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An unstable motivic null-Hopf relation

Xiaowen Dong

Abstract. We prove the unstable analogue of the relation 𝜂ℎ = ℎ𝜂 = 0 in
stable motivic homotopy theory, where 𝜂 is the first motivic Hopf map and
ℎ the hyperbolic plane. Using these relations we construct some non-trivial
examples of Toda brackets in unstable motivic homotopy theory.
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1. Introduction
This paper is a part of the author’s doctoral thesis [Don24] about Toda brack-

ets in unstable motivic homotopy theory. Throughout the paper, we work over
the base Spec ℤ. Let 𝒮mℤ denote the category of smooth schemes of finite type
over ℤ. This category is equipped with the Nisnevich topology in the sense of
[MV99]. The category of pointed motivic spaces is the category of pointed sim-
plicial presheaves on 𝒮mℤ. It is denoted by sPre(ℤ)∗. For our purpose, we will
use the 𝔸1-local injective model structure on sPre(ℤ)∗ which is developed in
[MV99]. The corresponding motivic homotopy category is denoted byℋ∙(ℤ).
Let 𝑆𝛼+(𝛽) denote the motivic sphere 𝑆𝛼 ∧ 𝔾𝛽

𝑚, where 𝑆1 is the simplicial
circle ∆1∕𝜕∆1 and 𝔾𝑚 the Tate circle based at 1. Maps from spheres to spheres
are indexed by the bidegree of the target. Suspension from the right with 𝔾𝑚
increases the weight (𝛽) by 1. Suspension from the left by the simplicial circle
𝑆1 increases the degree 𝛼 by 1. We would like to smash 𝑆1 from the left and
𝔾𝑚 from the right as motivic spheres are of the form 𝑆𝛼 ∧ 𝔾𝛽

𝑚. If we smash in
the other way around, we have to do some permutations to get spheres in the
standard form and this causes some technical subtleties. Let 𝜂1+(1) denote the
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first algebraic Hopf map from 𝑆1+(2) to 𝑆1+(1). Let 𝜖 ∶ 𝔾𝑚 → 𝔾𝑚 be given by
𝑥 ↦ 𝑥−1. Then, we define the hyperbolic plane ℎ1+(1) to be 11+(1) − 𝜖1+(1). Let
𝑞(1) ∶ 𝔾𝑚 → 𝔾𝑚 denote the map defined by 𝑥 ↦ 𝑥2.
The aim of this paper is to prove that the composites ℎ1+(2)◦𝜂1+(2) and

𝜂1+(2)◦ℎ1+(3) are 𝔸1-nullhomotopic. We note that these are the smallest bide-
grees for which the two composites are nullhomotopic. The corresponding
stable relation 𝜂ℎ = ℎ𝜂 = 0 was first proved by Morel [Mor04]. We also would
like to mention that some other stable null-Hopf relations were proved by Dug-
ger and Isaksen in [DuI13]. Our proof relies on themethods given by Cazanave
in [Caz12]. In particular, we have to construct explicit sequences of naive 𝔸1-
homotopies between certainmaps. The key point for thewhole proof is to show
that the relation 𝑞1+(1) = 11+(1) − 𝜖1+(1) holds (Proposition 5.3).
In the following, we give briefly the idea of the proof. The two morphisms

𝑞1+(1) and 11+(1) − 𝜖1+(1) are endomorphisms of 𝑆1 ∧ 𝔾𝑚. We consider now the
projective line ℙ1ℤ equipped with the base point ∞ ∶= [1 ∶ 0]. Using a suit-
able isomorphism between 𝑆1 ∧ 𝔾𝑚 and (ℙ1ℤ,∞) in the pointed 𝔸1-homotopy
category, we can transform these two morphisms into two endomorphisms of
(ℙ1ℤ,∞). Let [ℙ1ℤ, ℙ

1
ℤ]N be the set of pointed naive𝔸1-homotopy classes of poin-

ted scheme endomorphisms of (ℙ1ℤ,∞) (Definition 2.1). In Proposition 2.5,
we give a characterization of pointed scheme endomorphisms of (ℙ1ℤ,∞). In
Proposition 2.6, we give a characterization of pointed naive 𝔸1-homotopies of
pointed scheme endomorphisms of (ℙ1ℤ,∞). Letℋ∙(ℤ)(ℙ1ℤ, ℙ

1
ℤ) be the set of

endomorphisms of (ℙ1ℤ,∞) in the pointed 𝔸1-homotopy categoryℋ∙(ℤ). We
can equip [ℙ1ℤ, ℙ

1
ℤ]N with a monoid structure and denote its monoid operation

by ⊕N (Definition 2.7). Furthermore, via the chosen isomorphism between
𝑆1 ∧𝔾𝑚 and (ℙ1ℤ,∞), we can equip (ℙ1ℤ,∞)with a cogroup structure such that
ℋ∙(ℤ)(ℙ1ℤ, ℙ

1
ℤ) is a group. We denote the induced group operation by⊕𝔸1 . In

[Caz12, Appendix B], Cazanave shows that the canonical map

[ℙ1𝑘, ℙ
1
𝑘]N →ℋ∙(𝑘)(ℙ1𝑘, ℙ

1
𝑘)

is a homomorphism ofmonoids for any field 𝑘. In this paper, we extend this res-
ult partially to the base Spec ℤ. We show that for certain pointed𝔸1-homotopy
classes of pointed scheme endomorphisms of (ℙ1ℤ,∞) their⊕N-sums coincide
with the⊕𝔸1-sums, This result can be found in the proof of Proposition 5.3.
In order to get Proposition 5.3, we also have to fix a gap in Cazanave’s paper

on the cogroup structure on ℙ1. In his paper, Cazanave gives only a codiag-
onal morphism for ℙ1 using some geometry for the projective line (see [Caz12,
LemmaB.4]). We are able to show that his codiagonalmorphismactually comes
from the chosen isomorphism with 𝑆1 ∧ 𝔾𝑚 and therefore really defines a co-
group structure (Proposition 3.1).
We consider now the pointed endomorphisms 𝑓 and 𝑔 of (ℙ1ℤ,∞)which cor-

respond to 𝑞1+(1) and −𝜖1+(1), respectively. In particular, 11+(1) − 𝜖1+(1) corres-
ponds to id ⊕𝔸1 𝑔. And, we can apply the extended result to id ⊕𝔸1 𝑔 and get



AN UNSTABLE MOTIVIC NULL-HOPF RELATION 157

id ⊕𝔸1 𝑔 = id ⊕N 𝑔. Thus, we can determine the 𝔸1-sum in this case expli-
citly. Then we can give an explicit sequence of pointed naive 𝔸1-homotopies
between 𝑓 and id⊕N 𝑔. Therefore, we get 𝑞1+(1) = 11+(1)−𝜖1+(1). Using this re-
lation, we can then show that ℎ1+(2)◦𝜂1+(2) and 𝜂1+(2)◦ℎ1+(3) are nulhomotopic
(Proposition 5.8).
Especially, we can use these nullhomotopic composites to get nontrivial Toda

brackets in unstable motivic homotopy theory. Unstable motivic Toda brack-
ets are constructed in their doctoral thesis [Don24, Section 2]. We recall here
quickly the construction. Supposewe are given a sequence of three composable
morphisms of pointed motivic spaces

𝒲 𝒳 𝒴 𝒵𝛾 𝛽 𝛼

such that the composites 𝛼◦𝛽 and 𝛽◦𝛾 are𝔸1-nullhomotopic. Then we choose
a nullhomotopy 𝐴 ∶ 𝐶(𝒳) = ∆1 ∧ 𝒳 → 𝒵 for 𝛼◦𝛽 and a nullhomotopy 𝐵 ∶
𝐶(𝒲) = ∆1 ∧ 𝒲 → 𝒴 for 𝛽◦𝛾 where ∆1 is based at 1. In particular, we also
get the morphisms 𝛼◦𝐵 and 𝐴◦𝐶(𝛾), where 𝐶(𝛾) is the morphism between the
cones induced by 𝛾. Hence, we obtain a morphism

Σ𝒲 𝐶(𝒲) ⊔𝒲 𝐶(𝒲) 𝒵∼

in the pointed motivic homotopy category. The identification of Σ𝒲 with the
pushout 𝐶(𝒲) ⊔𝒲 𝐶(𝒲) is canonical. The Toda bracket

{𝛼, 𝛽, 𝛾} ⊂ ℋ∙(ℤ)(Σ𝒲,𝒵)
is defined to be the set of all morphisms obtained in this way by choosing all
possible nullhomotopies for 𝛼◦𝛽 and 𝛽◦𝛾.
As an application of the results of this paper, we get the Toda brackets

{ℎ1+(2), 𝜂1+(2), ℎ1+(3)}
and

{𝜂1+(2), ℎ1+(3), 𝜂1+(3)}.
Moreover, these two Toda brackets are not trivial, in the sense that they

do not contain the homotopy classes of constant morphisms (Proposition 5.9).
This can be proved by using the complex realization.
Additionally, we also construct another Toda bracket

{∆1+(3), ℎ1+(2), 𝜂1+(2)}
over the base Spec ℤ, where ∆1+(3) is a suspension of the diagonal map ∆(2) ∶
𝔾𝑚 → 𝔾𝑚∧𝔾𝑚 defined by 𝑥 ↦ 𝑥∧𝑥. The interesting point is that the complex
and real realization of this Toda bracket are trivial. The complex realization of
this Toda bracket is {0, 2idS3 , Σ𝜂top}, where Σ𝜂top is the suspension of the first to-
pological Hopf map and the third map is nullhomotopic as it is a map from 𝑆3
to 𝑆4. Since the thirdmap is nullhomotopic, the Toda bracket is trivial. The real



158 XIAOWEN DONG

realization of {∆1+(3), ℎ1+(2), 𝜂1+(2)} is a subset of 𝜋2(𝑆1); therefore the realiza-
tion is also trivial. But we can show that the Toda bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)}
itself is actually not trivial.
At the end of the paper, we provide an appendix which is a short summary of

the geometric realization functor which the author introduced in the doctoral
thesis [Don24, Section 2.1]. Wewill use this functor for some technical lemmas
in the paper.

Acknowledgement. Iwould like to thankmydoctoral advisorOliverRöndigs
for his support and guidance.

2. Rational functions and naive 𝔸𝟏-homotopies
For the paper, we need some results from [Caz12], so we first recall some

basic facts about pointed naive 𝔸1-homotopies. We work in this section over
the base Spec 𝑆 where 𝑆 is either a field or the ring of integers ℤ. Let 𝒮m𝑆
denote the category of smooth schemes of finite type over 𝑆. The category of
pointedmotivic spaces over 𝑆 is denoted by sPre(𝑆)∗. It is equippedwith the𝔸1-
local injective model structure. The corresponding motivic homotopy category
is denoted byℋ∙(𝑆)
Definition 2.1. Let 𝒳 and 𝒴 be two pointed motivic spaces in sPre(𝑆)∗. Let 𝑓
and 𝑔 be two pointed morphisms from 𝒳 to 𝒴. A pointed naive 𝔸1-homotopy
is a morphism 𝐹 ∶ 𝒳 ∧ 𝔸1

+ → 𝒴 such that 𝐹|𝒳×{0} is 𝑓 and 𝐹|𝒳×{1} is 𝑔. We
define the set [𝒳, 𝒴]N of pointed naive homotopy classes of morphisms from𝒳
to 𝒴 as the quotient of the set of pointedmorphisms by the equivalence relation
generated by pointed naive 𝔸1-homotopies.

If there is a pointed naive 𝔸1-homotopy from 𝑓 to 𝑔, then 𝑓 is equal to 𝑔 in
ℋ∙(𝑆). Therefore there is a canonical map

[𝒳, 𝒴]N →ℋ∙(𝑆)(𝒳, 𝒴).
In general, this map is far from being a bijection. Examples where this map is
not a bijection can be found in [BHS15, Section 4].
Let 𝑆 for now be a field 𝑘. We equip the projective line ℙ1𝑘 = Proj 𝑘[𝑇0, 𝑇1]

over 𝑘 with the base point∞ = [1 ∶ 0]. We are interested in the set [ℙ1𝑘, ℙ
1
𝑘]N.

A morphism from ℙ1𝑘 to ℙ
1
𝑘 in sPre(𝑘)∗ is uniquely determined by a pointed

scheme endomorphism of ℙ1𝑘, therefore we can restrict ourselves to scheme
morphisms. In particular, there is a classical correspondence between pointed
scheme endomorphisms of (ℙ1𝑘,∞) and pointed rational functions with coeffi-
cients in 𝑘. Furthermore, we also have a description of pointed naive homotop-
ies of pointed scheme endomorphisms of (ℙ1𝑘,∞) in terms of pointed rational
functions with coefficients in the polynomial ring 𝑘[𝑋]. For both correspond-
ences, we need the notion of the resultant of two polynomials.
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Definition 2.2. Let 𝑅 be a commutative ring. Let 𝑓 and 𝑔 be two polynomials
in 𝑅[𝑋] of the form

𝑓 = 𝛼𝑛𝑋𝑛 + 𝛼𝑛−1𝑋𝑛−1 + ⋅ ⋅ ⋅ + 𝛼0
and

𝑔 = 𝛽𝑛𝑋𝑛 + 𝛽𝑛−1𝑋𝑛−1 + ⋅ ⋅ ⋅ + 𝛽0
of degree n. We do not require here that 𝛼𝑛, 𝛽𝑛 ≠ 0, so we call 𝑛 the formal de-
gree of 𝑓 and 𝑔. Then we define the resultant 𝑟𝑒𝑠𝑛,𝑛(𝑓, 𝑔) to be the determinant
of the (𝑛 + 𝑛) × (𝑛 + 𝑛)-matrix.

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼𝑛 0 ⋯ 0 𝛽𝑛 0 ⋯ 0
𝛼𝑛−1 𝛼𝑛 ⋯ 0 𝛽𝑛−1 𝛽𝑛 ⋯ 0
𝛼𝑛−2 𝛼𝑛−1 ⋱ 0 𝛽𝑛−2 𝛽𝑛−1 ⋱ 0
⋮ ⋮ ⋱ 𝛼𝑛 ⋮ ⋮ ⋱ 𝛽𝑛
𝛼0 𝛼1 ⋯ ⋮ 𝛽0 𝛽1 ⋯ ⋮
0 𝛼0 ⋱ ⋮ 0 𝛽0 ⋱ ⋮
⋮ ⋮ ⋱ 𝛼1 ⋮ ⋮ ⋱ 𝛽1
0 0 ⋯ 𝛼0 0 0 ⋯ 𝛽0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠.

