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ABSTRACT. We explicitly construct new subgroups of the mapping class groups
of an uncountable collection of infinite-type surfaces, including, but not limited
to, free groups, Baumslag-Solitar groups, mapping class groups of other sur-
faces, and a large collection of wreath products. For each such subgroup H and
surface S, we show that there are countably many non-conjugate embeddings of
H into Map(S); in certain cases, there are uncountably many such embeddings.
The images of each of these embeddings cannot lie in the isometry group of S
for any hyperbolic metric and are not contained in the closure of the compactly
supported subgroup of Map(S). In this sense, our construction is new and does
not rely on previously known techniques for constructing subgroups of mapping
class groups. Notably, our embeddings of Map(S′) into Map(S) are not in-
duced by embeddings of S′ into S. Our main tool for all of these constructions
is the utilization of special homeomorphisms of S called shift maps, and more
generally, multipush maps.
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1. Introduction
A fundamental question in low-dimensional topology asks which groups can

arise as subgroups of the diffeomorphism group, homeomorphism group, and map-
ping class group of a surface S, denoted by Homeo(S), Diffeo(S), and Map(S),
respectively. One approach to producing such subgroups is to consider embeddings
of finite-type subsurfaces S′ into an infinite-type surface S that induce injections
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of Map(S′) into Map(S). In this case, every subgroup of Map(S′) is a subgroup
of Map(S). Another approach to this problem is to show that a particular group G
acts by orientation-preserving isometries on a surface S, which implies that G can
be realized as a subgroup of Homeo(S), Diffeo(S), and Map(S). However, these
two classical approaches have limitations. For example, the strong Tits alternative
holds for finite-type mapping class groups, meaning every subgroup of Map(S′)
is either virtually abelian or contains a free subgroup [Iva84, McC85]. In addition,
Aougab, Patel, and Vlamis show that only finite groups can arise as the isometry
group of a hyperbolic metric on S whenever S contains a non-displaceable sub-
surface (see [APV21, Lemma 4.2]). They also show that no uncountable group
can be obtained as the isometry group of a hyperbolic metric on any infinite-type
surface. These observations indicate that in order to fully understand the algebraic
structure of big mapping class groups, we need other constructions of subgroups in
Map(S), and we also need to understand the many different ways that a particular
subgroup can embed in Map(S). This is precisely the goal of this paper.

To streamline the statements of our results below, we construct an uncountable
collection of surfaces for which particular results hold. The precise definitions will
appear in Section 3.2. When Π is a distinguished surface, we denote by C(Π)
the collection of surfaces that admit a map which acts as a shift along a countable
collection of copies of Π; see Definition 3.5. For example, in the case where Π is a
torus with one boundary component, C(Π) includes the ladder surface, the connect
sum of a ladder surface and any surface of genus 0, and the Cantor tree surface
with exactly two ends accumulated by genus.

Our first construction produces embeddings between big mapping class groups
that are not induced by embeddings of the underlying surfaces and that do not
preserve the property of being compactly supported. The result is summarized as
Theorem 1.1 below and is a consequence of Theorem 5.2. Recall that a group is
indicable if it admits a surjection onto Z.

Theorem 1.1. Let Π be a distinguished surface. If Map(Π) is indicable, then for
any surface S ∈ C(Π), there exist countably many non-conjugate embeddings of
Map(Π) into Map(S) that are not induced by an embedding of Π into S.

The above theorem is in line with a body of work dedicated to understanding and
constructing homomorphisms between mapping class groups; see, for example,
[ArLS09, AS13, ArLM24]. There are uncountably many distinguished surfaces
Π for which Map(Π) is indicable; see Examples 5.4. When Π has at least two
nonplanar ends, Theorem 1.1 also holds with PMap(Π) in place of Map(Π); see
Corollary 5.3.

Theorem 1.1 also answers Question 4.75 from the AIM problem list on sur-
faces of infinite type [AIM] which asks, “Given a homomorphism f ∶Map(S) →
Map(S′), does f preserve the notion of being compactly supported?” Bavard,
Dowdall and Rafi [BDR20] show that the answer is yes for surjective homomor-
phisms, and Aramayona, Leininger, and McLeay [ArLM24] give an example of
two surfaces and self-maps for which the answer is no. Our results show that there
is an uncountable family of surfaces and maps for which the answer is also no.
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The second main result of our paper is Theorem 6.3, which is a combination
theorem for indicable subgroups of Map(S). We summarize its statement as The-
orem 1.2 below. The ⋆-product used in the statement is an interpolation between
free products and direct products. The ⋆-product of two groups Gi with subgroups
Hi is defined as

(G1,H1) ⋆ (G2,H2) ∶= G1 ∗G2/⟪[G1,H2], [H1,G2]⟫.
More generally, given G1, . . . ,Gn with subgroups H1, . . . ,Hn, let

(G1,H1) ⋆ ⋯ ⋆ (Gn,Hn) ∶= G1 ∗⋯ ∗Gn/⟪[Gi,Hj] ∶ i ≠ j⟫.

Theorem 1.2. Let Gi be an indicable group that embeds in Map(Si) for i =
1, . . . , n, where Si is a surface with exactly one boundary component. For each
i, fix a surjective map fi∶Gi → Z, and let Hi be the kernel of fi. The indicable
group (G1,H1) ⋆ ⋯ ⋆ (Gn,Hn) embeds in Map(S) for S = SΓ(Π), where Π is
obtained from #nSi by capping off n − 1 boundary components.

We direct the reader to Section 3 for the definition of the surface SΓ(Π), the
construction of which was inspired by work of Allcock [All06]. Importantly, the
support of the homeomorphisms defined in our construction is not all of SΓ(Π).
Consequently, we may change the topology outside the support of the homeo-
morphisms in any way we choose. In this way, Theorem 1.2 actually shows that
(G1,H1) ⋆ ⋯ ⋆ (Gn,Hn) embeds in the mapping class group of a wide class of
infinite-type surfaces. For instance, we can arrange for the edited surface to have a
non-displaceable subsurface so that the subgroups we construct cannot arise from
a construction using isometries.

A key aspect of the proof of Theorem 1.2 is a set of criteria on a collection
of shift maps (or multipush maps) that guarantees they generate a free group (see
Theorem 4.2). Shift maps are generalizations of handleshifts, homeomorphisms
introduced by Patel and Vlamis in [PaV18] that have become integral to the theory
of infinite-type surfaces. In particular, we augment the generators of the groups
Gi in the statement of the theorem with these shift maps (or multipush maps).
The fact that shift maps do not lie in Mapc(S) implies that the subgroups we
construct are also not completely contained in Mapc(S). The only exceptions to
this are when S is finite type or the Loch Ness Monster surface, in which case
Mapc(S) = Map(S). We avoid the technical statement of Theorem 4.2 here and
direct the reader to Section 4.1.

There are a variety of indicable groups that can play the role of Gi in the state-
ment of Theorem 1.2 (or the role of G in the statement of Theorem 1.1). In par-
ticular, one can let Gi be any indicable subgroup of the mapping class group of a
finite-type surface with exactly one boundary component, for example, free groups,
braid groups, and right-angled Artin groups.

In the case of right-angled Artin groups, Clay, Leininger, Mangahas [CLM12]
and Koberda [Kob12] show that every right-angled Artin group embeds as a sub-
group of the mapping class group of some finite-type surface of sufficient complex-
ity. The map fi ∶ AΓi → Z which sends each generator of the right-angled Artin
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group AΓi with defining graph Γi to 1 is a homomorphism, so AΓi is indicable.
The kernel Hi of this map is called the Bestvina-Brady group defined on Γi and is
denoted by BBΓi . The pairs (AΓi ,BBΓi) form a rich class of examples that can
be used as the input for Theorem 1.2 and are discussed in detail in Section 6.1.

We also produce new examples of indicable subgroups of big mapping class
groups that can be used as input for these theorems, including solvable Baumslag-
Solitar groups BS(1, n) and a large class of wreath products G ≀H . The following
theorem is a particular case of Proposition 4.3 and Theorem 4.6, which both hold
for a more general class of surfaces. We make the statement below to avoid tech-
nicalities.

Theorem 1.3. If S is a Cantor tree surface, then solvable Baumslag-Solitar groups
BS(1, n) and wreath products Zn ≀Z for any n ≥ 1 arise as subgroups of Map(S).

Note that solvable Baumslag-Solitar and Zn ≀ Z cannot embed in the mapping
class group of any finite-type surfaces. Our theorem gives the first construction
of these groups (for n > 1) in the mapping class groups of infinite-type surfaces.
Lanier–Loving construct Z ≀ Z as a subgroup of the mapping class group of any
infinite-type surface without boundary [LL20].

Outline. Section 2 contains preliminaries on infinite-type surfaces, mapping class
groups, and shift and multipush maps. Section 3 gives a construction of surfaces
based on Schreier graphs and describes how to obtain non-conjugate embeddings
of subgroups generated by either shift or multipush maps. Our constructions of
specific subgroups of big mapping class groups begins in Section 4, where we
build embeddings of free groups, wreath products, and solvable Baumslag–Solitar
groups into big mapping class groups. In Section 5, we prove Theorem 1.1. Fi-
nally, in Section 6, we prove and discuss applications of the combination theorem
(Theorem 1.2).
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2. Preliminaries
2.1. Ends of surfaces. Essential to the classification of infinite-type surfaces is
the notion of an end of a surface and the space of ends for an infinite-type surface
S.

Definition 2.1. An exiting sequence in S is a sequence {Un}n∈N of connected open
subsets of S satisfying:

(1) Un ⊂ Um whenever m < n;
(2) Un is not relatively compact for any n ∈ N, that is, the closure of Un in S

is not compact;
(3) the boundary of Un is compact for each n ∈ N; and
(4) any relatively compact subset of S is disjoint from all but finitely many of

the Un’s.
Two exiting sequences {Un}n∈N and {Vn}n∈N are equivalent if for every n ∈ N
there exists m ∈ N such that Um ⊂ Vn and Vm ⊂ Un. An end of S is an equivalence
class of exiting sequences.

The space of ends of S, denoted byE(S), is the set of ends of S equipped with a
natural topology for which it is totally disconnected, Hausdorff, second countable,
and compact. In particular, E(S) is homeomorphic to a closed subset of a Cantor
set. The definition of the topology on the space of ends is not relevant to this paper
and so is omitted.

