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Eventual stability of pure polynomials
over the rational field
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ABSTRACT. A polynomial with rational coefficients is said to be pure with re-
spect to a rational prime p if its Newton polygon has one slope. We establish
the dynamical irreducibility, i.e., the irreducibility of all iterates, of a subfam-
ily of pure polynomials, namely Dumas polynomials, with respect to a ratio-
nal prime p under a mild condition on the degree. This provides iterative
techniques to produce irreducible polynomials in Q[x] by composing pure
polynomials of different degrees. In addition, for specific subfamilies of pure
polynomials, we provide explicit bounds on the number of irreducible factors
of the n-th iterate. These bounds are independent of n and improve upon
existing results in the literature. During the course of this work, we charac-
terize all polynomials whose degrees are large enough that are not pure, yet
they possess pure iterates. This implies the existence of polynomials in Z[x]
whose shifts are all dynamically irreducible.
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1. Introduction

Let S be a set of polynomials defined over a field K. An interesting question is
whether one can construct an irreducible polynomial over K using polynomials
in S. For example, over the rationals, Hilbert’s irreducibility Theorem ensures
that there exists infinitely many ¢ € Q such that f(x) + c is irreducible for any
polynomial f with rational coefficients.

Received October 11, 2024.

2020 Mathematics Subject Classification. 37P05, 37P15, 37P20.

Key words and phrases. dynamically irreducible polynomials, eventually stable polynomials,
pure polynomials.

ISSN 1076-9803/2026
197


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2026/Vol32.htm

198 MOHAMED O. DARWISH AND MOHAMMAD SADEK

A modern approach toward the question is to iteratively construct a tower
of irreducible polynomials. More precisely, we set S to consist of one irre-
ducible polynomial f in K[x], then we study the irreducibility of the polynomi-
als fof, fofof,.... In this case, we say (K, f) is a (discrete) dynamical system
where f : K — K is the polynomial map over K with the nth iterate of f is
f" = fof ..of. In this article, our main interest lies in polynomial maps

SN——————
n-times

defined over the rational field Q. In particular, we focus on the irreducibility
of iterations of a polynomial map. In fact, if f and g are polynomials in K[x]
and a € K is a root of f, then Capelli’s Lemma, [10, Lemma 0.1], asserts that
fog is irreducible over K if and only if f is irreducible over K and g — « is
irreducible over K(a). Consequently, the irreducibility of f" cannot be estab-
lished from the irreducibility of f. However, if for some f € K[x], it happens
that f" is irreducible for all n > 1, we say f is called dynamically irreducible,
or stable over the field K. Odoni [20] was the first to establish the concept of
dynamical irreducibility (the credit of the term stable is attributed to him). In
[20, Lemma 2.2], it was shown that for a prime ideal P in an integral domain R,
a P-Eisenstein polynomial in R[x] is dynamically irreducible. In addition, he
presented the first nontrivial example of a dynamically irreducible polynomial
over @, namely the polynomial x> — x + 1. The interested reader may consult
[19, Proposition 4.1] for a proof. Stoll [22] produced a dynamical irreducibil-
ity criterion for quadratic polynomials in Q[x] of the form f(x) = x? + a by
associating a recurrence relation to the iterates of the quadratic binomial. The
author proved that if the resulting sequence contains no perfect squares in Z,
then the binomial is dynamically irreducible, see [22, Corollary 1.3]. In [17,
Proposition 2.3], Jones generalized Stoll’s criterion on any arbitrary field with
a characteristic different from 2. Several explicit families of dynamically irre-
ducible polynomials of degree 2 were exhibited in [1] and [16]. In a different
direction, Danielson and Fein [7] extended Stoll’s result for any binomial of the
form x" — b € R[x], where R is a commutative ring with unity satisfying some
conditions. They were able to deduce the dynamical irreducibility of such a
polynomial from the irreducibility of the first iterate, see [7, Corollary 5].

In this article, we focus on the iterates of a special family of p-type polyno-
mials for some rational prime p. A polynomial f = azx% + ... + a, € Q[x] is
p-type if v,(ag) = 0 and v, (q;) > 0 for 0 < i < d where v,, is the p-adic valua-
tion. In particular, we are interested in p"-pure polynomials, which we define
as follows.

Definition 1.1. [14] Let f(x) = azx?+ay_;x ' +---+a, € Q[x]. For a prime
p and an integer r > 1, we say that f is p”-pure if the following conditions hold:

i) v,(aq) =0,
it) v (ap) =7,
v,(a;)
i) 2 > Lforalll <i<d—1.

d—i — d
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If, in addition, ged(d,r) = 1, we say that f is p"-Dumas. Furthermore, a p"-
Dumas polynomial is called p"-Eisenstein if vj,(a;) > rforall1 <i <d - 1.

A p"-pure polynomial is not always irreducible. Morever, It was proved that
p"-Dumas polynomials are irreducible, see [9]. Ali [2, Corollary 1] proved that
p’-Eisenstein polynomials are dynamically irreducible over Q. We generalize
Ali’s result by proving the following, see Corollary 4.1.

Theorem 1.2. Let f and g be p"-Dumas polynomials in Q[x]. Then fogis p’-
Dumas. In particular, a p"-Dumas polynomial is dynamically irreducible over
Q.

This provides a variety of examples of dynamically irreducible polynomials
different from the quadratic and binomial dynamically irreducible polynomials
available in literature. Inspired by Odoni’s observation in [20, Lemma 1.2] that
a polynomial with a dynamically irreducible iterate is itself dynamically irre-
ducible, we fully characterize polynomials f that possess a p”-Dumas iterate in
the following corollary, see Corollary 5.7 for the proof.

Theorem 1.3. Let r > 1 be an integer and p be a rational prime. Let f(x) =
azx? + ... + ay € Q[x], d > r, be such that f is not p"-Dumas. There is an
integer n > 2 such that f" is p”-Dumas if and only if the following conditions
hold
i) d = p™, for some m > 1,
ii) f(x) = azx? + ay (mod p) with vp(ag) = vp(ag) =0,
iii) f(x + ¢) is p"-Dumas for some ¢ € Q.

One may see easily that if a polynomial f € Z[x] is dynamically irreducible,
it is not necessarily true that all its shifts f(x + ¢), ¢ € Z, are dynamically
irreducible. However, the aforementioned characterization gives rise to poly-
nomials in Z[x] for which all the shifts are dynamically irreducible.

If f,..., f*~! are irreducible but f" is reducible, we say that f is n-newly re-
ducible, see [13] and [6]. For example, if f(x) = x> + 1 € F45[x], then f, ..., f°
are irreducible, but direct calculations show that f%(x) is reducible. In other
words, x? + 1 is 6-newly reducible over F,;. Even if a polynomial is reducible or
newly reducible, one may still construct a tower of irreducible polynomials. For
instance, one can find another polynomial g such that gof" is irreducible for
all n > 1. In the latter case, g is said to be f-stable. In the following corollary,
we introduce polynomials f € Q[x] such that all the iterates of any p"-Dumas
polynomials are f-stable, see Corollary 4.3 for a proof.

