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An unstable motivic null-Hopf relation

Xiaowen Dong

ABSTRACT. We prove the unstable analogue of the relation n2 = hp = 0in
stable motivic homotopy theory, where 7 is the first motivic Hopf map and
h the hyperbolic plane. Using these relations we construct some non-trivial
examples of Toda brackets in unstable motivic homotopy theory.
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1. Introduction

This paper is a part of the author’s doctoral thesis [Don24] about Toda brack-
ets in unstable motivic homotopy theory. Throughout the paper, we work over
the base Spec Z. Let Smy denote the category of smooth schemes of finite type
over Z. This category is equipped with the Nisnevich topology in the sense of
[MV99]. The category of pointed motivic spaces is the category of pointed sim-
plicial presheaves on Smy. It is denoted by sPre(Z)... For our purpose, we will
use the Al-local injective model structure on sPre(Z), which is developed in
[MV99]. The corresponding motivic homotopy category is denoted by F,(Z).

Let S%+® denote the motivic sphere S* A G-, where S is the simplicial
circle A /0A! and G,,, the Tate circle based at 1. Maps from spheres to spheres
are indexed by the bidegree of the target. Suspension from the right with G,,
increases the weight () by 1. Suspension from the left by the simplicial circle
S1 increases the degree a by 1. We would like to smash S* from the left and

G,, from the right as motivic spheres are of the form S* A qu. If we smash in
the other way around, we have to do some permutations to get spheres in the
standard form and this causes some technical subtleties. Let ;) denote the
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first algebraic Hopf map from S'*® to S+, Lete : G, — G, be given by
x — x~ L. Then, we define the hyperbolic plane hi+q) tobe 1144y — €14(1)- Let
qq) : G, = Gy, denote the map defined by x — x2.

The aim of this paper is to prove that the composites hy,;)on;4(2) and
N1+2)°h143) are Al-nullhomotopic. We note that these are the smallest bide-
grees for which the two composites are nullhomotopic. The corresponding
stable relation nh = hn = 0 was first proved by Morel [Mor04]. We also would
like to mention that some other stable null-Hopf relations were proved by Dug-
ger and Isaksen in [Dul13]. Our proof relies on the methods given by Cazanave
in [Caz12]. In particular, we have to construct explicit sequences of naive A!-
homotopies between certain maps. The key point for the whole proof is to show
that the relation g,y = 1141) — €14¢1) holds (Proposition 5.3).

In the following, we give briefly the idea of the proof. The two morphisms
q1+(1) and 154y — €14(1) are endomorphisms of S L' A G,,. We consider now the
projective line [F"lZ equipped with the base point co := [1 : 0]. Using a suit-
able isomorphism between S! A G,, and (P, c0) in the pointed A!-homotopy
category, we can transform these two morphisms into two endomorphisms of
(P!, ). Let [[P’lz, [P’IZ]N be the set of pointed naive A!-homotopy classes of poin-
ted scheme endomorphisms of (P1, o) (Definition 2.1). In Proposition 2.5,
we give a characterization of pointed scheme endomorphisms of (P}, o). In
Proposition 2.6, we give a characterization of pointed naive Al-homotopies of
pointed scheme endomorphisms of (P, 0). Let #.(Z)(P}, P}) be the set of
endomorphisms of (P}, o) in the pointed Al-homotopy category F(.(Z). We
can equip [P}, P, N with a monoid structure and denote its monoid operation
by @Y (Definition 2.7). Furthermore, via the chosen isomorphism between
S'AG,, and (P}, 0), we can equip (P}, o) with a cogroup structure such that

H.(Z)(PL,PL) is a group. We denote the induced group operation by ®" . In
[Caz12, Appendix B], Cazanave shows that the canonical map

[PLPLN - 3¢, ()(PL, PL)

is a homomorphism of monoids for any field k. In this paper, we extend this res-
ult partially to the base Spec Z. We show that for certain pointed Al-homotopy
classes of pointed scheme endomorphisms of (P}, o) their @N-sums coincide

with the @' -sums, This result can be found in the proof of Proposition 5.3.

In order to get Proposition 5.3, we also have to fix a gap in Cazanave’s paper
on the cogroup structure on P!. In his paper, Cazanave gives only a codiag-
onal morphism for P! using some geometry for the projective line (see [Caz12,
Lemma B.4]). We are able to show that his codiagonal morphism actually comes
from the chosen isomorphism with S A G,,, and therefore really defines a co-
group structure (Proposition 3.1).

We consider now the pointed endomorphisms f and g of (P, co) which cor-
respond to g4y and —€;(y), respectively. In particular, 1,y — €;4(1) corres-

ponds to id oM g. And, we can apply the extended result to id oM g and get
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id @' g = id ®N g. Thus, we can determine the A'-sum in this case expli-
citly. Then we can give an explicit sequence of pointed naive A!-homotopies
between f and id ®N g. Therefore, we get q1+1) = li+(1) — €1+q1)- Using this re-
lation, we can then show that hy (;)07;4(2) and 7y.(2)0h;4(3) are nulhomotopic
(Proposition 5.8).

Especially, we can use these nullhomotopic composites to get nontrivial Toda
brackets in unstable motivic homotopy theory. Unstable motivic Toda brack-
ets are constructed in their doctoral thesis [Don24, Section 2]. We recall here
quickly the construction. Suppose we are given a sequence of three composable
morphisms of pointed motivic spaces

Y B\

> X > Yy —>2

w

such that the composites aof and oy are Al-nullhomotopic. Then we choose
a nullhomotopy A : C(X) = A' AX — Z for aof and a nullhomotopy B :
C(W) = AL AW — Y for Boy where Al is based at 1. In particular, we also
get the morphisms aoB and AoC(y), where C(y) is the morphism between the
cones induced by y. Hence, we obtain a morphism

IW —3 C(W)Uy C(W) —> 2

in the pointed motivic homotopy category. The identification of ZW with the
pushout C(W) Ly, C(W) is canonical. The Toda bracket

{a,B,7} C H(ZD)(EW,Z)

is defined to be the set of all morphisms obtained in this way by choosing all
possible nullhomotopies for aof and Soy.
As an application of the results of this paper, we get the Toda brackets

{h1+(2)’ M+2)» h1+(3)}

and

{771+(2)’ h1+(3), 771+(3)}-

Moreover, these two Toda brackets are not trivial, in the sense that they
do not contain the homotopy classes of constant morphisms (Proposition 5.9).
This can be proved by using the complex realization.

Additionally, we also construct another Toda bracket

{A113)> Mv2)s M+

over the base Spec Z, where A3y is a suspension of the diagonal map A, :
Gy, = G, AG, defined by x — x Ax. The interesting point is that the complex
and real realization of this Toda bracket are trivial. The complex realization of
this Toda bracket is {0, 2idgs, Z7;0p}, Wwhere X7, is the suspension of the first to-
pological Hopf map and the third map is nullhomotopic as it is a map from S*
to S*. Since the third map is nullhomotopic, the Toda bracket is trivial. The real
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realization of {A;,(3), 14(2), M1+(2)} IS @ subset of ,(S1); therefore the realiza-
tion is also trivial. But we can show that the Toda bracket {A; (3, h1.4(2), N14(2)}
itself is actually not trivial.

At the end of the paper, we provide an appendix which is a short summary of
the geometric realization functor which the author introduced in the doctoral
thesis [Don24, Section 2.1]. We will use this functor for some technical lemmas
in the paper.

Acknowledgement. Iwould like to thank my doctoral advisor Oliver Rondigs
for his support and guidance.

2. Rational functions and naive A'-homotopies

For the paper, we need some results from [Caz12], so we first recall some
basic facts about pointed naive Al-homotopies. We work in this section over
the base Spec S where S is either a field or the ring of integers Z. Let Smg
denote the category of smooth schemes of finite type over S. The category of
pointed motivic spaces over S is denoted by sPre(S),. Itis equipped with the A!-
local injective model structure. The corresponding motivic homotopy category
is denoted by H,(S)

Definition 2.1. Let X and Y be two pointed motivic spaces in sPre(S),.. Let f
and g be two pointed morphisms from X to Y. A pointed naive Al-homotopy
is a morphism F : X A A}r — Y such that F|yyo is f and F|yxgy is g. We
define the set [X, Y]N of pointed naive homotopy classes of morphisms from X
to Y as the quotient of the set of pointed morphisms by the equivalence relation
generated by pointed naive A!-homotopies.

If there is a pointed naive A'-homotopy from f to g, then f is equal to g in
H.(S). Therefore there is a canonical map

[2, YN = H.(S)(X, Y).

In general, this map is far from being a bijection. Examples where this map is
not a bijection can be found in [BHS15, Section 4].

Let S for now be a field k. We equip the projective line [IJ’}c = Proj k[T, T, ]
over k with the base point co = [1 : 0]. We are interested in the set [P}, P, ]N.
A morphism from P} to P, in sPre(k), is uniquely determined by a pointed
scheme endomorphism of [P’llc, therefore we can restrict ourselves to scheme
morphisms. In particular, there is a classical correspondence between pointed
scheme endomorphisms of (P!, o0) and pointed rational functions with coeffi-
cients in k. Furthermore, we also have a description of pointed naive homotop-
ies of pointed scheme endomorphisms of ([P’]l{, o0) in terms of pointed rational
functions with coefficients in the polynomial ring k[X]. For both correspond-
ences, we need the notion of the resultant of two polynomials.
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Definition 2.2. Let R be a commutative ring. Let f and g be two polynomials
in R[X] of the form
f=aX"+a, X" 1+ +aq
and
8= BpX" + Bua X"+ + o

of degree n. We do not require here that «,,, 8,, # 0, so we call n the formal de-
gree of f and g. Then we define the resultant res,, ,(f, g) to be the determinant
of the (n + n) X (n + n)-matrix.

