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Abstract. The theory ofmultipliermodules ofHilbert C*-modules is recon-
sidered to obtain more properties of these special Hilbert C*-modules. The
property of a Hilbert C*-module to be a multiplier C*-module is shown to be
invariant with respect to consideration as a left or right Hilbert C*-module
in the sense of imprimitivity bimodules in strong Morita equivalence theory.
The interrelation of the C*-algebras of “compact” operators, the Banach alge-
bras of bounded module operators and the Banach spaces of bounded mod-
ule operators of a Hilbert C*-module to its C*-dual Banach C*-module, are
characterized for pairs of Hilbert C*-modules and their respective multiplier
modules. The structures on the latter are always isometrically embedded into
the respective structures on the former. Examples are given for which contin-
uation of these kinds of bounded module operators from the initial Hilbert
C*-module to its multiplier module fails. However, existing continuations
turn out to be always unique. Similarly, bounded modular functionals from
both kinds of Hilbert C*-modules to their respective C*-algebras of coeffi-
cients are compared, and eventually existing continuations are shown to be
unique.
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Multiplier modules of (full) Hilbert C*-modules appeared in the literature
during investigations of extensions of Hilbert C*-modules in terms of short ex-
act sequences. There are several equivalent approaches to the subject, e.g. the
double centralizer type approach [16, 46, 13, 14, 12, 15] or a pure Hilbert C*-
module approach [5, 6], cf. [17, 47] for the link between them. We follow the ap-
proach in [5, 6]. The goal was to generalize the extension theory of C*-algebras
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to the context of full Hilbert C*-modules. The notion of a multiplier module of
a full Hilbert𝐴-module over a C*-algebra𝐴 is justified by [5, Thm. 1.2]: It is the
largest essential extension of 𝑋 up to unitary modular isomorphism of Hilbert
𝑀(𝐴)-modules, where 𝑀(𝐴) is the multiplier C*-algebra of 𝐴. For details see
section 2. In the sequel to [5, 6], large parts of the extension theory of Hilbert
C*-modules have been described, e.g. in [4, 10, 1, 32, 3, 28, 24]. Recently, J. Tay-
lor described local multiplier modules over local multiplier algebras in case of
imprimitivity modules between (non-unital, in general) strongly Morita equiv-
alent C*-algebras, cf. [48, 49].
The aim of the present note is to fill in some missing facts from the point

of view of classical Hilbert C*-module theory and to describe pairs of Hilbert
C*-modules and their multiplier modules from the point of view of their com-
mon and partially even differing properties. We get some results that contra-
dict habits and opinions from Hilbert and Banach space theory. So, some new
examples complement the existing points of view on the theory of Hilbert C*-
modules.
Considering multiplier modules as full left Hilbert C*-modules 𝑋 over a C*-

algebra𝐴, we obtain that they are at the same time full rightHilbert C*-modules
and multiplier modules over the respective C*-algebras K𝐴(𝑋). This reminds
one of special imprimitivity bimodules, however no new type of Morita equiv-
alence can be derived. Considering pairs (𝑋,𝑀(𝑋)) of Hilbert C*-modules and
their multiplier modules, we consider the interrelations of comparable types
of operator algebras of bounded module operators over them and continuation
problems of operators from 𝑋 to 𝑀(𝑋), the same for bounded modular func-
tionals. So, for “compact” operator algebrasK𝐴(𝑋) is ∗-isometrically embedded
into 𝐾𝑀(𝐴)(𝑀(𝑋)), but the former might be smaller than the latter one. Fur-
thermore, the Banach algebra of bounded module operators End𝑀(𝐴)(𝑀(𝑋))
is isometrically embedded into End𝐴(𝑋), as well as the Banach space
End𝑀(𝐴)(𝑀(𝑋),𝑀(𝑋)′) into End𝐴(𝑋, 𝑋′), and again the former might be
smaller than the latter one. Consequently, not any operator of the smaller
spaces on 𝑋 can be continued to a bounded operator on the larger spaces on
𝑀(𝑋) obeying strict convergence. If such a continuation exists, it is unique.
The same picture can be obtained for bounded modular functionals on 𝑀(𝑋)
and on 𝑋, respectively, so we found examples of pairs of Hilbert C*-modules
(𝑋,𝑀(𝑋))with 𝑋⊥ = {0} for which no general Hahn-Banach type theorem can
be obtained. Remarkably, there does not exist any non-trivial bounded module
map from𝑀(𝑋) to𝑀(𝐴) vanishing on 𝑋.

1. Introduction
We denote C*-algebras by𝐴, 𝐵. In case a C*-algebra𝐴 is non-unital, general

C*-multiplier theory provides us with some derived structures like multiplier
algebras𝑀(𝐴), left and right multiplier algebras 𝐿𝑀(𝐴) and 𝑅𝑀(𝐴), resp., and
quasi-multiplier spaces 𝑄𝑀(𝐴). To calculate these linear spaces, any faithful
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∗-representation of 𝐴 on a Hilbert space 𝐻 can be used. The calculation envi-
ronment is the von Neumann algebra generated by the faithfully ∗-represented
C*-algebra𝐴, or 𝐵(𝐻) itself, cf. [38, Ch. 3], [42]. The unital C*-algebra𝑀(𝐴) is
defined as

𝑀(𝐴) = {𝑚 ∈ 𝐵(𝐻) ∶ 𝑚𝑎, 𝑎𝑚 ∈ 𝐴 for any 𝑎 ∈ 𝐴} .
The Banach algebras 𝐿𝑀(𝐴) = 𝑅𝑀(𝐴)∗ can be defined as

𝐿𝑀(𝐴) = 𝑅𝑀(𝐴)∗ = {𝑚 ∈ 𝐵(𝐻) ∶ 𝑚𝑎 ∈ 𝐴 for any 𝑎 ∈ 𝐴} ,
whereas the involutive Banach space 𝑄𝑀(𝐴) can be obtained as

𝑄𝑀(𝐴) = {𝑚 ∈ 𝐵(𝐻) ∶ 𝑏𝑚𝑎 ∈ 𝐴 for any 𝑎, 𝑏 ∈ 𝐴} .
Inventing different kinds of strict topologies, intrinsic characterizations of these
structures as certain topological completions of 𝐴 on bounded sets of 𝐴 are
available. For comprehensive sources, we refer to the book by P. Ara and
M. Matthieu [2] and to [35, 36, 8, 18]. Note, that multiplier algebras might ad-
mit an entire lattice of non-unital, two-sided, non-isomorphic ideals 𝐴𝛼 such
that𝑀(𝐴𝛼) = 𝑀(𝐴𝛽) for any two of them, cf. [27]. Also, either𝑀(𝐴) = 𝐿𝑀(𝐴)
and 𝑀(𝐴) = 𝑄𝑀(𝐴) at the same time, or 𝐿𝑀(𝐴) is strictly larger than 𝑀(𝐴)
and 𝑄𝑀(𝐴) is strictly larger than 𝐿𝑀(𝐴), cf. [9, Cor. 4.18].
We would like to consider Hilbert C*-modules over (non-unital, in general)

C*-algebras and, in particular, their multiplier modules and related structures.
By convention, all Hilbert C*-modules are right C*-modules at the first glance.
However, for full Hilbert 𝐴-modules one can obtain an operator-valued inner
product turning them into full left Hilbert K𝐴(𝑋)-modules, and vice versa. So,
the point of view decides which of the two Hilbert C*-module structures is pri-
mary andwhich is secondary. This kind of considerationwill be used frequently
in the present paper.
A pre-Hilbert 𝐴-module over a C*-algebra 𝐴 is an 𝐴-module 𝑋 equipped

with an𝐴-valued, non-degenerate mapping ⟨., .⟩ ∶ 𝑋×𝑋 → 𝐴 being conjugate-
𝐴-linear in the first argument and 𝐴-linear in the second one, and satisfying
⟨𝑥, 𝑥⟩ ≥ 0 for every 𝑥 ∈ 𝑋. The map ⟨., .⟩ is called the 𝐴-valued inner product
on 𝑋. A pre-Hilbert 𝐴-module {𝑋, ⟨., .⟩} is Hilbert if and only if it is complete
with respect to the norm ‖.‖ = ‖⟨., .⟩‖1∕2𝐴 . We always assume that the complex
linear structures of 𝐴 and 𝑋 are compatible. A Hilbert 𝐴-module {𝑋, ⟨., .⟩} over
a C*-algebra𝐴 is full if the norm-closed𝐴-linear hull ⟨𝑋, 𝑋⟩ of the range of the
inner product coincides with 𝐴. Two (full) Hilbert 𝐴-modules {𝑋, ⟨., .⟩𝑋} and
{𝑌, ⟨., .⟩𝑌} over a fixed C*-algebra 𝐴 are unitarily equivalent (or unitarily iso-
morphic) iff there exists a bounded invertible adjointable map 𝑇 ∶ 𝑋 → 𝑌 such
that ⟨., .⟩𝑋 = ⟨𝑇(.), 𝑇(.)⟩𝑌 on 𝑋. The 𝐴-dual Banach 𝐴-module 𝑋′ of a Hilbert
𝐴-module𝑋 is defined as the set of all bounded𝐴-linearmaps from𝑋 into𝐴. It
might not be aHilbert𝐴-module itself, cf. [18]. But,𝑋 is always canonically iso-
metrically embedded into𝑋′ as a Banach𝐴-submodule via the identification of
𝑥 ∈ 𝑋 with ⟨𝑥, ⋅⟩ ∈ 𝑋′. Note, that two 𝐴-valued inner products on a Hilbert 𝐴-
module 𝑋 inducing equivalent norms on 𝑋 might not be unitarily isomorphic,
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cf. [9, 18]. Thus, full Hilbert C*-modules are always a triple of the C*-algebra
𝐴 of coefficients, the Banach 𝐴-module 𝑋 and the 𝐴-valued inner product on
𝑋. We omit the explicit reference to the C*-valued inner product in situations
where its definition formula is standard or only its existence is important.
We are interested in properties of sets of bounded𝐴-linear operators between

Banach and Hilbert C*-modules 𝑋. The set End𝐴(𝑋) of all bounded module
operators on Hilbert 𝐴-modules 𝑋 forms a Banach algebra, whereas the set
End∗𝐴(𝑋) of all bounded module operators which possess an adjoint operator
inside End𝐴(𝑋) has the structure of a unital C*-algebra. Note, that these two
sets do not coincide in general, cf. [40, 18]. An important subset of End∗𝐴(𝑋) is
the set K𝐴(𝑋) of “compact” operators, which is defined as the norm-closure of
the set of all finite linear combinations of elementary operators

{𝜃𝑎,𝑏 ∈ End𝐴(𝑋) ∶ 𝑎, 𝑏 ∈ 𝑋 , 𝜃𝑎,𝑏(𝑐) = 𝑏⟨𝑎, 𝑐⟩ for every 𝑐 ∈ 𝑋}.