Theorem 1.4. Let g be a p"-Dumas polynomial of degree d and f(x) = ax® +
p°h(x) € Q[x]be such that h(x) € Q[x] withv,(a) = 0, deg(h) <e,v,(h) >0,
and s > %. If gcd(r,e) = 1, then g"of™ is irreducible for all n,m > 1. In
particular, g" is f-stable for any n > 1.

In addition, we display polynomials f € Q[x] for which one can find a p’-
Dumas polynomial g € Q[x] with go f being reducible, yet there exists N > 2
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such that g"o f™ is irreducible for all m > 1 and all n > N in the following
corollary, for a proof, see Corollary 4.6.

Theorem 1.5. Let g be a p"-Dumas polynomial of degree d and f(x) = ax® +
p*h(x) € Q[x]be such that h(x) € Q[x] withv,(a) = 0, deg(h) <e,v,(h) >0,
and gcd(r, e) = 1. There exists an integer N > 1 such that for all n > N, g"o f*
isirreducible for all k > 1. In particular, g" is f-stable for alln > N.

In this work, we also give due attention to eventually stable polynomials de-
fined as follows.

Definition 1.6. [8, Definition 1.1] Let K be a field, f be a polynomial in K[x],
and o € K. We say (f, a) is eventually stable over K if there exists a constant
C(f,a) such that the number of irreducible factors over K of f"(x) — «a is at
most C(f,a) for all n > 1. In particular, we say that f is eventually stable over
K if (f,0) is eventually stable.

Equivalently, f is eventually stable if there exists an iteration N > 1 such
that the number of irreducible factors does not change in all the succeeding
iterations.

In [11, Corollary 1.7], it was proven that binomials of the form x? 4+ ¢ € Q[x]
are eventually stable over Q whenever c is nonzero and not a reciprocal of an
integer. For an overview of eventual stability of quadratic polynomials, we refer
the reader to [8]. In [18, Theorem 4.6, Corollary 4.10], it was proven that all
p-type polynomials are eventually stable and upper bound on the number of
irreducible factors of any iterate was established. Moreover, the next theorem
provides a tighter upper bound on the number of irreducible factors of iterates
of pure polynomials than the one given in [18, Corollary 4.10], see Theorem 4.9
for a proof.

Theorem 1.7. Suppose that f € Q[x] is a p"-pure polynomial of degree d.
Then for any n > 1, the iterate f" has at most ged(d", r) irreducible factors

over Q and each irreducible factor has degree at least . Moreover, f is

ged(dn,r)
eventually stable over Q.

Consequently, we show that the aforementioned result in [11, Corollary 1.7]
follows directly from our results. In addition, we fully characterize polynomials
f that are not p"-pure yet they possess p”-pure iterates, hence they are eventu-
ally stable, when deg f > r in the following theorem, see Theorem 5.6 for a
proof. In what follows, we shall denote the multiplicative order of a modulo p
by ord,(a).

Theorem 1.8. Let r be a positive integer and p be a prime. Suppose f(x) =
agx® + ... + ay € Q[x] is not p’-pure and d > r. Then f(x) is eventually
p"-pure if and only if the following conditions hold

i) d = p" forsomem > 1,

ii) f(x)=ayx?+ ay (mod p) such that vp(aq) = vp(ag) =0,
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iii) f(x + c)is p"-pure for some c € Q.

Moreover, the least integer n > 1 such that f" is p"-pure is given by n = p if
ag =1 (mod p); or n = ord,(ay) otherwise.

Example 1.9. Let k be an odd positive integer. Consider the following polyno-
mials:

fx)=(x+ 1)2m + 26k where 2™ > 6k

gx)=(x+ 1)2m + 2K where 2™ > k

By Theorem 5.6, we know that f2 and g? are 2%-pure and 2X-Dumas respec-
tively as the leading terms are both odd. By [18, Corollary 4.10], both f2 and g2
are both eventually stable such that f” has at most 6k irreducible factors while
g" has at most k for n > 2. It is easy to see that

2m-1 Lt m—2 k 2m-1 Elaa m—2 k
) =(x+1D" =272 (x+1)?" +23)((x+1)"  +272 (x+1)*" +23)

Using Theorem 5.6, f" possesses at most gcd(6k,2™) = 2 irreducible factors
while by Corollary 5.7, g2 is 2K-Dumas and thus g” is always irreducible.

This paper is organized in the following way; in §2, we study the iterations of
p-type polynomials and polynomials that are not p-type yet one of the iterates
is p-type, i.e., eventually p-type polynomials. We fully characterize eventu-
ally p-type polynomials in Theorem 2.7 and identify the least p-type iterate in
Proposition 2.8. In §3, we discuss the properties of iterations of p"-pure poly-
nomials and discuss the conditions under which the composition of a p"-pure
polynomial and a p-type polynomial is p"-pure. In §4, we use Theorems 1.7
and 1.8 together with a result from [14] to conclude the eventual stability of p”-
pure polynomials. Moreover, we obtain some iterative techniques to produce
irreducible polynomials from p"-Dumas polynomials. Finally, in §5, we utilize
the results in §2 on eventually p-type polynomials to fully characterize a family
of eventually p"-pure polynomials.
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2. p-Type and eventually p-type polynomials

Throughout this article, we assume that p is a rational prime. Moreover, all
polynomials will be assumed to be in Q[x] unless otherwise explicitly stated.
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In this section, we introduce p-type and eventually p-type polynomials to-
gether with some of the properties of these polynomials. For this purpose, we
recall the definition of Gaussian valuations.

Definition 2.1. Let f(x) = azx% + ... + @, € Q[x] and p be a prime. The
Gaussian valuation of f with respect to p is defined by

v .= min v,(a;),
p(f) = min v,(ap)
where v,(a;) denotes the p-adic valuation of a;.

The abuse of notation may be justified by the fact that an element in Q can
be considered as a constant polynomial in Q[x], hence the restriction of the
Gaussian valuation with respect to p over Q is the p-adic valuation.

One easily sees thatv,(f-g) = v,(f)+v,(g) and v,(f+g) > min(v,(f),v,(g))
for f,g € Q[x].

Definition 2.2. A polynomial f(x) = azx%+...+a, € Q[x]is said to be p-type if
vp(ag) = 0and f(x) = azx* (mod p). In other words, vp(ag), > Vp(ag—1) 2 1.

For example, a p-Eisenstein polynomial is p-type.

Definition 2.3. Let f € Q[x] and p be a prime. We say f is eventually p-type
if an iterate f" is p-type for some n > 1.

It is clear that a p-type polynomial is also eventually p-type. We are more
interested in a polynomial which is not p-type but is eventually p-type. In other
words, f is not p-type but f" is p-type for some n > 1. Consider the following
example.

Example 2.4. The polynomial f(x) = x® + 1 is not p-type for any prime p, but
F2(x) = x5 4 8x°0 + 28x™ + 56x% + 70x32 4 56x%* + 28x1® + 8x® + 2
is 2-type. So, f(x) is eventually 2-type.
In light of the previous example, it is valid to ask the following question.

