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Dirichlet-type spaces of the unit bidisc and
toral completely hyperexpansive operators

Santu Bera

ABSTRACT. We discuss a notion, originally introduced by Aleman in one
variable, of Dirichlet-type space D(y;, 4,) on the unit bidisc D?, with super-
harmonic weights related to finite positive Borel measures u,, u, on D. The
multiplication operators ./, and .#,, by the coordinate functions z; and z,,
respectively, are bounded on D(y;, 4,) and the set of polynomials is dense in
D(uy, ). We show that the commuting pair .#, = (A, .#,,) is a cyclic an-
alytic toral completely hyperexpansive 2-tuple on D(u,, 4,). Unlike the one
variable case, not all cyclic analytic toral completely hyperexpansive pairs
arise as multiplication 2-tuple .#, on these spaces. In particular, we estab-
lish that a cyclic analytic toral completely hyperexpansive operator 2-tuple
T = (T,,T,) satisfying I — T;T, — T;T, + T,;T,T,T, = 0 and having a cyclic
vector f, is unitarily equivalent to .#, on D(u,, u,) for some finite positive
Borel measures y; and u, on Difand only if ker T*, spanned by f,, is a wan-
dering subspace for T.
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1. Introduction & preliminaries

Let D and T denote the open unit disc and the unit circle in the complex plane
C. For a non-empty subset S of C, M, (S) denotes the set of finite positive Borel
measures on S. Let 7 denote a complex separable Hilbert space and B(H) be
the C*-algebra of bounded linear operators on (. For an operator S € B(¥), S*
denotes the Hilbert space adjoint of S. A pair T = (T4, T,) is called a commuting
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pairon I if T,,T, € B(I)and T;T; = T;T; for 1 < i, j < 2. Following [16,
p. 56], we say that a commuting pair T = (T4, T,) on X is analytic if

(o]
ay Q
> TOT3 ¢ = {o}.
k=0 ap,0,2>0
a+ay=k

A commuting pair T = (T, T,) is called cyclic with cyclic vector f, € ¥ if the

closed linear span of {Tfngzfo, o, € Z,}equals to J. Let a, B € 7%, we

say o < Bifa; < f; fori =1,2. For a < f8 denote (;) = (;‘1)(;2) A commuting
1 2

pair T = (T, T,) on K is said to be toral completely hyperexpansive (refer to [6,
Definition 1], cf. [1, 5]) if for each a € Zi \ {0},

Bo(T) = > (—1)lﬁl(°‘)T*ﬁTﬁ <o. 1)
Bez? 3
0<B<a

Using binomial expansion it is easy to check that for each a € 72,
;Ba+ej(T) = 6a(T) - Tjﬁa(T)T~, ] =12, (2)

where €; = (1,0) and ¢, = (0, 1). For a commuting pair T = (T, T,) on J we
define the defect operator as

Ban(T) =1—-T{T, = T;T, + T{T;TT,. 3)

From the identity (2) it is clear that whenever the defect operator of T is zero i.e.
Ban(T) =0, B,(T) = 0forall a € Z% with aya, # 0. It is evident that when-
ever two completely hyperexpansive operators T; and T, commute and have
zero defect operator, the commuting 2-tuple T = (T, T,) is toral completely
hyperexpansive. Not every toral completely hyperexpansive 2-tuple has zero
defect operator. Indeed, if we take dv to be Lebesgue area measure on [0, 1]? in
[6, Eq. H] then the defect operator is non zero. In particular,

lleoll* = 1IT1eoll* = [IT2e0l1* + IT1 T2e0|?
1 1 3 1
= 1-AQ+b;+2)—-A+by+2)+Q+by+by+-)=—=<0.
2 2 4 4
Richter [25] introduced the notion of Dirichlet-type space on the unit disc D
with harmonic weight and proved that these spaces are model spaces for cyclic
analytic 2-isometries (see [25, Theorem 5.1]). Later, in [4, Chapter IV]| Aleman
generalized this notion by considering superharmonic weights as follows: Let
u be a finite positive Borel measure on D. For a holomorphic function f on D
consider

Dy(f) = f | (@I*U(2)dA(2), “4)
D
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where dA denotes the normalized Lebesgue area measure on D and U, is the
superharmonic function on D given by

— 2
_ 1-¢w| du) 1—|w|?
U“(w)—[)log - 1_|§|2+fT|§_w|2du(g’),weD.