It is a C*-subalgebra and a two-sided ideal of End∗𝐴(𝑋). In contrast to the well-
known situation for Hilbert spaces, the properties of an operator of being “com-
pact” or possessing an adjoint depend strongly on the choice of the 𝐴-valued
inner product on 𝑋, i.e., these properties are not invariant for unitarily non-
isomorphic C*-valued inner products on𝑋 inducing equivalent norms, cf. [18].
We postpone a detailled introduction to multiplier modules of Hilbert C*-

modules to the next section. Our standard references to Hilbert C*-module
theory are [34, 44, 50].
Searching for intrinsic characterizations of Hilbert C*-modules, especially

over non-unital C*-algebras, the notions of orthonormal bases and of frames for
Hilbert spaces were rediscovered in themodular context of Hilbert C*-modules
by D. R. Larson and the author during 2018-2022, [21, 22, 23] and cf. [25]. The
new theory started with the norm-convergent case. Remarkably, there was a
shift in significance towards modular frames, since not all Hilbert C*-modules
admit orthogonal bases. Also, certain classes of Hilbert C*-modules do not pos-
sess modular frames, however the most usual classes of Hilbert C*-modules
do. Theory and applications have been developed and extended since then.
The type of convergence of the defining series in the modular context has been
widened to strict, weak, weak* types or algebraic order type of convergences in
cases.
In 2017, Lj. Arambašić and D. Bakić have made a significant progress in

the understanding of Hilbert C*-modules over non-unital C*-algebras. They
used the strict completion picture to multiplier modules of 𝑋 and introduced
so called outer frames of the multiplier modules𝑀(𝑋) to extend the available
sets of norm-convergent or strictly convergent modular frames of the related
initial Hilbert C*-modules 𝑋. It turned out that all outer and inner frames of
countably generated or algebraically finitely generated Hilbert C*-modules 𝑋
in the sense of strict convergence can be characterized by surjections of ei-
ther End∗𝐴(𝑙2(𝐴), 𝑋) or End

∗
𝐴(𝐴𝑁 , 𝑋) for some 𝑁 ∈ ℕ, resp., [3, Thm. 3.18,
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Thm. 3.19, Prop. 3.22, Prop. 3.23]. By the way, the notion of countably generat-
edness of Hilbert C*-modules over non-unital C*-algebras has been formulated
more precisely. Later on, M. Naroei Irani and A. Nazari made steps towards
inner and outer modular woven frames, cf. [39].
We are partially interested in strong Morita equivalence of C*-algebras and

in imprimitivity bimodules realizing those equivalences. A C*-correspondence
fromaC*-algebra𝐵 to aC*-algebra𝐴 (or an𝐵-𝐴C*-correspondence) is aHilbert
module 𝑋 over 𝐴 together with a nondegenerate ∗-homomorphism from 𝐵 to
End∗𝐴(𝑋), which introduces a left 𝐵-module structure on 𝑋. For any 𝐵-𝐴 C*-
correspondence 𝑋, the actions extend uniquely to multiplier algebras of 𝐵 and
of𝐴, so that we may always treat 𝑋 as a𝑀(𝐵)-𝑀(𝐴) C*-correspondence. To re-
late it to themultiplier𝑀(𝐵)-𝑀(𝐴) bimodule𝑀(𝑋), let us note thatwhenever𝑌
is a Hilbert 𝐴-module, then End∗𝐴(𝑌, 𝑋) is naturally a C*-correspondence from
𝑀(𝐵) to End∗𝐴(𝑌). In particular, End

∗
𝐴(𝑌, 𝑋) contains K𝐴(𝑌, 𝑋) as a sub-C*-

correspondence. An 𝐵-𝐴 imprimitivity bimodule is a full 𝐵-𝐴 C*-correspond-
ence 𝑋 which is also a full left Hilbert 𝐵-module and the two 𝐵- resp. 𝐴-valued
inner products satisfy the equality ⟨𝑥, 𝑦⟩𝐵𝑧 = 𝑥⟨𝑦, 𝑧⟩𝐴 for an 𝑥, 𝑦, 𝑧 ∈ 𝑋. In
particular, for imprimitivity bimodules 𝑋, 𝑋 is a full 𝐵-𝐴 C*-correspondence
such that the left action 𝜙 ∶ 𝐵 → End∗𝐴(𝑋) restricts to a ∗-isomorphism of 𝐵
with K𝐴(𝑋). Two C*-algebras 𝐵 and 𝐴 are said to be strongly Morita equiva-
lent iff there exists an imprimitivity bimodule (or a 𝐵-𝐴 imprimitivity bimod-
ule) connecting them. It is a real equivalence relation, so one can form classes
of strongly Morita equivalent C*-algebras sharing important properties among
their elements. The interested reader is referred to [44, 16, 13, 14, 12, 15] to
learn more about the theory of strong Morita equivalence of C*-algebras and
about C*-correspondences or imprimitivity bimodules. If 𝑋 and 𝑌 are, respec-
tively, 𝐵-𝐴 and 𝐶-𝐵 imprimitivity bimodules, then their algebraic tensor prod-
uct 𝑋 ⊙𝐵 𝑌 is a 𝐶-𝐴 imprimitivity bimodule, and one can define two inner
products on 𝑋 ⊙𝐵 𝑌 by

⟨𝑥 ⊗ 𝑧, 𝑦 ⊗ 𝑡⟩𝐴 = ⟨⟨𝑦, 𝑥⟩𝐵𝑧, 𝑡⟩𝐴 , ⟨𝑥 ⊗ 𝑧, 𝑦 ⊗ 𝑡⟩𝐶 = ⟨𝑥, 𝑦⟨𝑡, 𝑧⟩𝐵⟩𝐶

for any 𝑥, 𝑦 ∈ 𝑋, 𝑧, 𝑡 ∈ 𝑌. This way 𝑋 ⊙𝐵 𝑌 becomes an 𝐶-𝐴 imprimitivity
bimodule. Remarkably, the set of all 𝐵-𝐴 imprimitivity bimodules connecting
two given strongly Morita equivalent C*-algebras 𝐴 and 𝐵 can be quite var-
ied. Using the defined tensor product operation, the problem boils down to the
consideration of the Picard group Pic(𝐴) of one C*-algebra 𝐴 of unitary iso-
morphism classes of 𝐴-𝐴 imprimitivity bimodules for an arbitrarily selected
element 𝐴 of a given class of strongly Morita eqivalent to 𝐴 C*-algebras. Note,
that the inverse of an imprimitivity bimodule 𝑋 in Pic(𝐴) is its dual module
𝑋̃. If 𝑌 is an 𝐵-𝐴 imprimitivity bimodule, then the map 𝑋 → 𝑌̃ ⊗𝐴 𝑋 ⊗𝐴 𝑌
induces an isomorphism of Pic(𝐴) and Pic(𝐵), and [7, Theorem 1.2] shows that
the Picard groups are stable isomorphism invariants. For a non-trivial exam-
ple, compare [31] for the Picard groups of irrational rotation algebras. For a
comprehensive account, see [11, sec. 6-7].
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2. On multiplier modules
Let us show a way to define multiplier modules𝑀(𝑋) of given (full) Hilbert

𝐴-modules𝑋 as certain related Hilbert𝑀(𝐴)-modules, and let us provide some
important properties of them. We start with a class of extensions of a given full
Hilbert 𝐴-module 𝑋 as defined in [5]:

Definition 2.1. (cf. [5, Def. 1.1]) Let𝑋 be a full Hilbert C*-module over a given
(non-unital, in general) C*-algebra 𝐴. An extension of 𝑋 is a triple (𝑌, 𝐵, Φ)
such that

(i) 𝐵 is a C*-algebra containing 𝐴 as a two-sided norm-closed ideal.
(ii) 𝑌 is a Hilbert 𝐵-module.
(iii) Φ ∶ 𝑋 → 𝑌 is a bounded module map satisfying ⟨Φ(𝑥), Φ(𝑦)⟩ = ⟨𝑥, 𝑦⟩

for any 𝑥, 𝑦 ∈ 𝑋.
(iv) Im(Φ) = 𝑌𝐴 = {𝑧𝑎 ∶ 𝑧 ∈ 𝑌, 𝑎 ∈ 𝐴} = {𝑥 ∈ 𝑌 ∶ ⟨𝑥, 𝑥⟩ ∈ 𝐴} (by the

Hewitt-Cohen factorization theorem, [43, Thm. 4.1], [44, Prop. 2.31],
[26, Thm. 23.22]).

The triple (𝑌, 𝐵, Φ) is an essential extension of 𝑋 if 𝐴 is an essential ideal of 𝐵.
Note, that Φ is an 𝐴-linear isometry of Hilbert 𝐴-modules and, hence, in

case of a surjective mapping a unitary map, preserving 𝐴-valued inner prod-
ucts up to unitary equivalence, cf. [33], [17, Thm. 5], [47, Thm. 1.1]. So, 𝑌
and Φ(𝑌) are unitarily equivalent Hilbert C*-modules. In the sequel we con-
sider the C*-algebras𝐴 and 𝐵 as a Hilbert𝐴-module and as a Hilbert 𝐵-module
over itself, respectively, setting ⟨𝑎, 𝑏⟩ = 𝑎∗𝑏 for any two C*-algebra elements
𝑎, 𝑏. Then 𝐴 and 𝐵 are ∗-isometrically isomorphic to the C*-algebras K𝐴(𝐴)
and K𝐵(𝐵), respectively. By [50, Prop. 2.2.16], these ∗-isomorphisms extend to
∗-isomorphisms of 𝑀(𝐴) and of 𝑀(𝐵) with the C*-algebras End∗𝑀(𝐴)(𝐴) and
End∗𝑀(𝐵)(𝐵), respectively. We shall use these identifications freely.
Definition 2.2. Let𝑋 be a (not necessarily full) Hilbert C*-module over a given
(non-unital, in general) C*-algebra𝐴. Denote by𝑀(𝑋) the set of all adjointable
maps from 𝐴 to 𝑋, i.e., 𝑀(𝑋) = End∗𝐴(𝐴, 𝑋). Obviously, 𝑀(𝑋) is a Hilbert
𝑀(𝐴)-module with the𝑀(𝐴)-valued inner product ⟨𝑧1, 𝑧2⟩ = 𝑧∗1𝑧2 for 𝑧1, 𝑧2 ∈
𝑀(𝑋). The resulting Hilbert 𝑀(𝐴)-module norm coincides with the operator
norm on𝑀(𝑋). We call𝑀(𝑋) the multiplier module of 𝑋.
In [5] 𝑀(𝑋) is shown to be an essential extension of 𝑋 identifying 𝑋 and

