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Dirichlet-type spaces of the unit bidisc and
toral completely hyperexpansive operators

Santu Bera

Abstract. We discuss a notion, originally introduced by Aleman in one
variable, of Dirichlet-type space 𝒟(𝜇1, 𝜇2) on the unit bidisc 𝔻2, with super-
harmonic weights related to finite positive Borel measures 𝜇1, 𝜇2 on 𝔻. The
multiplication operatorsM𝑧1

andM𝑧2
by the coordinate functions 𝑧1 and 𝑧2,

respectively, are bounded on𝒟(𝜇1, 𝜇2) and the set of polynomials is dense in
𝒟(𝜇1, 𝜇2).We show that the commuting pairM𝑧 = (M𝑧1

,M𝑧2
) is a cyclic an-

alytic toral completely hyperexpansive 2-tuple on 𝒟(𝜇1, 𝜇2). Unlike the one
variable case, not all cyclic analytic toral completely hyperexpansive pairs
arise as multiplication 2-tuple M𝑧 on these spaces. In particular, we estab-
lish that a cyclic analytic toral completely hyperexpansive operator 2-tuple
𝑇 = (𝑇1, 𝑇2) satisfying 𝐼 − 𝑇∗

1
𝑇1 − 𝑇∗

2
𝑇2 + 𝑇∗

1
𝑇∗
2
𝑇1𝑇2 = 0 and having a cyclic

vector 𝑓0 is unitarily equivalent to M𝑧 on 𝒟(𝜇1, 𝜇2) for some finite positive
Borel measures 𝜇1 and 𝜇2 on 𝔻 if and only if ker 𝑇∗, spanned by 𝑓0, is a wan-
dering subspace for 𝑇.
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1. Introduction & preliminaries
Let𝔻 and𝕋denote the openunit disc and the unit circle in the complex plane

ℂ. For a non-empty subset 𝑆 ofℂ,𝑀+(𝑆) denotes the set of finite positive Borel
measures on 𝑆. Letℋ denote a complex separable Hilbert space and ℬ(ℋ) be
the𝐶∗-algebra of bounded linear operators onℋ.For an operator 𝑆 ∈ ℬ(ℋ), 𝑆∗

denotes the Hilbert space adjoint of 𝑆.A pair 𝑇 = (𝑇1, 𝑇2) is called a commuting
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pair onℋ if 𝑇1, 𝑇2 ∈ ℬ(ℋ) and 𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖 for 1 ≤ 𝑖, 𝑗 ≤ 2. Following [16,
p. 56], we say that a commuting pair 𝑇 = (𝑇1, 𝑇2) onℋ is analytic if

∞⋂

𝑘=0

∑

𝛼1,𝛼2≥0

𝛼1+𝛼2=𝑘

𝑇
𝛼1
1
𝑇
𝛼2
2
ℋ = {0}.

A commuting pair 𝑇 = (𝑇1, 𝑇2) is called cyclic with cyclic vector 𝑓0 ∈ ℋ if the
closed linear span of {𝑇𝛼1

1
𝑇
𝛼2
2
𝑓0, 𝛼1, 𝛼2 ∈ ℤ+} equals toℋ. Let 𝛼, 𝛽 ∈ ℤ2

+, we
say 𝛼 ≤ 𝛽 if 𝛼𝑖 ≤ 𝛽𝑖 for 𝑖 = 1, 2. For 𝛼 ≤ 𝛽 denote

(
𝛼

𝛽

)
=
(
𝛼1

𝛽1

)(
𝛼2

𝛽2

)
. A commuting

pair 𝑇 = (𝑇1, 𝑇2) onℋ is said to be toral completely hyperexpansive (refer to [6,
Definition 1], cf. [1, 5]) if for each 𝛼 ∈ ℤ2

+ ⧵ {0},

𝛽𝛼(𝑇) ∶=
∑

𝛽∈ℤ2
+

0≤𝛽≤𝛼

(−1)|𝛽|
(𝛼

𝛽

)
𝑇∗𝛽𝑇𝛽 ≤ 0. (1)

Using binomial expansion it is easy to check that for each 𝛼 ∈ ℤ2
+,

𝛽𝛼+𝜖𝑗 (𝑇) = 𝛽𝛼(𝑇) − 𝑇∗
𝑗
𝛽𝛼(𝑇)𝑇𝑗, 𝑗 = 1, 2, (2)

where 𝜖1 = (1, 0) and 𝜖2 = (0, 1). For a commuting pair 𝑇 = (𝑇1, 𝑇2) onℋ we
define the defect operator as

𝛽(1,1)(𝑇) = 𝐼 − 𝑇∗
1
𝑇1 − 𝑇∗

2
𝑇2 + 𝑇∗

1
𝑇∗
2
𝑇1𝑇2. (3)

From the identity (2) it is clear that whenever the defect operator of 𝑇 is zero i.e.
𝛽(1,1)(𝑇) = 0, 𝛽𝛼(𝑇) = 0 for all 𝛼 ∈ ℤ2

+ with 𝛼1𝛼2 ≠ 0. It is evident that when-
ever two completely hyperexpansive operators 𝑇1 and 𝑇2 commute and have
zero defect operator, the commuting 2-tuple 𝑇 = (𝑇1, 𝑇2) is toral completely
hyperexpansive. Not every toral completely hyperexpansive 2-tuple has zero
defect operator. Indeed, if we take 𝑑𝜈 to be Lebesgue area measure on [0, 1]2 in
[6, Eq. H] then the defect operator is non zero. In particular,

‖𝑒0‖
2 − ‖𝑇1𝑒0‖

2 − ‖𝑇2𝑒0‖
2 + ‖𝑇1𝑇2𝑒0‖

2

= 1 − (1 + 𝑏1 +
1

2
) − (1 + 𝑏2 +

1

2
) + (1 + 𝑏1 + 𝑏2 +

3

4
) = −

1

4
< 0.

Richter [25] introduced the notion of Dirichlet-type space on the unit disc 𝔻
with harmonic weight and proved that these spaces are model spaces for cyclic
analytic 2-isometries (see [25, Theorem 5.1]). Later, in [4, Chapter IV] Aleman
generalized this notion by considering superharmonic weights as follows: Let
𝜇 be a finite positive Borel measure on 𝔻. For a holomorphic function 𝑓 on 𝔻
consider

𝒟𝜇(𝑓) = ∫
𝔻

|𝑓′(𝑧)|2𝑈𝜇(𝑧)𝑑𝐴(𝑧), (4)
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where 𝑑𝐴 denotes the normalized Lebesgue area measure on 𝔻 and 𝑈𝜇 is the
superharmonic function on 𝔻 given by

𝑈𝜇(𝑤) = ∫
𝔻

log

|||||||||

1 − 𝜁𝑤

𝑤 − 𝜁

|||||||||

2

𝑑𝜇(𝜁)

1 − |𝜁|2
+ ∫

𝕋

1 − |𝑤|2

|𝜁 − 𝑤|2
𝑑𝜇(𝜁), 𝑤 ∈ 𝔻.

Note that any positive superharmonic function on 𝔻 is of this form (see [21,
Theorem4.5.1]). TheDirichlet type space𝒟(𝜇) is the collection of holomorphic
function 𝑓 on𝔻 such that𝒟𝜇(𝑓) < ∞. These spaces are subspaces of the Hardy
space𝐻2(𝔻). Concerning the following norm

‖𝑓‖2
𝒟(𝜇)

= ‖𝑓‖2
𝐻2(𝔻)

+𝒟𝜇(𝑓), 𝑓 ∈ 𝒟(𝜇), (5)

𝒟(𝜇) is a Hilbert space and the multiplication operator M𝑧 by the coordinate
function 𝑧 is a cyclic analytic completely hyperexpansive (see [5, Eq D] and
[4, Theorem 1.10(i), p 76]). Moreover, any cyclic analytic completely hyperex-
pansive operator is unitarily equivalent to M𝑧 on 𝒟(𝜇) for some 𝜇 ∈ 𝑀+(𝔻)

(see [4, Theorem 2.5, p. 79]). For further details on these spaces, please refer to
[4, 15, 8, 19].
In [9] (see also [10]) a notion of Dirichlet-type spaces on unit bidisc with

harmonic weights has been introduced and observed that the multiplication
tuple M𝑧 = (M𝑧1

,M𝑧2
) is a toral 2-isometry, i.e. 𝛽𝛼(M𝑧) = 0 for each 𝛼 ∈

{(2, 0), (0, 2), (1, 1)}. In this present paper we generalize the notion of Dirichlet-
type space introduced in [9], by replacing the harmonic weights with super-
harmonic weights. Motivated by [4, Definition 1.8], [9, Definition 1.1] and [25,
Eq 3.1] we define the following:

Definition 1.1. For 𝜇1, 𝜇2 ∈ 𝑀+(𝔻) and a holomorphic function 𝑓 on the unit
bidisc 𝔻2, the Dirichlet integral𝒟𝜇1,𝜇2

(𝑓) of 𝑓 is given by

𝒟𝜇1,𝜇2
(𝑓) ∶= sup

0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝜕1𝑓(𝑧1, 𝑟𝑒
𝑖𝜃)|2𝑈𝜇1

(𝑧1) 𝑑𝐴(𝑧1)
𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝜕2𝑓(𝑟𝑒
𝑖𝜃, 𝑧2)|

2𝑈𝜇2
(𝑧2) 𝑑𝐴(𝑧2)

𝑑𝜃

2𝜋
. (6)

Consider the Dirichlet-type space

𝒟(𝜇1, 𝜇2) ∶= {𝑓 ∈ 𝐻2(𝔻2) ∶ 𝒟𝜇1,𝜇2
(𝑓) < ∞},

where𝐻2(𝔻2) denotes the Hardy space on the unit bidisc 𝔻2 (see [27]).