Note that any positive superharmonic function on D is of this form (see [21,
Theorem 4.5.1]). The Dirichlet type space D(u) is the collection of holomorphic
function f on D such that D, (f) < co. These spaces are subspaces of the Hardy
space H?(D). Concerning the following norm

1F 1B = 1 )+ Pull) £ € D), 5)

D(w) is a Hilbert space and the multiplication operator ., by the coordinate
function z is a cyclic analytic completely hyperexpansive (see [5, Eq D] and
[4, Theorem 1.10(i), p 76]). Moreover, any cyclic analytic completely hyperex-
pansive operator is unitarily equivalent to .#, on D(u) for some u € M (D)
(see [4, Theorem 2.5, p. 79]). For further details on these spaces, please refer to
[4, 15, 8, 19].

In [9] (see also [10]) a notion of Dirichlet-type spaces on unit bidisc with
harmonic weights has been introduced and observed that the multiplication
tuple .#, = (M, /) is a toral 2-isometry, i.e. B,(.#;) = 0 for each a €
{(2,0),(0,2),(1,1)}. In this present paper we generalize the notion of Dirichlet-
type space introduced in [9], by replacing the harmonic weights with super-
harmonic weights. Motivated by [4, Definition 1.8], [9, Definition 1.1] and [25,
Eq 3.1] we define the following:

Definition 1.1. For u,,u, € M+(ﬁ) and a holomorphic function f on the unit
bidisc D?, the Dirichlet integral D,, ,, (f) of f is given by

27
: dé
Dm,uz(f) = supf f|61f(zl,rele)leﬂl(zl)dA(zl)E
0 D

0<r<1
27 do
+ Squ f|52f("ele,Zz)|2Uy2(Z2)dA(Zz)2—- (6)
0<r<1Jp D T

Consider the Dirichlet-type space
Dy, p2) 1= 1{f € H¥(D?) 1 Dy, 1, (f) < o0},
where H?(D?) denotes the Hardy space on the unit bidisc D? (see [27]).

It is clear from the definition that D, , (f) defines a seminorm on the space
D(uy, 4y). So we consider the following norm on D(u;, u4,)

||f||2 ‘= ||f||12r_12(u)2) + ﬂul,,uz(f)’ f € D(uy, o). (7)

With this norm D(u,, u,) is a reproducing kernel Hilbert space (see Lemma 2.2).
If we assume u;(D) = 0 for j = 1,2, D(uy, 4p) coincides with the notion of
Dirichlet-type spaces appeared in [9].
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1.1. Statement of the main theorem. Before stating the main theorem let us
recall that a subspace W of J is said to be wandering (see [9, Definition 1.5], cf.
[17, p. 103]) for a commuting pair T = (T;, T,) on K if for ay, ay, 1,6, € Z,,

T;“W 1 Tflezw, whenever 3, # 0,
TSW L TOT2W, whenever §; # 0.

Theorem 1.2. Let T = (T,,T,) be a commuting pair on a complex separable
Hilbert space JC. Then the following statements are equivalent:

(A) T is a cyclic analytic toral completely hyperexpansive 2-tuple such that
Ba,1(T) = 0, and T possesses a cyclic vector f, € ker T*, where ker T* is
a wandering subspace of T,

(B) there exist uy, i, € M, (D) such that T is unitarily equivalent to .#, on
D1, 2)-

Remark 1.3. From [23, Theorem 1] we know that any cyclic completely hyper-
expansive operator on a complex separable Hilbert space has the wandering
subspace property. But this fact fails in two-variable. For details one is refer to
[9, Remark 2.5] (cf. [11, Example 6.8]).

Theorem 1.2 presents an analogue of [4, Theorem 2.5], (cf. [9, Theorem 2.4],
[25, Theorem 5.1] and [10, Theorem 5.1]). In Section 2 we discuss the polyno-
mial density, Gleason’s problem and boundedness of the multiplication 2-tuple
My = (M, , M) on D(iuy, 4y). A proof of Theorem 1.2 is presented in Section 3
along with some of its consequences.

2. Polynomial density and Gleason’s problem

Let # be a space of holomorphic functions on a domain Q in C¢ (d > 1).
We say that the Gleason’s problem can be solved for 77 at A = (44, ...,443) € Q,
if for every f € J#, there exist functions f1, ..., f4 in .7 such that

d
f@=f)+ .z - A)fj(@), z=(z1,...2q) € Q.
j=1

We say that .7 has the Gleason property if the Gleason’s problem can be solved
for ## for each 1 € Q. The Hardy space of the bidisc H?>(D?) has the Glea-
son property (see [9, Remark 5.2]). Kehe Zhu [29] showed that the Bergman
space and Bloch space of the unit ball have the Gleason property. For further
examples of the Gleason’s problem on function spaces, see [12, 28].
()
function in 7 whenever 1 € Q, f € # and{z € Q : z; = /1;} isj contained
in Z(f), the zero set of f. If 7 has j-division property for every j = 1,...,d,
then we say that 7# has the division property. Note that the Hardy space of
bidisc H*(D?) ([9, Lemma 4.1]) and the Dirichlet-type spaces of the bidisc with
harmonic weights ([9, Theorem 2.2]) have the division property.