@, O - 0 B, 0 0
Xn—1 xn 0 ﬁn—l ﬁn 0
Ap—2 Ap—g ™ 0 5}1—2 ﬁn—l 0

P e, i By
a o i Bo B :
0 o) 0 50 .. :
0 0 - a O 0 - B

Proposition 2.3 (cf. [Caz12, Proposition 2.3]). Any pointed endomorphism of
IP’]l{ is given uniquely by a pair of polynomials (f,g) € k[X]with X := %, where

1
« fis monic of degree n,
« gis of degree strictly less than n,
o res, ,(f,g) is invertible in k.

We abuse the notation and denote such a pair in the following by 'y
g

Proposition 2.4. Any pointed naive A'-homotopy of P}( is given uniquely by a
pair of polynomials L with f.g€kl[T]|[X]and X := %, where
g 1
« fis monic of degree n,

 gis of degree strictly less than n,
* res, ,(f,g) isinvertible in k[T].

Next, we consider IP’1 = Proj Z[T,, T;] where itis equipped with a morphism
1

o : Spec Z — P, in 8my. It is given by Z[ ] — Z; 2+~ 0. A pointed endo-

morphism of Pl is a scheme morphism f : Pl - I]J’1 such that the diagram

Spec Z
N
f y Plz

z
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commutes. This condition is equivalent to f(p,T;) = (T;) where p is either 0
or runs over the prime numbers in Z. The same arguments used for proving
Proposition 2.3 also work for pointed endomorphisms of (P}, o). Again, we

. . T, . o
work in coordinates X := T—° We get the following characterization.
1

Proposition 2.5. Any pointed endomorphism of (P}, o) is given uniquely by a
pair of polynomials L with f.g € Z[X], where
g

« fis monic of degree n,
« gis of degree strictly less than n,
o res, ,(f,g) isinvertible in Z.

Finally, we also can consider pointed naive A'-homotopies of IF’lZ. A pointed
naive Al-homotopy can be viewed as a scheme morphism [ : I]Z"lZ X7 Alz =
Proj Z|T][T,, T,] — I]3’1Z such that the composition

Spec Z xz AL, - PL xz AL - P,

factors through the structure morphism Spec Z — Plz. This is equivalent to
f((p,Ty)) = (T;) where (T,) is the homogeneous prime ideal in Z[T][T,, T, ]
generated by T; and p runs over the prime ideals of Z[T]. As before we can ap-
ply the arguments for pointed Al-homotopies of [F",l{ to pointed Al-homotopies

of [P’IZ. We take here X := % then we obtain the characterization below.
1

Proposition 2.6. Any pointed A'-homotopy of (P, c0) is given uniquely by a
pair of polynomials L with f,g € Z[T|[X], where
g

« fis monic of degree n,
« gis of degree strictly less than n,
« res, ,(f,g) is invertible in Z[T].

In [Caz12], Cazanave gives the set [P}(, [F"}(]N a monoid structure. Actually,
his method also works over Z, so we introduce the monoid structure for

[Pl ,[P’lz]N. Let L bea pair of polynomials which determines a pointed endo-
g

morphism of [P’lZ such that deg(f) = n. Then there exist polynomials p,q €
Z|X] with deg(p) < n — 1 and deg(q) < n such that1 = pf + qg, since
res, ,(f,g) is invertible in Z. Furthermore, p and g are unique.

Definition 2.7. Let ﬁ, L be two pairs of polynomials which determine poin-
8 8

1 2
ted endomorphisms of [F"lZ with deg(f,) = n, and deg(f,) = n,. Then there
are unique polynomials py, q;, p», g, € Z[X] with deg(p,) < n; — 1,deg(q,) <
n;,deg(p,) < n, —1,deg(q,) < nysuch that1 = p;f; + q1g; and 1 = p,f, +
q,8,- We define polynomials f5, g3, p; and g by setting
(f3 —Q3> - (fl —‘h) . (fz —CIZ)
g& Dp3/ \& DM & P2
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The matrices (f 1 —q1> and (f 2 _qz> are in SL,(Z[X]), hence it is also true
& DN & D2

for (ng 3 _pq3>. By definition f3 = f1f, — q18, is monic of degree n; + n, and
3 Ps3

g3 = g1.f2 + D18, is of degree strictly less than n; + n,. Therefore L defines a

83
pointed endomorphism of Plz by Proposition 2.5. We define the sum h N i
81 82

to be the pair of polynomials 5 The neutral element for this addition is the
83

pair of polynomials % which represents the constant morphism.

3. Cogroup structure on [P’lZ

In this section, we would like to study the cogroup structure on [FDlZ in some
detail. From now on, notions from algebraic geometry are taken from [Liu06].
In particular, |]3’1Z has a standard open covering by the principal open subsets
D, (T,) and D, (T;) which are both isomorphic to Alz (see [Liu06, Section 2.3.3]).
The intersection D_ (T,T;) of these two open subsets is isomorphic to G,,.

We can equip the presheaf |]3"1Z with three base points which are given by the
following scheme morphisms:

o : Spec Z — P},

induced by Z[?] N Z;? —0;
0

0

0:SpecZ — P,

induced by Z[%] - Z;% ~ 0 and
1

1
1:SpecZ — P
Lb To

induced by Z[2, 2] > z; s 1, Do s 1,
T, T, To T,

Next, we recall the standard elementary distinguished square for PIZ
G —=> Al

SN
1 1
A T> P.
The morphism j, is induced by the canonical ring isomorphism Z[T| = Z [%]
1

and j, is induced by Z[T] = Z[ﬂ]. The open immersion ¢, is defined by
T,

0
Z|T] - Z[T,T7']; T » T and t, is defined by Z[T]| — Z[T,T']; T —» T~
In particular, the canonical morphism from the pushout of the diagram above
to P, is a motivic weak equivalence. If we equip G,,, A}, and P, with the base
point 1, this weak equivalence becomes a weak equivalence of pointed motivic
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spaces. Note that the pushout of the diagram is also the pushout of the following
diagram:

G DV G 1) 2R (G, 1)

tmvto\l/

(AL, 1) Vv (AL, 1).

Let I be the pointed space (A!,1) v (Al,0). Then I is a simplicial model of the
interval admitting a mid-point. We denote the glueing point of I by % There is
a canonical weak equivalence from I to A! by projecting (A!, 1) to the point 0.

We consider now the comparison maps between pushouts from [Lev10, Lemma
4.1] (In the left diagram, G,,, and AIZ are equipped with the base point 1):

id,id Iyl
G, VG, YR g 0, AG, V1, AG, X 1 AG,
thO\L \Ltmvto
1 1 1 1
A, VA, < 0, AA,VILAA,

l

lo,l;

0, AG, V1, AG, X 1 AG,

l

*

The first map is induced by the canonical projections and the second by col-
lapsing Alz to a point. Both comparison maps are motivic weak equivalences.
We denote the pushout of the middle diagram by XX. There is a canonical weak
equivalence from the pushout of the diagram:

0, AG, VI, NG, —> I, NG,

l

%

to S'AG,,, which is induced by the weak equivalence from I to A'. We can equip
X with the base point co which comes from the point 0 : Spec Z — 0, A NZ.
It is defined by Z[T] — Z; T + 0. Now, we also equip A}, v Al with the base
point

i

Spec Z —— AL <15 Al v AL
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where i, is the inclusion into the first copy of Alz. Then the canonical morphism
AL v Al — Pl becomes a morphism of the pointed motivic spaces (A, v
AIZ, 0) — (P!, o). Hence, the first comparison map above between pushouts
also induces a weak equivalence of pointed motivic spaces (X, o) ~ (P, c0).
The second comparison map also induces a weak equivalence (X, 00) ~ S! A
Gy, since 04 A AIZ is sent to the point *. Thus, we get here an isomorphism
a : (PL,00) - S AG,, in .(Z) and (P}, c0) inherits a cogroup structure
from S! A G,,, via a.

In [Caz12, Lemma B.4], Cazanave gives a co-diagonal morphism for (P%, oo).
Actually, his method also works over the base Spec Z. In the following, we write
down this morphism in detail. Again we consider the commutative diagram:

idvi

G, V Gy, Gy,

|

1 1 1
ALVAL — PL.

JoVJo

We denote by (P}, G,,) the cofiber of the inclusion G,, = P, above. Similarly,

we denote by (A}, G,,),_ the cofiber of the inclusion ¢, and by (A}, G,),, the
cofiber of t,. Then from the first comparison map

idvi

G, vV G, G, 0, ANG,VI AG, —> I. NG,
twwo\l/ tmvtO\L

1 1 1 1
A, VA, — 0, AA, V1L AA,

we obtain a motivic weak equivalence
XUy AGp) = (AL, Gp)r, V (AL, Gy, = (P4, Gp)
which is induced by j, V jo.
From the elementary distinguished square P2,
G —=> Al
L
1 y pl
AZ Joo [FDZ
we get two motivic weak equivalences
(AL,Gy,), — (PL,AL),
and
(Al s Gm)to - (Pl ’ Alz)]m

Next, we recall that there is a path j : AIZ - [FDlZ from oo to 0. In [Cazl2,
Appendix B], Cazanave calls this path the canonical path from oo to 0. In “
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homogeneous coordinates”, it is given by [1 — T : T]. Moreover, we also can
give the precise definition of j. We first define an automorphism ¢ of [Fl’lZ which
is induced by the ring isomorphism

Z[Ty,T1] = Z[Ty, T1);Tg = To—T1,T1 = Ty.

