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A several variables Kowalski-Słodkowski
theorem for topological spaces

Jaikishan, Sneh Lata and Dinesh Singh

Abstract. We provide a version of the classical result of Kowalski and Słod-
kowski that generalizes the famous Gleason-Kahane-Żelazko (GKZ) theo-
rem by characterizing multiplicative linear functionals amongst all complex-
valued functions on a Banach algebra. We first characterize maps on 𝒜-
valued polynomials of several variables that satisfy some conditions, moti-
vated by the result of Kowalski and Słodkowski, as a composition of a mul-
tiplicative linear functional on 𝒜 and a point evaluation on the polynomi-
als, where 𝒜 is a complex Banach algebra with identity. We then apply it to
prove an analog of Kowalski and Słodkowski’s result on topological spaces of
vector-valued functions of several variables. These results extend our previ-
ous work from [3]; however, the techniques used differ from those used in
[3]. Furthermore, we characterize weighted composition operators between
Hardy spaces over the polydisc amongst the continuous functions between
them. Additionally, we register a partial but noteworthy success toward a
multiplicative GKZ theorem for Hardy spaces.

Contents

1. Introduction 239
2. Kowalski-Słodkowski’s Theorem for Hardy spaces 244
3. Kowalski-Słodkowski’s theorem for topological spaces 245
4. A Multiplicative GKZ Theorem for Hardy spaces 251

Acknowledgements 252
References 253

1. Introduction
Let 𝒜 denote a complex Banach algebra with identity and 𝐺(𝒜) denote the

set of invertible elements in 𝒜. A non-zero linear functional 𝐹 defined on 𝒜
is called multiplicative or a character if 𝐹(𝑥𝑦) = 𝐹(𝑥)𝐹(𝑦) for all 𝑥, 𝑦 ∈ 𝒜. It
is easy to see that a multiplicative linear functional on 𝒜 can never vanish on
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𝐺(𝒜). Interestingly, the converse is also true, and it is the well-knownGleason-
Kahane-Żelazko (GKZ) theorem, which characterizes all multiplicative linear
functionals on a complex unital Banach algebra.

Theorem 1.1 (GKZ theorem). Let 𝐹 be a linear functional on a complex unital
Banach algebra 𝒜 with identity 𝑒 such that 𝐹(𝑒) = 1 and 𝐹(𝑥) ≠ 0 for every
𝑥 ∈ 𝐺(𝒜), then 𝐹(𝑥𝑦) = 𝐹(𝑥)𝐹(𝑦) for all 𝑥, 𝑦 ∈ 𝒜.

The GKZ theorem was first proved by Gleason [2] and, independently, by
Kahane and Żelazko [4], for commutative Banach algebras. Afterward, Żelazko
[16] extended it to the non-commutative case. An elementary proof of Theorem
1.1, due to Roitman and Sternfeld, can be found in [10].
Around a decade later, Kowalski and Słodkowski gave an interesting general-

ization of the GKZ theorem in [6]. They proved the following characterization
of multiplicative linear functionals amongst all complex-valued functions on
complex unital Banach algebras without using the linearity condition.

Theorem 1.2 (KS theorem). Let 𝒜 be a complex unital Banach algebra with
identity 𝑒 and let 𝐹 ∶ 𝒜 → ℂ be a map satisfying 𝐹(0) = 0 and

(
𝐹(𝑥) − 𝐹(𝑦)

)
𝑒 − (𝑥 − 𝑦) ∉ 𝐺(𝒜) (1)

for all 𝑥, 𝑦 ∈ 𝒜. Then 𝐹 is multiplicative and linear.

Note that for 𝑦 = 0, Condition (1) yields 𝐹(𝑥)𝑒 − 𝑥 ∉ 𝐺(𝒜) for every 𝑥 in𝒜,
which for a linear 𝐹, is equivalent to 𝐹 being non-zero on invertible elements
in 𝒜. Thus, the KS theorem generalizes the GKZ theorem. Interestingly, the
above characterizations have analogs for function spaces that are not necessar-
ily algebras.
Furthermore, we remark that the assumption 𝐹(0) = 0merely eliminates a

translation. Without it, 𝐹 is an affinemap, since 𝐹−𝐹(0) satisfies the hypothe-
ses and is therefore linear and multiplicative. Thus, although the conclusion
of the KS theorem holds up to a translation in the absence of the assumption
𝐹(0) = 0, including it provides a cleaner and more natural formulation of the
theorem.
To lend perspective to the discussion at hand which has set the tone for our

current work, we shall first discuss analogs of the GKZ theorem as proved in
[3, 8, 11]. Unless specified otherwise, we consider all vector spaces over the
field of complex numbers and assume all the functions to be complex-valued.
Recently, Mashreghi and Ransford [8] extended the GKZ theorem to certain

Banach spaces of analytic functions on the open unit disc 𝔻. The following is
their version for the Hardy spaces.

Theorem 1.3. [8, Theorem 2.1] For 0 < 𝑝 ≤ ∞, let 𝐹 ∶ 𝐻𝑝(𝔻) → ℂ be a linear
functional such that 𝐹(1) = 1 and 𝐹(𝑔) ≠ 0 for all 𝑜𝑢𝑡𝑒𝑟 functions 𝑔 in 𝐻𝑝(𝔻).
Then there exists 𝑤 ∈ 𝔻 such that

𝐹(𝑓) = 𝑓(𝑤) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐻𝑝(𝔻).
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This is a genuine counterpart of the GKZ theorem for Hardy spaces, as any
function 𝑓 in the Hardy space with a 𝑔 in the same space such that 𝑓𝑔 = 1must
be outer. Moreover, a point evaluation is multiplicative whenever the multipli-
cation is well-defined. In the same paper, they also gave the following analo-
gous result for a much broader class of Banach spaces.

Let𝐻𝑜𝑙(𝔻) denote the set of all holomorphic functions on the open unit disc
𝔻, and let 𝒳 ⊆ 𝐻𝑜𝑙(𝔻) be a Banach space with the following properties:

(𝒳1) for each 𝑤 ∈ 𝔻, the map 𝑓 ↦ 𝑓(𝑤) is continuous;
(𝒳2) 𝒳 contains all polynomials, and they are dense in 𝒳;
(𝒳3) multiplication with the function 𝑧 is well-defined on 𝒳.

Further, suppose𝒲 is a subset of𝒳 which satisfies the following properties:

(𝒲1) if 𝑓 ∈ 𝒳 is bounded and |𝑓| is bounded away from zero on 𝔻, then
𝑓 ∈ 𝒲;

(𝒲2) 𝒲 contains the linear polynomials 𝑔(𝑧) = 𝑧 − 𝜆, |𝜆| = 1.

Theorem 1.4. [8, Theorem 3.1] Let 𝒳 ⊆ 𝐻𝑜𝑙(𝔻) be a Banach space and let𝒲
be a subset of𝒳. Suppose they satisfy the above-stated properties (𝒳1)−(𝒳3) and
(𝒲1) − (𝒲2), respectively. If 𝐹 ∶ 𝒳 → ℂ is a continuous linear functional such
that 𝐹(1) = 1 and it never vanishes on the set𝒲 , then there exists 𝑤 ∈ 𝔻 such
that 𝐹(𝑓) = 𝑓(𝑤) for all 𝑓 ∈ 𝒳.