We say that .7 has the j-division property, j = 1,...,d, if defines a
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Let g € H(D) and ¢ € D. If¢ € D, recall that the local Dirichlet integral of
g at ¢ (see [4, p. 74], [15, Theorem 2.1]) is defined as

-2 _ /2” g(e) — g
z-¢ H2(D) 0 eit —¢

If{ € T and g({) := lim,_;- g(r{) exists, we use the same formula (8) to
denote the local Dirichlet integral D¢(g) of g at . Otherwise, we set D¢(g) = oo

(see [24, p. 356]). For general u € M+(ﬁ), [4, Theorem 1.9, p. 74] (cf. [24,
Proposition 2.2]) gives

2
dt
27

Dy(g) = || ®)

D,(g) = [@;(g)dm, g € D). ©
D

Here is a two-variable analog of the above equation.

Proposition 2.1. For f € D(u,, 4y),

27 o do
Dyl = s [ [ D (FCre N
0 D

0<r<1

2 0 do
+ sup/ ‘LDgz(f(re ,-))d/,tz(g“z)ﬁ.
o JD

0<r<1

Proof. Let f € D(u;, u,) so it belongs to H*(D?). By [9, Lemma 3.2], for each
r € (0,1) and 8 € [0, 27] the slice functions f(-,re’®) and f(re'®, ) belong to
H?(D). From (6) we get that for each r € (0, 1) and almost every 6 € [0, 27],

f|<31f(21,reie)lem(Zl)dA(Zﬁ,/ 10, f(re’®, 2))|?U ,(22)dA(2,) < oo
D D

In other words for each r € (0,1),

there exists a measure zero subset Q, C [0, 277] such that the slices
f(-,re®) € D(uy) and f(re®,-) € D(w,) for 8 € [0,27] \ Q,. (10)

Thus (6) becomes

2 . do 2 . do
Dy () = Supfo 2?Ml(f(urel@))E+ SUP/O Dm(f(rele,-))ﬂ- (11)

0<r<1 0<r<1

Combining (9) and (11) yields the result. O

In view of [9, Lemma 1.1], for any holomorphic function f on D? and v €
M, (D), the functionr — [} [, |f(z, re')|2dv(z)d8 is increasing. So we can re-
place sup, ., in (6) by lim,_,;- . Thus for each [ € D(uy, 4,), Dy, ., (f) breaks

into two parts as D, (f) = I, ,(f) + By, ,,,(f), where I, ,(f)and B, , (f)
are the integrals correspond to ¢4 |p and ;| 1, respectively, for j = 1,2 and given



104 SANTU BERA

0<r<1

2 0 do
Iy iy (f) = sup f /Dgl(f(-,re ))d/"l(gl)%
0o D

27 0 do
wsup [ [ D (el Do, (12
0 D

0<r<1

27
By (f) = sup f f Dy, (e () oo
0 T

0<r<1

0<r<1

27 0 do
b [ [ De(red Nl
0 T

The following lemmas are fundamental to prove the polynomial density and
boundedness of the multiplication 2-tuple ., on D(u;, i,).

Lemma 2.2. The Dirichlet-type space D(u;, i4,) is a reproducing kernel Hilbert
space. If x : D XD — C is the reproducing kernel of D(u;, 1,), then for any
re (Oa 1)7 \/{K(" w) . |w| < r} = @(#IUMZ) and K(.io) =L

Proof. By replacing P, by U, and P, by U, in [9, Lemma 3.1] and arguing
similarly we get required result. O

Let u € M+(ﬁ) and g € D(u). For each r € (0, 1) define the function g,
on D as g.(w) := g(rw), w € D. Combining [4, Lemma 4.1, p. 87] and [4,

Theorem 1.9, p. 74] gives D, (g,) < ZDu(g). Later, in [15, Theorem 4.2] this
inequality is improved to

D,(g,) < D). (13)
The following lemma provides a similar estimate as of (13) for D(u,, u,). For
R = (R,Ry) € (0,1)* and f € O(D?) let fr(z) = f(Ryz1,R,z,) for z =
(z1,2,) € D%

Lemma 2.3. ForanyR = (R;,R,) € (0,1)? and f € D(uy, u,),
D#lyﬂz(fR) < Z)Ml,/«lz(f)'
Proof. Let f € D(u;, u,). FixR = (Ry,R,) € (0,1)%. By (11),

D#l,ﬂz(fR)
2 2
..do . db
= su D L re®)=— + su / D ret®,.))—
s [ DG+ swp [ D, (0e? DG
(13) g _de s o .do
< su D - Ryre®)=— + su f D R,re?, ) —.
s | DGR sup | D (R, D5

Finally applying [9, Lemma 1.1] yields the result. O
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The next lemma is a prototype of [9, Lemma 3.7] (cf. [14, Theorem 7.3.1])
and the proof is similar so left to the reader.