Recall that j, : AL < PJ is the open embedding into D, (T,). Then we define
the path j to be the composition oj,. Therefore, this path is an open embed-
ding. We denote the cofiber of j just simply by Plz / Alz. The canonical projec-

tion 6 : P, — PL /AL is a weak equivalence and it induces two pointed weak

equivalences 6, : (PL,0) » PL/AL and 6, : (P}, ) — PL/AL.
Finally, we can write down the co-diagonal morphism for (P, co) given by
Cazanave:

(Pl ’ OO) H (Pl ’ Gm) % (Al ’ Gm)tw M (Alz’ Gm)[o

induced by jVjo [~
N\

(Pl s Alz)_]o Vv (l]:])l ’ Alz)ijoo

A

~

(PL,0) v (P}, )
~ [ Hyvid
7

PL/AL Vv (P, )

A
~ |04 Vid

(PL, 0) v (P!, ).

The weak equivalences in the diagram are indicated by ~. We emphasize that
we equip here (P!, G,,,) with the base point co coming from the corresponding

base point of PL. Analogously, we equip (AL, G,,);_ V (AL, G,,),, with the base
point

Spec Z —2 AL > (AL, Gy, > (AL, G, V(AL,Gp),

and we also call this base point 0. Furthermore, we equip (P, Alz) jo\/(l]3>1 , NZ) i
with the base point

Spec Z — P}, > PL AL, —> (PL AL,V (PL AL,

and we call it oo, too. Then we also equip (P, 0) v (P1, co) with the base point

Spec Z —=3% (PL,0) «——= (P1,0) v (P}, o)

and also denote it by co. The motivic spaces P}, /AL v (P, c) and (P}, 00) v
(P, 00) are equipped with the canonical base points. Using these base points
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and the diagram above, we get a pointed co-diagonal morphism V : (P), ) —
(P!, 0) Vv (P, ) in H.(Z).

On the other hand, we also obtain a pointed co-diagonal morphism V for
(P!, c0) via the isomorphism a : (P),c0) = S' A G,,. Now, we also write
down this morphism explicitly. We recall that there is weak equivalence I — Al
where I is (Al,1) v (Al,0) and this weak equivalence is induced by projecting
(A%, 1) to the point 0 € Al. We denote the “mid-point” of I by % Let dI denote
the boundary of I, then this weak equivalence induces a weak equivalence u :
I/0I — Al'/3A!. Particularly, the weak equivalence u A id : 1/3I A G,, —
S! A G,, is an isomorphism of cogroup objects in #(,(Z). Moreover there is also
a morphism from I /31 to S* v S* by sending (A!, 1) to the first copy of S! and
(Al,0) to the second copy of S'. Now, we have the diagram

(PL,00) <5 (X, 00) ——=—3% I1/3I A G,

2\
(StVvSHAG,

AN
~ | (uviAid

(1/3IVI/3) A G,,

(I/3IANG,)VI/OIAG,)

A

~

(X,0) vV (X, o0)

~

~

(PL, c0) Vv ([Fblz, 00).

The weak equivalences are indicated again by ~. Therefore, we get from this
diagram a co-diagonal morphism V : (P}, 00) = (P, 00) vV (P}, ) in H.(Z).
In [Caz12], Cazanave did not show that his co-diagonal V coincides with V, so
we prove it in this paper.

Proposition 3.1. The two co-diagonal morphisms V and V are the same.

Proof. We have to show that the diagram

(Pl,oo) % ([FDl,oo)V([FDl,oo)

| Lo

S'AG, ——— (S'AG,) V(S'AG,,)
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commutes in #,(Z), where S' AG,, = (S' AG,,) V (S AG,,) is the morphism
in #(,(Z) induced by the sequence

S'AG,, 424 1/31AG, — (S'VSHAG,,.

We can rewrite the square as follows:

(P}, 0) ——> (P}, Gp) < (AL, Gp)y, V (AL, Gp),

induced by j,Vjo [~
N\

(P A, V (PL AL

A

~

(PL,0)v (P!, )

~ | 6gvid
v
PL/AL v (P, ©)

AN
~ |84 Vid

(S'AG,,)V(S'AG,,) < ave (PL,00) Vv (P!, ).

We first explain what the weak equivalence indicated by 1 is. For this, we have
to consider the diagram below again

id,id, Iyl
G, VG, YR g 0, AG, V1, AG,, X 1 G,
twwo\l/ \Ltmvto
1 1 1 1
A, VA, — 0, AA,VILAA,

l

lo.l
0, AG, V1, AG, (o I, AG,

l

*k

Recall that we denoted the pushout of the middle diagram by X'. We have here
the inclusions {§}+ NG, & X and {%}»Jr A G, & I/oI A G,,. Via the first

. . . 1 . .
comparison map, the inclusion {E}Jr A G, & X corresponds to the inclusion

. . . . 1
G, © IP’lZ. Via the second comparison map, the inclusion {E}Jr NG, X
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corresponds to {§}+ A G, < I/0I A G,,. Thus, we get a sequence of pointed
motivic weak equivalences

(P, Gp) ) = (X, {31 AGp),00) 2> (/1A G, 53 A G), 9,

where (PL,G,,), (X, {§}+/\Gm) and (I /0IAG,,, {%}+/\Gm) are the cofibers of the
corresponding inclusions and  is the canonical base point of (I /0I AG,,,, {%}+ A
G,,). Note that (I/0I A Gm,{§}+ A G,,) is just (ST A G,,) V (ST A G,,). We can

illustrate the pointed motivic space ((X, {%}+ A G,,), ) as follows:

The space XX is obtained by glueing the two copies of G,,, in I, AG,, with 0, A Alz
and 1, A AIZ, respectively. Therefore, in the illustration the top line demon-
strates the glueing of 0, A G,,, with 0, A AIZ; the bottom line means the glueing
of 1, AG,, with1, A Alz. The point in the middle of the illustration represents
the collapse of the subspace {§}+ A G,,. The base point co comes from 0, A NZ.

Via this zig-zag of weak equivalences, we get the morphism indicated by 1
which is an isomorphism in ¥, (Z).

Next, we explain what the weak equivalence indicated by 2 is. We can equip
X with the base point

SpecZ —% 1, AAL — X

and we also denote this base point by 0. Then the first comparison map induces
a pointed weak equivalence (X,0) — (P, 0) and the second comparison map
induces a pointed weak equivalence (X, 0) — S! A G,,,. Therefore, we also get
an isomorphism & : (P},0) = S' A G,,. Hence, the morphism indicated by 2
isava.

In order to show that the square in the beginning is commutative, we have
to show that the following three diagrams

(lpl ’ 00) % (Pl ’ G:'Bm)

| b

S'AG,, —> (S'AG,)V(S'AG,,),
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(P,Gm) <

(Al ’ G:-Bm)t00 \4 (Al s Gm)to
N\Linduced by jwVijo
1~ P2 AR ¥ (P2 ADj,

(S'AGR) V(8T AGp) ——F—— (PL,0)V (P}, )

and

6yVvid

(PL,0) v (PL, 0) —— PL/AL v (P), )

dva\l/ N/]\emvid

(S'AGR) V(S'AG) < (PL, c0) v (P, 0)

commute in the pointed homotopy category. The commutativity of the first two
diagrams holds by inspection.

In the next step, we show the commutativity of the third diagram. Recall that
Pl /AL is the cofiber of the path j : AL, — P, from oo to 0. The path j is the
composition 3o j, where ¢ is induced by the ring isomorphism

Z|Ty, T1] = Z[Ty, T1];Tg = Tog—T1, Ty~ T;.

In particular, j induces an isomorphism from Alz to the open subset D (T, +

T;) of PL. Therefore, the cofiber P}, /AL is just the cofiber of the inclusion

D, (T, + T;) < PL. Hence, we can replace in the third diagram P /Al by
P /Dy (To + Ty).
Next, we consider the following pushout diagram

0XD,((To+TToT) U1 XD ((To + T1)ToT1) <> I XDy ((To + T1)ToT1)
inclusionuinclusion\E

0x D ((To+T1)Ty) Ul x D, ((Ty + T1)T1)

where we denote the pushout by A. It is clear that there is a canonical weak
equivalence from A to D (Ty+T7). Then there is a comparison map of diagrams

0X D, ((To+ T1)ToT1) U1 XD ((To + TToT,) < I XD ((To+ T1)ToTH)
inclusionuinclusion\E

0x D ((To+T1)Ty) Ul x D, ((Ty + T1)T1)
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l

0X G, Ul1XG,, —> IXG,

tool_lto\l/

1 1
OxAzuleZ

where we denote the pushout of the second diagram by X'. Note that X' /Ix{1}is
the motivic space X', where 1 is the base point of G,,,. Naturally, there is a weak
equivalence from XX to [I3’1Z just as for X'. Furthermore, there is also a canonical
weak equivalence from XX to S' A G,,,. It is the composition T — X — ST AG,,.

As for X we can equip X with the base points 0 and co. Moreover, we have
the following commutative diagrams

(PL,0)

T

~

S'A G,
and

(P}, )

el

(j’ 00) % (Jf,oo)

~ |

SYAG,.
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Thus, we only have to show that the diagram

6o vid
(PL,0) v (P}, o) o > PL/ALV (PL, )
A AN
(js 0) A% (js OO) ~ 6°°Vid

g

(S'AGR) V(ST AGy) ——=—— (L,00) V(T,00) — (P}, )V (P}, )

is commutative.