Inspired by the work mentioned above of Mashreghi and Ransford, the au-
thors of this article proved a new analog of the GKZ theorem in [3]. This analog
is interesting because we dropped the condition that requires the vector space
to be a Banach space. In fact, we assumed the vector space has a topology that
is not necessarily related to its algebraic structure. More precisely, we proved
the following:
Let ℱ(𝑟, ℂ) denote the family of complex-valued functions defined on the

open disc 𝐷(0, 𝑟) in ℂ with center at 0 and radius 𝑟.

Theorem 1.5. [3, Theorem B] Let 𝒳 ⊂ ℱ(𝑟, ℂ) be a complex vector space
equipped with a topology that satisfies the following properties:

(1) for each 𝑤 ∈ 𝐷(0, 𝑟), the map 𝑓 ↦ 𝑓(𝑤) is continuous;
(2) 𝒳 contains the set of complex polynomials as a dense subset.

Let 𝒴 = {(𝑧 − 𝜆)𝑛 ∶ 𝑛 ≥ 0, 𝜆 ∈ ℂ, |𝜆| ≥ 𝑟}. If 𝐹 ∶ 𝒳 → ℂ is a continuous
linear functional such that 𝐹(1) = 1 and 𝐹(𝑔) ≠ 0 for all 𝑔 ∈ 𝒴, then there exists
𝑤 ∈ 𝐷(0, 𝑟) such that 𝐹(𝑓) = 𝑓(𝑤) for all 𝑓 ∈ 𝒳.

Notice that Theorem 1.5 is, in spirit, similar to Theorems 1.3 and 1.4. In ad-
dition to what has been stated above, it is worth noting that the hypotheses of
Theorem 1.5 involve conditions on only a small and special class of outer func-
tions, namely, powers of linear outer polynomials. Furthermore, Theorem 1.5
gives a version of Theorem 1.3, but with an additional continuity restriction on
the linear functional; this restriction has been justified in [3] by means of an
example. It is also worth noting that unlike the proofs of Theorems 1.3 and 1.4,
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as given in [8], the proof of Theorem 1.5 in [3] does not rely on the GKZ theo-
rem. Additionally, the authors of [8] focussed primarily within the framework
of Hardy spaces and therefore restrict their attention to analytic functions on
the open unit disc. By contrast, the techniques employed in the proof of The-
orem 1.5 are different and suited to a more general setting; in particular, these
techniques naturally allowed a version of the GKZ theorem for functions de-
fined on the open disc 𝐷(0, 𝑟) for an arbitrary radius 𝑟 > 0.
In [11], Sampat obtained a version of the GKZ theorem for function spaces in

the several variables setting. This result has its roots in [5] and [8]. In [5], Kou
and Liu characterized the bounded linear operators on𝐻𝑝(𝔻), 1 < 𝑝 < ∞ that
preserve outer functions as weighted composition operators. In this process,
Kou and Liu [5] gave yet another proof of Theorem 1.3 in which they worked
with a specific subclass of outer functions, namely, {𝑒𝑤𝑧 ∶ 𝑤 ∈ ℂ}. Further-
more, their proof does not rely on the GKZ theorem, and the result assumes
the continuity of the linear functional. Sampat extended Kou and Liu’s ideas
to the several variables setting in [11]. The following is his analog of the GKZ
theorem. For an open set𝑈 ⊂ ℂ𝑛, let𝒳 ⊂ 𝐻𝑜𝑙(𝑈) be a Banach space satisfying
the following properties:

(JS1) The set of polynomials is dense in 𝒳;
(JS2) For each 𝑧 ∈ 𝑈, the point evaluation map 𝑓 ↦ 𝑓(𝑧) is bounded on 𝒳.

Furthermore, 𝑈 contains each 𝑧 ∈ ℂ𝑛 for which the map 𝑝 ↦ 𝑝(𝑧) on
the set of polynomials extends to a bounded linear functional on all of
𝒳;

(JS3) The 𝑖𝑡ℎ- shift operator 𝑆𝑖 ∶ 𝒳 → 𝒳, defined as 𝑆𝑖𝑓(𝑧) ∶= 𝑧𝑖𝑓(𝑧) for
every (𝑧𝑘)𝑛𝑘=1 = 𝑧 ∈ 𝑈 and 𝑓 ∈ 𝒳, is a bounded linear operator for all
1 ≤ 𝑖 ≤ 𝑛.

Theorem1.6. [11, Theorem 1.4]Let𝒳 be a Banach space that satisfies the above
properties (𝐽𝑆1)−(𝐽𝑆3) over an open set𝑈 ⊂ ℂ𝑛. LetΛ ∶ 𝒳 → ℂ be a continuous
linear functional such that Λ(𝑒𝑤⋅𝑧) ≠ 0 for every𝑤 ∈ ℂ𝑛. Then there exist a non-
zero 𝛼 ∈ ℂ and 𝑤 ∈ 𝑈 such that

Λ(𝑓) = 𝛼𝑓(𝑤) for all 𝑓 ∈ 𝒳.

We now focus on an analog of the KS theorem for function spaces. By fol-
lowing the ideas of Mashreghi and Ransford from [8], Sebastian and Daniel
extended the KS theorem to modules in [12, Theorem 2.3]; then they used it to
obtain the following generalization of Theorem 1.3.

Theorem 1.7. [12, Theorem 3.1] Let 1 ≤ 𝑝 ≤ ∞ and 𝐹 ∶ 𝐻𝑝(𝔻) → ℂ be a
function such that 𝐹(0) = 0, 𝐹(1) ≠ 0, and

(
𝐹(𝑓1) − 𝐹(𝑓2)

)
1 − 𝐹(1)(𝑓1 − 𝑓2) ∉ 𝑆 (2)

for all 𝑓1, 𝑓2 ∈ 𝐻𝑝(𝔻), where 𝑆 is the set of all outer functions in 𝐻𝑝(𝔻). Then
there exists a unique character 𝜒 on𝐻∞(𝔻) such that

𝐹(𝑓𝑔) = 𝜒(𝑓)𝐹(𝑔)
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for all 𝑓 ∈ 𝐻∞(𝔻) and 𝑔 ∈ 𝐻𝑝(𝔻). Further, there exist a non-zero constant 𝑐 and
𝑤 ∈ 𝔻 such that 𝐹(𝑔) = 𝑐𝑔(𝑤) for all 𝑔 ∈ 𝐻∞(𝔻).