Lemma 2.4. Let f € D(uy, u,) and R = (R, R,) € (0,1)%. Then

Rl,lR}erl* ﬂyl,yz(f - fR) =0.

As an application of Lemma 2.4 we show that the set of polynomial is dense
in D(py, ().

Lemma 2.5. Polynomials are dense in D(uy, U,).

Proof. Let f € D(y,, 1) and choose ¢ > 0. It is enough to show that there
exists a polynomial p such that || f — pl|p, u,) < € By Lemma 2.4 there exists
R = (R;,Ry) € (0,1)* such that || f — fr|lp(y, u,) < €/2.Since f is holomorphic

—2
in a neighborhood of D , there exists a polynomial p such that

l% _op| e
aZj aZJ oo,ﬁz 4\/M

where M = max {/; U#j(w)dA(w) : j = 1,2} + 1. This together with the fact
that the norm on H2(D?) is dominated by the norm || - || 52 shows that || f —

Jj=12,

1= pll_

Pl i) < €/2. Thus using triangle inequality we get that Ilf = Pllog ) <€
Hence the proof. O

This next lemma is very crucial to prove the boundedness of the multiplica-
tion tuple ./, = (M, M)

Lemma 2.6. Let f € H*(D?). Then

27
L) = s [ [ 1GureD @S + 1l
<r< D
0277 do
L) = swp [ [ 100 PG + DD
<r<1Jy D

Proof. For eachr € (0,1) and 6 € [0,27] define f, o(w) := fw,re®), w e
D, then f, 5 € H*(D) (see [9, Lemma 3.2]). Since H*(D) is closed under the
multiplication of the coordinate function w so wf, ¢ € H*(D). Fixing ¢ € D we

know that for each g € H*(D), %_(5) € H*(D). In particular, g = wf, ¢ gives
wfr,(?_(wfr,e)({)
w—¢
wfr,@ - (wfr,e)(g)
w—{¢

€ H?(D) and

2 2

H(D)

fr,e(é’) + wfr,@ - fr,@(g)
w

—¢

H(D)
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As the constant functions are orthogonal to wH?(D) in H*(D) so the above
equation becomes

2
ware Wfr)O| O+ fr,ew f}e(g) 14)
H2 H2
i0 i0
= 1S Gred)P + T )|
Hz
Now (12) together with (8) implies
I,ulyl«lz(zlf)
_ (z1.)(-,re®) — (z, )&y, ret® @
T e R
21 , ,
(z1f )(rele,-)—(zu” )(re’®, $5) )12 do
+:::£1f0 /) R
27
Lo [ [ 1 renrPaneng]
fG Vele) f(§1,re’9) do
e [ ] o052
f(re®, ) f (rele )2 do
e [ ] o5
2 sup j / |f<§1,ref9>|2dul<§1)§ L. as)
0<r<1
Similarly on can derive the expression involving I,, ,, (z,f). (]

Here we show that the coordinate functions z; and z, are multipliers of
D(uy, p2)-

Lemma 2.7. Let yy, 4, € M+(ﬁ). Then .4, and .4, are bounded linear oper-
ators on D(uy, Us).

Proof. Let f € D(uy, 4p). Soboth I, (f) and B, , (f) are finite. From the
proof of [9, Lemma 3.4], there exists constant C > 1 such that

By s (210) < C(ILf ey + B () < 0.

Now we show thatI,, , (z1f) < co.In view of Lemma 2.6 it is enough to show
that

271 i6y]2 do
sup [ [ I rePdm@ss <o 16)
0<r<1 Jo D

The following idea is motivated from [4, Proposition 1.6]. Let h € H*(D?) and
assume that h(0, z,) = 0 for all z, € D. By the division property of H?(D?) (see
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[9, Remark 4.2]) there exists g € H*(D?) such that h(z,, z,) = z,8(z;, z,) for all
(z1,2,) € D2 Then for each r € (0,1), 6 € [0,27] and ¢; € D, using (14) we
get

_ |g¢ure®)2 1 ||8C:reN) 8 re®) ’

Hh( ,re®) — h(g’l, rele)

