estimate, it is a Carleson measure condition; this condition is far
more subtle, in that it requires testing the measure against arbitrary sets,
instead of just intervals, or rectangles.

Proof. The hypothesis (3.4) is more than enough to conclude (3.5). We
need only assume

|ϕ(x)| � (1 + |x|)−5d .(3.7)

After taking an appropriate dilation and modulation, we can assume that
ω = [−1

2 ,
1
2 ]d. We view the inequality (3.5) as the boundedness of the linear

map f → {〈f, ϕs〉 : s ∈ T ({ω})} from L2(Rd) into �2(Zd). We then prove
that the dual to this operator is bounded, that is we verify the inequality∥∥∥∥∥ ∑

s∈T ({ω})
asϕs

∥∥∥∥∥
2

� ‖as‖�2(T ({ω})) .

Observe that

|〈ϕs, ϕs′〉| � (1 + dist(Rs, Rs′))−5d , s, s′ ∈ T ({ω}) .
The remaining steps of the proof are a modification of (2.22).

As in the one-dimensional setting, the more particular assertation is
proved in two stages. First we assume only that the function ϕ satisfy
(3.4), and prove ∑

Rs⊂U
ωs=ω

|〈f, ϕs〉|2 � a15d‖f‖2
2(3.8)
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for functions f supported on the complement of {M1U > a}.
Take ϕ̃(x) to be a function which equals a−15dϕ(x) provided |x| ≥ 2

a .
With this, ϕ satisfies (3.7) with a constant independent of a.

For a subset U ⊂ Rd of finite measure, and function f supported on the
complement of {M1U > ad}, and tile s with Rs ⊂ U , we have a−15d〈f, ϕs〉 =
〈f, ϕ̃s〉. Thus, (3.8) follows from the L2 estimate we have already proved.

We can then prove the assertation of the lemma. Take ϕ, f ∈ L2, 0 <
a < 1, and U ⊂ Rd as in (3.6). Then, for all tiles s = Rs × ω, we have

〈f, ϕs〉 = 〈ϕ3ω ∗ f, ϕs〉.

We write ϕ3ω ∗ f = F0 + F∞, where

F0 = [ϕ3ω ∗ f ]1{M1U>2a}.

The rapid decay of ϕ, with the fact about the support of f , show that
‖F0‖2 � a15d‖ϕ3ω ∗ f‖2. Thus, the estimate below follows from the L2

inequality (3.4): ∑
Rs⊂U
ωs=ω

|〈F0, ϕs〉|2 � a15d‖ϕ3ω ∗ f‖2
2 .

As for the term F∞, we use the estimate (3.8) to see that∑
Rs⊂U
ωs=ω

|〈F∞, ϕs〉|2 � a15d‖ϕ3ω ∗ f‖2
2 .

This completes our proof of (3.6). �

We can now prove the L2 boundedness of the square function. Using the
well-distributed assumption and (3.5), we can estimate∑

s∈T (Ω)

|〈f, ϕs〉|2 =
∑
ω∈Ω

∑
s∈T ({ω})

|〈S2ωf, ϕs〉|2

�
∑
ω∈Ω

‖S2ωf‖2
2

� ‖f‖2
2 .

The endpoint estimate we seek is phrased this way. For all subsets U ⊂ Rd

of finite measure, and functions f of L∞ norm one,

|U |−1
∑

s∈T (Ω)
Rs⊂U

|〈f, ϕs〉|2 � 1.(3.9)
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Using the notation of (3.10), this inequality is equivalent to∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩
∑
s∈T

Rs=R

|〈f, ϕs〉|2
|R| 1R : R ∈ Dd

⎫⎪⎬⎪⎭
∥∥∥∥∥∥∥

CM

� ‖f‖∞ .

Write f =
∑∞

k=1 gk where

g1 = f1{M1U≥1
2}
,

gk = f1{2−k≤M1U≤2−(k−1)}, k > 1.

Using the boundedness of the maximal function on, e.g., L2, and the L2

boundedness of the tile operator, we have

|U |−1
∑

s∈T (Ω)
Rs⊂U

|〈gk, ϕs〉|2 � |U |−1‖fk‖2
2 � 22k.

