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Eventual stability of pure polynomials
over the rational field

Mohamed O. Darwish andMohammad Sadek

Abstract. A polynomial with rational coefficients is said to be purewith re-
spect to a rational prime 𝑝 if its Newton polygon has one slope. We establish
the dynamical irreducibility, i.e., the irreducibility of all iterates, of a subfam-
ily of pure polynomials, namely Dumas polynomials, with respect to a ratio-
nal prime 𝑝 under a mild condition on the degree. This provides iterative
techniques to produce irreducible polynomials in ℚ[𝑥] by composing pure
polynomials of different degrees. In addition, for specific subfamilies of pure
polynomials, we provide explicit bounds on the number of irreducible factors
of the 𝑛-th iterate. These bounds are independent of 𝑛 and improve upon
existing results in the literature. During the course of this work, we charac-
terize all polynomials whose degrees are large enough that are not pure, yet
they possess pure iterates. This implies the existence of polynomials in ℤ[𝑥]
whose shifts are all dynamically irreducible.
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1. Introduction
Let 𝑆 be a set of polynomials defined over a field𝐾. An interesting question is

whether one can construct an irreducible polynomial over𝐾 using polynomials
in 𝑆. For example, over the rationals, Hilbert’s irreducibility Theorem ensures
that there exists infinitely many 𝑐 ∈ ℚ such that 𝑓(𝑥) + 𝑐 is irreducible for any
polynomial 𝑓 with rational coefficients.
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A modern approach toward the question is to iteratively construct a tower
of irreducible polynomials. More precisely, we set 𝑆 to consist of one irre-
ducible polynomial 𝑓 in𝐾[𝑥], then we study the irreducibility of the polynomi-
als 𝑓◦𝑓, 𝑓◦𝑓◦𝑓,…. In this case, we say (𝐾, 𝑓) is a (discrete) dynamical system
where 𝑓 ∶ 𝐾 → 𝐾 is the polynomial map over 𝐾 with the 𝑛th iterate of 𝑓 is
𝑓𝑛 ∶= 𝑓◦𝑓 …◦𝑓

⏟⎴⏟⎴⏟
𝑛-times

. In this article, our main interest lies in polynomial maps

defined over the rational field ℚ. In particular, we focus on the irreducibility
of iterations of a polynomial map. In fact, if 𝑓 and 𝑔 are polynomials in 𝐾[𝑥]
and 𝛼 ∈ 𝐾 is a root of 𝑓, then Capelli’s Lemma, [10, Lemma 0.1], asserts that
𝑓◦𝑔 is irreducible over 𝐾 if and only if 𝑓 is irreducible over 𝐾 and 𝑔 − 𝛼 is
irreducible over 𝐾(𝛼). Consequently, the irreducibility of 𝑓𝑛 cannot be estab-
lished from the irreducibility of 𝑓. However, if for some 𝑓 ∈ 𝐾[𝑥], it happens
that 𝑓𝑛 is irreducible for all 𝑛 ≥ 1, we say 𝑓 is called dynamically irreducible,
or stable over the field 𝐾. Odoni [20] was the first to establish the concept of
dynamical irreducibility (the credit of the term stable is attributed to him). In
[20, Lemma 2.2], it was shown that for a prime ideal 𝑃 in an integral domain 𝑅,
a 𝑃-Eisenstein polynomial in 𝑅[𝑥] is dynamically irreducible. In addition, he
presented the first nontrivial example of a dynamically irreducible polynomial
over ℚ, namely the polynomial 𝑥2 − 𝑥 + 1. The interested reader may consult
[19, Proposition 4.1] for a proof. Stoll [22] produced a dynamical irreducibil-
ity criterion for quadratic polynomials in ℚ[𝑥] of the form 𝑓(𝑥) = 𝑥2 + 𝑎 by
associating a recurrence relation to the iterates of the quadratic binomial. The
author proved that if the resulting sequence contains no perfect squares in ℤ,
then the binomial is dynamically irreducible, see [22, Corollary 1.3]. In [17,
Proposition 2.3], Jones generalized Stoll’s criterion on any arbitrary field with
a characteristic different from 2. Several explicit families of dynamically irre-
ducible polynomials of degree 2 were exhibited in [1] and [16]. In a different
direction, Danielson and Fein [7] extended Stoll’s result for any binomial of the
form 𝑥𝑛 − 𝑏 ∈ 𝑅[𝑥], where 𝑅 is a commutative ring with unity satisfying some
conditions. They were able to deduce the dynamical irreducibility of such a
polynomial from the irreducibility of the first iterate, see [7, Corollary 5].
In this article, we focus on the iterates of a special family of 𝑝-type polyno-

mials for some rational prime 𝑝. A polynomial 𝑓 = 𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥] is
𝑝-type if 𝜈𝑝(𝑎𝑑) = 0 and 𝜈𝑝(𝑎𝑖) > 0 for 0 ≤ 𝑖 < 𝑑 where 𝜈𝑝 is the 𝑝-adic valua-
tion. In particular, we are interested in 𝑝𝑟-pure polynomials, which we define
as follows.

Definition 1.1. [14] Let 𝑓(𝑥) = 𝑎𝑑𝑥𝑑+𝑎𝑑−1𝑥𝑑−1+⋯+𝑎0 ∈ ℚ[𝑥]. For a prime
𝑝 and an integer 𝑟 ≥ 1, we say that 𝑓 is 𝑝𝑟-pure if the following conditions hold:

i) 𝜈𝑝(𝑎𝑑) = 0,
ii) 𝜈𝑝(𝑎0) = 𝑟,

iii)
𝜈𝑝(𝑎𝑖)
𝑑 − 𝑖

≥ 𝑟
𝑑
for all 1 ≤ 𝑖 ≤ 𝑑 − 1.
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If, in addition, gcd(𝑑, 𝑟) = 1, we say that 𝑓 is 𝑝𝑟-Dumas. Furthermore, a 𝑝𝑟-
Dumas polynomial is called 𝑝𝑟-Eisenstein if 𝜈𝑝(𝑎𝑖) ≥ 𝑟 for all 1 ≤ 𝑖 ≤ 𝑑 − 1.
A 𝑝𝑟-pure polynomial is not always irreducible. Morever, It was proved that

𝑝𝑟-Dumas polynomials are irreducible, see [9]. Ali [2, Corollary 1] proved that
𝑝𝑟-Eisenstein polynomials are dynamically irreducible over ℚ. We generalize
Ali’s result by proving the following, see Corollary 4.1.
Theorem 1.2. Let 𝑓 and 𝑔 be 𝑝𝑟-Dumas polynomials inℚ[𝑥]. Then 𝑓◦𝑔 is 𝑝𝑟-
Dumas. In particular, a 𝑝𝑟-Dumas polynomial is dynamically irreducible over
ℚ.
This provides a variety of examples of dynamically irreducible polynomials

different from the quadratic and binomial dynamically irreducible polynomials
available in literature. Inspired by Odoni’s observation in [20, Lemma 1.2] that
a polynomial with a dynamically irreducible iterate is itself dynamically irre-
ducible, we fully characterize polynomials 𝑓 that possess a 𝑝𝑟-Dumas iterate in
the following corollary, see Corollary 5.7 for the proof.
Theorem 1.3. Let 𝑟 ≥ 1 be an integer and 𝑝 be a rational prime. Let 𝑓(𝑥) =
𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥], 𝑑 > 𝑟, be such that 𝑓 is not 𝑝𝑟-Dumas. There is an
integer 𝑛 ≥ 2 such that 𝑓𝑛 is 𝑝𝑟-Dumas if and only if the following conditions
hold

i) 𝑑 = 𝑝𝑚, for some𝑚 ≥ 1,
ii) 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 + 𝑎0 (mod 𝑝) with 𝜈𝑝(𝑎𝑑) = 𝜈𝑝(𝑎0) = 0,
iii) 𝑓(𝑥 + 𝑐) is 𝑝𝑟-Dumas for some 𝑐 ∈ ℚ.

One may see easily that if a polynomial 𝑓 ∈ ℤ[𝑥] is dynamically irreducible,
it is not necessarily true that all its shifts 𝑓(𝑥 + 𝑐), 𝑐 ∈ ℤ, are dynamically
irreducible. However, the aforementioned characterization gives rise to poly-
nomials in ℤ[𝑥] for which all the shifts are dynamically irreducible.
If 𝑓,… , 𝑓𝑛−1 are irreducible but 𝑓𝑛 is reducible, we say that 𝑓 is 𝑛-newly re-

ducible, see [13] and [6]. For example, if 𝑓(𝑥) = 𝑥2 + 1 ∈ 𝔽43[𝑥], then 𝑓,… , 𝑓5
are irreducible, but direct calculations show that 𝑓6(𝑥) is reducible. In other
words, 𝑥2+1 is 6-newly reducible over 𝔽43. Even if a polynomial is reducible or
newly reducible, onemay still construct a tower of irreducible polynomials. For
instance, one can find another polynomial 𝑔 such that 𝑔◦𝑓𝑛 is irreducible for
all 𝑛 ≥ 1. In the latter case, 𝑔 is said to be 𝑓-stable. In the following corollary,
we introduce polynomials 𝑓 ∈ ℚ[𝑥] such that all the iterates of any 𝑝𝑟-Dumas
polynomials are 𝑓-stable, see Corollary 4.3 for a proof.
Theorem 1.4. Let 𝑔 be a 𝑝𝑟-Dumas polynomial of degree 𝑑 and 𝑓(𝑥) = 𝑎𝑥𝑒 +
𝑝𝑠ℎ(𝑥) ∈ ℚ[𝑥] be such that ℎ(𝑥) ∈ ℚ[𝑥]with 𝜈𝑝(𝑎) = 0, deg(ℎ) < 𝑒, 𝜈𝑝(ℎ) ≥ 0,
and 𝑠 > 𝑟

𝑑
. If gcd(𝑟, 𝑒) = 1, then 𝑔𝑛◦𝑓𝑚 is irreducible for all 𝑛,𝑚 ≥ 1. In

particular, 𝑔𝑛 is 𝑓-stable for any 𝑛 ≥ 1.
In addition, we display polynomials 𝑓 ∈ ℚ[𝑥] for which one can find a 𝑝𝑟-

Dumas polynomial 𝑔 ∈ ℚ[𝑥] with 𝑔◦𝑓 being reducible, yet there exists 𝑁 ≥ 2
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such that 𝑔𝑛◦𝑓𝑚 is irreducible for all 𝑚 ≥ 1 and all 𝑛 ≥ 𝑁 in the following
corollary, for a proof, see Corollary 4.6.

Theorem 1.5. Let 𝑔 be a 𝑝𝑟-Dumas polynomial of degree 𝑑 and 𝑓(𝑥) = 𝑎𝑥𝑒 +
𝑝𝑠ℎ(𝑥) ∈ ℚ[𝑥] be such that ℎ(𝑥) ∈ ℚ[𝑥]with 𝜈𝑝(𝑎) = 0, deg(ℎ) < 𝑒, 𝜈𝑝(ℎ) ≥ 0,
and gcd(𝑟, 𝑒) = 1. There exists an integer 𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁, 𝑔𝑛◦𝑓𝑘
is irreducible for all 𝑘 ≥ 1. In particular, 𝑔𝑛 is 𝑓-stable for all 𝑛 ≥ 𝑁.

In this work, we also give due attention to eventually stable polynomials de-
fined as follows.

Definition 1.6. [8, Definition 1.1] Let 𝐾 be a field, 𝑓 be a polynomial in 𝐾[𝑥],
and 𝛼 ∈ 𝐾. We say (𝑓, 𝛼) is eventually stable over 𝐾 if there exists a constant
𝐶(𝑓, 𝛼) such that the number of irreducible factors over 𝐾 of 𝑓𝑛(𝑥) − 𝛼 is at
most 𝐶(𝑓, 𝛼) for all 𝑛 ≥ 1. In particular, we say that 𝑓 is eventually stable over
𝐾 if (𝑓, 0) is eventually stable.