Question 2.5. Ifa polynomial f is not p-type yet it is eventually p-type, is there
any restriction on the degree of f? Is there an exhaustive classification of such
polynomials?

This question is answered in Theorem 2.7. We first need the following lemma.

Lemma 2.6. Suppose f and g are polynomials in Q[x] such that v,(g) =
vp(f) = 0. If fog is p-type, then both f(x + g(O)) and g(x) — g(0) are p-type.
Proof. We define the following polynomials
F(x)
G(x)

F(x+g0) = agx® + ag_1 x4 + ... + ag,
g(x) — g(0) = byx® + b,_1x*7! + ... + by x.
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It is clear that v,(agq) = v,(b.) = 0, since otherwise fog would not be p-type.
Leti,j,0 <i <d,1 < j < e, be the least nonnegative integers such that
v,(a;) = vp(b;) = 0. If i = d, then F is p-type, so we assume otherwise.

One has

F(G(x)) = ay(b,x® + ... + bjxj)d + o+ a;(b,x® + ... + bjxj)i (mod p).

Note that in the expansion of F(G(x)) the monomial aib;.x"f is the monomial
of the least degree whose coefficient has zero p-adic valuation. Since FoG is
p-type, it follows that there has to be another monomial in the expansion of
F(G(x)) with coefficient of zero p-adic valuation and whose degree is still ij.

However, any monomial in the expansion of a;(b,x® + ... + b jxj )k where k is
such that i < k < d must be of degree at least kj > ij. Therefore,i = d and F
is p-type.

Based on the argument above, one has

.d
F(G(x)) = ag(b,x® + ...+ bjx’)  (mod p).
Since FoG is p-type, this must yield that j = e, hence G is p-type. (]
We are now in a place to prove the main result of this section.

Theorem 2.7. If f(x) € Q[x] is not p-type but eventually p-type, then f(x) =
axP” + ph(x) + b € Q[x] for some a,b € Q, h € Q[x] with vp(@) = v,(b) =0,
deg(h) < p™ and v, (h) > 0.

Proof. Assume f(x) = ayx? + ... + a, so that f(x) is p-type for some n > 1.
We will show that v,(f) = 0. It is obvious that v,(ay) = 0, hence v,(f) < 0.
We assume that v,(f) < 0.

The polynomial f"(x)— f"(0) is clearly p-type. Given that f divides f"(x)—
f"(0)and v, (%) <0, as the p-adic valuation of the leading coefficient
of f™(x) — f™(0) is 0, we obtain that 0 = v, (f"(x) — f"(0)) = v,(f(x)) +
v, (f"(X)—f"(O)

F)

Since f"(x) is p-type, we must have v, (f"~(x)) = 0. By Lemma 2.6, the
polynomials f (x + f"71(0)) and f"!(x) — f"~1(0) are p-type. Moreover,
f1(x + f(0)) and f(x) — f(0) are p-type. It follows that vp(ag) = 0, else
f is p-type. Therefore, f(x) = azx? + a, (mod p). In a similar fashion,

v,(f"71(0)) = 0. Now, knowing that f (x + f"71(0)) = a4(x +f”_1(0))d +
ay = azx® (mod p), we must have

) < 0, hence a contradiction. Thus, v,(f(x) = 0.

v, (ad(fn—l(()))d + ao) >1, and v, ((i)) >1forall0 <k <d.

In view of Kummer’s Theorem, [5, Definition 1.2], the latter condition implies
that d = p™ for some m > 1. In conclusion, if f is not p-type but eventually
p-type, then f(x) = apmxpm + ap (mod p) where v,(ay) = vp(apm) = 0 as
desired. O
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If a polynomial f is not p-type but is eventually p-type, one is interested
in the least integer n > 1 such that f" is p-type. The following proposition
identifies such a minimal iterate.

Proposition 2.8. Suppose f(x) = axP" + ph(x) + b € Q[x] is such that
vp(a) = v,(b) = 0, deg(h) < p™ and v,(h) > 0. Assume that f(x) is an
eventually p-type polynomial. Then the least integer n > 1 such that f" is
p-type is determined as follows:

a) n=pifa=1 (mod p)
b) n = ord,(a) otherwise.
We need the following lemma to prove Proposition 2.8.

Lemma 2.9. Suppose f(x) = ax?" + ph(x) + b € Q[x] is such that vp(a) =
vp(b) = 0, deg(h) < p™ and v,(h) > 0. Then f"(x) = a"x?"" + b Y| d
(mod p) for any n > 1. In particular, f"(0) = b Zl.”z_ol a' (mod p).

Proof. A simple induction argument shows that

) = f(f"(x)

n—1 P

= a| a"xP™" + Z atb| +b
i=0

n
= g™ 1xP"" 4 b D.al (mod p). O

i=0
Proof of Proposition 2.8. By Lemma 2.9, if a = 1 (mod p), then fP(0) =
-1 . k-1 ; k_1
Zf:o b = pb = 0 (mod p); otherwise f*(0) = b, _ a' = b(2—1) =0
(mod p). In either case, it is obvious that the specified n is the smallest such
integer. O

We end this section with an example.

Example 2.10. Consider
5
f(x)=2x5+?x+7

Note that ords(2) = 4. One may see that f(x) = 2x° + 2 (mod 5), f2(x) =
4x% +1 (mod 5), f3(x) = 3x'?°+4 (mod 5) and f*(x) = x°%° (mod 5). Thus,
although f is not 5-type, it is eventually 5-type, and f* is 5-type.

3. p"-Pure polynomials

In this section, we introduce p"-pure polynomials, r > 1. We show that the
composition of two p"-pure polynomials is also p"-pure. Also, we prove that if
f is a p"-pure polynomial and g is p-type, then under certain conditions fog is
p"-pure. First, we define what a pure polynomial is.
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Definition 3.1. [14] A polynomial f(x) = azx% + az_; x4 ' + ... + ay € Q[x]
is said to be p"-pure for some prime p and some r > 1, if it satisfies all the
following conditions

ii) vp(ap) =r,
i) 29 s T forall1 <i<d-—1.
d—i d
It is clear that a p"-pure polynomial is p-type.
The previous definition can be interpreted using Newton polygons. We recall
the definition of a Newton polygon.

Definition 3.2. [21, Section 2.2.1] Let f(x) = azx? + ... + a; € Q[x] with
agay # 0. For a prime p, suppose o; = vp(al-). The Newton Polygon of f with
respect to p is constructed as follows:

i) Define S :={(0,ay),...,(d — i, ), ..., (d, oxp)}.

ii) Consider the lower convex hull of S to be P, = (0, ay), ..., P, = (d, ).

iii) Construct a set of broken lines PyP;, ..., P,_, P;.

iv) Mark the lattice points (points with integer coordinates) on the broken
lines Py = Qy, ..., P, = Q,,,. They are called the vertices of the Newton
polygon.

v) The broken lines joining the vertices QyQy, ... , Q;4s—1 Q4 are the sides
of the Newton polygon.