K𝐴(𝐴, 𝑋) as the subset {𝑧𝑎 ∶ 𝑧 ∈ 𝑀(𝑋), 𝑎 ∈ 𝐴} isometrically. In fact, 𝑀(𝑋)
is the largest essential extension of 𝑋, because𝑀(𝐴) is the largest essential ex-
tension of𝐴 containing ∗-isomorphic copies of all C*-algebras 𝐵which contain
∗-isomorphic copies of 𝐴 as an essential ideal, [5, Thm. 1.2]. This justifies the
point of view on𝑀(𝑋) as a Hilbert C*-module analog of the multiplier algebra
in C*-theory. For a given Hilbert 𝐴-module {𝑋, ⟨., .⟩𝑋} the respective multiplier
module𝑀(𝑋) is unique up to unitary isomorphism of Hilbert𝑀(𝐴)-modules.
Let us explain the definition of multiplier modules𝑀(𝑋) for non-full Hilbert

𝐴-modules 𝑋. ⟨𝑋, 𝑋⟩ is a two-sided norm-closed ideal of 𝐴. If 𝑋 is a non-full
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Hilbert 𝐴-module form the derived full Hilbert 𝐴-module 𝑋𝑐 by adding a copy
of𝐴 as an orthogonal direct summand to𝑋, 𝑋𝑐 = 𝑋⊕𝐴, ⟨., .⟩𝑐 = ⟨., .⟩𝑋 +⟨., .⟩𝐴.
Then construct itsmultipliermodule𝑀(𝑋𝑐). Using themapping picture of Def-
inition 2.2 of𝑀(𝑋𝑐), we see that𝑀(𝑋1⊕𝑋2) = 𝑀(𝑋1)⊕𝑀(𝑋2) using modular
projection operators onto each of the orthogonal summands. So, we have an
orthogonal decomposition𝑀(𝑋𝑐) = 𝑀(𝑋)⊕𝑀(𝐴), taking the first orthogonal
direct summand and Hilbert 𝑀(𝐴)-module as the definition of the multiplier
module𝑀(𝑋) of 𝑋. Clearly, the (non-unital, in general) C*-algebra ⟨𝑋, 𝑋⟩ is a
two-sided norm-closed ideal of 𝐴, and the C*-algebra ⟨𝑀(𝑋),𝑀(𝑋)⟩ is a two-
sided norm-closed ideal of𝑀(𝐴) containing ⟨𝑋, 𝑋⟩. However, the latter might
be non-unital, so we should be more careful with their C*-algebraic interrela-
tions. In general, ⟨𝑋, 𝑋⟩ is a two-sided norm-closed ideal in ⟨𝑀(𝑋),𝑀(𝑋)⟩. The
uniqueness results for the pairings (𝑋,𝑀(𝑋)) are preserved. It is important to
realize that 𝑀(𝑋) might depend on the choice of the C*-algebra acting on 𝑋,
e.g., for𝑋 = 𝐴with𝐴 a non-unital C*-algebra we have𝑀𝐴(𝐴) = End∗𝐴(𝐴,𝐴) =
𝑀(𝐴), but 𝑀𝑀(𝐴)(𝐴) = End∗𝑀(𝐴)(𝑀(𝐴), 𝐴) = 𝐴. Last but not least, if the C*-
algebra 𝐴 is non-unital then for 𝑋 = 𝑙2(𝐴) the multiplier module 𝑀(𝑙2(𝐴))
equals the set

{{𝑥𝑛}𝑛∈ℕ ∶ 𝑥𝑛 ∈ 𝑀(𝐴), Σ𝑛𝑥∗𝑛𝑥𝑛 converges strictly w.r.t. 𝐴 in 𝑀(𝐴)} ,

cf. [5, Thm. 2.1]. This gives a good non-trivial example, in particular, for certain
non-𝜎-unital C*-algebras 𝐴, cf. [5, Ex. 2.2]. In particular, 𝑙2(𝑀(𝐴)) is smaller
than 𝑀(𝑙2(𝐴)), generally speaking. For 𝐴 = 𝐾(𝑙2) and 𝑋 = 𝑙2(𝐴) one obtains
𝑀(𝐴) = 𝐵(𝑙2) and𝑀(𝑋) = 𝑙2(𝑀(𝐴))′ ≡ 𝑀(𝐴) = 𝐵(𝑙2), the𝑀(𝐴)-dual Banach
𝑀(𝐴)-module of 𝑙2(𝑀(𝐴)), where 𝑙2(𝑀(𝐴))′ equals the set

{𝑚 = {𝑚𝑖}𝑛𝑖=1 ∶ 𝑚𝑖 ∈ 𝑀(𝐴),
‖‖‖‖‖‖‖‖‖

𝑛∑

𝑖=1
𝑚∗
𝑖 𝑚𝑖

‖‖‖‖‖‖‖‖‖
≤ 𝐾𝑚 < ∞ for any 𝑛 ∈ ℕ}

– a self-dualHilbertW*-module over𝑀(𝐴) = 𝐵(𝑙2), because𝐴 = 𝐾(𝑙2) is stable,
cf. [5, Ex. 2.2] and [40].

Proposition 2.3.
(i) For a given pair of C*-algebras (𝐴,𝑀(𝐴)), let 𝑋1, 𝑋2 be two full Hilbert

C*-modules over𝐴 such that their multiplier modules𝑀(𝑋1),𝑀(𝑋2) are
unitarily isomorphic as Hilbert𝑀(𝐴)-modules. Then𝑋1 and𝑋2 are uni-
tarily isomorphic as Hilbert 𝐴-modules to
𝑀(𝑋1)𝐴 ≡ 𝑀(𝑋2)𝐴. So, the pairings (𝑋,𝑀(𝑋)) are bound to each other
for given C*-algebras (𝐴,𝑀(𝐴)) up to unitary equivalence.

(ii) Suppose we have two non-∗-isomorphic C*-algebras𝐴1 and𝐴2 such that
they admit the samemultiplier C*-algebra𝑀(𝐴). Let𝑋1 be a full Hilbert
𝐴1-module and𝑋2 a full Hilbert𝐴2-module such that𝑀(𝑋1) and𝑀(𝑋2)
are unitarily isomorphic as Hilbert𝑀(𝐴)-modules. Then 𝑋1 is not uni-
tarily isomorphic to 𝑋2 as a Hilbert𝑀(𝐴)-module.
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The first assertion follows from (iv) of Definition 2.1 combiningΦ2 withΦ−1
1

with respect to the set {𝑧𝑎 ∶ 𝑧 ∈ 𝑀(𝑋), 𝑎 ∈ 𝐴} in the largest essential exten-
sion𝑀(𝑋), cf. [45, Prop. 1.4]. The second assertion can be illustrated by exam-
ple (see below), however𝑀(𝑋1)𝐴1 is obviously not isometrically isomorphic to
𝑀(𝑋2)𝐴2 by supposition.

Example 2.4. Let 𝐻 be an infinite-dimensional Hilbert space, and 𝐾(𝐻) and
𝐵(𝐻) the sets of compact linear operators and of bounded linear operators on
it, respectively. Consider the three C*-algebras

𝐴2 = ( 𝐾(𝐻) 0
0 𝐾(𝐻) ) , 𝐴1 = ( 𝐾(𝐻) 0

0 𝐵(𝐻) ) ,

𝑀(𝐴1) = 𝑀(𝐴2) = ( 𝐵(𝐻) 0
0 𝐵(𝐻) ) .

Let us describe these C*-algebras as (extended)Hilbert C*-modules over𝐴1 and
find their multiplier modules with respect to 𝐴1.

𝑋2 = ( 𝐾(𝐻) 0
0 𝐾(𝐻) ) ⊕ ( 𝐾(𝐻) 0

0 𝐵(𝐻) ) ,

𝑋1 = ( 𝐾(𝐻) 0
0 𝐵(𝐻) ) ⊕ ( 𝐾(𝐻) 0

0 𝐵(𝐻) ) ,

𝑀(𝑋2) = ( 𝐵(𝐻) 0
0 𝐾(𝐻) ) ⊕ ( 𝐵(𝐻) 0

0 𝐵(𝐻) ) .

𝑀(𝑋1) = ( 𝐵(𝐻) 0
0 𝐵(𝐻) ) ⊕ ( 𝐵(𝐻) 0

0 𝐵(𝐻) ) .

By [45, Prop. 1.1], both𝑋1 and𝑋2 admit a canonical isometric modular embed-
ding into 𝑀(𝑋1) and into 𝑀(𝑋2), respectively, as Hilbert 𝑀(𝐴1)-submodules.
However, the multiplier module of 𝐴2 with respect to 𝐴1, 𝑀𝐴1(𝐴2), is a non-
unital C*-algebra.
Now, consider 𝑋1 as a full Hilbert 𝐴1-module and

𝑋3 = ( 𝐾(𝐻) 0
0 𝐾(𝐻) ) ⊕ ( 𝐾(𝐻) 0

0 𝐾(𝐻) ) ,

as a full Hilbert 𝐴2-module. Then𝑀(𝑋1) is unitarily isomorphic to𝑀(𝑋3) as a
Hilbert𝑀(𝐴1) ≡ 𝑀(𝐴2)-module, but 𝑋1 and 𝑋3 are not.