Equivalently, 𝑓 is eventually stable if there exists an iteration 𝑁 ≥ 1 such
that the number of irreducible factors does not change in all the succeeding
iterations.
In [11, Corollary 1.7], it was proven that binomials of the form 𝑥𝑑+𝑐 ∈ ℚ[𝑥]

are eventually stable over ℚ whenever 𝑐 is nonzero and not a reciprocal of an
integer. For an overview of eventual stability of quadratic polynomials, we refer
the reader to [8]. In [18, Theorem 4.6, Corollary 4.10], it was proven that all
𝑝-type polynomials are eventually stable and upper bound on the number of
irreducible factors of any iterate was established. Moreover, the next theorem
provides a tighter upper bound on the number of irreducible factors of iterates
of pure polynomials than the one given in [18, Corollary 4.10], see Theorem 4.9
for a proof.

Theorem 1.7. Suppose that 𝑓 ∈ ℚ[𝑥] is a 𝑝𝑟-pure polynomial of degree 𝑑.
Then for any 𝑛 ≥ 1, the iterate 𝑓𝑛 has at most gcd(𝑑𝑛, 𝑟) irreducible factors
over ℚ and each irreducible factor has degree at least 𝑑𝑛

gcd(𝑑𝑛 ,𝑟)
. Moreover, 𝑓 is

eventually stable over ℚ.

Consequently, we show that the aforementioned result in [11, Corollary 1.7]
follows directly from our results. In addition, we fully characterize polynomials
𝑓 that are not 𝑝𝑟-pure yet they possess 𝑝𝑟-pure iterates, hence they are eventu-
ally stable, when deg 𝑓 > 𝑟 in the following theorem, see Theorem 5.6 for a
proof. In what follows, we shall denote the multiplicative order of 𝑎 modulo 𝑝
by ord𝑝(𝑎).

Theorem 1.8. Let 𝑟 be a positive integer and 𝑝 be a prime. Suppose 𝑓(𝑥) =
𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥] is not 𝑝𝑟-pure and 𝑑 > 𝑟. Then 𝑓(𝑥) is eventually
𝑝𝑟-pure if and only if the following conditions hold

i) 𝑑 = 𝑝𝑚 for some𝑚 ≥ 1,
ii) 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 + 𝑎0 (mod 𝑝) such that 𝜈𝑝(𝑎𝑑) = 𝜈𝑝(𝑎0) = 0,
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iii) 𝑓(𝑥 + 𝑐) is 𝑝𝑟-pure for some 𝑐 ∈ ℚ.
Moreover, the least integer 𝑛 > 1 such that 𝑓𝑛 is 𝑝𝑟-pure is given by 𝑛 = 𝑝 if
𝑎𝑑 ≡ 1 (mod 𝑝); or 𝑛 = ord𝑝(𝑎𝑑) otherwise.

Example 1.9. Let 𝑘 be an odd positive integer. Consider the following polyno-
mials:

𝑓(𝑥) = (𝑥 + 1)2
𝑚
+ 26𝑘 where 2𝑚 > 6𝑘

𝑔(𝑥) = (𝑥 + 1)2
𝑚
+ 2𝑘 where 2𝑚 > 𝑘

By Theorem 5.6, we know that 𝑓2 and 𝑔2 are 26𝑘-pure and 2𝑘-Dumas respec-
tively as the leading terms are both odd. By [18, Corollary 4.10], both 𝑓2 and 𝑔2
are both eventually stable such that 𝑓𝑛 has at most 6𝑘 irreducible factors while
𝑔𝑛 has at most 𝑘 for 𝑛 ≥ 2. It is easy to see that

𝑓(𝑥) =
(
(𝑥 + 1)2

𝑚−1
−2

3𝑘+1
2 (𝑥+1)2𝑚−2+23𝑘

)(
(𝑥 + 1)2

𝑚−1
+2

3𝑘+1
2 (𝑥+1)2𝑚−2+23𝑘

)

Using Theorem 5.6, 𝑓𝑛 possesses at most gcd(6𝑘, 2𝑚) = 2 irreducible factors
while by Corollary 5.7, 𝑔2 is 2𝑘-Dumas and thus 𝑔𝑛 is always irreducible.

This paper is organized in the following way; in §2, we study the iterations of
𝑝-type polynomials and polynomials that are not 𝑝-type yet one of the iterates
is 𝑝-type, i.e., eventually 𝑝-type polynomials. We fully characterize eventu-
ally 𝑝-type polynomials in Theorem 2.7 and identify the least 𝑝-type iterate in
Proposition 2.8. In §3, we discuss the properties of iterations of 𝑝𝑟-pure poly-
nomials and discuss the conditions under which the composition of a 𝑝𝑟-pure
polynomial and a 𝑝-type polynomial is 𝑝𝑟-pure. In §4, we use Theorems 1.7
and 1.8 together with a result from [14] to conclude the eventual stability of 𝑝𝑟-
pure polynomials. Moreover, we obtain some iterative techniques to produce
irreducible polynomials from 𝑝𝑟-Dumas polynomials. Finally, in §5, we utilize
the results in §2 on eventually 𝑝-type polynomials to fully characterize a family
of eventually 𝑝𝑟-pure polynomials.

Acknowledgments. The authors are grateful to the anonymous referee for
many corrections and valuable suggestions that improved the manuscript. The
authors would love to express their gratitude to Wade Hindes for reading an
earlier draft of the manuscript and for several suggestions that helped the au-
thors improve the manuscript. This work was initiated when M. O. Darwish
was amaster’s student at Sabancı University under the supervision ofM. Sadek.
This work is supported by The Scientific and Technological Research Council
of Türkiye, TÜBİTAK; research grant: ARDEB 1001/124F352.

2. 𝒑-Type and eventually 𝒑-type polynomials
Throughout this article, we assume that 𝑝 is a rational prime. Moreover, all

polynomials will be assumed to be in ℚ[𝑥] unless otherwise explicitly stated.
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In this section, we introduce 𝑝-type and eventually 𝑝-type polynomials to-
gether with some of the properties of these polynomials. For this purpose, we
recall the definition of Gaussian valuations.

Definition 2.1. Let 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥] and 𝑝 be a prime. The
Gaussian valuation of 𝑓 with respect to 𝑝 is defined by

𝜈𝑝(𝑓) ∶= min
0≤𝑖≤𝑑

𝜈𝑝(𝑎𝑖),

where 𝜈𝑝(𝑎𝑖) denotes the 𝑝-adic valuation of 𝑎𝑖.

The abuse of notation may be justified by the fact that an element in ℚ can
be considered as a constant polynomial in ℚ[𝑥], hence the restriction of the
Gaussian valuation with respect to 𝑝 over ℚ is the 𝑝-adic valuation.
One easily sees that 𝜈𝑝(𝑓⋅𝑔) = 𝜈𝑝(𝑓)+𝜈𝑝(𝑔) and 𝜈𝑝(𝑓+𝑔) ≥ min(𝜈𝑝(𝑓), 𝜈𝑝(𝑔))

for 𝑓, 𝑔 ∈ ℚ[𝑥].

Definition 2.2. Apolynomial𝑓(𝑥) = 𝑎𝑑𝑥𝑑+…+𝑎0 ∈ ℚ[𝑥] is said to be𝑝-type if
𝜈𝑝(𝑎𝑑) = 0 and 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 (mod 𝑝). In other words, 𝜈𝑝(𝑎0), … , 𝜈𝑝(𝑎𝑑−1) ≥ 1.

For example, a 𝑝-Eisenstein polynomial is 𝑝-type.

Definition 2.3. Let 𝑓 ∈ ℚ[𝑥] and 𝑝 be a prime. We say 𝑓 is eventually 𝑝-type
if an iterate 𝑓𝑛 is 𝑝-type for some 𝑛 ≥ 1.

It is clear that a 𝑝-type polynomial is also eventually 𝑝-type. We are more
interested in a polynomial which is not 𝑝-type but is eventually𝑝-type. In other
words, 𝑓 is not 𝑝-type but 𝑓𝑛 is 𝑝-type for some 𝑛 > 1. Consider the following
example.

Example 2.4. The polynomial 𝑓(𝑥) = 𝑥8+1 is not 𝑝-type for any prime 𝑝, but

𝑓2(𝑥) = 𝑥64 + 8𝑥56 + 28𝑥48 + 56𝑥40 + 70𝑥32 + 56𝑥24 + 28𝑥16 + 8𝑥8 + 2

is 2-type. So, 𝑓(𝑥) is eventually 2-type.

In light of the previous example, it is valid to ask the following question.

Question 2.5. If a polynomial 𝑓 is not𝑝-type yet it is eventually 𝑝-type, is there
any restriction on the degree of 𝑓? Is there an exhaustive classification of such
polynomials?

This question is answered inTheorem2.7. Wefirst need the following lemma.

Lemma 2.6. Suppose 𝑓 and 𝑔 are polynomials in ℚ[𝑥] such that 𝜈𝑝(𝑔) =
𝜈𝑝(𝑓) = 0. If 𝑓◦𝑔 is 𝑝-type, then both 𝑓

(
𝑥 + 𝑔(0)

)
and 𝑔(𝑥) − 𝑔(0) are 𝑝-type.

Proof. We define the following polynomials

𝐹(𝑥) ∶= 𝑓
(
𝑥 + 𝑔(0)

)
= 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + … + 𝑎0,

𝐺(𝑥) ∶= 𝑔(𝑥) − 𝑔(0) = 𝑏𝑒𝑥𝑒 + 𝑏𝑒−1𝑥𝑒−1 + … + 𝑏1𝑥.
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It is clear that 𝜈𝑝(𝑎𝑑) = 𝜈𝑝(𝑏𝑒) = 0, since otherwise 𝑓◦𝑔 would not be 𝑝-type.
Let 𝑖, 𝑗, 0 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑒, be the least nonnegative integers such that
𝜈𝑝(𝑎𝑖) = 𝜈𝑝(𝑏𝑗) = 0. If 𝑖 = 𝑑, then 𝐹 is 𝑝-type, so we assume otherwise.
One has
𝐹 (𝐺(𝑥)) ≡ 𝑎𝑑(𝑏𝑒𝑥𝑒 + … + 𝑏𝑗𝑥𝑗)

𝑑
+ … + 𝑎𝑖(𝑏𝑒𝑥𝑒 + … + 𝑏𝑗𝑥𝑗)

𝑖
(mod 𝑝).

Note that in the expansion of 𝐹(𝐺(𝑥)) the monomial 𝑎𝑖𝑏𝑖𝑗𝑥
𝑖𝑗 is the monomial

of the least degree whose coefficient has zero 𝑝-adic valuation. Since 𝐹◦𝐺 is
𝑝-type, it follows that there has to be another monomial in the expansion of
𝐹(𝐺(𝑥)) with coefficient of zero 𝑝-adic valuation and whose degree is still 𝑖𝑗.
However, any monomial in the expansion of 𝑎𝑘(𝑏𝑒𝑥𝑒 + … + 𝑏𝑗𝑥𝑗)

𝑘 where 𝑘 is
such that 𝑖 < 𝑘 ≤ 𝑑 must be of degree at least 𝑘𝑗 > 𝑖𝑗. Therefore, 𝑖 = 𝑑 and 𝐹
is 𝑝-type.
Based on the argument above, one has

𝐹 (𝐺(𝑥)) ≡ 𝑎𝑑(𝑏𝑒𝑥𝑒 + … + 𝑏𝑗𝑥𝑗)
𝑑

(mod 𝑝).
Since 𝐹◦𝐺 is 𝑝-type, this must yield that 𝑗 = 𝑒, hence 𝐺 is 𝑝-type. □

We are now in a place to prove the main result of this section.
Theorem 2.7. If 𝑓(𝑥) ∈ ℚ[𝑥] is not 𝑝-type but eventually 𝑝-type, then 𝑓(𝑥) =
𝑎𝑥𝑝𝑚 +𝑝ℎ(𝑥)+𝑏 ∈ ℚ[𝑥] for some 𝑎, 𝑏 ∈ ℚ, ℎ ∈ ℚ[𝑥]with 𝜈𝑝(𝑎) = 𝜈𝑝(𝑏) = 0,
deg(ℎ) < 𝑝𝑚 and 𝜈𝑝(ℎ) ≥ 0.
Proof. Assume 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎0 so that 𝑓𝑛(𝑥) is 𝑝-type for some 𝑛 > 1.
We will show that 𝜈𝑝(𝑓) = 0. It is obvious that 𝜈𝑝(𝑎𝑑) = 0, hence 𝜈𝑝(𝑓) ≤ 0.
We assume that 𝜈𝑝(𝑓) < 0.
The polynomial 𝑓𝑛(𝑥)−𝑓𝑛(0) is clearly 𝑝-type. Given that 𝑓 divides 𝑓𝑛(𝑥)−

𝑓𝑛(0) and 𝜈𝑝 (
𝑓𝑛(𝑥)−𝑓𝑛(0)

𝑓(𝑥)
) ≤ 0, as the 𝑝-adic valuation of the leading coefficient

of 𝑓𝑛(𝑥) − 𝑓𝑛(0) is 0, we obtain that 0 = 𝜈𝑝 (𝑓𝑛(𝑥) − 𝑓𝑛(0)) = 𝜈𝑝(𝑓(𝑥)) +

𝜈𝑝 (
𝑓𝑛(𝑥)−𝑓𝑛(0)

𝑓(𝑥)
) < 0, hence a contradiction. Thus, 𝜈𝑝(𝑓(𝑥) = 0.