Ends of S can be isolated or not and can be planar, if there exists an i such that
Ui is homeomorphic to an open subset of the plane R2, or nonplanar, if every Ui

has infinite genus. The set of nonplanar ends of S is a closed subspace of E(S)
and will be denoted by Eg(S); these are frequently called the ends accumulated
by genus. We have the following classification theorem of Kerékjártó [Ker23] and
Richards [Ric63]:

Theorem 2.2 (Classification of infinite-type surfaces). The homeomorphism type
of an orientable, infinite-type surface S is determined by the quadruple

(g, b,Eg(S),E(S))
where g ∈ Z≥0 ∪ ∞ is the genus of S and b ∈ Z≥0 is the number of (compact)
boundary components of S.

There is a more complicated classification of infinite-type surfaces allowing for
non-compact boundary components due to Prishlyak–Mischenko [PM07]. We use
this classification once in Section 3.2, but in our setting, the surfaces we are com-
paring have precisely the same boundary, so the classification reduces to consider-
ing the triple (g,Eg(S),E(S)).

2.2. Mapping class group. The mapping class group of S, denoted Map(S), is
the set of orientation-preserving homeomorphisms of S up to isotopy that fix the
boundary pointwise. The natural topology on the set of homeomorphisms of S is
the compact-open topology, and Map(S) is endowed with the induced quotient
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topology. Equipped with this topology, Map(S) is a topological group. When S is
a finite-type surface, this topology on Map(S) agrees with the discrete topology,
but when S is of infinite type, the two topologies are distinct. The pure mapping
class group, denoted PMap(S), is the subgroup of Map(S) that fixes the set of
ends of S pointwise, and Mapc(S) is the subgroup of compactly supported map-
ping classes. Note that Mapc(S) ≤ PMap(S). When S has at most one nonplanar
end, Mapc(S) is actually equal to PMap(S) [ArPV20].

Definition 2.3. A mapping class f ∈ Map(S) is of intrinsically infinite type if
f ∉Mapc(S). A subgroup H ≤Map(S) is of intrinsically infinite type if H is not
completely contained in Mapc(S).
In this paper, all of the subgroups of Map(S) that we construct contain many
intrinsically infinite-type homeomorphisms and, therefore, cannot be completely
contained in Mapc(S), except when S is finite-type or the Loch Ness Monster, in
which case Mapc(S) =Map(S). Recall that the Loch Ness Monster surface is the
unique infinite-genus surface with one end (up to homeomorphism).

We are particularly interested in indicable groups and various ways of embed-
ding them in mapping class groups of infinite-type surfaces. A groupG is indicable
if there exists a surjective homomorphism f ∶G → Z. We show in Lemma 5.1 that
a group G is indicable if and only if there is a presentation for G where the relators
all have total exponent sum zero in the generators of G. Importantly, many of our
constructions require an indicable subgroup G of Map(S) as an input, where S is
a surface with exactly one boundary component. There are many examples of such
groups that were mentioned in the introduction, but there are also some restrictions
on what groups G can arise as subgroups of mapping class groups, as is evidenced
by the following lemma, which generalizes the same result from the finite-type
setting [FM12, Corollary 7.3].

Lemma 2.4 ([ACCL21, Corollary 3]). If S is an orientable surface with nonempty
compact boundary, the mapping class group fixing the boundary pointwise is torsion-
free.

2.3. Push and shift maps. In this section, we define shift maps and push maps,
which are central to all of our constructions. A particular type of shift maps, called
handle shifts, were first studied by Patel and Vlamis in [PaV18]. This inspired the
following definition of Abbott, Miller, and Patel [AbMP25]. A similar definition
of shift maps appears in [MaR23] and [LL20].

Definition 2.5. Let DΠ be the surface defined by taking the strip R × [−1,1],
removing an open disk of radius 1

4 with center (n,0) for n ∈ Z, and attaching any
fixed topologically nontrivial surface Π with exactly one boundary component to
the boundary of each such disk. A shift onDΠ is the homeomorphism that acts like
a translation, sending (x, y) to (x+ 1, y) for y ∈ [−1+ ϵ,1− ϵ] and which tapers to
the identity on ∂DΠ.

Given a surface S with a proper embedding of DΠ into S so that the two ends
of the strip correspond to two different ends of S (see Figure 1), the shift on DΠ
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Π Π Π Π

DΠ

FIGURE 1. A surface S that admits a shift whose domain is an
embedded copy of DΠ.

induces a shift on S, where the homeomorphism acts as the identity on the comple-
ment of DΠ. If instead, we have a proper embedding of DΠ into S where the two
ends of the strip correspond to the same end, we call the resulting homeomorphism
on S a one-ended shift. Given a shift or one-ended shift h on S, the embedded copy
of DΠ in S is called the domain of h. By abuse of notation, we will sometimes say
that the domain of the shift or one-ended shift h is DΠ rather than referring to it as
an embedded copy of DΠ in S (when it is clear from context to which embedded
copy of DΠ we are referring).

Remark 2.6. If the surface Π in Definition 2.5 has a nontrivial end space, then a
shift or one-ended shift h on S with domain DΠ is not in PMap(S) since there are
ends of S that are not fixed by h. Thus, h ∉Mapc(S) and is of intrinsically infinite
type. On the other hand, if h is a shift map and if Π is a finite-genus surface with
no planar ends, then h is a power of a handle shift on S, and the proof of [PaV18,
Proposition 6.3] again tells us that h ∉Mapc(S). However, the second conclusion
does not hold when h is a power of a one-ended handle shift since, in that case, it
follows from work in [PaV18] that h ∈Mapc(S).

We now use the construction of shift maps to introduce finite shifts, which will
be used in Section 4.3 to construct certain wreath products. These are constructed
in a completely analogous way, starting with an annulus instead of a biinfinite strip.

Definition 2.7. Let AΠ be a surface defined by taking the annulus

([0, n]/0 ∼ n) × [−1,1],
removing an open disk of radius 1

4 centered at the integer points, and attaching any
fixed topologically nontrivial surface Π with exactly one boundary component to
the boundary of each disk. A finite shift onAΠ is the homeomorphism that acts like
a translation, sending (x, y) to (x+1, y) (modulo n) for y ∈ [−1+ϵ,1−ϵ] and which
tapers to the identity on ∂AΠ. Given a surface S with a proper embedding of AΠ

into S, the finite shift onAΠ induces a finite shift on S, where the homeomorphism
acts as the identity on the complement of AΠ. We call the embedded copy of AΠ

the domain of the finite shift.
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Definition 2.8. A push is any map that is a finite shift, a one-ended shift, or a shift
map.

In Section 3, we will introduce the notion of a multipush, which is roughly
a collection of push maps with disjoint supports, once we have developed some
further notation and language.

3. Surfaces from graphs and non-conjugate embeddings
In this section, we begin by constructing a broad class of surfaces using an

underlying graph. We then introduce a type of homeomorphism called a multipush
and show that these maps can be utilized to produce infinitely many non-conjugate
embeddings of certain groups into mapping class groups.

3.1. A construction of surfaces. The basic building block for this construction is
a d–holed sphere. The following definition of seams restricts to the normal notion
of seams for a 3–holed sphere, i.e., a pair of pants.

Definition 3.1. A set of seams on a d–holed sphere is a collection of d disjointly
embedded arcs such that each boundary component of the sphere intersects exactly
two components of the seams at two distinct points and such that the collection
of seams divides the sphere into two components. Call one component the front
side and the other component the back side. These conditions imply that each
component is homeomorphic to a disk.

Starting from any graph Γ with a countable vertex set and any surface Π with
exactly one boundary component, we describe a procedure for building a surface
SΓ(Π). This mirrors a construction of Allcock using the Cayley graph of a given
group G [All06].

For each vertex v of valence d, start with a d–holed sphere. Remove a disk on the
interior of the front side, and attach the surface Π along the boundary component.
Call the resulting surface the vertex surface for v, which we denote by Vv, and let
Πv be the copy of Π on Vv. For each edge of the graph, define the edge surface E
to be the 2–holed sphere with seams; topologically this is an annulus.

Whenever u and v are vertices of Γ connected by an edge, connect the vertex
surfaces Vu and Vv with an edge surface E(u, v) by gluing one boundary compo-
nent of the edge surface to a boundary component of Vu and the other boundary
component of the edge surface to a boundary component of Vv so that the gluing
is compatible in the following sense: the union of the seams separates SΓ into two
disjoint connected components, the front and the back, containing the front and,
respectively, the back of each vertex and edge surface. Call the resulting surface
SΓ(Π). See Figure 2 for an example. Notice that the assumption that the vertex set
V (Γ) of Γ is countable is necessary for this construction to yield a surface. In par-
ticular, if V (Γ) is uncountable, then SΓ(Π) is not second countable and therefore
cannot be a surface.

We also define a more general class of surfaces constructed by editing the back
of SΓ(Π) as follows. As above, fix a graph Γ with a countable vertex set and a
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Π Π Π

ΠΠΠ

Π Π Π

FIGURE 2. An example of the surface SΓ(Π) where the graph Γ
is the Cayley graph of the group Z2 = ⟨a, b ∶ [a, b]⟩.

surface with one boundary component Π, and let S = SΓ(Π). Given any collection
of surfaces {Ωv}v∈V (Γ), only finitely many of which have boundary, we form the
surface S #

v∈V (Γ)
Ωv as follows. For each v ∈ V (Γ), take the connect sum of Vv and

the corresponding Ωv. It is helpful to assume that the connect sum is done on the
back of Vv, since we will perform certain homeomorphisms on the front of S later
in the paper. We note that if every Ωv is a sphere, then S #

v∈V (Γ)
Ωv is homeomorphic

to S. On the other hand, by choosing the Ωv to be more topologically complex, the
homeomorphism type of the resulting surface differs from S in either the genus or
the space of ends. Thus, even for a fixed surface Π, this construction yields a large
family of surfaces, formed by varying the topological type of the Ωv.

The underlying graph Γ used to build SΓ(Π) throughout this paper will often
be a Schreier graph, which is defined as follows. Let G be a finitely generated
group, H a subgroup of G, and T a finite generating set for G. The Schreier graph
Γ(G,T,H) is the graph whose vertices are the right cosets of H and in which, for
each coset Hg and each s ∈ T , there is an edge from Hg to Hgs labeled by s. If
Hg = Hgs, there is a loop labeled by s at the vertex corresponding to Hg. Our
assumption on the finiteness of T ensures that Γ(G,T,H) has a countable vertex
set. When Γ is a Schreier graph, let ΠHg be the copy of Π on the vertex surface
corresponding to the coset Hg. In the special case when H = {1}, the Schreier



SUBGROUPS OF BIG MAPPING CLASS GROUPS 127

FIGURE 3. Each graph can be realized as a Schreier graph but
not a Cayley graph. The graph on the left has 3 ends, and the
graph on the right has end space homeomorphic to the 2-point
compactification of Z.

graph Γ(G,T,{1}) is simply the Cayley graph of G with respect to the generating
set T , which we denote by Γ(G,T ).