It is clear from the definition that𝒟𝜇1,𝜇2
(𝑓) defines a seminorm on the space

𝒟(𝜇1, 𝜇2). So we consider the following norm on𝒟(𝜇1, 𝜇2)

‖𝑓‖2 ∶= ‖𝑓‖2
𝐻2(𝔻2)

+𝒟𝜇1,𝜇2
(𝑓), 𝑓 ∈ 𝒟(𝜇1, 𝜇2). (7)

With this norm𝒟(𝜇1, 𝜇2) is a reproducing kernelHilbert space (see Lemma2.2).
If we assume 𝜇𝑗(𝔻) = 0 for 𝑗 = 1, 2, 𝒟(𝜇1, 𝜇2) coincides with the notion of
Dirichlet-type spaces appeared in [9].
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1.1. Statement of themain theorem. Before stating themain theorem let us
recall that a subspace𝒲 ofℋ is said to bewandering (see [9, Definition 1.5], cf.
[17, p. 103]) for a commuting pair 𝑇 = (𝑇1, 𝑇2) onℋ if for 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ ℤ+,

𝑇
𝛼1
1
𝒲 ⟂ 𝑇

𝛽1
1
𝑇
𝛽2
2
𝒲, whenever 𝛽2 ≠ 0,

𝑇
𝛼2
2
𝒲 ⟂ 𝑇

𝛽1
1
𝑇
𝛽2
2
𝒲, whenever 𝛽1 ≠ 0.

Theorem 1.2. Let 𝑇 = (𝑇1, 𝑇2) be a commuting pair on a complex separable
Hilbert spaceℋ. Then the following statements are equivalent:

(𝐴) 𝑇 is a cyclic analytic toral completely hyperexpansive 2-tuple such that
𝛽(1,1)(𝑇) = 0, and 𝑇 possesses a cyclic vector 𝑓0 ∈ ker 𝑇∗, where ker 𝑇∗ is
a wandering subspace of 𝑇,

(𝐵) there exist 𝜇1, 𝜇2 ∈ 𝑀+(𝔻) such that 𝑇 is unitarily equivalent to M𝑧 on
𝒟(𝜇1, 𝜇2).

Remark 1.3. From [23, Theorem 1] we know that any cyclic completely hyper-
expansive operator on a complex separable Hilbert space has the wandering
subspace property. But this fact fails in two-variable. For details one is refer to
[9, Remark 2.5] (cf. [11, Example 6.8]).

Theorem 1.2 presents an analogue of [4, Theorem 2.5], (cf. [9, Theorem 2.4],
[25, Theorem 5.1] and [10, Theorem 5.1]). In Section 2 we discuss the polyno-
mial density, Gleason’s problem and boundedness of the multiplication 2-tuple
M𝑧 = (M𝑧1

,M𝑧2
) on𝒟(𝜇1, 𝜇2).Aproof of Theorem1.2 is presented in Section 3

along with some of its consequences.

2. Polynomial density and Gleason’s problem

Let H be a space of holomorphic functions on a domain Ω in ℂ𝑑 (𝑑 ≥ 1).
We say that the Gleason’s problem can be solved for H at 𝜆 = (𝜆1, … , 𝜆𝑑) ∈ Ω,

if for every 𝑓 ∈ H , there exist functions 𝑓1, … , 𝑓𝑑 in H such that

𝑓(𝑧) = 𝑓(𝜆) +

𝑑∑

𝑗=1

(𝑧𝑗 − 𝜆𝑗)𝑓𝑗(𝑧), 𝑧 = (𝑧1, … , 𝑧𝑑) ∈ Ω.

We say thatH has the Gleason property if the Gleason’s problem can be solved
for H for each 𝜆 ∈ Ω. The Hardy space of the bidisc 𝐻2(𝔻𝑑) has the Glea-
son property (see [9, Remark 5.2]). Kehe Zhu [29] showed that the Bergman
space and Bloch space of the unit ball have the Gleason property. For further
examples of the Gleason’s problem on function spaces, see [12, 28].
We say that H has the 𝑗-division property, 𝑗 = 1,… , 𝑑, if 𝑓(𝑧)

𝑧𝑗−𝜆𝑗
defines a

function in H whenever 𝜆 ∈ Ω, 𝑓 ∈ H and {𝑧 ∈ Ω ∶ 𝑧𝑗 = 𝜆𝑗} is contained
in 𝑍(𝑓), the zero set of 𝑓. If H has 𝑗-division property for every 𝑗 = 1,… , 𝑑,

then we say that H has the division property. Note that the Hardy space of
bidisc𝐻2(𝔻2) ([9, Lemma 4.1]) and the Dirichlet-type spaces of the bidisc with
harmonic weights ([9, Theorem 2.2]) have the division property.
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Let 𝑔 ∈ 𝐻2(𝔻) and 𝜁 ∈ 𝔻. If 𝜁 ∈ 𝔻, recall that the local Dirichlet integral of
𝑔 at 𝜁 (see [4, p. 74], [15, Theorem 2.1]) is defined as

𝐷𝜁(𝑔) =
‖‖‖‖‖‖‖

𝑔 − 𝑔(𝜁)

𝑧 − 𝜁

‖‖‖‖‖‖‖

2

𝐻2(𝔻)

= ∫

2𝜋

0

||||||||

𝑔(𝑒𝑖𝑡) − 𝑔(𝜁)

𝑒𝑖𝑡 − 𝜁

||||||||

2
𝑑𝑡

2𝜋
. (8)

If 𝜁 ∈ 𝕋 and 𝑔(𝜁) ∶= lim𝑟→1− 𝑔(𝑟𝜁) exists, we use the same formula (8) to
denote the local Dirichlet integral 𝐷𝜁(𝑔) of 𝑔 at 𝜁.Otherwise, we set 𝐷𝜁(𝑔) = ∞

(see [24, p. 356]). For general 𝜇 ∈ 𝑀+(𝔻), [4, Theorem 1.9, p. 74] (cf. [24,
Proposition 2.2]) gives

𝒟𝜇(𝑔) = ∫
𝔻

𝒟𝜁(𝑔)𝑑𝜇(𝜁), 𝑔 ∈ 𝒟(𝜇). (9)

Here is a two-variable analog of the above equation.

Proposition 2.1. For 𝑓 ∈ 𝒟(𝜇1, 𝜇2),

𝒟𝜇1,𝜇2
(𝑓) = sup

0<𝑟<1

∫

2𝜋

0

∫
𝔻

𝐷𝜁1(𝑓(⋅, 𝑟𝑒
𝑖𝜃))𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

𝐷𝜁2(𝑓(𝑟𝑒
𝑖𝜃, ⋅))𝑑𝜇2(𝜁2)

𝑑𝜃

2𝜋
.

Proof. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2) so it belongs to 𝐻2(𝔻2). By [9, Lemma 3.2], for each
𝑟 ∈ (0, 1) and 𝜃 ∈ [0, 2𝜋] the slice functions 𝑓(⋅, 𝑟𝑒𝑖𝜃) and 𝑓(𝑟𝑒𝑖𝜃, ⋅) belong to
𝐻2(𝔻). From (6) we get that for each 𝑟 ∈ (0, 1) and almost every 𝜃 ∈ [0, 2𝜋],

∫
𝔻

|𝜕1𝑓(𝑧1, 𝑟𝑒
𝑖𝜃)|2𝑈𝜇1

(𝑧1)𝑑𝐴(𝑧1), ∫
𝔻

|𝜕2𝑓(𝑟𝑒
𝑖𝜃, 𝑧2)|

2𝑈𝜇2
(𝑧2)𝑑𝐴(𝑧2) < ∞.