For the terms arising from gk, with k ≥ 5, we can use (3.6) with a = 2−k/d

to see that ∑
s∈T (Ω)
Rs⊂U

|〈gk, ϕs〉|2 =
∑
ω∈Ω

∑
s∈T (Ω)

ω=ωs , Rs⊂U

|〈gk, ϕs〉|2

� 2−10d
∑
ω∈Ω

‖ϕ3ω ∗ gk‖2
2

� 2−10k‖gk‖2
2

� 2−8k|U |.

Here, we have used the fact that the strong maximal function is bounded
on L2. The conclusion of the proof of (3.9) then follows the lines of (2.29).

To deduce the Lp inequalities, one can again appeal to interpolation.
Alternatively, the restricted strong type inequality can be proved directly
using the John–Nirenberg inequality for the product Carleson measure. This
inequality is recalled in the next section, and argument is formally quite
simliar to the one we gave for one dimension. Details are omitted.

Carleson measures in the product setting. The subject of Carleson
measures are central to the subject of product BMO, as discovered by S.-
Y. Chang and R. Fefferman [13, 14].
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A definition can be phrased in terms of maps α from the dyadic rectangles
Dd of Rd. This norm is

‖α‖CM = sup
U⊂Rd

|U |−1
∑
R⊂U

α(R).(3.10)

What is most important is that the supremum is taken over all sets U ⊂ Rd of
finite measure. It would of course be most natural to restrict the supremum
to rectangles, and while this is not an adequate definition, it nevertheless
plays an important role in the theory. See the lemma of Journé [25], as well
as the survey of Journé’s Lemma of Cabrelli, Lacey, Molter, and Pipher [11].

Of importance here is the analog of the John–Nirenberg inequality in this
setting.

3.11. Lemma. We have the inequality below, valid for all sets U of finite
measure. ∥∥∥∥∑

R⊂U

α(R)
|R| 1R

∥∥∥∥
p

� ‖α‖CM|U |1/p, 1 < p <∞.

Proof. We use the duality argument of Chang and Fefferman [14]. Let
‖α‖CM = 1. Define

FV :=
∑
R⊂V

α(R)
|R| 1R.

We shall show that for all U , there is a set V satisfying |V | < 1
2 |U | for which

‖FU‖p � |U |1/p + ‖FV ‖p.(3.12)

Clearly, inductive application of this inequality will prove our lemma.
The argument for (3.12) is by duality. Thus, for a given 1 < p <∞, and

conjugate index p′, take g ∈ Lp′ of norm one so that ‖FU‖p = 〈FU , g〉. Set

V = {M g > K|U |−1/p′}

where M is the strong maximal function and K is sufficiently large so that
|V | < 1

2 |U |. Then

〈FU , g〉 =
∑
R⊂U
R 	⊂V

α(R)−
∫

R
g dx+ 〈FV , g〉.

The second term is at most ‖FV ‖p by Hölder’s inequality. For the first
term, note that the average of g over R can be at most K|U |−1/p′ . So by
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the definition of Carleson measure norm, it is at most∑
R⊂U
R 	⊂V

α(R)−
∫

R
g dx � |U |−1/p′

∑
R⊂U

α(R) � |U |1/p,

as required by (3.12). �

4. Implications for multipliers

Let us consider a bounded function m, and define

Am f(x) :=
∫
m(ξ)f̂(ξ) dξ.

This is the multiplier operator given by m, and the Plancherel equality
implies that the operator norm of A on L2 is given by ‖m‖∞. It is of
significant interest to have a description of the the norm of A as an operator
on Lp only in terms of properties of the function m.

