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On the homological stability of
orthogonal and spin groups

Marco Schlichting and Sunny Sood

Abstract. We improve homological stability ranges for the orthogonal
group, special orthogonal group, elementary orthogonal group and the spin
group over a commutative local ring 𝑅 with infinite residue field such that
2 ∈ 𝑅∗.
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1. Introduction
In this paper, motivated by Hermitian K-Theory, we improve homological

stability results for the orthogonal group, special orthogonal group, elementary
orthogonal group and the spin group with respect to the hyperbolic form. In
the orthogonal case, this improves the range for homological stability given by
Mirzaii [10] by 1 and generalises the result obtained by Sprehn andWahl [18] to
the case of local rings. In the special orthogonal case, this generalises the result
obtained by Essert [4] for infinite fields to the case of local rings, and is the first
homological stability result for the special orthogonal group over a local ring.
For the elementary orthogonal group, this improves the range for homological
stability given by Randal-Williams and Wahl [13] by a factor of 3. For the spin
group, this coincides with 𝐻1-stability and 𝐻2-stability results stated in Hahn-
O’Meara [5], and is the first homological stability result that accounts for all
homology groups.
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Recall, for a ring 𝑅, the (split) orthogonal group 𝑂𝑛,𝑛(𝑅) ⊆ 𝐺𝐿2𝑛(𝑅), is the
subgroup

𝑂𝑛,𝑛(𝑅) ∶= {𝐴 ∈ 𝐺𝐿2𝑛(𝑅)| 𝑡𝐴𝜓2𝑛𝐴 = 𝜓2𝑛}
of 𝑅-linear automorphisms preserving the form

𝜓2𝑛 =
⎛
⎜
⎜
⎝

𝜓2
𝜓2

⋱
𝜓2

⎞
⎟
⎟
⎠

=
𝑛⨁

1
𝜓2, 𝜓2 = (0 1

1 0) ,

where 𝑡𝐴 denotes the transpose matrix of 𝐴. Define 𝑆𝑂𝑛,𝑛(𝑅) to be the sub-
group of 𝑂𝑛,𝑛(𝑅) consisting of all matrices with determinant 1. We will always
consider 𝑂𝑛,𝑛(𝑅) as a subgroup of 𝑂𝑛+1,𝑛+1(𝑅) via the embedding

𝑂𝑛,𝑛(𝑅) ⊆ 𝑂𝑛+1,𝑛+1(𝑅) ∶ 𝐴 ↦
⎛
⎜
⎝

1 0 0
0 1 0
0 0 𝐴

⎞
⎟
⎠
.

Consider 𝑂∞,∞(𝑅) ∶= lim,,→𝑂𝑛,𝑛(𝑅). For a commutative ring 𝑅 with 2 ∈ 𝑅∗,
the higher Hermitian K-Theory groups 𝐺𝑊𝑖(𝑅)may be modeled as the homo-
topy groups of the plus construction applied to the classifying space 𝐵𝑂∞,∞(𝑅):

𝐺𝑊𝑖(𝑅) ≅ 𝜋𝑖(𝐵𝑂∞,∞(𝑅)+) for all 𝑖 > 0.
Here, the plus construction is taken with respect to the maximal perfect
subgroup of 𝑂∞,∞(𝑅), which in this case equals the commutator subgroup
[𝑂∞,∞(𝑅), 𝑂∞,∞(𝑅)]. See for example [16]. Therefore, we have aHurewiczmap
from𝐺𝑊𝑖(𝑅) into the homology group𝐻𝑖(𝑂∞,∞(𝑅), ℤ), which is whywe are in-
terested in studying this homological stability problem.
The homology of the orthogonal group𝑂𝑛,𝑛 has long been known to stabilise,

in quite large generality; see, e.g., [20], [1], [3]. Recently, Sprehn and Wahl in
[18] have shown that for every field 𝔽 other than the field 𝔽2,𝐻𝑘(𝑂𝑛,𝑛(𝔽), ℤ) →
𝐻𝑘(𝑂𝑛+1,𝑛+1(𝔽), ℤ) is an isomorphism for 𝑘 ≤ 𝑛−1 and surjective for 𝑘 ≤ 𝑛. In
the context of fields, this is currently the best known range of stability. However,
they were unable to extend their results to local rings, essentially because the
framework that they use is only applicable to vector spaces, rather thanmodules
over local rings. In the context of local rings, the first precise range of stability
was given by Mirzaii in [10]. Specfically, he proved that for 𝑅 commutative
local ring with infinite residue field, 𝐻𝑘(𝑂𝑛,𝑛(𝑅), ℤ) → 𝐻𝑘(𝑂𝑛+1,𝑛+1(𝑅), ℤ) is
an isomorphism for 𝑘 ≤ 𝑛 − 2 and surjective for 𝑘 ≤ 𝑛 − 1.
Our firstmain result is an improvement on the known stability range for𝑂𝑛,𝑛

over local rings with infinite residue field, with the additional assumption that
we require 2 to be invertible. Specifically, we prove that:

Theorem 1.1. Let 𝑅 be a commutative local ring with infinite residue field such
that 2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(𝑂𝑛,𝑛(𝑅), ℤ)⟶ 𝐻𝑘(𝑂𝑛+1,𝑛+1(𝑅), ℤ)
is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.
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The proof is modelled on the homological stability proofs given in [11] and
[15]. Specifically, we consider a highly acyclic chain complex on which 𝑂𝑛,𝑛
acts, and analyse the resulting hyperhomology spectral sequences. This is a
standard method of proving such results, but the main innovation that gives us
the improvement in stability is the use of the technique of localising homology
groups. This technique was first introduced in [15]. It is this technique that
makes it possible to analyse the hyperhomology spectral sequences.
In addition, the methods we use to prove homological stability for 𝑂𝑛,𝑛(𝑅)

may be used to prove homological stability for 𝑆𝑂𝑛,𝑛(𝑅), which gives our second
main result:

Theorem 1.2. Let 𝑅 be a commutative local ring with infinite residue field such
that 2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(𝑆𝑂𝑛,𝑛(𝑅), ℤ)⟶ 𝐻𝑘(𝑆𝑂𝑛+1,𝑛+1(𝑅), ℤ)

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

This is the first homological stability result for the special orthogonal group
over a local ring, and generalises the analogous result for infinite fields obtained
by Essert [4].
Next, the elementary orthogonal group 𝐸𝑂𝑛,𝑛(𝑅)may be defined in terms of

generators and should be viewed as the orthogonal analogue of the elementary
linear group 𝐸𝑛(𝑅).
For 𝑟 ∈ 𝑅 and 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑛, define 𝛾𝑘𝑙(𝑟) to be the 𝑛 × 𝑛 matrix with 𝑟 in

the (𝑘, 𝑙) position, −𝑟 in the (𝑙, 𝑘) position, and 0 elsewhere. Define 𝛾𝑘𝑘(𝑟) to be
the zero matrix. In addition, for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, define 𝑒𝑖𝑗(𝑟) to be the 𝑛 × 𝑛
elementary linear matrix with 1 along the diagonal and 𝑟 in the (𝑖, 𝑗) position.
We then define the family of elementary orthogonal matrices as

𝐸2𝑘,2𝑙(𝑟) ∶= ( 𝐼𝑛
𝛾𝑘𝑙(𝑟) 𝐼𝑛

) , (1)

𝐸2𝑘−1,2𝑙−1(𝑟) ∶= (𝐼𝑛 𝛾𝑘𝑙(𝑟)
𝐼𝑛

) , (2)

and for 𝑘 ≠ 𝑙,

𝐸2𝑘−1,2𝑙(𝑟) ∶= (𝑒𝑘𝑙(𝑟) 𝑒𝑙𝑘(−𝑟)
) , (3)

𝐸2𝑘,2𝑙−1(𝑟) ∶= (𝑒𝑙𝑘(−𝑟) 𝑒𝑘𝑙(𝑟)
) . (4)

We define the elementary orthogonal group 𝐸𝑂𝑛,𝑛(𝑅) as the subgroup of𝑂𝑛,𝑛(𝑅)
generated by the elementary orthogonal matrices. We refer the reader to [5,
Sections 5.3A and 5.3B] for more information about 𝐸𝑂𝑛,𝑛(𝑅), including a list
of relations amongst these generators.

Remark 1.3. For the sake of notation, we have in the above definitions used
the convention that the hyperbolic form on 𝑅2𝑛 is taken with respect to matrix
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( 0 𝐼𝑛
𝐼𝑛 0 ). This convention therefore differs from the standard convention used

in this paper up to conjugation by a suitable permutation matrix, and we will
always tacitly assume this whenever working with 𝐸𝑂𝑛,𝑛(𝑅).