H2 - gl H2
> [g(¢y,ret®)|?
> |§1|2|g(§1,"€i6)|2
= [h($y, re)[>. (17)
Thus,
2
: dé
swp [ [ et P
0<r<1 Jo D T
2w d@
= sup f / |f(&1,re®) — £(0,re®®) + f(0, ”ele)|2d#1(§1)ﬁ
0<r<1Jp D
27 d@
<2 sup / f |f(§1a”ele) - f (o, ”ele)|2dﬂl(§1)ﬁ
0<r<1Jg
2w
+ 2 sup f f |f(0, Vele)|2d#1(§1
0o<r<1
(17) 2 19) ( ,rele) do
< 2 sup f g dl"l(gl)%
0<r<1 Jo H2(D)
+2u,(D) sup f 0. re)PEe as)
0<r<1 Jo

Let us assume that f(z1,2z,) = 3], am’nz;”zg. As f € H*(D?) by using dom-
inated convergence theorem (see [26, p. 88])

2
oy, A6
sup [ 1 OrePIE = 3 laal < 1y (19)
0<r<1 Jo n>0

Combining (18) with (12) and (19) yields (16).

Hence we conclude that z, f € D(u;, u,). Similarly, one can show show that
Z,f € D(uy, 4y). Since D(uy, u,) is a reproducing kernel Hilbert space so using
the closed graph theorem we conclude the result. (]

Letx : D X D — C denote the reproducing kernel of D(u, u,).

Corollary 2.8. For any w € D?, ker(.#, — w) = {0} and ker(.#Z} — w) is the
one-dimensional space spanned by x(-, w).

Proof. The proof goes the same as that of [9, Corollary 3.9]. O

The following lemma recovers a counterpart of [22, Lemma 2.1] for D(u).
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Lemma 2.9. Forany u € M +(ﬁ), D(u) has the Gleason property.

Proof. Here ./, is cyclic on D(u) then for each 4 € D the dim ker(.#; — 1) is
at most one ( see [3, Proposition 1.1]). Let k denote the reproducing kernel of
D(u). Then k(-, A1) € ker(.#; — 1) so ker(.#; — A) is spanned by k(-, 4). For any
h € D(u) by the reproducing property we know that h — h(4) is orthogonal to
k(-,1). That means h — h(4) belongs the range closure of (.#, — 4). Since .#, is
2-concave, by [23, Lemma 1(a)] .#, is expansive on D(u) so (.#,—A2) is bounded
below and hence range of (.#, — 1) is closed. Thus there exists g € D(u) such
that h(z) — h(1) = (z — 1)g(z) for z € D. O

The next proposition shows that D(u;, u,) has the division property.

Proposition 2.10. Let uy, u, € M, (D). Then D(uy, My) has the division property.

Proof. Let f € D(uy, u,) and A € D such that f(4,z,) = 0 for each z, € D.

We are required to show ! > belongs D(u;, u,). Since H*(D?) has the division
z1—

property (see [9, Lemma 4.1]), there exists g € H*(D?) such that f(z;,z,) =
(z; — V)g(zy,2,) for z;,z, € D. Now it boils down to show g € D(y, uy).
From (10) it is clear that (z; — 1)g(-,re®®) € D(u;) and (re®® — Dg(re®,.) e
D(u,) for every r € (0,1) and almost every 6 € [0, 27]. Clearly, for every r €
(0,1) and almost every 8 € [0, 2], (by Lemma 2.9) g(-,re’®) € D(u;) and
g(re®®, ) € D(u,). The multiplication operator .#,, by the coordinate function
w is expansive on D(u;), j = 1,2. So

||g("”eie)||2)(u1) < ||wg(',”eie)||2)(u1)-

The rest of the proof is similar to [9, Proof of Theorem 2.2]. For the sake of
completeness, we are providing the full argument. Note that

[(w = DgC,rellngyy = 1= 1AD2EC,re®llng)
> (1= 417D, (g(, re®)).
Integrating both sides with respect to 6
27
io\, db
(1 - 417 jo Dy (8, re®) 7=

27 d@ 27 d@
< [l DgreDli o+ [ Dulw - DeCreNe.
0 0

By using [9, Lemma 3.2] and (11) we get that
27 do
(1 - 121y fo Dy, (8 re®N T <1121 = DRl + Dpo(21 = D).

Taking supremum over 0 < r < 1 on the above inequality gives

27
g\ do
sup/ Dﬂl(g(-,re’e))ﬂ<oo. (20)
0

0<r<1
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We already have

27 do
sup l D, ((re® — )g(re®, -))E < 0.