In general, for unital C*-algebras 𝐴 = 𝑀(𝐴), any Hilbert 𝐴-module 𝑋 is its
own multiplier module 𝑀(𝑋) = 𝑋, [5, Remark 1.11]. To see that, an intrin-
sic topological characterization of multiplier modules for ⟨𝑋, 𝑋⟩ ⊆ 𝐴 being an
essential ideal of𝑀(𝐴) is useful.
By [5], there exists a suitable variant of a strict topology on multiplier mod-

ules𝑀(𝑋): Let 𝐴 be a C*-algebra and 𝑋 be a Hilbert 𝐴-module. Let the strict
topology on𝑀(𝑋) be induced jointly by the two families of semi-norms {‖𝑧 →
𝑧𝑎‖ ∶ 𝑎 ∈ 𝐴} and {‖⟨𝑧, 𝑥⟩‖ ∶ 𝑥 ∈ 𝑋, ‖𝑥‖ ≤ 1} for 𝑧 ∈ 𝑀(𝑋). It is a lo-
cally convex topology. The multiplier module 𝑀(𝑋) turns out to be complete
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with respect to this strict topology, and𝑀(𝑋) is the strict completion of 𝑋, [5,
Thm. 1.8, 1.9]. Moreover, the strict completion is an idempotent operation, i.e.,
𝑀𝑀(𝐴)(𝑀𝐴(𝑋)) = 𝑀𝐴(𝑋). Consequently, for unital C*-algebras 𝐴 = 𝑀(𝐴) and
Hilbert 𝐴-modules 𝑋 we have 𝑋 = 𝑀(𝑋). The same is true whenever K𝐴(𝑋) is
unital, cf. [5, Cor. 2.9].
For 𝑋,𝑌 Hilbert 𝐴-modules each operator 𝑇 ∈ End∗𝐴(𝑋, 𝑌) has an exten-

sion 𝑇𝑀 ∈ End∗𝑀(𝐴)(𝑀(𝑋),𝑀(𝑌)) of the same norm value obtained as the strict
continuation of 𝑇. Therefore, it is uniquely determined. Moreover, every oper-
ator in End∗𝑀(𝐴)(𝑀(𝑋),𝑀(𝑌)) arises this way, i.e., the C*-algebras End∗𝐴(𝑋, 𝑌)
and End∗𝑀(𝐴)(𝑀(𝑋),𝑀(𝑌)) are ∗-isomorphic, [5, Thm. 2.3]. Since a full Hilbert
𝐴-module 𝑋 is not only a right Hilbert 𝐴-module, but also a full left Hilbert
K𝐴(𝑋)-module by the theory of strong Morita equivalence of the C*-algebras𝐴
and K𝐴(𝑋), 𝑋 can be considered as a C*-correspondence or as an imprimitivity
bimodule of these twoC*-algebras. By [30], theC*-algebraEnd∗𝐴(𝑋) can be con-
sidered as the multiplier algebra of the C*-algebraK𝐴(𝑋). Consequently,𝑀(𝑋)
is a full left Hilbert𝑀(K𝐴(𝑋))-module. So, for (full) Hilbert K𝐴(𝑋)-modules 𝑋
the Hilbert𝑀(K𝐴(𝑋))-module𝑀(𝑋) can be identified with the (left) multiplier
module of 𝑋 w.r.t. the pairing (K𝐴(𝑋),𝑀(K𝐴(𝑋))), too. This makes the prop-
erty of a (full) Hilbert C*-module to be a multiplier module invariant under the
choice of the point of view as a (full) left or right Hilbert C*-module. For similar
thoughts, compare with [5, pp. 20-21, (a)-(b)], [16, Props. 13 and 16].

Theorem 2.5. Let 𝐴 be a C*-algebra and𝑀(𝐴) be its multiplier algebra. Let 𝑋
be a full (right) Hilbert𝐴-module and𝑀(𝑋) be itsmultipliermodule, a full (right)
Hilbert𝑀(𝐴)-module. Then𝑀(𝑋) is also the full (left) multiplier module of the
(left) Hilbert K𝐴(𝑋)-module 𝑋 with respect to the pairing of C*-algebras K𝐴(𝑋)
and 𝑀(K𝐴(𝑋)) = End∗𝐴(𝑋) = 𝑀(K𝑀(𝐴)(𝑀(𝑋))) = End∗𝑀(𝐴)(𝑀(𝑋)), and vice
versa.

Proof. By [5, Thm. 1.8, 1.9], the unit ball of 𝑀(𝑋) is complete with respect
to the locally convex strict (right) topology induced jointly by the two families
of semi-norms {‖𝑧 → 𝑧𝑎‖ ∶ 𝑎 ∈ 𝐴} and {‖⟨𝑧, 𝑥⟩𝑟‖ ∶ 𝑥 ∈ 𝑋, ‖𝑥‖ ≤ 1} for
𝑧 ∈ 𝑀(𝑋). Also, the unit ball of 𝑋 generates the unit ball of 𝑀(𝑋) strictly.
By [4, Def. 2, Remark 3], the operator strict topology on 𝑋 defined by the joint
family of semi-norms {‖𝑥 → 𝑇(𝑥)‖ ∶ 𝑇 ∈ K𝐴(𝑋)} and {‖𝑥 → 𝑥𝑎‖ ∶ 𝑎 ∈
𝐴} with 𝑥 ∈ 𝑋 coincides with the strict (right) topology on bounded sets of
𝑋 and of 𝑀(𝑋), and so on unit balls, in particular. Consequently, 𝑋 is dense
in 𝑀(𝑋) w.r.t. the operator strict topology on 𝑋 and on 𝑀(𝑋). Note, that the
operator strict topology is symmetric for imprimitivity bimodules 𝑋 in 𝐴 and
K𝐴(𝑋). By strong Morita equivalence via the imprimitivity bimodule 𝑋, we
can symmetrically conclude that the unit ball of 𝑋 is dense w.r.t. the locally
convex strict (left) topology induced jointly by the two families of semi-norms
{‖𝑧 → 𝑇(𝑧)‖ ∶ 𝑇 ∈ K𝐴(𝑋)} and {‖⟨𝑧, 𝑥⟩𝑙‖ ∶ 𝑥 ∈ 𝑋, ‖𝑥‖ ≤ 1} for 𝑧 ∈ 𝑀(𝑋). This
gives the argument by [5, Thm. 1.8, 1.9] applied to the operator point of view
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on 𝑋 and on𝑀(𝑋). The ∗-isomorphisms of the respective operator C*-algebras
are shown in [5, Thm. 2.3]. □

Remark 2.6. Let us check the idea of a stronger kind of strong Morita equiv-
alence restricting the set to multiplier module imprimitivity bimodules. There
is a good class of pairwise strongly Morita equivalent C*-algebras

{ℂ,𝑀𝑛(ℂ), 𝐾(𝐻) ∶ 𝑛 ∈ ℕ,𝐻 any inf inite−dimensional Hilbert space},

because it has been well investigated in [4, 5, 24]. One has multiplier imprimi-
tivity bimodules whenever the left and/or right Hilbert C*-module structure of
imprimitivity bimodules involves {ℂ,𝑀𝑛(ℂ) ∶ 𝑛 ∈ ℕ}. The C*-algebras

{𝐾(𝐻) ∶ 𝐻 any inf inite−dimensional Hilbert space}

may appear among the strongly Morita equivalent ones at the other end. What
about imprimitivity bimodules 𝑋 connecting C*-algebras of type 𝐾(𝐻) for
infinite-dimensional Hilbert spaces 𝐻? The minimal requirement to an equiv-
alence relation is that an object has to be equivalent to itself. Take 𝐾(𝐻) and a
full (left) Hilbert 𝐾(𝐻)-module serving as a imprimitivity bimodule 𝑋 of 𝐾(𝐻)
with itself, i.e., with the structure of a full (right) Hilbert 𝐾(𝐻)-module. Then
the full multiplier C*-module 𝑀(𝑋) = 𝐵(𝐻) of 𝑋 is a imprimitivity bimodule
of 𝐵(𝐻) with itself and does not belong to the set of 𝐾(𝐻)-𝐾(𝐻) imprimitivity
bimodules any more. So, the set of 𝐾(𝐻)-𝐾(𝐻) imprimitivity bimodules does
not contain any multiplier module, similarly for Hilbert spaces 𝐻 of pairwise
non-isomorphic infinite-dimensional dimensions. The concept does not work.

3. On modular operators and functionals
The aim of this section is the investigation of the Banach algebras of all

bounded module maps End𝐴(𝑋) and End𝑀(𝐴)(𝑀(𝑋)) and their interrelations,
as well as the sets of all boundedmodule maps𝑋′ and𝑀(𝑋)′ over pairs of (full)
Hilbert 𝐴-modules 𝑋 and their multiplier modules 𝑀(𝑋) over 𝑀(𝐴). To get
non-trivial examples, we need examples of C*-algebras𝐴 such that their multi-
plier algebras𝑀(𝐴) are strictly smaller than their left/right multiplier algebras.
By [9, Cor. 4.18], either𝑀(𝐴) = 𝐿𝑀(𝐴) and𝑀(𝐴) = 𝑄𝑀(𝐴) at the same time,
or 𝐿𝑀(𝐴) is strictly larger than𝑀(𝐴) and𝑄𝑀(𝐴) is strictly larger than 𝐿𝑀(𝐴).
For theory and examples, see the existing literature on different types of multi-
plier algebras and local multiplier algebras, e.g. [8]. We give a simple example
following [35, pp. 165-166].
Recall the C*-algebras 𝑐0, 𝑐 and 𝑙∞ of all complex-valued sequences converg-

ing to zero, converging at all and being bounded in norm, respectively. Change
the target C*-algebra ℂ to the C*-algebra of all two-by-two valued matrices
𝑀2(ℂ). Consider the C*-algebra of all 𝑀2(ℂ)-valued sequences with the se-
quence in the upper left corner converging at all and with the sequences de-
rived from the other three positions being sequences converging to zero. We
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write 𝐴 as a symbol

𝐴 = ( 𝑐 𝑐0
𝑐0 𝑐0

) .

Thenwe canfind the derived (left/right/two-sided)multiplier algebras / spaces:

𝑀(𝐴) = ( 𝑐 𝑐0
𝑐0 𝑙∞

) , 𝐿𝑀(𝐴) = 𝑅𝑀(𝐴)∗ = ( 𝑐 𝑙∞
𝑐0 𝑙∞

) ,

𝑄𝑀(𝐴) = ( 𝑐 𝑙∞
𝑙∞ 𝑙∞

) .

This can be calculated in theW*-algebra of all bounded𝑀2(ℂ)-valued sequences.
Note, that 𝑄𝑀(𝐴) = 𝐿𝑀(𝐴) + 𝑅𝑀(𝐴) ≠ 𝑅𝑀(𝐴)◦𝐿𝑀(𝐴) for this particular ex-
ample, a non-general situation.

Theorem 3.1. Let 𝐴 be a C*-algebra with multiplier algebra𝑀(𝐴). Let 𝑋 be a
full Hilbert 𝐴-module and𝑀(𝑋) be its full multiplier module.

(i) TheC*-algebraK𝐴(𝑋) of all “compact” operators on𝑋 admits a∗-isomor-
phic embedding into the C*-algebraK𝑀(𝐴)(𝑀(𝑋)) of all “compact” oper-
ators on𝑀(𝑋). If 𝑋 ≠ 𝑀(𝑋) then K𝐴(𝑋) is smaller than K𝑀(𝐴)(𝑀(𝑋)).
Nevertheless, theirmultiplier algebras are∗-isomorphic, i.e.,End𝐴(𝑋)∗ ≅
End𝑀(𝐴)(𝑀(𝑋))∗. If 𝑋 ≠ 𝑀(𝑋) then the embedding is not a surjection.

(ii) There does not exist any bounded𝑀(𝐴)-linearmap𝑇0 ∶ 𝑀(𝑋) → 𝑀(𝑋)
such that 𝑇0 ≠ 0 on𝑀(𝑋), but 𝑇0 = 0 on 𝑋 ⊆ 𝑀(𝑋).