Note that condition (iii) in Definition 3.1 is equivalent to saying that the New-
ton polygon of a p"-pure polynomial consists of exactly one line segment joining
(0,0) and (d, r). The family of p"-Eisenstein polynomials provide an example
of irreducible p”-pure polynomials. However, a pure polynomial is not always
irreducible; consider the following example.

Example 3.3. The polynomial f(x) = x* + 4 = (x?> — 2x + 2)(x? + 2x + 2) is
22-pure but reducible over Q.

4

0

0 1 2 3 4

FIGURE 1. The polynomial f(x) is 22-pure but reducible over
Q.
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Nevertheless, if a p"-pure polynomial satisfies Dumas criterion, then it must
be irreducible over Q.

Definition 3.4. A p”-pure polynomial of degree d is called p"-Dumas polyno-
mial whenever ged(d, r) = 1.

In fact, Dumas proved the irreducibility of the aforementioned family in [9]
and this is why it is sometimes called the Dumas criterion. It is easy to see that
the Eisenstein criterion is a special case of the Dumas criterion with r = 1. For
p-Eisenstein polynomials, one can notice that all the iterates of a p-Eisenstein
polynomial are p-Eisenstein. More generally, any p-Eisenstein polynomial en-
joys the following property.

Proposition 3.5. Let g, f € Q[x]. If g is p-Eisenstein and deg(g) > 1 for some
prime p and f is p-type, then gof is p-Eisenstein.
Proof. The proof is straightforward and hence omitted. O

Next, we show that the property in Proposition 3.5 holds for certain families
of p"-pure polynomials. Nevertheless, some preparation is needed.

Lemma 3.6. Suppose f is a p”-pure polynomial of degree d and let c € Q be
such that v,(c) > 2. Then v,(f(c)) =r.

Proof. We set s := v,(c). Suppose f(x) = agx?® + ... + ay is a p"-pure polyno-
mial. Assume that v,(c) = s > 2. We see that Vp(adcd) =ds > d(g) = r. Also,
vp(aici) = v,(a;) +iswhere 0 < i < d. Since f is p"-pure, one has v,(a;) +is >
(d—i)g +i§ = r. Given thatv,(a,) = r and that f(c) = aget+...+act+...+ap,
it follows that v,(f(c)) = r. O

Next, we extend Proposition 3.5 to p"-pure polynomials in the following the-
orem.

Theorem 3.7. Let f € Q[x] be a p"-pure polynomial of degree d > 1. Suppose
that g(x) = bx® + p*h(x) € Q[x], e > 1, is such that v,(b) = 0, deg(h) < e —1,
v,(h) > 0and s > 2. Then fog is p"-pure.

Proof. Let f(x) = agx® + ... + @;x' + ... + a, be p"-pure. To show that fog
is p"-pure, we need to prove that fog satisfies the conditions of Definition 3.1.
Since the p-adic valuation of the leading coefficients of both f and g is zero, the
leading coefficient of fog has zero p-adic valuation, hence i) of Definition 3.1 is
satisfied. In view of Lemma 3.6, as v,,(g(0)) > s > 3, one sees that v,(f(g(0)) =
r, hence ii) is satisfied.

We are now left with showing that fog satisfies iii) of Definition 3.1. We will
show that every monomial in the expansion of f(g(x)) satisfies iii). In fact, a
monomial in the expansion of

d
aubx* + ph()’ = ag 3] (4)6x) ™ (R
k=0
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de—ek+ka

is of the form cg,_ ok 4 kaX , where

Ciomokika = (Z)adbd‘k p*h,,  forsome h, € Qwithv,(h,) >0,

and 0 < a < e — 1. One may see that v,(Cge—ck+ka) = ks > k%. We claim
that v,(Cge—ek+ka) = [de — (de — ek + ka)]r/(de), since otherwise [de — (de —
ek + ka)lr/(de) > kr/d, i.e.,e — a > e which contradicts the fact that a is a
nonnegative integer. A

In a similar fashion, a monomial in the expansion of a;(bx* + psh(x))l =
@Y, (l’{)(bxe)i_k(psh(x))k, 0 < i < d,is of the form t;,_jxqx'¢ ¢+ e,
where

ook = (;{)aibi‘kpSkha, for some h,, € Q with v,(hy) > 0,

and 0 < a < e — 1. One sees that v, (fie_ekika) > Vp(@) + ks > vy(a) + k%.

Again, we claim that v (tie_ek1ke) > [de—(ie—ek+ka)]r/(de), since otherwise

we use the fact that f is p"-pure, in particular @) Z, to obtain that [de —

(ie — ek + ka)lr/(de) > v,(a;) + kr/d > (d —i+ E)r/d. The latter leads to the
contradiction ka < 0.
This concludes the proof as fog satisfies iii) of Definition 3.1 (]

In particular, if d > r in the previous theorem, we get the following interest-
ing corollary.

Corollary 3.8. Let f be a p"-pure polynomial of degree d > r. If g is a p-type
polynomial, then fog is p"-pure.

Proof. This is a special case of Theorem 3.7 with s > 1 > 2. U

We now prove the following lemma.

Lemma 3.9 (Purity Lemma). Let f be a p"-pure polynomial of degree d > 1
and g(x) = bx', t > 1, be a monomial in Q[x]. Then the following statements
hold true.

i) If v,(b) = 0, then fog is p"-pure thus there exists some ¢ € Q such
that gof + cis p"-pure.

i) 1f 222
e—t

x9€ + gof + cis p"-pure.

> . for some e > t, thus there exists some ¢ € Q such that
e

Proof. Let f(x) = agx? + ... + ag and v,,(b) = 0. Since

d
f(bx) = a;bixt,
i=0

it is easily seen that the p-adic valuation of the leading coefficient is zero and
the p-adic valuation of the constant coefficient is v,(ay) = r. Moreover, f (bx")
is a polynomial of degree dt. Indeed, for any 0 < i < d, one observes that
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vp(aibi) = v,(a;). Since La‘) > L, it follows that M > _, hence the first
d—i d d dt

t—it
part of i) is proved. l

t
We now write g(f(x)) = b(adxd + ..+ ao) . A monomial in the latter ex-
pansion is of the form

d
bh H a;%x"%, for some h € Q with v,(h) > 0,
i=0

where 3. q; =t. If 1 < ). ig; < dt, one observes that

d d d
. r .
Yp H a?l = Z qivp(a;) 2 2 Qia(d —i).
i=0 i=0 i=0
In order to show that such a monomial satisfies condition iii) in Definition 3.1,

one must have
Yp (Hfzo aj i) r
dt — %, iq; zar
We assume on the contrary that the latter inequality does not hold. In particu-
lar, one has
2 Qig(d — 1) s (IT,af)

dt— . iq; ~ dt =2 ig; dt’

Thus, one obtains

- <
dt — Zi 1q;