Apart from being captivating in their own right, these various analogs of the
GKZ theorem and its generalization, the KS theorem, are attracting attention
as they lead to, in their respective settings, characterizations of linearmaps that
preserve outer functions. Mashreghi and Ransford used Theorem 1.3 to show
that linear operators on Hardy spaces 𝐻𝑝(𝔻), 0 < 𝑝 ≤ ∞ preserving outer
functions are necessarily weighted composition operators ([8, Theorems 2.2 &
2.3]). Sebastian and Daniel in [12], Kou and Liu in [5], and Sampat in [11]
have also used their results mentioned above to obtain similar results for their
respective settings.
In this paper, we extend the KS theorem to a much larger class of topological

spaces (Theorem 3.3)—as opposed to Banach spaces—consisting of functions
defined on a bounded subset ofℂ𝑛 and taking values in a fixed complex Banach
algebra with identity. To be precise, given a topological space 𝒳 of functions
defined on certain bounded subset of ℂ𝑛 taking values in a complex Banach
algebra 𝒜 with identity, we characterize non-zero continuous functions on 𝒳
that satisfy some conditions similar to those imposed in the KS theorem as a
composition of a point evaluation on 𝒳 and a multiplicative linear functional
on𝒜. We note that Theorem 3.3 extends our earlier work Theorem 1.5 to func-
tions of several variables; nevertheless, the techniques used in this paper differ
from those employed for the proof of Theorem 1.5 in [3]. In addition, it is worth
mentioning that many interesting and well-known function spaces such as the
ℂ𝑚-valued Hardy spaces on 𝔻𝑛, the Drury-Arveson space, the Dirichlet-type
spaces on 𝔻𝑛, and the polydisc algebra are covered by our result. A more elab-
orated list is given in Section 3.
Furthermore, we use Theorem 3.3 to characterize weighted composition op-

erators between Hardy spaces (Theorem 3.8) amongst the family of continuous
functions between them. Lastly, in Section 4, we give a partial but noteworthy
result towards a multiplicative GKZ theorem for Hardy spaces.
As we mentioned earlier, [12] has extended the KS theorem to Hardy spaces

(Theorem 1.7), and [11] has given a several variables version of the GKZ theo-
rem (Theorem 1.6). So, listing some aspects where our results differ from those
in [11] and [12] is natural and necessary.

(i) Theorem 1.6 ([11, Theorem 1.4]) is a several variables version of the
GKZ theorem, whereas our result (Theorem 3.3) is a several variables
version of the KS theorem. In addition, our functions are vector-valued
as well.

(ii) The author in [11] uses some technical complex function theory results,
whereas our arguments are elementary.

(iii) We assume the given map to be non-zero on certain polynomials,
whereas Theorem 1.7 assumes the map to be non-zero on the set of all
outer functions, and Theorem 1.6 assumes it to be non-zero on the set
{𝑒𝑤⋅𝑧 ∶ 𝑤 ∈ ℂ}.
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(iv) Theorem 1.7 extends the KS theorem only to Hardy spaces𝐻𝑝(𝔻), 1 ≤
𝑝 ≤ ∞, whereas Theorem 3.3 covers a much broader class including
the vector-valued Hardy spaces 𝐻𝑝(𝔻𝑛, ℂ𝑚), 0 < 𝑝 ≤ ∞, the Drury-
Arveson space, the Dirichlet-type spaces over the polydisc𝔻𝑛, the poly-
disc algebra.

(v) The arguments deployed by us to prove Theorem 3.3 are much simpler
compared to ones used by the authors of [12] to prove Theorem 1.7.
The arguments used in [12] are specific to properties of Hardy spaces
and can’t be used for our setting.

(vi) In comparison to Theorem 1.7, Theorem 3.3 has an extra hypothesis of
continuity, which we show (Example 3.7) to be essential to deduce the
desired conclusion for our setting. We also note that Theorem 1.6 does
include continuity in its hypotheses, but its necessity is not addressed
in [11].

(vii) Unlike Theorem 1.6 and 1.7, Theorem 3.3 is not restricted to spaces of
analytic functions only.

In addition, in Theorem 2.1, we give an improvement of Theorem 1.7. In-
deed, the conclusion of Theorem 1.7, when compared to Theorem 1.3, leaves
room for improvement as it does not assert the behaviour of the map on un-
bounded functions in 𝐻𝑝(𝔻). Interestingly, we show in Theorem 2.1 that the
hypotheses of Theorem 1.7 are enough to establish that the assertion of Theo-
rem 1.7 holds for the entire𝐻𝑝(𝔻), which is in parallel to Theorem 1.3.

2. Kowalski-Słodkowski’s Theorem for Hardy spaces
In this section, we shall refine Theorem 1.7. We shall show that the hypothe-

ses of Theorem 1.7 are indeed enough to establish that the map, as desired, is a
point evaluation (up to a constant). We want to note that we fail to understand
why the authors have restricted the result to only 𝑝 ≥ 1 when their arguments
are valid for 0 < 𝑝 ≤ ∞. The following is our rectification of Theorem 1.7.

Theorem 2.1. Let 0 < 𝑝 ≤ ∞ and let 𝐹 ∶ 𝐻𝑝(𝔻) → ℂ be a non-zero function
such that 𝐹(0) = 0 and

(
𝐹(𝑓1) − 𝐹(𝑓2)

)
1 − 𝐹(1)(𝑓1 − 𝑓2) ∉ 𝑆 (3)

for all 𝑓1, 𝑓2 ∈ 𝐻𝑝(𝔻), where 𝑆 is the set of all outer functions in 𝐻𝑝(𝔻). Then
there exist a non-zero constant 𝑐 and 𝑤 ∈ 𝔻 such that 𝐹(𝑓) = 𝑐𝑓(𝑤) for every
𝑓 ∈ 𝐻𝑝(𝔻).

Proof. The proof of Theorem 1.7 as given in [12] uses [12, Theorem 2.3]. We
note that even for 0 < 𝑝 < 1, the triple,𝒜 = 𝐻∞(𝔻), ℳ = 𝐻𝑝(𝔻), 𝑆 equals the
set of all outer functions in 𝐻𝑝(𝔻) satisfy the hypotheses of Theorem 2.3 from
[12], and so just as shown in [12], there exists a character𝜒 ∶ 𝐻∞(𝔻) → ℂ such
that 𝐹(𝑓𝑔) = 𝜒(𝑓)𝐹(𝑔) for all 𝑓 ∈ 𝐻∞(𝔻) and 𝑔 ∈ 𝐻𝑝(𝔻), where 0 < 𝑝 ≤ ∞.
Further, by using arguments as were used in Theorem 1.7, there exists a point
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𝑤 ∈ 𝔻 such that 𝜒(𝑓) = 𝑓(𝑤) for all 𝑓 ∈ 𝐻∞(𝔻). This implies that for every
𝑓 ∈ 𝐻∞(𝔻), we obtain 𝐹(𝑓) = 𝜒(𝑓)𝐹(1) = 𝐹(1)𝑓(𝑤).
Let𝑂 be an outer function in𝐻𝑝(𝔻). Then there exist outer functions𝑂1 and

𝑂2 in 𝐻∞(𝔻) such that 𝑂 = 𝑂1∕𝑂2. This means 𝑂1 = 𝑂2𝑂, and so 𝐹(𝑂1) =
𝜒(𝑂2)𝐹(𝑂). Therefore, 𝐹(𝑂) = 𝐹(1)𝑂1(𝑤)∕𝑂2(𝑤) = 𝐹(1)𝑂(𝑤). This, along
with the inner-outer factorization of functions in 𝐻𝑝(𝔻), implies that 𝐹(𝑓) =
𝐹(1)𝑓(𝑤) for every 𝑓 ∈ 𝐻𝑝(𝔻). □

Now, using Theorem 2.1 and employing arguments similar to the ones used
in [8, Theorem2.2], we can improve Theorem3.2 from [12] by extending it from
𝐻∞(𝔻) to𝐻𝑝(𝔻) as follows.