Definition 3.2. Let Γ be a Schreier graph for a triple (G,T,H). A Schreier surface
associated to (G,T,H) is a surface S = SΓ(Π) #

v∈V (Γ)
Ωv where Π has exactly one

boundary component and is not a disk, and {Ωv} is any collection of surfaces, only
finitely many of which have boundary.

Using the more general class of Schreier graphs, rather than just Cayley graphs,
to construct surfaces in this fashion broadens the class of surfaces our results apply
to. For example, when Π is compact, the surface SΓ(Π) will have the same end
space as the graph Γ. A Cayley graph for a finitely generated group has 1, 2 or
a Cantor set of ends. On the other hand, there are many more possibilities for a
Schreier graph; any regular graph with even degree can be realized as a Schreier
graph [Gro77, Lub95]. Thus, there are Schreier graphs with any finite number of
ends, or end spaces isomorphic to N ∪ {∞} or {−∞} ∪ Z ∪ {∞}. This implies
that there are Schreier surfaces with these end spaces as well. See Figure 3 for two
examples of Schreier graphs that cannot be realized as Cayley graphs.

We now move to defining a homeomorphism called a multipush on a Schreier
surface.

Definition 3.3. Let Γ = Γ(G,T,H) be a Schreier graph. Fix a surface Π with
exactly one boundary component. Let S = SΓ(Π) #

v∈V (Γ)
Ωv be a Schreier surface.

For each s ∈ T , we construct a collection of push maps whose support corre-
sponds to connected components of the subgraph of Γ which includes only edges
labeled by s (see Figure 4). Fix a transversal T for the set of double cosets
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Π

Π

Π Π Π

Π

Π Π

Π Π

ΠΠ

Π

FIGURE 4. A portion of the domain Da (in blue) of the mul-
tipush xa on the surface SΓ(Π), where Γ is the Cayley graph
Γ = Γ(F2,{a, b}) for F2 = ⟨a, b⟩.

{Hg⟨s⟩ ∣ g ∈ G}, so that T contains exactly one element from each double coset in
the set. In the caseH = {1}, that is, when Γ is a Cayley graph, the set T is simply a
transversal for (left cosets of) ⟨s⟩. For each element t in the transversal, we define
a push ht⟨s⟩ which maps ΠHtsi to ΠHtsi+1 . The support of ht⟨s⟩ is contained in the
front of

(⋃
i∈Z
VHtsi) ⋃ (⋃

i∈Z
E(Htsi,Htsi+1)) .

Recall that, for each i ∈ Z, VHtsi is the vertex surface associated to the vertex Htsi

and E(Htsi,Htsi+1) is the edge surface associated to the edge (Htsi,Htsi+1).
This support corresponds to a connected component of Γ with all edges labeled
by s; see Figure 4. The multipush xs associated to s is the element of Map(S)
that acts simultaneously as the pushes ht⟨s⟩ for each t ∈ T . We let Ds denote the
domain of the multipush xs. If ht⟨s⟩ is not a finite shift for any t ∈ T , we say xs is
an infinite multipush.

Since supports of the pushes ht⟨s⟩ are disjoint, the multipush xs is a well-
defined homeomorphism of the surface. Note that if Hg = Hgs, then the edge
E(Hgsi,Hgsi+1) in the support of hg⟨s⟩ is a loop. In particular, finite pushes can
occur as part of a multipush. In Figure 4, all pushes are infinite, but the multipush
with the orange domain shown in Figure 5 has both a finite and infinite push.
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Π Π Π

Π

Π

FIGURE 5. A multipush on a surface corresponding to the
Schreier graph on the left in Figure 3 that contains both a finite
and infinite push. The domain of the multipush is highlighted in
orange.

Remark 3.4. We emphasize that multipushes are not induced by an action on the
graph Γ, even when Γ is a Cayley graph. The construction simply uses the labeling
of the vertices of Γ to define the homeomorphism xs.

3.2. Non-conjugate embeddings. Given a shift map h corresponding to an em-
bedding of DΠ into a surface S, one can define a new and distinct shift map h′ on
S by omitting some of the surfaces Πi from the domain of h, so long as infinitely
many remain. This gives another embedding of DΠ into S. See Figure 6. Since
there are uncountably many infinite subsets of Z, we can construct uncountably
many distinct embeddings of DΠ into S, and thus uncountably many distinct shift
maps on S, in this way. The same argument goes through for one-ended shifts
as well. Similarly, one infinite multipush xs associated to a generator s ∈ T on a
surface S = SΓ(Π) can be used to produce uncountably many distinct domains for
multipushes associated to s by simply omitting some of the copies of Π from the
domains of xs for all s ∈ T .

In many cases, these distinct domains give rise to isomorphic but non-conjugate
subgroups of Map(S). First, consider the case of shift maps. Given a shift map h
on S, we define a new shift map h′ on S by removing some copies of Π from the
domain of the shift. The groups ⟨h⟩ and ⟨h′⟩ are isomorphic subgroups of Map(S).
If they were conjugate, not only would supp(h) and supp(h′) be homeomorphic,
but their complements S∖supp(h) and S∖supp(h′)would also be homeomorphic.
There are many surfaces for which this latter condition fails. For example, let Π
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Π Π Π Π

DΠ

DΠ

Π Π Π Π

FIGURE 6. Two different embeddings ofDΠ. The figure at the top
corresponds to a shift h and the embedding shown at the bottom
corresponds to a new and distinct shift h′ obtained by leaving two
copies of Π out of the domain of h.

be a handle, i.e. a torus with one boundary component, and let S = SΓ(Π) for
Γ(Z,{1}), i.e. the ladder surface (see Figure 6). In this case, h = x1 is a shift map
and S ∖ supp(h) has genus zero, while S ∖ supp(h′) has nonzero genus coming
from the copies of Π that were removed from the domain of h. Therefore, the
embeddings of Z as ⟨h⟩ and ⟨h′⟩ are non-conjugate in Map(S). This example
can be generalized by letting Π be any surface with a countable end space and one
boundary component, so long as removing copies of Π from the domain of the shift
map produces non-homeomorphic subsurfaces S∖supp(h) and S∖supp(h′). This
motivates the following definition.

Definition 3.5. A distinguished surface is a surface Π with exactly one boundary
component, satisfying at least one of the following:

(1) Π has finite genus,
(2) E(Π) consists of finitely many planar ends, or
(3) E(Π) consists of finitely many nonplanar ends.

For each distinguished surface Π, let C(Π) be the collection of surfaces S that
admit an embedding of DΠ such that the following holds. If Π satisfies (1), then
S ∖DΠ has finite (possibly zero) genus. If Π satisfies (2) or (3), then S ∖DΠ has
finitely many planar or nonplanar ends, respectively. If Π falls into more than one
of the above categories, then C(Π) should consist of surfaces that satisfy either of
the conditions on S ∖DΠ.

If Π is a distinguished surface and S ∈ C(Π), then S admits a shift hwith domain
DΠ. If h′ is another shift on S whose domain is embedded by omitting finitely
many copies of Π from DΠ, then each of the three conditions on Π ensures that
S ∖ supp(h) and S ∖ supp(h′) are not homeomorphic. In particular, S ∖ supp(h)
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and S ∖ supp(h′) will have different genus or will contain a different number of
planar or nonplanar ends. Similarly, if h′ and h′′ are obtained from h by omitting
different (finite) numbers of copies of Π from DΠ, then the complements of their
supports are not homeomorphic.

The collection C(Π) for a distinguished surface Π is uncountable. To see this,
suppose Π has finite genus orE(Π) consists of finitely many nonplanar ends. Then
S can be any surface such that S ∖DΠ has only planar ends. On the other hand,
if E(Π) consists of finitely many planar ends, then S can be any surface so that
S ∖DΠ has no planar ends. In either case, there are uncountably many such S.

The definition of a distinguished surface Π and the collection of surfaces C(Π)
ensure that we can “count” the number of copies of Π that have been removed from
the domain of a shift, thus producing non-conjugate embeddings. We could expand
the definition of a distinguished surface and the collection C(Π) to encompass a
larger family of surfaces for which this is possible, but we choose the streamlined
definition above for simplicity, while still demonstrating that our results hold for a
broad class of surfaces.

We have shown that there are countably many non-conjugate infinite cyclic sub-
groups in Map(S). In Section 5, we will use these different embeddings of Z to
construct non-conjugate embeddings of indicable subgroups into Map(S) (Theo-
rem 1.1). The following lemma summarizes the discussion above.

Lemma 3.6. Let S be any surface in the uncountable collection C(Π) for a distin-
guished surface Π. There exist countably many non-conjugate embeddings of the
subgroup generated by the shift map on S with domain DΠ into Map(S).

We now turn our attention to constructing non-conjugate embeddings of sub-
groups generated by multipushes. Let S = SΓ(Π) be infinite-type, and let xs be
the multipush defined by s ∈ T . In the same way as for a shift map, by omitting
copies of Π from the domain of xs so that the complements of the supports are not
homeomorphic, we obtain a non-conjugate embedding of ⟨xs⟩ in Map(S).

If several multipushes xs for s ∈ T have common copies of Π in their supports,
such as in Figure 14, more care needs to be taken. It is possible to remove copies
of Π from the domains of all the multipushes to obtain new multipushes x′s in such
a way that ⟨xs ∣ s ∈ T ⟩ ≅ ⟨x′s ∣ s ∈ T ⟩ and so that the complements of the supports
of the subgroups are not homeomorphic. One way to formalize this is to consider
the surface Sm = S #

v∈V (Γ)
Ωv where exactly m of the Ωv are homeomorphic to Π

with the boundary component capped off, and the remainder of the Ωv are spheres.
By the classification of surfaces, the surfaces S and Sm are homeomorphic, and
this homeomorphism induces an isomorphism of mapping class groups Map(S) ≅
Map(Sm). Let x(m)s be the multipush on the surface Sm defined by s ∈ T . Notice
that G = ⟨xs ∣ s ∈ T ⟩ is isomorphic to ⟨x(m)s ∣ s ∈ T ⟩ because they are generated
by multipushes with the same supports π1-embedded into different surfaces. Let
Gm ≤Map(S) be the image of ⟨x(m)s ∣ s ∈ T ⟩ ≤Map(Sm) under the isomorphism
of mapping class groups, so that G ≅ Gm. By construction, there are m copies of
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Π that are not in the support of Gm, while all copies of Π are in the support of G,
and so G and Gm are not conjugate. Similarly, whenever m ≠ n, the groups Gm

and Gn are isomorphic and non-conjugate.
For the remainder of the paper, when we say that we remove copies of Π from

the supports of multipushes, we will mean that we do so in the above manner, so
that the resulting groups are isomorphic.