0<r<1

So for any s € (|1], 1),

2 do
sup ’/Ov Dﬂz((rele - /’l)g(’,ele, ))E

0<r<1

2
i i dé
'l Dy, ((se® — 2)g(se’®, '))ﬁ

v

v

27 . do
(s = 14])? fo l?ﬂz(g(se’e,-))ﬁ'

Now taking limit s — 1 gives
2m

. ; do
lim D, (g(se'®, '))E < 00. (21)

s—1 0

Since [9, Lemma 1.1] suggest that we can replace the limit by supremum so
combining (20) and (21) yields g € D(u;, 4,)-
Similarly one can start with the assumption that f(z;,4) = O0forallz; € D

and show that % € D(uy, 1y). O
Zy—

As an application of the Proposition 2.10, we have the following:
Lemma 2.11. Gleason’s problem for D(uy, u,) has solution over{(1,,1,) € D? :
AIAZ = 0}
Proof. Let f € D(u,, 4,) and 1 € D. It is clear from the Definition 1.1 that

Dy, (f0)) =Dy (f(,0)) <Dy 1, (),
Dy i, (f(0,-)) = Dy, ((0,4)) < Dy, 1, ()
Consider the function h(zy, z,) = f(z1,2;) — f(21,0), (z1,2,) € D®. Then h €
D(uy, u2). By Proposition 2.10, there exists f; € D(uy, u,) such that
h(zl, 22) - f(Zl’ZZ) - f(Zl, 0) - (Zz - O)fl(zl, Zz), (Zl’ Zz) (S DZ. (22)
Since D, (f(-,0)) < oo so f(-,0) € D(;). Applying Lemma 2.9 to D(u;) we
get that for each 4 € D, there exists v € D(y,) such that
f(z1,0) = f(4,0) = (21 — Dv(zy), 2z, €D. (23)
Now adding (22) and (23) gives us
f(z1,22) = f(4,0) = (z; — Du(z1) + 2, f1(21,22), 21,2, € D.

Defining f,(z,,2,) = v(z,), 21,2, € D shows that f, € D(uy,u,). Thus the
Gleason’s problem has solution at (4, 0) for every 1 € D.

Similarly, starting with H(zy,z,) = f(z1,2,) — f(0,2,) for z;,z, € D, one
can show that the Gleason’s problem can be solved on {(0,4) : 1 € D}. O
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Theorem 2.12. Let uy,u, € M +(ﬁ). Then the followings hold:

(a) the commuting pair M, = (M, M) is cyclic with cyclic vector 1,
(b) Gleason’s problem can be solved for D(u;, u,) on an open neighborhood
Of{(ﬂ.l,/‘lz) (S D2 . 11/‘12 = 0}

Proof. (a) Combining Lemmas 2.7, 2.5 yields the result.
(b) Lemma 2.11 suggests that Gleason’s problem has solution over

A= {(/11,},2) S DZ . /11&2 == 0}

So for each 1 = (4;,4,) € A the row operator T := [.#, — A M, — A,] has
closed range. With the help of Corollary 2.8

dim (D(py, )/ TA(D(uy, 1) @ Dty p1p))) = dimker T}
dim ker(.#; — ) =1.

Now using [9, Lemma 4.4] and the fact that the joint kernel ker(.#, — 1) = {0},
we conclude that the pair .#, — 1 is Fredholm. Thus A is in the complement
of the essential spectrum o,(.#,) of .#,. Since o,(.#,) is closed, there exists an
open subset V of D?\ o,(.#,) containing A. Applying [9, Lemma 5.1] completes
the proof. O

3. A Representation theorem

Let u be a finite positive Borel measure on D. For two non-negative integers
i and j, the (i, j)-th moment of u (see [7, 13, 18, 20]) is defined as

aii.ji = [ @¢aut)
D
Proposition 3.1. Leti and j be two nonnegative integers and i < j. Then
i—1
(7, 2)puy = 8G, )+ ) bl —k—1i—k—1},
k=0
where 5(-, ) denotes the two variable Kronecker delta function.

Proof. Substituting (9) in (5) gives

I8l = gl + [ 2e@)du). 8 € DG
D
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Using polarization identity in the above equation gives

o o il i
(2, 20)puy = (2", ZJ>H2(rm>)+ﬁ<u Z ¢ > du($)

D Z—f, Z_g H2(D)

i1 _
= 8(0))+ ﬁz Gk Q)R du()
D

k=0

i—1 _

=81, )+ D, | TR R )
k=0vD
i—1

=0(i, )+ ), pfj—k—-1i—k—1}
k=0

Hence the result.
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O

Next, we derive a formula for the inner product of monomials in D(u;, u,).