Littlewood–Paley inequalities have implications here, as is recognized
through the proof of the classical Marcinciewcz Theorem. Coifman, Ru-
bio de Francia and Semmes [16] found a beautiful extension of this classical
theorem with a proof that is a pleasing application of Rubio de Francia’s
inequality. We work first in one dimension. To state it, for an interval [a, b],
and index 0 < q <∞, we set the q variation norm of m on the interval [a, b]
to be

‖m‖Varq([a,b]) := sup

⎧⎨⎩
[

K∑
k=0

|m(ξk+1) −m(ξk)|q
]1/q
⎫⎬⎭(4.1)

where the supremum is over all finite sequences a = ξ0 < ξ1 < ξ2 < · · · <
ξK+1 = b. Set ‖v‖Vq([a,b]) := ‖m‖L∞([a,b]) + ‖m‖Varq([a,b]) Note that if q = 1,
this norm coincides with the classical bounded variation norm.

4.2. Theorem. Suppose that 1 < p, q < ∞, satisfying |12 − 1
p | <

1
q . Then

for all functions m ∈ L∞(R), we have

‖Am‖p � sup
I∈D

‖m‖Vq(I).

Note that the right-hand side is a supremum over the Littlewood–Paley
intervals I ∈ D. The theorem above is as in the Marcinciewcz Theorem,
provided one takes q = 1. But the theorem of Coifman, Rubio de Francia
and Semmes states that even for the much rougher case of q = 2, the right-
hand side is an upper bound for all Lp operator norms of the multiplier norm
Am. In addition, as q increases to infinity, the Vq norms approach that of
L∞, which is the correct estimate for the multiplier norm at p = 2.
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4.1. Proof of Theorem 4.2. The first lemma in the proof is a transparent
display of the usefulness of the Littlewood–Paley inequalities in decoupling
scales.

4.3. Lemma. Suppose the multiplier m is of the form m =
∑

ω∈D aω1ω,
for a sequence of reals aω. Then,

‖Am‖p � ‖aω‖�∞(D), 1 < p <∞.

Suppose that for an integer n, that Dn is a partition of R that refines the par-
tition D, and partitions each ω ∈ D into at most n subintervals. Consider
a multiplier of the form

m =
∑

ω∈Dn

aω1ω.

For |1p − 1
2 | <

1
q , we have

‖Am‖p � n1/q‖aω‖�∞(Dn).(4.4)

Proof. In the first claim, for each ω ∈ D, we have Sω Am = aω Sω, so that
for any f ∈ Lp, we have by the Littlewood–Paley inequalities

‖Am f‖p � ‖SD Am f‖p

�
∥∥∥∥∥
[∑

ω∈D

|aω|2|Sω f |2
]1/2∥∥∥∥∥

p

� ‖aω‖�∞(D)‖SDf‖p.

The proof of (4.4) is by interpolation. Let us presume that ‖aω‖�∞(Dn) =
1. We certainly have ‖Am‖2 = 1. On the other hand, with an eye towards
applying the classical Littlewood–Paley inequality and Rubio de Francia’s
extension of it, for each ω ∈ D, we have

|Sω Am f | ≤ n1/2
[ ∑

ω′∈Dn
ω′⊂ω

|Sω′ f |2
]1/2

.

Therefore, we may estimate for any 2 < r <∞,

‖Am f‖r � ‖SD Am f‖r(4.5)

� n1/2‖SDn f‖r

� n1/2‖f‖r.
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To conclude (4.4), let us first note the useful principle that ‖Am‖p = ‖Am‖p′ ,
where p′ is the conjugate index. So we can take p > 2. For the choice of
1
2 − 1

p <
1
q , take a value of r that is very large, in fact

1
2
− 1
p
<

1
r
<

1
q

and interpolate (4.5) with the L2 bound. �

Since our last inequality is so close in form to the theorem we wish to
prove, the most expedient thing to do is to note a slightly technical lemma
about functions in the Vq class.

4.6. Lemma. If m ∈ Vq(I) is of norm one, we can choose partitions Πj,
j ∈ N, of I into at most 2j subintervals and functions mj that are measurable
with respect to Πj, so that

m =
∑

j

mj , ‖mj‖∞ � 2−j .

Proof. Let Pj = {(k2−j , (k+1)2−j ] : 0 ≤ k < 2j} be the standard partition
of [0, 1] into intervals of length 2−j . Consider the function μ : I = [a, b] −→
[0, 1] given by

μ(x) := ‖m‖q
Varq([a,x]).