If the end space of Γ contains a Cantor set, then there are uncountably many
non-conjugate copies of G in Map(S). To see this, use the procedure above to
edit the domains of the multipush maps by removing a collection of copies of Π
that accumulate onto a closed subset of the Cantor set of ends of S = SΓ(Π). By
removing copies of Π that accumulate onto non-homeomorphic closed subsets of
the Cantor set, we obtain a non-conjugate embedding of G into Map(S).

Above, we assumed that S = SΓ(Π). However, the argument applies more
broadly. For example, if S = SΓ(Π) #

v∈V (Γ)
Ωv and each Ωv has only planar ends

and Π has nonzero finite genus, then adding two finite collections of handles of dif-
fering sizes to some Ωv still results in the complements of the domains being non-
homeomorphic subspaces. More generally, we could let Π be any surface with a
countable end space and one boundary component (of which there are uncountably
many), so long as removing two finite collections of Π of differing cardinalities still
results in the complement subsurfaces being non-homeomorphic. This observation
leads to the definition of the following family of surfaces.

Definition 3.7. Let B be the collection of Schreier surfaces S = SΓ(Π) #
v∈V (Γ)

Ωv

such that SΓ(Π) is infinite-type, Π has a countable end space, and the surfaces
Ωv are compatible with Π in following sense: Let Y = ⋃s∈T supp(xs), and Y ′ =
⋃s∈T supp(x′s), Y ′′ = ⋃s∈T supp(x′′s ), where x′s is obtained by moving m copies
of Π out of the domain of xs and x′′s is obtained by moving n copies of Π out of
the domain of xs, with m ≠ n. Then S ∖ Y ′ and S ∖ Y ′′ are non-homeomorphic in
S.

Let B∞ be the subset of B consisting of those Schreier surfaces built from
infinite-type surfaces Π.

The above discussion demonstrates that B is uncountable and proves the follow-
ing lemma.

Lemma 3.8. Let S be any surface in the uncountable collection B. Letting G be
the subgroup of Map(S) generated by the multipush maps xs on S for s ∈ T , there
exist countably many non-conjugate copies of G in Map(S). If the end space of Γ
contains a Cantor set, then there are uncountably many non-conjugate copies of G
in Map(S).

3.3. Non-isometric embeddings. Throughout the paper, all constructions of sub-
groups will utilize push and multipush maps. If the complement of the domain of
a (multi)push is not simply connected, then the map cannot act as an isometry for
any hyperbolic metric on S. We can use the collection of subsurfaces {Ωv} from
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the construction of a Schreier surface S to ensure this condition holds, and so all
of our constructions can produce subgroups that are not contained in the isometry
group of S for any hyperbolic metric on S.

For many surfaces, this is not simply an artifact of our particular construction.
By choosing the collection {Ωv} carefully, we can often ensure that the resulting
surface S has a non-displaceable subsurface, and hence its isometry group (with
respect to any hyperbolic metric) contains only finite groups [APV21, Lemma 4.2].
In particular, the groups we construct could not arise from a construction using
isometries for any such surface.

4. Free groups, wreath products, and Baumslag-Solitar groups
In this section, we use shift maps and multipushes to construct free groups,

certain wreath products, and solvable Baumslag-Solitar groups as subgroups of big
mapping class groups.

4.1. Free groups. The construction of Schreier surfaces from Section 3.1 was mo-
tivated by the following construction of a free subgroup of intrinsically infinite
type.

Example 4.1. Let Γ be the Cayley graph of the free group F2 = ⟨a, b⟩, which is the
Schreier graph Γ(F2,{a, b},{id}), and build the Schreier surface S = SΓ(Π) with
Π a torus with one boundary component. See Figure 4. This Schreier surface is
homeomorphic to the blooming Cantor tree, that is, the surface with no boundary
components, no planar ends, and a Cantor set of nonplanar ends. The multipushes
xa and xb generate a copy of F2 in PMap(S). To see this, observe that for any g ∈
⟨a, b⟩, the multipush xa maps Πg to Πga, and similarly for xb. Thus, the only way
for a word w ∈ ⟨xa, xb⟩ to act trivially on the surface is if the corresponding word
in ⟨a, b⟩ is trivial. Moreover, Remark 2.6 shows that this copy of F2 in PMap(S)
is not contained in Mapc(S).

In this example, it is straightforward to prove that a non-trivial wordw ∈ ⟨xa, xb⟩
acts non-trivially on the surface because F2 has no relations and Γ is a tree, so we
only need to track where w sends Πid. With a more nuanced analysis of the action
of w, however, we can show that multipushes generate a free group in a much
more general setting. Recall that the collection B of Schreier surfaces was defined
in Definition 3.7.

Theorem 4.2. Let Γ be a Schreier graph for a triple (G,T,H) and S any asso-
ciated Schreier surface. The set {xα ∣ α ∈ T} generates a free group of rank ∣T ∣
in Map(S). If ∣T ∣ = 1 and Γ is finite, then we require that at least one Ωv is not a
sphere.

Moreover, when S ∈ B, there exist countably many non-conjugate embeddings
of such a free group in Map(S), none of which can lie entirely in the isometry
group for any hyperbolic metric on S. If S is not finite type and not the Loch Ness
monster surface, these free groups cannot be completely contained in Mapc(S).
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Π

Π Π

γ

x3t (γ)

FIGURE 7. A surface S built from the Cayley graph of Z/3Z =
⟨t⟩. The curve γ is not homotopic to its image under x3t due to the
handle on the back of S.

Proof. Let w = t1 . . . tk be a nontrivial, freely reduced word in the free group gen-
erated by the set T , and let xw ∶= xtk⋯xt1 be the product of multipushes. We aim to
show that xw is nontrivial in Map(S). We first observe that if xw(ΠHg) = ΠHgw ≠
ΠHg for any cosetHg, then xw is nontrivial in Map(S). We may therefore assume
that xw returns each ΠHg to itself. In particular, this implies that Hgw = Hg for
all g ∈ G, and so the edge path given by labels (t1, . . . , tk) in Γ(G,T,H) based at
any vertex describes a cycle.

First consider a one-generated group G. If Γ is infinite, then we must have
H = {id}, in which case Γ(G,T,H) = Γ(Z,{1},{id}) is the Cayley graph of
Z with its standard generator. Since this graph has no cycles, each element xw
with w ∈ G is non-trivial in Map(S). On the other hand, suppose Γ is a finite
cycle of order k, and consider the multipush xt, where t is the generator of G.
Then, xkt represents a cycle in Γ, but the requirement that some Ωi is not a sphere
guarantees that the curve γ and xkt (γ) cobound a surface with non-trivial topology.
See Figure 7 for the case k = 3. Thus γ and xkt (γ) are not homotopic, so xkt is
non-trivial and ⟨xt⟩ ≅ Z.

Now assume ∣T ∣ = n ≥ 2, so that every vertex of Γ(G,T,H) has degree 2n ≥
4. Let p∶ Γ̃ → Γ be the universal cover of the labelled graph Γ, which is a tree
of valency 2n with edge labels in the set T . Construct the Schreier surface S̃ =
SΓ̃(Π) #

ṽ∈V (Γ̃)
Ωṽ, where Ωṽ = Ωv whenever p(ṽ) = v. By construction, S̃ is a

cover of S = SΓ(Π) #
v∈V (Γ)

Ωv. See Figure 8 for an example.
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For each t ∈ T , let x̃t be the multipush on S̃ obtained by identifying Γ̃ with
the Cayley graph of the free group with basis T . The covering map P ∶ S̃ → S
induces a homomorphism from the group generated by the multipushes on S̃ to
the group generated by the multipushes on S by mapping x̃t ↦ xt. Recall that, by
assumption, w = t1 . . . tk is a non-trivial reduced word in the free generating set T
and xw = xtk . . . xt1 . Let x̃w = x̃tk . . . x̃t1 .

Suppose towards a contradiction that xw is trivial in Map(S). Then the follow-
ing commutative diagram of homeomorphisms shows that x̃w is a deck transfor-
mation.

SΓ̃(Π) SΓ̃(Π)

SΓ(Π) SΓ(Π)

x̃w

P P

xw=id

Π

Π Π Π

Π

Π Π Π

xa

xb xb xb

x̃a

x̃a

x̃a

x̃b

x̃b x̃b

P
p

a

b

ã
b̃

a

bb

FIGURE 8. An example of the surface S̃ = SΓ̃(Π) and lifts of
multipushes xa, xb.

On the other hand, since x̃w is a multipush, it moves every vertex surface of S̃
at most k steps away from itself, a bounded distance. We claim this is a contradic-
tion. Indeed, as the covering map sends vertex surfaces to vertex surfaces and edge
surfaces to edge surfaces, respecting the edge labels in T , we see that any deck
transformation of P ∶ S̃ → S is determined by a deck transformation of the covering
p∶ Γ̃ → Γ. One readily checks that for any such nontrivial deck transformation and
for all j ≥ 1, there exists a vertex v in the tree Γ̃ such that the distance from v to its
image is larger than j, and we have obtained our contradiction.
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γ

xw(γ)

FIGURE 9. A portion of the Schreier surface for (Z2,{a, b},{1})
and the image of the curve γ under the element xbab−1a−1 .

When S ∈ B, it follows from Lemma 3.8 that there are countably many non-
conjugate embeddings of the free group F∣T ∣ in Map(S). By the argument in Sec-
tion 3.3, none of these embeddings lie in the isometry group for any hyperbolic
metric on S. Finally, when S is not finite-type or the Loch Ness Monster (in which
case Mapc(S) = Map(S)), each multipush in the argument above is a collection
of shift maps, so Remark 2.6 completes the proof. □

It follows from the proof of Theorem 4.2 that the support of every non-trivial
element of F∣T ∣ is not contained in the union of the vertex surfaces. This is clear if
w does not fix every ΠHg, because the shift domains are contained in the support
of xw. On the other hand, suppose w fixes each ΠHg. Since xw is a collection of
pushes, it therefore restricts to the identity on each vertex surface. However, the
proof of the theorem shows that xw is a non-trivial homeomorphism, and so the
support of xw cannot be contained in the union of the vertex surfaces. See Figure 9
for an example of what the image of a loop γ might look like after the application
of xw when w is trivial in G. This will be a crucial ingredient in the proof of
Theorem 6.3.

4.2. Shift maps that do not generate a free group. The construction above uses
a countable collection of intersecting push maps to ensure the resulting group is
free. The following example demonstrates why this is necessary by showing that
the group generated by two shift maps with minimal intersection is not free. We
use the convention that [x, y] = xyx−1y−1 and choose a right action.