Theorem 2.2. For 0 < 𝑝 ≤ ∞, let 𝑇 ∶ 𝐻𝑝(𝔻) → 𝐻𝑜𝑙(𝔻) be a continuous map
satisfying 𝑇(0) = 0, 𝑇(1)(𝑧) ≠ 0 for every 𝑧 ∈ 𝔻, and

(𝑇𝑓(𝑧) − 𝑇𝑔(𝑧))1 − 𝑇1(𝑧)(𝑓 − 𝑔) ∉ 𝑆
for every 𝑓, 𝑔 ∈ 𝐻𝑝(𝔻) and 𝑧 ∈ 𝔻, where 𝑆 is the set of outer functions in𝐻𝑝(𝔻).
Then there exist holomorphic functions 𝜙 ∶ 𝔻 → 𝔻 and 𝜓 ∶ 𝔻 → ℂ ⧵ {0} such
that 𝑇𝑓 = 𝜓 ⋅ (𝑓◦𝜙). for every 𝑓 ∈ 𝐻𝑝(𝔻).

Proof. For each fixed 𝑤 ∈ 𝔻, the map 𝑇𝑤 ∶ 𝐻𝑝(𝔻) → ℂ given by 𝑇𝑤(𝑓) =
(𝑇𝑓)(𝑤) satisfies the hypotheses of Theorem 2.1; therefore, there exist a point
𝑎𝑤 ∈ 𝔻 and a constant 𝑐𝑤 such that (𝑇𝑓)(𝑤) = 𝑐𝑤𝑓(𝑎𝑤) for every 𝑓 ∈ 𝐻𝑝(𝔻).
Then by taking 𝑓 to be the constant function 1, we see that 𝑐𝑤 = 𝑇1(𝑤) ≠ 0.
Further, by taking 𝑓(𝑧) = 𝑧, we see 𝑎𝑤 = (𝑇𝑧)(𝑤)∕𝑇1(𝑤). We now define
𝜓 = 𝑇1 and 𝜙 = (𝑇𝑧)∕𝜓. Then 𝜓 and 𝜙 are holomorphic function on 𝔻 such
that 𝜓 doesn’t vanish at any point in 𝔻, 𝜙(𝔻) ⊆ 𝔻, and 𝑇𝑓 = 𝜓 ⋅ (𝑓◦𝜙). This
completes the proof. □

3. Kowalski-Słodkowski’s theorem for topological spaces
In this section, we shall prove an analog of the KS theorem (Theorem 1.2)

for topological spaces of functions of several variables.
Letℤ+(𝑛) denote the set of 𝑛-tuples 𝛼 = (𝛼1, … , 𝛼𝑛) of non-negative integers.

For 𝛼 ∈ ℤ+(𝑛) and 𝑧 ∈ ℂ𝑛, define 𝑧𝛼 ∶= 𝑧𝛼11 𝑧
𝛼2
2 ⋯𝑧𝛼𝑛𝑛 . For a Banach algebra𝒜

with identity, let 𝒫𝒜
𝑛 denote the set of all 𝒜-valued polynomials in 𝑛 variables,

that is,

𝒫𝒜
𝑛 =

⎧

⎨
⎩

𝑝(𝑧) =
∑

|𝛼|≤𝑘
𝑎𝛼𝑧𝛼 ∶ 𝑎𝛼 ∈ 𝒜, 𝑧 ∈ ℂ𝑛 and 𝑘 is a non-negative integer

⎫

⎬
⎭

,

where |𝛼| = 𝛼1 + 𝛼2 +⋯ + 𝛼𝑛. For convenience, we shall write 𝒫𝑛 instead of
𝒫𝒜
𝑛 if 𝒜 = ℂ. Clearly, given any compact subset 𝐾 of ℂ𝑛, 𝒫𝒜

𝑛 can be viewed as
a subalgebra of the Banach algebra 𝐶(𝐾,𝒜), the set of all continuous𝒜-valued
functions with the sup norm. We say 𝑧0 is zero of a polynomial 𝑝 ∈ 𝒫𝒜

𝑛 if
𝑝(𝑧0) = 0. For the rest of this section, let 𝒜 represents a fixed complex Banach
algebra with identity 𝑒.
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The following result is integral to our version of the KS theorem for topologi-
cal spaces (Theorem 3.3). We present it as an independent result as, apart from
being interesting in its own right, it brings out the crux of the method used to
prove Theorem 3.3 even more prominently. It characterizes multiplicative lin-
ear functionals on 𝒫𝒜

𝑛 as non-zero complex-valued functions on 𝒫𝒜
𝑛 that satisfy

a condition very similar to the one assumed in the KS theorem. First, we recall
the notion of a polynomial convex hull of a set in ℂ𝑛. The polynomial convex
hull 𝐷̂ of a bounded subset 𝐷 of ℂ𝑛 is defined as the set of all 𝑤 ∈ ℂ𝑛 such that

|𝑝(𝑤)| ≤ sup
𝑧∈𝐷

|𝑝(𝑧)|

for all polynomials 𝑝 ∈ 𝒫𝑛. Note that 𝐷̂ is a closed set and 𝐷 ⊆ 𝐷̂.

Theorem 3.1. Let Λ ∶ 𝒫𝒜
𝑛 → ℂ be a non-zero function with Λ(0) = 0. Suppose

𝐷 is a bounded subset of ℂ𝑛 such that for every 𝑝 and 𝑞 in 𝒫𝒜
𝑛 the polynomial

(
Λ(𝑝) − Λ(𝑞)

)
𝑒 − (𝑝 − 𝑞)

has a zero in 𝐷. Then there exist 𝑤 ∈ 𝐷̂ and a multiplicative linear functional 𝜙
on𝒜 such that

Λ(𝑝) = 𝜙(𝑝(𝑤)) for all 𝑝 ∈ 𝒫𝒜
𝑛 .

Moreover, we assert 𝑤 ∈ 𝐷 whenever

(i) 𝑛 = 1;
(ii) 𝐷 = 𝐷1 ×⋯ × 𝐷𝑛 for some bounded sets 𝐷1, … , 𝐷𝑛 in ℂ;
(iii) 𝐷 is an open or a closed Euclidean ball in ℂ𝑛.