Since 𝑓𝑛(𝑥) is 𝑝-type, we must have 𝜈𝑝
(
𝑓𝑛−1(𝑥)

)
= 0. By Lemma 2.6, the

polynomials 𝑓
(
𝑥 + 𝑓𝑛−1(0)

)
and 𝑓𝑛−1(𝑥) − 𝑓𝑛−1(0) are 𝑝-type. Moreover,

𝑓𝑛−1 (𝑥 + 𝑓(0)) and 𝑓(𝑥) − 𝑓(0) are 𝑝-type. It follows that 𝜈𝑝(𝑎0) = 0, else
𝑓 is 𝑝-type. Therefore, 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 + 𝑎0 (mod 𝑝). In a similar fashion,
𝜈𝑝(𝑓𝑛−1(0)) = 0. Now, knowing that 𝑓

(
𝑥 + 𝑓𝑛−1(0)

)
≡ 𝑎𝑑

(
𝑥 + 𝑓𝑛−1(0)

)𝑑
+

𝑎0 ≡ 𝑎𝑑𝑥𝑑 (mod 𝑝), we must have

𝜈𝑝
(
𝑎𝑑(𝑓𝑛−1(0))𝑑 + 𝑎0

)
≥ 1, and 𝜈𝑝 (

(𝑑
𝑘

)
) ≥ 1 for all 0 < 𝑘 < 𝑑.

In view of Kummer’s Theorem, [5, Definition 1.2], the latter condition implies
that 𝑑 = 𝑝𝑚 for some 𝑚 ≥ 1. In conclusion, if 𝑓 is not 𝑝-type but eventually
𝑝-type, then 𝑓(𝑥) ≡ 𝑎𝑝𝑚𝑥𝑝

𝑚 + 𝑎0 (mod 𝑝) where 𝜈𝑝(𝑎0) = 𝜈𝑝(𝑎𝑝𝑚) = 0 as
desired. □
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If a polynomial 𝑓 is not 𝑝-type but is eventually 𝑝-type, one is interested
in the least integer 𝑛 > 1 such that 𝑓𝑛 is 𝑝-type. The following proposition
identifies such a minimal iterate.

Proposition 2.8. Suppose 𝑓(𝑥) = 𝑎𝑥𝑝𝑚 + 𝑝ℎ(𝑥) + 𝑏 ∈ ℚ[𝑥] is such that
𝜈𝑝(𝑎) = 𝜈𝑝(𝑏) = 0, deg(ℎ) < 𝑝𝑚 and 𝜈𝑝(ℎ) ≥ 0. Assume that 𝑓(𝑥) is an
eventually 𝑝-type polynomial. Then the least integer 𝑛 > 1 such that 𝑓𝑛 is
𝑝-type is determined as follows:

a) 𝑛 = 𝑝 if 𝑎 ≡ 1 (mod 𝑝)
b) 𝑛 = ord𝑝(𝑎) otherwise.

We need the following lemma to prove Proposition 2.8.

Lemma 2.9. Suppose 𝑓(𝑥) = 𝑎𝑥𝑝𝑚 + 𝑝ℎ(𝑥) + 𝑏 ∈ ℚ[𝑥] is such that 𝜈𝑝(𝑎) =
𝜈𝑝(𝑏) = 0, deg(ℎ) < 𝑝𝑚 and 𝜈𝑝(ℎ) ≥ 0. Then 𝑓𝑛(𝑥) ≡ 𝑎𝑛𝑥𝑝𝑛𝑚 + 𝑏

∑𝑛−1
𝑖=0 𝑎

𝑖

(mod 𝑝) for any 𝑛 ≥ 1. In particular, 𝑓𝑛(0) ≡ 𝑏
∑𝑛−1

𝑖=0 𝑎
𝑖 (mod 𝑝).

Proof. A simple induction argument shows that
𝑓𝑛+1(𝑥) = 𝑓(𝑓𝑛(𝑥))

≡ 𝑎
⎛
⎜
⎝
𝑎𝑛𝑥𝑝𝑛𝑚 +

𝑛−1∑

𝑖=0
𝑎𝑖𝑏

⎞
⎟
⎠

𝑝𝑚

+ 𝑏

≡ 𝑎𝑛+1𝑥𝑝(𝑛+1)𝑚 + 𝑏
𝑛∑

𝑖=0
𝑎𝑖 (mod 𝑝). □

Proof of Proposition 2.8. By Lemma 2.9, if 𝑎 ≡ 1 (mod 𝑝), then 𝑓𝑝(0) ≡
∑𝑝−1

𝑖=0 𝑏 ≡ 𝑝𝑏 ≡ 0 (mod 𝑝); otherwise 𝑓𝑘(0) ≡ 𝑏
∑𝑘−1

𝑖=0 𝑎
𝑖 ≡ 𝑏(𝑎

𝑘−1
𝑎−1

) ≡ 0
(mod 𝑝). In either case, it is obvious that the specified 𝑛 is the smallest such
integer. □

We end this section with an example.

Example 2.10. Consider

𝑓(𝑥) = 2𝑥5 + 5𝑥
3 + 7

Note that ord5(2) = 4. One may see that 𝑓(𝑥) ≡ 2𝑥5 + 2 (mod 5), 𝑓2(𝑥) ≡
4𝑥25+1 (mod 5), 𝑓3(𝑥) ≡ 3𝑥125+4 (mod 5) and 𝑓4(𝑥) ≡ 𝑥625 (mod 5). Thus,
although 𝑓 is not 5-type, it is eventually 5-type, and 𝑓4 is 5-type.

3. 𝒑𝒓-Pure polynomials
In this section, we introduce 𝑝𝑟-pure polynomials, 𝑟 ≥ 1. We show that the

composition of two 𝑝𝑟-pure polynomials is also 𝑝𝑟-pure. Also, we prove that if
𝑓 is a 𝑝𝑟-pure polynomial and 𝑔 is 𝑝-type, then under certain conditions 𝑓◦𝑔 is
𝑝𝑟-pure. First, we define what a pure polynomial is.
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Definition 3.1. [14] A polynomial 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + … + 𝑎0 ∈ ℚ[𝑥]
is said to be 𝑝𝑟-pure for some prime 𝑝 and some 𝑟 ≥ 1, if it satisfies all the
following conditions

i) 𝜈𝑝(𝑎𝑑) = 0,
ii) 𝜈𝑝(𝑎0) = 𝑟,
iii) 𝜈𝑝(𝑎𝑖)

𝑑−𝑖
≥ 𝑟

𝑑
for all 1 ≤ 𝑖 ≤ 𝑑 − 1.

It is clear that a 𝑝𝑟-pure polynomial is 𝑝-type.
The previous definition can be interpreted usingNewton polygons. We recall

the definition of a Newton polygon.

Definition 3.2. [21, Section 2.2.1] Let 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥] with
𝑎𝑑𝑎0 ≠ 0. For a prime 𝑝, suppose 𝛼𝑖 = 𝜈𝑝(𝑎𝑖). The Newton Polygon of 𝑓 with
respect to 𝑝 is constructed as follows:

i) Define 𝑆 ∶= {(0, 𝛼𝑑), … , (𝑑 − 𝑖, 𝛼𝑖), … , (𝑑, 𝛼0)}.
ii) Consider the lower convex hull of 𝑆 to be 𝑃0 = (0, 𝛼𝑑), … , 𝑃𝑟 = (𝑑, 𝛼0).
iii) Construct a set of broken lines 𝑃0𝑃1, … , 𝑃𝑟−1𝑃𝑟.
iv) Mark the lattice points (points with integer coordinates) on the broken

lines 𝑃0 = 𝑄0, … , 𝑃𝑟 = 𝑄𝑟+𝑠. They are called the vertices of the Newton
polygon.

v) The broken lines joining the vertices 𝑄0𝑄1, … , 𝑄𝑟+𝑠−1𝑄𝑟+𝑠 are the sides
of the Newton polygon.

Note that condition (iii) inDefinition 3.1 is equivalent to saying that theNew-
ton polygon of a𝑝𝑟-pure polynomial consists of exactly one line segment joining
(0, 0) and (𝑑, 𝑟). The family of 𝑝𝑟-Eisenstein polynomials provide an example
of irreducible 𝑝𝑟-pure polynomials. However, a pure polynomial is not always
irreducible; consider the following example.

Example 3.3. The polynomial 𝑓(𝑥) = 𝑥4 + 4 = (𝑥2 − 2𝑥 + 2)(𝑥2 + 2𝑥 + 2) is
22-pure but reducible over ℚ.

0 1 2 3 4
0

1

2

3

4

•

•

•

Figure 1. The polynomial 𝑓(𝑥) is 22-pure but reducible over
ℚ.
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Nevertheless, if a 𝑝𝑟-pure polynomial satisfies Dumas criterion, then it must
be irreducible over ℚ.
Definition 3.4. A 𝑝𝑟-pure polynomial of degree 𝑑 is called 𝑝𝑟-Dumas polyno-
mial whenever gcd(𝑑, 𝑟) = 1.
In fact, Dumas proved the irreducibility of the aforementioned family in [9]

and this is why it is sometimes called the Dumas criterion. It is easy to see that
the Eisenstein criterion is a special case of the Dumas criterion with 𝑟 = 1. For
𝑝-Eisenstein polynomials, one can notice that all the iterates of a 𝑝-Eisenstein
polynomial are 𝑝-Eisenstein. More generally, any 𝑝-Eisenstein polynomial en-
joys the following property.
Proposition 3.5. Let 𝑔, 𝑓 ∈ ℚ[𝑥]. If 𝑔 is 𝑝-Eisenstein and deg(𝑔) > 1 for some
prime 𝑝 and 𝑓 is 𝑝-type, then 𝑔◦𝑓 is 𝑝-Eisenstein.
Proof. The proof is straightforward and hence omitted. □

Next, we show that the property in Proposition 3.5 holds for certain families
of 𝑝𝑟-pure polynomials. Nevertheless, some preparation is needed.
Lemma 3.6. Suppose 𝑓 is a 𝑝𝑟-pure polynomial of degree 𝑑 and let 𝑐 ∈ ℚ be
such that 𝜈𝑝(𝑐) >

𝑟
𝑑
. Then 𝜈𝑝(𝑓(𝑐)) = 𝑟.