Proposition 2.3 (cf. [Caz12, Proposition 2.3]). Any pointed endomorphism of
ℙ1𝑘 is given uniquely by a pair of polynomials (𝑓, 𝑔) ∈ 𝑘[𝑋] with 𝑋 ∶= 𝑇0

𝑇1
, where

∙ f is monic of degree n,
∙ g is of degree strictly less than n,
∙ 𝑟𝑒𝑠𝑛,𝑛(𝑓, 𝑔) is invertible in 𝑘.

We abuse the notation and denote such a pair in the following by 𝑓
𝑔
.

Proposition 2.4. Any pointed naive 𝔸1-homotopy of ℙ1𝑘 is given uniquely by a
pair of polynomials 𝑓

𝑔
with 𝑓, 𝑔 ∈ 𝑘[𝑇][𝑋] and 𝑋 ∶= 𝑇0

𝑇1
, where

∙ f is monic of degree n,
∙ g is of degree strictly less than n,
∙ 𝑟𝑒𝑠𝑛,𝑛(𝑓, 𝑔) is invertible in 𝑘[𝑇].

Next, we considerℙ1ℤ = Proj ℤ[𝑇0, 𝑇1]where it is equippedwith amorphism
∞ ∶ Spec ℤ → ℙ1ℤ in 𝒮mℤ. It is given by ℤ[

𝑇1
𝑇0
] → ℤ; 𝑇1

𝑇0
↦ 0. A pointed endo-

morphism of ℙ1ℤ is a scheme morphism 𝑓 ∶ ℙ1ℤ → ℙ1ℤ such that the diagram

Spec ℤ

ℙ1ℤ ℙ1ℤ

∞ ∞

𝑓



160 XIAOWEN DONG

commutes. This condition is equivalent to 𝑓(𝑝, 𝑇1) = (𝑇1) where 𝑝 is either 0
or runs over the prime numbers in ℤ. The same arguments used for proving
Proposition 2.3 also work for pointed endomorphisms of (ℙ1ℤ,∞). Again, we
work in coordinates 𝑋 ∶= 𝑇0

𝑇1
. We get the following characterization.

Proposition 2.5. Any pointed endomorphism of (ℙ1ℤ,∞) is given uniquely by a
pair of polynomials 𝑓

𝑔
with 𝑓, 𝑔 ∈ ℤ[𝑋], where

∙ f is monic of degree n,
∙ g is of degree strictly less than n,
∙ 𝑟𝑒𝑠𝑛,𝑛(𝑓, 𝑔) is invertible in ℤ.

Finally, we also can consider pointed naive𝔸1-homotopies of ℙ1ℤ. A pointed
naive 𝔸1-homotopy can be viewed as a scheme morphism 𝑓 ∶ ℙ1ℤ ×ℤ 𝔸1

ℤ =
Proj ℤ[𝑇][𝑇0, 𝑇1] → ℙ1ℤ such that the composition

Spec ℤ ×ℤ 𝔸1
ℤ → ℙ1ℤ ×ℤ 𝔸

1
ℤ → ℙ1ℤ

factors through the structure morphism Spec ℤ → ℙ1ℤ. This is equivalent to
𝑓((𝜌, 𝑇1)) = (𝑇1) where (𝑇1) is the homogeneous prime ideal in ℤ[𝑇][𝑇0, 𝑇1]
generated by 𝑇1 and 𝜌 runs over the prime ideals ofℤ[𝑇]. As before we can ap-
ply the arguments for pointed 𝔸1-homotopies of ℙ1𝑘 to pointed 𝔸1-homotopies
of ℙ1ℤ. We take here 𝑋 ∶= 𝑇0

𝑇1
, then we obtain the characterization below.

Proposition 2.6. Any pointed 𝔸1-homotopy of (ℙ1ℤ,∞) is given uniquely by a
pair of polynomials 𝑓

𝑔
with 𝑓, 𝑔 ∈ ℤ[𝑇][𝑋], where

∙ f is monic of degree n,
∙ g is of degree strictly less than n,
∙ 𝑟𝑒𝑠𝑛,𝑛(𝑓, 𝑔) is invertible in ℤ[𝑇].

In [Caz12], Cazanave gives the set [ℙ1𝑘, ℙ
1
𝑘]N a monoid structure. Actually,

his method also works over ℤ, so we introduce the monoid structure for
[ℙ1ℤ, ℙ

1
ℤ]N. Let

𝑓
𝑔
be a pair of polynomials which determines a pointed endo-

morphism of ℙ1ℤ such that 𝑑𝑒𝑔(𝑓) = 𝑛. Then there exist polynomials 𝑝, 𝑞 ∈
ℤ[𝑋] with 𝑑𝑒𝑔(𝑝) < 𝑛 − 1 and 𝑑𝑒𝑔(𝑞) < 𝑛 such that 1 = 𝑝𝑓 + 𝑞𝑔, since
𝑟𝑒𝑠𝑛,𝑛(𝑓, 𝑔) is invertible in ℤ. Furthermore, 𝑝 and 𝑞 are unique.

Definition 2.7. Let 𝑓1
𝑔1
, 𝑓2
𝑔2
be two pairs of polynomials which determine poin-

ted endomorphisms of ℙ1ℤ with 𝑑𝑒𝑔(𝑓1) = 𝑛1 and 𝑑𝑒𝑔(𝑓2) = 𝑛2. Then there
are unique polynomials 𝑝1, 𝑞1, 𝑝2, 𝑞2 ∈ ℤ[𝑋] with 𝑑𝑒𝑔(𝑝1) < 𝑛1 − 1, 𝑑𝑒𝑔(𝑞1) <
𝑛1, 𝑑𝑒𝑔(𝑝2) < 𝑛2 − 1, 𝑑𝑒𝑔(𝑞2) < 𝑛2 such that 1 = 𝑝1𝑓1 + 𝑞1𝑔1 and 1 = 𝑝2𝑓2 +
𝑞2𝑔2. We define polynomials 𝑓3, 𝑔3, 𝑝3 and 𝑞3 by setting

(𝑓3 −𝑞3
𝑔3 𝑝3

) ∶= (𝑓1 −𝑞1
𝑔1 𝑝1

) ⋅ (𝑓2 −𝑞2
𝑔2 𝑝2

)
.
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The matrices (𝑓1 −𝑞1
𝑔1 𝑝1

) and (𝑓2 −𝑞2
𝑔2 𝑝2

) are in SL2(ℤ[𝑋]), hence it is also true

for (𝑓3 −𝑞3
𝑔3 𝑝3

). By definition 𝑓3 = 𝑓1𝑓2 − 𝑞1𝑔2 is monic of degree 𝑛1 + 𝑛2 and

𝑔3 = 𝑔1𝑓2 + 𝑝1𝑔2 is of degree strictly less than 𝑛1 + 𝑛2. Therefore
𝑓3
𝑔3
defines a

pointed endomorphism of ℙ1ℤ by Proposition 2.5. We define the sum
𝑓1
𝑔1
⊕N 𝑓2

𝑔2
to be the pair of polynomials 𝑓3

𝑔3
. The neutral element for this addition is the

pair of polynomials 1
0
which represents the constant morphism.

3. Cogroup structure on ℙ𝟏
ℤ

In this section, we would like to study the cogroup structure on ℙ1ℤ in some
detail. From now on, notions from algebraic geometry are taken from [Liu06].
In particular, ℙ1ℤ has a standard open covering by the principal open subsets
D+(𝑇0) andD+(𝑇1)which are both isomorphic to𝔸1

ℤ (see [Liu06, Section 2.3.3]).
The intersection D+(𝑇0𝑇1) of these two open subsets is isomorphic to 𝔾𝑚.
We can equip the presheaf ℙ1ℤ with three base points which are given by the

following scheme morphisms:

∞ ∶ Spec ℤ → ℙ1ℤ
induced by ℤ[𝑇1

𝑇0
] → ℤ; 𝑇1

𝑇0
↦ 0 ;

0 ∶ Spec ℤ → ℙ1ℤ
induced by ℤ[𝑇0

𝑇1
] → ℤ; 𝑇0

𝑇1
↦ 0 and

1 ∶ Spec ℤ → ℙ1ℤ
induced by ℤ[𝑇1

𝑇0
, 𝑇0
𝑇1
] → ℤ; 𝑇1

𝑇0
↦ 1, 𝑇0

𝑇1
↦ 1.

Next, we recall the standard elementary distinguished square for ℙ1ℤ
𝔾𝑚 𝔸1

ℤ

𝔸1
ℤ ℙ1ℤ .

𝑡0

𝑡∞

𝑗∞

𝑗0

The morphism 𝑗0 is induced by the canonical ring isomorphism ℤ[𝑇] ≅ ℤ[𝑇0
𝑇1
]

and 𝑗∞ is induced by ℤ[𝑇] ≅ ℤ[𝑇1
𝑇0
]. The open immersion 𝑡0 is defined by

ℤ[𝑇] → ℤ[𝑇, 𝑇−1]; 𝑇 ↦ 𝑇 and 𝑡∞ is defined by ℤ[𝑇] → ℤ[𝑇, 𝑇−1]; 𝑇 ↦ 𝑇−1.
In particular, the canonical morphism from the pushout of the diagram above
to ℙ1ℤ is a motivic weak equivalence. If we equip 𝔾𝑚, 𝔸1

ℤ and ℙ
1
ℤ with the base

point 1, this weak equivalence becomes a weak equivalence of pointed motivic
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spaces. Note that the pushout of the diagram is also the pushout of the following
diagram:

(𝔾𝑚, 1) ∨ (𝔾𝑚, 1) (𝔾𝑚, 1)

(𝔸1
ℤ, 1) ∨ (𝔸

1
ℤ, 1) .

(id,id)

𝑡∞∨𝑡0

Let 𝐼 be the pointed space (∆1, 1) ∨ (∆1, 0). Then 𝐼 is a simplicial model of the
interval admitting a mid-point. We denote the glueing point of 𝐼 by 1

2
. There is

a canonical weak equivalence from 𝐼 to ∆1 by projecting (∆1, 1) to the point 0.
We consider now the comparisonmaps between pushouts from [Lev10, Lemma
4.1] (In the left diagram, 𝔾𝑚 and 𝔸1

ℤ are equipped with the base point 1):

𝔾𝑚 ∨ 𝔾𝑚 𝔾𝑚 0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

𝔸1
ℤ ∨ 𝔸

1
ℤ 0+ ∧ 𝔸1

ℤ ∨ 1+ ∧ 𝔸
1
ℤ

0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

∗ ⋅

𝑡∞∨𝑡0

(id,id)

𝑡∞∨𝑡0

(𝑙0,𝑙1)

(𝑙0,𝑙1)

The first map is induced by the canonical projections and the second by col-
lapsing 𝔸1

ℤ to a point. Both comparison maps are motivic weak equivalences.
We denote the pushout of the middle diagram by𝒳. There is a canonical weak
equivalence from the pushout of the diagram:

0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

∗

to 𝑆1∧𝔾𝑚, which is induced by theweak equivalence from 𝐼 to∆1. We can equip
𝒳 with the base point∞ which comes from the point 0 ∶ Spec ℤ → 0+ ∧ 𝔸1

ℤ.
It is defined by ℤ[𝑇] → ℤ; 𝑇 ↦ 0. Now, we also equip 𝔸1

ℤ ∨ 𝔸
1
ℤ with the base

point

Spec ℤ 𝔸1
ℤ 𝔸1

ℤ ∨ 𝔸
1
ℤ

0 𝑖1
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where 𝑖1 is the inclusion into the first copy of𝔸1
ℤ. Then the canonicalmorphism

𝔸1
ℤ ∨ 𝔸1

ℤ → ℙ1ℤ becomes a morphism of the pointed motivic spaces (𝔸1
ℤ ∨

𝔸1
ℤ, 0) → (ℙ1ℤ,∞). Hence, the first comparison map above between pushouts

also induces a weak equivalence of pointed motivic spaces (𝒳,∞) ≃ (ℙ1ℤ,∞).
The second comparison map also induces a weak equivalence (𝒳,∞) ≃ 𝑆1 ∧
𝔾𝑚, since 0+ ∧ 𝔸1

ℤ is sent to the point ∗. Thus, we get here an isomorphism
𝛼 ∶ (ℙ1ℤ,∞) → 𝑆1 ∧ 𝔾𝑚 in ℋ∙(ℤ) and (ℙ1ℤ,∞) inherits a cogroup structure
from 𝑆1 ∧ 𝔾𝑚 via 𝛼.
In [Caz12, LemmaB.4], Cazanave gives a co-diagonalmorphism for (ℙ1𝑘,∞).

Actually, hismethod alsoworks over the base Specℤ. In the following, wewrite
down this morphism in detail. Again we consider the commutative diagram:

𝔾𝑚 ∨ 𝔾𝑚 𝔾𝑚

𝔸1
ℤ ∨ 𝔸

1
ℤ ℙ1ℤ .

𝑡∞∨𝑡0

𝑗∞∨𝑗0

id∨id

We denote by (ℙ1ℤ, 𝔾𝑚) the cofiber of the inclusion 𝔾𝑚 ↪ ℙ1ℤ above. Similarly,
we denote by (𝔸1

ℤ, 𝔾𝑚)𝑡∞ the cofiber of the inclusion 𝑡∞ and by (𝔸1
ℤ, 𝔾𝑚)𝑡0 the

cofiber of 𝑡0. Then from the first comparison map

𝔾𝑚 ∨ 𝔾𝑚 𝔾𝑚 0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

𝔸1
ℤ ∨ 𝔸

1
ℤ 0+ ∧ 𝔸1

ℤ ∨ 1+ ∧ 𝔸
1
ℤ

id∨id

𝑡∞∨𝑡0 𝑡∞∨𝑡0

we obtain a motivic weak equivalence

𝒳∕(𝐼+ ∧ 𝔾𝑚) = (𝔸1
ℤ, 𝔾𝑚)𝑡∞ ∨ (𝔸1

ℤ, 𝔾𝑚)𝑡0 → (ℙ1ℤ, 𝔾𝑚)
which is induced by 𝑗∞ ∨ 𝑗0.
From the elementary distinguished square ℙ1ℤ,

𝔾𝑚 𝔸1
ℤ

𝔸1
ℤ ℙ1ℤ

𝑡0

𝑡∞

𝑗∞

𝑗0

we get two motivic weak equivalences

(𝔸1
ℤ, 𝔾𝑚)𝑡∞ → (ℙ1ℤ, 𝔸

1
ℤ)𝑗0

and

(𝔸1
ℤ, 𝔾𝑚)𝑡0 → (ℙ1ℤ, 𝔸

1
ℤ)𝑗∞ .