Proof. For every 𝑝, 𝑞 ∈ 𝒫𝒜
𝑛 there exists 𝑤𝑝,𝑞 ∈ 𝐷 such that (Λ(𝑝) − Λ(𝑞))𝑒 =

𝑝(𝑤𝑝,𝑞)−𝑞(𝑤𝑝,𝑞). In particular, for each polynomial 𝑝, there is a point𝑤𝑝 in 𝐷
such that Λ(𝑝)𝑒 = 𝑝(𝑤𝑝). This gives us

‖(Λ(𝑝) − Λ(𝑞))𝑒‖ = ‖‖‖‖𝑝(𝑤𝑝,𝑞) − 𝑞(𝑤𝑝,𝑞)
‖‖‖‖ ≤ sup

𝑧∈𝐷
‖𝑝(𝑧) − 𝑞(𝑧)‖ . (4)

Let 𝒫𝒜
𝑛 denote the closure of 𝒫𝒜

𝑛 with respect to the sup norm on 𝐶(𝐷,𝒜), and
let 𝑓 be an element of 𝒫𝒜

𝑛 . Then there is a sequence {𝑝𝑛}𝑛 of polynomials that
converge to 𝑓, which, using inequality (4), yields the existence of lim

𝑛→∞
Λ(𝑝𝑛).

This allows us to define a function Λ1 ∶ 𝒫𝒜
𝑛 → ℂ as Λ1(𝑓) ∶= lim

𝑛→∞
Λ(𝑝𝑛),

where 𝑝𝑛 ∈ 𝒫𝒜
𝑛 such that 𝑝𝑛 ⟶𝑓. It is easy to verify that Λ1 is a well-defined

function. Indeed, if there is another sequence {𝑞𝑛}𝑛 converging to 𝑓, then from
inequality (4), we get ‖‖‖‖

(
Λ(𝑝𝑛) − Λ(𝑞𝑛)

)
𝑒‖‖‖‖ ≤ ‖𝑝𝑛 − 𝑞𝑛‖∞, fromwhere it follows

that lim
𝑛→∞

Λ(𝑝𝑛) = lim
𝑛→∞

Λ(𝑞𝑛).
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We shall now show that, for every 𝑓, 𝑔 ∈ 𝒫𝒜
𝑛 , the function

(
Λ1(𝑓)−Λ1(𝑔)

)
𝑒−

(𝑓 − 𝑔) is non-invertible in 𝒫𝒜
𝑛 . Let 𝑓, 𝑔 be in 𝒫𝒜

𝑛 , and let {𝑝𝑛}𝑛, {𝑞𝑛}𝑛 be se-
quences of polynomials in 𝒫𝒜

𝑛 such that 𝑝𝑛 ⟶𝑓 and 𝑞𝑛 ⟶𝑔 in 𝒫𝒜
𝑛 . Then

(
Λ(𝑝𝑛) − Λ(𝑞𝑛)

)
𝑒 − (𝑝𝑛 − 𝑞𝑛)⟶

(
Λ1(𝑓) − Λ1(𝑔)

)
𝑒 − (𝑓 − 𝑔)

in 𝒫𝒜
𝑛 as 𝑛 ⟶ ∞. By the hypothesis, each

(
Λ(𝑝𝑛) − Λ(𝑞𝑛)

)
𝑒 − (𝑝𝑛 − 𝑞𝑛) has

a zero 𝐷, which implies that each of these polynomials is non-invertible in 𝒫𝒜
𝑛 .

However, the set of all invertible elements in a unital Banach algebra is an open
set; hence, its complement is a closed set. Consequently,

(
Λ1(𝑓) − Λ1(𝑔)

)
𝑒 −

(𝑓−𝑔) is non-invertible in𝒫𝒜
𝑛 . Since 𝑓, 𝑔were arbitrary, we therefore conclude

that (Λ1(𝑓) − Λ1(𝑔))𝑒 − (𝑓 − 𝑔) is non-invertible in 𝒫𝒜
𝑛 for every 𝑓, 𝑔 in 𝒫𝒜

𝑛 .
Then, by Theorem 1.2, Λ1 is multiplicative and linear. In particular, Λ is

multiplicative and linear on 𝒫𝒜
𝑛 .

For each 1 ≤ 𝑖 ≤ 𝑛, define 𝑟𝑖(𝑧) ∶= 𝑧𝑖𝑒. Let 𝑤 = (Λ(𝑟1), Λ(𝑟2), … , Λ(𝑟𝑛)).
Since Λ is multiplicative, we obtain Λ(𝑧𝛼) = Λ(𝑒𝑧𝛼11 )Λ(𝑒𝑧

𝛼2
2 )⋯Λ(𝑒𝑧𝛼𝑛𝑛 ) = 𝑤𝛼.

Now consider the map 𝜙 ∶ 𝒜 → ℂ given by 𝜙(𝑎) = Λ(𝑎). Then for a non-
negative integer 𝑘 and a polynomial 𝑝(𝑧) =

∑

|𝛼|≤𝑘
𝑎𝛼𝑧𝛼 in 𝒫𝒜

𝑛 , we have

Λ(𝑝) =
∑

|𝛼|≤𝑘
Λ(𝑎𝛼𝑧𝛼) =

∑

|𝛼|≤𝑘
Λ(𝑎𝛼)Λ(𝑒𝑧𝛼)

=
∑

|𝛼|≤𝑘
𝜙(𝑎𝛼)Λ(𝑒𝑧𝛼) =

∑

|𝛼|≤𝑘
𝜙(𝑎𝛼)𝑤𝛼

= 𝜙
⎛
⎜
⎝

∑

|𝛼|≤𝑘
𝑎𝛼𝑤𝛼

⎞
⎟
⎠
= 𝜙(𝑝(𝑤)).

This establishes Λ(𝑝) = 𝜙(𝑝(𝑤)) for all 𝑝 ∈ 𝒫𝒜
𝑛 .

To prove𝑤 ∈ 𝐷̂, let 𝑝 be a polynomial in𝒫𝑛. Then 𝑝1(𝑧) = 𝑝(𝑧)𝑒 is a polyno-
mial in 𝒫𝒜

𝑛 ; thus, Λ(𝑝1) = 𝜙(𝑝1(𝑤)) = 𝑝(𝑤). This, using inequality (4), implies
that

|𝑝(𝑤)| = |Λ(𝑝1)| ≤ sup
𝑧∈𝐷

|𝑝(𝑧)| = sup
𝑧∈𝐷

|𝑝(𝑧)|.