Given that ). q; = t, we get the following contradiction

dt — Zi iq; 1
t

Zi ql(d ) l
N~ . <7

1=—2=t 2 ¢
dt—ziiqi

It is easy to see that the p-adic valuation of the constant coefficient of b(f (x))t —
bf(0) + p’ is exactly r. Thus, g(f(x)) — b(f(0))' + p” is p"-pure.
For ii), given that v:—fbt) > g for some e > t,if 1 < 3. ig; < dt, then one gets

d
qi
vp|b H a;
i=0

d
vp(b) + D qivp(a;)

i=0

d
r r .
Zg(e—t)‘l‘zcba(d—l)
i=0
r r
=g(e—t)+rt—52iql—.

i=0
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Again one claims that x% + g(f(x)) satisfies condition iii) in Definition 3.1.
More precisely, we will show that v, (b H?zl af") > (de — ), ig;)r/(de), since
otherwise
d .
r r<. _(de=Xig)r
E(e—t)+rt—EZlqi < 4

i=0
Simplification yields the following contradiction Zi ig; > dt.
‘We note that for the monomial bafix‘“ , one has

vp(ba') _ vp(b) vp(ba')

> —, hence

e—t e—t e de—dt = de’
It follows that the polynomial x%¢ + g(f(x)) satisfies i) and iii) of Definition 3.1.
Therefore, x% + g(f(x)) — g(f(0)) + p" is a p"-pure polynomial. (]

We are now ready to prove the following result. If the polynomial g € Q[x]
in Theorem 3.7 is p"-pure, we conclude that p”-pure polynomials are closed
under composition.

Theorem 3.10. If f,g € Q[x] are p"-pure with deg(f) > 1, then fog is p’-
pure.

Proof. Suppose f(x) = agx® + ... + ao and g(x) = b,x° + ... + by are p’-pure
polynomials with d > 1 and e > 1. Note each monomial in the expansion of
a;(bex® + ... + bo)i, 0 < i < d,satisfiesiii) in Definition 3.1. Fori = d, the result
follows by part i) of Lemma 3.9 while if 0 < i < d, then the result follows by
part ii) of the same lemma. It is obvious that the p-adic valuation of the leading
coefficient is zero. Finally, by Lemma 3.6, since d > 1 and v,(g(0)) = r > 2,

then, v,(f(g(0))) = r and fog is a p"-pure polynomial. O
The following corollary follows directly from Theorem 3.10.

Corollary 3.11. If f isa p"-pure polynomial with deg f > 1, then f" is p"-pure
foralln > 1.

Theorem 3.7 and Theorem 3.10 can be used to prove p"-purity of fog for
different classes of pairs of polynomials f, g. In other words, for given polyno-
mials f, g, Theorem 3.7 can be successfully used to show that fog is p"-pure
whereas either f or g fails to satisfy the hypothesis of Theorem 3.10, and vice
versa. This can be illustrated by the following example.

Example 3.12. The following polynomials

f(x) =x? + 32,

g(x) = x*+4x3+32
are both 2°-Dumas. The polynomial

f(g(x) = x® + 8x7 + 16x° + 64x* 4 256x3 + 1056 = x® + 8x”7 + 16x® (mod 2°)
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is 2°-Dumas too as %ﬂ? % > g. This is a direct application of Theorem 3.10.
However, if we try to apply Theorem 3.7, then d = deg(f) = 2,7 = 5,505 > 2
However, g(x) = x* + 4x3 # x* (mod 23). Thus, Theorem 3.7 fails to prove
fogis 2°-pure in this case.

Now, if we introduce the polynomial

h(x) = x*+38,
we get h(x) = x* (mod 23). According to Theorem 3.7, foh is 2°-Dumas. In
fact,

f(h(x)) = x® +16x* + 96

and v, (f(h(0))) = v,(96) = 5and % = % > 2 Nevertheless, h is not 23-pure

and Theorem 3.10 can not be appliec_l.

4. Dynamical irreducibility and eventual stability of families of
polynomials

In this section, we will discuss several applications of Theorems 3.7 and
3.10 to arithmetic dynamics. In the previous section, we introduced Dumas
polynomials as a class of irreducible pure polynomials. The following corollary
follows directly from Theorem 3.10.

Corollary 4.1. Let f and g be p"-Dumas polynomials in Q[x], then fogis p"-
Dumas. In particular, a p"-Dumas polynomial is dynamically irreducible over

Q.

Example 4.2. Consider the following trinomial in Q[x]

k

f(x) = x% + ax?1 + p*; disodd, k > 0, and vp(a) > %

vp(a)

Note that @D
and thus dynamically irreducible over Q.

k
=v,(a) > % and ged(2%, d) = 1. In this case, f is pzk-Dumas

Corollary 4.3. Let g be a p"-Dumas polynomial of degree d and f(x) = ax® +
p°h(x) € Q[x]be such that h(x) € Q[x]withv,(a) = 0,deg(h) <e,v,(h) 20,
and s > %. If gcd(r,e) = 1, then g"of™ is irreducible for all n,m > 1. In
particular, g" is f-stable for any n > 1.

Proof. By Corollary 4.1, g" is p"-Dumas for any n > 1. Also, f™(x) = bx¢"
(mod p*) where b € Q is such that v,(b) = 0. Thus, f™ is p-type. By virtue of
Theorem 3.7, since gcd(r, e) = 1, one has g"o f™ is p"-Dumas. O
Example 4.4. Set

F) = xY +27x12 + 27x1° + 162x7 + 729x° + 4374

= (x7 4+ 27)(x° + 9)(x° + 18).
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Note that g;(x) = x’ + 27 is 33-Dumas with ;—1 = % <1,gkx) =x>+9is
1

32-Dumas with ;—2 = g < 1and g;3(x) = x> + 18 is 3>-Dumas with ;—3 = 2 <1.
2 3
This implies that s;,s,,53 > 1. Since f(x) = x!7 (mod 3) and gcd(17,7) =
ged(17,5) = 1, by Corollary 4.3, the polynomials g;, g, and g5 are f-stable. In
other words, for any n > 1, the number of irreducible factors of f" is exactly 3.
The previous example motivates the following corollary.
Corollary 4.5. Let f(x) = ax® + pSh(x) € Q[x] be such that h(x) € Q[x]
with v,(a) = 0, deg(h) < e, v,(h) > 0and s > 1. For n > 1, assume that
fM(x) = g1(x)gy(x) -+ g,(x) where g; is irreducible of degree d; > 1,1 <i <t.
Ifforall1 <i <t, the following conditions hold
i) g; is p"i-Dumas for some r; > 1,
11) ng(ri5 e) = 15
iii) s> ;—

then g;,8,,...,8; are all f-stable. In fact, for any N > n, the number of irre-
ducible factors of fV is exactly t. Moreover, the irreducible factors G; of fN are
p'i-Dumas, 1 <i < t.

Proof. Inview of Corollary 4.3, one sees that g/', 1 < i <t, are f-stable for any
n > 1. In particular, for any N > n, one obtains

N=rEN =g (N & () g (YY),
where each factor g; (fN") isirreducible. Moreover, given that g; is p"i-Dumas

and ged(r;, d;) = 1, Theorem 3.7 asserts that g; (fN=") is p'i-Dumas, 1 < i <
t. [l

One may drop the condition “s > 2” in Corollary 4.3 to obtain the following
result.