In other words for each 𝑟 ∈ (0, 1),

there exists a measure zero subset Ω𝑟 ⊆ [0, 2𝜋] such that the slices
𝑓(⋅, 𝑟𝑒𝑖𝜃) ∈ 𝒟(𝜇1) and 𝑓(𝑟𝑒𝑖𝜃, ⋅) ∈ 𝒟(𝜇2) for 𝜃 ∈ [0, 2𝜋] ⧵ Ω𝑟. (10)

Thus (6) becomes

𝒟𝜇1,𝜇2
(𝑓) = sup

0<𝑟<1

∫

2𝜋

0

𝒟𝜇1
(𝑓(⋅, 𝑟𝑒𝑖𝜃))

𝑑𝜃

2𝜋
+ sup

0<𝑟<1

∫

2𝜋

0

𝒟𝜇2
(𝑓(𝑟𝑒𝑖𝜃, ⋅))

𝑑𝜃

2𝜋
. (11)

Combining (9) and (11) yields the result. □

In view of [9, Lemma 1.1], for any holomorphic function 𝑓 on 𝔻2 and 𝜈 ∈

𝑀+(𝔻), the function 𝑟 → ∫
𝕋
∫
𝔻
|𝑓(𝑧, 𝑟𝑒𝑖𝜃)|2𝑑𝜈(𝑧)𝑑𝜃 is increasing. So we can re-

place sup
0<𝑟<1

in (6) by lim𝑟→1− . Thus for each 𝑓 ∈ 𝒟(𝜇1, 𝜇2), 𝒟𝜇1,𝜇2
(𝑓) breaks

into two parts as𝒟𝜇1,𝜇2
(𝑓) = 𝐼𝜇1,𝜇2(𝑓)+𝐵𝜇1,𝜇2(𝑓),where 𝐼𝜇1,𝜇2(𝑓) and 𝐵𝜇1,𝜇2(𝑓)

are the integrals correspond to𝜇𝑗|𝔻 and𝜇𝑗|𝕋, respectively, for 𝑗 = 1, 2 and given
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by

𝐼𝜇1,𝜇2(𝑓) = sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

𝐷𝜁1(𝑓(⋅, 𝑟𝑒
𝑖𝜃))𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

𝐷𝜁2(𝑓(𝑟𝑒
𝑖𝜃, ⋅))𝑑𝜇2(𝜁2)

𝑑𝜃

2𝜋
, (12)

𝐵𝜇1,𝜇2(𝑓) = sup
0<𝑟<1

∫

2𝜋

0

∫
𝕋

𝐷𝜁1(𝑓(⋅, 𝑟𝑒
𝑖𝜃))𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝕋

𝐷𝜁2(𝑓(𝑟𝑒
𝑖𝜃, ⋅))𝑑𝜇2(𝜁2)

𝑑𝜃

2𝜋
.

The following lemmas are fundamental to prove the polynomial density and
boundedness of the multiplication 2-tuple M𝑧 on𝒟(𝜇1, 𝜇2).

Lemma 2.2. The Dirichlet-type space 𝒟(𝜇1, 𝜇2) is a reproducing kernel Hilbert
space. If 𝜅 ∶ 𝔻 × 𝔻 → ℂ is the reproducing kernel of 𝒟(𝜇1, 𝜇2), then for any
𝑟 ∈ (0, 1),

⋁
{𝜅(⋅, 𝑤) ∶ |𝑤| < 𝑟} = 𝒟(𝜇1, 𝜇2) and 𝜅(⋅, 0) = 1.

Proof. By replacing 𝑃𝜇1 by 𝑈𝜇1
and 𝑃𝜇2 by 𝑈𝜇2

in [9, Lemma 3.1] and arguing
similarly we get required result. □

Let 𝜇 ∈ 𝑀+(𝔻) and 𝑔 ∈ 𝒟(𝜇). For each 𝑟 ∈ (0, 1) define the function 𝑔𝑟
on 𝔻 as 𝑔𝑟(𝑤) ∶= 𝑔(𝑟𝑤), 𝑤 ∈ 𝔻. Combining [4, Lemma 4.1, p. 87] and [4,
Theorem 1.9, p. 74] gives 𝐷𝜇(𝑔𝑟) ≤

5

2
𝐷𝜇(𝑔). Later, in [15, Theorem 4.2] this

inequality is improved to
𝐷𝜇(𝑔𝑟) ≤ 𝐷𝜇(𝑔). (13)

The following lemma provides a similar estimate as of (13) for 𝒟(𝜇1, 𝜇2). For
𝑅 = (𝑅1, 𝑅2) ∈ (0, 1)2 and 𝑓 ∈ 𝒪(𝔻2) let 𝑓𝑅(𝑧) = 𝑓(𝑅1𝑧1, 𝑅2𝑧2) for 𝑧 =

(𝑧1, 𝑧2) ∈ 𝔻2.

Lemma 2.3. For any 𝑅 = (𝑅1, 𝑅2) ∈ (0, 1)2 and 𝑓 ∈ 𝒟(𝜇1, 𝜇2),

𝒟𝜇1,𝜇2
(𝑓𝑅) ≤ 𝒟𝜇1,𝜇2

(𝑓).

Proof. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2). Fix 𝑅 = (𝑅1, 𝑅2) ∈ (0, 1)2. By (11),

𝒟𝜇1,𝜇2
(𝑓𝑅)

= sup
0<𝑟<1

∫

2𝜋

0

𝒟𝜇1
(𝑓𝑅(⋅, 𝑟𝑒

𝑖𝜃))
𝑑𝜃

2𝜋
+ sup

0<𝑟<1

∫

2𝜋

0

𝒟𝜇2
(𝑓𝑅(𝑟𝑒

𝑖𝜃, ⋅))
𝑑𝜃

2𝜋

(13)
≤ sup

0<𝑟<1

∫

2𝜋

0

𝒟𝜇1
(𝑓(⋅, 𝑅2𝑟𝑒

𝑖𝜃))
𝑑𝜃

2𝜋
+ sup

0<𝑟<1

∫

2𝜋

0

𝒟𝜇2
(𝑓(𝑅1𝑟𝑒

𝑖𝜃, ⋅))
𝑑𝜃

2𝜋
.

Finally applying [9, Lemma 1.1] yields the result. □
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The next lemma is a prototype of [9, Lemma 3.7] (cf. [14, Theorem 7.3.1])
and the proof is similar so left to the reader.

Lemma 2.4. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2) and 𝑅 = (𝑅1, 𝑅2) ∈ (0, 1)2. Then

lim
𝑅1,𝑅2→1−

𝒟𝜇1,𝜇2
(𝑓 − 𝑓𝑅) = 0.

As an application of Lemma 2.4 we show that the set of polynomial is dense
in𝒟(𝜇1, 𝜇2).

Lemma 2.5. Polynomials are dense in𝒟(𝜇1, 𝜇2).

Proof. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2) and choose 𝜀 > 0. It is enough to show that there
exists a polynomial 𝑝 such that ‖𝑓 − 𝑝‖𝒟(𝜇1,𝜇2) < 𝜀. By Lemma 2.4 there exists
𝑅 = (𝑅1, 𝑅2) ∈ (0, 1)2 such that ‖𝑓−𝑓𝑅‖𝒟(𝜇1,𝜇2) < 𝜀∕2. Since 𝑓𝑅 is holomorphic

in a neighborhood of 𝔻
2

, there exists a polynomial 𝑝 such that

‖𝑓𝑅 − 𝑝‖
∞,𝔻

2 ,

‖‖‖‖‖‖‖‖

𝜕𝑓𝑅

𝜕𝑧𝑗
−
𝜕𝑝

𝜕𝑧𝑗

‖‖‖‖‖‖‖‖∞,𝔻
2
<

√
𝜀

4
√
𝑀
, 𝑗 = 1, 2,

where𝑀 = max {∫
𝔻
𝑈𝜇𝑗

(𝑤)𝑑𝐴(𝑤) ∶ 𝑗 = 1, 2} + 1. This together with the fact
that the norm on 𝐻2(𝔻2) is dominated by the norm ‖ ⋅ ‖

∞,𝔻
2 shows that ‖𝑓𝑅 −

𝑝‖𝒟(𝜇1,𝜇2) < 𝜀∕2. Thus using triangle inequality we get that ‖𝑓 −𝑝‖𝒟(𝜇1,𝜇2) < 𝜀.

Hence the proof. □

This next lemma is very crucial to prove the boundedness of the multiplica-
tion tuple M𝑧 = (M𝑧1

,M𝑧2
).

Lemma 2.6. Let 𝑓 ∈ 𝐻2(𝔻2). Then

𝐼𝜇1,𝜇2(𝑧1𝑓) = sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋
+ 𝐼𝜇1,𝜇2(𝑓),

𝐼𝜇1,𝜇2(𝑧2𝑓) = sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝑟𝑒𝑖𝜃, 𝜁2)|
2𝑑𝜇2(𝜁2)

𝑑𝜃

2𝜋
+ 𝐼𝜇1,𝜇2(𝑓).