Next, we recall that there is a path 𝑗 ∶ 𝔸1
ℤ → ℙ1ℤ from ∞ to 0. In [Caz12,

Appendix B], Cazanave calls this path the canonical path from ∞ to 0. In “
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homogeneous coordinates”, it is given by [1 − 𝑇 ∶ 𝑇]. Moreover, we also can
give the precise definition of 𝑗. We first define an automorphism 𝜓 ofℙ1ℤ which
is induced by the ring isomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0 − 𝑇1, 𝑇1 ↦ 𝑇1.
Recall that 𝑗∞ ∶ 𝔸1

ℤ ↪ ℙ1ℤ is the open embedding intoD+(𝑇0). Then we define
the path 𝑗 to be the composition 𝜓◦𝑗∞. Therefore, this path is an open embed-
ding. We denote the cofiber of 𝑗 just simply by ℙ1ℤ∕𝔸

1
ℤ. The canonical projec-

tion 𝜃 ∶ ℙ1ℤ → ℙ1ℤ∕𝔸
1
ℤ is a weak equivalence and it induces two pointed weak

equivalences 𝜃0 ∶ (ℙ1ℤ, 0) → ℙ1ℤ∕𝔸
1
ℤ and 𝜃∞ ∶ (ℙ1ℤ,∞) → ℙ1ℤ∕𝔸

1
ℤ.

Finally, we can write down the co-diagonal morphism for (ℙ1ℤ,∞) given by
Cazanave:

(ℙ1ℤ,∞) (ℙ1ℤ, 𝔾𝑚) (𝔸1
ℤ, 𝔾𝑚)𝑡∞ ∨ (𝔸1

ℤ, 𝔾𝑚)𝑡0

(ℙ1ℤ, 𝔸
1
ℤ)𝑗0 ∨ (ℙ

1
ℤ, 𝔸

1
ℤ)𝑗∞

(ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞)

ℙ1ℤ∕𝔸
1
ℤ ∨ (ℙ

1
ℤ,∞)

(ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞) .

∼

∼

∼

𝜃0∨id∼

𝜃∞∨id∼

induced by 𝑗∞∨𝑗0

The weak equivalences in the diagram are indicated by ∼. We emphasize that
we equip here (ℙ1ℤ, 𝔾𝑚)with the base point∞ coming from the corresponding
base point ofℙ1ℤ. Analogously, we equip (𝔸

1
ℤ, 𝔾𝑚)𝑡∞ ∨(𝔸1

ℤ, 𝔾𝑚)𝑡0 with the base
point

Spec ℤ 𝔸1
ℤ (𝔸1

ℤ, 𝔾𝑚)𝑡∞ (𝔸1
ℤ, 𝔾𝑚)𝑡∞ ∨ (𝔸1

ℤ, 𝔾𝑚)𝑡0
0

andwe also call this base point 0. Furthermore, we equip (ℙ1ℤ, 𝔸
1
ℤ)𝑗0∨(ℙ

1
ℤ, 𝔸

1
ℤ)𝑗∞

with the base point

Spec ℤ ℙ1ℤ (ℙ1ℤ, 𝔸
1
ℤ)𝑗0 (ℙ1ℤ, 𝔸

1
ℤ)𝑗0 ∨ (ℙ

1
ℤ, 𝔸

1
ℤ)𝑗∞

∞

and we call it∞, too. Then we also equip (ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞)with the base point

Spec ℤ (ℙ1ℤ, 0) (ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞)∞

and also denote it by∞. The motivic spaces ℙ1ℤ∕𝔸
1
ℤ ∨ (ℙ

1
ℤ,∞) and (ℙ1ℤ,∞) ∨

(ℙ1ℤ,∞) are equipped with the canonical base points. Using these base points



AN UNSTABLE MOTIVIC NULL-HOPF RELATION 165

and the diagram above, we get a pointed co-diagonalmorphism ∇̃ ∶ (ℙ1ℤ,∞) →
(ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞) inℋ∙(ℤ).
On the other hand, we also obtain a pointed co-diagonal morphism ∇ for

(ℙ1ℤ,∞) via the isomorphism 𝛼 ∶ (ℙ1ℤ,∞) ≅ 𝑆1 ∧ 𝔾𝑚. Now, we also write
down thismorphism explicitly. We recall that there is weak equivalence 𝐼 → ∆1
where 𝐼 is (∆1, 1) ∨ (∆1, 0) and this weak equivalence is induced by projecting
(∆1, 1) to the point 0 ∈ ∆1. We denote the “mid-point” of 𝐼 by 1

2
. Let 𝜕𝐼 denote

the boundary of 𝐼, then this weak equivalence induces a weak equivalence 𝜇 ∶
𝐼∕𝜕𝐼 → ∆1∕𝜕∆1. Particularly, the weak equivalence 𝜇 ∧ id ∶ 𝐼∕𝜕𝐼 ∧ 𝔾𝑚 →
𝑆1∧𝔾𝑚 is an isomorphism of cogroup objects inℋ∙(ℤ). Moreover there is also
a morphism from 𝐼∕𝜕𝐼 to 𝑆1 ∨ 𝑆1 by sending (∆1, 1) to the first copy of 𝑆1 and
(∆1, 0) to the second copy of 𝑆1. Now, we have the diagram

(ℙ1ℤ,∞) (𝒳,∞) 𝐼∕𝜕𝐼 ∧ 𝔾𝑚

(𝑆1 ∨ 𝑆1) ∧ 𝔾𝑚

(𝐼∕𝜕𝐼 ∨ 𝐼∕𝜕𝐼) ∧ 𝔾𝑚

(𝐼∕𝜕𝐼 ∧ 𝔾𝑚) ∨ (𝐼∕𝜕𝐼 ∧ 𝔾𝑚)

(𝒳,∞) ∨ (𝒳,∞)

(ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞) .

∼ ∼

(𝜇∨𝜇)∧id

=

∼

∼

∼

The weak equivalences are indicated again by ∼. Therefore, we get from this
diagram a co-diagonal morphism∇ ∶ (ℙ1ℤ,∞) → (ℙ1ℤ,∞)∨ (ℙ1ℤ,∞) inℋ∙(ℤ).
In [Caz12], Cazanave did not show that his co-diagonal ∇̃ coincides with ∇, so
we prove it in this paper.

Proposition 3.1. The two co-diagonal morphisms ∇̃ and ∇ are the same.

Proof. We have to show that the diagram

(ℙ1ℤ,∞) (ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞)

𝑆1 ∧ 𝔾𝑚 (𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚)

∇̃

𝛼 𝛼∨𝛼
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commutes inℋ∙(ℤ), where 𝑆1 ∧𝔾𝑚 → (𝑆1 ∧𝔾𝑚) ∨ (𝑆1 ∧𝔾𝑚) is the morphism
inℋ∙(ℤ) induced by the sequence

𝑆1 ∧ 𝔾𝑚 𝐼∕𝜕𝐼 ∧ 𝔾𝑚 (𝑆1 ∨ 𝑆1) ∧ 𝔾𝑚 .
𝜇∧id

We can rewrite the square as follows:

(ℙ1ℤ,∞) (ℙ1ℤ, 𝔾𝑚) (𝔸1
ℤ, 𝔾𝑚)𝑡∞ ∨ (𝔸1

ℤ, 𝔾𝑚)𝑡0

𝑆1 ∧ 𝔾𝑚 (ℙ1ℤ, 𝔸
1
ℤ)𝑗0 ∨ (ℙ

1
ℤ, 𝔸

1
ℤ)𝑗∞

(ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞)

ℙ1ℤ∕𝔸
1
ℤ ∨ (ℙ

1
ℤ,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞) .

∼

∼

∼

𝜃0∨id∼

𝜃∞∨id∼

induced by 𝑗∞∨𝑗0𝛼

𝛼∨𝛼

1
∼

2
∼

We first explain what the weak equivalence indicated by 1 is. For this, we have
to consider the diagram below again

𝔾𝑚 ∨ 𝔾𝑚 𝔾𝑚 0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

𝔸1
ℤ ∨ 𝔸

1
ℤ 0+ ∧ 𝔸1

ℤ ∨ 1+ ∧ 𝔸
1
ℤ

0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

∗ ⋅

𝑡∞∨𝑡0

(id,id)

𝑡∞∨𝑡0

(𝑙0,𝑙1)

(𝑙0,𝑙1)

Recall that we denoted the pushout of the middle diagram by𝒳. We have here
the inclusions { 1

2
}+ ∧ 𝔾𝑚 ↪ 𝒳 and { 1

2
}+ ∧ 𝔾𝑚 ↪ 𝐼∕𝜕𝐼 ∧ 𝔾𝑚. Via the first

comparison map, the inclusion { 1
2
}+ ∧ 𝔾𝑚 ↪ 𝒳 corresponds to the inclusion

𝔾𝑚 ↪ ℙ1ℤ. Via the second comparison map, the inclusion {
1
2
}+ ∧ 𝔾𝑚 ↪ 𝒳
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corresponds to { 1
2
}+ ∧ 𝔾𝑚 ↪ 𝐼∕𝜕𝐼 ∧ 𝔾𝑚. Thus, we get a sequence of pointed

motivic weak equivalences

((ℙ1ℤ, 𝔾𝑚),∞) ((𝒳, { 1
2
}+ ∧ 𝔾𝑚),∞) ((𝐼∕𝜕𝐼 ∧ 𝔾𝑚, {

1
2
}+ ∧ 𝔾𝑚), ∗) ,∼ ∼

where (ℙ1ℤ, 𝔾𝑚), (𝒳, {
1
2
}+∧𝔾𝑚) and (𝐼∕𝜕𝐼∧𝔾𝑚, {

1
2
}+∧𝔾𝑚) are the cofibers of the

corresponding inclusions and ∗ is the canonical base point of (𝐼∕𝜕𝐼∧𝔾𝑚, {
1
2
}+∧

𝔾𝑚). Note that (𝐼∕𝜕𝐼 ∧ 𝔾𝑚, {
1
2
}+ ∧ 𝔾𝑚) is just (𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚). We can

illustrate the pointed motivic space ((𝒳, { 1
2
}+ ∧ 𝔾𝑚),∞) as follows:

∞

The space𝒳 is obtained by glueing the two copies of𝔾𝑚 in 𝐼+∧𝔾𝑚 with 0+∧𝔸1
ℤ

and 1+ ∧ 𝔸1
ℤ, respectively. Therefore, in the illustration the top line demon-

strates the glueing of 0+ ∧𝔾𝑚 with 0+ ∧𝔸1
ℤ; the bottom line means the glueing

of 1+ ∧𝔾𝑚 with 1+ ∧𝔸1
ℤ. The point in the middle of the illustration represents

the collapse of the subspace { 1
2
}+ ∧𝔾𝑚. The base point∞ comes from 0+ ∧𝔸1

ℤ.
Via this zig-zag of weak equivalences, we get the morphism indicated by 1

which is an isomorphism inℋ∙(ℤ).
Next, we explain what the weak equivalence indicated by 2 is. We can equip

𝒳 with the base point

Spec ℤ 1+ ∧ 𝔸1
ℤ 𝒳0

andwe also denote this base point by 0. Then the first comparisonmap induces
a pointed weak equivalence (𝒳, 0) → (ℙ1ℤ, 0) and the second comparison map
induces a pointed weak equivalence (𝒳, 0) → 𝑆1 ∧ 𝔾𝑚. Therefore, we also get
an isomorphism 𝛼̃ ∶ (ℙ1ℤ, 0) ≅ 𝑆1 ∧ 𝔾𝑚. Hence, the morphism indicated by 2
is 𝛼̃ ∨ 𝛼.
In order to show that the square in the beginning is commutative, we have

to show that the following three diagrams

(ℙ1ℤ,∞) (ℙ1ℤ, 𝔾𝑚)

𝑆1 ∧ 𝔾𝑚 (𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) ,

𝛼 1
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(ℙ1ℤ, 𝔾𝑚) (𝔸1
ℤ, 𝔾𝑚)𝑡∞ ∨ (𝔸1

ℤ, 𝔾𝑚)𝑡0

(ℙ1ℤ, 𝔸
1
ℤ)𝑗0 ∨ (ℙ

1
ℤ, 𝔸

1
ℤ)𝑗∞

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞)

∼

∼

1

𝛼̃∨𝛼

induced by 𝑗∞∨𝑗0∼

∼

and

(ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞) ℙ1ℤ∕𝔸

1
ℤ ∨ (ℙ

1
ℤ,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞)

𝛼̃∨𝛼

𝜃0∨id

𝜃∞∨id

𝛼∨𝛼

∼

∼

commute in the pointed homotopy category. The commutativity of the first two
diagrams holds by inspection.
In the next step, we show the commutativity of the third diagram. Recall that

ℙ1ℤ∕𝔸
1
ℤ is the cofiber of the path 𝑗 ∶ 𝔸

1
ℤ → ℙ1ℤ from∞ to 0. The path 𝑗 is the

composition 𝜓◦𝑗∞ where 𝜓 is induced by the ring isomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0 − 𝑇1, 𝑇1 ↦ 𝑇1.

In particular, 𝑗 induces an isomorphism from 𝔸1
ℤ to the open subset D+(𝑇0 +

𝑇1) of ℙ1ℤ. Therefore, the cofiber ℙ
1
ℤ∕𝔸

1
ℤ is just the cofiber of the inclusion

D+(𝑇0 + 𝑇1) ↪ ℙ1ℤ. Hence, we can replace in the third diagram ℙ1ℤ∕𝔸
1
ℤ by

ℙ1ℤ∕D+(𝑇0 + 𝑇1).
Next, we consider the following pushout diagram

0 × D+((𝑇0 + 𝑇1)𝑇0𝑇1) ⊔ 1 × D+((𝑇0 + 𝑇1)𝑇0𝑇1) 𝐼 × D+((𝑇0 + 𝑇1)𝑇0𝑇1)

0 × D+((𝑇0 + 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 + 𝑇1)𝑇1)
inclusion⊔inclusion

where we denote the pushout by 𝐴. It is clear that there is a canonical weak
equivalence from𝐴 toD+(𝑇0+𝑇1). Then there is a comparisonmap of diagrams

0 × D+((𝑇0 + 𝑇1)𝑇0𝑇1) ⊔ 1 × D+((𝑇0 + 𝑇1)𝑇0𝑇1) 𝐼 × D+((𝑇0 + 𝑇1)𝑇0𝑇1)

0 × D+((𝑇0 + 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 + 𝑇1)𝑇1)
inclusion⊔inclusion
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0 × 𝔾𝑚 ⊔ 1 × 𝔾𝑚 𝐼 × 𝔾𝑚

0 × 𝔸1
ℤ ⊔ 1 × 𝔸

1
ℤ

𝑡∞⊔𝑡0

wherewe denote the pushout of the second diagramby 𝒳̃. Note that 𝒳̃∕𝐼×{1} is
the motivic space𝒳, where 1 is the base point of𝔾𝑚. Naturally, there is a weak
equivalence from 𝒳̃ to ℙ1ℤ just as for𝒳. Furthermore, there is also a canonical
weak equivalence from 𝒳̃ to 𝑆1 ∧𝔾𝑚. It is the composition 𝒳̃ → 𝒳 → 𝑆1 ∧𝔾𝑚.
As for 𝒳 we can equip 𝒳̃ with the base points 0 and∞. Moreover, we have

the following commutative diagrams

(ℙ1ℤ, 0)

(𝒳̃, 0) (𝒳, 0)

𝑆1 ∧ 𝔾𝑚

∼

and

(ℙ1ℤ,∞)

(𝒳̃,∞) (𝒳,∞)

𝑆1 ∧ 𝔾𝑚 .