Proposition 3.2. Lef u, 4, € M+(ﬁ) and m,n, p,q € N then

0 ifm#p, n#gq,
Zn’ Zq l m = N n y
(&, )iy = |y ) fm=p,n#q
(21, 2))(uy) ifm#p, n=q,
mi|2 nn2 _ . _ _
||Z1 ||@(H1) + ”22”@(‘12) 1 ifm=p, n=q.

Proof. Using the polarization identity on (6) gives
(2025, 21230 D ) = (. PIO(n, Q)

27
) _ de
~ —)0 -1 -1
+11_rg -l jl;) el pz =1 (z,)P Uul(zl)dA(zl)E

r—1

27
. I 1= o dé
+11m./0‘ /I;)rmﬂ’el(’" PPngzli=1(z,) 1U”2(zz)dA(zz)E
= 5(n,q)6(m,p)+5(n,q)fmz{”‘lp(El)P—lU”l(zl)dA(zl)
D

+38(m, p) f nzy~q(z,)17U,, (2,)dA(2,).
D

Rest follows from (4) and polarisation identity.

An immediate corollary of the of the above proposition is the following:

Corollary 3.3. For u, u, € M, (D), the subspace spanned by the constant vector

1in D(u;, 4,) is a wandering subspace for ., on D(uy, Uy).

Recall that a commuting pair T = (T, T,) is called a toral 2-isometry (see
[9, Eq (1.1)]) if it satisfies the equations I — T;'T; — T;.‘Tj + Ti*T;le-Tj = 0 for
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i,j =1,2,ie. B (T) = 0fora € {(2,0),(1,1),(0,2)}. For future references we
state the following lemma concerning toral 2-isometry (see [9, Corollary 3.8]).

Lemma 3.4. Let the supports of u, and u, be contained in the unit circle. Then
the commuting pair 4, on D(u,, 4,) is a cyclic toral 2-isometry with cyclic vector
1.

The following is a noteworthy observation regarding the commuting pair .Z,
on Dy, 4a)-

Lemma 3.5. Let ji;, 4, € M (D). Then .4, = (M, M) is a toral completely
hyperexpansive 2-tuple with zero defect operator on D(uy, Us).

Proof. Letn > 2and f € D(yy, Ky)-

Bino A, f)
:=Zc4ﬁﬁwﬁﬂﬁ

_Z( 1)k(
:Z( 1) (

+ Z( Dk(Z)Im,ﬂz(zlff)'

V(125 1y + Ty GE ) + By (ZE))
)

(125 12y + Buss Z))

By Lemma 3.4 and the fact that every 2-isometry is automatically a k-isometry
for each k > 2 (see [1, 2]), the first part of the above sum is zero. So we are left
with

Binoy A 1) = 2 D a2 (24)
k=0

Let k > 1. Now replacing f by z’l‘ fin (15) gives us

2
. : dae
Il*‘ly:uz(z,l{-’_lf) - Iul,uz(zlff) = il_r)rlljo‘ /D 1$112 1 £ (&, ”ele)|2dﬂ1(§1)ﬁ-
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Thus (24) becomes

Bno) A, 1)
= DD (e

- Z( 1)k( ) (I/"I #z(zkf) I/"l ﬂz(zk+1f))

r—1

~ —lim f f Z( DH(" )P G e P () B

27
=-tim [ [a-iaprisererancost <o @)

Similarly, (B(o,.)(-#,)(f), f) < 0. We now show that the defect operator B 1)(.#)
of .4, is zero. If we replace f by z,f in (15),

Ilul,,uz(ZIZZf) - 1,42(22}0) = llm/ f 2| f (&1, ”eie)|2d#1(§1)£

27[ i6y(2 doé
=tim [ [ 7GRS @0

So applying Lemma 3.4 we have
I = A, 1P = A, fIP + ||, A, P
( M1 #2(f) Ml #2(Zlf)) + (Iﬂl,#z(zlzz«f) - Illl,/lz(zzf)>

15)&(26
(A5)&( )0'

From the discussion after (1) it is clear that 8,(T) < Oforalla = (a;, a,) € Zi.
Hence the result. O

The next lemma is extracted from [9, Lemma 6.1] and very useful in the proof
of the main theorem.

Lemma 3.6. Let T = (T, T,) is a commuting pair on H such that the defect
operator (see (3)) is zero. Assume that ker T* is a wandering subspace of T. Then
foreach f, € ker T*,

0 ifm#p, n#q,

n q .
TmTf,, TPTq — <T2f0’ T2f0>.‘}[ lfm =p,n#gq,
0Tafo TyTalodse = epmp gp sy fmp,n=aq,

ITY foll5e + 1IT5 foll3 — lfoll},  ifm=p, n=gq.
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Proof. From the proof of [9, Lemma 6.1(i)] we get that whenever I — T}T; —
T3T, + T{T;T,T, = 0, for each k,1 > 0,
ksl kel oskkopk Lyl
Tk riiThT) = TRk T, - 1 (27)
Since ker T* is a wandering subspace, using (27) and following the proof of [9,
Lemma 6.1(ii)] one recovers the required result. O

Proof of Theorem 1.2. (B) —> (A) This follows from Corollaries 2.8, 3.3
and Lemma 3.5.