Proof. For each 𝑟 ∈ (0, 1) and 𝜃 ∈ [0, 2𝜋] define 𝑓𝑟,𝜃(𝑤) ∶= 𝑓(𝑤, 𝑟𝑒𝑖𝜃), 𝑤 ∈

𝔻, then 𝑓𝑟,𝜃 ∈ 𝐻2(𝔻) (see [9, Lemma 3.2]). Since 𝐻2(𝔻) is closed under the
multiplication of the coordinate function𝑤 so𝑤𝑓𝑟,𝜃 ∈ 𝐻2(𝔻). Fixing 𝜁 ∈ 𝔻we
know that for each 𝑔 ∈ 𝐻2(𝔻),

𝑔−𝑔(𝜁)

𝑤−𝜁
∈ 𝐻2(𝔻). In particular, 𝑔 = 𝑤𝑓𝑟,𝜃 gives

𝑤𝑓𝑟,𝜃−(𝑤𝑓𝑟,𝜃)(𝜁)

𝑤−𝜁
∈ 𝐻2(𝔻) and

‖‖‖‖‖‖‖‖

𝑤𝑓𝑟,𝜃 − (𝑤𝑓𝑟,𝜃)(𝜁)

𝑤 − 𝜁

‖‖‖‖‖‖‖‖

2

𝐻2(𝔻)

=

‖‖‖‖‖‖‖‖
𝑓𝑟,𝜃(𝜁) + 𝑤

𝑓𝑟,𝜃 − 𝑓𝑟,𝜃(𝜁)

𝑤 − 𝜁

‖‖‖‖‖‖‖‖

2

𝐻2(𝔻)

.
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As the constant functions are orthogonal to 𝑤𝐻2(𝔻) in 𝐻2(𝔻) so the above
equation becomes

‖‖‖‖‖‖‖‖

𝑤𝑓𝑟,𝜃 − (𝑤𝑓𝑟,𝜃)(𝜁)

𝑤 − 𝜁

‖‖‖‖‖‖‖‖

2

𝐻2

= |𝑓𝑟,𝜃(𝜁)|
2 +

‖‖‖‖‖‖‖‖

𝑓𝑟,𝜃 − 𝑓𝑟,𝜃(𝜁)

𝑤 − 𝜁

‖‖‖‖‖‖‖‖

2

𝐻2

(14)

= |𝑓(𝜁, 𝑟𝑒𝑖𝜃)|2 +

‖‖‖‖‖‖‖‖

𝑓(⋅, 𝑟𝑒𝑖𝜃) − 𝑓(𝜁, 𝑟𝑒𝑖𝜃)

𝑤 − 𝜁

‖‖‖‖‖‖‖‖

2

𝐻2

.

Now (12) together with (8) implies

𝐼𝜇1,𝜇2(𝑧1𝑓)

= sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

‖‖‖‖‖

(𝑧1𝑓)(⋅, 𝑟𝑒
𝑖𝜃) − (𝑧1𝑓)(𝜁1, 𝑟𝑒

𝑖𝜃)

𝑧1 − 𝜁1

‖‖‖‖‖

2

𝐻2(𝔻)
𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

‖‖‖‖‖

(𝑧1𝑓)(𝑟𝑒
𝑖𝜃, ⋅) − (𝑧1𝑓)(𝑟𝑒

𝑖𝜃, 𝜁2)

𝑧2 − 𝜁2

‖‖‖‖‖

2

𝐻2(𝔻)
𝑑𝜇2(𝜁2)

𝑑𝜃

2𝜋

(14)
= sup

0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

‖‖‖‖‖

𝑓(⋅, 𝑟𝑒𝑖𝜃) − 𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)

𝑧1 − 𝜁1

‖‖‖‖‖

2

𝐻2(𝔻)
𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

‖‖‖‖‖

𝑓(𝑟𝑒𝑖𝜃, ⋅) − 𝑓(𝑟𝑒𝑖𝜃, 𝜁2)

𝑧2 − 𝜁2

‖‖‖‖‖

2

𝐻2(𝔻)
𝑑𝜇2(𝜁2)

𝑑𝜃

2𝜋

(12)
= sup

0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋
+ 𝐼𝜇1,𝜇2(𝑓). (15)

Similarly on can derive the expression involving 𝐼𝜇1,𝜇2(𝑧2𝑓). □

Here we show that the coordinate functions 𝑧1 and 𝑧2 are multipliers of
𝒟(𝜇1, 𝜇2).

Lemma 2.7. Let 𝜇1, 𝜇2 ∈ 𝑀+(𝔻). ThenM𝑧1
andM𝑧2

are bounded linear oper-
ators on𝒟(𝜇1, 𝜇2).

Proof. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2). So both 𝐼𝜇1,𝜇2(𝑓) and 𝐵𝜇1,𝜇2(𝑓) are finite. From the
proof of [9, Lemma 3.4], there exists constant 𝐶 ≥ 1 such that

𝐵𝜇1,𝜇2(𝑧1𝑓) ≤ 𝐶
(
‖𝑓‖2

𝐻2(𝔻2)
+ 𝐵𝜇1,𝜇2(𝑓)

)
< ∞.

Now we show that 𝐼𝜇1,𝜇2(𝑧1𝑓) < ∞. In view of Lemma 2.6 it is enough to show
that

sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋
< ∞. (16)

The following idea is motivated from [4, Proposition 1.6]. Let ℎ ∈ 𝐻2(𝔻2) and
assume that ℎ(0, 𝑧2) = 0 for all 𝑧2 ∈ 𝔻. By the division property of𝐻2(𝔻2) (see
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[9, Remark 4.2]) there exists 𝑔 ∈ 𝐻2(𝔻2) such that ℎ(𝑧1, 𝑧2) = 𝑧1𝑔(𝑧1, 𝑧2) for all
(𝑧1, 𝑧2) ∈ 𝔻2. Then for each 𝑟 ∈ (0, 1), 𝜃 ∈ [0, 2𝜋] and 𝜁1 ∈ 𝔻, using (14) we
get

‖‖‖‖‖‖‖‖

ℎ(⋅, 𝑟𝑒𝑖𝜃) − ℎ(𝜁1, 𝑟𝑒
𝑖𝜃)

𝑧1 − 𝜁1

‖‖‖‖‖‖‖‖

2

𝐻2

= |𝑔(𝜁1, 𝑟𝑒
𝑖𝜃)|2 +

‖‖‖‖‖‖‖‖

𝑔(⋅, 𝑟𝑒𝑖𝜃) − 𝑔(𝜁1, 𝑟𝑒
𝑖𝜃)

𝑧1 − 𝜁1

‖‖‖‖‖‖‖‖

2

𝐻2

≥ |𝑔(𝜁1, 𝑟𝑒
𝑖𝜃)|2

≥ |𝜁1|
2|𝑔(𝜁1, 𝑟𝑒

𝑖𝜃)|2

= |ℎ(𝜁1, 𝑟𝑒
𝑖𝜃)|2. (17)

Thus,

sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

= sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃) − 𝑓(0, 𝑟𝑒𝑖𝜃) + 𝑓(0, 𝑟𝑒𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

≤ 2 sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃) − 𝑓(0, 𝑟𝑒𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

+ 2 sup
0<𝑟<1

∫

2𝜋

0

∫
𝔻

|𝑓(0, 𝑟𝑒𝑖𝜃)|2𝑑𝜇1(𝜁1)
𝑑𝜃

2𝜋

(17)
≤ 2 sup

0<𝑟<1

∫

2𝜋

0

∫
𝔻

‖‖‖‖‖‖‖‖

𝑓(⋅, 𝑟𝑒𝑖𝜃) − 𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)

𝑧1 − 𝜁1

‖‖‖‖‖‖‖‖

2

𝐻2(𝔻)

𝑑𝜇1(𝜁1)
𝑑𝜃

2𝜋

+ 2𝜇1(𝔻) sup
0<𝑟<1

∫

2𝜋

0

|𝑓(0, 𝑟𝑒𝑖𝜃)|2
𝑑𝜃

2𝜋
. (18)

Let us assume that 𝑓(𝑧1, 𝑧2) =
∑

𝑚,𝑛≥0
𝑎𝑚,𝑛𝑧

𝑚
1
𝑧𝑛
2
.As 𝑓 ∈ 𝐻2(𝔻2) by using dom-

inated convergence theorem (see [26, p. 88])

sup
0<𝑟<1

∫

2𝜋

0

|𝑓(0, 𝑟𝑒𝑖𝜃)|2
𝑑𝜃

2𝜋
=
∑

𝑛≥0

|𝑎0,𝑛|
2 ≤ ‖𝑓‖2

𝐻2(𝔻2)
. (19)

Combining (18) with (12) and (19) yields (16).
Hence we conclude that 𝑧1𝑓 ∈ 𝒟(𝜇1, 𝜇2). Similarly, one can show show that

𝑧2𝑓 ∈ 𝒟(𝜇1, 𝜇2). Since𝒟(𝜇1, 𝜇2) is a reproducing kernel Hilbert space so using
the closed graph theorem we conclude the result. □

Let 𝜅 ∶ 𝔻 × 𝔻 → ℂ denote the reproducing kernel of𝒟(𝜇1, 𝜇2).