Proof. We set 𝑠 ∶= 𝜈𝑝(𝑐). Suppose 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎0 is a 𝑝𝑟-pure polyno-
mial. Assume that 𝜈𝑝(𝑐) = 𝑠 > 𝑟

𝑑
. We see that 𝜈𝑝(𝑎𝑑𝑐𝑑) = 𝑑𝑠 > 𝑑( 𝑟

𝑑
) = 𝑟. Also,

𝜈𝑝(𝑎𝑖𝑐𝑖) = 𝜈𝑝(𝑎𝑖)+ 𝑖𝑠 where 0 < 𝑖 < 𝑑. Since 𝑓 is 𝑝𝑟-pure, one has 𝜈𝑝(𝑎𝑖)+ 𝑖𝑠 >
(𝑑−𝑖) 𝑟

𝑑
+𝑖 𝑟

𝑑
= 𝑟. Given that 𝜈𝑝(𝑎0) = 𝑟 and that 𝑓(𝑐) = 𝑎𝑑𝑐𝑑+…+𝑎𝑖𝑐𝑖+…+𝑎0,

it follows that 𝜈𝑝(𝑓(𝑐)) = 𝑟. □

Next, we extend Proposition 3.5 to 𝑝𝑟-pure polynomials in the following the-
orem.
Theorem 3.7. Let 𝑓 ∈ ℚ[𝑥] be a 𝑝𝑟-pure polynomial of degree 𝑑 > 1. Suppose
that 𝑔(𝑥) = 𝑏𝑥𝑒 + 𝑝𝑠ℎ(𝑥) ∈ ℚ[𝑥], 𝑒 ≥ 1, is such that 𝜈𝑝(𝑏) = 0, deg(ℎ) ≤ 𝑒 − 1,
𝜈𝑝(ℎ) ≥ 0 and 𝑠 > 𝑟

𝑑
. Then 𝑓◦𝑔 is 𝑝𝑟-pure.

Proof. Let 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎𝑖𝑥𝑖 + … + 𝑎0 be 𝑝𝑟-pure. To show that 𝑓◦𝑔
is 𝑝𝑟-pure, we need to prove that 𝑓◦𝑔 satisfies the conditions of Definition 3.1.
Since the 𝑝-adic valuation of the leading coefficients of both 𝑓 and 𝑔 is zero, the
leading coefficient of 𝑓◦𝑔 has zero 𝑝-adic valuation, hence i) of Definition 3.1 is
satisfied. In view of Lemma 3.6, as 𝜈𝑝(𝑔(0)) ≥ 𝑠 > 𝑟

𝑑
, one sees that 𝜈𝑝(𝑓(𝑔(0)) =

𝑟, hence ii) is satisfied.
We are now left with showing that 𝑓◦𝑔 satisfies iii) of Definition 3.1. We will

show that every monomial in the expansion of 𝑓(𝑔(𝑥)) satisfies iii). In fact, a
monomial in the expansion of

𝑎𝑑(𝑏𝑥𝑒 + 𝑝𝑠(ℎ(𝑥))𝑑 = 𝑎𝑑
𝑑∑

𝑘=0

(𝑑
𝑘

)
(𝑏𝑥𝑒)𝑑−𝑘(𝑝𝑠ℎ(𝑥))𝑘
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is of the form 𝑐𝑑𝑒−𝑒𝑘+𝑘𝛼𝑥𝑑𝑒−𝑒𝑘+𝑘𝛼, where

𝑐𝑑𝑒−𝑒𝑘+𝑘𝛼 =
(𝑑
𝑘

)
𝑎𝑑𝑏𝑑−𝑘𝑝𝑠𝑘ℎ𝛼, for some ℎ𝛼 ∈ ℚ with 𝜈𝑝(ℎ𝛼) ≥ 0,

and 0 ≤ 𝛼 ≤ 𝑒 − 1. One may see that 𝜈𝑝(𝑐𝑑𝑒−𝑒𝑘+𝑘𝛼) ≥ 𝑘𝑠 > 𝑘 𝑟
𝑑
. We claim

that 𝜈𝑝(𝑐𝑑𝑒−𝑒𝑘+𝑘𝛼) ≥ [𝑑𝑒 − (𝑑𝑒 − 𝑒𝑘 + 𝑘𝛼)]𝑟∕(𝑑𝑒), since otherwise [𝑑𝑒 − (𝑑𝑒 −
𝑒𝑘 + 𝑘𝛼)]𝑟∕(𝑑𝑒) > 𝑘𝑟∕𝑑, i.e., 𝑒 − 𝛼 > 𝑒 which contradicts the fact that 𝛼 is a
nonnegative integer.
In a similar fashion, a monomial in the expansion of 𝑎𝑖(𝑏𝑥𝑒 + 𝑝𝑠ℎ(𝑥))𝑖 =

𝑎𝑖
∑𝑖

𝑘=0
( 𝑖
𝑘

)
(𝑏𝑥𝑒)𝑖−𝑘(𝑝𝑠ℎ(𝑥))𝑘, 0 < 𝑖 < 𝑑, is of the form 𝑡𝑖𝑒−𝑒𝑘+𝑘𝛼𝑥𝑖𝑒−𝑒𝑘+𝑘𝛼,

where

𝑡𝑖𝑒−𝑒𝑘+𝑘𝛼 =
(𝑖
𝑘

)
𝑎𝑖𝑏𝑖−𝑘𝑝𝑠𝑘ℎ𝛼, for some ℎ𝛼 ∈ ℚ with 𝜈𝑝(ℎ𝛼) ≥ 0,

and 0 ≤ 𝛼 ≤ 𝑒 − 1. One sees that 𝜈𝑝(𝑡𝑖𝑒−𝑒𝑘+𝑘𝛼) ≥ 𝜈𝑝(𝑎𝑖) + 𝑘𝑠 > 𝜈𝑝(𝑎𝑖) + 𝑘 𝑟
𝑑
.

Again, we claim that 𝜈𝑝(𝑡𝑖𝑒−𝑒𝑘+𝑘𝛼) ≥ [𝑑𝑒−(𝑖𝑒−𝑒𝑘+𝑘𝛼)]𝑟∕(𝑑𝑒), since otherwise
we use the fact that 𝑓 is 𝑝𝑟-pure, in particular 𝜈𝑝(𝑎𝑖)

𝑑−𝑖
≥ 𝑟

𝑑
, to obtain that [𝑑𝑒 −

(𝑖𝑒 − 𝑒𝑘 + 𝑘𝛼)]𝑟∕(𝑑𝑒) > 𝜈𝑝(𝑎𝑖) + 𝑘𝑟∕𝑑 > (𝑑 − 𝑖 + 𝑘)𝑟∕𝑑. The latter leads to the
contradiction 𝑘𝛼 < 0.
This concludes the proof as 𝑓◦𝑔 satisfies iii) of Definition 3.1 □

In particular, if 𝑑 > 𝑟 in the previous theorem, we get the following interest-
ing corollary.

Corollary 3.8. Let 𝑓 be a 𝑝𝑟-pure polynomial of degree 𝑑 > 𝑟. If 𝑔 is a 𝑝-type
polynomial, then 𝑓◦𝑔 is 𝑝𝑟-pure.

Proof. This is a special case of Theorem 3.7 with 𝑠 ≥ 1 > 𝑟
𝑑
. □

We now prove the following lemma.

Lemma 3.9 (Purity Lemma). Let 𝑓 be a 𝑝𝑟-pure polynomial of degree 𝑑 > 1
and 𝑔(𝑥) = 𝑏𝑥𝑡, 𝑡 ≥ 1, be a monomial in ℚ[𝑥]. Then the following statements
hold true.

i) If 𝜈𝑝(𝑏) = 0, then 𝑓◦𝑔 is 𝑝𝑟-pure thus there exists some 𝑐 ∈ ℚ such
that 𝑔◦𝑓 + 𝑐 is 𝑝𝑟-pure.

ii) If 𝜈𝑝(𝑏)

𝑒−𝑡
≥ 𝑟

𝑒
for some 𝑒 > 𝑡, thus there exists some 𝑐 ∈ ℚ such that

𝑥𝑑𝑒 + 𝑔◦𝑓 + 𝑐 is 𝑝𝑟-pure.

Proof. Let 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎0 and 𝜈𝑝(𝑏) = 0. Since

𝑓(𝑏𝑥𝑡) =
𝑑∑

𝑖=0
𝑎𝑖𝑏𝑖𝑥𝑖𝑡,

it is easily seen that the 𝑝-adic valuation of the leading coefficient is zero and
the 𝑝-adic valuation of the constant coefficient is 𝜈𝑝(𝑎0) = 𝑟. Moreover, 𝑓(𝑏𝑥𝑡)
is a polynomial of degree 𝑑𝑡. Indeed, for any 0 < 𝑖 < 𝑑, one observes that
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𝜈𝑝(𝑎𝑖𝑏𝑖) = 𝜈𝑝(𝑎𝑖). Since
𝜈𝑝(𝑎𝑖)

𝑑−𝑖
≥ 𝑟

𝑑
, it follows that 𝜈𝑝(𝑎𝑖)

𝑑𝑡−𝑖𝑡
≥ 𝑟

𝑑𝑡
, hence the first

part of i) is proved.
We now write 𝑔(𝑓(𝑥)) = 𝑏

(
𝑎𝑑𝑥𝑑 + … + 𝑎0

)𝑡. A monomial in the latter ex-
pansion is of the form

𝑏ℎ
𝑑∏

𝑖=0
𝑎𝑖𝑞𝑖𝑥𝑖𝑞𝑖 , for some ℎ ∈ ℚ with 𝜈𝑝(ℎ) ≥ 0,

where
∑

𝑖 𝑞𝑖 = 𝑡. If 1 ≤
∑

𝑖 𝑖𝑞𝑖 < 𝑑𝑡, one observes that

𝜈𝑝
⎛
⎜
⎝

𝑑∏

𝑖=0
𝑎𝑞𝑖𝑖

⎞
⎟
⎠
=

𝑑∑

𝑖=0
𝑞𝑖𝜈𝑝(𝑎𝑖) ≥

𝑑∑

𝑖=0
𝑞𝑖
𝑟
𝑑
(𝑑 − 𝑖).

In order to show that such a monomial satisfies condition iii) in Definition 3.1,
one must have

𝜈𝑝
(∏𝑑

𝑖=0 𝑎
𝑞𝑖
𝑖

)

𝑑𝑡 −
∑

𝑖 𝑖𝑞𝑖
≥ 𝑟
𝑑𝑡
.

We assume on the contrary that the latter inequality does not hold. In particu-
lar, one has ∑

𝑖 𝑞𝑖
𝑟
𝑑
(𝑑 − 𝑖)

𝑑𝑡 −
∑

𝑖 𝑖𝑞𝑖
≤
𝜈𝑝
(∏

𝑖 𝑎
𝑞𝑖
𝑖
)

𝑑𝑡 −
∑

𝑖 𝑖𝑞𝑖
< 𝑟
𝑑𝑡
.

Thus, one obtains ∑
𝑖 𝑞𝑖(𝑑 − 𝑖)

𝑑𝑡 −
∑

𝑖 𝑖𝑞𝑖
< 1
𝑡 .

Given that
∑

𝑖 𝑞𝑖 = 𝑡, we get the following contradiction

1 =
𝑑𝑡 −

∑
𝑖 𝑖𝑞𝑖

𝑑𝑡 −
∑

𝑖 𝑖𝑞𝑖
< 1
𝑡

It is easy to see that the 𝑝-adic valuation of the constant coefficient of 𝑏(𝑓(𝑥))𝑡−
𝑏𝑓(0)𝑡 + 𝑝𝑟 is exactly 𝑟. Thus, 𝑔(𝑓(𝑥)) − 𝑏(𝑓(0))𝑡 + 𝑝𝑟 is 𝑝𝑟-pure.
For ii), given that 𝜈𝑝(𝑏)

𝑒−𝑡
≥ 𝑟

𝑒
for some 𝑒 > 𝑡, if 1 ≤

∑
𝑖 𝑖𝑞𝑖 < 𝑑𝑡, then one gets

𝜈𝑝
⎛
⎜
⎝
𝑏

𝑑∏

𝑖=0
𝑎𝑞𝑖𝑖

⎞
⎟
⎠
= 𝜈𝑝(𝑏) +

𝑑∑

𝑖=0
𝑞𝑖𝜈𝑝(𝑎𝑖)

≥ 𝑟
𝑒 (𝑒 − 𝑡) +

𝑑∑

𝑖=0
𝑞𝑖
𝑟
𝑑
(𝑑 − 𝑖)

= 𝑟
𝑒 (𝑒 − 𝑡) + 𝑟𝑡 − 𝑟

𝑑

𝑑∑

𝑖=0
𝑖𝑞𝑖.
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Again one claims that 𝑥𝑑𝑒 + 𝑔(𝑓(𝑥)) satisfies condition iii) in Definition 3.1.
More precisely, we will show that 𝜈𝑝

(
𝑏
∏𝑑

𝑖=1 𝑎
𝑞𝑖
𝑖

)
≥ (𝑑𝑒 −

∑
𝑖𝑞𝑖)𝑟∕(𝑑𝑒), since

otherwise
𝑟
𝑒 (𝑒 − 𝑡) + 𝑟𝑡 − 𝑟

𝑑

𝑑∑

𝑖=0
𝑖𝑞𝑖 <

(𝑑𝑒 −
∑
𝑖𝑞𝑖)𝑟

𝑑𝑒
.