The comparison map

0xXD,((To+ T1)ToT1) U1 XD ((To + T)ToT1) <> I XD (T + T1)ToTH)
inclusionuinclusion\£

0x D, ((To + T1)Tp) U1 x D, (T + T1)T1)

l

0XG,UlxG,, — IXG,

tool_lto\l/

1 1
OxAZuleZ

induces an inclusion A < . Hence, we get a canonical weak equivalence
X/A - I]3’1Z /D (Ty + Ty). :Fhe caflonical p{ojection ?Z - ?Z /A inc}uces two
pointed weak equivalences 6, : (X, 00) > X/Aand 6, : (X,0) > X /A.
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The canonical morphism X — I]3’1Z induces pointed weak equivalences v, :
(X, 00) = (P, 0)and v, : (X,0) = (PL,0). Now we can consider the follow-
ing diagram

By Vvid
PL,0)V (P, ) o S PL/D,(To + Ty v (P, )

A A
~ V()VVOO ”

(X,0) Vv (X, 0) 6_—?@)92/AV(92,00) B Vid | ~

0

~ émvid/l:
~

(S AG) V(S AGp) " (T, 00) V (T, 00) ——— (PL, ) V (PL, o)

where the outer diagram is our third diagram.
Now we only have to show that the diagram

(,0) v (X, 00) Q—\N/d> X/AV (X, 0)
o V1
~ G, vid |~

(S'AG,) V(S'AG,,) <= (X,00) V (X, o0)

commutes as the other two inner diagrams commute already by construction.
In order to show the commutativity, we first want to construct a morphism from
X /A to St A G, in the pointed homotopy category.

Taking the composition

IX{l} —> X —> X/A

where 1 is the canonical base point of G,,,, we can form the cofiber (X /A)/(I x
{1}) and the projection

X/A — (X/A)/T x{1})

is a sectionwise weak equivalence of pointed spaces.
Let C(AL) be A' AAL where A' is based at 1 and AL is based at 1. Let €'(A})

be Al A Alz where A! is based at 0 and Alz is based at 1. Then we consider the
following diagram

0, AAL VI, AAL — (X/4)/UI x{1})

0

C'(AL) v C(AL)
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where we denote the pushout of this diagram by X'. The canonical inclusion
X — X is a weak equivalence. We can illustrate X as follows:

In the illustration, the bottom cone represents €’ (NZ) and the top cone sym-
bolizes @(AIZ). The lines stretching out demonstrate the glueing of 0 X G,,, with
0 x A and the glueing of 1 x G, with 1 x AL, respectively.

Now we can apply the geometric realization functor defined in the author’s
doctoral thesis [Don24]. Let Pre,(Z), the category of presheaves on Sm with
values in pointed A-generated topological spaces (see Section 6.1). By Proposi-
tion 6.2, the geometric realization of a simplicial set is A-generated. Therefore,
by applying the usual geometric realization functor sectionwise, we get a func-
tor

| - | : sPre(Z), — Prex(2).,.

The basic properties of this functor can be found in Section 6.2. Furthermore,
we can equip Pre,(Z), with an Al-local injective model structure (see
Remark 6.7) and the corresponding homotopy category is denoted by Fo,(Z).
In particular, we can construct a pointed weak equivalence |S' A G,,,| — |X].
First note that we can consider the following pushout

0, AG, VI, ANG, —> I, NG,
C'(Gn) V C(Gy)

where the reduced cones €(G,,) and €'(G,,) are just defined as for Alz. We
denote this pushout by 8. Moreover, we also have the comparison map

C'G,VEeG,) ¢<— 0, AG,V1, AG, —> I, AG,,

i y !

C'(AL)VEAL) &— 0, AAL VI, AAL — (T/A)/T x{1}

which induces a pointed morphism p : 8§ — X. Now it is easy to see that there
is a pointed weak equivalence ¢ : |S' A G,,| — |S| by stretching |S' A G,,|. We
illustrate this morphism as follows:
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The pointed continuous morphism ¢ arises from stretching out the unit interval
by a factor of 4.

Altogether we get a pointed morphism |p|o¢ : |[S'AG,,| = |L|. We consider
now the following diagram

- 18! -
(X, 0)] = > |X/A]

~ ~ | canonical morphism
IS A Gl —5 18] ——— ||

which commutes in the pointed homotopy category #o,(Z). We will now ex-
plain why this diagram commutes. For this we first look at the morphism

(0,1] x {0} — [C(AL)] — |X|

where {0} is the base point of Alz. Let |20]/]((0,1] x {0}|) be the cofiber of this
morphism. The projection |X'| — |2 /((0,1] x {0})] is a sectionwise weak equi-
valence. Then we also can look at the morphism

[0,1) x {0} —> |€'(AL)] — [£/((0,1] x {0})].
In particular, the projection of || to the cofiber of this morphism is a pointed

sectionwise weak equivalence. Now we denote the cofiber by Z.
We can deform the composition

= ¢ el o
I(,0)] — |S" A G| > 18| > |X] > 2
to
- 185! - canonical morphis .
(T, 0)] —=> |T/A] > 1t —> 2

by stretching, too. In particular, the stretching gives us a pointed homotopy.
In addition, it also follows that |p| is a weak equivalence. Analogously, the
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diagram
% |éco| N T
(X, 00| = > |X/A|
~ ~ | canonical morphism
IST A Gy > 18] > 10

¢ ol

commutes in the pointed homotopy category Fo,(Z) by the same arguments.
Since the derived geometric realization functor is an equivalence of categories
(see Proposition 6.6), there is a unique isomorphism ¢ : S' A G,, = X such
that |¢| is |p|o¢. Then the diagram

Byvid

(X,0) vV (X, 00) s> X/AV (X, )

—

~ XV (X, ) 8, vid

(S'AG,) V(S'AG,,) <

(X, 00) Vv (X, )

commutes in F,(Z). Now we see that for

6yVvid
(PL,0) v (PL, o) o > PL/Dy(To +Tp) V (P, )
AN AN
~ 1| VVVs -~
(j,O)V(DZ‘,OO)é;Vid)Lf/AV(DZ,oo) B vid |~
0
~ émvid ~
h'e

(S'AG,)V(S'AG,) & (X,0)V (X, ) TCV«? (PL, 00) Vv (P!, x0)

all three inner diagrams commute. Since all involved morphisms are isomorph-
isms in H,(Z), we can conclude that the outer diagram is commutative. O

4. Change of base points

There is a unique automorphism @ of [Fl’lZ which interchanges the base points
1 and oo and sends 0 to itself. It is induced by the ring isomorphism

Z[Ty, T1] = Z[Ty,T1]; To = Ty, Ty = Ty —T;.

Note that we have ®o® = id. We need the results in this section for Proposi-
tion 5.2.
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Recall that we equip (P, co) with a cogroup structure via the following zig-
zag of pointed weak equivalences

(PL, 00) <= (X,00) —% S'AG,,.

Now we would like to construct a similar zig-zag of pointed weak equivalences
for (P, 1). It follows from the definition of ® that we have ®(D,, (T,))) = D,.(T)),
d(D,(Ty)) =D (Ty—T1)and ®(D(TyT1)) = D.((Ty—T1)Ty). The morphism
o : SpecZ — D, (T) factors through D, ((Ty — T1)T)):

Spec Z = > D, (To)

7

D, ((To — T1)To)

Hence, we also denote the morphism Spec Z — D, ((T, — T1)T) by .
We consider now the pushout diagram

0XD,((Ty —TTe) U1 XD ((Tg —T1)To) — I XD ((Tog—T1)To)
inclusionuinclusion\E

0XD,(To)ulxD, (Ty—Ty)

We denote the pushout of the diagram by Y. We also can equip Y with the
base point

Spec Z ——% D, (ToT;) — 0x D (T,)

which we also denote by 1.
In the next step, we can consider the comparison maps between pushout
diagrams

0XD,((To —TTo) U1 XD, ((To — T1)To) —> I XD ((Ty — T1)Ty)
inclusionuinclusion\£

0XD, (Te)ulxD, (Ty—T;)

l

D,((Ty = T)Ty) uD,((Ty — T1)Ty) —> D, ((Ty — T1)Ty)
inclusionuinclusion\E

D, (To)UD,(Ty—T1)
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which induces a pointed weak equivalence (Y,1) — (P, 1). Since the spaces
D, (Ty), D (Ty — T;) and D, ((T, — T;)T,) all contain the base point oo, there
is an inclusion I X {co} & I X D, ((T( — T;)Ty) < Y. The induced projection
Y - Y/I x {0} is a weak equivalence. By collapsing D (T,) and D (T, — T;)
to a point we get furthermore a weak equivalence

Y/I x {0} - S' AD,((Ty — T1)Ty)
such that the composition (¥,1) = Y/I X {0} —» S' AD,((Ty — T1)T,) is a

pointed weak equivalence.
Now the automorphism @ induces a comparison map

0XG,UlxXG,, — IXG,

l

1 1
OXAZuleZ

l

0xD,((To —T1)Tp) U1 XD, ((Ty — T1)To) — I XD, ((Tg—T1)Ty)
inclusionl_linclusion\E

0XD,(Ty) U1 XD, (Ty—T;)

which in turn induces a pointed weak equivalence ® : (X, ) — (Y,1). Sim-
ilarly, the automorphism @ also induces a comparison map

G, UG, —> G,

l

1 1
AL LAY

l

DL((To —TTo) UD,((Ty — T1)To) —> D ((Ty —T1)To)
inclusionuinclusion\ﬂ

D, (To) UD,(To—T)
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The induced morphism between the pushouts is just ®. Altogether we obtain
the commutative diagram

SIAG, {+—— (X,0) —=3 (P!, )

idA@le\L q)l iq’

S'ADL((To = TDT,) <—— (Y, 1) —— (P, D).