(A) = (B) As T is analytic on # so is T; and T,. Fix j € {1, 2}. Consider
the T; invariant subspace 7(; = W{T;‘ fo : k > 0}of F. Then Ty, is cyclic
analytic completely hyperexpansive operator i.e. an operator of Dirichlet-type
(refer to [4, Definition 1.2, p.70]). Hence, by [4, Theorem 2.5, p.79] there exists

a unique measure u; € M, (D) and a unitary operator U; : J(; — D(u;) such
that

0))

Uifo=1, U;T;=.4,Uj, (28)
where ///&,j ) denotes the multiplication by coordinate function w on D(u;). Now
consider the map U as

U(T!'TS fo) = z{'z5, m,n>0.

Here we have 7€ = span{T{'T} f, : m,n > 0} and D(uy, 4,) = span{z]'z}) :
m,n > 0}. For any m, p > 0, by (28)

<T;nf0’ Tffo)}f = <UjT;nfO’ Uijfob(uj)
(MPYmU, fo, MPPU; fo)piuy

— <wm’ wp>®(’uj)_

Now combining Lemma 3.6 and Proposition 3.2 yields
(TY'T3 o Ty T3 fodse = (27235 212300 41> M1 PG 2 0.
So U extends as a unitary from H onto D(u,, u,). Hence the result. O

Corollary 3.7. The commuting pair 4, = (M, , #,,) is a toral 2-isometry if
and only if u, and u, are supported on 9D.

Proof. As ;) (.#,) = 0 putting n = 2 in (25) gives

27
0= Gan (XD, = =tim [ A= 1P CrePdm T
r— 0 D

By substituting f = 1 into the equation above, we find that the support of y,
lies outside D. Similarly, 8 ,)(.#,) = 0 implies the support of u, is outside D.
Conversely, if you assume that i; and u, are supported on the unit circle T then
by [9, Theorem 2.4] .#, = (.4, .#,,) becomes a toral 2-isometry. O
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The following theorem is an extended version of [9, Theorem 6.4](cf. [25,
Theorem 5.2]).

Theorem 3.8. Fori = 1,2 consider ,Ltgi), ,ug) eEM +(ﬁ). Then the multiplication

2-tuple //lz(l) on 2)(;451), ,ugl)) is unitarily equivalent to //ZZ(Z) on 2)(,(452), ,ugz)) ifand

. 1 2) .
onlylfu§)=pt§- j=12

Proof. Let v;,v, € M+(ﬁ) and p be a two variable polynomial. We have
ﬂvl,vz(zlp) = Ivl,vz(zlp) + Bvl,vz(zlp)- By (15),

27
; dé
Ivlﬂiz(zlp) = f f Ip(gl’ele)lzdvl(gl)ﬁ + Ivl,vz(p)- (29)
0 D
From [9, Lemma 3.5] we get that
27
i0y]2 doé
Bvl,vz(zlp) = |p(§1’e )l dvl(gl)ﬁ + Bvl,vz(p)- (30)
0 T

Now combining (29) and (30) together with (7) gives

27
Izl =7+ [ [ 1pGueDPan@l G
0 D

One can get a similar expression for z,p. Let U be a unitary map from

D", 1) onto D(?, u) which satisfies

vy =420, j=1,2. (32)

Since the joint kernels ker .///Z(D* and ker ,///Z(Z)* are spanned by the constant
function 1 (see Crorllary 2.8) so (32) suggests that U*1 € ker //lz(l)*. Hence U*1
must be a unimodular constant. By multiplying suitable unimodular constant
one can assume that U1 = 1. It now follows from (32) that U is identity on the
polynomials. Thus (31) suggests that for any two-variable polynomial p,

27 . do 27 . do
| [recienran’eoss = [ [ ieceoradeos?.

D
2 27
: M)y 140 0 ¢ yi2g D30
P P ese = [ [ e eorandense.
~£ -LD 2 2 0 D 2 2
Thus for any one variable polynomial p,

[1p©raid = [ 1p@ranP, j=1.2
D D

Using polarization identity and the uniqueness of the two-variable moment
problem on D (see [7, Remark 1, p. 321]) we conclude the theorem. O
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