Simplification yields the following contradiction
∑

𝑖 𝑖𝑞𝑖 > 𝑑𝑡.
We note that for the monomial 𝑏𝑎𝑡𝑑𝑥

𝑑𝑡, one has

𝜈𝑝(𝑏𝑎𝑡)
𝑒 − 𝑡 =

𝜈𝑝(𝑏)
𝑒 − 𝑡 ≥

𝑟
𝑒 ,hence

𝜈𝑝(𝑏𝑎𝑡)
𝑑𝑒 − 𝑑𝑡

≥ 𝑟
𝑑𝑒
.

It follows that the polynomial 𝑥𝑑𝑒+𝑔(𝑓(𝑥)) satisfies i) and iii) of Definition 3.1.
Therefore, 𝑥𝑑𝑒 + 𝑔(𝑓(𝑥)) − 𝑔(𝑓(0)) + 𝑝𝑟 is a 𝑝𝑟-pure polynomial. □

We are now ready to prove the following result. If the polynomial 𝑔 ∈ ℚ[𝑥]
in Theorem 3.7 is 𝑝𝑟-pure, we conclude that 𝑝𝑟-pure polynomials are closed
under composition.

Theorem 3.10. If 𝑓, 𝑔 ∈ ℚ[𝑥] are 𝑝𝑟-pure with deg(𝑓) > 1, then 𝑓◦𝑔 is 𝑝𝑟-
pure.

Proof. Suppose 𝑓(𝑥) = 𝑎𝑑𝑥𝑑 + … + 𝑎0 and 𝑔(𝑥) = 𝑏𝑒𝑥𝑒 + … + 𝑏0 are 𝑝𝑟-pure
polynomials with 𝑑 > 1 and 𝑒 ≥ 1. Note each monomial in the expansion of
𝑎𝑖(𝑏𝑒𝑥𝑒 + … + 𝑏0)𝑖, 0 < 𝑖 ≤ 𝑑, satisfies iii) in Definition 3.1. For 𝑖 = 𝑑, the result
follows by part i) of Lemma 3.9 while if 0 ≤ 𝑖 < 𝑑, then the result follows by
part ii) of the same lemma. It is obvious that the 𝑝-adic valuation of the leading
coefficient is zero. Finally, by Lemma 3.6, since 𝑑 > 1 and 𝜈𝑝(𝑔(0)) = 𝑟 > 𝑟

𝑑
,

then, 𝜈𝑝(𝑓(𝑔(0))) = 𝑟 and 𝑓◦𝑔 is a 𝑝𝑟-pure polynomial. □

The following corollary follows directly from Theorem 3.10.

Corollary 3.11. If 𝑓 is a 𝑝𝑟-pure polynomial with deg 𝑓 > 1, then 𝑓𝑛 is 𝑝𝑟-pure
for all 𝑛 ≥ 1.

Theorem 3.7 and Theorem 3.10 can be used to prove 𝑝𝑟-purity of 𝑓◦𝑔 for
different classes of pairs of polynomials 𝑓, 𝑔. In other words, for given polyno-
mials 𝑓, 𝑔, Theorem 3.7 can be successfully used to show that 𝑓◦𝑔 is 𝑝𝑟-pure
whereas either 𝑓 or 𝑔 fails to satisfy the hypothesis of Theorem 3.10, and vice
versa. This can be illustrated by the following example.

Example 3.12. The following polynomials
𝑓(𝑥) = 𝑥2 + 32,

𝑔(𝑥) = 𝑥4 + 4𝑥3 + 32

are both 25-Dumas. The polynomial
𝑓 (𝑔(𝑥)) = 𝑥8 + 8𝑥7 + 16𝑥6 + 64𝑥4 + 256𝑥3 + 1056 ≡ 𝑥8 + 8𝑥7 + 16𝑥6 (mod 25)
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is 25-Dumas too as 𝜈2(8)
8−7

, 𝜈2(16)
8−6

> 5
8
. This is a direct application of Theorem 3.10.

However, if we try to apply Theorem 3.7, then 𝑑 = deg(𝑓) = 2, 𝑟 = 5, so 𝑠 > 5
2
.

However, 𝑔(𝑥) ≡ 𝑥4 + 4𝑥3 ≢ 𝑥4 (mod 23). Thus, Theorem 3.7 fails to prove
𝑓◦𝑔 is 25-pure in this case.
Now, if we introduce the polynomial

ℎ(𝑥) = 𝑥4 + 8,

we get ℎ(𝑥) ≡ 𝑥4 (mod 23). According to Theorem 3.7, 𝑓◦ℎ is 25-Dumas. In
fact,

𝑓 (ℎ(𝑥)) = 𝑥8 + 16𝑥4 + 96

and 𝜈2 (𝑓(ℎ(0))) = 𝜈2(96) = 5 and 𝜈2(16)
8−2

= 2
3
> 5

8
. Nevertheless, ℎ is not 25-pure

and Theorem 3.10 can not be applied.

4. Dynamical irreducibility and eventual stability of families of
polynomials
In this section, we will discuss several applications of Theorems 3.7 and

3.10 to arithmetic dynamics. In the previous section, we introduced Dumas
polynomials as a class of irreducible pure polynomials. The following corollary
follows directly from Theorem 3.10.

Corollary 4.1. Let 𝑓 and 𝑔 be 𝑝𝑟-Dumas polynomials in ℚ[𝑥], then 𝑓◦𝑔 is 𝑝𝑟-
Dumas. In particular, a 𝑝𝑟-Dumas polynomial is dynamically irreducible over
ℚ.

Example 4.2. Consider the following trinomial in ℚ[𝑥]

𝑓(𝑥) = 𝑥𝑑 + 𝑎𝑥𝑑−1 + 𝑝2𝑘 ; 𝑑 is odd, 𝑘 ≥ 0, and 𝜈𝑝(𝑎) >
2𝑘

𝑑
.

Note that 𝜈𝑝(𝑎)

𝑑−(𝑑−1)
= 𝜈𝑝(𝑎) >

2𝑘

𝑑
and gcd(2𝑘, 𝑑) = 1. In this case, 𝑓 is 𝑝2𝑘 -Dumas

and thus dynamically irreducible over ℚ.

Corollary 4.3. Let 𝑔 be a 𝑝𝑟-Dumas polynomial of degree 𝑑 and 𝑓(𝑥) = 𝑎𝑥𝑒 +
𝑝𝑠ℎ(𝑥) ∈ ℚ[𝑥] be such that ℎ(𝑥) ∈ ℚ[𝑥]with 𝜈𝑝(𝑎) = 0, deg(ℎ) < 𝑒, 𝜈𝑝(ℎ) ≥ 0,
and 𝑠 > 𝑟

𝑑
. If gcd(𝑟, 𝑒) = 1, then 𝑔𝑛◦𝑓𝑚 is irreducible for all 𝑛,𝑚 ≥ 1. In

particular, 𝑔𝑛 is 𝑓-stable for any 𝑛 ≥ 1.

Proof. By Corollary 4.1, 𝑔𝑛 is 𝑝𝑟-Dumas for any 𝑛 ≥ 1. Also, 𝑓𝑚(𝑥) ≡ 𝑏𝑥𝑒𝑚

(mod 𝑝𝑠) where 𝑏 ∈ ℚ is such that 𝜈𝑝(𝑏) = 0. Thus, 𝑓𝑚 is 𝑝-type. By virtue of
Theorem 3.7, since gcd(𝑟, 𝑒) = 1, one has 𝑔𝑛◦𝑓𝑚 is 𝑝𝑟-Dumas. □

Example 4.4. Set
𝑓(𝑥) = 𝑥17 + 27𝑥12 + 27𝑥10 + 162𝑥7 + 729𝑥5 + 4374

= (𝑥7 + 27)(𝑥5 + 9)(𝑥5 + 18).
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Note that 𝑔1(𝑥) = 𝑥7 + 27 is 33-Dumas with 𝑟1
𝑑1

= 3
7
< 1, 𝑔2(𝑥) = 𝑥5 + 9 is

32-Dumas with 𝑟2
𝑑2
= 2

5
< 1 and 𝑔3(𝑥) = 𝑥5 + 18 is 32-Dumas with 𝑟3

𝑑3
= 2

5
< 1.

This implies that 𝑠1, 𝑠2, 𝑠3 ≥ 1. Since 𝑓(𝑥) ≡ 𝑥17 (mod 3) and gcd(17, 7) =
gcd(17, 5) = 1, by Corollary 4.3, the polynomials 𝑔1, 𝑔2 and 𝑔3 are 𝑓-stable. In
other words, for any 𝑛 ≥ 1, the number of irreducible factors of 𝑓𝑛 is exactly 3.
The previous example motivates the following corollary.

Corollary 4.5. Let 𝑓(𝑥) = 𝑎𝑥𝑒 + 𝑝𝑠ℎ(𝑥) ∈ ℚ[𝑥] be such that ℎ(𝑥) ∈ ℚ[𝑥]
with 𝜈𝑝(𝑎) = 0, deg(ℎ) < 𝑒, 𝜈𝑝(ℎ) ≥ 0 and 𝑠 ≥ 1. For 𝑛 ≥ 1, assume that
𝑓𝑛(𝑥) = 𝑔1(𝑥)𝑔2(𝑥)⋯𝑔𝑡(𝑥) where 𝑔𝑖 is irreducible of degree 𝑑𝑖 ≥ 1, 1 ≤ 𝑖 ≤ 𝑡.
If for all 1 ≤ 𝑖 ≤ 𝑡, the following conditions hold

i) 𝑔𝑖 is 𝑝𝑟𝑖 -Dumas for some 𝑟𝑖 ≥ 1,
ii) gcd(𝑟𝑖, 𝑒) = 1,
iii) 𝑠 > 𝑟𝑖

𝑑𝑖
,

then 𝑔1, 𝑔2, … , 𝑔𝑡 are all 𝑓-stable. In fact, for any 𝑁 ≥ 𝑛, the number of irre-
ducible factors of 𝑓𝑁 is exactly 𝑡. Moreover, the irreducible factors 𝐺𝑖 of 𝑓𝑁 are
𝑝𝑟𝑖 -Dumas, 1 ≤ 𝑖 ≤ 𝑡.
Proof. In view of Corollary 4.3, one sees that 𝑔𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑡, are 𝑓-stable for any
𝑛 ≥ 1. In particular, for any 𝑁 ≥ 𝑛, one obtains