In addition, we also can consider the following comparison map which is
induced by inclusions

0XD,((To =TT 1 To) U1 XD ((To — T)T1Ty) — I XD, ((To—T1)T:1To)

l

0X D, (ToT)) U1 XD, ((Ty — T)T,)

l

0xD,((To —T1)Tp) U1 XD, ((Ty — T1)To) —> I XD, (Ty —T1)To)
inclusionuinclusion\£

0x D, (To)U1XD,(Ty—T;)

where we denote the pushout of the first diagram by B and B is canonically
weakly equivalent to D, (T;). We equip the cofiber ¥/B with the canonical
base point. In particular, the projection (¥,1) — Y/B is a pointed weak equi-
valence. Moreover, there is a canonical a weak equivalence Y /B — I]3’1Z /D (T;)
of pointed spaces such that the diagram

(Y,1) —— (PL,1)
Y/B ——> PIZ/D+(T1)

commutes. We denote the composition

(PL,00) =% (PL,1) —> PL/D(T))
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by ®@. Altogether we get the commutative diagram

SIAG, ¢+—— (T,00) — (P!, )

idAéle\L &:\L i&a

S'ADL((Ty— TTy) — (Y¥,1) —> Plz/D+(T1)-

5. An unstable null-Hopf relation

In this section, we work entirely over the base Spec Z and would like to prove
the desired unstable Hopf relation. We recall here the definition of motivic
spheres. Let s, w > 0 be integers. We define S5+ to be the pointed simplicial

presheaf S* A G% where S® is the smash product S A ... A St of the simplicial
N~————

s times

circle S' = A'/A! and G,,, is based at 1. We call s the degree and w the weight
of $5*()_ Suspension from the right with G,, increases the weight (w) by 1.
Suspension from the left by the simplicial circle S! increases the degree s by 1.
Let & be an arbitrary pointed motivic space in sPre(Z),.. Then we set 7rg ()€ to
be the group H.(Z)(S**W), &) for s > 0 and w > 0.

Next, we recall the definition of the Hopf map 7 : AZZ — {0} —» [P’lz. It is the
canonical map (T, Ty) = [Ty : T1]. The reduced join G,, * G, is defined to
be the quotient of A! X G,,, X G,,, by the relations (0, x,y) = (0, x,y’),(1,x,y) =
(1,x',y)and (t,1,1) = (s,1,1) for any t,s € Al. The motivic space AZZ — {0} is
canonically A!-weakly equivalent to the join G, * G,, via the classical covering
of A2 — {0} by G,,, x AL and A}, x G, with intersection G, X Gy,.

Note that G,, is a sheaf of abelian groups. In particular, we can consider the
pointed map

b G X Gy = Gy, (g, h) = g7 'h.
This morphism induces a pointed morphism
NG, : Gm * Gy = S' A Gy,

which is called the algebraic Hopf map. Via the weak equivalence between
A% —{0}and G,, * G,,, we can show that the Hopf map 7 is A!-weakly equival-
ent to7ng, (cf.[Mor04, Lemma 6.2.3], [Dul13, Proposition 4.10]). The canonical
projection from G,,, * G, to S A G, A G,, is a motivic weak equivalence. We
also call the composition in H,(Z)

NGm

S'AG, AG,, —> G, ¥ G,, —> S'AG,,
the Hopf map.

Lemma 5.1. Let w > 0 be a natural number. The group 7Tl+(w)Sl+(2) is commut-
ative.
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Proof. The motivic sphere S+ is Al-weakly equivalent to A2 — {0}. Let SL,
be the special linear group scheme Spec Z[T4;, Ty, T2, T22]/(det—1). The pro-
jection onto the last column SL, — Azz —{0}is an Al-weak equivalence [Dul13,

Example 2.12(3)]. Therefore, we can equip S'*® with a group structure in
F(.(Z). Using the Eckmann-Hilton argument, we can show that 77, ;) S*+? is
commutative. O

Morphisms from motivic spheres to motivic spheres are indexed by the bide-
gree of the target. For example, if we have a morphism ¢ () : Sty
$52+(2) then suspension yields suspended morphisms

. Q8 s+ (wy+w) S5 +5+(w,+w)
Ps,+s+wptw) © S ! - 5% 2

for s > 0 and w > 0. The Hopf map might be denoted by 7,,(;). Suspension
yields suspended Hopf maps 7)., forall s > 0and w > 0. Let n be an arbitrary
integer. We define the power map

P, .G, -G, x— x".

Forn = —1, we set¢;y := P_;. Forn = 2 we set q(;) := P,. Furthermore,
we define the hyperbolic plane h;, () to be 1;,;) — €14q) Where 17, is just
the identity morphism for S+, We would like to study the relation between

q1+(1) and 1y4(1) — €14(1)-
Via the zig-zag of pointed weak equivalences,

(PL,0) < (X,00) — S'AG,
the morphism g, ;) corresponds to the pointed endomorphism
(PL, 00) = (P}, 00), [Ty : Ty] = [T2 : T2].

Proposition 5.2. Let T : [FDlZ - [I1’1Z be the automorphism induced by [T, :
T,]— [Ty : Tyl Then under the zig-zag of pointed weak equivalences

(P, 00) <= (X,00) —> S'AG,,
the morphism —¢, ;1) corresponds to the pointed automorphism ®oto® of (PL, o).

Proof. At the end of Section 4 we have the commutative diagram
S'A G, ¢——— (T,0) —— (P1, )
((D'G'")”“)l ¢,l 1o
S'ADL((Ty = TT,) $——— (¥,1) —— PL/D.(Ty).

Therefore, via the isomorphism (®|g, );.(1), the morphism €, ;) corresponds
to (®|g, 0€o(®|g, ) )14q1)- The morphism @|g oeo(®|g )~! is induced by the
ring homomorphism

Z[To, T1l¢ry-1y19) = ZIT0: Trl((14-1))T0)
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o (To-T* . To
which interchanges with .
(To — T1To (To =TT
On the other hand, the automorphism ®o7o® of IP’lZ is induced by the ring
isomorphism

Z|Ty,T1] = Z[Ty, T1]; Ty To— Ty, Ty = =Ty.

The restriction ®oto®@|p ((r,—1,)1,) 18 <I>|Gmoeo((I>|Gm)_1. Moreover, the auto-
morphism ®o7od interchanges D, (T,) with D (T, — T;) and sends D_(T;)
to itself. Hence, ®o7o® also induces a morphism ®orod : [I3’1Z /D (Ty) —
|]3’1Z /D, (Ty). Now recall that in Section 4 we also construcuted the pointed

space ¥ /B. Analogously, we can consider the comparison map between pushout
diagrams induced by inclusions

0XD,((To =TT To) U1 XD ((To =TT Ty) — I XD, ((To—T1)T:1To)

l

0XD,((To—T1)T) U1 XD (ToT1)

l

0XD,((To —TTo) U1 XD ((To — T1)To) — I XD ((Ty — T1)Ty)
inclusionuinclusion\£

0XD, (Ty—T)U1xD,(Ty)

where we denote the pushout of the first diagram by B’ and the second by ¥'.
Then we take the cofiber ¥’ /B’. There is again a canonical weak equivalence
Y /B - [P’lZ /D, (T;). Since the automorphism ®o7ro® interchanges D, (T)
with D (T,—T;) and keeps D, (T';) invariant, it induces an isomorphism Y /B =
Yy’ /B’. We have then the commutative diagram

Y/B —% PL/D,(Ty)

%\L \L‘Dofoqh

Y'/B" —— PL/D.(Ty).

Next, we apply the geometric realization functor (see Section 6.2). There is an
isomorphism s from |Y’/B’| to |Y/B| which is induced by the swap morphism
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|I| = |I|. In particular, the following diagram:

|Y/B] —— |PL /D (T}

E\L \b‘borod’l

1Y'/B'| —> |P}/D(Ty)

Sl /
|Y/B|
is commutative. Moreover the swap morphism also induces an isomorphism
s" 1 ISYADL((Ty — T)Ty)| — ISt ADL((Ty — T1)T,)| which is the inverse

morphism for the cogroup object |S' AD, ((Ty — T1)T,)|. We can equip ¥’ with
the base point

Spec Z —2% 0X D, (Ty—T;) —> ¥'.

Then it follows from the construction of ¥’ that there is a pointed weak equi-
valence (¥',0) — S' AD,((Ty — T1)T,). At the end, we have now the diagram

19/B] <—— (Y, DI —— |S' AD((Tp — TTo)

\L \L \L|(‘I’|Gm 0eo(®g,,, ) i+l

|Y'/B'| <— |(¥',0)] —> [S* AD (T — T1)Ty)|

| I

19/B] <—— (4, D] — IS' AD,((Ty — T1)Ty)

where |Y/B| — |Y'/B’| and |(Y,1)] — |(¥’,0)| are induced by ®oto®d. The
first part of the previous diagram

19/Bl <—— (¥, D] —> [S' AD,((To — T)Ty)

l l \Ll(d>|@m°€°(d>|@m)‘1)1+a)l

|Y'/B'| 4— |(¥',0)] —> [S* AD, (T — T1)Ty)|

is commutative. We would like to show that the second part commutes, too.
First, we also can equip Y with the base point

Spec Z —25 1 XD, (Ty—T;) —> Y.

Then the swap morphism induces an isomorphism s” : [(¥’,0)] — |(Y,0)].
We also have pointed weak equivalences |(¥,0)| — |Y/B| and |(Y,0)| — |S! A
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D,((Ty — T1)T,)|.- Now we have the diagram

|9'/B'| <— 1(¥',0)| —> |S' AD,((To — TDT,)|

I b

$ I(¥,0)] —— |S* ADL((Tg — T1)Ty)l
|9/B| < [(Y,1)].