Let Γ be the four-ended tree with a single vertex of valence four and all other
vertices of valence two. Identify Γ with the coordinate axes in R2 to get a labeling
of the vertices as integer coordinates. Let Π be any surface with one boundary
component that is not a disk, and construct the surface S = SΓ(Π). There is
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ha

hb

(0,0)

FIGURE 10. The shifts ha and hb do not generate a free group.

a horizontal shift ha corresponding to the +(1,0) map on the x–axis and a ver-
tical shift hb corresponding to the +(0,1) map on the y–axis, as shown in Fig-
ure 10. The intersection of the supports of these shifts is contained in the front of
V(0,0), the vertex surface at (0,0). It can be checked that the support of [ha, hb]
is contained in the fronts of V(−1,0), V(0,0), and V(0,−1) and the adjoining edge
surfaces. The word w = hahbh2a maps {Π(0,−1),Π(−1,0),Π(0,0)} to the collection
{Π(1,0),Π(2,0),Π(3,0)}. Thus, the elements [ha, hb] and w[ha, hb]w−1 have dis-
joint supports and so commute. More generally, the words wn = h3n+1a hbh

2
a map

{Π(0,−1),Π(−1,0),Π(0,0)} to {Π(1+3n,0),Π(2+3n,0),Π(3+3n,0)}. From this, we see
that H ∶= ⟨ha, hb⟩ is not a free group and actually contains copies of Zn for all n.

In fact, H is isomorphic to a 2–generated subgroup of an infinite strand braid
group. To see this, note that the group structure of H is not dependent on the sur-
face Π that we attach, so we may assume Π is a punctured disk. We can also realize
each shift domain as a disk with countably many punctures with two distinct accu-
mulation points on the boundary. Because braid groups are mapping class groups
of punctured disks, this viewpoint allows us to realize H as a subgroup of the infi-
nite strand braid group in which braids are allowed to have non-compact support.
In particular, H is isomorphic to the subgroup of this braid group generated by the
elements ha and hb, viewed as braids with non-compact support.

4.3. Wreath products. Recall that ifH acts on a set Λ, then the (restricted) wreath
product G ≀ΛH is defined as

G ≀ΛH = GΛ ⋊γ H,
that is, the semidirect product of H with the direct sum of copies of G indexed
by Λ. Here, GΛ = ⊕ΛG and is the set of (gλ)λ∈Λ. The automorphism γ∶H →
Aut(GΛ) is defined by γ(h)(Gλ) = hGλh

−1 = Ghλ, so that H acts on GΛ by
permuting the coordinates according to the action on the indices. When it is clear
from context, or when Λ =H , we may simply write G ≀H .
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We now construct a collection of wreath products in big mapping class groups.
The most straightforward example of this construction is when S is a surface which
admits a shift whose domain is an embedded copy of DΠ for some surface Π with
one boundary component. For any G ≤ Map(Π), we generalize a construction of
Lanier and Loving [LL20] to constructG ≀Z as a subgroup of Map(S). WhenG is
chosen to be the infinite cyclic group generated by a single Dehn twist, we recover
[LL20, Theorem 4].

Proposition 4.3. Let G ≤ Map(Π), where Π is a surface with a single boundary
component. Let S be a surface andH ≤Map(S) be generated by a finite collection
of pushes and multipushes, all of whose domains are (unions of) embedded copies
of AΠ or DΠ. Index the copies of Π in these domains by Λ. The wreath product
G ≀ΛH is a subgroup of Map(S).
Proof. Let h1, . . . , hn be the generators of H , so Λ is a set indexing the copies of
Π contained in the union of the domains of the hi. Each hi permutes the copies of
Π in its domain and so acts on Λ: if λ ∈ Λ, then hi(λ) is defined to be the index of
hi (Πλ). This induces an action of H on Λ.

Let G ≤ Map(Π), and let Gλ ≅ G be the corresponding subgroup of Map(S)
supported on Πλ. Whenever λ ≠ λ′, the subgroups Gλ and Gλ′ have disjoint
supports and commute, so ⟨Gλ ∣ λ ∈ Λ⟩ = GΛ. For any h ∈ H and λ ∈ Λ, we
have hGλh

−1 = Gh(λ) and H ∩ Gλ = {1}. Therefore, the subgroup of Map(S)
generated by ⟨H,Gλ ∣ λ ∈ Λ⟩ is isomorphic to G ≀ΛH . □

We illustrate this proposition with several examples.

Example 4.4. Proposition 4.3 applies whenever S and H are one of the following.
(1) Let S be a surface with an embedded copy of DΠ, and let H be generated

by a (possibly one-ended) shift h, so thatH ≅ Z. The index set Λ is simply
Z, and h acts on Λ as addition by 1.

(2) Let S be a Schreier surface for a triple (A,T,B) such that t1, . . . , tn ∈ T
correspond to biinfinite geodesics in Γ(A,T,B). Let H be the subgroup
of Map(S) generated by the multipushes xt1 , . . . , xtn . By Theorem 4.2,
H ≅ Fn. In this case, the index set Λ is the collection of right cosets
{Ba ∣ a ∈ A}. Each generator xti acts on Λ as follows: if Ba ∈ Λ, then
xti ⋅Ba = Bati.

(3) Let S = SΓ(Π) be the surface described in Section 4.2, and let H =
⟨ha, hb⟩ be the subgroup of Map(S) constructed in that section. In this
case, H is not free. The index set Λ is the set {(0, n), (n,0) ∣ n ∈ Z},
and the generators ha and hb act on Λ as addition by (1,0) and (0,1),
respectively.

When S ∈ B, it follows from Lemma 3.8 that there are countably many non-
conjugate embeddings ofG ≀H in Map(S) forG,H as in the statements of Propo-
sition 4.3. Moreover, none of these embeddings lie in the isometry group for any
hyperbolic metric on S by the discussion in Section 3.3 or in Mapc(S) by Re-
mark 2.6.
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4.4. Solvable Baumslag-Solitar groups. For our third and final construction in
this section, we focus on solvable Baumslag-Solitar groups. Fixing a positive inte-
ger n, recall that the Baumslag-Solitar group BS(1, n) is the group with presenta-
tion

BS(1, n) = ⟨a, t ∣ tat−1a−n⟩.
Given n ∈ N, we first construct a shift map with nkth roots for all k ∈ N on a

certain class of surfaces. To do this, we borrow ideas from asymptotically rigid
mapping class groups [ArF21]. We say that a mapping class group element is rigid
with respect to some pants decomposition if the pants curves, seams, and fronts (as
defined in Definition 3.1) are preserved setwise by the element.

Lemma 4.5. Let S be a surface whose end space contains a clopen subset home-
omorphic to a Cantor set of planar ends. For any n ∈ N, there is a shift map in
Map(S) with nkth roots for all k ∈ N.

Proof. If the end space of S has a clopen subset homeomorphic to a Cantor set
of planar ends, then there exists a subsurface S′ ⊂ S which is homeomorphic to
a Cantor tree surface with a boundary component (see [AbMP25, Lemma 2.7] for
a proof). That is, S′ has exactly one compact boundary component, genus zero,
and E(S′) is a Cantor set. We will construct an explicit realization of S′ and a
shift map that has roots. Then, because homeomorphisms induce isomorphisms
of the respective mapping class groups, we see that any surface with a subsurface
homeomorphic to S′ also has a shift map with the desired property, proving the
theorem in its full generality.

We start with a pair of pants with countably many cuffs, called B, which is con-
structed from countably many copies of a standard pair of pants (3-hold spheres)
in the following way. Let P be a standard pair of pants with boundary components
labeled by α, βr, βℓ and equipped with seams so that P has a back side and a front
side. Then βr and βℓ are the right and left cuff of P , respectively. The surface
B is constructed from countably many copies of P , labeled by {Pi}i∈Z, with the
right cuff of Pi glued to the left cuff of Pi+1 for all i ∈ Z, such that the seams and
fronts of the Pi are compatible. Here compatibility is the property described after
Definition 3.1, i.e., the union of the seams separates B into two disjoint connected
components, the front and the back, containing the front and, respectively, the back
of each Pi. The boundary component of B corresponding to the cuff α of Pi will
be labeled by αi.

Next, let T be a Cantor tree surface with boundary that is built from (n+1)-holed
spheres, called pants, equipped with compatible seams and fronts. Glue a copy of
T , called T0, to α0 in B so that the seams and front line up with those of B. We
will use finite strings in {1, . . . , n} to label the curves in the pants decomposition
of T0 as follows. Start with the pants containing the boundary component of T0
and, moving clockwise along the boundary of the polygon that forms the front
of the pants, label the other boundary curves α0,1, . . . α0,n. Continue on adjacent
pants, using the cyclic order to append the corresponding digit in {1, . . . , n}. See
Figure 11 below for the case n = 3. Finally, glue a copy of T , called Ti, to each
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other curve αi of B, so that the seams and fronts line up. Label the pants curves of
Ti by αi,x with x ∈ {1, . . . , n}<N analogous to the labeling of pants curves of T0.

α0

α0,1 α0,2 α0,3

α0,11

α0,12

α0,13
α0,21 α0,22 α0,23 α0,31

α0,32
α0,33

front

FIGURE 11. The labeling of curves in the pants decomposition
for n = 3 on T0.

The resulting surfaceR is homeomorphic to a Cantor tree surface since it has no
boundary, genus zero, and its endspace is homeomorphic to a Cantor set of planar
ends.

There is a rigid shift ϕ ∈Map(R) with shift domain a properly embedded copy
of DT , which shifts Ti to Ti+1, and which respects the seams and front of R. By
construction, ϕ has an nth root which shifts αi,j to αi,j+1, when 1 ≤ j < n and αi,n

to αi+1,1. See Figure 12 for an example in the case where n = 3.
Similarly, the nkth root shifts the curves at height k according to the lexico-

graphic ordering on N×{1, . . . , n}k. Note that ϕ being rigid is part of what ensures
these roots of ϕ exist. Finally, note that the domain of ϕ is not all of R so that we
may remove an open disk, say on the back of R, to obtain a surface homeomorphic
to S′. The corresponding mapping class of S′, which we also call ϕ by an abuse of
notation, is a shift map with nkth roots for all k ∈ N. □

Theorem 4.6. Let S be a surface whose end space contains a clopen subset home-
omorphic to a Cantor set of planar ends. Then BS(1, n) ≤Map(S) for all n > 0.

Proof. Let S′ ⊂ S be homeomorphic to the Cantor tree surface with a boundary
component. Let h ∈ Map(S′) be a rigid shift map with domain DT , where T is
also homeomorphic to a Cantor tree surface with a boundary component. Index the
copies of T in DT by Z according to the shift order.