This function is monotone, nondecreasing, hence has a well-defined inverse
function. Define Πj = μ−1(Pj). We define the functions mj so that

j∑
k=1

mj =
∑

ω∈Πj

1ω−
∫

ω
m dξ.

That is, the mj are taken to be a martingale difference sequence with respect
to the increasing sigma fields Πj . Thus, it is clear that m =

∑
mj . The

bound on the L∞ norm of the mj is easy to deduce from the definitions. �

We can prove the Theorem 4.2 as follows. For 1
2 −

1
p <

1
r <

1
q , and m such

that

sup
ω∈D

‖m1ω‖Vq(ω) ≤ 1,

we apply Lemma 4.6 and (4.4) to each m1ω to conclude that we can write
m =

∑
j mj , so that mj is a multiplier satisfying ‖Amj‖p � 2j/r−j/q. But

this estimate is summable in j, and so completes the proof of the theorem.
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4.2. The higher dimensional form. The extension of the theorem above
to higher dimensions was made by Q. Xu [42]. His point of view was to take
an inductive and vector-valued approach. Some of his ideas were motivated
by prior work of G. Pisier and Q. Xu [33, 34] in which interesting applications
of q-variation spaces are made.

The definition of the q-variation in higher dimensions is done inductively.
For a function m : Rd −→ C, define difference operators by

Diff(m, k, h, x) = m(x+ hek) −m(x), 1 ≤ k ≤ d,

where ek is the kth coordinate vector. For a rectangle R =
∏d

k=1[xk, xk+hk],
set

DiffR(m) = Diff(m, 1, h1, x) · · ·Diff(m, d, hd, x), x = (x1, . . . , xd).

Define

‖m‖Varq(Q) = sup
P

[∑
R∈P

|DiffR(M)|q
]1/q

, 0 < q <∞.

The supremum is formed over all partitions P of the rectangle Q into sub-
rectangles.

Given 1 ≤ k < d, and y = (y1, . . . , yk) ∈ Rk, and a map α : {1, . . . , k} →
{1, . . . , d}, let my,α be the function from Rd−k to C obtained from m by
restricting the α(j)th coordinate to be yj , 1 ≤ j ≤ k. Then, the Vq(Q) norm
is

‖m‖Vq(Q) = ‖m‖∞ + ‖m‖Varq(Rd) + sup
k,α

sup
y∈Rk

‖mk,α‖Varq(Qy,α).

Here, we let Qy,α be the cube obtained from Q by restricting the α(j)th
coordinate to be yj , 1 ≤ j ≤ k.

Recall the notation Δd for the lacunary intervals in d dimensions, and in
particular (3.1).

4.7. Theorem. Suppose that |12 − 1
p | <

1
q . For functions m : Rd −→ C,

we have the estimate on the multiplier norm of m

‖Am‖p � sup
R∈Δd

‖m1R‖Vq(Rd).

4.3. Proof of Theorem 4.7. The argument is a reprise of that for the
one-dimensional case. We begin with definitions in one dimension. Let B
be a linear space with norm ‖ ‖B. For an interval I let E(I,B) be the linear
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space of step functions m : I −→ B with finite range. Thus,

m =
J∑

j=1

bj1Ij

for a finite partition {I1, . . . , Ij} of I into intervals, and a sequence of values
bj ∈ B. If B = C, we write simply E(I). There is a family of norms that we
impose on E(I,B).

〈〈m〉〉E(I,B),q =

⎡⎣ J∑
j=1

‖bj‖q
B

⎤⎦1/q

, 1 ≤ q ≤ ∞.

For a rectangle R = R1 × · · ·Rd, set

E(R) := E(R1, E(R2, · · · , E(Rd,C) · · · )).

The following lemma is a variant of Lemma 4.3.

4.8. Lemma. Let m : Rd −→ C be a function such that m1R ∈ E(R) for
all R ∈ Δd. Then, we have these two estimates for the multiplier Am.

‖Am‖p � sup
R∈Δd

〈〈m〉〉E(R),2, 1 < p <∞,(4.9)

‖Am‖p � sup
R∈Δd

〈〈m〉〉E(I,B),q, 1 < p <∞, |12 − 1
p | <

1
q .(4.10)

Proof. The first claim, the obvious bound at L2, and complex interpolation
prove the second claim.