It follows from the definition of the morphisms s, s’ and s’ that the diagrams

|Y'/B'| <— I(Y',0)]

[

|¥/B| <— 1(4,0)|

and

I(¥,0)] — IS AD((Ty — TTp)|

I s

(4,0l —— IS' AD,((To = T))T))|

are commutative.
In Proposition 3.1, we proved that the diagram

(X,00 ——=—— S'AG,,
N\L TN
XJ/A —— (X, )

commutes. Now we can use exactly the same methods to show that

(¥Y,00 ———> St A D,((Ty — T1)Ty)

Y/B < = ¢3Y)
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is commutative, too. Therefore, all three inner diagrams in

|Y'/B'| 4— |(¥',0)] —> [S* AD, (T — T1)Ty)|

I b

5 I(¥,0)] —— ST ADL((Tg — T1)Ty)l
|9/B| < (Y, 1)

commute. Since all involved morphisms are weak equivalences, it also follows
that the outer diagram is commutative. In particular, we have the following
commutative diagram

|P%/D(TD] <— 1Y/Bl <— |(¥, DI = IS* AD((To — T)To)|

oo l \b@lem 0c0(®l5,,) 1o
|PIZ/D+(T1)| <~ 19'/B| IS' ADL((To — T1)T)|
o I
19/B] <— (4, D] — |IS? ADL((To — T1)To)|
which implies that via the zig-zag of weak equivalences

PL/D.(T)) $— (Y,1) —> S'AD,((To — T1)Ty)

the morphism —(¢|Gmoeo(©|6m)‘1)1+(1> corresponds to ®orod.
In the next step, we consider again the commutative diagram:

SlAGm % (‘fr 00) % (I]:Dl’oo)
(‘Dlem)u(n\L CE\L \Lci)
SYAD,(Tg = T)Tg) <=— (¥,1) —=3 PL/D,(Ty).

Via the isomorphism (®|g );1¢1), the morphism —e; ;) corresponds to
—(®|g,, 0co(P|g,, )7, +) and under the zig-zag of weak equivalences

PL/Dy(T)) $— (Y,1) —— S* AD((To — T1)To)

the morphism —(®|g oeco(®|g )‘1)1+(1) corresponds to ®otod. Therefore, we
only need to determine which pointed endomorphism of (P, c0) equals to

®~lo(Porod)od in J(,(Z), because this is then the morphism which corres-
ponds to —¢; ¢y under the zig-zag of weak equivalences

SI'AG,, <= (£,00) — (P!, ).
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We claim that the diagram

(Pl,00) — 222 % (P!, o)

) Js

P /D (T;) H) P%/D.(T1)

commutes in #(,(Z). The composition ®oTodod is just
(PL,00) —— (PL,0) —=> (P},0) — PL/D(T})

Where (PL,0) - PIZ /D.(T,) is the canonical projection. Similarly, Po®orod
is

(PL,00) —2 (PL,1) — (PL,1) —> PL/D.(T})

where (P,0) - P /D, (T,) is the canonical projection. First, we would like
to find a sequence of naive A'-homotopies H : P, Xgpec 7 AL, — P2, from ®or
to To® such that every composition

ocoxid Al

H
Spec Z Xspec Z Alz —Z> Plz XSpec Z Alz 7 PlZ

factors through D, (T;). This condition is equivalent to the condition that
H((Ty, p)) are all contained in D (T;) where (T, p) is the homogeneous prime
ideal of Z[T][T,, T,] generated by p and T; and p runs over the prime ideals
of Z[T]. Then such a sequence of naive A'-homotopies induces a sequence of
pointed naive A'-homotopies Spec Z A (AL), — PL /D (T;) from PoroPod
to PodoTod.

The scheme morphism 7o® is induced by the ring isomorphism

Z[Ty, T1] = Z[To, Th]; To > To— Ty, T1 = Ty
and ®o7 is induced by the ring isomorphism
Z2[Ty,T1] = Z[To, T1); To = Ty, Ty = Ty = To.

We first have a naive A'-homotopy H; : P, Xgpec 7 AL, — P, induced by the
ring homomorphism

Z[Ty, T1] = Z[T][Ty,T1]; To = TTy — T4, Ty = T.

It follows from the definition of H; that H,((T, p)) are all contained in D (T;)
where p runs over the prime ideals of Z[T]. Hence, To® is A!-homotopic to the
scheme endomorphism of |]3’1Z defined by [T : T1] — [Ty : Tol =[T; : =To]l-
Next, we can give an Al-homotopy H, from this morphism to ®oz. It is given
by

Z[To, T1] = Z[T1[To, T1]; To = Ty, Ty = TTy — T,
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Again, we have H,((T;, p)) € D, (T,) for all prime ideals p of Z[T]. Thus we ob-
tain a sequence of pointed naive A'-homotopies Spec Z A (AIZ)+ - |]3’1Z /D (Ty)

from @oTo®od to Podorod. O
Proposition 5.3. The morphism g, is equal to 11,y — €14q) in H.(2).
Proof. Recall that q(y) is the pointed morphism

G,y = Gy, x > X2

It is easy to see that via the zig-zag of pointed weak equivalences
(PL,0) <— (X,00) — S1AG,

the morphism g;,(;) corresponds to the pointed endomorphism of (PY, c0)
which is given by [T, : Ty] ~ [T; : T?]. By Proposition 5.2, the morph-
ism —e; () corresponds to ®orod. Since we equipped (P!, 00) with a cogroup
structure using the zig-zag above, 1, (1) — €14(1) corresponds to id[plz + ®otod.

By Proposition 2.5, the morphism given by [T, : T;] ~ [T3 : T?]isrepresen-

2
ted by the pair of polynomials )% where X is % Simiarly, ®oto®d is represented
1

by X_;ll and id[p)lz is represented by )T(

Cazanave gives the set [[P’,l(, [P’}{]N of pointed naive Al-homotopy classes of
scheme morphisms a monoid structure, where [P’}{ is equipped with the base
point co. We denote the addition for this monoid structure by @~N. Via the
same co-diagonal V as for (P}, co)(see Proposition 3.1), we can equip P, with
a cogroup structure. Proposition 3.1 also holds for [P’]l(. Then we have a group
structure on ., (k)(PL, [FD}C). We denote addition for this group structure by
oM.

In [Caz12, Appendix B], Cazanave shows that L ®N g is equal to X oM g
for any units a € k and g a pair of polynomials which represents a poi?lted en-
domorphism of (P}, 00). Actually, his methods also work over Spec Z for units

a € Z because his proof relies on the homotopy purity theorem (see [MV99,

Theorem 2.23, page 115]) and does not use any specific facts about fields. There-

fore, we also have )T( eN X_—_ll = )T( @Al X_—_ll over Spec Z. By Definition 2.7 the
2_

L2 nthe following, we give a sequence of poin-

X2-X+1

X NX-1.
sum ~ N —- isequal to

. . Xx? . .
ted naive Al-homotopies between T and . We characterized pointed

naive A'-homotopies in Proposition 2.6.
At first we have the pointed A!-homotopy
X2
TX +1
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X2 X2

from — to —. Then
1 X+1

X2 +2TX +2T
X+1
is a pointed A'-homotopy from ;Tzl to % Next,
X2 +2TX +2T
X+Q2T-1)

X242X42

2
is a pointed A'-homotopy from to )% Finally
X?—TX+T
X-1

. . X2 X2-X+1
is a pointed A!-homotopy from ) to " 1+ .

If we suspend from the right with G,,, we get the following corollary.

Corollary 5.4. Let w > 0 be a natural number. Then the morphism q;,(y) -
SHW) — S1+W) coincides with (1 — €)1y in F.(Z).

Now we are interested in the case w = 2.
Proposition 5.5. In 7(.(Z), the morphism qy. () is equal to 11,y A qq).
Proof. The morphism q,,,) is given by
SAGE, — STAGE; tAXAY > EAXEAY.
And, the morphism 1,1y A q(y) is given by
SIAGE, - STAGE; tAXAY > EAXAYE

Next, we consider the space AZZ —{0}. It is the pushout of

AL X Gy $— Gy X Gy — Gy X AL,

so we can equip it with the base point (1,1) coming from G,, X G,,. Via the
open covering of AZZ —{0} above, there is a zig-zag of pointed weak equivalences
from (A2 — {0},(1,1)) to G,, * Gy, and the projection G, * G, — S' A Gy,
is a weak equivalence. Via this isomorphism, g;,(;) corresponds to a pointed
morphism (A2 —{0},(1,1)) - (A2 —{0},(1,1)) which is induced by the ring
homomorphism

Z[Ty,T1] - Z[To, Ty1]; To = Ty, Ty = Ty (%).
Similarly, 1;,1) A q(1) corresponds to the morphism induced by

Z[TO’TI] g Z[TO, Tl]a TO = To, Tl (=d T% (**)
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We would like to show that these two pointed endomorphisms of AVZ — {0}
are pointed Al-homotopic. Actually, it is enough to show that they are Al-
homotopic since AZZ — {0} is Al-weakly equivalent to SL,. As SL, is a group
scheme, the classical arguments show that the canonical map # .(Z)((AZZ —
{0}, (1, 1)), (A - {0},(1,1))) —» FH(Z)(AZ — {0}, A — {0}) is injective, where
JH(Z) is the unstable motivic homotopy category over Z. Now we give an ex-
plicit sequence of Al-homotopies between the two morphisms () and (x%). We
need A'-homotopies of the form A2 — {0} xz A}, — A2 —{0}. In the following,
we give ring homomorphisms f : Z[T,,T,] — Z[T,, T, T] which satisfy the
property: If p € Z[T,, T;,T] is a prime ideal which does not contain the prime
ideal (T,, T,), then the preimage f~'(p) also does not contain (T, T;). Such
ring homomorphisms induce morphisms of the form A2 —{0}x AL, — A2 —{0}.
The first one is given by the ring homomorphism

Z[Ty,T1] = Z|Ty,T1,T); Ty = (Ty + TT,)?, T; — T,.