∼
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Thus, we only have to show that the diagram

(ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞) ℙ1ℤ∕𝔸

1
ℤ ∨ (ℙ

1
ℤ,∞)

(𝒳̃, 0) ∨ (𝒳̃,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (𝒳̃,∞) ∨ (𝒳̃,∞) (ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞)

∼

∼

𝜃0∨id
∼

∼ ∼

𝜃∞∨id∼

is commutative.

The comparison map

0 × D+((𝑇0 + 𝑇1)𝑇0𝑇1) ⊔ 1 × D+((𝑇0 + 𝑇1)𝑇0𝑇1) 𝐼 × D+((𝑇0 + 𝑇1)𝑇0𝑇1)

0 × D+((𝑇0 + 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 + 𝑇1)𝑇1)
inclusion⊔inclusion

0 × 𝔾𝑚 ⊔ 1 × 𝔾𝑚 𝐼 × 𝔾𝑚

0 × 𝔸1
ℤ ⊔ 1 × 𝔸

1
ℤ

𝑡∞⊔𝑡0

induces an inclusion 𝐴 ↪ 𝒳̃. Hence, we get a canonical weak equivalence
𝒳̃∕𝐴 → ℙ1ℤ∕D+(𝑇0 + 𝑇1). The canonical projection 𝒳̃ → 𝒳̃∕𝐴 induces two
pointed weak equivalences 𝜃̃∞ ∶ (𝒳̃,∞) → 𝒳̃∕𝐴 and 𝜃̃0 ∶ (𝒳̃, 0) → 𝒳̃∕𝐴.
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The canonical morphism 𝒳̃ → ℙ1ℤ induces pointed weak equivalences 𝜈∞ ∶
(𝒳̃,∞) → (ℙ1ℤ,∞) and 𝜈0 ∶ (𝒳̃, 0) → (ℙ1ℤ, 0). Now we can consider the follow-
ing diagram

(ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞) ℙ1ℤ∕D+(𝑇0 + 𝑇1) ∨ (ℙ1ℤ,∞)

(𝒳̃, 0) ∨ (𝒳̃,∞) 𝒳̃∕𝐴 ∨ (𝒳̃,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (𝒳̃,∞) ∨ (𝒳̃,∞) (ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞)

∼

∼

∼

𝜃0∨id

∼

∼

𝜃∞∨id

∼∼

∼

∼

𝜃̃0∨id

𝜃̃∞∨id

𝜈0∨𝜈∞

𝜈∞∨𝜈∞

where the outer diagram is our third diagram.
Now we only have to show that the diagram

(𝒳̃, 0) ∨ (𝒳̃,∞) 𝒳̃∕𝐴 ∨ (𝒳̃,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (𝒳̃,∞) ∨ (𝒳̃,∞)

∼

∼

∼

∼

𝜃̃0∨id

𝜃̃∞∨id

commutes as the other two inner diagrams commute already by construction.
In order to show the commutativity, we firstwant to construct amorphism from
𝒳̃∕𝐴 to 𝑆1 ∧ 𝔾𝑚 in the pointed homotopy category.
Taking the composition

𝐼 × {1} 𝒳̃ 𝒳̃∕𝐴

where 1 is the canonical base point of 𝔾𝑚, we can form the cofiber (𝒳̃∕𝐴)∕(𝐼 ×
{1}) and the projection

𝒳̃∕𝐴 (𝒳̃∕𝐴)∕(𝐼 × {1})

is a sectionwise weak equivalence of pointed spaces.
Let 𝒞(𝔸1

ℤ) be∆1∧𝔸
1
ℤ where∆1 is based at 1 and𝔸

1
ℤ is based at 1. Let 𝒞′(𝔸

1
ℤ)

be ∆1 ∧ 𝔸1
ℤ where ∆1 is based at 0 and 𝔸

1
ℤ is based at 1. Then we consider the

following diagram

0+ ∧ 𝔸1
ℤ ∨ 1+ ∧ 𝔸

1
ℤ (𝒳̃∕𝐴)∕(𝐼 × {1})

𝒞′(𝔸1
ℤ) ∨ 𝒞(𝔸

1
ℤ)
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where we denote the pushout of this diagram by 𝒳̂. The canonical inclusion
𝒳̃ → 𝒳̂ is a weak equivalence. We can illustrate 𝒳̂ as follows:

In the illustration, the bottom cone represents 𝒞′(𝔸1
ℤ) and the top cone sym-

bolizes 𝒞(𝔸1
ℤ). The lines stretching out demonstrate the glueing of 0×𝔾𝑚 with

0 × 𝔸1
ℤ and the glueing of 1 × 𝔾𝑚 with 1 × 𝔸1

ℤ, respectively.
Now we can apply the geometric realization functor defined in the author’s

doctoral thesis [Don24]. Let Pre∆(ℤ)∗ the category of presheaves on 𝒮mℤ with
values in pointed ∆-generated topological spaces (see Section 6.1). By Proposi-
tion 6.2, the geometric realization of a simplicial set is ∆-generated. Therefore,
by applying the usual geometric realization functor sectionwise, we get a func-
tor

| ⋅ | ∶ sPre(ℤ)∗ → Pre∆(ℤ)∗.
The basic properties of this functor can be found in Section 6.2. Furthermore,
we can equip Pre∆(ℤ)∗ with an 𝔸1-local injective model structure (see
Remark 6.7) and the corresponding homotopy category is denoted byℋ𝑜∆(ℤ).
In particular, we can construct a pointed weak equivalence |𝑆1 ∧ 𝔾𝑚| → |𝒳̂|.
First note that we can consider the following pushout

0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

𝒞′(𝔾𝑚) ∨ 𝒞(𝔾𝑚)

where the reduced cones 𝒞(𝔾𝑚) and 𝒞′(𝔾𝑚) are just defined as for 𝔸1
ℤ. We

denote this pushout by 𝒮. Moreover, we also have the comparison map

𝒞′(𝔾𝑚) ∨ 𝒞(𝔾𝑚) 0+ ∧ 𝔾𝑚 ∨ 1+ ∧ 𝔾𝑚 𝐼+ ∧ 𝔾𝑚

𝒞′(𝔸1
ℤ) ∨ 𝒞(𝔸

1
ℤ) 0+ ∧ 𝔸1

ℤ ∨ 1+ ∧ 𝔸
1
ℤ (𝒳̃∕𝐴)∕𝐼 × {1}

which induces a pointed morphism 𝜌 ∶ 𝒮 → 𝒳̂. Now it is easy to see that there
is a pointed weak equivalence 𝜙 ∶ |𝑆1 ∧𝔾𝑚| → |𝒮| by stretching |𝑆1 ∧𝔾𝑚|. We
illustrate this morphism as follows:
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The pointed continuousmorphism𝜙 arises from stretching out the unit interval
by a factor of 4.
Altogetherwe get a pointedmorphism |𝜌|◦𝜙 ∶ |𝑆1∧𝔾𝑚| → |𝒳̂|. We consider

now the following diagram

|(𝒳̃, 0)| |𝒳̃∕𝐴|

|𝑆1 ∧ 𝔾𝑚| |𝒮| |𝒳̂|

∼

|𝜃̃0|

𝜙 |𝜌|

canonical morphism∼

∼

which commutes in the pointed homotopy categoryℋ𝑜∆(ℤ). We will now ex-
plain why this diagram commutes. For this we first look at the morphism

(0, 1] × {0} |𝒞(𝔸1
ℤ)| |𝒳̂|

where {0} is the base point of 𝔸1
ℤ. Let |𝒳̂|∕|((0, 1] × {0}|) be the cofiber of this

morphism. The projection |𝒳̂| → |𝒳̂∕((0, 1] × {0})| is a sectionwise weak equi-
valence. Then we also can look at the morphism

[0, 1) × {0} |𝒞′(𝔸1
ℤ)| |𝒳̂∕((0, 1] × {0})| .

In particular, the projection of |𝒳̂| to the cofiber of this morphism is a pointed
sectionwise weak equivalence. Now we denote the cofiber by 𝒵.
We can deform the composition

|(𝒳̃, 0)| |𝑆1 ∧ 𝔾𝑚| |𝒮| |𝒳̂| 𝒵𝜙 |𝜌|

to

|(𝒳̃, 0)| |𝒳̃∕𝐴| |𝒳̂| 𝒵|𝜃̃0| canonical morphism

by stretching, too. In particular, the stretching gives us a pointed homotopy.
In addition, it also follows that |𝜌| is a weak equivalence. Analogously, the
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diagram

|(𝒳̃,∞)| |𝒳̃∕𝐴|

|𝑆1 ∧ 𝔾𝑚| |𝒮| |𝒳̂|

∼

|𝜃̃∞|

𝜙 |𝜌|

canonical morphism∼

∼

commutes in the pointed homotopy categoryℋ𝑜∆(ℤ) by the same arguments.
Since the derived geometric realization functor is an equivalence of categories
(see Proposition 6.6), there is a unique isomorphism 𝜖 ∶ 𝑆1 ∧ 𝔾𝑚 → 𝒳̂ such
that |𝜖| is |𝜌|◦𝜙. Then the diagram

(𝒳̃, 0) ∨ (𝒳̃,∞) 𝒳̃∕𝐴 ∨ (𝒳̃,∞)

𝒳̂ ∨ (𝒳̃,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (𝒳̃,∞) ∨ (𝒳̃,∞)

∼ 𝜃̃∞∨id

𝜃̃0∨id

∼

𝜖−1∨id

∼

commutes inℋ∙(ℤ). Now we see that for

(ℙ1ℤ, 0) ∨ (ℙ
1
ℤ,∞) ℙ1ℤ∕D+(𝑇0 + 𝑇1) ∨ (ℙ1ℤ,∞)

(𝒳̃, 0) ∨ (𝒳̃,∞) 𝒳̃∕𝐴 ∨ (𝒳̃,∞)

(𝑆1 ∧ 𝔾𝑚) ∨ (𝑆1 ∧ 𝔾𝑚) (𝒳̃,∞) ∨ (𝒳̃,∞) (ℙ1ℤ,∞) ∨ (ℙ1ℤ,∞)

∼

∼

∼

𝜃0∨id

∼

∼

𝜃∞∨id

∼∼

∼

∼

𝜃̃0∨id

𝜃̃∞∨id

𝜈0∨𝜈∞

𝜈∞∨𝜈∞

all three inner diagrams commute. Since all involvedmorphisms are isomorph-
isms inℋ∙(ℤ), we can conclude that the outer diagram is commutative. □

4. Change of base points

There is a unique automorphismΦ ofℙ1ℤ which interchanges the base points
1 and∞ and sends 0 to itself. It is induced by the ring isomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0, 𝑇1 ↦ 𝑇0 − 𝑇1.
Note that we have Φ◦Φ = id. We need the results in this section for Proposi-
tion 5.2.
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Recall that we equip (ℙ1ℤ,∞) with a cogroup structure via the following zig-
zag of pointed weak equivalences

(ℙ1ℤ,∞) (𝒳̃,∞) 𝑆1 ∧ 𝔾𝑚 .
∼∼

Now we would like to construct a similar zig-zag of pointed weak equivalences
for (ℙ1ℤ, 1). It follows from the definition ofΦ thatwehaveΦ(D+(𝑇0)) = D+(𝑇0),
Φ(D+(𝑇1)) = D+(𝑇0−𝑇1) andΦ(D+(𝑇0𝑇1)) = D+((𝑇0−𝑇1)𝑇0). Themorphism
∞ ∶ Specℤ → D+(𝑇0) factors through D+((𝑇0 − 𝑇1)𝑇0):

Spec ℤ D+(𝑇0)

D+((𝑇0 − 𝑇1)𝑇0)

∞

Hence, we also denote the morphism Spec ℤ → D+((𝑇0 − 𝑇1)𝑇0) by∞.
We consider now the pushout diagram

0 × D+((𝑇0 − 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇0)

0 × D+(𝑇0) ⊔ 1 × D+(𝑇0 − 𝑇1) ⋅
inclusion⊔inclusion

We denote the pushout of the diagram by 𝒴. We also can equip 𝒴 with the
base point

Spec ℤ D+(𝑇0𝑇1) 0 × D+(𝑇0)1

which we also denote by 1.
In the next step, we can consider the comparison maps between pushout

diagrams

0 × D+((𝑇0 − 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇0)

0 × D+(𝑇0) ⊔ 1 × D+(𝑇0 − 𝑇1)

D+((𝑇0 − 𝑇1)𝑇0) ⊔ D+((𝑇0 − 𝑇1)𝑇0) D+((𝑇0 − 𝑇1)𝑇0)

D+(𝑇0) ⊔ D+(𝑇0 − 𝑇1)

inclusion⊔inclusion

inclusion⊔inclusion
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which induces a pointed weak equivalence (𝒴, 1) → (ℙ1ℤ, 1). Since the spaces
D+(𝑇0), D+(𝑇0 − 𝑇1) and D+((𝑇0 − 𝑇1)𝑇0) all contain the base point∞, there
is an inclusion 𝐼 × {∞} ↪ 𝐼 × D+((𝑇0 − 𝑇1)𝑇0) ↪ 𝒴. The induced projection
𝒴 → 𝒴∕𝐼 × {∞} is a weak equivalence. By collapsing D+(𝑇0) and D+(𝑇0 − 𝑇1)
to a point we get furthermore a weak equivalence

𝒴∕𝐼 × {∞} → 𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)

such that the composition (𝒴, 1) → 𝒴∕𝐼 × {∞} → 𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0) is a
pointed weak equivalence.
Now the automorphism Φ induces a comparison map

0 × 𝔾𝑚 ⊔ 1 × 𝔾𝑚 𝐼 × 𝔾𝑚

0 × 𝔸1
ℤ ⊔ 1 × 𝔸

1
ℤ

0 × D+((𝑇0 − 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇0)

0 × D+(𝑇0) ⊔ 1 × D+(𝑇0 − 𝑇1)
inclusion⊔inclusion

which in turn induces a pointed weak equivalence Φ̃ ∶ (𝒳̃,∞) → (𝒴, 1). Sim-
ilarly, the automorphism Φ also induces a comparison map

𝔾𝑚 ⊔ 𝔾𝑚 𝔾𝑚

𝔸1
ℤ ⊔ 𝔸

1
ℤ

D+((𝑇0 − 𝑇1)𝑇0) ⊔ D+((𝑇0 − 𝑇1)𝑇0) D+((𝑇0 − 𝑇1)𝑇0)

D+(𝑇0) ⊔ D+(𝑇0 − 𝑇1)
inclusion⊔inclusion
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The induced morphism between the pushouts is just Φ. Altogether we obtain
the commutative diagram

𝑆1 ∧ 𝔾𝑚 (𝒳̃,∞) (ℙ1ℤ,∞)

𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0) (𝒴, 1) (ℙ1ℤ, 1) .