As for the first claim, take a multiplier m for which the right-hand side in
(4.9) is 1. To each R ∈ Δd, there is a partition ΩR of R into a finite number
of rectangles so that

m1R =
∑

ω∈ΩR

aω1ω,∑
ω∈ΩR

|aω|2 ≤ 1.

This conclusion is obvious for d = 1, and induction on dimension will prove
it in full generality.

Then observe that by Cauchy–Schwarz,

|SR Am| ≤ SΩR .
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Set Ω =
⋃

R∈Δd ΩR. Using the Littlewood–Paley inequality (3.1), and Rubio
de Francia’s inequality in d dimensions, we may estimate

‖Am f‖p � ‖SΔd
Am f‖p

� ‖SΩ f‖p

� ‖f‖p.

The last step requires that 2 ≤ p < ∞, but the operator norm ‖Am‖p is
invariant under conjugation of p, so that we need only consider this range
of p’s. �

We extend the notion of E(I,B). Let B be a Banach space, and set
Uq(I,B) to be the Banach space of functions m : I −→ B for which the
norm below is finite.

‖m‖Uq := inf
{∑

j

〈〈mj〉〉E(I,B),q : m =
∑

j

mj , mj ∈ E(I,B)
}
.

For a rectangle R = R1 × · · ·Rd, set

Uq(R) := Uq(R1,Uq(R2, · · · ,Uq(Rd,C) · · · )).
By convexity, we clearly have the inequalities

‖Am‖p � sup
R∈Δd

‖m1R‖U2(R), 1 < p <∞,

‖Am‖p � sup
R∈Δd

‖m1R‖Uq(R), 1 < p <∞, |12 − 1
p | <

1
q .

As well, we have the inclusion Uq(R) ⊂ Varq(R), for 1 ≤ q <∞. The reverse
inclusion is not true in general, nevertheless the inclusion is true with a small
perturbation of indicies.

Let us note that the definition of the q-variation space on an interval, given
in (4.1), has an immediate extension to a setting in which the functions m
take values in a Banach space B. Let us denote this space as Vq(I,B).

4.11. Lemma. For all 1 ≤ p < q < ∞, all intervals I, and Banach spaces
B, we have the inclusion

Vp(I,B) ⊂ Uq(I,B).

For all pairs of intervals I, J , we have

Vq(I × J,B) = Vq(I,Vq(J,B)).

In addition, for all rectangles R, we have

Vp(R) ⊂ Uq(R).

In each instance, the inclusion map is bounded.
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The first claim of the lemma is proved by a trivial modification of the
proof of Lemma 4.6. (The martingale convergence theorem holds for all
Banach space valued martingales.) The second claim is easy to verify, and
the last claim is a corollary to the first two.

5. Notes and remarks

5.1. Remark. L. Carleson [12] first noted the possible extension of the
Littlewood–Paley inequality, proving in 1967 that Theorem 1.2 holds in the
special case that Ω = {[n, n+1) : n ∈ Z}. He also noted that the inequality
does not extend to 1 < p < 2. A corresponding extension to homethetic
parallelepipeds was given by A. Córdoba [17], who also pointed out the
connection to multipliers.

5.2. Remark. Rubio de Francia’s paper [36] adopted an approach that we
could outline this way. The reduction to the well-distributed case is made,
and we have borrowed that line of reasoning from him. This permits one
to define a smooth operator GΩ in (2.13). That GΩ is bounded on Lp, for
2 < p < ∞, is a consequence of a bound on the sharp function. In our
notation, that sharp function estimate would be

(GΩ f)� � (M|f |2)1/2.(5.3)

The sharp denotes the function

g� = sup
J

1J

[
−
∫

J

∣∣∣∣g −−
∫

J
g

∣∣∣∣2 dx

]1/2

,

the supremum being formed over all intervals J . It is known that ‖g‖p �
‖g�‖p for 1 < p < ∞. Notice that our proof can be adapted to prove
a dyadic version of (5.3) for the tile operator TΩ if desired. The sharp
function estimate has the advantage of quickly giving weighted inequalities.
It has the disadvantage of not easily generalizing to higher dimensions. On
this point, see R. Fefferman [20].