𝑓𝑁 = 𝑓𝑛(𝑓𝑁−𝑛) = 𝑔1
(
𝑓𝑁−𝑛

)
𝑔2
(
𝑓𝑁−𝑛

)
⋯𝑔𝑡

(
𝑓𝑁−𝑛

)
,

where each factor 𝑔𝑖
(
𝑓𝑁−𝑛

)
is irreducible. Moreover, given that 𝑔𝑖 is𝑝𝑟𝑖 -Dumas

and gcd(𝑟𝑖, 𝑑𝑖) = 1, Theorem 3.7 asserts that 𝑔𝑖
(
𝑓𝑁−𝑛

)
is 𝑝𝑟𝑖 -Dumas, 1 ≤ 𝑖 ≤

𝑡. □

One may drop the condition “𝑠 > 𝑟
𝑑
” in Corollary 4.3 to obtain the following

result.
Corollary 4.6. Let 𝑔 be a 𝑝𝑟-Dumas polynomial of degree 𝑑 and 𝑓(𝑥) = 𝑎𝑥𝑒 +
𝑝𝑠ℎ(𝑥) ∈ ℚ[𝑥] be such that ℎ(𝑥) ∈ ℚ[𝑥]with 𝜈𝑝(𝑎) = 0, deg(ℎ) < 𝑒, 𝜈𝑝(ℎ) ≥ 0,
and gcd(𝑟, 𝑒) = 1. There exists an integer 𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁, 𝑔𝑛◦𝑓𝑘
is irreducible for all 𝑘 ≥ 1. In particular, 𝑔𝑛 is 𝑓-stable for all 𝑛 ≥ 𝑁.
Proof. Let 𝑁 = min{𝑛 ∶ 𝑠 > 𝑟

𝑑𝑛
}. For any 𝑛 ≥ 𝑁, 𝑔𝑛 is 𝑝𝑟-Dumas of degree

𝑑𝑛 by Corollary 4.1. Since 𝑠 > 𝑟
𝑑𝑁

≥ 𝑟
𝑑𝑛
, Corollary 4.3 implies that 𝑔𝑛◦𝑓𝑘 is

𝑝𝑟-Dumas for all 𝑛 ≥ 𝑁 and 𝑘 ≥ 1. □

In Corollary 4.6, when 𝑛 < 𝑁, the irreducibility of 𝑔𝑛◦𝑓 is not guaranteed.
We consider the following example.
Example 4.7. The following polynomials are 33-Dumas and 3-type, respec-
tively

𝑔(𝑥) = 𝑥2 + 27,

𝑓(𝑥) = 𝑥2 + 3𝑥 + 3.
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We notice that the polynomial 𝑓 does not satisfy the hypothesis of Corollary
4.3. Based on Corollary 4.6, 𝑁 = min{𝑛 ∶ 1 > 3

2𝑛
} = 2. Therefore, 𝑔𝑛◦𝑓 is

33-Dumas for all 𝑛 ≥ 2. Indeed,

(𝑔2◦𝑓)(𝑥) = 𝑥8 + 12𝑥7 + 66𝑥6 + 54𝑥5 + 27𝑥4 + 27𝑥2 + 27

is 33-Dumas and by Corollary 4.1, 𝑔𝑛◦𝑓 is 33-Dumas. Yet,

𝑔◦𝑓 =
(
𝑥2 + 3

) (
𝑥2 + 6𝑥 + 12

)

is reducible.

We have discussed the applications of Theorems 3.7 and 3.10 in constructing
𝑝𝑟-Dumas polynomials. We recall that 𝑝𝑟-pure polynomials are not always ir-
reducible. This motivates questioning the existence of an upper bound on the
number of irreducible factors of 𝑝𝑟-pure polynomials.

Proposition 4.8. [14, Theorem 1.2] Let 𝑓 be a 𝑝𝑟-pure polynomial of degree
𝑑 in ℚ[𝑥]. Then 𝑓 has at most gcd(𝑑, 𝑟) irreducible factors over ℚ and each
irreducible factor has degree at least 𝑑

gcd(𝑑,𝑟)
.

Dynamically, we can conclude the following result regarding the upper bound
on the number of irreducible factors of an iteration of a 𝑝𝑟-pure polynomial.

Theorem 4.9. Suppose that 𝑓 ∈ ℚ[𝑥] is a 𝑝𝑟-pure polynomial of degree 𝑑.
Then for any 𝑛 ≥ 1, the iterate 𝑓𝑛 has at most gcd(𝑑𝑛, 𝑟) irreducible factors
over ℚ and each irreducible factor has degree at least 𝑑𝑛

gcd(𝑑𝑛 ,𝑟)
. Moreover, 𝑓 is

eventually stable over ℚ.

Proof. By Corollary 3.11, the iterate 𝑓𝑛 is 𝑝𝑟-pure and by Proposition 4.8 it has
at most gcd(𝑑𝑛, 𝑟) irreducible factors over ℚ and each irreducible factor has
degree at least 𝑑𝑛

gcd(𝑑𝑛 ,𝑟)
. Moreover, let 𝑐𝑛 = gcd(𝑑𝑛, 𝑟) and define 𝑘𝑛 to be the

number of irreducible factors of 𝑓𝑛. Observe that the set {𝑐1, … , 𝑐𝑛, …} is finite
as 𝑐𝑛 ≤ 𝑟. Therefore, there must exist an𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁, one has
gcd(𝑑𝑛, 𝑟) = 𝑐𝑛 = 𝑐𝑁 = gcd(𝑑𝑁 , 𝑟). In particular, one obtains that 𝑘𝑛 ≤ 𝑐𝑛 ≤ 𝑐𝑁
for all 𝑛 ≥ 1. It follows that the number of irreducible factors 𝑘𝑛 of 𝑓𝑛 is at most
𝑐𝑁 for all 𝑛 ≥ 1, hence 𝑓 is eventually stable. □

Observe that Corollary 1.7 in [11] (except the case when 𝑐 = 1) follows as a
corollary of Theorem 4.9 and Corollary 4.1

Corollary 4.10. Let 𝑓(𝑥) = 𝑥𝑑 + 𝑐 ∈ ℚ[𝑥]. Then 𝑓 is eventually stable when-
ever 𝑐 ≠ 0 is not the reciprocal of an integer.

Proof. let 𝑐 = 𝑎
𝑏
such that 𝑎 ≠ ±1, 𝑏 ≠ 0 and gcd(𝑎, 𝑏) = 1. There exists a

prime 𝑝 such that 𝜈𝑝(𝑐) > 0. By Theorem 4.9, 𝑓 is 𝑝𝜈𝑝(𝑐)-pure, hence eventually
stable. □
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Remark 4.1. InCorollary 4.10, any iterate𝑓𝑛 has atmostmax{gcd(𝜈𝑝(𝑐), 𝑑𝑚) ∶
𝑚 ≥ 1} irreducible factors. In particular, if gcd(𝜈𝑝(𝑐), 𝑑) = 1, then 𝑓 is dynam-
ically irreducible by Corollary 4.1.
The following definitionwas introduced in [12] for polynomials defined over

a finite field.
Definition 4.11. Let 𝐼 be a set of polynomials in ℚ[𝑥] with positive degrees.
We say 𝐼 is a dynamically irreducible set in ℚ[𝑥] if any polynomial formed by
composition of polynomials in 𝐼 is irreducible over ℚ.
One notices that our work up to this point has focused on dynamically ir-

reducible sets of the form 𝐼 = {𝑓} where 𝑓 ∈ ℚ[𝑥]. The set of 𝑝-Eisenstein
polynomials for a particular prime 𝑝 of degree at least 2 is another example of
a dynamically irreducible set. In light of our results, we display the following
example.
Example 4.12. Let 𝑝 and 𝑞 be rational primes. Define

𝐸(𝑝) ∶= {𝑓 ∈ ℚ[𝑥] ∶ 𝑓 is 𝑝-Eisenstein, 𝑝 ∤ deg(𝑓) and deg(𝑓) > 1}.
The set 𝐸(𝑝) is dynamically irreducible over ℚ. Also, define
𝐷(𝑝, 𝑞) ∶= {𝑓 ∈ ℚ[𝑥] ∶ 𝑓 is 𝑝𝑞𝑘 -Dumas with deg(𝑓) > 𝑞𝑘 for some 𝑘 ≥ 1}.

In fact,𝐷(𝑝, 𝑞) is a dynamically irreducible set because if𝑓 and 𝑔 are𝑝𝑞𝑘 -Dumas
and 𝑝𝑞𝑚 -Dumas respectively, Corollary 3.8 ensures that the composition 𝑓◦𝑔
(respectively, 𝑔◦𝑓) is 𝑝𝑞𝑘 -Dumas (respectively, 𝑝𝑞𝑚 -Dumas).
Moreover, the set 𝐸(𝑝) ∪ 𝐷(𝑝, 𝑞) is also dynamically irreducible because if

𝑓 ∈ 𝐷(𝑝, 𝑞) (respectively, 𝑓 ∈ 𝐸(𝑝)) and 𝑔 ∈ 𝐸(𝑝) (respectively, 𝑔 ∈ 𝐷(𝑝, 𝑞)),
then 𝑓◦𝑔 ∈ 𝐷(𝑝, 𝑞) (respectively, 𝑓◦𝑔 ∈ 𝐸(𝑝)), see Corollary 3.8 (respectively,
Proposition 3.5).
We can extend this definition further for eventually stable polynomials.

Definition 4.13. We say 𝑆 is an eventually stable set 11 in ℚ[𝑥] if there exists
𝑐 ≥ 1 such that the number of irreducible factors of any polynomial formed by
composition of polynomials in 𝑆 is at most 𝑐.
Based on our results, an example of an eventually stable set is the following.

Example 4.14. Let𝑝 be a prime and𝑅 be a finite set of positive integers. Define
𝑆(𝑝, 𝑅) ∶= {𝑓 ∈ ℚ[𝑥] ∶ 𝑓 is 𝑝𝑟-pure for some 𝑟 ∈ 𝑅 such that deg(𝑓) > 𝑟}.

If 𝑓 is 𝑝𝑟1-pure and 𝑔 is 𝑝𝑟2-pure such that deg(𝑓) > 𝑟1 and deg(𝑔) > 𝑟2, we
know from Corollary 3.8 that the composition 𝑓◦𝑔 (respectively, 𝑔◦𝑓) is 𝑝𝑟1-
pure (respectively, 𝑝𝑟2-pure). Also, Theorem 3.10 ensures that the iterates of 𝑓
(respectively, 𝑔) are 𝑝𝑟1-pure (respectively, 𝑝𝑟2-pure). It follows that the num-
ber of irreducible factors of any arbitrary composition is at most max(𝑅), see
Proposition 4.8.

11Thanks to Wade Hindes for suggesting this definition.
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A consequence of Definition 4.13 and Corollary 4.6 is the following.

Corollary 4.15. For a fixed prime 𝑝, let 𝐹 be any set of 𝑝𝑟𝑓 -pure polynomials
𝑓 such that the set {𝑟𝑓 ∶ 𝑓 ∈ 𝐹} is finite. Then there exists an 𝑁 ≥ 1 such that
the set 𝐹𝑁 ∶= {𝑓𝑁 ∶ 𝑓 ∈ 𝐹} is an eventually stable set. In particular, If all
polynomials 𝑓 ∈ 𝐹 are 𝑝𝑟𝑓 -Dumas polynomials such that gcd

(
deg(𝑓), 𝑟𝑔

)
= 1

for any 𝑓, 𝑔 ∈ 𝐹, then 𝐹𝑁 is a dynamically irreducible set.

Proof. Define 𝑠𝑓 ∶= 𝜈𝑝(𝑓(𝑥)−𝑎𝑥𝑑𝑓 )where 𝑎 is the leading coefficient of𝑓 ∈ 𝐹
whose degree is 𝑑𝑓. Set 𝑟 = max{𝑟𝑓 ∶ 𝑓 ∈ 𝐹}, 𝑠 = min{𝑠𝑓 ∶ 𝑓 ∈ 𝐹} and
𝑑 = min{𝑑𝑓 ∶ 𝑓 ∈ 𝐹}. Let 𝑁 ≥ 1 be the least integer such that 𝑠 > 𝑟

𝑑𝑁
.