Hence, 𝑤 ∈ 𝐷̂.
Finally, we will establish the assertions made in the moreover part. First,

suppose 𝑛 = 1, that is, we are in the one-variable situation. Take 𝑝(𝑧) = 𝑒𝑧,
then Λ(𝑝) = 𝑤. Also, as we noted at the beginning of the proof, there exists a
point 𝑎 ∈ 𝐷 such that Λ(𝑝)𝑒 = 𝑝(𝑎) = 𝑒𝑎, which implies that 𝑤 = 𝑎 ∈ 𝐷.
We now turn to the general 𝑛 case. Let 𝐷 = 𝐷1 × ⋯ × 𝐷𝑛 for some subsets

𝐷1, … , 𝐷𝑛 of ℂ. The idea here is very similar to case 𝑛 = 1. Note that Λ(𝑟𝑖) =
𝜙(𝑟𝑖(𝑤)) = 𝜙(𝑤𝑖𝑒) = 𝑤𝑖. Additionally, as mentioned earlier, some 𝑎 exists in 𝐷
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such that Λ(𝑟𝑖)𝑒 = 𝑟𝑖(𝑎) = 𝑒𝑎𝑖. Thus, 𝑤𝑖 = 𝑎𝑖 ∈ 𝐷𝑖; hence, 𝑤 ∈ 𝐷1 ×⋯×𝐷𝑛 =
𝐷.
Lastly, let 𝐷 = {𝑧 ∈ ℂ𝑛 ∶ ||𝑧 − 𝑏||ℂ𝑛 < 𝑟} for some 𝑏 ∈ ℂ𝑛 and positive real

number 𝑟. Let 𝑝(𝑧) =
∑𝑛

𝑖=1(𝑤𝑖 − 𝑏𝑖)𝑒(𝑧𝑖 − 𝑏𝑖𝑒). Then

Λ(𝑝) = 𝜙(𝑝(𝑤)) =
𝑛∑

𝑖=1
|𝑤𝑖 − 𝑏𝑖|2 = ||𝑤 − 𝑏||2ℂ𝑛 .

Also, there exists some 𝑎 ∈ 𝐷 such that Λ(𝑝)𝑒 = 𝑝(𝑎), which implies that
||𝑤 − 𝑏||2ℂ𝑛 =

∑𝑛
𝑖=1(𝑤𝑖 − 𝑏𝑖)(𝑎𝑖 − 𝑏𝑖) = ⟨𝑤 − 𝑏, 𝑎 − 𝑏⟩ℂ𝑛 . Thus, using the

Cauchy-Schwarz inequality, we infer ||𝑤 − 𝑏||ℂ𝑛 ≤ ||𝑎 − 𝑏||ℂ𝑛 < 𝑟. Thus,
𝑤 ∈ 𝐷. A similar set of arguments works when 𝐷 is a closed Euclidean ball in
ℂ𝑛. Alternatively, the assertion for a closed Euclidean ball follows directly from
the fact that a closed Euclidean ball is polynomially convex; hence, it coincides
with its polynomial convex hull. This completes the proof. □

Remark 3.2. Observe that the assertion of Theorem 3.1–namely, that the mapΛ
on 𝒫𝒜

𝑛 can be expressed as the composition of a multiplicative linear functional
on 𝒜 and a point evaluation at some point in 𝐷̂–continues to hold under the
weaker assumption that, for each pair of polynomials 𝑝 and 𝑞, the polynomial(
Λ(𝑝) − Λ(𝑞)

)
𝑒 − (𝑝 − 𝑞) has a zero in 𝐷̂, rather than in the possibly smaller set

𝐷. Nevertheless, we retain the hypothesis in the form stated in Theorem 3.1 for two
reasons.
First, when𝐷 = 𝔻 and𝒜 = ℂ, the requirement that

(
Λ(𝑝)−Λ(𝑞)

)
𝑒 − (𝑝 −𝑞)

have a zero in𝐷 is equivalent to the condition that this polynomial is not outer; for
linearΛ, this further reduces to the requirement thatΛ be non-zero on outer poly-
nomials. Therefore, our formulation aligns naturally with the existing literature
on the GKZ and the KS theorems.
Second, in the situations covered by the “moreover” part of the theorem, the

conclusion that the point 𝑤 lies in 𝐷 cannot, in general, be guaranteed under the
assumption that the polynomials

(
Λ(𝑝)−Λ(𝑞)

)
𝑒 − (𝑝 − 𝑞) have a zero in 𝐷̂. The

only exception is the case of the closed Euclidean ball in ℂ𝑛, where one already
has 𝐷 = 𝐷̂.

We are now ready to prove our version of the KS theorem for topological
spaces of functions of several variables taking values in a fixed complex Banach
algebra with identity. We first introduce some necessary notation. Let 𝐷 be a
bounded subset of ℂ𝑛, and let ℱ(𝐷,𝒜) denote the vector space of all 𝒜-valued
functions defined on 𝐷, where 𝒜 is a fixed complex Banach algebra with iden-
tity 𝑒. Furthermore, for 𝑛 ≥ 2, we assume that 𝐷 is either a Cartesian product
of 𝑛 bounded subsets of ℂ or a Euclidean ball in ℂ𝑛.

Theorem3.3. Let𝒳 be a subset ofℱ(𝐷,𝒜) equippedwith a topology that satisfies
the following properties:

(i) for each 𝑧 ∈ 𝐷, the evaluation map 𝑓 ↦ 𝑓(𝑧) is continuous;
(ii) 𝒳 contains the polynomial set 𝒫𝒜

𝑛 as a dense subset.
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Let Λ ∶ 𝒳 → ℂ be a non-zero continuous function such that Λ(0) = 0 and for
every 𝑝 and 𝑞 in 𝒫𝒜

𝑛 the polynomial
(
Λ(𝑝) − Λ(𝑞)

)
𝑒 − (𝑝 − 𝑞)

has a zero in 𝐷. Then there exist 𝑤 ∈ 𝐷 and a multiplicative linear functional 𝜙
on𝒜 such that

Λ(𝑓) = 𝜙(𝑓(𝑤)) for every 𝑓 ∈ 𝒳.

Proof. Clearly, the restriction Λ ∶ 𝒫𝒜
𝑛 ⟶ℂ satisfies the hypotheses of Theo-

rem 3.1. Then, using the moreover part of Theorem 3.1, there exist 𝑤 ∈ 𝐷 and
a multiplicative linear functional 𝜙 on 𝒜 such that Λ(𝑝) = 𝜙(𝑝(𝑤)) for every
𝑝 ∈ 𝒫𝒜

𝑛 . Now the continuity of Λ and the denseness of 𝒫𝒜
𝑛 in 𝒳 yield

Λ(𝑓) = 𝜙(𝑓(𝑤)) for all 𝑓 ∈ 𝒳. □

Remark 3.4. Note that Theorem 3.3 generalizes our earlier work (Theorem 1.5)
from [3] in three ways. It extends Theorem 1.5 to topological spaces that are not
necessarily vector spaces. In addition, it extends Theorem 1.5 to vector-valued
functions of several variables. As a result, it generalizes Theorem 1.3—Mashreghi
and Ransford’s version of the GKZ theorem for Hardy spaces—to vector-valued
functions of several variables. Furthermore, it extends Theorem 1.7—the recent
extension of the KS theorem—to vector-valued functions of several variables. It
is worth noting that the methods employed in proving Theorem 3.3 are entirely
independent of the ones used in proving Theorem 1.5.