Corollary 2.8. For any 𝑤 ∈ 𝔻2, ker(M𝑧 − 𝑤) = {0} and ker(M ∗
𝑧 − 𝑤) is the

one-dimensional space spanned by 𝜅(⋅, 𝑤).

Proof. The proof goes the same as that of [9, Corollary 3.9]. □

The following lemma recovers a counterpart of [22, Lemma 2.1] for𝒟(𝜇).
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Lemma 2.9. For any 𝜇 ∈ 𝑀+(𝔻), 𝒟(𝜇) has the Gleason property.

Proof. HereM𝑧 is cyclic on𝒟(𝜇) then for each 𝜆 ∈ 𝔻 the dimker(M ∗
𝑧 − 𝜆) is

at most one ( see [3, Proposition 1.1]). Let 𝑘 denote the reproducing kernel of
𝒟(𝜇). Then 𝑘(⋅, 𝜆) ∈ ker(M ∗

𝑧 −𝜆) so ker(M ∗
𝑧 −𝜆) is spanned by 𝑘(⋅, 𝜆). For any

ℎ ∈ 𝒟(𝜇) by the reproducing property we know that ℎ − ℎ(𝜆) is orthogonal to
𝑘(⋅, 𝜆). That means ℎ−ℎ(𝜆) belongs the range closure of (M𝑧 −𝜆). SinceM𝑧 is
2-concave, by [23, Lemma1(a)]M𝑧 is expansive on𝒟(𝜇) so (M𝑧−𝜆) is bounded
below and hence range of (M𝑧 − 𝜆) is closed. Thus there exists 𝑔 ∈ 𝒟(𝜇) such
that ℎ(𝑧) − ℎ(𝜆) = (𝑧 − 𝜆)𝑔(𝑧) for 𝑧 ∈ 𝔻. □

The next proposition shows that𝒟(𝜇1, 𝜇2) has the division property.

Proposition 2.10. Let𝜇1, 𝜇2 ∈ 𝑀+(𝔻).Then𝒟(𝜇1, 𝜇2)has the division property.

Proof. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2) and 𝜆 ∈ 𝔻 such that 𝑓(𝜆, 𝑧2) = 0 for each 𝑧2 ∈ 𝔻.

We are required to show 𝑓

𝑧1−𝜆
belongs𝒟(𝜇1, 𝜇2). Since𝐻2(𝔻2) has the division

property (see [9, Lemma 4.1]), there exists 𝑔 ∈ 𝐻2(𝔻2) such that 𝑓(𝑧1, 𝑧2) =
(𝑧1 − 𝜆)𝑔(𝑧1, 𝑧2) for 𝑧1, 𝑧2 ∈ 𝔻. Now it boils down to show 𝑔 ∈ 𝒟(𝜇1, 𝜇2).

From (10) it is clear that (𝑧1 − 𝜆)𝑔(⋅, 𝑟𝑒𝑖𝜃) ∈ 𝒟(𝜇1) and (𝑟𝑒𝑖𝜃 − 𝜆)𝑔(𝑟𝑒𝑖𝜃, ⋅) ∈

𝒟(𝜇2) for every 𝑟 ∈ (0, 1) and almost every 𝜃 ∈ [0, 2𝜋]. Clearly, for every 𝑟 ∈
(0, 1) and almost every 𝜃 ∈ [0, 2𝜋], (by Lemma 2.9) 𝑔(⋅, 𝑟𝑒𝑖𝜃) ∈ 𝒟(𝜇1) and
𝑔(𝑟𝑒𝑖𝜃, ⋅) ∈ 𝒟(𝜇2). The multiplication operator M𝑤 by the coordinate function
𝑤 is expansive on𝒟(𝜇𝑗), 𝑗 = 1, 2. So

‖𝑔(⋅, 𝑟𝑒𝑖𝜃)‖𝒟(𝜇1) ≤ ‖𝑤𝑔(⋅, 𝑟𝑒𝑖𝜃)‖𝒟(𝜇1).

The rest of the proof is similar to [9, Proof of Theorem 2.2]. For the sake of
completeness, we are providing the full argument. Note that

‖(𝑤 − 𝜆)𝑔(⋅, 𝑟𝑒𝑖𝜃)‖𝒟(𝜇1) ≥ (1 − |𝜆|)2‖𝑔(⋅, 𝑟𝑒𝑖𝜃)‖𝒟(𝜇1)

≥ (1 − |𝜆|)2𝒟𝜇1
(𝑔(⋅, 𝑟𝑒𝑖𝜃)).

Integrating both sides with respect to 𝜃

(1 − |𝜆|)2 ∫

2𝜋

0

𝒟𝜇1
(𝑔(⋅, 𝑟𝑒𝑖𝜃))

𝑑𝜃

2𝜋

≤ ∫

2𝜋

0

‖(𝑤 − 𝜆)𝑔(⋅, 𝑟𝑒𝑖𝜃)‖2
𝐻2(𝔻)

𝑑𝜃

2𝜋
+ ∫

2𝜋

0

𝒟𝜇1
((𝑤 − 𝜆)𝑔(⋅, 𝑟𝑒𝑖𝜃))

𝑑𝜃

2𝜋
.

By using [9, Lemma 3.2] and (11) we get that

(1 − |𝜆|)2 ∫

2𝜋

0

𝒟𝜇1
(𝑔(⋅, 𝑟𝑒𝑖𝜃))

𝑑𝜃

2𝜋
≤ ‖(𝑧1 − 𝜆)𝑔‖2

𝐻2(𝔻2)
+𝒟𝜇1,𝜇2

((𝑧1 − 𝜆)𝑔).

Taking supremum over 0 < 𝑟 < 1 on the above inequality gives

sup
0<𝑟<1

∫

2𝜋

0

𝒟𝜇1
(𝑔(⋅, 𝑟𝑒𝑖𝜃))

𝑑𝜃

2𝜋
< ∞. (20)



DIRICHLET-TYPE SPACES 109

We already have

sup
0<𝑟<1

∫

2𝜋

0

𝒟𝜇2
((𝑟𝑒𝑖𝜃 − 𝜆)𝑔(𝑟𝑒𝑖𝜃, ⋅))

𝑑𝜃

2𝜋
< ∞.

So for any 𝑠 ∈ (|𝜆|, 1),

sup
0<𝑟<1

∫

2𝜋

0

𝒟𝜇2
((𝑟𝑒𝑖𝜃 − 𝜆)𝑔(𝑟𝑒𝑖𝜃, ⋅))

𝑑𝜃

2𝜋

≥ ∫

2𝜋

0

𝒟𝜇2
((𝑠𝑒𝑖𝜃 − 𝜆)𝑔(𝑠𝑒𝑖𝜃, ⋅))

𝑑𝜃

2𝜋

≥ (𝑠 − |𝜆|)2 ∫

2𝜋

0

𝒟𝜇2
(𝑔(𝑠𝑒𝑖𝜃, ⋅))

𝑑𝜃

2𝜋
.

Now taking limit 𝑠 → 1 gives

lim
𝑠→1

∫

2𝜋

0

𝒟𝜇2
(𝑔(𝑠𝑒𝑖𝜃, ⋅))

𝑑𝜃

2𝜋
< ∞. (21)

Since [9, Lemma 1.1] suggest that we can replace the limit by supremum so
combining (20) and (21) yields 𝑔 ∈ 𝒟(𝜇1, 𝜇2).

Similarly one can start with the assumption that 𝑓(𝑧1, 𝜆) = 0 for all 𝑧1 ∈ 𝔻

and show that 𝑓

𝑧2−𝜆
∈ 𝒟(𝜇1, 𝜇2). □

As an application of the Proposition 2.10, we have the following:

Lemma 2.11. Gleason’s problem for𝒟(𝜇1, 𝜇2) has solution over {(𝜆1, 𝜆2) ∈ 𝔻2 ∶

𝜆1𝜆2 = 0}.

Proof. Let 𝑓 ∈ 𝒟(𝜇1, 𝜇2) and 𝜆 ∈ 𝔻. It is clear from the Definition 1.1 that

𝒟𝜇1,𝜇2
(𝑓(⋅, 0)) = 𝒟𝜇1

(𝑓(⋅, 0)) ≤ 𝒟𝜇1,𝜇2
(𝑓),

𝒟𝜇1,𝜇2
(𝑓(0, ⋅)) = 𝒟𝜇2

(𝑓(0, ⋅)) ≤ 𝒟𝜇1,𝜇2
(𝑓).