Corollary 4.6. Let g be a p"-Dumas polynomial of degree d and f(x) = ax® +
p°h(x) € Q[x]be such that h(x) € Q[x] withv,(a) = 0,deg(h) <e,v,(h) >0,
and gcd(r, e) = 1. There exists an integer N > 1 such that for all n > N, g"o f*
is irreducible for all k > 1. In particular, g" is f-stable for all n > N.

Proof. Let N = min{n : s > dr—n}. For any n > N, g" is p"-Dumas of degree
d" by Corollary 4.1. Since s > dLN > dLn, Corollary 4.3 implies that g"of¥ is
p'-Dumas foralln > Nand k > 1. O

In Corollary 4.6, when n < N, the irreducibility of g"of is not guaranteed.
We consider the following example.

Example 4.7. The following polynomials are 33-Dumas and 3-type, respec-
tively

g(x) = x? + 27,
f(x)=x%+3x+3.
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We notice that the polynomial f does not satisfy the hypothesis of Corollary
4.3. Based on Corollary 4.6, N = min{n : 1 > 2%} = 2. Therefore, g"of is
33-Dumas for all n > 2. Indeed,

(g20f)(x) = x® + 12x7 + 66x° + 54x° + 27x* + 27x? + 27
is 33-Dumas and by Corollary 4.1, g"of is 33>-Dumas. Yet,
gof = (x2+3)(x? + 6x + 12)
is reducible.

We have discussed the applications of Theorems 3.7 and 3.10 in constructing
p"-Dumas polynomials. We recall that p"-pure polynomials are not always ir-
reducible. This motivates questioning the existence of an upper bound on the
number of irreducible factors of p"-pure polynomials.

Proposition 4.8. [14, Theorem 1.2] Let f be a p"-pure polynomial of degree
d in Q[x]. Then f has at most gcd(d, r) irreducible factors over Q and each

irreducible factor has degree at least

ged(d,r)”

Dynamically, we can conclude the following result regarding the upper bound
on the number of irreducible factors of an iteration of a p”"-pure polynomial.

Theorem 4.9. Suppose that f € Q[x] is a p"-pure polynomial of degree d.
Then for any n > 1, the iterate f" has at most gcd(d", r) irreducible factors

over Q and each irreducible factor has degree at least . Moreover, f is

d
ged(dn,r)
eventually stable over Q.

Proof. By Corollary 3.11, the iterate " is p"-pure and by Proposition 4.8 it has
at most gcd(d",r) irreducible factors over Q and each irreducible factor has

. Moreover, let ¢, = gcd(d",r) and define k,, to be the

degree at least
ged(dn,r)

number of irreducible factors of f”. Observe that the set {cy, ..., c,, ...} is finite
as ¢, < r. Therefore, there must exist an N > 1 such that for all n > N, one has
ged(d™,r) = ¢, = cy = ged(d™, r). In particular, one obtains thatk,, < ¢, < cy
forall n > 1. It follows that the number of irreducible factors k,, of " is at most
cy for all n > 1, hence f is eventually stable. O

Observe that Corollary 1.7 in [11] (except the case when ¢ = 1) follows as a
corollary of Theorem 4.9 and Corollary 4.1

Corollary 4.10. Let f(x) = x¢ + ¢ € Q[x]. Then f is eventually stable when-
ever ¢ # 0 is not the reciprocal of an integer.

Proof. letc = % such that a # +1, b # 0 and gcd(a,b) = 1. There exists a

prime p such that v,(c) > 0. By Theorem 4.9, f is p”r©-pure, hence eventually
stable. O
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Remark 4.1. In Corollary 4.10, any iterate f" has at most max{ged(v,(c), d™) :
m > 1} irreducible factors. In particular, if ged(v,(c), d) = 1, then [ is dynam-
ically irreducible by Corollary 4.1.

The following definition was introduced in [12] for polynomials defined over
a finite field.

Definition 4.11. Let I be a set of polynomials in Q[x] with positive degrees.
We say I is a dynamically irreducible set in Q[x] if any polynomial formed by
composition of polynomials in I is irreducible over Q.

One notices that our work up to this point has focused on dynamically ir-
reducible sets of the form I = {f} where f € Q[x]. The set of p-Eisenstein
polynomials for a particular prime p of degree at least 2 is another example of
a dynamically irreducible set. In light of our results, we display the following
example.

Example 4.12. Let p and g be rational primes. Define
E(p) :={f € Q[x] : fis p-Eisenstein, p  deg(f) and deg(f) > 1}.
The set E(p) is dynamically irreducible over Q. Also, define
D(p,q) :={f € Q[x] : fis p?-Dumas with deg(f) > g* for some k > 1}.

Infact, D(p, q) is a dynamically irreducible set because if f and g are qu—Dumas
and p9"-Dumas respectively, Corollary 3.8 ensures that the composition fog
(respectively, gof) is qu -Dumas (respectively, p?" -Dumas).

Moreover, the set E(p) U D(p, q) is also dynamically irreducible because if

f € D(p, q) (respectively, f € E(p)) and g € E(p) (respectively, g € D(p,q)),
then fog € D(p, q) (respectively, fog € E(p)), see Corollary 3.8 (respectively,
Proposition 3.5).

We can extend this definition further for eventually stable polynomials.

Definition 4.13. We say S is an eventually stable set ' in Q[x] if there exists
¢ > 1 such that the number of irreducible factors of any polynomial formed by
composition of polynomials in S is at most c.

Based on our results, an example of an eventually stable set is the following.
Example 4.14. Let p be a prime and R be a finite set of positive integers. Define
S(p,R) :={f € Q[x] : fis p"-pure for some r € R such that deg(f) > r}.

If f is p"-pure and g is p"2-pure such that deg(f) > r; and deg(g) > r,, we
know from Corollary 3.8 that the composition fog (respectively, gof) is p"-
pure (respectively, p"2-pure). Also, Theorem 3.10 ensures that the iterates of f
(respectively, g) are p"i-pure (respectively, p"2-pure). It follows that the num-
ber of irreducible factors of any arbitrary composition is at most max(R), see
Proposition 4.8.

LThanks to Wade Hindes for suggesting this definition.
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A consequence of Definition 4.13 and Corollary 4.6 is the following.

Corollary 4.15. For a fixed prime p, let F be any set of p'/-pure polynomials
Jf such that the set {r; : f € F}is finite. Then there exists an N > 1 such that
the set FN := {fN : f € F}is an eventually stable set. In particular, If all
polynomials f € F are p'/-Dumas polynomials such that ged (deg(f), rg) =1
for any f,g € F, then FY is a dynamically irreducible set.

Proof. Defines; :=v,(f (x)—ax® ) where a is the leading coefficient of f € F
whose degree is d;. Set r = max{r; : f € F}, s = min{s; : f € F}and
d = min{d; : f € F}. Let N > 1 be the least integer such that s > dLN.