Now, since T0 is homeomorphic to a Cantor tree surface with one boundary
component, we may choose a rigid shift ϕ on T0 with nkth roots by Lemma 4.5.
For k ≥ 0 let ϕk = nk√

ϕ, and for k < 0 let ϕk = ϕn
−k

. Note that for all k ∈ Z, we
have ϕnk = ϕk−1.

Next, let ϕ̃k = hkϕkh−k. Heuristically, ϕ̃k performs ϕk on Tk instead of on T0.
Because the domains of ϕ̃k are disjoint, the product

Φ = ∏
k∈Z

ϕ̃k
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α0 α1

f3(α0) f3(α1)

α0,1 α0,2 α0,3 α1,1

f3(α0,1)
f3(α0,2) f3(α0,3)

α1,2 α1,3

f3

isotopy

f3
(α0) = ϕ(α0) f3

(α1) = ϕ(α1)

À
f

À
f À

f
À
f
À
f

FIGURE 12. A flattened picture of the surface R for n = 3. Let
f be the map that shifts αi,j to αi,j+1, when 1 ≤ j < 3 and αi,3

to αi+1,1. The domain of f is shown in green. We see that f3 is
indeed equal to the rigid shift ϕ in Map(R) that takes the Ti to
Ti+1.

is a well-defined element of Map(S). This map simultaneously performs ϕk on
Tk for all k ∈ Z. See Figure 13 for an example of the action of Φ on S when n = 2.

ϕ2 ϕ
ϕ

1
2

h h

T−1 T0 T1

FIGURE 13. This figure shows the action of the shift h on S as
well as the action of Φ on the subsurfaces T−1, T0, T1 when n = 2.

Let f ∶BS(1, n) → Map(S) be the map defined by f(a) = Φ and f(t) = h.
We will show that f is an isomorphism onto its image, i.e., Map(S) contains a
subgroup isomorphic to BS(1, n).
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For each k ∈ Z, the mapping class f(tat−1) = hΦh−1 first shifts Tk to Tk−1,
applies Φ, which now acts as ϕk−1 = ϕnk on Tk−1, and then shifts Tk−1 back to Tk.
It follows that

f(tat−1) = hΦh−1 = Φn = f(an).
Therefore, f is a well-defined homomorphism. This can also be verified alge-
braically:

Φn = ∏
k∈Z

ϕ̃k
n = ∏

k∈Z
(hkϕkh−k)n = ∏

k∈Z
hkϕnkh

−k = ∏
k∈Z

hkϕk−1h−k

= h(∏
k∈Z

hk−1ϕk−1h−(k−1))h−1 = hΦh−1.

Suppose there exists g ∈ BS(1, n) such that f(g) is the identity of Map(S).
Using the relation in BS(1, n), the element g can be written as g = tiakt−j for
some k ∈ Z and i, j ∈ Z≥0. Since f(g) = hiΦkh−j is the identity, it must fix each
Ti, and so we must have i = j. Consider the surface T0. Then, f(g) first shifts T0
to the left j times, applies Φk (which acts as ϕk−j), and then shifts back to T0. The
result is that f(g) acts by ϕk−j on T0. The only way that f(g) can act as the identity
on T0 is if k = 0. Thus, g = tja0t−j = 1, and f is injective, as desired. □

The construction above embeds solvable Baumslag-Solitar groups into mapping
class groups of certain infinite-type surfaces. This is in contrast to the finite-type
case, where BS(1, n) is never a subgroup of the mapping class group due to the
Tits alternative: every subgroup of such a mapping class group either contains a
free subgroup or is virtually abelian [Iva84, McC85]. Since BS(1, n) is solvable,
it does not contain any free subgroups, but it is also not virtually abelian.

We expect that the techniques in Section 3.2 can be used to produce countably
many non-conjugate embeddings of BS(1, n) into Map(S) if the topology of the
Cantor trees Ti are suitably edited. We also expect that a construction similar to the
one above can be used to embed BS(m,n) into Map(S) when m ≠ 1. However,
the lack of a normal form for elements in BS(m,n) significantly increases the
complexity of the proof.

5. Indicable groups
In this section, we give a general construction for embedding any indicable

group which arises as a subgroup of a mapping class group of a surface with
one boundary component into a big mapping class group in countably many non-
conjugate and intrinsically infinite-type ways. We will need the following lemma
in our construction.

Lemma 5.1. A group G is indicable if and only if there exists a presentation G =
⟨T ∣ R⟩ such that for each r ∈ R, the total exponent sum of r with respect to the
generators T is zero.
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Before presenting the proof of the lemma, we give an example that motivates
the argument. Consider the Baumslag-Solitar group BS(1, n) with its standard
presentation BS(1, n) = ⟨a, t ∣ tat−1a−n⟩. This presentation does not have the
desired property since the total exponent sum of the relator in the generators a
and t is 1 − n. However, there exists a homomorphism f ∶BS(1, n) → Z defined
by letting f(a) = 0 and f(t) = 1, so Lemma 5.1 tells us that there must be a
presentation of BS(1, n) with the desired property. If we augment the generator a
to be at instead, then

BS(1, n) = ⟨at, t
RRRRRRRRRRRRRRR
(t ⋅ at ⋅ t−1 ⋅ t−1) ⋅ t(at)−1⋯t(at)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

⟩ ,

and the relator has zero total exponent sum in the generators at and t. In this
presentation, the generators of BS(1, n) both map to 1 under the homomorphism
f , and we will use this property in the proof of the lemma.

Proof of Lemma 5.1. Given a group G = ⟨T ∣R⟩ with all relators having total
exponent sum zero, there is a well-defined homomorphism f ∶G → Z defined by
sending each generator to 1 ∈ Z.

For the other direction, assume there exists a homomorphism f ∶G → Z, and let
N = ker(f). Let N = ⟨V ∣W ⟩ be a presentation for N , and let a ∈ G be such that
f(a) = 1. Then since G/N ≅ Z, the group G is generated by T ′ = {a} ∪ V . If
we augment the generators in V ⊆ T ′ by a, then T = {a} ∪ {av ∶ v ∈ V } is also a
generating set forG. Importantly, the image of every one of these generators under
f is 1 ∈ Z.

Let G = ⟨T ∣ R⟩ be the presentation of G for the generating set T . If r ∈ R is a
relator, then r is a word in ⟨T ⟩ that is the identity in G. Thus, f(r) = 0, and given
that every element of T maps to 1 ∈ Z, the total exponent sum of r with respect to
T must be zero. Therefore, ⟨T ∣ R⟩ is one such desired presentation for G. □

We can now begin our construction. Take any indicable group G that arises as a
subgroup of Map(Π), where Π is a surface with exactly one boundary component.
Let h be a shift map on an infinite-type surface S whose domain is an embedded
copy of DΠ in S. As discussed in Section 3, this includes a wide range of sur-
faces, including surfaces SΓ(Π) built from any graph with countable vertex set
that contains a biinfinite path.

The most trivial way to embed G into Map(S) is to let G act on one copy of
Π in S. Indexing the copies of Π in DΠ by Z and taking any subset of I of Z, G
can also act simultaneously on the subsurfaces Πi of S for i ∈ I . Varying over all
subsets of Z gives an uncountable collection of copies of G in Map(S). Unlike
these embeddings, the construction in the next theorem produces an uncountable
collection of copies ofG which do not lie in the isometry group of S, even ifG lies
in the isometry group of Π, and do not lie in Mapc(S), even if Π is compact. See
Definition 3.5 for the definition of a distinguished surface and the family C(Π).
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Theorem 5.2. Let Π be a distinguished surface and G ≤ Map(Π) an indicable
group. Given a surface S ∈ C(Π), there are countably many non-conjugate em-
beddings of G in Map(S) such that no embedded copy is contained in Mapc(S)
and no embedded copy is contained in the isometry group for any hyperbolic metric
on S.

Proof. Let h ∈ Map(S) be a shift with domain DΠ, and let G be an indicable
group. Fix a presentation ⟨T ∣ R⟩ of G such that each r ∈ R has total exponent
sum zero with respect to T , which exists by Lemma 5.1. Since G is a subgroup
of Map(Π), G acts by homeomorphisms on each Πi in DΠ. For each g ∈ G, let
ḡ ∈ Map(S) be the element that acts as g simultaneously on each Πi in DΠ. We
claim that the group generated by T = {t̄h ∶ t ∈ T} in Map(S) is isomorphic to G.
Let ϕ∶FT → ⟨T ⟩ ≤ Map(S) be the surjective map defined by t ↦ t̄h for all t ∈ T ,
where FT is the free group on the generators T . We claim a word is in the kernel
of this map if and only if it represents a trivial element in G.

Notice that h and t̄ commute as elements of Map(S), so for any word w ∈ FT

with total exponent sum k ∈ Z, the image ϕ(w) can be written as w̄hk. Thus, ϕ(w)
acts trivially on S if and only if k = 0 and w̄ acts trivially on each copy of Π in S.
The only elements w with this property are those that are trivial in G, and elements
that are trivial inG have this property since products of conjugates of relators r ∈ R
have total exponent sum zero. Thus, the group G′ generated by T in Map(S) is
isomorphic to G.

Any element of G′ that does not have total exponent sum zero with respect to
T is not in Mapc(S), since it must shift the surfaces Πi. Remove finitely many
copies of Π from the domain of h to obtain a new shift h′′, and construct the group
G′′ = ⟨t̄h′′ ∣ t ∈ T ⟩ ≤ Map(S). This group G′′ is isomorphic to G for the same
reason that G′ ≅ G. By the same reasoning as in Section 3.2, the complements
of the supports of G′ and G′′ are non-homeomorphic. In particular, G′ and G′′
are not conjugate. As in Lemma 3.8, this procedure produces countably many non-
conjugate embeddings ofG into Map(S). Finally, no such embedding is contained
in Mapc(S) by construction. □

It was suggested to the authors by Mladen Bestvina that one can get around
constructing the presentation in Lemma 5.1 for the indicable group G by working
instead with the wreath product construction in Proposition 4.3. More specifically,
let f ∶G→ Z be a surjection from the indicable group to Z. Let Π be a surface with
exactly one boundary component such that G arises as a subgroup of Map(Π),
and let S be a surface which admits a shift h with domain DΠ. For g ∈ G, let ḡ
be the element which acts as g on each Πi. Then, for g ∈ G, define a new map
ψ∶G → G ≀ Z ≤ Map(S) via g ↦ ḡhf(g). One readily checks that this map is
an injective homomorphism by observing that the restriction of the image of G to
⊕∞−∞G is the diagonal subgroup, and so the action of Z is trivial. The embedding
in the proof of Theorem 5.2 is exactly this map.