Our third main result:

Theorem 1.4. Let 𝑅 be a commutative local ring with infinite residue field such
that 2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(𝐸𝑂𝑛,𝑛(𝑅), ℤ)⟶ 𝐻𝑘(𝐸𝑂𝑛+1,𝑛+1(𝑅), ℤ)

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

This improves the range for homological stability given by Randal-Williams
and Wahl in [13] by a factor of 3.
Finally, let 𝑅 be a commutative ring, which for the purposes of this article is

such that 2 ∈ 𝑅∗. We define Spin𝑛,𝑛(𝑅) to be the Spin group of the quadratic
module (𝑅2𝑛, ⟨⋅, ⋅⟩), where ⟨⋅, ⋅⟩ is the symmetric bilinear form associated to the
matrix 𝜓2𝑛 as above. We refer the reader to the appendix for more information
about Spin groups. The reader may also want to look at [5], [14] and [8] as
alternative references.
In the case 𝑅 is a commutative local ring with infinite residue field such that

2 ∈ 𝑅∗, homological stability for Spin𝑛,𝑛(𝑅) will follow immediately from ho-
mological stability of 𝐸𝑂𝑛,𝑛(𝑅) via the relative Hochschild-Serre Spectral Se-
quence applied to short exact sequence

1⟶ ℤ2 ⟶Spin𝑛,𝑛(𝑅)⟶ 𝐸𝑂𝑛,𝑛(𝑅)⟶ 1,

see Theorem A.26 in the appendix. Indeed, for the purposes of this paper, it is
perhaps best to think of 𝐸𝑂𝑛,𝑛(𝑅) as being defined in terms of this short exact
sequence. This is the perspective that we will adopt.
This gives us our fourth main result:

Theorem 1.5. Let 𝑅 be a commutative local ring with infinite residue field such
that 2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(Spin𝑛,𝑛(𝑅), ℤ)⟶ 𝐻𝑘(Spin𝑛+1,𝑛+1(𝑅), ℤ)

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

This coincides with known 𝐻1 and 𝐻2-stability results for Spin𝑛,𝑛 given in
[5], and is the first such homological stability result that accounts for all ho-
mology groups.
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viding very detailed feedback on this paper. The second author also gratefully
acknowledges funding from the University of Warwick and the UK Engineer-
ing and Physical Sciences Research Council (Grant number: EP/V520226/1)
during his time as a PhD student, when this paper was first written.
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2. The complex of totally isotropic unimodular sequences
In this section, 𝑅 will be a commutative local ring with infinite residue field.

2.1. The chain complex. To define the chain complex we want to consider,
we need to make some preliminary definitions.

Definition 2.1. A space over a ring 𝑅 is a projective 𝑅-module of finite rank. A
submodule𝑀 ⊂ 𝑉 of a space 𝑉 is called a subspace if it is a direct factor.

Definition 2.2. Let 𝑞 ≥ 0 be an integer, and𝑊 a free 𝑅-module of rank 𝑛. A
sequence of 𝑞 vectors (𝑣1, … , 𝑣𝑞) in𝑊 will be called unimodular if every subse-
quence of length 𝑟 ≤ min{𝑛, 𝑞} generates a subspace of rank 𝑟. We denote by
𝒰𝑞(𝑊) the set of unimodular sequences of length 𝑞 in𝑊.

Remark 2.3. For 𝑅 a local ring, the sequence of vectors (𝑣1, … , 𝑣𝑞) in 𝑅2𝑛 is
unimodular if and only if (𝑣1, … , 𝑣𝑞) in 𝑘2𝑛 is unimodular, where 𝑘 denotes the
residue field of 𝑅 and 𝑣𝑖 the class of 𝑣𝑖 in 𝑘2𝑛.

Definition 2.4. A sequence of vectors (𝑣1, … , 𝑣𝑞) in 𝑅2𝑛 will be called totally
isotropic if for every 𝑖, 𝑗 = 1, … , 𝑞 we have ⟨𝑣𝑖, 𝑣𝑗⟩ = 0.