This ring homomorphism induces a morphism AZZ — {0} Xz Alz - AZZ — {0}
which is an Al-homotopy from (x) to the morphism induced by

Z[To, T1] = Z[To, T1]; To = (To + T1)?, Ty = Ty
The second one is induced by
Z[Ty,T,] = Z[Ty,T1,T); To = (To + T1)?, Ty = TT, + (T — 1T,
The third one is given by
Z[Ty,T1] = Z[Ty, Ty, T]; To = (TTo + T1)?, Ty = =T
The fourth one is given by
Z[Ty,T1] = Z[To,T1,T]; To > TTo + TZ, Ty = —T,.
The fifth one is given by
Z[To,T1] = Z[To,T1,T]; To > To+ TTZ, Ty > =T+ (1 = T)T?.
And the last one is given by
Z[Ty,T1] = Z[Tp,T1,T]; To = T, Ty = =TTy + T

The last ring homomorphism induces an A!-homotopy between (x*) and the
morphism induced by

Z[Ty,T1] = Z[To, T1]; To = Ty, Ty = =T+ T2.
Therefore, the two morphisms g, ;) and 1,1y A gq) coincide. U
Lett’ : G, AG,, = G,, A G,, be the morphism defined by x Ay = y A x.

Lemma 5.6. The relation €,y = 1;1(1) A €) holds.



188 XIAOWEN DONG

Proof. The morphism (idgi A7")o(1;11)Aq()) is givenby t AXAy EAY?AX.
Therefore, it is equal to g;,.(;y0(ids: A 7/). Next, we have:
qry@°ids AT = (1142) — €14(2))o(dst AT')
=idg AT — €14 p)0(ids A T')
=idg AT = (idg1 AT )o(114(1) A €y)
= (ids1 A 7)o(114¢2) — 1141y A €1)-

Since idg1 A 7’ is an isomorphism in the pointed homotopy category, we get
Ly A9y = Live) — Lisa) A €Q)- By Lemma 3.4.5 we have that 1, 1) A q() is
equal to g;,(z). Hence, we obtain 1,5y — €142) = q1+2) = Li+2) — Li+) A €q)-
It follows that €12y = 1141) A €q1)- ]

Corollary 5.7. Under the canonical isomorphism from A2 — {0} to S™+@ the
morphism AZ—{0} - A2 —{0}, (To, T;) = (Tg, T;) corresponds to qy 4 2y0(1141)A
41)) = Q1+2)°%1+@2) = 1=+ 01 —=€)142) = 2(1—€)14(2) in the commutative
group 1y, S,
Proof. It is clear that the morphism A2 — {0} - A2 — {0}, (T,, T;) = (T3, T})
corresponds to gq4(2)9(114(1) A ga1))- Furthermore, we have that
(1 =yl =it = 1 = r14@o(lire) — Liva) A€a))
=11y — L A €) — €142 + €102 (L) A €))
= li10) — Lt A €) — €142) T €1+(2)°€14(2)
= 1) — €14 — €1+ T L1+
=2(1 = €)14(2)- O

In the next proposition, we show that 7, ;)0h;1(3) and hy 4 5)0n;4(2) are Al-
nullhomotopic. Similar computations in the stable case can be found in [Dul13].

Proposition 5.8. The elements
M@z and  hyyp)oniie)
are Al-nullhomotopic.

Proof. The smash product 7,,¢) A q(1) can be expressed in two different ways.
First we have that
N+ A qay = Mie) Aldg, )o(L142) A qy)
= M+)°(142) A qa))-
By Proposition 5.5, we get 1,1y AqyAldg, = i+ Aldg, = qi4(3)- Moreover
we have (1) AT )o(1142) Aqay)o(L14a)AT)) = 1144y AgayAidg, . Therefore,
the equation 11,y A g1y = (1141) A 7)0q143)9(114(1) A T') = g143) holds.
On the other hand, we have that
N+ A day = Qe A qay)oMivqy A id@,,,)
= q1+2) N M+(2)-
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Hence, we get the equation 7,4(2)°9¢14+3) = 41+(2)°M1+(2)-
Furthermore, we have the commutative diagram

(To,T1)'—>(T§,Tf)

A2 — {0} > A2 — {0}

| Jr
[To:T1]~[T?:T?]
PIZ 071 > [FDIZ

where 7 is the geometric Hopf map. This commutative diagram implies the

equation g4(1)°71+1) = N1+1)°q1+(2)°q1+(2)- SiNCe g14(1) is equal to hy (), we
get the equations

0 = (M1+1)°%1+2)°%1+2) A idg,, — (Q1+1)°M+)) Aldg,,
= 771+(2)°h1+(3)°]’11+(3) - 771+(2)°h1+(3)
= 771+(2)°(h1+(3)°h1+(3) - h1+(3))-

It follows from Corollary 3.4.8 that hy(3y0hy43) — hy4i3) = hi43). Thus we
get N14(2)°h14(3) = 0. Finally, we get hy,(2)0011(2) = N14(2)°h14(3)9h14(3) from

the e?quation G1+1)°N1+1) = M+1)°q142)°q1+(2)- SiNCe N11(2)0h143) = 0, we
obtain h; (01112 = 0.

Proposition 5.9. The Toda brackets

{h+2)s M+ M)}

and

{771+(2), hi43)s 771+(3)}

are not trivial, in the sense that they do not contain the homotopy class of the
corresponding constant morphism.

Proof. The complex realizations of both Toda brackets are not trivial by [Tod63,
Example 2, p.84] and [Tod63, Proposition 5.6], respectively. O

Let k be a field of characteristic zero. Then analogously, the Toda bracket
{M+2)» M+3), M+(3)} 18 also defined over k. Using the same argument as for the
base Z we can show that this Toda bracket is not trivial. Let v’ be an arbitrary
element of {;4(2), h1+(3), M+@3)}- The left derived complex realization functor
sends this element to the element of the same name defined in [Tod63, Propos-
ition 5.6]. By [AF14, Proposition 4.14], the group 7, (4)SL; is equal to Z/6Z
over k. Let j denote the inclusion SL, < SL;. Since S+ is isomorphic to SL,,
v’ can be viewed as an element of 7, (4)SL,. We claim that the element j,.(v')
generates the 2-primary component of 77, (4)SL3.

Proposition 5.10. The element j.(v') generates the 2-primary component of
T2+4)SL3 over any field k of characteristic zero.
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Proof. Let i be the inclusion of the topological groups SL(2,C) < SL(3,C).
Using the complex realization, we get the following commutative diagram of
abelian groups

Jx
Tay@SLy — Ma14)SLs

! 1

76SL(2,C) —=3 7,SL(3,C).

By [AF14, Theorem 5.5], the homomorphism 7, 4)SL; — 7¢SL(3, C) induced
by the complex realization is an isomorphism over any field k of characteristic
zero. Since SL(n, C) is homotopy equivalent to SU(n), we can rewrite the pre-
vious diagram in the following way

Js
To4@)SLy —— 744)SL3

L,k

7sSU(2) L} eSU(3)

where we abuse the notation and also denote the inclusion SU(2) < SU(3) by i.
By [MiT63, Theorem 4.1], the 2-primary component of 7,SU(3) is generated by
i,(v"). Therefore, j.(v') generates the 2-primary component of 7, 4SL3 over
any field k of characteristic zero. O

At the end of the paper, we construct another motivic Toda bracket over
Spec Z whose complex realization is trivial; nevertheless this Toda bracket itself
is not trivial.

LetAp) : Gy, = Gy, A Gy, be the diagonal morphism x - x A x.

Proposition 5.11. The element A (3)0hy4 ;) is Al-nullhomotopic.
Proof. Since h;. ;) is by definition equal to 1;(;) — €1.4(2), We have that

A143)°M142) = A14) = A14(3)0€142)-
In the following, we show that A;(3)0€;. () is equal to Ay (3). The morphism
A1+(3)0€14(2) Isgiven by t Ax Ay = t AxTP AxT! Ay. Therefore, A, 3)0€14(2)
equals to ;. (3)0114(1)A€)Aidg, 0A14(3). By Lemma 5.6, we get ey 3y = 114 ()A
€a) Aidg, . Hence, we have that

€1+3)°Ll1+(1) A€y Aldg,, = €14(3)°€143) = Li4(3)-
It follows that A; (3)0€;4(2) is equal to Ay 3). O

By Proposition 5.8, we also have that hy ;) 0n;4(2) is Al-nullhomotopic. In
particular, the Toda bracket {A;(3), h11(2), M14(2)} is defined. The complex real-
ization of the morphism A, , (3) is a pointed continuous map from S* to S*; hence
itis nullhomotopic. The left derived complex realization functor sends the Toda
bracket {A14(3), M14(2), N+2)} t0 {0, 2idgs, 210} The topological Toda bracket
{0, 2idgs, Zn;p } 1s trivial. So the complex realization of {A; (3, h14(2), M14(2)} 1S
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trivial, too. Although the complex realization of {A; 3y, h1.4(2), N14(2)} 1S trivial,
we can show that this Toda bracket itself is not trivial.

Proposition 5.12. The Toda bracket {A; (3, h14(2), N1+(2)} does not contain 0.