Note that for any 𝑓 ∈ 𝐹, 𝑠𝑓 ≥ 𝑠 > 𝑟
𝑑𝑁

≥ 𝑟𝑓
𝑑𝑁𝑓
. Indeed, the set 𝐹𝑁 = {𝑓𝑁 ∶

𝑓 ∈ 𝐹} is an eventually stable set and the number of irreducible factors of any
arbitrary composition is at most 𝑟. Suppose 𝑓𝑁◦𝐺 is an arbitrary composition
of polynomials in 𝐹𝑁 where the degree of 𝐺 is 𝐷. We know that 𝑓𝑁 is 𝑝𝑟𝑓 -
pure by Corollary 3.11. Assume 𝛼 = 𝜈𝑝(𝐺(𝑥)) − 𝑏𝑥𝐷 such that 𝑏 is the leading
coefficient of 𝐺. We have 𝛼 ≥ 𝑠 > 𝑟

𝑑𝑁
≥ 𝑟𝑓

𝑑𝑁𝑓
. Using Theorem 3.7, 𝑓𝑁◦𝐺 is 𝑝𝑟𝑓 -

pure with at most gcd(𝑟𝑓, 𝑑𝑁𝑓 𝐷) ≤ 𝑟𝑓 ≤ 𝑟 irreducible factors and hence 𝐹𝑁 is
an eventually stable set. If any 𝑓 ∈ 𝐹 is 𝑝𝑟𝑓 -Dumas and gcd(𝑑𝑓, 𝑟𝑔) = 1 for any
𝑔 ∈ 𝐹, then it is easy to see that the degree of 𝑓𝑁◦𝐺 is relatively prime to 𝑟𝑔 for
any 𝑓, 𝑔 ∈ 𝐹. It follows that 𝑓𝑁◦𝐺 is 𝑝𝑟𝑓 -Dumas. Thus, 𝐹𝑁 is a dynamically
irreducible set. □

5. Eventually 𝒑𝒓-pure polynomials
In this section, we discuss polynomials that are not 𝑝𝑟-pure but one of the

iterates is 𝑝𝑟-pure. Consider the following example.

Example 5.1. The polynomial

𝑓(𝑥) = −𝑥3 − 39𝑥2

7 − 72𝑥
7 − 31

35
is not 𝑝-type for any prime 𝑝. Yet,

𝑓2(𝑥) = 𝑥9 + 54𝑥8

7 + 1287𝑥7

49 + 56607𝑥6

1715 − 53919𝑥5

1715 − 36864𝑥4

245

− 696429𝑥3

8575 + 1465479𝑥2

8575 + 356184𝑥
1715 − 1090557

6125
is 33-pure.

The previous example motivates the following definition.

Definition 5.2. Let 𝑝 be a prime and 𝑟 be a positive integer. A polynomial
𝑓 ∈ ℚ[𝑥] of degree 𝑑 is said to be eventually 𝑝𝑟-pure if 𝑓𝑛 is 𝑝𝑟-pure for some
𝑛 ≥ 1. Similarly, 𝑓 is eventually 𝑝𝑟-Dumas if 𝑓𝑛 is 𝑝𝑟-Dumas for some 𝑛 ≥ 1.
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The following corollary follows directly from Theorem 4.9 and [20, Lemma
1.2].

Corollary 5.3. An eventually 𝑝𝑟-pure polynomial is eventually stable. In par-
ticular, an eventually 𝑝𝑟-Dumas polynomial is dynamically irreducible.

Our aim is to provide a complete characterization of eventually 𝑝𝑟-pure poly-
nomials of degree 𝑑 > 𝑟. First, we introduce the following proposition.

Proposition 5.4. Let 𝑟 be a positive integer and 𝑝 be a prime. Suppose 𝑓, 𝑔
are polynomials in ℚ[𝑥] with degrees 𝑑 and 𝑒 respectively. If 𝑓◦𝑔 is a 𝑝𝑟-pure
polynomial, where 𝑑 > 𝑟, and 𝑔 is 𝑝-type, then 𝑓 (𝑥 + 𝑔(0)) is 𝑝𝑟-pure.

Proof. In order to use Lemma 2.6, we shall show that 𝜈𝑝(𝑓) = 0. Assume that
𝑓(𝑥) = 𝑎𝑥𝑑 + 𝑐𝑑−1𝑥𝑑−1 + … + 𝑐𝑖𝑥𝑖 + … + 𝑐0 is such that 𝜈𝑝(𝑐𝑖) < 0 with 𝑖 being
the largest such integer, 0 ≤ 𝑖 ≤ 𝑑−1. We write 𝑔(𝑥) = 𝑏𝑒𝑥𝑒+𝑝𝑠𝐺(𝑥) for some
𝐺 ∈ ℚ[𝑥] with 𝜈𝑝(𝐺) = 0, 𝜈𝑝(𝑏𝑒) = 0 and 𝑠 ≥ 1. One sees that

𝑓(𝑔(𝑥)) = 𝑎(𝑏𝑒𝑥𝑒 + 𝑝𝑠𝐺(𝑥))𝑑 + … + 𝑐𝑖(𝑏𝑒𝑥𝑒 + 𝑝𝑠𝐺(𝑥))𝑖 + … + 𝑐0.
The coefficient 𝑐𝑖𝑏𝑖𝑒 has negative 𝑝-adic valuation, yet there is no monomial of
any expansion of 𝑓(𝑔(𝑥)) that has degree 𝑒𝑖 and a coefficient of negative 𝑝-adic
valuation. Thus, such 𝑐𝑖 does not exist and 𝜈𝑝(𝑓) = 0. Let ℎ(𝑥) = 𝑓(𝑥 + 𝑔(0)).
By Lemma 2.6, ℎ is 𝑝-type. Moreover, 𝜈𝑝(ℎ(0)) = 𝜈𝑝(𝑓(𝑔(0)) = 𝑟, see Lemma
3.6. So we are left with showing that ℎ satisfies iii) in Definition 3.1.
Suppose ℎ(𝑥) = 𝑎𝑑𝑥𝑑+…+𝑎0 and 𝑔(𝑥)−𝑔(0) = 𝑏𝑒𝑥𝑒+…+𝑏1𝑥. We assume

that 𝑘, 0 < 𝑘 < 𝑑, is the maximum positive integer such that 𝑎𝑘 does not satisfy
iii), i.e., 𝜈𝑝(𝑎𝑘)

𝑑−𝑘
< 𝑟

𝑑
. Given that

𝑓(𝑔(𝑥)) = ℎ (𝑔(𝑥) − 𝑔(0))

= 𝑎𝑑(𝑏𝑒𝑥𝑒 + … + 𝑏1𝑥)
𝑑 + … + 𝑎𝑘(𝑏𝑒𝑥𝑒 + … + 𝑏1𝑥)

𝑘 + … + 𝑎0,

the monomial 𝑎𝑘𝑏𝑘𝑒 𝑥𝑒𝑘 doesn’t satisfy condition iii) as
𝜈𝑝(𝑎𝑘)

𝑑𝑒−𝑒𝑘
< 𝑟

𝑑𝑒
. Yet, when

added with monomials of the same degree, the sum should satisfy iii) as 𝑓◦𝑔 is
𝑝𝑟-pure. Thus, there has to be other monomials in the expansion of ℎ(𝑔(𝑥) −
𝑔(0)) of degree 𝑒𝑘 whose coefficients have 𝑝-adic valuation less than (𝑑−𝑘)𝑟

𝑑
. For

𝑗, 0 < 𝑗 < 𝑘, the monomials in the expansion of 𝑎𝑗(𝑏𝑒𝑥𝑒 + … + 𝑏1𝑥)
𝑗 have de-

grees strictly less than 𝑒𝑘. If 𝑘 < 𝑗 ≤ 𝑑, then 𝜈𝑝(𝑎𝑗)

𝑑−𝑗
≥ 𝑟

𝑑
and by Lemma 3.9,

𝜈𝑝(𝑐)

𝑡−𝑑𝑒
≥ 𝑟

𝑑𝑒
for anymonomial 𝑐𝑥𝑡 in the expansion of𝑎𝑗(𝑏𝑒𝑥𝑒 + … + 𝑏1𝑥)

𝑗. There-
fore, such 𝑘 does not exist and 𝑓(𝑥 + 𝑔(0)) is 𝑝𝑟-pure. □

Before introducing the main theorem of this section, we first prove the fol-
lowing lemma.

Lemma 5.5. If 𝑓 is a 𝑝𝑟-pure polynomial and 𝑐 ∈ ℚ is such that 𝜈𝑝(𝑐) ≤ 0,
then 𝜈𝑝

(
𝑓(𝑐)

)
≤ 0.
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Proof. Let 𝑓(𝑥) =
∑𝑑

𝑖=1 𝑎𝑖𝑥
𝑖 be a 𝑝𝑟-pure polynomial. We claim that

min
0≤𝑖≤𝑑−1

{𝜈𝑝(𝑎𝑖) + 𝑖𝜈𝑝(𝑐)} > 𝑑𝜈𝑝(𝑐),

hence 𝜈𝑝
(
𝑓(𝑐)

)
= 𝑑𝜈𝑝(𝑐) ≤ 0. In order to prove this claim, we note that for any

0 ≤ 𝑖 < 𝑑 we have

𝜈𝑝(𝑎𝑖)+ 𝑖𝜈𝑝(𝑐) ≥
𝑟
𝑑
(𝑑− 𝑖)+ 𝑖𝜈𝑝(𝑐) = 𝑟− 𝑟𝑖

𝑑
+ 𝑖𝜈𝑝(𝑐) > 𝑟− 𝑟𝑖

𝑑
+𝑑𝜈𝑝(𝑐) > 𝑑𝜈𝑝(𝑐),

hence the result. □

We recall that we write ord𝑝(𝑎) for the multiplicative order of 𝑎 modulo 𝑝.

Theorem 5.6. Let 𝑟 be a positive integer and 𝑝 be a prime. Suppose 𝑓(𝑥) =
𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥] is not 𝑝𝑟-pure and 𝑑 > 𝑟. Then 𝑓(𝑥) is eventually
𝑝𝑟-pure if and only if the following conditions hold

i) 𝑑 = 𝑝𝑚 for some𝑚 ≥ 1,
ii) 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 + 𝑎0 (mod 𝑝) such that 𝜈𝑝(𝑎𝑑) = 𝜈𝑝(𝑎0) = 0,
iii) 𝑓(𝑥 + 𝑐) is 𝑝𝑟-pure for some 𝑐 ∈ ℚ.

Moreover, the least integer 𝑛 > 1 such that 𝑓𝑛 is 𝑝𝑟-pure is given by 𝑛 = 𝑝 if
𝑎𝑑 ≡ 1 (mod 𝑝); or 𝑛 = ord𝑝(𝑎𝑑) otherwise.

Proof. Since 𝑓 is not 𝑝-type but eventually 𝑝-type, it follows that 𝑑 = 𝑝𝑚 for
some𝑚 ≥ 1 and 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 +𝑎0 (mod 𝑝) such that 𝜈𝑝(𝑎𝑑) = 𝜈𝑝(𝑎0) = 0, see
Theorem 2.7. Since 𝑓𝑛(𝑥) = 𝑓

(
𝑓𝑛−1(𝑥)

)
is 𝑝𝑟-pure, therefore by Proposition

5.4, one has 𝑓
(
𝑥 + 𝑓𝑛−1(0)

)
is 𝑝𝑟-pure.

Conversely, suppose 𝑓 satisfies conditions i), ii) and iii) in the statement of
the theorem. Set 𝑔(𝑥) = 𝑓(𝑥 + 𝑐). Since 𝑔 is 𝑝𝑟-pure, it follows that 𝑔 is 𝑝-type.
Theorem 2.7 together with ii) imply the existence of an 𝑛 > 1 such that 𝑓𝑛 is
𝑝-type. Note that 𝑓𝑛−1(𝑥) ≡ 𝑎𝑥𝑑𝑛−1+𝑓𝑛−1(0) (mod 𝑝)where 𝜈𝑝

(
𝑓𝑛−1(0)

)
= 0,

see Lemma 2.9. Given that 𝜈𝑝
(
𝑔
(
𝑓𝑛−1(0) − 𝑐

))
= 𝜈𝑝 (𝑓𝑛(0)) = 𝑟 > 0 and that 𝑔

is 𝑝𝑟-pure, we must have 𝜈𝑝(𝑓𝑛−1(0)−𝑐) > 0, see Lemma 5.5. This implies that
𝑓𝑛−1(𝑥)−𝑐 is a𝑝-type polynomial. UsingCorollary 3.8,𝑓𝑛(𝑥) = 𝑔

(
𝑓𝑛−1(𝑥) − 𝑐

)

is 𝑝𝑟-pure. Finally, the value of 𝑛 is given by Proposition 2.8. □

The previous Theorem gives rise to the following family of dynamically irre-
ducible polynomials.