Note that for any f € F,s; > 5 > L~ > I Indeed, the set FN = {fN :

ayv = 4y
f € F}is an eventually stable set and the number of irreducible factors of any
arbitrary composition is at most r. Suppose fNoG is an arbitrary composition
of polynomials in FN where the degree of G is D. We know that fN is p/-
pure by Corollary 3.11. Assume a = v,(G(x)) — bxP such that b is the leading

coefficient of G. We have o > s > dLN > ;—i,. Using Theorem 3.7, fNoG is p'’-
B
pure with at most ged(r s, d? D) < ry < rirreducible factors and hence F N is

an eventually stable set. If any f° € F is p/-Dumas and ged(dy, r,) = 1 for any
g € F, then it is easy to see that the degree of fNoG is relatively prime to r, for

any f,g € F. It follows that fNoG is p'/-Dumas. Thus, FN is a dynamically
irreducible set. O

5. Eventually p”"-pure polynomials

In this section, we discuss polynomials that are not p"-pure but one of the
iterates is p"-pure. Consider the following example.

Example 5.1. The polynomial

39x2  72x 31
— 3 _ = e T
fx)=—x 7 7 35

is not p-type for any prime p. Yet,
54x® N 1287x7 | 56607x°  53919x°  36864x*

2 — 9
Fr)=x"+— 29 T 1715 1715 245
| 696420x7 | 1465479x  356184x _ 1090557
8575 8575 1715 6125

is 33-pure.
The previous example motivates the following definition.

Definition 5.2. Let p be a prime and r be a positive integer. A polynomial
f € Q[x] of degree d is said to be eventually p"-pure if f" is p"-pure for some
n > 1. Similarly, f is eventually p"-Dumas if f" is p"-Dumas for some n > 1.
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The following corollary follows directly from Theorem 4.9 and [20, Lemma
1.2].

Corollary 5.3. An eventually p”-pure polynomial is eventually stable. In par-
ticular, an eventually p"-Dumas polynomial is dynamically irreducible.

Our aim is to provide a complete characterization of eventually p”-pure poly-
nomials of degree d > r. First, we introduce the following proposition.

Proposition 5.4. Let r be a positive integer and p be a prime. Suppose f,g
are polynomials in Q[x] with degrees d and e respectively. If fog is a p"-pure
polynomial, where d > r, and g is p-type, then f (x + g(0)) is p"-pure.

Proof. In order to use Lemma 2.6, we shall show that v,(f) = 0. Assume that
f) = ax® +cg 1 x¥ + .+ ¢;x" + ... + g is such that v,(¢;) < 0 with i being
the largest such integer, 0 <i < d — 1. We write g(x) = b,x® + p*G(x) for some
G € Q[x] withv,(G) = 0,v,(b,) = 0 and s > 1. One sees that

f(g(x)) = a(b,x® + psG(x))d + ...+ c;(bx® + pSG(x))i + ..+

The coefficient ¢;b] has negative p-adic valuation, yet there is no monomial of
any expansion of f(g(x)) that has degree ei and a coefficient of negative p-adic
valuation. Thus, such ¢; does not exist and v,,(f) = 0. Let h(x) = f(x + g(0)).
By Lemma 2.6, h is p-type. Moreover, v,(h(0)) = v,(f(g(0)) = r, see Lemma
3.6. So we are left with showing that h satisfies iii) in Definition 3.1.

Suppose h(x) = azx% + ...+ ay and g(x) — g(0) = b,x°® + ... + b; x. We assume
that k, 0 < k < d, is the maximum positive integer such that a, does not satisfy

veen . v,(a .
iii), i.e., p(@) < L. Given that
d—k d

f(g(x)) = h(g(x) —g(0))

k
= ag(Bex® + oo + by0) " F oo+ (BoX® + oo + b)) + o + g,

3 D) . o, VY,
the monomial akbfxe" doesn’t satisfy condition iii) as L"]z < dL. Yet, when

added with monomials of the same degree, the sum shouelaesatisfyeiii) as fogis
p"-pure. Thus, there has to be other monomials in the expansion of h(g(x) —

g(0)) of degree ek whose coefficients have p-adic valuation less than @l For

J» 0 < j <k, the monomials in the expansion of a;(bx® + ... + blx)j have de-

vy(a;) r

grees strictly less than ek. If k < j < d, then e > n and by Lemma 3.9,

2 > — for any monomial cx! in the expansion of a;(b,x¢ + ... + blx)j . There-

t—de de . . Jhe

fore, such k does not exist and f(x + g(0)) is p"-pure. O
Before introducing the main theorem of this section, we first prove the fol-

lowing lemma.

Lemma 5.5. If f is a p"-pure polynomial and ¢ € Q is such that v,(c) < 0,
then v,(f(c)) < 0.
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Proof. Let f(x) = Zil a;x' be a p"-pure polynomial. We claim that

ogr&lﬁl{”l’(ai) + ivp(e)} > dv, (o),
hence v, (fo) = dv,(c) < 0. In order to prove this claim, we note that for any
0 <i < dwehave

vp(a) +ivy(c) > g(d —i)+ivy(e) =r— % +ivy(c) > r— % +dv,(c) > dv,(©),
hence the result. (]

We recall that we write ord,(a) for the multiplicative order of a modulo p.

Theorem 5.6. Let r be a positive integer and p be a prime. Suppose f(x) =
agx® + ... + a; € Q[x] is not p"-pure and d > r. Then f(x) is eventually
p"-pure if and only if the following conditions hold

i) d = p™ forsomem > 1,
i) f(x)=ayx?+ ay (mod p) such that v,(ag) = v,(ag) =0,
iii) f(x + c) is p"-pure for some c € Q.
Moreover, the least integer n > 1 such that f" is p"-pure is given by n = p if
ag =1 (mod p); or n = ord,(ay) otherwise.

Proof. Since f is not p-type but eventually p-type, it follows that d = p™ for
some m > 1and f(x) = azx? + a, (mod p) such that v,(ag) = vp(ag) = 0, see
Theorem 2.7. Since f*(x) = f (f"(x)) is p"-pure, therefore by Proposition
5.4, one has f (x + f771(0)) is p"-pure.

Conversely, suppose f satisfies conditions i), ii) and iii) in the statement of
the theorem. Set g(x) = f(x + ¢). Since g is p"-pure, it follows that g is p-type.
Theorem 2.7 together with ii) imply the existence of an n > 1 such that f" is
p-type. Note that /7 1(x) = ax® + f71(0) (mod p) where v, (f"71(0)) =0,
see Lemma 2.9. Given that v, (g (f"~(0) — ¢)) = v, (f"(0)) = r > Oand that g
is p"-pure, we must have v,(f "=1(0)—c¢) > 0, see Lemma 5.5. This implies that
" Y(x)—cisa p-type polynomial. Using Corollary 3.8, f*(x) = g (f"1(x) —¢)
is p"-pure. Finally, the value of n is given by Proposition 2.8. O

The previous Theorem gives rise to the following family of dynamically irre-
ducible polynomials.