5.4. Remark. The weighted version of Rubio de Francia’s inequality states
that for all weights w ∈ A1, one has∫

|SΩ f |2 w dx �
∫

|f |2 w dx.

There is a similar conclusion for multipliers.∫
|Am f |2 w dx � sup

R∈Δd

‖m1R‖2
V2(R)

∫
|f |2 w dx.
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See Coifman, Rubio de Francia, and Semmes [16], for one dimension and
Q. Xu [42] for dimensions greater than 1.

5.5. Remark. Among those authors who made a contribution to Rubio
de Francia’s one-dimensional inequality, P. Sjölin [39] provided an alternate
derivation of Rubio de Francia’s sharp function estimate (5.3). In another
direction, observe that (2.1), Rubio de Francia’s inequality has the dual
formulation ‖f‖p � ‖SΩ f‖p, for 1 < p < 2. J. Bourgain [10] established a
dual endpoint estimate for the unit circle:

‖f‖H1 � ‖SΩ f‖1.

This inequality in higher dimensions seems to be open.

5.6. Remark. Rubio de Francia’s inequality does not extend below L2.
While this is suggested by the duality estimates, an explicit example is given
in one dimension by f̂ = 1[0,N ], for a large integer N , and Ω = {(n, n+ 1) :
n ∈ Z}. Then, it is easy to see that

N1/21[0,1] � SΩ f, ‖f‖p � Np/(p−1), 1 < p <∞.

It follows that 1 < p < 2 is not permitted in Rubio de Francia’s inequality.

5.7. Remark. In considering an estimate below L2, in any dimension,
we have the following interpolation argument available to us for all well-
distributed collections Ω. We have the estimate

sup
s∈TΩ

1Rs

|〈f, ϕs〉|√
|Rs|

� M f(5.8)

where M denotes the strong maximal function. Thus, the right-hand side is
a bounded operator on all Lp. By taking a value of p very close to one, and
interpolating with the L2 bound for SΩ, we see that∥∥∥∥∥∥∥∥1Rs

|〈f, ϕs〉|√
|Rs|

∥∥∥∥
�q(Ω)

∥∥∥∥
p

� ‖f‖p, 1 < p < 2,
p

p− 1
< q <∞.(5.9)

By (2.9), this inequality continues to hold without the well-distributed as-
sumption. Namely, using (2.7), for all disjoint collections of rectangles Ω,

‖‖Sω f‖�q(Ω)‖p � ‖f‖p 1 < p < 2,
p

p− 1
< q <∞.

5.10. Remark. Cowling and Tao [18], for 1 < p < 2, construct f ∈ Lp for
which ∥∥‖Sω f‖�p′ (Ω)

∥∥
Lp = ∞ ,

forbidding one possible extension of the interpolation above to a natural
endpoint estimate.
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5.11. Remark. Quek [35], on the other hand, finds a sharp endpoint esti-
mate ∥∥‖Sω f‖�p′ (Ω)

∥∥
Lp,p′ � ‖f‖p, 1 < p < 2, p′ = p

p−1 .

In this last inequality, the space Lp,p′ denotes a Lorenz space. Indeed, he uses
the weak L1 estimate (5.8), together with a complex interpolation method.

5.12. Remark. The higher dimensional formulation of Rubio de Francia’s
inequality did not admit an immediately clear formulation. J.-L. Journé
[26] established the theorem in the higher dimensional case, but used a very
sophisticated proof. Simpler arguments, very close in spirit to what we have
presented, were given by F. Soria [40] in two dimensions, and in higher
dimensions by S. Sato [37] and X. Zhu [43]. These authors continued to
focus on the G function (2.13), instead of the time frequency approach we
have used.

5.13. Remark. We should mention that if one is considering the higher
dimensional version of Theorem 1.2, with the simplification that the col-
lection of rectangles consists only of cubes, then the method of proof need
not invoke the difficulties of the BMO theory of Chang and Fefferman. The
usual one-parameter BMO theory will suffice. The same comment holds if
all the rectangles in Ω are homeothetic under translations and application
of a power of a fixed expanding matrix.