∼

Φ̃ Φ
∼

id∧Φ|𝔾𝑚
∼

∼

In addition, we also can consider the following comparison map which is
induced by inclusions

0 × D+((𝑇0 − 𝑇1)𝑇1𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇1𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇1𝑇0)

0 × D+(𝑇0𝑇1) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇1)

0 × D+((𝑇0 − 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇0)

0 × D+(𝑇0) ⊔ 1 × D+(𝑇0 − 𝑇1)
inclusion⊔inclusion

where we denote the pushout of the first diagram by 𝐵 and 𝐵 is canonically
weakly equivalent to D+(𝑇1). We equip the cofiber 𝒴∕𝐵 with the canonical
base point. In particular, the projection (𝒴, 1) → 𝒴∕𝐵 is a pointed weak equi-
valence. Moreover, there is a canonical a weak equivalence𝒴∕𝐵 → ℙ1ℤ∕D+(𝑇1)
of pointed spaces such that the diagram

(𝒴, 1) (ℙ1ℤ, 1)

𝒴∕𝐵 ℙ1ℤ∕D+(𝑇1)

∼

∼

∼

∼

commutes. We denote the composition

(ℙ1ℤ,∞) (ℙ1ℤ, 1) ℙ1ℤ∕D+(𝑇1)Φ
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by Φ̄. Altogether we get the commutative diagram

𝑆1 ∧ 𝔾𝑚 (𝒳̃,∞) (ℙ1ℤ,∞)

𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0) (𝒴, 1) ℙ1ℤ∕D+(𝑇1) .

∼

Φ̃ Φ̄
∼

id∧Φ|𝔾𝑚
∼

∼

5. An unstable null-Hopf relation
In this section, wework entirely over the base Specℤ andwould like to prove

the desired unstable Hopf relation. We recall here the definition of motivic
spheres. Let 𝑠, 𝑤 ≥ 0 be integers. We define 𝑆𝑠+(𝑤) to be the pointed simplicial
presheaf 𝑆𝑠 ∧ 𝔾𝑤

𝑚 where 𝑆𝑠 is the smash product 𝑆1 ∧ ... ∧ 𝑆1⏟⎴⎴⏟⎴⎴⏟
𝑠 𝑡𝑖𝑚𝑒𝑠

of the simplicial

circle 𝑆1 = ∆1∕𝜕∆1 and 𝔾𝑚 is based at 1. We call 𝑠 the degree and𝑤 the weight
of 𝑆𝑠+(𝑤). Suspension from the right with 𝔾𝑚 increases the weight (𝑤) by 1.
Suspension from the left by the simplicial circle 𝑆1 increases the degree 𝑠 by 1.
Let ℰ be an arbitrary pointed motivic space in sPre(ℤ)∗. Then we set 𝜋𝑠+(𝑤)ℰ to
be the groupℋ∙(ℤ)(𝑆𝑠+(𝑤), ℰ) for 𝑠 > 0 and 𝑤 ≥ 0.
Next, we recall the definition of the Hopf map 𝜂 ∶ 𝔸2

ℤ − {0} → ℙ1ℤ. It is the
canonical map (𝑇0, 𝑇1) ↦ [𝑇0 ∶ 𝑇1]. The reduced join 𝔾𝑚 ∗ 𝔾𝑚 is defined to
be the quotient of ∆1 ×𝔾𝑚 ×𝔾𝑚 by the relations (0, 𝑥, 𝑦) = (0, 𝑥, 𝑦′), (1, 𝑥, 𝑦) =
(1, 𝑥′, 𝑦) and (𝑡, 1, 1) = (𝑠, 1, 1) for any 𝑡, 𝑠 ∈ ∆1. The motivic space 𝔸2

ℤ − {0} is
canonically𝔸1-weakly equivalent to the join𝔾𝑚 ∗ 𝔾𝑚 via the classical covering
of 𝔸2

ℤ − {0} by 𝔾𝑚 × 𝔸1
ℤ and 𝔸

1
ℤ × 𝔾𝑚 with intersection 𝔾𝑚 × 𝔾𝑚.

Note that 𝔾𝑚 is a sheaf of abelian groups. In particular, we can consider the
pointed map

𝜇′𝔾𝑚 ∶ 𝔾𝑚 × 𝔾𝑚 → 𝔾𝑚, (𝑔, ℎ) ↦ 𝑔−1ℎ.

This morphism induces a pointed morphism

𝜂𝔾𝑚 ∶ 𝔾𝑚 ∗ 𝔾𝑚 → 𝑆1 ∧ 𝔾𝑚

which is called the algebraic Hopf map. Via the weak equivalence between
𝔸2
ℤ−{0} and𝔾𝑚 ∗ 𝔾𝑚, we can show that the Hopf map 𝜂 is𝔸1-weakly equival-

ent to 𝜂𝔾𝑚 (cf.[Mor04, Lemma 6.2.3], [DuI13, Proposition 4.10]). The canonical
projection from 𝔾𝑚 ∗ 𝔾𝑚 to 𝑆1 ∧ 𝔾𝑚 ∧ 𝔾𝑚 is a motivic weak equivalence. We
also call the composition inℋ∙(ℤ)

𝑆1 ∧ 𝔾𝑚 ∧ 𝔾𝑚 𝔾𝑚 ∗ 𝔾𝑚 𝑆1 ∧ 𝔾𝑚
𝜂𝔾𝑚

the Hopf map.

Lemma 5.1. Let𝑤 ≥ 0 be a natural number. The group 𝜋1+(𝑤)𝑆1+(2) is commut-
ative.
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Proof. The motivic sphere 𝑆1+(2) is 𝔸1-weakly equivalent to 𝔸2
ℤ − {0}. Let SL2

be the special linear group scheme Spec ℤ[𝑇11, 𝑇12, 𝑇21, 𝑇22]∕(det−1). The pro-
jection onto the last column SL2 → 𝔸2

ℤ−{0} is an𝔸1-weak equivalence [DuI13,
Example 2.12(3)]. Therefore, we can equip 𝑆1+(2) with a group structure in
ℋ∙(ℤ). Using the Eckmann-Hilton argument, we can show that 𝜋1+(𝑤)𝑆1+(2) is
commutative. □

Morphisms frommotivic spheres to motivic spheres are indexed by the bide-
gree of the target. For example, if we have a morphism 𝜙𝑠2+(𝑤2) ∶ 𝑆𝑠1+(𝑤1) →
𝑆𝑠2+(𝑤2), then suspension yields suspended morphisms

𝜙𝑠2+𝑠+(𝑤2+𝑤) ∶ 𝑆𝑠1+𝑠+(𝑤1+𝑤) → 𝑆𝑠2+𝑠+(𝑤2+𝑤)

for 𝑠 > 0 and 𝑤 > 0. The Hopf map might be denoted by 𝜂1+(1). Suspension
yields suspendedHopfmaps 𝜂𝑠+(𝑤) for all 𝑠 > 0 and𝑤 > 0. Let 𝑛 be an arbitrary
integer. We define the power map

𝑃𝑛 ∶ 𝔾𝑚 → 𝔾𝑚, 𝑥 ↦ 𝑥𝑛.
For 𝑛 = −1, we set 𝜖(1) ∶= 𝑃−1. For 𝑛 = 2 we set 𝑞(1) ∶= 𝑃2. Furthermore,
we define the hyperbolic plane ℎ1+(1) to be 11+(1) − 𝜖1+(1) where 11+(1) is just
the identity morphism for 𝑆1+(1). We would like to study the relation between
𝑞1+(1) and 11+(1) − 𝜖1+(1).
Via the zig-zag of pointed weak equivalences,

(ℙ1ℤ,∞) (𝒳̃,∞) 𝑆1 ∧ 𝔾𝑚
∼∼

the morphism 𝑞1+(1) corresponds to the pointed endomorphism
(ℙ1ℤ,∞) → (ℙ1ℤ,∞), [𝑇0 ∶ 𝑇1] → [𝑇20 ∶ 𝑇21].

Proposition 5.2. Let 𝜏 ∶ ℙ1ℤ → ℙ1ℤ be the automorphism induced by [𝑇0 ∶
𝑇1] ↦ [𝑇1 ∶ 𝑇0]. Then under the zig-zag of pointed weak equivalences

(ℙ1ℤ,∞) (𝒳̃,∞) 𝑆1 ∧ 𝔾𝑚
∼∼

themorphism−𝜖1+(1) corresponds to the pointedautomorphismΦ◦𝜏◦Φ of (ℙ1ℤ,∞).
Proof. At the end of Section 4 we have the commutative diagram

𝑆1 ∧ 𝔾𝑚 (𝒳̃,∞) (ℙ1ℤ,∞)

𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0) (𝒴, 1) ℙ1ℤ∕D+(𝑇1) .

∼

Φ̃ Φ̄
∼

(Φ|𝔾𝑚 )1+(1)

∼

∼

Therefore, via the isomorphism (Φ|𝔾𝑚)1+(1), the morphism 𝜖1+(1) corresponds
to (Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚)−1)1+(1). The morphism Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚)−1 is induced by the
ring homomorphism

ℤ[𝑇0, 𝑇1]((𝑇0−𝑇1)𝑇0) → ℤ[𝑇0, 𝑇1]((𝑇0−𝑇1)𝑇0)
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which interchanges
(𝑇0 − 𝑇1)2
(𝑇0 − 𝑇1)𝑇0

with
𝑇20

(𝑇0 − 𝑇1)𝑇0
.

On the other hand, the automorphism Φ◦𝜏◦Φ of ℙ1ℤ is induced by the ring
isomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0 − 𝑇1, 𝑇1 ↦ −𝑇1.

The restriction Φ◦𝜏◦Φ|D+((𝑇0−𝑇1)𝑇0) is Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚)−1. Moreover, the auto-
morphism Φ◦𝜏◦Φ interchanges D+(𝑇0) with D+(𝑇0 − 𝑇1) and sends D+(𝑇1)
to itself. Hence, Φ◦𝜏◦Φ also induces a morphism Φ◦𝜏◦Φ ∶ ℙ1ℤ∕D+(𝑇1) →
ℙ1ℤ∕D+(𝑇1). Now recall that in Section 4 we also construcuted the pointed
space𝒴∕𝐵. Analogously, we can consider the comparisonmapbetweenpushout
diagrams induced by inclusions

0 × D+((𝑇0 − 𝑇1)𝑇1𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇1𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇1𝑇0)

0 × D+((𝑇0 − 𝑇1)𝑇1) ⊔ 1 × D+(𝑇0𝑇1)

0 × D+((𝑇0 − 𝑇1)𝑇0) ⊔ 1 × D+((𝑇0 − 𝑇1)𝑇0) 𝐼 × D+((𝑇0 − 𝑇1)𝑇0)

0 × D+(𝑇0 − 𝑇1) ⊔ 1 × D+(𝑇0)
inclusion⊔inclusion

where we denote the pushout of the first diagram by 𝐵′ and the second by 𝒴′.
Then we take the cofiber 𝒴′∕𝐵′. There is again a canonical weak equivalence
𝒴′∕𝐵′ → ℙ1ℤ∕D+(𝑇1). Since the automorphism Φ◦𝜏◦Φ interchanges D+(𝑇0)
withD+(𝑇0−𝑇1) and keepsD+(𝑇1) invariant, it induces an isomorphism𝒴∕𝐵 ≅
𝒴′∕𝐵′. We have then the commutative diagram

𝒴∕𝐵 ℙ1ℤ∕D+(𝑇1)

𝒴′∕𝐵′ ℙ1ℤ∕D+(𝑇1) .
Φ◦𝜏◦Φ

∼

∼

≅

Next, we apply the geometric realization functor (see Section 6.2). There is an
isomorphism 𝑠 from |𝒴′∕𝐵′| to |𝒴∕𝐵| which is induced by the swap morphism
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|𝐼| → |𝐼|. In particular, the following diagram:

|𝒴∕𝐵| |ℙ1ℤ∕D+(𝑇1)|

|𝒴′∕𝐵′| |ℙ1ℤ∕D+(𝑇1)|

|𝒴∕𝐵|

|Φ◦𝜏◦Φ|

∼

∼

≅

𝑠 ∼

is commutative. Moreover the swap morphism also induces an isomorphism
𝑠′ ∶ |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)| → |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)| which is the inverse
morphism for the cogroup object |𝑆1 ∧D+((𝑇0−𝑇1)𝑇0)|. We can equip 𝒴′ with
the base point

Spec ℤ 0 × D+(𝑇0 − 𝑇1) 𝒴′ .0

Then it follows from the construction of 𝒴′ that there is a pointed weak equi-
valence (𝒴′, 0) → 𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0). At the end, we have now the diagram

|𝒴∕𝐵| |(𝒴, 1)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|𝒴′∕𝐵′| |(𝒴′, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|𝒴∕𝐵| |(𝒴, 1)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|(Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚 )−1)1+(1)|

𝑠 𝑠′

where |𝒴∕𝐵| → |𝒴′∕𝐵′| and |(𝒴, 1)| → |(𝒴′, 0)| are induced by Φ◦𝜏◦Φ. The
first part of the previous diagram

|𝒴∕𝐵| |(𝒴, 1)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|𝒴′∕𝐵′| |(𝒴′, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|(Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚 )−1)1+(1)|

is commutative. We would like to show that the second part commutes, too.
First, we also can equip 𝒴 with the base point

Spec ℤ 1 × D+(𝑇0 − 𝑇1) 𝒴 .0

Then the swap morphism induces an isomorphism 𝑠′′ ∶ |(𝒴′, 0)| → |(𝒴, 0)|.
We also have pointed weak equivalences |(𝒴, 0)| → |𝒴∕𝐵| and |(𝒴, 0)| → |𝑆1 ∧
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D+((𝑇0 − 𝑇1)𝑇0)|. Now we have the diagram

|𝒴′∕𝐵′| |(𝒴′, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|(𝒴, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|𝒴∕𝐵| |(𝒴, 1)| .