Theorem 5.2 applies to all subgroups constructed in Section 3. Another inter-
esting class of examples produces embeddings of pure mapping class groups into
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a full mapping class group that are not induced by embeddings of the underlying
surfaces.

The following corollary is immediate from Theorem 5.2 and work of Aramay-
ona, Patel, and Vlamis [ArPV20, Corollary 6], which shows that the pure mapping
class group of any surface with at least two nonplanar ends is indicable.

Corollary 5.3. Let Π be an infinite-type surface with at least two nonplanar ends
and exactly one boundary component. Given any surface S that admits a shift
whose domain is DΠ, there exist uncountably many embeddings of PMap(Π) into
Map(S) that are not induced by an embedding of Π into S. In addition, none of
these embeddings preserve the notion of being compactly supported. When Π is
a distinguished surface and S ∈ C(Π), countably many of these embeddings are
non-conjugate.

Corollary 5.3 is in line with a body of work aiming to find interesting homomor-
phisms between big mapping class groups. It also gives a natural set of examples
of uncountable groups G to which one can apply Theorem 5.2. We note that deter-
mining which full mapping class groups are indicable is an important open question
for both finite- and infinite-type surfaces. We now give a few examples of indicable
big mapping class groups.

Examples 5.4. Mann and Rafi build continuous homomorphisms from finite-index
subgroups of mapping class groups to Zk and to Z in the proofs of [MaR23, Lemma
6.7 & Theorem 1.7], respectively. To find surfaces whose full mapping class groups
are indicable, we focus on the cases where the subgroup has index 1, a few of which
we list below. We will define the homomorphism to Z explicitly for example (1);
the others are defined similarly.

(1) Let Π be the surface with infinite genus whose end space is homeomorphic
to the two-point compactification of Z, that is, E(Π) = {−∞} ∪ Z ∪ {∞},
where Eg(Π) = {∞}. Let A ⊂ E(Π) be the subset of ends corresponding
to −N, and let B be the subset of ends corresponding to {0} ∪ N. This
surface is colloquially called the bi-infinite flute with one end accumulated
by genus, and it admits a shift with domain DΣ for a punctured disk Σ. A
homomorphism ℓ∶Map(Π) → Z can be defined by

ℓ(ϕ) = ∣{x ∈ E ∣ x ∈ A, ϕ(x) ∈ B}∣ − ∣{x ∈ E ∣ x ∈ B, ϕ(x) ∈ A}∣ .
The map ℓ counts the difference in the number of punctures mapped from
negative to positive and punctures mapped from positive to negative. Note
that the shift map mentioned above evaluates to 1 under ℓ, so the map ℓ is
surjective.

(2) Let Π be a surface of any genus whose end space consists of a Cantor set
and {−∞} ∪ Z ∪ {∞}, equipped with the same topology as in part (1),
where the end {∞} is identified with a point in the Cantor set. The ends
corresponding to {−∞}∪Z∪ {∞} must all be planar or all nonplanar; the
other Cantor set of ends can be planar or not. The homomorphism to Z is
defined as above, with sets A = −N and B = {0} ∪N.
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(3) Let Π be the surface with infinite genus and end space N ∪ {∞}, where
only the ends corresponding to 1 and∞ are nonplanar. This surface can be
visualized as the ladder surface with punctures accumulating to one end.
Here we can similarly define a homomorphism to Z, which instead counts
the number of genus that are moved across a simple closed curve separating
the ends in EG.

The common thread in the examples above is that the two ends of the shift map
are of different topological types so that no element of Map(Π) can exchange the
two ends. This is the key fact necessary to ensure that the map ℓ above is a well-
defined homomorphism of Map(Π) and not of a proper subgroup of Map(Π).

Each of the examples above can be modified to have exactly one boundary com-
ponent. The third example can be extended to uncountably many more examples
by replacing one of the isolated planar ends with a disk punctured by any closed
subset of the Cantor set, of which there are uncountably many.

Moreover, in each case, Π is like a distinguished surface in the sense that if
S−DΠ has finitely many nonplanar ends in Cases (1) and (3), then Map(S) can be
used as the input for Theorem 5.2. In Case (2), if S−DΠ has finitely many nonpla-
nar (resp. planar) ends when the ends of E(Π) corresponding to {−∞}∪Z∪{∞}
are nonplanar (resp. planar), then Map(S) can be used as the input for Theo-
rem 5.2. Therefore, we can construct countably many non-conjugate embeddings
of Map(Π) into Map(S) in all such cases.

6. Combination Theorem
In this section, we give a construction that takes as its input a set of indica-

ble subgroups of mapping class groups of surfaces with one boundary component
and outputs a new surface whose mapping class group contains a new indicable
subgroup, called the ⋆-product, of intrinsically infinite type built from the original
subgroups.

Definition 6.1. Given two subgroups H1 and H2 of groups G1 and G2, respec-
tively, let

(G1,H1) ⋆ (G2,H2) ∶= (G1 ∗G2)/⟪[G1,H2], [H1,G2]⟫.
More generally, given G1, . . . ,Gn with subgroups H1, . . . ,Hn, let

(G1,H1) ⋆ ⋯ ⋆ (Gn,Hn) ∶= G1 ∗⋯ ∗Gn/⟪[Gi,Hj] ∶ i ≠ j⟫.
These groups are an interpolation between free products (where the Hi are triv-

ial) and direct products (where Hi = Gi for all i). Examples include some right-
angled Artin groups and certain graph products. We are interested in the case where
Gi are indicable groups and the Hi are the kernels of the surjections to Z.

Lemma 6.2. Let G1, . . . ,Gn be indicable groups with surjective maps fi∶Gi → Z,
and let Hi = ker(fi). Then the group (G1,H1) ⋆ ⋯ ⋆ (Gn,Hn) is also indicable.

Proof. Let Ti be a generating set for Gi. Then there is a map ϕ∶ (G1,H1) ⋆ ⋯ ⋆
(Gn,Hn) → G1 defined by ϕ(t) = 1 for each t ∈ Ti with i ≠ 1, and ϕ(t′) = t′ for



SUBGROUPS OF BIG MAPPING CLASS GROUPS 147

S1
S2

S1

S1

S1 S1

S2

S2

S2

S2

S1
S2

S2

S2 S2

S2

S2

S2S2S1 S1

S1

S1

S1

S1

S1

FIGURE 14. The domains of the two multipushes xa (blue) and
xb (red) in the proof of Theorem 6.3 in the case that Γ is the Cayley
graph of the free group generated by a and b.

each t′ ∈ T1. Here 1 is the identity element of G1. This map ϕ is a homomorphism
which restricts to the identity on G1. By post-composing ϕ with f1, we obtain the
desired map (G1,H1) ⋆ ⋯ ⋆ (Gn,Hn) → Z. □

We are now ready to prove our main combination theorem, of which Theo-
rem 1.2 is a special case.

Theorem 6.3. For i = 1, . . . , n, let Si be a distinguished surface, and let Π be
obtained from #nSi by capping off n−1 boundary components. Let S be a Schreier
surface in C(Π) for a triple (G,T,H) with ∣T ∣ = n. For each i, let Gi be an
indicable group that embeds in Map(Si), fix a surjective map fi∶Gi → Z, and let
Hi = ker fi.
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Then, there are countably many non-conjugate embeddings of the indicable
group

G1 ∗G2 ∗⋯ ∗Gn/⟪⋃
i≠j
[Gi,Hj]⟫

into Map(S), none of which lie in Mapc(S).
Proof. We prove the theorem for n = 2 for simplicity of notation, but the same
proof works for all n. Let a and b be two distinct generators of the group G for the
Schreier surface S. By construction, S admits two multipushes xa and xb, where
each acts as simultaneous pushes, as in Definition 3.3. See Figure 14.

By Lemma 5.1, each surjection fi∶Gi → Z gives rise to a presentation Gi =
⟨Ti ∣ Ri⟩ such that every r ∈ Ri has total exponent sum zero with respect to Ti for
i = 1,2. Note that, under this map to Z, the image of each generator is 1. As this
is a homomorphism, the map fi sends a group element of Gi to its total exponent
sum with respect to Ti, and this is an invariant of the group element.

Similarly to Theorem 5.2, for each g ∈ Gi, define an element ḡ ∈ Map(S),
where ḡ acts as g simultaneously on each copy of Π in the domains of xa and xb
in S. Note that since the copies of S1 and S2 in each copy of Π are disjoint, the
elements ḡ1 and ḡ2 of Map(S) commute for any g1 ∈ G1 and g2 ∈ G2. This key
fact will be used several times throughout the proof. Letting T̃1 = {t̄xa ∶ t ∈ T1}
and T̃2 = {t̄xb ∶ t ∈ T2}, we claim that the group generated by T̃1 ∪ T̃2 in Map(S)
is isomorphic to G1 ∗G2/⟪[G1,H2] ∪ [H1,G2]⟫.

First, we claim that the group generated by T̃1 in Map(S) is isomorphic to G1

under the map t → t̄xa. Observe that for any t ∈ T1, the element t̄ commutes with
xa, and in fact also with xb, although we will only need the first fact now. Thus,
the image of a word w ∈ ⟨T1⟩ under this map can be expressed as the product
of the corresponding word in {t̄ ∶ t ∈ T1} and xna where n is the exponent sum
of the word w with respect to T1. For n ≠ 0, the support of xna is not contained
in the vertex surfaces, so we observe that a word in T̃1 is the trivial element in
Map(S) if and only if both the corresponding word in {t̄ ∶ t ∈ T1} acts trivially
on S and n = 0. However, since ⟨t̄ ∶ t ∈ T1⟩ is canonically isomorphic to G1 =
⟨t ∶ t ∈ T1⟩ and the presentation for G1 was chosen so that every relator has total
exponent sum zero with respect to T1, the second condition is redundant. Thus,
a word on T̃1 is the trivial element in Map(S) iff the corresponding word in G1

is trivial. Therefore, the group generated by T̃1 and G1 are isomorphic, and a
symmetric argument shows that the group generated by T̃2 is isomorphic to G2.
Setting up notation for the rest of the proof, denote by G̃1 and G̃2, respectively,
these isomorphic copies of G1 and G2. That is to say G̃i = ⟨T̃i⟩ as subgroups of
Map(S) for i = 1,2. Moreover, let H̃i be the subgroup of G̃i that is canonically
isomorphic to Hi, for i = 1,2.