Corollary 5.7. Let r > 1 be an integer and p be a rational prime. Let f(x) =
agx? + ... + ag € Q[x], d > r, be such that f is not p"-Dumas.

Thereis aninteger n > 2 such that f" is p"-Dumas if and only if the following
conditions hold

i) d = p™, for some m > 1,
i) f(x) = azx? + ay (mod p) with vp(ag) = vp(ag) =0,
iii) f(x + ¢) is p"-Dumas for some ¢ € Q.
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Example 5.8. Consider the family of polynomials
f)=0C+ a)pm +b€Q[x]; vp(a)>0and1<v,(b)<p™
In view of Theorem 5.6, f(x) is eventually p"-pure where r = v,(b). In addi-
tion, f(x) is eventually stable over @, see Corollary 5.3. In fact, if
ged (p™,vy(b)) = 1,
then f is eventually p"-Dumas by Corollary 5.7, hence f is dynamically irre-

ducible; otherwise, the number of irreducible factors of any iterate of f is at
most max{ged (p™™,v,(b)) : n > 1}.

In light of Theorem 5.6 and Corollary 5.7, it is reasonable to ask the following
question.

Question 5.9. If f € Z[x] is eventually stable (respectively, dynamically ir-
reducible) over Q, is f(x + c) eventually stable (respectively, dynamically irre-
ducible) for any ¢ € Z?

The following examples provide a negative answer to the latter question.
Example 5.10. The polynomial
fxX)=x*+5x+5

is 5-Eisenstein, hence dynamically irreducible over Q. However, g(x) = f(x —
3) = x?> — x — 1 is 3-newly reducible. More precisely, g?(x) is irreducible, but
Bx)=(x*=3x3+4x —1D(x* —x3=3x2 +x +1).

Example 5.11. The polynomial
fx)=x*+8x+12
is 22-pure, hence eventually stable by Corollary 4.9. However,
f(x=3)=x2+2x-3

is not eventually stable as it belongs to the family f}(x) = x> + kx — (k +1) €
Z|x] which is not eventually stable because 0 is periodic under f, see [15].

Now, as an application of Theorem 5.6. we present a family of polynomials
that answers Question 5.9 positively.

Corollary 5.12. Let f € Z[x] be a p"-pure (respectively, p"-Dumas) polyno-
mial of degree p™ > r. The polynomial f(x + c) is eventually stable (respec-
tively, dynamically irreducible) for all c € Z. In general, if f € Q[x]isa
p"-pure (respectively, p"-Dumas) polynomial of degree p™ > r, then f(x + ¢)
is eventually stable (respectively, dynamically irreducible) for all ¢ € Q with
vp(c) 2 0.

Proof. Let f € Q[x] be a p"-pure (respectively, p"-Dumas) of degree p” > r
and ¢ € Q. Ifv,(c) > 0, then x + ¢ is a p-type polynomial and f(x + ¢) is p-
pure (respectively, p"-Dumas), see Theorem 3.7 (respectively, Corollary 4.3). If
v,(c) = 0, then g(x) = f(x+c) satisfies conditions i), ii) and iii) in Theorem 5.6
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(respectively, Corollary 5.7) and thus g is eventually p"-pure (respectively, p”-
Dumas). O

Note that we only dealt with eventually p"-pure polynomials with degree
d > r. This suggests the following question.

Question 5.13. If f is a p"-pure polynomial with degree p™ < r,is f(x + ¢)
eventually p"-pure for any rational ¢ with v,(c) > 0?

In fact, the polynomial f(x) in Example 5.11 is a 22-pure polynomial with
deg f = 2 < 22, yet f(x — 3) is not eventually pure as it is not eventually stable.
Next, the following result is an application of Corollary 4.1 and Corollary 5.7.

Corollary 5.14. Let p be a prime. Suppose f, g are monic polynomials in Q[x]
such that g is the reduction of g modulo p and deg(g) = deg(g) = e. If f is
eventually p"-Dumas for some iteration n > 1, g is irreducible in F,[x] and
gcd (e, r) = 1, then f*"og is irreducible in Q[x] for all k > 1. In addition, if g
is dynamically irreducible in Fp[x], then f knogm is irreducible in Q[x] for all
k,m > 1and f*" is g-stable for all k > 1 in Q[x].

The proof of the previous Corollary depends on a special case of the general-
ized Schonemann polynomial discussed in [4]. We present this special case as
a lemma.

Lemma5.15. Let A and g be polynomialsin Q[x]. Assume that the g-expansion
of the polynomial A in Q[x] is given by

A=aug?+ ..+ a8+ a,.
for some ay, ..., ag € Q[x]. Suppose there exists a prime p such that:

(a) The reduction of g modulo p is irreducible over [,
() aq(x) =1,

Vp(ao)

© %ZTMforalusl'Sd—l,

—i
(d) ged (v,(ao),d) =1.
Then A is irreducible in Q[x].

We remark that if we force ay, ..., a4 to be constant polynomials and g(x) = x,
we deduce the monic case of Definition 3.4.

Proof of Corollary 5.14. Assume that f"(x) = x¢ + ... + a, is p"-Dumas for
some iterate n > 1. We write

A = f(g(x) = g0 + ag_18(0)4 + .. + a18(x) + ap.
By assumption, the polynomial f¥og satisfies the conditions in Lemma 5.15,
hence A(x) is irreducible in Q[x]. If k = 1 (respectively, k > 1), then by Corol-
lary 4.1 (respectively, Corollary 5.7), the polynomials f” (respectively, f*") are
p’-Dumas for all n > 1. It follows by Lemma 5.15, f"og (respectively, f<"og) is
irreducible for all n > 1. Finally, if g is dynamically irreducible over [, then,
fog™ (respectively, f<"og™) is irreducible for any n, m > 1. O
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The following is another result that combines irreducibility over finite fields
and irreducibility over number fields.

Corollary 5.16. Let f be a p"-Dumas polynomial, r > 1, and let a be a root of
f. Let g € Q[x] be such that the reduction g of g modulo p is irreducible over
Fp. Then g(x) — a is irreducible over the number field Q(a).

Proof. By Lemma 5.15, fog is irreducible over Q. By Capelli’s Lemma, [3,
Lemma 1], if « is a root of f, then the polynomial g(x) — a must be irreducible
over Q(a). O

We end this section with the following example.
Example 5.17. Consider the polynomial
g(x)=x>+1€Q[x].

We consider the polynomial g in F5[x]. Since —g(y) = 2 = §n(y) foralln > 2,
and 2 is a nonsquare in [3, it follows that g is dynamically irreducible over [F.
According to Corollary 5.14, if f € Q[x] is a monic 3"-Dumas polynomial for
somer > 1, then f"og™ € Q[x] is irreducible for all n, m > 1. Moreover, if f is
eventually 3"-Dumas, then by Theorem 5.6, the iterates f*P are 3"-Dumas for
all k > 1. It follows again by Corollary 5.14 that f*Pog™ is irreducible over Q.
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