𝑠

𝑠′′

∼

𝑠′

∼

It follows from the definition of themorphisms 𝑠, 𝑠′ and 𝑠′′ that the diagrams

|𝒴′∕𝐵′| |(𝒴′, 0)|

|𝒴∕𝐵| |(𝒴, 0)|

𝑠 𝑠′′

and

|(𝒴′, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|(𝒴, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|
𝑠′′ 𝑠′

are commutative.
In Proposition 3.1, we proved that the diagram

(𝒳̃, 0) 𝑆1 ∧ 𝔾𝑚

𝒳̃∕𝐴 (𝒳̃,∞)

∼

∼

∼

∼

commutes. Now we can use exactly the same methods to show that

(𝒴, 0) 𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)

𝒴∕𝐵 (𝒴, 1)∼

∼∼

∼
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is commutative, too. Therefore, all three inner diagrams in

|𝒴′∕𝐵′| |(𝒴′, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|(𝒴, 0)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|𝒴∕𝐵| |(𝒴, 1)|

𝑠

𝑠′′

∼

𝑠′

∼

commute. Since all involved morphisms are weak equivalences, it also follows
that the outer diagram is commutative. In particular, we have the following
commutative diagram

|ℙ1ℤ∕D+(𝑇1)| |𝒴∕𝐵| |(𝒴, 1)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|ℙ1ℤ∕D+(𝑇1)| |𝒴′∕𝐵′| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|𝒴∕𝐵| |(𝒴, 1)| |𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)|

|(Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚 )−1)1+(1)|

𝑠 𝑠′

|Φ◦𝜏◦Φ|

which implies that via the zig-zag of weak equivalences

ℙ1ℤ∕D+(𝑇1) (𝒴, 1) 𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)

the morphism −(Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚)−1)1+(1) corresponds to Φ◦𝜏◦Φ.
In the next step, we consider again the commutative diagram:

𝑆1 ∧ 𝔾𝑚 (𝒳̃,∞) (ℙ1ℤ,∞)

𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0) (𝒴, 1) ℙ1ℤ∕D+(𝑇1) .

∼

Φ̃ Φ̄
∼

(Φ|𝔾𝑚 )1+(1)

∼

∼

Via the isomorphism (Φ|𝔾𝑚)1+(1), the morphism −𝜖1+(1) corresponds to
−(Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚)−1)1+(1) and under the zig-zag of weak equivalences

ℙ1ℤ∕D+(𝑇1) (𝒴, 1) 𝑆1 ∧ D+((𝑇0 − 𝑇1)𝑇0)∼∼

the morphism −(Φ|𝔾𝑚◦𝜖◦(Φ|𝔾𝑚)−1)1+(1) corresponds to Φ◦𝜏◦Φ. Therefore, we
only need to determine which pointed endomorphism of (ℙ1ℤ,∞) equals to
Φ̄−1◦(Φ◦𝜏◦Φ)◦Φ̄ in ℋ∙(ℤ), because this is then the morphism which corres-
ponds to −𝜖1+(1) under the zig-zag of weak equivalences

𝑆1 ∧ 𝔾𝑚 (𝒳̃,∞) (ℙ1ℤ,∞) .∼∼
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We claim that the diagram

(ℙ1ℤ,∞) (ℙ1ℤ,∞)

ℙ1ℤ∕D+(𝑇1) ℙ1ℤ∕D+(𝑇1)

Φ◦𝜏◦Φ

Φ◦𝜏◦Φ

Φ̄ Φ̄

commutes inℋ∙(ℤ). The composition Φ◦𝜏◦Φ◦Φ̄ is just

(ℙ1ℤ,∞) (ℙ1ℤ, 0) (ℙ1ℤ, 0) ℙ1ℤ∕D+(𝑇1)𝜏 Φ

where (ℙ1ℤ, 0) → ℙ1ℤ∕D+(𝑇1) is the canonical projection. Similarly, Φ̄◦Φ◦𝜏◦Φ
is

(ℙ1ℤ,∞) (ℙ1ℤ, 1) (ℙ1ℤ, 1) ℙ1ℤ∕D+(𝑇1)Φ 𝜏

where (ℙ1ℤ, 0) → ℙ1ℤ∕D+(𝑇1) is the canonical projection. First, we would like
to find a sequence of naive𝔸1-homotopies𝐻 ∶ ℙ1ℤ ×Spec ℤ 𝔸

1
ℤ → ℙ1ℤ from Φ◦𝜏

to 𝜏◦Φ such that every composition

Spec ℤ ×Spec ℤ 𝔸1
ℤ ℙ1ℤ ×Spec ℤ 𝔸

1
ℤ ℙ1ℤ

∞×id𝔸1ℤ 𝐻

factors through D+(𝑇1). This condition is equivalent to the condition that
𝐻((𝑇1, 𝜌)) are all contained inD+(𝑇1)where (𝑇1, 𝜌) is the homogeneous prime
ideal of ℤ[𝑇][𝑇0, 𝑇1] generated by 𝜌 and 𝑇1 and 𝜌 runs over the prime ideals
of ℤ[𝑇]. Then such a sequence of naive 𝔸1-homotopies induces a sequence of
pointed naive 𝔸1-homotopies Spec ℤ ∧ (𝔸1

ℤ)+ → ℙ1ℤ∕D+(𝑇1) from Φ◦𝜏◦Φ◦Φ̄
to Φ̄◦Φ◦𝜏◦Φ.
The scheme morphism 𝜏◦Φ is induced by the ring isomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0 − 𝑇1, 𝑇1 ↦ 𝑇0
and Φ◦𝜏 is induced by the ring isomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇1, 𝑇1 ↦ 𝑇1 − 𝑇0.
We first have a naive 𝔸1-homotopy 𝐻1 ∶ ℙ1ℤ ×Spec ℤ 𝔸

1
ℤ → ℙ1ℤ induced by the

ring homomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇][𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇𝑇0 − 𝑇1, 𝑇1 ↦ 𝑇0.
It follows from the definition of𝐻1 that𝐻1((𝑇1, 𝜌)) are all contained in D+(𝑇1)
where 𝜌 runs over the prime ideals ofℤ[𝑇]. Hence, 𝜏◦Φ is𝔸1-homotopic to the
scheme endomorphism ofℙ1ℤ defined by [𝑇0 ∶ 𝑇1] ↦ [−𝑇1 ∶ 𝑇0] = [𝑇1 ∶ −𝑇0].
Next, we can give an 𝔸1-homotopy 𝐻2 from this morphism to Φ◦𝜏. It is given
by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇][𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇1, 𝑇1 ↦ 𝑇𝑇1 − 𝑇0.
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Again, we have𝐻2((𝑇1, 𝜌)) ∈ D+(𝑇1) for all prime ideals 𝜌 ofℤ[𝑇]. Thuswe ob-
tain a sequence of pointed naive𝔸1-homotopies Spec ℤ∧(𝔸1

ℤ)+ → ℙ1ℤ∕D+(𝑇1)
from Φ◦𝜏◦Φ◦Φ̄ to Φ̄◦Φ◦𝜏◦Φ. □

Proposition 5.3. The morphism 𝑞1+(1) is equal to 11+(1) − 𝜖1+(1) inℋ∙(ℤ).

Proof. Recall that 𝑞(1) is the pointed morphism

𝔾𝑚 → 𝔾𝑚, 𝑥 ↦ 𝑥2.

It is easy to see that via the zig-zag of pointed weak equivalences

(ℙ1ℤ,∞) (𝒳̃,∞) 𝑆1 ∧ 𝔾𝑚
∼∼

the morphism 𝑞1+(1) corresponds to the pointed endomorphism of (ℙ1ℤ,∞)
which is given by [𝑇0 ∶ 𝑇1] ↦ [𝑇20 ∶ 𝑇21]. By Proposition 5.2, the morph-
ism −𝜖1+(1) corresponds to Φ◦𝜏◦Φ. Since we equipped (ℙ1ℤ,∞) with a cogroup
structure using the zig-zag above, 11+(1) − 𝜖1+(1) corresponds to idℙ1ℤ +Φ◦𝜏◦Φ.
By Proposition 2.5, themorphismgiven by [𝑇0 ∶ 𝑇1] ↦ [𝑇20 ∶ 𝑇21] is represen-

ted by the pair of polynomials 𝑋
2

1
where𝑋 is 𝑇0

𝑇1
. Simiarly,Φ◦𝜏◦Φ is represented

by 𝑋−1
−1

and idℙ1ℤ is represented by
𝑋
1
.

Cazanave gives the set [ℙ1𝑘, ℙ
1
𝑘]N of pointed naive 𝔸1-homotopy classes of

scheme morphisms a monoid structure, where ℙ1𝑘 is equipped with the base
point ∞. We denote the addition for this monoid structure by ⊕N. Via the
same co-diagonal ∇̃ as for (ℙ1ℤ,∞)(see Proposition 3.1), we can equip ℙ1𝑘 with
a cogroup structure. Proposition 3.1 also holds for ℙ1𝑘. Then we have a group
structure on ℋ∙(𝑘)(ℙ1𝑘, ℙ

1
𝑘). We denote addition for this group structure by

⊕𝔸1 .
In [Caz12, Appendix B], Cazanave shows that 𝑋

𝑎
⊕N 𝑔 is equal to 𝑋

𝑎
⊕𝔸1 𝑔

for any units 𝑎 ∈ 𝑘 and 𝑔 a pair of polynomials which represents a pointed en-
domorphism of (ℙ1𝑘,∞). Actually, his methods also work over Spec ℤ for units
𝑎 ∈ ℤ because his proof relies on the homotopy purity theorem (see [MV99,
Theorem2.23, page 115]) anddoes not use any specific facts about fields. There-
fore, we also have 𝑋

1
⊕N 𝑋−1

−1
= 𝑋

1
⊕𝔸1 𝑋−1

−1
over Spec ℤ. By Definition 2.7 the

sum 𝑋
1
⊕N 𝑋−1

−1
is equal to 𝑋2−𝑋+1

𝑋−1
. In the following, we give a sequence of poin-

ted naive 𝔸1-homotopies between 𝑋2

1
and 𝑋2−𝑋+1

𝑋−1
. We characterized pointed

naive 𝔸1-homotopies in Proposition 2.6.
At first we have the pointed 𝔸1-homotopy

𝑋2

𝑇𝑋 + 1
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from 𝑋2

1
to 𝑋2

𝑋+1
. Then

𝑋2 + 2𝑇𝑋 + 2𝑇
𝑋 + 1

is a pointed 𝔸1-homotopy from 𝑋2

𝑋+1
to 𝑋2+2𝑋+2

𝑋+1
. Next,

𝑋2 + 2𝑇𝑋 + 2𝑇
𝑋 + (2𝑇 − 1)

is a pointed 𝔸1-homotopy from 𝑋2+2𝑋+2
𝑋+1

to 𝑋2

𝑋−1
. Finally

𝑋2 − 𝑇𝑋 + 𝑇
𝑋 − 1

is a pointed 𝔸1-homotopy from 𝑋2

𝑋−1
to 𝑋2−𝑋+1

𝑋−1
. □

If we suspend from the right with 𝔾𝑚, we get the following corollary.

Corollary 5.4. Let 𝑤 > 0 be a natural number. Then the morphism 𝑞1+(𝑤) ∶
𝑆1+(𝑤) → 𝑆1+(𝑤) coincides with (1 − 𝜖)1+(𝑤) inℋ∙(ℤ).
Now we are interested in the case 𝑤 = 2.

Proposition 5.5. Inℋ∙(ℤ), the morphism 𝑞1+(2) is equal to 11+(1) ∧ 𝑞(1).
Proof. The morphism 𝑞1+(2) is given by

𝑆1 ∧ 𝔾2
𝑚 → 𝑆1 ∧ 𝔾2

𝑚; 𝑡 ∧ 𝑥 ∧ 𝑦 ↦ 𝑡 ∧ 𝑥2 ∧ 𝑦.
And, the morphism 11+(1) ∧ 𝑞(1) is given by

𝑆1 ∧ 𝔾2
𝑚 → 𝑆1 ∧ 𝔾2

𝑚; 𝑡 ∧ 𝑥 ∧ 𝑦 ↦ 𝑡 ∧ 𝑥 ∧ 𝑦2.

Next, we consider the space 𝔸2
ℤ − {0}. It is the pushout of

𝔸1
ℤ × 𝔾𝑚 𝔾𝑚 × 𝔾𝑚 𝔾𝑚 × 𝔸1

ℤ ,

so we can equip it with the base point (1, 1) coming from 𝔾𝑚 × 𝔾𝑚. Via the
open covering of𝔸2

ℤ−{0} above, there is a zig-zag of pointed weak equivalences
from (𝔸2

ℤ − {0}, (1, 1)) to 𝔾𝑚 ∗ 𝔾𝑚 and the projection 𝔾𝑚 ∗ 𝔾𝑚 → 𝑆1 ∧ 𝔾2
𝑚

is a weak equivalence. Via this isomorphism, 𝑞1+(2) corresponds to a pointed
morphism (𝔸2

ℤ − {0}, (1, 1)) → (𝔸2
ℤ − {0}, (1, 1)) which is induced by the ring

homomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇20 , 𝑇1 ↦ 𝑇1 (∗).
Similarly, 11+(1) ∧ 𝑞(1) corresponds to the morphism induced by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0, 𝑇1 ↦ 𝑇21 (∗∗).
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We would like to show that these two pointed endomorphisms of 𝔸2
ℤ − {0}

are pointed 𝔸1-homotopic. Actually, it is enough to show that they are 𝔸1-
homotopic since 𝔸2

ℤ − {0} is 𝔸1-weakly equivalent to SL2. As SL2 is a group
scheme, the classical arguments show that the canonical map ℋ∙(ℤ)((𝔸2

ℤ −
{0}, (1, 1)), (𝔸2

ℤ − {0}, (1, 1))) → ℋ(ℤ)(𝔸2
ℤ − {0}, 𝔸2

ℤ − {0}) is injective, where
ℋ(ℤ) is the unstable motivic homotopy category over ℤ. Now we give an ex-
plicit sequence of𝔸1-homotopies between the twomorphisms (∗) and (∗∗). We
need𝔸1-homotopies of the form𝔸2

ℤ − {0} ×ℤ𝔸
1
ℤ → 𝔸2

ℤ − {0}. In the following,
we give ring homomorphisms 𝑓 ∶ ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇] which satisfy the
property: If 𝜌 ⊂ ℤ[𝑇0, 𝑇1, 𝑇] is a prime ideal which does not contain the prime
ideal (𝑇0, 𝑇1), then the preimage 𝑓−1(𝜌) also does not contain (𝑇0, 𝑇1). Such
ring homomorphisms inducemorphisms of the form𝔸2

ℤ−{0}×ℤ𝔸
1
ℤ → 𝔸2

ℤ−{0}.
The first one is given by the ring homomorphism

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇]; 𝑇0 ↦ (𝑇0 + 𝑇𝑇1)2, 𝑇1 ↦ 𝑇1.