(iii) TheBanachalgebraEnd𝑀(𝐴)(𝑀(𝑋))admits an isometric embedding into
the Banach algebra End𝐴(𝑋) by restricting an element on the domain
from𝑀(𝑋) to𝑋 ⊆ 𝑀(𝑋). If the left multiplier algebra ofK𝐴(𝑋) is larger
than the multiplier algebra of it, then End𝑀(𝐴)(𝑀(𝑋)) can be smaller
than End𝐴(𝑋), i.e., not every bounded module operator on 𝑋 might ad-
mit a bounded module operator continuation on𝑀(𝑋).

Proof. Since 𝑋 ⊆ 𝑀(𝑋), elementary “compact” operators on 𝑋 can be ex-
tended to 𝑀(𝑋) preserving their operator norm by the strict density of 𝑋 in
𝑀(𝑋). The C*-algebras of “compact” operators on Hilbert C*-modules are gen-
erated linearly by elementary operators w.r.t. the operator norm. So the iso-
metric ∗-isomorphic embedding of the C*-algebra K𝐴(𝑋) into the C*-algebra
K𝑀(𝐴)(𝑀(𝑋)) follows. However, the multiplier C*-algebras 𝑀(K𝐴(𝑋)) =
End𝐴(𝑋)∗ and 𝑀(K𝑀(𝐴)(𝑀(𝑋))) = End𝑀(𝐴)(𝑀(𝑋))∗ are always ∗-isomorphic
by [5, Thm. 2.3].
Suppose there exists a bounded𝑀(𝐴)-linear operator 𝑇0 on𝑀(𝑋) such that

𝑇0 = 0 on 𝑋 ⊆ 𝑀(𝑋), but 𝑇0(𝑚) ≠ 0 for some 𝑚 ∈ 𝑀(𝑋). Let {𝑥𝛼 ∶ 𝛼 ∈ 𝐼}
be a net of elements of 𝑋 converging strictly to 𝑚, i.e., the nets {𝑥𝛼𝑎 ∶ 𝛼 ∈ 𝐼}
converge to 𝑚𝑎 ∈ 𝑋 in norm for any 𝑎 ∈ 𝐴. Consider the set {⟨𝑛, 𝑇0(𝑚𝑎)⟩ ∶
𝑎 ∈ 𝐴, 𝑛 ∈ 𝑀(𝑋)}. All these values are equal to zero by supposition. Since
⟨𝑛, 𝑇0(𝑚𝑎)⟩ = ⟨𝑛, 𝑇0(𝑚)⟩𝑎 = 0 for any 𝑎 ∈ 𝐴 and 𝐴 is an essential ideal of
𝑀(𝐴) we conclude ⟨𝑛, 𝑇0(𝑚)⟩ = 0 for any 𝑛 ∈ 𝑀(𝑋), forcing 𝑇0(𝑚) = 0, a
contradiction to our assumption.
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Restricting a bounded 𝑀(𝐴)-linear operator on 𝑀(𝑋) on the domain from
𝑀(𝑋) to𝑋 ⊆ 𝑀(𝑋), one obtains a bounded𝐴-linear operator on𝑋. The norm is
preserved since𝑋 is strictly dense in𝑀(𝑋). There does not exist any non-trivial
bounded module operator on 𝑀(𝑋) vanishing on 𝑋 ⊆ 𝑀(𝑋) and the norm is
preserved on the subalgebra End(𝑀(𝐴)(𝑀(𝑋))∗ ≡ End𝐴(𝑋)∗ by [5, Thm. 2.3].
So, the restriction of a non-adjointable operator is again a non-adjointable op-
erator. In case the left multiplier algebra 𝐿𝑀(K𝐴(𝑋)) = End𝐴(𝑋) is larger
than the multiplier algebra 𝑀(K𝐴(𝑋)) = End𝐴(𝑋)∗ (see example above), all
elements of 𝐿𝑀(K𝐴(𝑋)) ⧵ 𝑀(K𝐴(𝑋)) are not extendable to bounded module
operators on𝑀(𝑋): Indeed, if 𝐴 = 𝑋 is a C*-algebra with 𝐿𝑀(𝐴) ⊃ 𝑀(𝐴) then
𝑀(𝑋) = 𝑀(𝐴) and all elements of 𝐿𝑀(𝐴) ⧵ 𝑀(𝐴) preserve 𝑋 ⊂ 𝑀(𝑋), but do
not preserve𝑀(𝑋), cf. [36, Thm. 1.5, 1.6], [9, Cor. 4.18]. □

We found that not any bounded module operator on a Hilbert C*-module
might admit a continuation to a boundedmodule operator of the same operator
norm value on its multipliermodule. However, if such a continuation (with the
same operator norm value) exists, it is unique.

Remark 3.2. We demonstrate by example that the choice of the 𝐴-valued in-
ner product on Hilbert 𝐴-modules 𝑋 within the class of 𝐴-valued inner prod-
ucts on 𝑋 inducing equivalent norms on 𝑋 may lead to other unitarily non-
equivalent multiplier𝑀(𝐴)-modules. Return to the example at the beginning
of the present section. If the C*-algebra 𝐴 defined there is equipped with the
standard𝐴-valued inner product as a Hilbert𝐴-module𝑋, then𝑀(𝑋) = 𝑀(𝐴).
Now, modify this 𝐴-valued inner product setting ⟨., .⟩1 ∶= ⟨𝑇(.), 𝑇(.)⟩𝐴 for

𝑇 ∶= ( 1 1
0 1 ) ∈ 𝐿𝑀(𝐴) ⧵ 𝑀(𝐴) ,

where 0 is the zero sequence and 1 is the identity sequence. Clearly, 𝑇 is a non-
adjointable invertible bounded𝐴-linear operator on𝐴, and ⟨., .⟩1 is an𝐴-valued
inner product on 𝐴 inducing an equivalent Hilbert module norm on 𝐴 = 𝑋.
A simple calculation for elements of𝑀(𝐴) inside the C*-valued inner product
⟨., .⟩1 yields

⟨
( 1 1
0 1 ) ◦ ( 𝑐 𝑐0

𝑐0 𝑙∞
) , ( 1 1

0 1 ) ◦ ( 𝑐 𝑐0
𝑐0 𝑙∞

)
⟩

𝐴
= ( 𝑐 𝑐

𝑐 𝑙∞
) ,

which is not a subset of𝑀(𝐴). Consequently, the 𝐴-valued inner product ⟨., .⟩1
cannot be extended to 𝑀(𝐴), and 𝑀(𝐴) is not the multiplier module of the
Hilbert 𝐴-module 𝑋1 = {𝐴, ⟨., .⟩1}. So, the Banach 𝐴-module 𝐴 of the concrete
example does not determine its multiplier module alone, one has to take into
account the particular𝐴-valued inner product on it. To calculate themultiplier
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module of 𝑋1, one can use the von Neumann algebra of all bounded 𝑀2(ℂ)-
valued sequences as an environment. Then

⟨𝑆(𝑥), 𝑎⟩𝐴 = ⟨𝑥, 𝑆∗(𝑎)⟩1
= ⟨𝑇(𝑥), 𝑇(𝑆∗(𝑎))⟩𝑋
= ⟨𝑇(𝑥), (𝑇−1)∗𝑇∗(𝑇(𝑆∗(𝑎))⟩𝑋
= ⟨𝑇−1𝑇(𝑥), 𝑇∗(𝑇(𝑆∗(𝑎))⟩𝑋
= ⟨𝑥, (𝑇∗𝑇𝑆∗)(𝑎)⟩𝑋

for any 𝑆 ∈ End∗𝐴,1(𝑋,𝐴), any 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴. Thus, 𝑇∗𝑇𝑆∗ ∈ End∗𝐴(𝐴, 𝑋) =
{𝑀(𝐴), ⟨., .⟩𝑀(𝐴)}.

In 2022, J. Kaad and M. Skeide published an example of a singular exten-
sion of the zero bounded C*-linear functional on a Hilbert C*-submodule 𝑌 in
a Hilbert C*-module 𝑋 where the orthogonal complement of 𝑌 in 𝑋 was sup-
posed to be the zero element of 𝑋, cf. [29]. The author proved that such phe-
nomena cannot appear for Hilbert C*-modules over monotone complete C*-
algebras and for maximal one-sided ideals of C*-algebras, cf. [20]. We should
evaluate the pairs (𝑋,𝑀(𝑋)) under consideration.

Theorem 3.3. Let 𝐴 be a C*-algebra with multiplier algebra𝑀(𝐴). Let 𝑋 be a
full Hilbert 𝐴-module and𝑀(𝑋) be its full multiplier module.

(i) There does not exist any bounded𝑀(𝐴)-linearmap 𝑓0 ∶ 𝑀(𝑋) → 𝑀(𝐴)
such that 𝑓0 ≠ 0 on𝑀(𝑋), but 𝑓0 = 0 on 𝑋 ⊆ 𝑀(𝑋).

(ii) The Banach𝑀(𝐴)-module𝑀(𝑋)′𝑀(𝐴) admits an isometric modular em-
bedding into the Banach 𝐴-module 𝑋′

𝐴 by restricting an element on the
domain from𝑀(𝑋) to 𝑋 ⊆ 𝑀(𝑋). There exist examples such that 𝑋′

𝐴 is
strictly larger than the embedded copy of𝑀(𝑋)′𝑀(𝐴).