Remark 3.5. We now compare Theorem 3.2 with Theorem 1.6 ([11, Theorem
1.4]) that also is a several variables analog of theGKZ theorem for function spaces.
First, we note that Theorem 1.6 is for Banach spaces of scalar-valued functions,
whereasTheorem 3.3dealswith topological spaces of vector-valued functions. Next,
we compare the domains of the function spaces considered by the two theorems.
Theorem 3.2, in the several variables case, is proved under the assumption that
the domain is either a Euclidean ball or a Cartesian product. In contrast, it may
seem that the domain of functions in Theorem 1.6 includes a big class of subsets of
ℂ𝑛. But, we want to point out that Theorem 1.6 assumes the domain to be a “max-
imal domain" (hypothesis JS2 in Theorem 1.6), and if we assume the domain 𝐷
in Theorem 3.3 to be a maximal domain instead of being a specific set such as a
Euclidean ball or a Cartesian product (as done in Theorem 3.3), then indeed with
the help of Theorem 3.1, for this case also we would obtain themapΛ to be a point
evaluation for the scalar-valued case and composition of a multiplicative linear
functional and a point evaluation for the vector-valued case. Moreover, Theorem
1.6 doesn’t cover Dirichlet spaces𝒟𝛼 for 𝛼 > 1 as the maximal domain for func-
tions in these Dirichlet spaces is𝔻𝑛 and not𝔻𝑛. But, these are covered by Theorem
3.3 as they satisfy its hypotheses.

The following is a list of some well-known function spaces that satisfy the con-
ditions of Theorem 3.3.
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∙ The vector-valued Hardy spaces 𝐻𝑝(𝔻𝑛, ℂ𝑚) for 0 < 𝑝 ≤ ∞, where we
consider the weak-start topology for 𝑝 = ∞;

∙ the Drury-Arveson Spaceℋ2
𝑛;

∙ the Dirichlet-type spaces𝒟𝛼 for 𝛼 ∈ ℝ;
∙ the polydisc algebra 𝐴(𝔻𝑛);
∙ the ball algebra 𝐴(𝔹𝑛);
∙ the Bergman spaces 𝐴𝑝

𝛼(0 < 𝑝 < ∞) defined on the open unit ball 𝔹𝑛
of ℂ𝑛;

∙ the little Bloch space ℬ0(𝔹𝑛);
∙ the space VMOA of functions of vanishing mean oscillation defined on
𝔹𝑛.

Although we have already compared Theorem 3.3 with Theorems 1.6 and
1.7, only to bring out this comparison more prominently for the reader, we give
below the particular case of Theorem 3.3 for𝒳 = 𝐻𝑝(𝔻𝑛, ℂ𝑚). For 0 < 𝑝 ≤ ∞,
let 𝐻𝑝(𝔻𝑛, ℂ𝑚) denote the Hardy space of ℂ𝑚-valued functions on 𝔻𝑛. Recall
that ℂ𝑛 with Euclidean norm is a Banach algebra with identity 𝟏 = (1, … , 1)𝑇.
Note that in Theorem 3.3 we do not require the norm of the unit element to be
1.

Corollary 3.6. For𝑛,𝑚 ∈ ℕand 0 < 𝑝 ≤ ∞, letΛ ∶ 𝐻𝑝(𝔻𝑛, ℂ𝑚) → ℂ be anon-
zero continuous (weak-star continuous for 𝑝 = ∞) function such that Λ(0) = 0
and for polynomials 𝑝 and 𝑞 in 𝒫ℂ𝑚

𝑛 the polynomial
(
Λ(𝑝) − Λ(𝑞)

)
𝟏 − (𝑝 − 𝑞)

has a zero in 𝔻𝑛. Then there exist 𝑤 ∈ 𝔻𝑛 and 1 ≤ 𝑘 ≤ 𝑚 such that

Λ(𝑓) = ⟨𝑓(𝑤), 𝑒𝑘⟩ℂ𝑚
for all 𝑓 ∈ 𝐻𝑝(𝔻𝑛, ℂ𝑚), where {𝑒1, … , 𝑒𝑚} is the standard orthonormal basis of
ℂ𝑚.

In Theorem 3.3, and hence in Corollary 3.6, we assume that the map Λ is
continuous. By contrast, the corresponding result, Theorem 1.7–which is again
an analog of the KS theorem for the Hardy spaces–does not impose any conti-
nuity assumption. Through Example 3.7, we demonstrate that the continuity
assumption is in fact necessary for our setting to obtain the desired conclusion.
Theorem 1.6 is another version of the GKZ theorem for Hardy spaces on the
polydisc that assumes continuity; however, this assumption is not justified in
[11]. This may be due to the fact that [11] is inspired by work in [5], which
itself is motivated by a problem in geophysical imaging, where the continuity
assumption appears to be natural.

Example 3.7. Let ℬ be a Hamel basis for 𝐻2(𝔻) obtained by extending the or-
thonormal basisℬ1 = {𝑧𝑛 ∶ 𝑛 ∈ ℕ∪{0}}. Let 𝑓 ∈ 𝐻2(𝔻). Then there exist unique
elements 𝑧𝑟1 , 𝑧𝑟2 , … , 𝑧𝑟𝑛 in ℬ1 and 𝑓𝑡1 , 𝑓𝑡2 , … , 𝑓𝑡𝑚 in ℬ ⧵ ℬ1, and unique scalars
𝑐1, 𝑐2, … 𝑐𝑛, 𝑑1, 𝑑2, … , 𝑑𝑚 in ℂ such that

𝑓 =
𝑛∑

𝑖=1
𝑐𝑖𝑧𝑟𝑖 +

𝑚∑

𝑖=1
𝑑𝑖𝑓𝑡𝑖 = 𝑝 + 𝑔
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where 𝑝 =
∑𝑛

𝑖=1 𝑐𝑖𝑧
𝑟𝑖 and 𝑔 =

∑𝑚
𝑖=1 𝑑𝑖𝑓𝑡𝑖 . For a fixed 𝑤 ∈ 𝔻, define 𝐹 at 𝑓 by

𝐹(𝑓) = 𝑝(𝑤) + 𝛿

where 𝛿 is a non-zero scalar. It is easy to see that 𝐹 is well-defined and satisfies the
hypotheses of Theorem 3.3, but 𝐹 is not linear. This implies 𝐹 cannot be contin-
uous because otherwise, given Theorem 3.2, 𝐹 must be a point evaluation, which
forces it to be linear.

We conclude this section with the following characterization of weighted
composition operators between two Hardy spaces.

Theorem 3.8. For 0 < 𝑝, 𝑞 ≤ ∞, let 𝑇 ∶ 𝐻𝑝(𝔻𝑛) → 𝐻𝑞(𝔻𝑚) be a continu-
ous function, where we consider weak-start topology on 𝐻𝑝(𝔻𝑛) when 𝑝 = ∞.
Suppose 𝑇(0) = 0, 𝑇(1)(𝑤) ≠ 0 for each 𝑤 ∈ 𝔻𝑚. If given any pair 𝑝, 𝑞 of
complex-valued polynomials in 𝑛-variables and 𝑤 ∈ 𝔻𝑚 the polynomial

(
𝑇𝑝(𝑤) − 𝑇𝑞(𝑤)

)
1 −

(
𝑇1(𝑤)

)
(𝑝 − 𝑞)

has a zero in𝔻𝑛, then there exist𝜓 ∈ 𝐻𝑞(𝔻𝑚)andananalytic function𝜙 ∶ 𝔻𝑚 →
𝔻𝑛 such that 𝑇(𝑓) = 𝜓 ⋅ (𝑓◦𝜙) for every 𝑓 ∈ 𝐻𝑝(𝔻𝑛).