Proof. The Toda bracket {A;,(3), h11(2), M1+(2)} is again defined over any field k
of characteristic zero. In the following, we first work over such a base k. The
author showed in their doctoral thesis that motivic Toda brackets satisfy almost
the same computational rules as topological Toda brackets [Don24, Section 2.3].
By [Don24, Proposition 2.3.3], we get the equation

{A1+(3)’ h1+(2), ’71+(2)}°h2+(3) = _(A1+(3)°{h1+(2)’ M+2)» h1+(3)})-
We want to study A4 3)0{h142) M1+(2)» M+3)}- We have to consider now the
stable motivic catagory SF((k) (see [PPR09, A.5]). The category SF((k) is nat-
urally a triangulated category, therefore Toda brackets are defined in this cat-
egory. Furthermore, there is a suspension spectrum functor

£ 1 3.(k) - (k)

We set h 1= X3 (hyqy) and 7 1= I35 (14q)). Then the functor 7, sends
{h142)» M+(2)> M43} to the Toda bracket < h,7, h > in 8F((k).

Let [-1] : S° — G, be the pointed morphism defined by sending x€ S° =
{#}, to =1 € G,,. In [Dull3, Proposition 3.5], Dugger and Isaksen show that
p = 2;’1([—1]) is equal to ZD";’I (A(2))- In the following, we will denote the sus-
pension spectrum X5 (&) of a pointed motivic space simply by €. The suspen-
sion spectrum of S is called the sphere spectrum.

We can equip SH (k) with a smash product A which makes S (k) into a
tensor triangulated category (see [PPR09, Remark A.39]). Both S* and G,, are
A-invertible. We define the bigraded homotopy groups

Tsrawyl 1= SHE)(SH™ A Gy, S°)

for all s,w € Z. In particular, we have that h € 7y, )1, € 7o)l and
p € To4(-1)l. Furthermore, the Toda bracket < h, 7, h > is contained in 77 (;)1.
By work of Morel [Mor04, Theorem 6.4.1], we have an isomorphism

KMV () = @ Moyl
wezZ

of graded rings, where KM% (k) is the Milnor-Witt K-theory of the field k (see
[I219, Definition 6.4]). Under this isomorphism the morphisms h,#n and p are
sent to the elements in KM of the same names. The Milnor K-theory K¥ (k) is
defined to be K}V (k)/(n). Let 0, : S* — S? be the topological Hopf map. It
is an element of 771, g)1. In [RS@19, (1.1)], we can find a short exact sequence

0 — KM(k)/24 —> 7110l —> KX/2®Z/2 — 0.

In this short exact sequence, the notation k* /2 means k* modulo squares. The
kernel Ké” (k)/24 is generated by the second motivic Hopf map v € (51 (see
[Dull3, Definition 4.7]), in the sense that its elements are of the form av for
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a € my4(—2)1. The second factor of k* /2 @ Z /2 is generated by the image of
Niop and the first factor is generated by 77, ,, in the sense that its elements are of
the form ann;,, for a € 7y, (1)1. These generators are subject to the relations
24v = 0 and 12v = 9%y,

By [R6n20, Proposition 4.1], the Toda bracket < h,n,h > is of the form
Miop + ZKJIW (k)/24, where 2Kf’[ (k)/24 is the indeterminacy. The suspension
functor Zu";l sends the set Ay, 3)0{h11(2), N14(2), M14(3)} to the set p - (Myop +
2Kf4 (k)/24) C 7140y It suffices to show that p - (1970, + 2KiVI (k)/24) does not
contain 0. The surjection ;)1 — k*/2 @ Z/2 in the short exact sequence
above sends the elements of p- (77, +2K11‘4 (k)/24) to p-nn,p. Therefore, if —1
is not a quadratic root in k, then p - 97;,, is not equal to 0. This is in particular
the case if k = Q. It follows that for k = Q the set Ay (3y0{h11(2), M142)s P143)}
does not contain 0, hence the Toda bracket {A,(3), h14(2) D142} is not trivial
over Q.

Finally, we would like to show that {A1,(3), h11(2), M14(2)} is not trivial over
Z. For this, we use base change arguments. Let f : Spec Q1 — Spec Z be the
canonical morphism. Then there is a functor

f+ : sPre(Q) — sPre(Z)
which is induced by
8my — Smg; X = X Xgpec 7 Spec Q

for all X € Smy. The functor f, admits a left adjoint f* : sPre(Z) — sPre(Q)
with the property that it maps the sheaf represented by X € Sm to the sheaf
represented by X Xgpec 7 Spec Q. The explicit construction can be found in
([Jar15] p.108). By [Jarl5, Corollary 5.24] and [Hir03, Proposition 3.3.18] the
adjoint functors

f* : sPre(Z) 2 sPre(Q) : f.

form a Quillen adjunction for the Al-local injective models. Since both func-
tors f* and f . preserve terminal objects, we also get the pointed version of this
Quillen adjunction

f* . sPre(Z), 2 sPre(Q), : f..

We denote motivic spheres over Z by SSZ+(w) and motivic spheres over Q by

Sg“(w). It follows from the construction of f* that f *(SSZ+<w)) = Sg(w). Fur-
thermore, the left derived functor L f* sends the morphisms A, ), hy4(2) and
N+(2) in I, (Z) to the morphisms of the same names in 7(,(Q). Therefore, L f*
sends the Toda bracket {A1(3), 114(2) M14(2)} Over Z to the corresponding Toda
bracket {A14(3), h14(2), M1+(2)} over Q. We already know that the Toda bracket
{A143), M+2)s +2)} over Q does not contain 0, hence the Toda bracket
{A143), M+2)» M+(2)} Over Z is also not trivial. O
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6. Appendix

6.1. A-generated spaces. This section contains some facts about A-generated
spaces which are used in the paper. The notion of A-generated spaces was ori-
ginally proposed by Jeff Smith as a nice category of spaces for homotopy theory.
However, Jeff Smith never published his ideas and there are only few references
on this notion. In the following, we will follow the unpublished notes by Daniel
Dugger [Dug03].

Let T op denote the category of all topological spaces and continuous maps
and A be the full subcategory of 7o p consisting of the topological simplices A”.

Definition 6.1 (|[Dug03, Definition 1.2]). A topological space X is called A-
generated if it has the property that a subset S C X is open if and only if f~1(S)
is open for every continuous map f : Z - X with Z € A. Let Top, denote the
full subcategory of A-generated spaces.

Proposition 6.2 ([Dug03, Proposition 1.3]). Any object of A is A-generated. Any
colimit of A-generated spaces is again A-generated.

Therefore, Top, is a cocomplete category and the colimits are the same as
those in Jop. Moreover, it also follows that Jop, contains the geometric real-
ization of every simplicial set. We now show that this category is also complete.
Let X be a topological space and (A | X) be the overcategory. Then there is a
canonical diagram (A | X) — Jop sending every object (f : Z — X) to Z.
The colimit of this diagram will be denoted by k,(X). By the above proposition
this colimit is again A-generated, and there is a canonical map kx(X) — X.

Proposition 6.3 ([Dug03, Proposition 1.5]). (a) ka(X) — X is a set-theoretic
bijection.

(b) X is A-generated if and only if ka(X) — X is a homeomorphism.

(c) A space is A-generated if and only if it is a colimit of some diagram whose
objects belong to A.

(d) The functorsi : Topy, 2 Jop : kp are an adjoint pair, where i is the
inclusion.

Now by Proposition 6.3 (b) and (d), we see that T op, is also complete; limits
are computed by first taking the limit in 7op and then applying the functor
ka(=).

One of the most important properties of the category T op, is that it is locally
presentable.

Proposition 6.4 ([FR07, Corollary 3.7]). The category T op, is locally present-
able.

It follows that in particular every object of Top, is small, therefore T op,
permits the small object argument. Furthermore, by [Wyl73, 3.3], the category
Top, iseven cartesian closed. For X,Y € Jop, we write X ® Y for the product
in Jop, and X X Y for the usual cartesian product in T op.
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Proposition 6.5 ([Dug03, Proposition 1.14]). The natural mapX ® Y — X XY
is a homeomorphism.

At the end of this section we also mention that every open subset of a A-
generated space is again A-generated (see [Dug03, Proposition 1.18]).

6.2. The geometricrealization functor. We summarize the properties of the
geometric realization functor which the author considered in her doctoral thesis
[Don24, Section 2].

Let S be a noetherian base scheme of finite Krull dimension. We write Smg
for the category of smooth schemes of finite type over S. The category sPre(S)
is the category of simplicial presheaves on Smg. The category of pointed sim-
plicial presheaves on Smg is denoted by sPre(S),. Let Pre,(S) denote the cat-
egory of presheaves on Smg with values in A-generated topological spaces and
Pre,(S), the category of presheaves on Smg with values in pointed A-generated
topological spaces. By Proposition 6.2 the geometric realization of a simplicial
set is A-generated. Therefore, by applying the usual geometric realization func-
tor sectionwise, we get a functor

| -] : sPre(S), — Prex(S)..

Recall that the geometric realization functor for simplicial sets has a right ad-
joint Sing : Jop, — sSet. Then if we apply this functor again sectionwise,
we obtain a right adjoint for | - | and we denote the right adjoint still by Sing.
Hence, we have the following adjoint pair

| | : sPre(S), 2 Pren(S), : Sing.

Proposition 6.6. [Don24, Remark 2.1.9] There exists an A'-local injective model
structure on Pre(S), such that

I
sPre(S)* Al—local inj —>< PreA(S)* Al-local inj
Sing

is a Quillen equivalence.

Remark 6.7. The homotopy category associated to the Al-local injective model
structure on Pre,(S), will be denoted by F0,(S).
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