Proof. Suppose there exists a bounded𝑀(𝐴)-linear functional 𝑓0 ∶ 𝑀(𝑋) →
𝑀(𝐴) such that 𝑓0 = 0 on 𝑋 ⊆ 𝑀(𝑋), but 𝑓0(𝑚) ≠ 0 for some𝑚 ∈ 𝑀(𝑋). Let
{𝑥𝛼 ∶ 𝛼 ∈ 𝐼} be a net of elements of 𝑋 converging strictly to 𝑚, i.e., the nets
{𝑥𝛼𝑎 ∶ 𝛼 ∈ 𝐼} converge to 𝑚𝑎 ∈ 𝑋 in norm for any 𝑎 ∈ 𝐴. Consider the set
{𝑓0(𝑚𝑎) ∶ 𝑎 ∈ 𝐴}. All these values are equal to zero by supposition. Since
𝑓0(𝑚𝑎) = 𝑓0(𝑚)𝑎 = 0 for any 𝑎 ∈ 𝐴 and 𝐴 is an essential ideal of 𝑀(𝐴) we
conclude 𝑓0(𝑚) = 0, a contradiction to our assumption.
Restricting 𝑓 ∈ 𝑀(𝑋)′ to 𝑋 ⊆ 𝑀(𝑋) we obtain a bounded 𝐴-linear func-

tional of𝑋′. The norm is preserved, since𝑋 ist strictly dense in𝑀(𝑋) and there
does not exist any non-trivial bounded𝑀(𝐴)-linear functional on𝑀(𝑋) vanish-
ing on 𝑋 ⊆ 𝑀(𝑋). The example in the beginning of the present section can be
read as follows: Let𝐴 be a C*-algebra such that 𝐿𝑀(𝐴) ⊃ 𝑀(𝐴). Setting𝐴 = 𝑋
we get 𝑋′ = 𝐿𝑀(𝐴) and𝑀(𝑋)′ = 𝑀(𝐴)′ = 𝑀(𝐴) since𝑀(𝑋) = 𝑀(𝑋)′ is self-
dual. So 𝑋′ ⊃ 𝑀(𝑋)′ and an 𝐴-valued bounded functional in 𝐿𝑀(𝐴) ⧵ 𝑀(𝐴)
cannot be continued from 𝑋 ⊆ 𝑀(𝑋) to𝑀(𝑋). □
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Consequently, there does not exist any general Hahn-Banach type theorem
for boundedC*-linear functionals for pairs (𝑋,𝑀(𝑋)) of fullHilbert C*-modules
𝑋 and their multiplier modules 𝑀(𝑋), cf. [19, 20]. However, if a bounded 𝐴-
linear functional from a full Hilbert 𝐴-module to the C*-algebra 𝐴 admits a
continuation to a bounded𝑀(𝐴)-linear functional from its multiplier module
to𝑀(𝐴) of the same norm value, then it is unique.
Theorem 3.4. Let 𝐴 be a non-unital C*-algebra with multiplier algebra𝑀(𝐴).
Let 𝑋 be a full Hilbert 𝐴-module and𝑀(𝑋) be its full multiplier module.

(i) There does not exist any bounded𝑀(𝐴)-linearmap𝑇0 ∶ 𝑀(𝑋) → 𝑀(𝑋)′
such that 𝑇0 ≠ 0 on𝑀(𝑋), but 𝑇0 = 0 on 𝑋 ⊆ 𝑀(𝑋).

(ii) The Banach space End𝑀(𝐴)(𝑀(𝑋),𝑀(𝑋)′) admits an isometric embed-
ding into the Banach space End𝐴(𝑋, 𝑋′) by restricting an element on
the domain from 𝑀(𝑋) to 𝑋 ⊆ 𝑀(𝑋). There exist examples such that
End𝐴(𝑋, 𝑋′) is strictly larger than the embedded copy of
End𝑀(𝐴)(𝑀(𝑋),𝑀(𝑋)′).

Proof. Assume there exists a bounded𝑀(𝐴)-linear map 𝑇0 ∶ 𝑀(𝑋) → 𝑀(𝑋)′
such that 𝑇0 ≠ 0 on 𝑀(𝑋), but 𝑇0 = 0 on 𝑋 ⊆ 𝑀(𝑋). Then there exists a
non-zero element 𝑚 ∈ 𝑀(𝑋) such that 𝑇0(𝑚) ∈ 𝑀(𝑋)′, 𝑇0(𝑚) ≠ 0 on𝑀(𝑋),
but 𝑇0(𝑚) = 0 on 𝑀(𝑋)𝐴 = 𝑋. This was excluded by Theorem 3.3, (i), a
contradiction.
If we restrict an element 𝑇 ∈ End𝑀(𝐴)(𝑀(𝑋),𝑀(𝑋)′) to𝑀(𝑋)𝐴 = 𝑋 we ob-

tain an element 𝑇 ∈ End𝐴(𝑋, 𝑋′) of the same operator norm, since 𝑋 is strictly
dense in𝑀(𝑋) and𝑀(𝑋)′𝐴 = 𝑋′. The algebraic operations are preserved.
The example in the beginning of the present section shows: Let 𝐴 be a C*-

algebra such that 𝐿𝑀(𝐴) ⊃ 𝑀(𝐴). Setting 𝐴 = 𝑋 we get End𝐴(𝑋, 𝑋′) =
𝑄𝑀(K𝐴(𝑋)) andEnd𝑀(𝐴)(𝑀(𝑋),𝑀(𝑋)′) = 𝑄𝑀(K𝑀(𝐴)(𝑀(𝑋)), cf. [36, Thm. 1.6].
Since𝑄𝑀(K𝐴(𝑋)) ≠ 𝐿𝑀(K𝐴(𝑋)), but𝑄𝑀(K𝑀(𝐴)(𝑀(𝑋))) = 𝑀(K𝑀(𝐴)(𝑀(𝑋))) =
𝑀(𝑀(𝐴)) = 𝑀(𝐴) by [9, Cor. 4.18], the assertion is demonstrated. □

Continuing Remark 3.2, the quasi-multiplier 𝑇∗𝑇 of 𝐴 of the example in-
duces a bounded modular map from 𝑋 = 𝐴 to 𝑋′ = 𝐿𝑀(𝐴) that cannot be
extended to a bounded modular map of the same norm from𝑀(𝑋) = 𝑀(𝐴) to
𝑀(𝑋)′ = 𝑀(𝐴).
Remark 3.5. One natural question is whethermultipliermodulesmight be C*-
reflexive with respect to certain C*-algebras 𝐵 with𝐴 ⊆ 𝐵 ⊆ 𝑀(𝐴), or not. The
background for this consists of Definition 2.1, and a result byW. L. Paschke that
the C*-valued inner product on a full Hilbert C*-module can be always contin-
ued to its C*-reflexive C*-bidual Banach C*-module preserving the isometric
embedding of the former into the latter, cf. [41]. One could hope to find in-
trinsic topological or order-algebraical characterizations of some C*-reflexive
Hilbert C*-modules, cf. the 𝑙2(𝐾(𝑙2))-example above in the context of [40]. In
general, C*-reflexivity of Hilbert C*-modules highly depends on both the inner
structures of the C*-algebra of coefficients and of the Hilbert C*-module under
consideration.
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To test this point of view select a non-unital C*-algebra 𝐴 with 𝑀(𝐴) =
𝐿𝑀(𝐴). First, if one considers 𝐴-reflexivity of 𝑋 = 𝐴 with the standard 𝐴-
valued inner product then𝑀𝐴(𝑋) = 𝑀(𝐴),𝑋′

𝐴 = 𝑀(𝐴) and𝑋′′
𝐴 = 𝐴, so𝑀𝐴(𝑋)

is not𝐴-reflexive. Furthermore, considering𝑋 = 𝐴 as a Hilbert𝑀(𝐴)-module,
𝑀𝑀(𝐴)(𝑋) = 𝐴, 𝑋′

𝑀(𝐴) = 𝑀(𝐴) and 𝑋′′
𝑀(𝐴) = 𝑀(𝐴), so it is not𝑀(𝐴)-reflexive,

either. The deeper reason could be that condition (iv) of Definition 2.1 might
be violated for the C*-reflexive Hilbert C*-module extension of 𝑋.

Furthermore, instead of two-sided norm-closed ideals 𝐴 in their multiplier
algebras 𝑀(𝐴) (and hence, multiplier modules) one-sided norm-closed ideals
in C*-algebras and their biorthogonal complements in the host C*-algebra can
be considered. Here several notions of density of the respective ideal in the
arising C*-subalgebra of the host C*-algebra have to be compared, and it is far
from obvious that they coincide like in the two-sided norm-closed ideal case,
cf. [37]. These considerations provide a wider variety of examples of Hilbert
C*-modules and their multiplier modules.

Acknowledgement
I am grateful to David R. Larson for the years of fruitful collaboration dur-

ing 1998-2002. David R. Larson from Texas A&MUniversity made outstanding
contributions to various mathematics subjects including operator theory, op-
erator algebras and applied harmonic analysis, in particular wavelet and frame
theory. Aswell, hewas engaged in organizing the highly impacted annualGreat
Plains Operator Theory Symposium (GPOTS) during many years.
I thank Bartosz Kwaśniewski, who attracted my attention to the double cen-

tralizer type approach tomultipliermodules using only BanachC*-module con-
structions, and to problems about the equivalence of both these approaches in
the case of Hilbert C*-modules, cf. [13, 14, 12, 17, 47].

References
[1] Amyari, Maryam; Chakoshi, Mahnaz. Pullback diagram of Hilbert 𝐶∗-modules.Math.

Commun. 16 (2011), no. 2, 569–575. MR2900777, Zbl 1250.46037. 222
[2] Ara, Pere; Mathieu, Martin. Local multipliers of 𝐶∗-Algebras. Springer Monographs

in Mathematics. Springer-Verlag, Ltd., London, 2003. xii+319 pp. ISBN:1-85233-237-9.
MR1940428, Zbl 1015.46001, doi: 10.1007/978-1-4471-0045-4. 223

[3] Arambašić, Ljiljana; Bakić, Damir. Frames and outer frames for Hilbert 𝐶∗-modules.
Linear Multilinear Algebra 65 (2017), no. 2, 381–431. MR3577457, Zbl 1367.46048,
arXiv:1507.04101, doi: 10.1080/03081087.2016.1186588. 222, 225

[4] Bakić, Damir. A class of strictly complete Hilbert 𝐶∗-modules. Preprint, 2025. 8 pp.
https://www.researchgate.net/publication/242688089_A_class_of_strictly_
complete_Hilbert_C-modules. 222, 229, 230

[5] Bakić, Damir; Guljaš, Boris. Extensions of Hilbert 𝐶∗-modules. Houston J. Math. 30
(2004), no. 2, 537–558. MR2084917, Zbl 1069.46032. 221, 222, 226, 227, 228, 229, 230, 231,
232

[6] Bakić, Damir; Guljaš, Boris. Extensions of Hilbert 𝐶∗-modules. II. Glasnik Matematčki
38(58) (2003), no. 2, 343–359. MR2052751, Zbl 1057.46046, doi: 10.3336/gm.38.2.12. 221,
222

http://mathscinet.ams.org/mathscinet/article?mr=2900777
http://zbmath.org/1250.46037
http://mathscinet.ams.org/mathscinet/article?mr=1940428
http://zbmath.org/1015.46001
http://dx.doi.org/10.1007/978-1-4471-0045-4
http://mathscinet.ams.org/mathscinet/article?mr=3577457
http://zbmath.org/1367.46048
http://arXiv.org/abs/1507.04101
http://dx.doi.org/10.1080/03081087.2016.1186588
https://www.researchgate.net/publication/242688089_A_class_of_strictly_complete_Hilbert_C_-modules
https://www.researchgate.net/publication/242688089_A_class_of_strictly_complete_Hilbert_C_-modules
http://mathscinet.ams.org/mathscinet/article?mr=2084917
http://zbmath.org/1069.46032
http://mathscinet.ams.org/mathscinet/article?mr=2052751
http://zbmath.org/1057.46046
http://dx.doi.org/10.3336/gm.38.2.12