Consider the function ℎ(𝑧1, 𝑧2) = 𝑓(𝑧1, 𝑧2) − 𝑓(𝑧1, 0), (𝑧1, 𝑧2) ∈ 𝔻2. Then ℎ ∈

𝒟(𝜇1, 𝜇2). By Proposition 2.10, there exists 𝑓1 ∈ 𝒟(𝜇1, 𝜇2) such that

ℎ(𝑧1, 𝑧2) = 𝑓(𝑧1, 𝑧2) − 𝑓(𝑧1, 0) = (𝑧2 − 0)𝑓1(𝑧1, 𝑧2), (𝑧1, 𝑧2) ∈ 𝔻2. (22)

Since 𝒟𝜇1
(𝑓(⋅, 0)) < ∞ so 𝑓(⋅, 0) ∈ 𝒟(𝜇1). Applying Lemma 2.9 to 𝒟(𝜇1) we

get that for each 𝜆 ∈ 𝔻, there exists 𝑣 ∈ 𝒟(𝜇1) such that

𝑓(𝑧1, 0) − 𝑓(𝜆, 0) = (𝑧1 − 𝜆)𝑣(𝑧1), 𝑧1 ∈ 𝔻. (23)

Now adding (22) and (23) gives us

𝑓(𝑧1, 𝑧2) − 𝑓(𝜆, 0) = (𝑧1 − 𝜆)𝑣(𝑧1) + 𝑧2𝑓1(𝑧1, 𝑧2), 𝑧1, 𝑧2 ∈ 𝔻.

Defining 𝑓2(𝑧1, 𝑧2) = 𝑣(𝑧1), 𝑧1, 𝑧2 ∈ 𝔻 shows that 𝑓2 ∈ 𝒟(𝜇1, 𝜇2). Thus the
Gleason’s problem has solution at (𝜆, 0) for every 𝜆 ∈ 𝔻.

Similarly, starting with 𝐻(𝑧1, 𝑧2) = 𝑓(𝑧1, 𝑧2) − 𝑓(0, 𝑧2) for 𝑧1, 𝑧2 ∈ 𝔻, one
can show that the Gleason’s problem can be solved on {(0, 𝜆) ∶ 𝜆 ∈ 𝔻}. □
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Theorem 2.12. Let 𝜇1, 𝜇2 ∈ 𝑀+(𝔻). Then the followings hold:

(𝑎) the commuting pairM𝑧 = (M𝑧1
,M𝑧2

) is cyclic with cyclic vector 1,
(𝑏) Gleason’s problem can be solved for 𝒟(𝜇1, 𝜇2) on an open neighborhood

of {(𝜆1, 𝜆2) ∈ 𝔻2 ∶ 𝜆1𝜆2 = 0}.

Proof. (𝑎) Combining Lemmas 2.7, 2.5 yields the result.
(𝑏) Lemma 2.11 suggests that Gleason’s problem has solution over

𝐴 = {(𝜆1, 𝜆2) ∈ 𝔻2 ∶ 𝜆1𝜆2 = 0}.

So for each 𝜆 = (𝜆1, 𝜆2) ∈ 𝐴 the row operator 𝑇𝜆 ∶= [M𝑧1
− 𝜆1 M𝑧2

− 𝜆2] has
closed range. With the help of Corollary 2.8

dim
(
𝒟(𝜇1, 𝜇2)∕𝑇𝜆(𝒟(𝜇1, 𝜇2) ⊕ 𝒟(𝜇1, 𝜇2))

)
= dimker 𝑇∗

𝜆

= dimker(M ∗
𝑧 − 𝜆) = 1.

Now using [9, Lemma 4.4] and the fact that the joint kernel ker(M𝑧 −𝜆) = {0},

we conclude that the pair M𝑧 − 𝜆 is Fredholm. Thus 𝐴 is in the complement
of the essential spectrum 𝜎𝑒(M𝑧) ofM𝑧. Since 𝜎𝑒(M𝑧) is closed, there exists an
open subset𝑉 of𝔻2⧵𝜎𝑒(M𝑧) containing𝐴.Applying [9, Lemma 5.1] completes
the proof. □

3. A Representation theorem

Let 𝜇 be a finite positive Borel measure on 𝔻. For two non-negative integers
𝑖 and 𝑗, the (𝑖, 𝑗)-th moment of 𝜇 (see [7, 13, 18, 20]) is defined as

𝜇̂{𝑖, 𝑗} = ∫
𝔻

(𝜁)𝑖𝜁𝑗𝑑𝜇(𝜁).

Proposition 3.1. Let 𝑖 and 𝑗 be two nonnegative integers and 𝑖 ≤ 𝑗. Then

⟨𝑧𝑖, 𝑧𝑗⟩𝒟(𝜇) = 𝛿(𝑖, 𝑗) +

𝑖−1∑

𝑘=0

𝜇̂{𝑗 − 𝑘 − 1, 𝑖 − 𝑘 − 1},

where 𝛿(⋅, ⋅) denotes the two variable Kronecker delta function.

Proof. Substituting (9) in (5) gives

‖𝑔‖2
𝒟(𝜇)

= ‖𝑔‖2
𝐻2(𝔻)

+ ∫
𝔻

𝒟𝜁(𝑔)𝑑𝜇(𝜁), 𝑔 ∈ 𝒟(𝜇).
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Using polarization identity in the above equation gives

⟨𝑧𝑖, 𝑧𝑗⟩𝒟(𝜇) = ⟨𝑧𝑖, 𝑧𝑗⟩𝐻2(𝔻) + ∫
𝔻

⟨𝑧𝑖 − 𝜁𝑖

𝑧 − 𝜁
,
𝑧𝑗 − 𝜁𝑗

𝑧 − 𝜁

⟩

𝐻2(𝔻)

𝑑𝜇(𝜁)

= 𝛿(𝑖, 𝑗) + ∫
𝔻

𝑖−1∑

𝑘=0

𝜁𝑖−1−𝑘(𝜁)𝑗−1−𝑘𝑑𝜇(𝜁)

= 𝛿(𝑖, 𝑗) +

𝑖−1∑

𝑘=0

∫
𝔻

𝜁𝑖−1−𝑘(𝜁)𝑗−1−𝑘𝑑𝜇(𝜁)

= 𝛿(𝑖, 𝑗) +

𝑖−1∑

𝑘=0

𝜇̂{𝑗 − 𝑘 − 1, 𝑖 − 𝑘 − 1}.

Hence the result. □

Next, we derive a formula for the inner product of monomials in𝒟(𝜇1, 𝜇2).

Proposition 3.2. Let 𝜇1, 𝜇2 ∈ 𝑀+(𝔻) and𝑚, 𝑛, 𝑝, 𝑞 ∈ ℕ then

⟨𝑧𝑚
1
𝑧𝑛
2
, 𝑧

𝑝

1
𝑧
𝑞

2
⟩𝒟(𝜇1,𝜇2) =

⎧
⎪

⎨
⎪

⎩

0 if𝑚 ≠ 𝑝, 𝑛 ≠ 𝑞,

⟨𝑧𝑛
2
, 𝑧

𝑞

2
⟩𝒟(𝜇2) if𝑚 = 𝑝, 𝑛 ≠ 𝑞,

⟨𝑧𝑚
1
, 𝑧

𝑝

1
⟩𝒟(𝜇1) if𝑚 ≠ 𝑝, 𝑛 = 𝑞,

‖𝑧𝑚
1
‖2
𝒟(𝜇1)

+ ‖𝑧𝑛
2
‖2
𝒟(𝜇2)

− 1 if𝑚 = 𝑝, 𝑛 = 𝑞.

Proof. Using the polarization identity on (6) gives

⟨𝑧𝑚
1
𝑧𝑛
2
, 𝑧

𝑝

1
𝑧
𝑞

2
⟩𝒟(𝜇1,𝜇2) = 𝛿(𝑚, 𝑝)𝛿(𝑛, 𝑞)

+ lim
𝑟→1

∫

2𝜋

0

∫
𝔻

𝑟𝑛+𝑞𝑒𝑖(𝑛−𝑞)𝜃𝑚𝑝𝑧𝑚−1
1

(𝑧1)
𝑝−1𝑈𝜇1

(𝑧1)𝑑𝐴(𝑧1)
𝑑𝜃

2𝜋

+ lim
𝑟→1

∫

2𝜋

0

∫
𝔻

𝑟𝑚+𝑝𝑒𝑖(𝑚−𝑝)𝜃𝑛𝑞𝑧𝑛−1
2

(𝑧2)
𝑞−1𝑈𝜇2

(𝑧2)𝑑𝐴(𝑧2)
𝑑𝜃

2𝜋

= 𝛿(𝑛, 𝑞)𝛿(𝑚, 𝑝) + 𝛿(𝑛, 𝑞) ∫
𝔻

𝑚𝑧𝑚−1
1

𝑝(𝑧1)
𝑝−1𝑈𝜇1

(𝑧1)𝑑𝐴(𝑧1)

+ 𝛿(𝑚, 𝑝) ∫
𝔻

𝑛𝑧𝑛−1
2

𝑞(𝑧2)
𝑞−1𝑈𝜇2

(𝑧2)𝑑𝐴(𝑧2).