Proof. For each fixed 𝑤 ∈ 𝔻𝑚, define the map 𝑇𝑤 ∶ 𝐻𝑝(𝔻𝑛) → ℂ given by
𝑇𝑤(𝑓) = (𝑇𝑓)(𝑤). It is easy to see that 𝑇𝑤∕(𝑇1)(𝑤) satisfies all the conditions
in Corollary 3.6, so there exists 𝜁 ∈ 𝔻𝑛 such that (𝑇𝑓)(𝑤) = (𝑇1)(𝑤)𝑓(𝜁) for all
𝑓 ∈ 𝐻𝑝(𝔻𝑛). By taking 𝑓 = 𝑧𝑖, the 𝑖𝑡ℎ coordinate function, we get

𝜁 = (𝑇𝑧1(𝑤), … , 𝑇𝑧𝑛(𝑤))∕(𝑇1)(𝑤).

Let 𝜓 = 𝑇(1) and define

𝜙(𝑤) = (𝑇𝑧1(𝑤), … , 𝑇𝑧𝑛(𝑤))∕𝜓(𝑤).

Then 𝜙(𝑤) ∈ 𝔻𝑛 and (𝑇𝑓)(𝑤) = 𝜓(𝑤)𝑓(𝜙(𝑤)) for every 𝑓 ∈ 𝐻𝑝(𝔻𝑛). This
completes the proof. □

4. A Multiplicative GKZ Theorem for Hardy spaces
In this section, we shall investigate a multiplicative analog of the GKZ theo-

rem within the context of Hardy spaces. By a multiplicative analog of the GKZ
theorem, we mean a result that asserts the linearity of a complex-valued mul-
tiplicative function on an unital Banach algebra that assumes a value in the
spectrum. The first positive result concerning multiplicative maps taking val-
ues in the spectrum was obtained by Maouche [7].

Theorem 4.1 (Maouche). Let𝒜 be a unital Banach algebra and 𝜙 ∶ 𝒜 → ℂ be
a map satisfying

(i) 𝜙(𝑥) ∈ 𝜎(𝑥),
(ii) 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦)

for all 𝑥, 𝑦 ∈ 𝒜. Then there exists a unique character 𝜓𝜙 on 𝒜 such that 𝜙(𝑥) =
𝜓𝜙(𝑥) for all 𝑥 ∈ 𝐺1(𝒜), where 𝐺1(𝒜) is the connected component of 𝐺(𝒜) con-
taining the identity.
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In the same paper [7], Maouche gave a concrete example to establish that
even on the nicest Banach algebra, namely 𝐶[0, 1], one can’t guarantee the lin-
earity of 𝜙 on the entire Banach algebra. It is noteworthy that Maouche’s func-
tionwas not continuous; hence, any hope of proving that𝜙 itself is linear, there-
fore, a character would have to include the continuity of 𝜙 as an assumption.
Recently, Touŕe and Brits, along with their other collaborators, have exten-

sively studied multiplicative versions of the GKZ and its generalization–the KS
theorem–on 𝐶∗-algebras; for their specific results refer to [1, 13, 14, 15]. In [1],
they showed that a multiplicative continuous complex-valued function 𝐹 on a
𝐶∗-algebra 𝐴 satisfying 𝐹(𝑎) ∈ 𝜎(𝑎) must be linear. However, the result for a
general Banach algebra stays where Maouche left it.
We study an analogous result for the Hardy spaces. Before we give the state-

ment, wewould like to note that, in light of Theorem1.3, a non-zero continuous
multiplicative linear functional on a Hardy space must be a point evaluation.

Theorem 4.2. For 0 < 𝑝 < ∞, let 𝐹 ∶ 𝐻𝑝(𝔻) → ℂ be a continuous function
such that 𝐹(𝑓) ∈ 𝐼𝑚(𝑓) and 𝐹(𝑓𝑔) = 𝐹(𝑓)𝐹(𝑔), whenever 𝑓, 𝑔 ∈ 𝐻𝑝(𝔻) with
𝑓𝑔 ∈ 𝐻𝑝(𝔻). Then there exists a point 𝑤 ∈ 𝔻 such that 𝐹(𝑓) = 𝑓(𝑤) for every
nowhere-vanishing 𝑓 ∈ 𝐻𝑝(𝔻).

Proof. We consider the restriction of the map 𝐹 to the disc algebra 𝐴(𝔻) (a
subset of 𝐻𝑝(𝔻) ). The restriction of the map 𝐹 to 𝐴(𝔻) (equipped with the
sup-norm) satisfies the hypotheses of Theorem 4.1. As a result, there exists a
character 𝜓𝐹 on 𝐴(𝔻) such that 𝐹(𝑓) = 𝜓𝐹(𝑓) for every 𝑓 ∈ 𝐺1(𝐴(𝔻)), the
connected component of the set of invertible functions in 𝐴(𝔻) containing the
constant function 1. But, 𝐺1(𝐴(𝔻)) equals the set of all invertible functions in
𝐴(𝔻). Indeed, a simple adaptation of the arguments used in [9, Lemma 3.5.14]
can be used to establish this fact. Therefore, we conclude that 𝐹(𝑓) = 𝜓𝐹(𝑓)
for each invertible function in 𝐴(𝔻).
Furthermore, the characters on the disc algebra are point evaluations, which

implies that there exists a point 𝑤 ∈ 𝔻 such that 𝐹(𝑓) = 𝜓𝐹(𝑓) = 𝑓(𝑤) for
every invertible 𝑓 ∈ 𝐴(𝔻). Now, 𝑔(𝑧) = 𝑧 + 2 is an invertible function in 𝐴(𝔻);
therefore, 𝐹(𝑔) = 𝜓𝐹(𝑔) = 𝑤+2.On the other hand, by the hypotheses, 𝐹(𝑔) =
𝑎 + 2 for some 𝑎 ∈ 𝔻. Thus, we conclude that 𝑤 = 𝑎 ∈ 𝔻.
Finally, let 𝑓 ∈ 𝐻𝑝(𝔻) with no zero in 𝔻. For 0 < 𝑟 < 1, let us define

𝑓𝑟(𝑧) = 𝑓(𝑟𝑧), 𝑧 ∈ 𝔻. Then each 𝑓𝑟 is in𝐻𝑝(𝔻) and 𝑓𝑟 → 𝑓 in𝐻𝑝(𝔻) as 𝑟 → 1.
Since 𝑓 is analytic on 𝔻 and has no zero in 𝔻, each 𝑓𝑟 is an invertible function
in𝐴(𝔻). Hence, 𝐹(𝑓𝑟) = 𝜓𝐹(𝑓𝑟) = 𝑓𝑟(𝑤) for every 𝑟. Lastly, the continuity of 𝐹
yields 𝐹(𝑓) = lim

𝑟→1−
𝐹(𝑓𝑟) = lim

𝑟→1−
𝑓𝑟(𝑤) = 𝑓(𝑤). This completes the proof. □
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