This ring homomorphism induces a morphism 𝔸2
ℤ − {0} ×ℤ 𝔸1

ℤ → 𝔸2
ℤ − {0}

which is an 𝔸1-homotopy from (∗) to the morphism induced by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ (𝑇0 + 𝑇1)2, 𝑇1 ↦ 𝑇1.
The second one is induced by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇]; 𝑇0 ↦ (𝑇0 + 𝑇1)2, 𝑇1 ↦ 𝑇𝑇1 + (𝑇 − 1)𝑇0.
The third one is given by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇]; 𝑇0 ↦ (𝑇𝑇0 + 𝑇1)2, 𝑇1 ↦ −𝑇0.
The fourth one is given by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇]; 𝑇0 ↦ 𝑇𝑇0 + 𝑇21 , 𝑇1 ↦ −𝑇0.
The fifth one is given by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇]; 𝑇0 ↦ 𝑇0 + 𝑇𝑇21 , 𝑇1 ↦ −𝑇0 + (1 − 𝑇)𝑇21 .
And the last one is given by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1, 𝑇]; 𝑇0 ↦ 𝑇0, 𝑇1 ↦ −𝑇𝑇0 + 𝑇21 .

The last ring homomorphism induces an 𝔸1-homotopy between (∗∗) and the
morphism induced by

ℤ[𝑇0, 𝑇1] → ℤ[𝑇0, 𝑇1]; 𝑇0 ↦ 𝑇0, 𝑇1 ↦ −𝑇0 + 𝑇21 .
Therefore, the two morphisms 𝑞1+(2) and 11+(1) ∧ 𝑞(1) coincide. □

Let 𝜏′ ∶ 𝔾𝑚 ∧ 𝔾𝑚 → 𝔾𝑚 ∧ 𝔾𝑚 be the morphism defined by 𝑥 ∧ 𝑦 ↦ 𝑦 ∧ 𝑥.

Lemma 5.6. The relation 𝜖1+(2) = 11+(1) ∧ 𝜖(1) holds.
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Proof. Themorphism (id𝑆1 ∧𝜏′)◦(11+(1)∧𝑞(1)) is given by 𝑡∧𝑥∧𝑦 ↦ 𝑡∧𝑦2∧𝑥.
Therefore, it is equal to 𝑞1+(2)◦(id𝑆1 ∧ 𝜏′). Next, we have:

𝑞1+(2)◦(id𝑆1 ∧ 𝜏′) = (11+(2) − 𝜖1+(2))◦(id𝑆1 ∧ 𝜏′)
= id𝑆1 ∧ 𝜏′ − 𝜖1+(2)◦(id𝑆1 ∧ 𝜏′)

= id𝑆1 ∧ 𝜏′ − (id𝑆1 ∧ 𝜏′)◦(11+(1) ∧ 𝜖(1))
= (id𝑆1 ∧ 𝜏′)◦(11+(2) − 11+(1) ∧ 𝜖(1)).

Since id𝑆1 ∧ 𝜏′ is an isomorphism in the pointed homotopy category, we get
11+(1) ∧ 𝑞(1) = 11+(2) − 11+(1) ∧ 𝜖(1). By Lemma 3.4.5 we have that 11+(1) ∧ 𝑞(1) is
equal to 𝑞1+(2). Hence, we obtain 11+(2) − 𝜖1+(2) = 𝑞1+(2) = 11+(2) − 11+(1) ∧ 𝜖(1).
It follows that 𝜖1+(2) = 11+(1) ∧ 𝜖(1). □

Corollary 5.7. Under the canonical isomorphism from 𝔸2
ℤ − {0} to 𝑆1+(2) the

morphism𝔸2
ℤ−{0} → 𝔸2

ℤ−{0}, (𝑇0, 𝑇1) ↦ (𝑇20 , 𝑇21) corresponds to𝑞1+(2)◦(11+(1)∧
𝑞(1)) = 𝑞1+(2)◦𝑞1+(2) = (1−𝜖)1+(2)◦(1−𝜖)1+(2) = 2(1−𝜖)1+(2) in the commutative
group 𝜋1+(2)𝑆1+(2).
Proof. It is clear that the morphism 𝔸2

ℤ − {0} → 𝔸2
ℤ − {0}, (𝑇0, 𝑇1) ↦ (𝑇20 , 𝑇21)

corresponds to 𝑞1+(2)◦(11+(1) ∧ 𝑞(1)). Furthermore, we have that
(1 − 𝜖)1+(2)◦(1 − 𝜖)1+(2) = (1 − 𝜖)1+(2)◦(11+(2) − 11+(1) ∧ 𝜖(1))

= 11+(2) − 11+(1) ∧ 𝜖(1) − 𝜖1+(2) + 𝜖1+(2)◦(11+(1) ∧ 𝜖(1))
= 11+(2) − 11+(1) ∧ 𝜖(1) − 𝜖1+(2) + 𝜖1+(2)◦𝜖1+(2)

= 11+(2) − 𝜖1+(2) − 𝜖1+(2) + 11+(2)
= 2(1 − 𝜖)1+(2). □

In the next proposition, we show that 𝜂1+(2)◦ℎ1+(3) and ℎ1+(2)◦𝜂1+(2) are 𝔸1-
nullhomotopic. Similar computations in the stable case can be found in [DuI13].

Proposition 5.8. The elements
𝜂1+(2)◦ℎ1+(3) and ℎ1+(2)◦𝜂1+(2)

are𝔸1-nullhomotopic.

Proof. The smash product 𝜂1+(1) ∧ 𝑞(1) can be expressed in two different ways.
First we have that

𝜂1+(1) ∧ 𝑞(1) = (𝜂1+(1) ∧ id𝔾𝑚)◦(11+(2) ∧ 𝑞(1))
= 𝜂1+(2)◦(11+(2) ∧ 𝑞(1)).

By Proposition 5.5, we get 11+(1)∧𝑞(1)∧id𝔾𝑚 = 𝑞1+(2)∧id𝔾𝑚 = 𝑞1+(3). Moreover
we have (11+(1)∧𝜏′)◦(11+(2)∧𝑞(1))◦(11+(1)∧𝜏′) = 11+(1)∧𝑞(1)∧id𝔾𝑚 . Therefore,
the equation 11+(2) ∧ 𝑞(1) = (11+(1) ∧ 𝜏′)◦𝑞1+(3)◦(11+(1) ∧ 𝜏′) = 𝑞1+(3) holds.
On the other hand, we have that

𝜂1+(1) ∧ 𝑞(1) = (11+(1) ∧ 𝑞(1))◦(𝜂1+(1) ∧ id𝔾𝑚)
= 𝑞1+(2) ∧ 𝜂1+(2).
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Hence, we get the equation 𝜂1+(2)◦𝑞1+(3) = 𝑞1+(2)◦𝜂1+(2).
Furthermore, we have the commutative diagram

𝔸2
ℤ − {0} 𝔸2

ℤ − {0}

ℙ1ℤ ℙ1ℤ

(𝑇0,𝑇1)↦(𝑇20 ,𝑇21)

[𝑇0∶𝑇1]↦[𝑇20∶𝑇21]
𝜂 𝜂

where 𝜂 is the geometric Hopf map. This commutative diagram implies the
equation 𝑞1+(1)◦𝜂1+(1) = 𝜂1+(1)◦𝑞1+(2)◦𝑞1+(2). Since 𝑞1+(1) is equal to ℎ1+(1), we
get the equations

0 = (𝜂1+(1)◦𝑞1+(2)◦𝑞1+(2)) ∧ id𝔾𝑚 − (𝑞1+(1)◦𝜂1+(1)) ∧ id𝔾𝑚
= 𝜂1+(2)◦ℎ1+(3)◦ℎ1+(3) − 𝜂1+(2)◦ℎ1+(3)

= 𝜂1+(2)◦(ℎ1+(3)◦ℎ1+(3) − ℎ1+(3)).

It follows from Corollary 3.4.8 that ℎ1+(3)◦ℎ1+(3) − ℎ1+(3) = ℎ1+(3). Thus we
get 𝜂1+(2)◦ℎ1+(3) = 0. Finally, we get ℎ1+(2)◦𝜂1+(2) = 𝜂1+(2)◦ℎ1+(3)◦ℎ1+(3) from
the equation 𝑞1+(1)◦𝜂1+(1) = 𝜂1+(1)◦𝑞1+(2)◦𝑞1+(2). Since 𝜂1+(2)◦ℎ1+(3) = 0, we
obtain ℎ1+(2)◦𝜂1+(2) = 0. □

Proposition 5.9. The Toda brackets

{ℎ1+(2), 𝜂1+(2), ℎ1+(3)}

and

{𝜂1+(2), ℎ1+(3), 𝜂1+(3)}

are not trivial, in the sense that they do not contain the homotopy class of the
corresponding constant morphism.

Proof. The complex realizations of bothToda brackets are not trivial by [Tod63,
Example 2, p.84] and [Tod63, Proposition 5.6], respectively. □

Let 𝑘 be a field of characteristic zero. Then analogously, the Toda bracket
{𝜂1+(2), ℎ1+(3), 𝜂1+(3)} is also defined over 𝑘. Using the same argument as for the
base ℤ we can show that this Toda bracket is not trivial. Let 𝜈′ be an arbitrary
element of {𝜂1+(2), ℎ1+(3), 𝜂1+(3)}. The left derived complex realization functor
sends this element to the element of the same name defined in [Tod63, Propos-
ition 5.6]. By [AF14, Proposition 4.14], the group 𝜋2+(4)SL3 is equal to ℤ∕6ℤ
over 𝑘. Let 𝑗 denote the inclusion SL2 ↪ SL3. Since 𝑆1+(2) is isomorphic to SL2,
𝜈′ can be viewed as an element of 𝜋2+(4)SL2. We claim that the element 𝑗∗(𝜈′)
generates the 2-primary component of 𝜋2+(4)SL3.

Proposition 5.10. The element 𝑗∗(𝜈′) generates the 2-primary component of
𝜋2+(4)SL3 over any field 𝑘 of characteristic zero.
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Proof. Let 𝑖 be the inclusion of the topological groups SL(2, ℂ) ↪ SL(3, ℂ).
Using the complex realization, we get the following commutative diagram of
abelian groups

𝜋2+(4)SL2 𝜋2+(4)SL3

𝜋6SL(2, ℂ) 𝜋6SL(3, ℂ) .

𝑗∗

𝑖∗

By [AF14, Theorem 5.5], the homomorphism 𝜋2+(4)SL3 → 𝜋6SL(3, ℂ) induced
by the complex realization is an isomorphism over any field 𝑘 of characteristic
zero. Since SL(𝑛, ℂ) is homotopy equivalent to SU(𝑛), we can rewrite the pre-
vious diagram in the following way

𝜋2+(4)SL2 𝜋2+(4)SL3

𝜋6SU(2) 𝜋6SU(3)

𝑗∗

≅
𝑖∗

where we abuse the notation and also denote the inclusion SU(2) ↪ SU(3) by 𝑖.
By [MiT63, Theorem 4.1], the 2-primary component of 𝜋6SU(3) is generated by
𝑖∗(𝜈′). Therefore, 𝑗∗(𝜈′) generates the 2-primary component of 𝜋2+(4)SL3 over
any field 𝑘 of characteristic zero. □

At the end of the paper, we construct another motivic Toda bracket over
Specℤwhose complex realization is trivial; nevertheless this Toda bracket itself
is not trivial.
Let ∆(2) ∶ 𝔾𝑚 → 𝔾𝑚 ∧ 𝔾𝑚 be the diagonal morphism 𝑥 ↦ 𝑥 ∧ 𝑥.

Proposition 5.11. The element ∆1+(3)◦ℎ1+(2) is𝔸1-nullhomotopic.

Proof. Since ℎ1+(2) is by definition equal to 11+(2) − 𝜖1+(2), we have that
∆1+(3)◦ℎ1+(2) = ∆1+(3) − ∆1+(3)◦𝜖1+(2).

In the following, we show that ∆1+(3)◦𝜖1+(2) is equal to ∆1+(3). The morphism
∆1+(3)◦𝜖1+(2) is given by 𝑡 ∧ 𝑥 ∧ 𝑦 ↦ 𝑡 ∧ 𝑥−1 ∧ 𝑥−1 ∧ 𝑦. Therefore, ∆1+(3)◦𝜖1+(2)
equals to 𝜖1+(3)◦11+(1)∧𝜖(1)∧id𝔾𝑚◦∆1+(3). By Lemma 5.6, we get 𝜖1+(3) = 11+(1)∧
𝜖(1) ∧ id𝔾𝑚 . Hence, we have that

𝜖1+(3)◦11+(1) ∧ 𝜖(1) ∧ id𝔾𝑚 = 𝜖1+(3)◦𝜖1+(3) = 11+(3).
It follows that ∆1+(3)◦𝜖1+(2) is equal to ∆1+(3). □

By Proposition 5.8, we also have that ℎ1+(2)◦𝜂1+(2) is 𝔸1-nullhomotopic. In
particular, the Toda bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} is defined. The complex real-
ization of themorphism∆1+(3) is a pointed continuousmap from 𝑆3 to 𝑆4; hence
it is nullhomotopic. The left derived complex realization functor sends the Toda
bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} to {0, 2id𝑆3 , Σ𝜂𝑡𝑜𝑝}. The topological Toda bracket
{0, 2id𝑆3 , Σ𝜂𝑡𝑜𝑝} is trivial. So the complex realization of {∆1+(3), ℎ1+(2), 𝜂1+(2)} is
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trivial, too. Although the complex realization of {∆1+(3), ℎ1+(2), 𝜂1+(2)} is trivial,
we can show that this Toda bracket itself is not trivial.