Rest follows from (4) and polarisation identity. □

An immediate corollary of the of the above proposition is the following:

Corollary 3.3. For 𝜇1, 𝜇2 ∈ 𝑀+(𝔻), the subspace spanned by the constant vector
1 in𝒟(𝜇1, 𝜇2) is a wandering subspace forM𝑧 on𝒟(𝜇1, 𝜇2).

Recall that a commuting pair 𝑇 = (𝑇1, 𝑇2) is called a toral 2-isometry (see
[9, Eq (1.1)]) if it satisfies the equations 𝐼 − 𝑇∗

𝑖
𝑇𝑖 − 𝑇∗

𝑗
𝑇𝑗 + 𝑇∗

𝑖
𝑇∗
𝑗
𝑇𝑖𝑇𝑗 = 0 for
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𝑖, 𝑗 = 1, 2, i.e. 𝛽𝛼(𝑇) = 0 for 𝛼 ∈ {(2, 0), (1, 1), (0, 2)}. For future references we
state the following lemma concerning toral 2-isometry (see [9, Corollary 3.8]).

Lemma 3.4. Let the supports of 𝜇1 and 𝜇2 be contained in the unit circle. Then
the commuting pairM𝑧 on𝒟(𝜇1, 𝜇2) is a cyclic toral 2-isometry with cyclic vector
1.

The following is a noteworthy observation regarding the commuting pairM𝑧

on𝒟(𝜇1, 𝜇2).

Lemma 3.5. Let 𝜇1, 𝜇2 ∈ 𝑀+(𝔻). Then M𝑧 = (M𝑧1
,M𝑧2

) is a toral completely
hyperexpansive 2-tuple with zero defect operator on𝒟(𝜇1, 𝜇2).

Proof. Let 𝑛 ≥ 2 and 𝑓 ∈ 𝒟(𝜇1, 𝜇2).

⟨𝛽(𝑛,0)(M𝑧)(𝑓), 𝑓⟩

=

𝑛∑

𝑘=0

(−1)𝑘
(𝑛

𝑘

)
‖𝑧𝑘

1
𝑓‖2

=

𝑛∑

𝑘=0

(−1)𝑘
(𝑛

𝑘

)(
‖𝑧𝑘

1
𝑓‖2

𝐻2(𝔻2)
+ 𝐼𝜇1,𝜇2(𝑧

𝑘
1
𝑓) + 𝐵𝜇1,𝜇2(𝑧

𝑘
1
𝑓)
)

=

𝑛∑

𝑘=0

(−1)𝑘
(𝑛

𝑘

)(
‖𝑧𝑘

1
𝑓‖2

𝐻2(𝔻2)
+ 𝐵𝜇1,𝜇2(𝑧

𝑘
1
𝑓)
)

+

𝑛∑

𝑘=0

(−1)𝑘
(𝑛

𝑘

)
𝐼𝜇1,𝜇2(𝑧

𝑘
1
𝑓).

By Lemma 3.4 and the fact that every 2-isometry is automatically a 𝑘-isometry
for each 𝑘 ≥ 2 (see [1, 2]), the first part of the above sum is zero. So we are left
with

⟨𝛽(𝑛,0)(M𝑧)(𝑓), 𝑓⟩ =

𝑛∑

𝑘=0

(−1)𝑘
(𝑛

𝑘

)
𝐼𝜇1,𝜇2(𝑧

𝑘
1
𝑓). (24)

Let 𝑘 ≥ 1. Now replacing 𝑓 by 𝑧𝑘
1
𝑓 in (15) gives us

𝐼𝜇1,𝜇2(𝑧
𝑘+1
1

𝑓) − 𝐼𝜇1,𝜇2(𝑧
𝑘
1
𝑓) = lim

𝑟→1
∫

2𝜋

0

∫
𝔻

|𝜁1|
2𝑘|𝑓(𝜁1, 𝑟𝑒

𝑖𝜃)|2𝑑𝜇1(𝜁1)
𝑑𝜃

2𝜋
.



DIRICHLET-TYPE SPACES 113

Thus (24) becomes

⟨𝛽(𝑛,0)(M𝑧)(𝑓), 𝑓⟩

=

𝑛∑

𝑘=0

(−1)𝑘
(𝑛

𝑘

)
𝐼𝜇1,𝜇2(𝑧

𝑘
1
𝑓)

=

𝑛−1∑

𝑘=0

(−1)𝑘
(𝑛 − 1

𝑘

) (
𝐼𝜇1,𝜇2(𝑧

𝑘
1
𝑓) − 𝐼𝜇1,𝜇2(𝑧

𝑘+1
1

𝑓)
)

= − lim
𝑟→1

∫

2𝜋

0

∫
𝔻

𝑛−1∑

𝑘=0

(−1)𝑘
(𝑛 − 1

𝑘

)
|𝜁1|

2𝑘|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

= − lim
𝑟→1

∫

2𝜋

0

∫
𝔻

(1 − |𝜁1|
2)𝑛−1|𝑓(𝜁1, 𝑟𝑒

𝑖𝜃)|2𝑑𝜇1(𝜁1)
𝑑𝜃

2𝜋
≤ 0. (25)

Similarly, ⟨𝛽(0,𝑛)(M𝑧)(𝑓), 𝑓⟩ ≤ 0.Wenowshow that the defect operator𝛽(1,1)(M𝑧)

of M𝑧 is zero. If we replace 𝑓 by 𝑧2𝑓 in (15),

𝐼𝜇1,𝜇2(𝑧1𝑧2𝑓) − 𝐼𝜇1,𝜇2(𝑧2𝑓) = lim
𝑟→1

∫

2𝜋

0

∫
𝔻

𝑟2|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋

= lim
𝑟→1

∫

2𝜋

0

∫
𝔻

|𝑓(𝜁1, 𝑟𝑒
𝑖𝜃)|2𝑑𝜇1(𝜁1)

𝑑𝜃

2𝜋
. (26)

So applying Lemma 3.4 we have

‖𝑓‖2 − ‖M𝑧1
𝑓‖2 − ‖M𝑧2

𝑓‖2 + ‖M𝑧1
M𝑧2

𝑓‖2

=
(
𝐼𝜇1,𝜇2(𝑓) − 𝐼𝜇1,𝜇2(𝑧1𝑓)

)
+
(
𝐼𝜇1,𝜇2(𝑧1𝑧2𝑓) − 𝐼𝜇1,𝜇2(𝑧2𝑓)

)

(15)&(26)
= 0.

From the discussion after (1) it is clear that 𝛽𝛼(𝑇) ≤ 0 for all 𝛼 = (𝛼1, 𝛼2) ∈ ℤ2
+.

Hence the result. □

The next lemma is extracted from [9, Lemma 6.1] and very useful in the proof
of the main theorem.

Lemma 3.6. Let 𝑇 = (𝑇1, 𝑇2) is a commuting pair on ℋ such that the defect
operator (see (3)) is zero. Assume that ker 𝑇∗ is a wandering subspace of 𝑇. Then
for each 𝑓0 ∈ ker 𝑇∗,

⟨𝑇𝑚
1
𝑇𝑛
2
𝑓0, 𝑇

𝑝

1
𝑇
𝑞

2
𝑓0⟩ℋ =

⎧
⎪

⎨
⎪

⎩

0 if𝑚 ≠ 𝑝, 𝑛 ≠ 𝑞,

⟨𝑇𝑛
2
𝑓0, 𝑇

𝑞

2
𝑓0⟩ℋ if𝑚 = 𝑝, 𝑛 ≠ 𝑞,

⟨𝑇𝑚
1
𝑓0, 𝑇

𝑝

1
𝑓0⟩ℋ if𝑚 ≠ 𝑝, 𝑛 = 𝑞,

‖𝑇𝑚
1
𝑓0‖

2
ℋ
+ ‖𝑇𝑛

2
𝑓0‖

2
ℋ
− ‖𝑓0‖

2
ℋ

if𝑚 = 𝑝, 𝑛 = 𝑞.
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Proof. From the proof of [9, Lemma 6.1(i)] we get that whenever 𝐼 − 𝑇∗
1
𝑇1 −

𝑇∗
2
𝑇2 + 𝑇∗

1
𝑇∗
2
𝑇1𝑇2 = 0, for each 𝑘, 𝑙 ≥ 0,

𝑇∗𝑘
1
𝑇∗𝑙
2
𝑇𝑘
1
𝑇𝑙
2
= 𝑇∗𝑘

1
𝑇𝑘
1
+ 𝑇∗𝑙

2
𝑇𝑙
2
− 𝐼. (27)