236 MICHAEL FRANK

[7] Brown, LawrenceG.; Green, Philip; Rieffel,MarcA. Stable isomorphismand strong
Morita equivalence of 𝐶∗-algebras. Pacific J. Math. 71 (1977), no. 2, 349–363. MR0463928,
Zbl 0362.46043, doi: 10.2140/pjm.1977.71.349. 225

[8] Brown, Lawrence G.; Mingo, James A.; Shen, Nien-Tsu. Quasi-multipliers and em-
beddings ofHilbert𝐶∗-bimodules.Canad. J.Math. 46 (1994), no. 6, 1150–1174.MR1304338,
Zbl 0846.46031, doi: 10.4153/CJM-1994-065-5. 223, 230

[9] Brown, Lawrence G. Close hereditary 𝐶∗-subalgebras and the strucure of quasi-
multipliers. Proc. Royal Society of Edinburgh Sect A. 147 (2017), no. 2, 263–292.MR3627950,
Zbl 1378.46038, arXiv:1501.07613, doi: 10.1017/S0308210516000172. 223, 224, 230, 232, 234

[10] Brückler, Franka Miriam. A note on extensions of Hilbert 𝐶∗-modules and their mor-
phisms. Glas. Mat. Ser. III 39(59) (2004), no. 2, 313–326. MR2109673, Zbl 1086.46043,
doi: 10.3336/gm.39.2.12. 222

[11] Bursztyn, Henrique; Waldmann, Stefan. Completely positive inner products and
strong Morita equivalence. Pacific J. Math. 222 (2005), no. 2, 201–236. MR2225070, Zbl
1111.53071, arXiv:math/0309402, doi: 10.2140/pjm.2005.222.201. 225

[12] Buss, Alcide; Kwaśniewski, Bartosz; McKee, Andrew; Skalski, Adam. Fourier–
Stieltjes category for twisted groupoid actions. Preprint, 2024. arXiv:2405.15653. 221, 225,
235

[13] Daws,Matthew.Multipliers, self-induced and dual Banach algebras.DissertationesMath.
470 (2010), 62pp. MR2681109, Zbl 1214.43004, arXiv:1001.1633, doi: 10.4064/dm470-0-1.
221, 225, 235

[14] Daws, Matthew. Multipliers of locally compact quantum groups via Hilbert 𝐶∗-
modules. J. Lond. Math. Soc. (2) 84 (2011), no. 2, 385–407. MR2835336, Zbl 1235.43004,
arXiv:1004.0215. 221, 225, 235

[15] Delfín, Alfonso. Representations of 𝐶∗-correspondences on pairs of Hilbert spaces. J.
Operator Theory 92 (2024), no. 1, 167–188. MR4804331, Zbl 1568.46029, arXiv:2208.14605,
doi: 10.7900/jot.2022sep02.2431. 221, 225

[16] Echterhoff, Siegfried; Raeburn, Iain. Multipliers of imprimitivity bimodules
and Morita equivalence of crossed products. Math. Scand. 76 (1995), no. 2, 289–309.
MR1354585, Zbl 0843.46049, doi: 10.7146/math.scand.a-12543. 221, 225, 229

[17] Frank, Michael. A multiplier approach to the Lance–Blecher theorem. Z. Anal. Anwen-
dungen 16 (1997), no. 3, 565–573. MR1472718, Zbl 0881.46040, arXiv:funct-an/9701001,
doi: 10.4171/zaa/778. 221, 226, 235

[18] Frank, Michael. Geometrical aspects of Hilbert 𝐶∗-modules. Positivity 3 (1999), no. 3,
215–243. MR1708656, Zbl 0945.46043, doi: 10.1023/A:1009729204027. 223, 224

[19] Frank, Michael. On Hahn–Banach type theorems for Hilbert 𝐶∗-modules. Internat. J.
Math. 13 (2002), no. 7, 675–693. MR1921507, Zbl 1059.46035, arXiv:funct-an/9609003,
doi: 10.1142/S0129167X02001356. 234

[20] Frank, Michael. Regularity results for classes of Hilbert 𝐶∗-modules with respect to spe-
cial bounded modular functionals. Ann. Funct. Anal. 15 (2024), no. 2, Paper No. 19, 18 pp.
MR4707465, Zbl 1546.46050, arXiv:2207.13164, doi: 10.1007/s43034-024-00320-5. 233, 234

[21] Frank, Michael; Larson, David R. A module frame concept for Hilbert 𝐶∗-modules.
The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999),
207–233. Contemporary Mathematics, 247. AmericanMathematical Society, Providence, RI,
1999. ISBN:0-8218-1957-7. MR1738091, Zbl 0949.46027, arXiv:math/0011184. 224

[22] Frank, Michael; Larson, David R. Modular frames for Hilbert 𝐶∗-modules and sym-
metric approximation of frames. International Symposium on Optical Science and Technol-
ogy (San Diego, 2000). Wavelet Applications in Signal and Image Processing, VIII. Proceed-
ings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 4119 (2000), 325–336.
arXiv:math/0010115, doi: 10.1117/12.408617. 224

http://mathscinet.ams.org/mathscinet/article?mr=0463928
http://zbmath.org/0362.46043
http://dx.doi.org/10.2140/pjm.1977.71.349
http://mathscinet.ams.org/mathscinet/article?mr=1304338
http://zbmath.org/0846.46031
http://dx.doi.org/10.4153/CJM-1994-065-5
http://mathscinet.ams.org/mathscinet/article?mr=3627950
http://zbmath.org/1378.46038
http://arXiv.org/abs/1501.07613
http://dx.doi.org/10.1017/S0308210516000172
http://mathscinet.ams.org/mathscinet/article?mr=2109673
http://zbmath.org/1086.46043
http://dx.doi.org/10.3336/gm.39.2.12
http://mathscinet.ams.org/mathscinet/article?mr=2225070
http://zbmath.org/1111.53071
http://zbmath.org/1111.53071
http://arXiv.org/abs/math/0309402
http://dx.doi.org/10.2140/pjm.2005.222.201
http://arXiv.org/abs/2405.15653
http://mathscinet.ams.org/mathscinet/article?mr=2681109
http://zbmath.org/1214.43004
http://arXiv.org/abs/1001.1633
http://dx.doi.org/10.4064/dm470-0-1
http://mathscinet.ams.org/mathscinet/article?mr=2835336
http://zbmath.org/1235.43004
http://arXiv.org/abs/1004.0215
http://mathscinet.ams.org/mathscinet/article?mr=4804331
http://zbmath.org/1568.46029
http://arXiv.org/abs/2208.14605
http://dx.doi.org/10.7900/jot.2022sep02.2431
http://mathscinet.ams.org/mathscinet/article?mr=1354585
http://zbmath.org/0843.46049
http://dx.doi.org/10.7146/math.scand.a-12543
http://mathscinet.ams.org/mathscinet/article?mr=1472718
http://zbmath.org/0881.46040
http://arXiv.org/abs/funct-an/9701001
http://dx.doi.org/10.4171/zaa/778
http://mathscinet.ams.org/mathscinet/article?mr=1708656
http://zbmath.org/0945.46043
http://dx.doi.org/10.1023/A:1009729204027
http://mathscinet.ams.org/mathscinet/article?mr=1921507
http://zbmath.org/1059.46035
http://arXiv.org/abs/funct-an/9609003
http://dx.doi.org/10.1142/S0129167X02001356
http://mathscinet.ams.org/mathscinet/article?mr=4707465
http://zbmath.org/1546.46050
http://arXiv.org/abs/2207.13164
http://dx.doi.org/10.1007/s43034-024-00320-5
http://mathscinet.ams.org/mathscinet/article?mr=1738091
http://zbmath.org/0949.46027
http://arXiv.org/abs/math/0011184
http://arXiv.org/abs/math/0010115
http://dx.doi.org/10.1117/12.408617


MULTIPLIER MODULES OF HILBERT C*-MODULES REVISITED 237

[23] Frank, Michael; Larson, David R. Frames in Hilbert 𝐶∗-modules and 𝐶∗-
algebras. J. Operator Theory 48 (2002), no. 2, 273–314. MR1938798, Zbl 1029.46087,
arXiv:math/0010189. 224

[24] Guljaš, Boris. Hilbert 𝐶∗-modules in which all relatively strictly closed submodules
are complemented. Glas. Mat. Ser. III 56(76) (2021), no. 2, 343–374. MR4400848, Zbl
1503.46047. 222, 230

[25] Han, Deguang; Jing, Wu; Larson, David R.; Mohapatra, Ram N.. Riesz bases and
their dual modular frames in Hilbert 𝐶∗-modules. J. Math. Anal. Appl. 343 (2008), no. 1,
246–256. MR2412125, Zbl 1185.46040, doi: 10.1016/j.jmaa.2008.01.013. 224

[26] Hewitt, Edwin; Ross, Kenneth A. Abstract harmonic analysis. II: Structure and anal-
ysis for compact groups. Analysis on compact abelian groups. Die Grundlehren der
mathematischenWissenschaften, Band 152. Springer-Verlag, NewYork-Berlin, 1970. ix+771
pp. MR0262773, Zbl 0830.43001, doi: 10.1007/978-3-662-26755-4. 226

[27] Hines, Taylor; Walsberg, Erik. Nontrivially Noetherian 𝐶∗-algebras.Math. Scand. 111
(2012), no. 1, 135–146. MR3001364, Zbl 1272.46050, doi: 10.7146/math.scand.a-15219. 223

[28] Jingming, Zhu. Geometric description of multiplier modules for Hilbert 𝐶∗-modules
in simple cases. Ann. Funct. Anal. 8 (2017), no. 1, 51–62. MR3566890, Zbl 1352.39021,
doi: 10.1215/20088752-3749995. 222

[29] Kaad, Jens; Skeide, Michael. Kernels of Hilbert module maps: a counterexample. J.
Oper. Theory, 89 (2023), no. 2, 343–348. MR4591644, Zbl 1563.46088, arXiv:2101.03030.
doi: 10.7900/jot.2021jun11.2338. 233

[30] Kasparov, G. G. Hilbert 𝐶∗-modules: theorems of Stinespring and Voiculescu. J. Opera-
tor Theory 4 (1980), no. 1, 133–150. MR0587371, Zbl 0456.46059. 229

[31] Kodaka, Kazunori. Picard groups of irrational rotation 𝐶∗-algebras. J. Lon-
don Math. Soc. (2) 56 (1997), no. 1, 179–188. MR1462834, Zbl 0892.46067,
doi: 10.1112/S0024610797005243. 225