Proposition 5.12. The Toda bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} does not contain 0.
Proof. The Toda bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} is again defined over any field 𝑘
of characteristic zero. In the following, we first work over such a base 𝑘. The
author showed in their doctoral thesis that motivic Toda brackets satisfy almost
the same computational rules as topological Toda brackets [Don24, Section 2.3].
By [Don24, Proposition 2.3.3], we get the equation

{∆1+(3), ℎ1+(2), 𝜂1+(2)}◦ℎ2+(3) = −(∆1+(3)◦{ℎ1+(2), 𝜂1+(2), ℎ1+(3)}).
We want to study ∆1+(3)◦{ℎ1+(2), 𝜂1+(2), ℎ1+(3)}. We have to consider now the
stable motivic catagory 𝒮ℋ(𝑘) (see [PPR09, A.5]). The category 𝒮ℋ(𝑘) is nat-
urally a triangulated category, therefore Toda brackets are defined in this cat-
egory. Furthermore, there is a suspension spectrum functor

Σ∞ℙ1 ∶ ℋ∙(𝑘) → 𝒮ℋ(𝑘)
We set ℎ ∶= Σ∞ℙ1(ℎ1+(1)) and 𝜂 ∶= Σ∞ℙ1(𝜂1+(1)). Then the functor Σ∞ℙ1 sends
{ℎ1+(2), 𝜂1+(2), ℎ1+(3)} to the Toda bracket < ℎ, 𝜂, ℎ > in 𝒮ℋ(𝑘).
Let [−1] ∶ 𝑆0 → 𝔾𝑚 be the pointed morphism defined by sending ∗∈ 𝑆0 =

{∗}+ to −1 ∈ 𝔾𝑚. In [DuI13, Proposition 3.5], Dugger and Isaksen show that
𝜌 ∶= Σ∞ℙ1([−1]) is equal to Σ

∞
ℙ1(∆(2)). In the following, we will denote the sus-

pension spectrum Σ∞ℙ1(ℰ) of a pointed motivic space simply by ℰ. The suspen-
sion spectrum of 𝑆0 is called the sphere spectrum.
We can equip 𝒮ℋ(𝑘) with a smash product ∧ which makes 𝒮ℋ(𝑘) into a

tensor triangulated category (see [PPR09, Remark A.39]). Both 𝑆1 and 𝔾𝑚 are
∧-invertible. We define the bigraded homotopy groups

𝜋𝑠+(𝑤)𝟏 ∶= 𝒮ℋ(𝑘)((𝑆1)𝑚 ∧ 𝔾𝑤
𝑚, 𝑆0)

for all 𝑠, 𝑤 ∈ ℤ. In particular, we have that ℎ ∈ 𝜋0+(0)𝟏, 𝜂 ∈ 𝜋0+(1)𝟏 and
𝜌 ∈ 𝜋0+(−1)𝟏. Furthermore, the Toda bracket< ℎ, 𝜂, ℎ > is contained in𝜋1+(1)𝟏.
By work of Morel [Mor04, Theorem 6.4.1], we have an isomorphism

𝐾𝑀𝑊
−∗ (𝑘) → ⊕

𝑤∈ℤ
𝜋0+(𝑤)𝟏

of graded rings, where 𝐾𝑀𝑊
∗ (𝑘) is the Milnor-Witt K-theory of the field 𝑘 (see

[IØ19, Definition 6.4]). Under this isomorphism the morphisms ℎ, 𝜂 and 𝜌 are
sent to the elements in𝐾𝑀𝑊

−∗ of the same names. TheMilnor K-theory𝐾𝑀
∗ (𝑘) is

defined to be 𝐾𝑀𝑊
∗ (𝑘)∕(𝜂). Let 𝜂𝑡𝑜𝑝 ∶ 𝑆3 → 𝑆2 be the topological Hopf map. It

is an element of 𝜋1+(0)𝟏. In [RSØ19, (1.1)], we can find a short exact sequence

0 𝐾𝑀
2 (𝑘)∕24 𝜋1+(0)𝟏 𝑘×∕2 ⊕ ℤ∕2 0 .

In this short exact sequence, the notation 𝑘×∕2means 𝑘×modulo squares. The
kernel𝐾𝑀

2 (𝑘)∕24 is generated by the secondmotivic Hopf map 𝜈 ∈ 𝜋1+(2)𝟏 (see
[DuI13, Definition 4.7]), in the sense that its elements are of the form 𝛼𝜈 for
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𝛼 ∈ 𝜋0+(−2)𝟏. The second factor of 𝑘×∕2 ⊕ ℤ∕2 is generated by the image of
𝜂𝑡𝑜𝑝 and the first factor is generated by 𝜂𝜂𝑡𝑜𝑝, in the sense that its elements are of
the form 𝛼𝜂𝜂𝑡𝑜𝑝 for 𝛼 ∈ 𝜋0+(−1)𝟏. These generators are subject to the relations
24𝜈 = 0 and 12𝜈 = 𝜂2𝜂𝑡𝑜𝑝.
By [Rön20, Proposition 4.1], the Toda bracket < ℎ, 𝜂, ℎ > is of the form

𝜂𝜂𝑡𝑜𝑝 + 2𝐾𝑀
1 (𝑘)∕24, where 2𝐾𝑀

1 (𝑘)∕24 is the indeterminacy. The suspension
functor Σ∞ℙ1 sends the set ∆1+(3)◦{ℎ1+(2), 𝜂1+(2), ℎ1+(3)} to the set 𝜌 ⋅ (𝜂𝜂𝑡𝑜𝑝 +
2𝐾𝑀

1 (𝑘)∕24) ⊆ 𝜋1+(0)𝟏. It suffices to show that 𝜌 ⋅(𝜂𝜂𝑡𝑜𝑝+2𝐾𝑀
1 (𝑘)∕24) does not

contain 0. The surjection 𝜋1+(0)𝟏 → 𝑘×∕2 ⊕ ℤ∕2 in the short exact sequence
above sends the elements of 𝜌⋅(𝜂𝜂𝑡𝑜𝑝+2𝐾𝑀

1 (𝑘)∕24) to 𝜌⋅𝜂𝜂𝑡𝑜𝑝. Therefore, if−1
is not a quadratic root in 𝑘, then 𝜌 ⋅ 𝜂𝜂𝑡𝑜𝑝 is not equal to 0. This is in particular
the case if 𝑘 = ℚ. It follows that for 𝑘 = ℚ the set ∆1+(3)◦{ℎ1+(2), 𝜂1+(2), ℎ1+(3)}
does not contain 0, hence the Toda bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} is not trivial
over ℚ.
Finally, we would like to show that {∆1+(3), ℎ1+(2), 𝜂1+(2)} is not trivial over

ℤ. For this, we use base change arguments. Let 𝑓 ∶ Spec ℚ → Spec ℤ be the
canonical morphism. Then there is a functor

𝑓∗ ∶ sPre(ℚ) → sPre(ℤ)

which is induced by

𝒮mℤ → 𝒮mℚ; 𝑋 ↦ 𝑋 ×Spec ℤ Spec ℚ

for all 𝑋 ∈ 𝒮mℤ. The functor 𝑓∗ admits a left adjoint 𝑓∗ ∶ sPre(ℤ) → sPre(ℚ)
with the property that it maps the sheaf represented by 𝑋 ∈ 𝒮mℤ to the sheaf
represented by 𝑋 ×Spec ℤ Spec ℚ. The explicit construction can be found in
([Jar15] p.108). By [Jar15, Corollary 5.24] and [Hir03, Proposition 3.3.18] the
adjoint functors

𝑓∗ ∶ sPre(ℤ) ⇄ sPre(ℚ) ∶ 𝑓∗
form a Quillen adjunction for the 𝔸1-local injective models. Since both func-
tors 𝑓∗ and 𝑓∗ preserve terminal objects, we also get the pointed version of this
Quillen adjunction

𝑓∗ ∶ sPre(ℤ)∗ ⇄ sPre(ℚ)∗ ∶ 𝑓∗.

We denote motivic spheres over ℤ by 𝑆𝑠+(𝑤)ℤ and motivic spheres over ℚ by
𝑆𝑠+(𝑤)ℚ . It follows from the construction of 𝑓∗ that 𝑓∗(𝑆𝑠+(𝑤)ℤ ) = 𝑆𝑠+(𝑤)ℚ . Fur-
thermore, the left derived functor 𝕃𝑓∗ sends the morphisms ∆1+(3), ℎ1+(2) and
𝜂1+(2) inℋ∙(ℤ) to the morphisms of the same names inℋ∙(ℚ). Therefore, 𝕃𝑓∗
sends the Toda bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} over ℤ to the corresponding Toda
bracket {∆1+(3), ℎ1+(2), 𝜂1+(2)} over ℚ. We already know that the Toda bracket
{∆1+(3), ℎ1+(2), 𝜂1+(2)} over ℚ does not contain 0, hence the Toda bracket
{∆1+(3), ℎ1+(2), 𝜂1+(2)} over ℤ is also not trivial. □
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6. Appendix
6.1. 𝚫-generated spaces. This section contains some facts about∆-generated
spaces which are used in the paper. The notion of ∆-generated spaces was ori-
ginally proposed by Jeff Smith as a nice category of spaces for homotopy theory.
However, Jeff Smith never published his ideas and there are only few references
on this notion. In the following, wewill follow the unpublished notes byDaniel
Dugger [Dug03].
Let 𝒯𝑜𝑝 denote the category of all topological spaces and continuous maps

and∆ be the full subcategory of𝒯𝑜𝑝 consisting of the topological simplices∆𝑛.
Definition 6.1 ([Dug03, Definition 1.2]). A topological space 𝑋 is called ∆-
generated if it has the property that a subset 𝑆 ⊆ 𝑋 is open if and only if 𝑓−1(𝑆)
is open for every continuous map 𝑓 ∶ 𝑍 → 𝑋 with 𝑍 ∈ ∆. Let𝒯𝑜𝑝∆ denote the
full subcategory of ∆-generated spaces.
Proposition 6.2 ([Dug03, Proposition 1.3]). Any object of∆ is∆-generated. Any
colimit of ∆-generated spaces is again ∆-generated.
Therefore, 𝒯𝑜𝑝∆ is a cocomplete category and the colimits are the same as

those in𝒯𝑜𝑝. Moreover, it also follows that𝒯𝑜𝑝∆ contains the geometric real-
ization of every simplicial set. We now show that this category is also complete.
Let 𝑋 be a topological space and (∆ ↓ 𝑋) be the overcategory. Then there is a
canonical diagram (∆ ↓ 𝑋) → 𝒯𝑜𝑝 sending every object (𝑓 ∶ 𝑍 → 𝑋) to 𝑍.
The colimit of this diagram will be denoted by 𝑘∆(𝑋). By the above proposition
this colimit is again ∆-generated, and there is a canonical map 𝑘∆(𝑋) → 𝑋.
Proposition 6.3 ([Dug03, Proposition 1.5]). (a) 𝑘∆(𝑋) → 𝑋 is a set-theoretic
bijection.
(b) 𝑋 is ∆-generated if and only if 𝑘∆(𝑋) → 𝑋 is a homeomorphism.
(c) A space is ∆-generated if and only if it is a colimit of some diagram whose
objects belong to ∆.
(d) The functors 𝑖 ∶ 𝒯𝑜𝑝∆ ⇄ 𝒯𝑜𝑝 ∶ 𝑘∆ are an adjoint pair, where 𝑖 is the
inclusion.

Now by Proposition 6.3 (b) and (d), we see that𝒯𝑜𝑝∆ is also complete; limits
are computed by first taking the limit in 𝒯𝑜𝑝 and then applying the functor
𝑘∆(−).
One of themost important properties of the category𝒯𝑜𝑝∆ is that it is locally

presentable.

Proposition 6.4 ([FR07, Corollary 3.7]). The category 𝒯𝑜𝑝∆ is locally present-
able.

It follows that in particular every object of 𝒯𝑜𝑝∆ is small, therefore 𝒯𝑜𝑝∆
permits the small object argument. Furthermore, by [Wyl73, 3.3], the category
𝒯𝑜𝑝∆ is even cartesian closed. For𝑋,𝑌 ∈ 𝒯𝑜𝑝∆ wewrite𝑋⊗𝑌 for the product
in 𝒯𝑜𝑝∆ and 𝑋 × 𝑌 for the usual cartesian product in 𝒯𝑜𝑝.
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Proposition 6.5 ([Dug03, Proposition 1.14]). The natural map𝑋⊗𝑌 → 𝑋×𝑌
is a homeomorphism.

At the end of this section we also mention that every open subset of a ∆-
generated space is again ∆-generated (see [Dug03, Proposition 1.18]).
6.2. Thegeometric realization functor. Wesummarize the properties of the
geometric realization functorwhich the author considered inher doctoral thesis
[Don24, Section 2].
Let 𝑆 be a noetherian base scheme of finite Krull dimension. We write 𝒮m𝑆

for the category of smooth schemes of finite type over 𝑆. The category sPre(𝑆)
is the category of simplicial presheaves on 𝒮m𝑆. The category of pointed sim-
plicial presheaves on 𝒮m𝑆 is denoted by sPre(𝑆)∗. Let Pre∆(𝑆) denote the cat-
egory of presheaves on 𝒮m𝑆 with values in ∆-generated topological spaces and
Pre∆(𝑆)∗ the category of presheaves on 𝒮m𝑆 with values in pointed∆-generated
topological spaces. By Proposition 6.2 the geometric realization of a simplicial
set is∆-generated. Therefore, by applying the usual geometric realization func-
tor sectionwise, we get a functor

| ⋅ | ∶ sPre(𝑆)∗ → Pre∆(𝑆)∗.
Recall that the geometric realization functor for simplicial sets has a right ad-
joint 𝑆𝑖𝑛𝑔 ∶ 𝒯𝑜𝑝∆ → s𝒮et. Then if we apply this functor again sectionwise,
we obtain a right adjoint for | ⋅ | and we denote the right adjoint still by 𝑆𝑖𝑛𝑔.
Hence, we have the following adjoint pair

| ⋅ | ∶ sPre(𝑆)∗ ⇄ Pre∆(𝑆)∗ ∶ 𝑆𝑖𝑛𝑔.
Proposition 6.6. [Don24, Remark 2.1.9]There exists an𝔸1-local injectivemodel
structure on Pre∆(𝑆)∗ such that

sPre(𝑆)∗ 𝔸1−𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑗 Pre∆(𝑆)∗ 𝔸1−𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑗
|⋅|

𝑆𝑖𝑛𝑔

is a Quillen equivalence.

Remark 6.7. The homotopy category associated to the𝔸1-local injective model
structure on Pre∆(𝑆)∗ will be denoted byℋ𝑜∆(𝑆).
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