Since ker 𝑇∗ is a wandering subspace, using (27) and following the proof of [9,
Lemma 6.1(ii)] one recovers the required result. □

Proof of Theorem 1.2. (𝐵) ⟹ (𝐴) This follows from Corollaries 2.8, 3.3
and Lemma 3.5.
(𝐴) ⟹ (𝐵) As 𝑇 is analytic on ℋ so is 𝑇1 and 𝑇2. Fix 𝑗 ∈ {1, 2}. Consider
the 𝑇𝑗 invariant subspaceℋ𝑗 = 𝑠𝑝𝑎𝑛{𝑇𝑘

𝑗
𝑓0 ∶ 𝑘 ≥ 0} ofℋ. Then 𝑇𝑗|ℋ𝑗

is cyclic
analytic completely hyperexpansive operator i.e. an operator of Dirichlet-type
(refer to [4, Definition 1.2, p.70]). Hence, by [4, Theorem 2.5, p.79] there exists
a unique measure 𝜇𝑗 ∈ 𝑀+(𝔻) and a unitary operator 𝑈𝑗 ∶ ℋ𝑗 → 𝒟(𝜇𝑗) such
that

𝑈𝑗𝑓0 = 1, 𝑈𝑗𝑇𝑗 = M
(𝑗)
𝑤 𝑈𝑗, (28)

whereM
(𝑗)
𝑤 denotes themultiplication by coordinate function𝑤 on𝒟(𝜇𝑗).Now

consider the map 𝑈 as

𝑈(𝑇𝑚
1
𝑇𝑛
2
𝑓0) = 𝑧𝑚

1
𝑧𝑛
2
, 𝑚, 𝑛 ≥ 0.

Here we haveℋ = 𝑠𝑝𝑎𝑛{𝑇𝑚
1
𝑇𝑛
2
𝑓0 ∶ 𝑚, 𝑛 ≥ 0} and 𝒟(𝜇1, 𝜇2) = 𝑠𝑝𝑎𝑛{𝑧𝑚

1
𝑧𝑛
2
∶

𝑚, 𝑛 ≥ 0}. For any𝑚,𝑝 ≥ 0, by (28)

⟨𝑇𝑚
𝑗
𝑓0, 𝑇

𝑝

𝑗
𝑓0⟩ℋ = ⟨𝑈𝑗𝑇

𝑚
𝑗
𝑓0, 𝑈𝑗𝑇

𝑝

𝑗
𝑓0⟩𝒟(𝜇𝑗)

= ⟨(𝑀
(𝑗)
𝑤 )𝑚𝑈𝑗𝑓0, (𝑀

(𝑗)
𝑤 )𝑝𝑈𝑗𝑓0⟩𝒟(𝜇𝑗)

= ⟨𝑤𝑚, 𝑤𝑝⟩𝒟(𝜇𝑗).

Now combining Lemma 3.6 and Proposition 3.2 yields

⟨𝑇𝑚
1
𝑇𝑛
2
𝑓0, 𝑇

𝑝

1
𝑇
𝑞

2
𝑓0⟩ℋ = ⟨𝑧𝑚

1
𝑧𝑛
2
, 𝑧

𝑝

1
𝑧
𝑞

2
⟩𝒟(𝜇1,𝜇2), 𝑚, 𝑛, 𝑝, 𝑞 ≥ 0.

So 𝑈 extends as a unitary fromℋ onto𝒟(𝜇1, 𝜇2). Hence the result. □

Corollary 3.7. The commuting pair M𝑧 = (M𝑧1
,M𝑧2

) is a toral 2-isometry if
and only if 𝜇1 and 𝜇2 are supported on 𝜕𝔻.

Proof. As 𝛽(2,0)(M𝑧) = 0 putting 𝑛 = 2 in (25) gives

0 = ⟨𝛽(2,0)(M𝑧)(𝑓), 𝑓⟩ = − lim
𝑟→1

∫

2𝜋

0

∫
𝔻

(1 − |𝜁1|
2)|𝑓(𝜁1, 𝑟𝑒

𝑖𝜃)|2𝑑𝜇1(𝜁1)
𝑑𝜃

2𝜋
.

By substituting 𝑓 = 1 into the equation above, we find that the support of 𝜇1
lies outside 𝔻. Similarly, 𝛽(0,2)(M𝑧) = 0 implies the support of 𝜇2 is outside 𝔻.
Conversely, if you assume that 𝜇1 and 𝜇2 are supported on the unit circle𝕋 then
by [9, Theorem 2.4] M𝑧 = (M𝑧1

,M𝑧2
) becomes a toral 2-isometry. □
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The following theorem is an extended version of [9, Theorem 6.4](cf. [25,
Theorem 5.2]).

Theorem 3.8. For 𝑖 = 1, 2 consider 𝜇(𝑖)
1
, 𝜇

(𝑖)

2
∈ 𝑀+(𝔻). Then the multiplication

2-tupleM
(1)
𝑧 on𝒟(𝜇(1)

1
, 𝜇

(1)

2
) is unitarily equivalent toM

(2)
𝑧 on𝒟(𝜇(2)

1
, 𝜇

(2)

2
) if and

only if 𝜇(1)
𝑗

= 𝜇
(2)

𝑗
, 𝑗 = 1, 2.

Proof. Let 𝜈1, 𝜈2 ∈ 𝑀+(𝔻) and 𝑝 be a two variable polynomial. We have
𝒟𝜈1,𝜈2

(𝑧1𝑝) = 𝐼𝜈1,𝜈2(𝑧1𝑝) + 𝐵𝜈1,𝜈2(𝑧1𝑝). By (15),

𝐼𝜈1,𝜈2(𝑧1𝑝) = ∫

2𝜋

0

∫
𝔻

|𝑝(𝜁1, 𝑒
𝑖𝜃)|2𝑑𝜈1(𝜁1)

𝑑𝜃

2𝜋
+ 𝐼𝜈1,𝜈2(𝑝). (29)

From [9, Lemma 3.5] we get that

𝐵𝜈1,𝜈2(𝑧1𝑝) = ∫

2𝜋

0

∫
𝕋

|𝑝(𝜁1, 𝑒
𝑖𝜃)|2𝑑𝜈1(𝜁1)

𝑑𝜃

2𝜋
+ 𝐵𝜈1,𝜈2(𝑝). (30)

Now combining (29) and (30) together with (7) gives

‖𝑧1𝑝‖
2 = ‖𝑝‖2 + ∫

2𝜋

0

∫
𝔻

|𝑝(𝜁1, 𝑒
𝑖𝜃)|2𝑑𝜈1(𝜁1)

𝑑𝜃

2𝜋
. (31)

One can get a similar expression for 𝑧2𝑝. Let 𝑈 be a unitary map from
𝒟(𝜇

(1)

1
, 𝜇

(1)

2
) onto𝒟(𝜇(2)

1
, 𝜇

(2)

2
) which satisfies

𝑈M
(1)
𝑧𝑗

= M
(2)
𝑧𝑗
𝑈, 𝑗 = 1, 2. (32)

Since the joint kernels kerM (1)∗
𝑧 and kerM (2)∗

𝑧 are spanned by the constant
function 1 (see Crorllary 2.8) so (32) suggests that𝑈∗1 ∈ kerM

(1)∗
𝑧 .Hence𝑈∗1

must be a unimodular constant. By multiplying suitable unimodular constant
one can assume that 𝑈1 = 1. It now follows from (32) that 𝑈 is identity on the
polynomials. Thus (31) suggests that for any two-variable polynomial 𝑝,

∫

2𝜋

0

∫
𝔻

|𝑝(𝜁1, 𝑒
𝑖𝜃)|2𝑑𝜇

(1)

1
(𝜁1)

𝑑𝜃

2𝜋
= ∫

2𝜋

0

∫
𝔻

|𝑝(𝜁1, 𝑒
𝑖𝜃)|2𝑑𝜇

(2)

1
(𝜁1)

𝑑𝜃

2𝜋
,

∫

2𝜋

0

∫
𝔻

|𝑝(𝑒𝑖𝜃, 𝜁2)|
2𝑑𝜇

(1)

2
(𝜁2)

𝑑𝜃

2𝜋
= ∫

2𝜋

0

∫
𝔻

|𝑝(𝑒𝑖𝜃, 𝜁2)|
2𝑑𝜇

(2)

2
(𝜁2)

𝑑𝜃

2𝜋
.

Thus for any one variable polynomial 𝑝,

∫
𝔻

|𝑝(𝜁)|2𝑑𝜇
(1)

𝑗
(𝜁) = ∫

𝔻

|𝑝(𝜁)|2𝑑𝜇
(2)

𝑗
(𝜁), 𝑗 = 1, 2.

Using polarization identity and the uniqueness of the two-variable moment
problem on 𝔻 (see [7, Remark 1, p. 321]) we conclude the theorem. □
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