[32] Kolarec, Biserka. A survey on extensions of Hilbert 𝐶∗-modules. Quantum Probabil-
ity and Related Topics, 209–221. QP-PQ: Quantum Probability and White Noise Analysis,
29.World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 ISBN:978-981-4447-53-9.
MR3288048, Zbl 1327.81227, doi: 10.1142/9789814447546_0013. 222

[33] Lance, E. Christopher. Unitary operators on Hilbert 𝐶∗-modules. Bull. London Math.
Soc. 26 (1994), no. 4, 363–366.MR1302069, Zbl 0821.46073, doi: 10.1112/blms/26.4.363. 226

[34] Lance, E. Christopher. Hilbert 𝐶∗-modules. A toolkit for operator algebraists. Lon-
don Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cam-
bridge, England, 1995. x+130 pp. ISBN:0-521-47910-X. MR1325694, Zbl 0822.46080,
doi: 10.1017/CBO9780511526206. 224

[35] Lin, Hua Xin. The structure of quasimulitipliers of 𝐶∗-algebras. Trans. Amer. Math. Soc.
315 (1989), no. 1, 147–172. MR0937248, Zbl 0684.46047, doi: 10.1090/s0002-9947-1989-
0937248-3. 223, 230

[36] Lin, Hua Xin. Bounded module maps and pure completely positive maps. J. Operator The-
ory 26 (1991), no. 1, 121–138. MR1214924, Zbl 0791.46032. 223, 232, 234

[37] Manuilov, Vladimir M.. On large submodules in Hilbert 𝐶∗-modules. J. Math.
Anal. Appl. 542 (2025), no. 2, Paper No. 128781, 13pp. MR4791358, Zbl 1554.46038,
arXiv:2402.07288, doi: 10.1016/j.jmaa.2024.128781. 235

[38] Murphy, Gerard J. 𝐶∗-Algebras and operator theory. Academic Press Inc., Boston, MA,
1990. x+286 pp. ISBN:0-12-511360-9. MR1074574, Zbl 0714.46041, doi: 10.1016/C2009-0-
22289-6. 223

[39] Naroei Irani, Mona; Nazari, Akbar. The woven frame of multipliers in Hilbert
𝐶∗-modules. Commun. Korean Math. Soc. 36 (2021), no. 2, 257–266. MR4252839, Zbl
1479.42083, doi: 10.4134/CKMS.c200179. 225

[40] Paschke, William L. Inner product modules over 𝐵∗-algebras. Trans. Amer. Math. Soc.
182 (1973), 443–468. MR0355613, Zbl 0239.46062, doi: 10.2307/1996542. 224, 227, 234

http://mathscinet.ams.org/mathscinet/article?mr=1938798
http://zbmath.org/1029.46087
http://arXiv.org/abs/math/0010189
http://mathscinet.ams.org/mathscinet/article?mr=4400848
http://zbmath.org/1503.46047
http://zbmath.org/1503.46047
http://mathscinet.ams.org/mathscinet/article?mr=2412125
http://zbmath.org/1185.46040
http://dx.doi.org/10.1016/j.jmaa.2008.01.013
http://mathscinet.ams.org/mathscinet/article?mr=0262773
http://zbmath.org/0830.43001
http://dx.doi.org/10.1007/978-3-662-26755-4
http://mathscinet.ams.org/mathscinet/article?mr=3001364
http://zbmath.org/1272.46050
http://dx.doi.org/10.7146/math.scand.a-15219
http://mathscinet.ams.org/mathscinet/article?mr=3566890
http://zbmath.org/1352.39021
http://dx.doi.org/10.1215/20088752-3749995
http://mathscinet.ams.org/mathscinet/article?mr=4591644
http://zbmath.org/1563.46088
http://arXiv.org/abs/2101.03030
http://dx.doi.org/10.7900/jot.2021jun11.2338
http://mathscinet.ams.org/mathscinet/article?mr=0587371
http://zbmath.org/0456.46059
http://mathscinet.ams.org/mathscinet/article?mr=1462834
http://zbmath.org/0892.46067
http://dx.doi.org/10.1112/S0024610797005243
http://mathscinet.ams.org/mathscinet/article?mr=3288048
http://zbmath.org/1327.81227
https://www.worldscientific.com/doi/abs/10.1142/9789814447546_0013
http://mathscinet.ams.org/mathscinet/article?mr=1302069
http://zbmath.org/0821.46073
http://dx.doi.org/10.1112/blms/26.4.363
http://mathscinet.ams.org/mathscinet/article?mr=1325694
http://zbmath.org/0822.46080
http://dx.doi.org/10.1017/CBO9780511526206
http://mathscinet.ams.org/mathscinet/article?mr=0937248
http://zbmath.org/0684.46047
http://dx.doi.org/10.1090/s0002-9947-1989-0937248-3
http://dx.doi.org/10.1090/s0002-9947-1989-0937248-3
http://mathscinet.ams.org/mathscinet/article?mr=1214924
http://zbmath.org/0791.46032
http://mathscinet.ams.org/mathscinet/article?mr=4791358
http://zbmath.org/1554.46038
http://arXiv.org/abs/2402.07288
http://dx.doi.org/10.1016/j.jmaa.2024.128781
http://mathscinet.ams.org/mathscinet/article?mr=1074574
http://zbmath.org/0714.46041
http://dx.doi.org/10.1016/C2009-0-22289-6
http://dx.doi.org/10.1016/C2009-0-22289-6
http://mathscinet.ams.org/mathscinet/article?mr=4252839
http://zbmath.org/1479.42083
http://zbmath.org/1479.42083
http://dx.doi.org/10.4134/CKMS.c200179
http://mathscinet.ams.org/mathscinet/article?mr=0355613
http://zbmath.org/0239.46062
http://dx.doi.org/10.2307/1996542


238 MICHAEL FRANK

[41] Paschke, William L. The double 𝐵-dual of an inner product module over a 𝐶∗-algebra 𝐵.
Can. J. Math. 26 (1974), no. 5, 1272–1280. MR0470687, Zbl 0288.46058, doi: 10.4153/CJM-
1974-121-0. 234

[42] Pedersen, Gert K. Multipliers of 𝐴𝑊∗-algebras. Math. Z. 187 (1984), no. 1, 23–24.
MR0753416, Zbl 0547.46037, doi: 10.1007/BF01163162. 223

[43] Pedersen, Gert K. Factorization in 𝐶∗-algebras. Exposition. Math. 16 (1998), no. 2, 145–
156. MR1630695, Zbl 0912.46054. 226

[44] Raeburn, Iain;Williams, DanaP.Morita equivalence and continuous trace𝐶∗-algebras.
Mathematical Surveys andMonographs 60.AmericanMathematical Society, Providence, RI,
1998. xiv+327 pp. ISBN:0-8218-0860-5.MR1634408, Zbl 0922.46050, doi: 10.1090/surv/060.
224, 225, 226

[45] Raeburn, Iain; Thompson, Shaun J.. Countably generated Hilbert modules, the Kas-
parov stabilization theorem, and frames with Hilbert modules. Proc. Amer. Math. Soc. 131
(2003), no. 5, 1557–1564.MR1949886, Zbl 1015.46034, doi: 10.1090/S0002-9939-02-06787-4.
228

[46] Schweizer, Jürgen. Hilbert 𝐶∗-modules with a predual. J. Operator Theory 48 (2002), no.
3, suppl., 621–632. MR1962475, Zbl 1029.46088. 221

[47] Solel, Baruch. Isometries of Hilbert 𝐶∗-modules. Trans. Amer. Math. Soc. 353 (2001),
no. 11, 4637–4660. MR1851186, Zbl 0985.46035, arXiv:math/0104188, doi: 10.1090/S0002-
9947-01-02874-4. 221, 226, 235

[48] Taylor, JonathanP.Aperiodic dynamical inclusions of𝐶∗-algebras. Ph.D. Thesis, Georg-
August-Universität Göttingen, Göttingen, Germany, (2022). doi: 10.53846/goediss-9727.
222

[49] Taylor, Jonathan P. Aperiodic dynamical inclusions of 𝐶∗-algebras. Preprint, 2023.
arXiv:2303.10905. 222

[50] Wegge-Olsen, Niels Erik. 𝐾-theory and 𝐶∗-algebras: a friendly approach.
Oxford Science Publications. The Clarendon Press, Oxford University Press,
New York, 1993. xii+370 pp. ISBN:0-19-859694-4. MR1222415, Zbl 0780.46038,
doi: 10.1093/oso/9780198596943.001.0001. 224, 226

(Michael Frank) Hochschule für Technik, Wirtschaft und Kultur (HTWK) Leipzig,
Fakultät Informatik und Medien, PF 301166, D-04251 Leipzig, Germany, ORCID 0000-
0001-8972-2154
michael.frank@htwk-leipzig.de, michael.frank.leipzig@gmx.de

This paper is available via http://nyjm.albany.edu/j/2026/32-8.html.

http://mathscinet.ams.org/mathscinet/article?mr=0470687
http://zbmath.org/0288.46058
http://dx.doi.org/10.4153/CJM-1974-121-0
http://dx.doi.org/10.4153/CJM-1974-121-0
http://mathscinet.ams.org/mathscinet/article?mr=0753416
http://zbmath.org/0547.46037
http://dx.doi.org/10.1007/BF01163162
http://mathscinet.ams.org/mathscinet/article?mr=1630695
http://zbmath.org/0912.46054
http://mathscinet.ams.org/mathscinet/article?mr=1634408
http://zbmath.org/0922.46050
http://dx.doi.org/10.1090/surv/060
http://mathscinet.ams.org/mathscinet/article?mr=1949886
http://zbmath.org/1015.46034
http://dx.doi.org/10.1090/S0002-9939-02-06787-4
http://mathscinet.ams.org/mathscinet/article?mr=1962475
http://zbmath.org/1029.46088
http://mathscinet.ams.org/mathscinet/article?mr=1851186
http://zbmath.org/0985.46035
http://arXiv.org/abs/math/0104188
http://dx.doi.org/10.1090/S0002-9947-01-02874-4
http://dx.doi.org/10.1090/S0002-9947-01-02874-4
http://dx.doi.org/10.53846/goediss-9727
http://arXiv.org/abs/2303.10905
http://mathscinet.ams.org/mathscinet/article?mr=1222415
http://zbmath.org/0780.46038
http://dx.doi.org/10.1093/oso/9780198596943.001.0001
mailto:michael.frank@htwk-leipzig.de, michael.frank.leipzig@gmx.de
http://nyjm.albany.edu/j/2026/32-8.html

	1. Introduction
	2. On multiplier modules
	3. On modular operators and functionals
	References