Corollary 5.7. Let 𝑟 ≥ 1 be an integer and 𝑝 be a rational prime. Let 𝑓(𝑥) =
𝑎𝑑𝑥𝑑 + … + 𝑎0 ∈ ℚ[𝑥], 𝑑 > 𝑟, be such that 𝑓 is not 𝑝𝑟-Dumas.
There is an integer𝑛 ≥ 2 such that𝑓𝑛 is𝑝𝑟-Dumas if and only if the following

conditions hold
i) 𝑑 = 𝑝𝑚, for some𝑚 ≥ 1,
ii) 𝑓(𝑥) ≡ 𝑎𝑑𝑥𝑑 + 𝑎0 (mod 𝑝) with 𝜈𝑝(𝑎𝑑) = 𝜈𝑝(𝑎0) = 0,
iii) 𝑓(𝑥 + 𝑐) is 𝑝𝑟-Dumas for some 𝑐 ∈ ℚ.
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Example 5.8. Consider the family of polynomials

𝑓(𝑥) = (𝑥 + 𝑎)𝑝
𝑚
+ 𝑏 ∈ ℚ[𝑥]; 𝜈𝑝(𝑎) ≥ 0 and 1 ≤ 𝜈𝑝(𝑏) < 𝑝𝑚.

In view of Theorem 5.6, 𝑓(𝑥) is eventually 𝑝𝑟-pure where 𝑟 = 𝜈𝑝(𝑏). In addi-
tion, 𝑓(𝑥) is eventually stable over ℚ, see Corollary 5.3. In fact, if

gcd
(
𝑝𝑚, 𝜈𝑝(𝑏)

)
= 1,

then 𝑓 is eventually 𝑝𝑟-Dumas by Corollary 5.7, hence 𝑓 is dynamically irre-
ducible; otherwise, the number of irreducible factors of any iterate of 𝑓 is at
mostmax{gcd

(
𝑝𝑛𝑚, 𝜈𝑝(𝑏)

)
∶ 𝑛 ≥ 1}.

In light of Theorem 5.6 andCorollary 5.7, it is reasonable to ask the following
question.
Question 5.9. If 𝑓 ∈ ℤ[𝑥] is eventually stable (respectively, dynamically ir-
reducible) over ℚ, is 𝑓(𝑥 + 𝑐) eventually stable (respectively, dynamically irre-
ducible) for any 𝑐 ∈ ℤ?
The following examples provide a negative answer to the latter question.

Example 5.10. The polynomial
𝑓(𝑥) = 𝑥2 + 5𝑥 + 5

is 5-Eisenstein, hence dynamically irreducible over ℚ. However, 𝑔(𝑥) = 𝑓(𝑥 −
3) = 𝑥2 − 𝑥 − 1 is 3-newly reducible. More precisely, 𝑔2(𝑥) is irreducible, but
𝑔3(𝑥) = (𝑥4 − 3𝑥3 + 4𝑥 − 1)(𝑥4 − 𝑥3 − 3𝑥2 + 𝑥 + 1).
Example 5.11. The polynomial

𝑓(𝑥) = 𝑥2 + 8𝑥 + 12
is 22-pure, hence eventually stable by Corollary 4.9. However,

𝑓(𝑥 − 3) = 𝑥2 + 2𝑥 − 3
is not eventually stable as it belongs to the family 𝑓𝑘(𝑥) = 𝑥2 + 𝑘𝑥 − (𝑘 + 1) ∈
ℤ[𝑥] which is not eventually stable because 0 is periodic under 𝑓, see [15].
Now, as an application of Theorem 5.6. we present a family of polynomials

that answers Question 5.9 positively.
Corollary 5.12. Let 𝑓 ∈ ℤ[𝑥] be a 𝑝𝑟-pure (respectively, 𝑝𝑟-Dumas) polyno-
mial of degree 𝑝𝑚 > 𝑟. The polynomial 𝑓(𝑥 + 𝑐) is eventually stable (respec-
tively, dynamically irreducible) for all 𝑐 ∈ ℤ. In general, if 𝑓 ∈ ℚ[𝑥] is a
𝑝𝑟-pure (respectively, 𝑝𝑟-Dumas) polynomial of degree 𝑝𝑚 > 𝑟, then 𝑓(𝑥 + 𝑐)
is eventually stable (respectively, dynamically irreducible) for all 𝑐 ∈ ℚ with
𝜈𝑝(𝑐) ≥ 0.

Proof. Let 𝑓 ∈ ℚ[𝑥] be a 𝑝𝑟-pure (respectively, 𝑝𝑟-Dumas) of degree 𝑝𝑚 > 𝑟
and 𝑐 ∈ ℚ. If 𝜈𝑝(𝑐) > 0, then 𝑥 + 𝑐 is a 𝑝-type polynomial and 𝑓(𝑥 + 𝑐) is 𝑝𝑟-
pure (respectively, 𝑝𝑟-Dumas), see Theorem 3.7 (respectively, Corollary 4.3). If
𝜈𝑝(𝑐) = 0, then 𝑔(𝑥) = 𝑓(𝑥+𝑐) satisfies conditions i), ii) and iii) in Theorem 5.6
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(respectively, Corollary 5.7) and thus 𝑔 is eventually 𝑝𝑟-pure (respectively, 𝑝𝑟-
Dumas). □

Note that we only dealt with eventually 𝑝𝑟-pure polynomials with degree
𝑑 > 𝑟. This suggests the following question.
Question 5.13. If 𝑓 is a 𝑝𝑟-pure polynomial with degree 𝑝𝑚 ≤ 𝑟, is 𝑓(𝑥 + 𝑐)
eventually 𝑝𝑟-pure for any rational 𝑐 with 𝜈𝑝(𝑐) ≥ 0?

In fact, the polynomial 𝑓(𝑥) in Example 5.11 is a 22-pure polynomial with
deg 𝑓 = 2 < 22, yet 𝑓(𝑥 − 3) is not eventually pure as it is not eventually stable.
Next, the following result is an application of Corollary 4.1 and Corollary 5.7.

Corollary 5.14. Let 𝑝 be a prime. Suppose 𝑓, 𝑔 are monic polynomials inℚ[𝑥]
such that 𝑔 is the reduction of 𝑔 modulo 𝑝 and deg(𝑔) = deg(𝑔) = 𝑒. If 𝑓 is
eventually 𝑝𝑟-Dumas for some iteration 𝑛 ≥ 1, 𝑔 is irreducible in 𝔽𝑝[𝑥] and
gcd (𝑒, 𝑟) = 1, then 𝑓𝑘𝑛◦𝑔 is irreducible in ℚ[𝑥] for all 𝑘 ≥ 1. In addition, if 𝑔
is dynamically irreducible in 𝔽𝑝[𝑥], then 𝑓𝑘𝑛◦𝑔𝑚 is irreducible in ℚ[𝑥] for all
𝑘,𝑚 ≥ 1 and 𝑓𝑘𝑛 is 𝑔-stable for all 𝑘 ≥ 1 in ℚ[𝑥].
The proof of the previous Corollary depends on a special case of the general-

ized Schönemann polynomial discussed in [4]. We present this special case as
a lemma.
Lemma5.15. Let𝐴 and 𝑔 be polynomials inℚ[𝑥]. Assume that the 𝑔-expansion
of the polynomial 𝐴 in ℚ[𝑥] is given by

𝐴 = 𝑎𝑑𝑔𝑑 + … + 𝑎1𝑔 + 𝑎0.
for some 𝑎0, … , 𝑎𝑑 ∈ ℚ[𝑥]. Suppose there exists a prime 𝑝 such that:

(a) The reduction of 𝑔modulo 𝑝 is irreducible over 𝔽𝑝,
(b) 𝑎𝑑(𝑥) = 1,
(c) 𝜈𝑝(𝑎𝑖)

𝑑−𝑖
≥ 𝜈𝑝(𝑎0)

𝑑
> 0 for all 1 ≤ 𝑖 ≤ 𝑑 − 1,

(d) gcd
(
𝜈𝑝(𝑎0), 𝑑

)
= 1.

Then 𝐴 is irreducible in ℚ[𝑥].
We remark that ifwe force𝑎0, … , 𝑎𝑑 to be constant polynomials and 𝑔(𝑥) = 𝑥,

we deduce the monic case of Definition 3.4.
Proof of Corollary 5.14. Assume that 𝑓𝑛(𝑥) = 𝑥𝑑 + … + 𝑎0 is 𝑝𝑟-Dumas for
some iterate 𝑛 ≥ 1. We write

𝐴(𝑥) = 𝑓𝑛 (𝑔(𝑥)) = 𝑔(𝑥)𝑑 + 𝑎𝑑−1𝑔(𝑥)𝑑−1 + … + 𝑎1𝑔(𝑥) + 𝑎0.
By assumption, the polynomial 𝑓𝑘◦𝑔 satisfies the conditions in Lemma 5.15,
hence 𝐴(𝑥) is irreducible inℚ[𝑥]. If 𝑘 = 1 (respectively, 𝑘 > 1), then by Corol-
lary 4.1 (respectively, Corollary 5.7), the polynomials 𝑓𝑛 (respectively, 𝑓𝑘𝑛) are
𝑝𝑟-Dumas for all 𝑛 ≥ 1. It follows by Lemma 5.15, 𝑓𝑛◦𝑔 (respectively, 𝑓𝑘𝑛◦𝑔) is
irreducible for all 𝑛 ≥ 1. Finally, if 𝑔 is dynamically irreducible over 𝔽𝑝, then,
𝑓𝑛◦𝑔𝑚 (respectively, 𝑓𝑘𝑛◦𝑔𝑚) is irreducible for any 𝑛,𝑚 ≥ 1. □
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The following is another result that combines irreducibility over finite fields
and irreducibility over number fields.

Corollary 5.16. Let 𝑓 be a 𝑝𝑟-Dumas polynomial, 𝑟 ≥ 1, and let 𝛼 be a root of
𝑓. Let 𝑔 ∈ ℚ[𝑥] be such that the reduction 𝑔 of 𝑔 modulo 𝑝 is irreducible over
𝔽𝑝. Then 𝑔(𝑥) − 𝛼 is irreducible over the number field ℚ(𝛼).

Proof. By Lemma 5.15, 𝑓◦𝑔 is irreducible over ℚ. By Capelli’s Lemma, [3,
Lemma 1], if 𝛼 is a root of 𝑓, then the polynomial 𝑔(𝑥) − 𝛼 must be irreducible
over ℚ(𝛼). □

We end this section with the following example.

Example 5.17. Consider the polynomial
𝑔(𝑥) = 𝑥2 + 1 ∈ ℚ[𝑥].

We consider the polynomial 𝑔 in 𝔽3[𝑥]. Since −𝑔(𝛾) = 2 = 𝑔
𝑛
(𝛾) for all 𝑛 ≥ 2,

and 2 is a nonsquare in 𝔽3, it follows that 𝑔 is dynamically irreducible over 𝔽3.
According to Corollary 5.14, if 𝑓 ∈ ℚ[𝑥] is a monic 3𝑟-Dumas polynomial for
some 𝑟 ≥ 1, then 𝑓𝑛◦𝑔𝑚 ∈ ℚ[𝑥] is irreducible for all 𝑛,𝑚 ≥ 1. Moreover, if 𝑓 is
eventually 3𝑟-Dumas, then by Theorem 5.6, the iterates 𝑓𝑘𝑝 are 3𝑟-Dumas for
all 𝑘 ≥ 1. It follows again by Corollary 5.14 that 𝑓𝑘𝑝◦𝑔𝑚 is irreducible over ℚ.
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