5.14. Remark. It would be of interest to establish variants of Rubio de
Francia’s inequality for other collections of sets in the plane. A. Cordoba
has established a preliminary result in this direction for finite numbers of
sectors in the plane. G. Karagulyan and the author [27] provide a result for
more general sets of directions, presuming a priori bounds on the maximal
function associated with this set of directions.

5.15. Remark. The inequality (2.7) is now typically seen as a consequence
of the general theory of weighted inequalities. In particular, if h ∈ L1(R),
and ε > 0, it is the case that (Mh)1−ε is a weight in the Muckenhoupt
class A1. In particular, this observation implies (2.7). See the material on
weighted inequalities in E.M. Stein [41].

5.16. Remark. Critical to the proof of Rubio de Francia’s inequality is
the L2 boundedness of the tile operator TΩ. This is of course an immediate
consequence of the well-distributed assumption. It would be of some interest
to establish a reasonable geometric condition on the tiles which would be
sufficient for the L2 boundedness of the operator TΩ. In this regard, one
should consult the inequality of J. Barrionuevo and the author [1]. This
inequality is of a weak type, but is sharp.
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5.17. Remark. V. Olevskii [31] independently established a version of The-
orem 4.2 on the integers.

5.18. Remark. Observe that, in a certain sense, the multiplier result The-
orem 4.2 is optimal. In one dimension, let ψ denote a smooth bump function
ψ with frequency support in [−1/2, 1/2], and for random choices of signs εk,
k ≥ 1, and integer N , consider the multiplier

m =
N∑

k=1

εk Trk ψ̂.

Apply this multiplier to the function f̂ = 1[0,N ]. By an application of
Khintchine’s inequality,

E‖Am f‖p �
√
N, 1 < p <∞.

On the other hand, it is straightforward to verify that ‖f‖p � Np/(p−1). We
conclude that

‖Am‖p � N |1/2−1/p|.

Clearly E‖m‖Vq � N1/q. That is, up to arbitrarily small constant, the values
of q permitted in Theorem 4.2 are optimal.

5.19. Remark. V. Olevskii [30] refines the notion in which Theorem 4.2
is optimal. The argument is phrased in terms of multipliers for �p(Z). It is
evident that the q-variation norm is preserved under homeomorphims. That
is let φ : T −→ T be a homeomorphism. Then ‖m‖Vq(T) = ‖m ◦ φ‖Vq(T).
For a multiplier m : T −→ R, let

‖m‖M0
p

= sup
φ

sup
‖f‖�p(Z)=1

∥∥∥∥∫
T

f̂(τ)m ◦ φ(τ)einτ dτ

∥∥∥∥
p

Thus, M0
p is the supremum over multiplier norms of m ◦ φ, for all homeo-

morphims φ. Then, Olevskii shows that if ‖m‖M0
p
< ∞, then m has finite

q-variation for all |12 − 1
p | <

1
q .

5.20. Remark. E. Berkson and T. Gillespie [7, 8, 9] have extended the
Coifman, Rubio, Semmes result to a setting in which one has an operator
with an appropriate spectral representation.

5.21. Remark. The Rubio de Francia inequalities are in only one direction.
K.E. Hare and I. Klemes [22, 23, 24] have undertaken a somewhat general
study of necessary and sufficient conditions on a class of intervals to satisfy a
the inequality that is reverse to that of Rubio. A theorem from [24] concerns



34 M.T. Lacey

a collection of intervals Ω = {ωj : j ∈ Z} which are assumed to partition
R, and satisfy |ωj+1|/|ωj | → ∞. Then one has

‖f‖p � ‖SΩ f‖p, 2 < p <∞.

What is important here is that the locations of the ωj are not specified. The
authors conjecture that it is enough to have |ωj+1|/|ωj | > λ > 1.

5.22. Remark. Certain operator theoretic variants of issues related to Ru-
bio de Francia’s inequality are discussed in the papers of Berkson and Gille-
spie [4, 5, 6].
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