We now have a surjective map

ϕ∶G1 ∗G2 → ⟨T̃1 ∪ T̃2⟩,
where ⟨T̃1∪T̃2⟩ = ⟨G̃1∪G̃2⟩, and it suffices to show that the kernel of ϕ is normally
generated by the commutators [G1,H2] and [H1,G2].
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For this, we first show that every element of [G1,H2] and [H1,G2] is in the
kernel. Let w = [g, h] where g ∈ G1 and h ∈ H2. As h ∈ H2, it has exponent
sum 0 and so ϕ(h) = h̄. Let m be the exponent sum of g. As noted above, for
any t ∈ T1 ∪ T2, the element t̄ commutes with both xa and xb, and so it is also true
that h̄ and ḡ commute with both xa and xb. Finally, observe that as ḡ and h̄ have
disjoint supports, they also commute. We now evaluate ϕ(w) ∶

ϕ(w) = ϕ(g−1h−1gh)
= ḡ−1x−ma h̄−1ḡxma h̄

= x−ma xma [ḡ, h̄]
= 1.

An analogous argument shows [H1,G2] is in the kernel of ϕ. Therefore, the in-
duced map

ϕ̄ ∶ G1 ∗G2/⟪[G1,H2] ∪ [H1,G2]⟫ → ⟨T̃1 ∪ T̃2⟩,
is surjective.

To complete the proof, we must show that ϕ̄ is injective, as well. We view
elements of [G1,H2] ∪ [H1,G2] as relators in G1 ∗ G2/⟪[G1,H2] ∪ [H1,G2]⟫
and note that applying a relator in [G1,H2] ∪ [H1,G2] to the word w in G1 ∗
G2 amounts to applying the corresponding element of [G̃1, H̃2] ∪ [H̃1, G̃2] to the
corresponding word w̃ in G̃1 ∗ G̃2. Thus, showing that ϕ̄ is injective is equivalent
to showing that if w ∈ G1 ∗G2 maps to the trivial element in Map(S), then w̃ can
be reduced to the identity via free reductions and repeated applications of relators
in the set [G̃1, H̃2] ∪ [H̃1, G̃2].

We now proceed with the proof, which will be via strong induction on the length
of w as an alternating word in G1 and G2. Recall that an element w = g1g2 . . . gn ∈
G1 ∗G2 is in normal form if each gj is in either G1/{1} or G2/{1} and if gj ∈ Gi

then gj+1 ∈ Gi+1, where the indices i are taken modulo 2.
We establish two base cases. Assume n = 1. Then w is in either G1 or G2. As

ϕ restricted to either G1 or G2 is injective, w must be the trivial element, so no
reductions are needed and the n = 1 case is vacuous.

Similarly, if n = 2, then w is of the form g1g2, and, without loss of generality,
we can assume g1 ∈ G1 and g2 ∈ G2. In this case, the w̃ is xkaḡ1x

ℓ
bḡ2 for some

values of k and ℓ, which is equal to xkax
ℓ
bḡ1ḡ2 in Map(S). Again, as xa and xb

generate a free group for which nontrivial elements have support not contained
in the vertex surfaces, it must be that k = ℓ = 0. Moreover, as ḡ1 and ḡ2 act with
disjoint supports, they too must be the identity. Thus, we conclude that g1 = g2 = 1,
and this case is also vacuous.

Let, n ≥ 3, and suppose w = g1⋯gn. Again, without loss of generality, we
assume g1 ∈ G1. We will also assume n is odd, but one checks that if n is even, the
argument differs only in notation. In this case,

w̃ = xk1a ḡ1xk2b ḡ2x
k3
a ḡ3⋯xkna ḡn
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which equals
xk1a x

k2
b ⋯x

kn
a ḡ1ḡ2⋯ḡn

as an element in Map(S).
In order to act trivially, the product xk1a x

k2
b ⋯x

kn
a must freely reduce the to iden-

tity, and as the product alternates, this implies that there is some j such that kj = 0.
In turn, this implies that gj is in H1 or H2.

Suppose j = 1 so that xk1a ḡ1 = x0aḡ1 ∈ H̃1. Then an application of a relator in
[H̃1, G̃2] allows us to move the first term xk1a ḡ1 = x0aḡ1 across the second term
xk2b ḡ2, and we can shorten the original normal form of w̃ to

xk2b ḡ2(x
k1
a ḡ1x

k3
a ḡ3)⋯xkn−1a ḡn−1xknb ḡn

=xk2b ḡ2(x
k1+k3
a ḡ1ḡ3)⋯xkn−1a ḡn−1xknb ḡn.

If this new word is in normal form in the free product G̃1∗G̃2, then by induction,
w̃ can be reduced to the identity and we are done. On the other hand, if it is
not in normal form, which is precisely when xk1+k3a ḡ1ḡ3 = 1, then we apply free
reductions until it is. After there are no more free reductions to apply, the word is
either already trivial or in normal form of shorter length. Once again, the inductive
hypothesis implies that the word can be reduced to the identity via free reductions
and repeated applications of relators in the set [G̃1, H̃2]∪[H̃1, G̃2]. This completes
the induction step for the case j = 1.

It remains to check the cases where 1 < j ≤ n. When j = n, the proof follows
as above with minor notational differences. When 1 < j < n, the proof again
follows as above with the exception that when n ≥ 4, the word length will drop
by two immediately before free reductions. Combining all cases, we see that ϕ̄ is
injective and the group generated by T̃1 ∪ T̃2 in Map(S) is isomorphic to G1 ∗
G2/⟪[G1,H2] ∪ [H1,G2]⟫.

We have shown that (G1,H1)⋆(G2,H2) embeds in Map(S). As in the proof of
Theorem 1.1, by removing finitely many copies of Π from the domains of xa and
xb, we obtain countably many non-conjugate embeddings of (G1,H1) ⋆ (G2,H2)
into Map(S). By construction, no such embedding is contained in Mapc(S). □

6.1. Applications of Theorem 1.2. Note that Theorem 1.2 produces embeddings
of ⋆-products into Map(S). In general, (G1,H1) ⋆ (G2,H2) need not be finitely
presented, even when the groups Gi are finitely presented. For example, consider
the indicable group F2 = ⟨a, b⟩ with the map to Z defined by a ↦ 1 and b ↦ 0.
It is an exercise to see that the kernel K of this map is not finitely generated; see
Exercise 7 of Section 1.A in [Hat02]. Therefore, if G1 = G2 = F2 and H1 =
H2 = K, then (G1,H1) ⋆ (G2,H2) is a finitely generated but infinitely presented
group. However, there are instances where the ⋆-product is a recognizable finitely
presented group.

Example 6.4. As a first example, consider a collection of groups H1, . . . ,Hn

which are subgroups of Map(Si) where Si is a surface with one compact bound-
ary component. Then after possibly increasing the complexity of Si, the groups
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Gi = Z × Hi are also subgroups of Map(Si). The groups Hi are the kernels of
the projection maps of Gi onto the Z factor. As such, the following group is the
associated ⋆-product, which embeds in Map(S) for S = SΓ(Π) by Theorem 1.2:

(G1,H1) ⋆ ⋅ ⋅ ⋅ ⋆ (Gn,Hn) ≃H1 × ⋅ ⋅ ⋅ ×Hn × Fn.

For a second class of examples, consider the case where G is a right-angled
Artin group defined by the finite graph Γ. By work of Clay, Leininger, Manga-
has [CLM12] and Koberda [Kob12], every right-angled Artin group embeds as a
subgroup of the mapping class group of some finite-type surface of sufficient com-
plexity.

The map χ∶G → Z which sends each generator of G from Γ to 1 is a homo-
morphism, so G is indicable. The kernel of this map is called the Bestvina-Brady
group defined on Γ, denoted by BBΓ. Bestvina-Brady groups are a vast and varied
class of groups. There is a large body of work connecting combinatorial conditions
on Γ to algebraic properties of BBΓ. First, the group BBΓ is finitely generated ex-
actly when Γ is connected. Further, BBΓ is finitely presented exactly when the
flag complex associated to Γ is simply connected. See [BeB97] for more details.

For finitely presented BBΓ, Dicks and Leary compute an explicit presentation
for BBΓ in [DL99], which can be expressed in terms of the generators of AΓ. In
the particular case when Γ is any tree on n vertices, this presentation can be used
to show that the Bestvina-Brady group is Fn−1. The following example makes use
of this fact.

Example 6.5. LetP4 represent the path graph on 4 vertices a, b, c, d as in Figure 15.
Then the right-angled Artin group AP4 has presentation

⟨a, b, c, d ∣ [a, b], [b, c], [c, d]⟩.
The associated group BBΓ is the free group generated by ⟨ab−1, bc−1, cd−1⟩.

a b c d

FIGURE 15. The path graph

LettingG1 = G2 = AP4 , withH1 ≃H2 ≃ F3, one can obtain an explicit presenta-
tion for (AP4 , F3)⋆(AP4 , F3) following the work of Dicks and Leary. Theorem 1.2
then implies that (AP4 , F3) ⋆ (AP4 , F3) embeds into Map(S) with S = SΓ(Π) for
a sufficiently complicated Π. In particular, (AP4 , F3) ⋆ (AP4 , F3) embeds into
Map(S) for S ∈ B∞ (see Definition 3.7). An example of such a surface S is the
blooming Cantor tree surface (the boundaryless surface whose end space is a Can-
tor set of nonplanar ends). More generally, for any right-angled Artin groups AΓ1 ,
AΓ2 , the group (AΓ1 ,BBΓ1) ⋆ (AΓ2 ,BBΓ2) embeds in Map(S) for S ∈ B∞.

In addition, Chang and Ruffoni [ChR24] solve the right-angled Artin group
recognition problem for Bestvina-Brady groups, i.e., they give sufficient and nec-
essary conditions on Γ that determine if BBΓ is itself a right-angled Artin group.
In particular, they show the following.
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Theorem 6.6 (Chang-Ruffoni, [ChR24]). If Γ admits a tree 2-spanner T , then
BBΓ is a right-angled Artin group. More precisely, the Dicks–Leary presenta-
tion can be simplified to the standard right-angled Artin group presentation with
generating set E(T ). Moreover, we have BBΓ = AT ∗ .

Here, E(T ) denotes the edge set of T , T ∗ is the dual graph to T , and AT ∗ is
the right-angled Artin group with defining graph T ∗. A tree 2-spanner of Γ is a
spanning tree T of Γ such that for all x, y ∈ V (T ), we have dT (x, y) ≤ 2dΓ(x, y).

One consequence of their work is that the class of Bestvina-Brady groups in-
cludes all right-angled Artin groups. Therefore, letting A1 and A2 be any right-
angled Artin groups, their work implies that Γ1 and Γ2 can be chosen so that the
corresponding Bestvina-Brady groups are precisely A1 and A2. It follows from
Theorem 1.2 that the group (AΓ1 ,A1)⋆(AΓ2 ,A2) embeds in Map(S) for S ∈ B∞.
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