We now introduce the chain complex that we want to consider. Specifically,
consider chain complex

𝐶∗(𝑛) ∶= (𝐶∗(𝑅2𝑛), 𝑑) = ⋯ → 𝐶2(𝑅2𝑛) → 𝐶1(𝑅2𝑛)
𝜀
,→ ℤ → 0 (5)

where for 𝑘 ≥ 1, 𝐶𝑘(𝑅2𝑛) is the free abelian group 𝐶𝑘(𝑅2𝑛) ∶= ℤ[ℐ𝒰𝑘(𝑅2𝑛)]
generated by the set of unimodular totally isotropic sequences of length 𝑘 in
𝑅2𝑛:
ℐ𝒰𝑘(𝑅2𝑛) ∶= {(𝑣1, … , 𝑣𝑘) ∶ 𝑣𝑖 ∈ 𝑅2𝑛, (𝑣1, … , 𝑣𝑘) totally isotropic and unimodular}.

We set 𝐶0(𝑛) ∶= ℤ.
The differential 𝑑 is defined on basis elements by

𝑑(𝑣1, … , 𝑣𝑘) ∶=
𝑘∑

𝑖=1
(−1)𝑖+1𝑑𝑖(𝑣1, … , 𝑣𝑘),

𝑑𝑖(𝑣1, … , 𝑣𝑘) ∶= (𝑣1, … , 𝑣𝑖, … , 𝑣𝑘),
and themap 𝜀 ∶ 𝐶1(𝑅2𝑛) → ℤ is the augmentationmap sending a generator (𝑣)
to 1.

Remark 2.5. The simplicial set that gives rise to chain complex (5) has already
been studied in [12] and [10]. As we do not need to consider simplicial sets in
this article, we stick to chain complex notation.

Note that, for 𝐴 ∈ 𝑂𝑛,𝑛(𝑅), 𝐴 acts from the left on the chain complex
(𝐶∗(𝑅2𝑛), 𝑑) by acting on basis elements:

𝐴 ⋅ (𝑣1, … , 𝑣𝑘) ∶= (𝐴𝑣1, … , 𝐴𝑣𝑘).
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For a resolution 𝑃∗ of the trivial 𝑂𝑛,𝑛(𝑅)-module ℤ by projective right 𝑂𝑛,𝑛(𝑅)-
modules, the bicomplex 𝑃∗⊗𝑂𝑛,𝑛 𝐶∗(𝑛) gives rise to two hyperhomology spectral
sequences

𝐸2𝑝,𝑞(𝑛) = 𝐻𝑝(𝑂𝑛,𝑛, 𝐻𝑞(𝐶∗(𝑛))) ⇒ 𝐻𝑝+𝑞(𝑂𝑛,𝑛, 𝐶∗(𝑛)) (6)

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑂𝑛,𝑛, 𝐶∗(𝑛)). (7)

For a reference on hyperhomology spectral sequences, we refer the reader to
[2, Chapter VII, Section 5]. Replacing 𝑂𝑛,𝑛 with 𝑆𝑂𝑛,𝑛 and 𝐸𝑂𝑛,𝑛, we similarly
obtain hyperhomology spectral sequences

𝐸2𝑝,𝑞(𝑛) = 𝐻𝑝(𝑆𝑂𝑛,𝑛, 𝐻𝑞(𝐶∗(𝑛))) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛))

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛))

and

𝐸2𝑝,𝑞(𝑛) = 𝐻𝑝(𝐸𝑂𝑛,𝑛, 𝐻𝑞(𝐶∗(𝑛))) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛))

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛)).

These spectral sequences will eventually give us our desired homological sta-
bility results.

2.2. Proving acyclicity. We would like to prove that the complex (𝐶∗(𝑛), 𝑑)
is (𝑛 − 1)-acyclic. This has already been proven by Mirzaii [10], but our proof
has the advantage that it does not refer to the simplicial techniques used in [19].
However, we domake use of a concept general position. This was first defined in
[12], and used in both [12] and [10] to prove their respective acyclicity results.
We give the definition as stated in [10].

Definition 2.6. Let 𝑆 = {𝑣1, … , 𝑣𝑘} and 𝑇 = {𝑤1, … , 𝑤𝑘′} be basis of two totally
isotropic free summands of 𝑅2𝑛. We say that 𝑇 is in general position with 𝑆, if
𝑘 ≤ 𝑘′ and the 𝑘′ × 𝑘- matrix (⟨𝑤𝑖, 𝑣𝑗⟩) has a left inverse.

We may also say that a totally isotropic subspace 𝑊 is in general position
with respect to a totally isotropic subspace 𝑉 if there is a basis 𝑇 of 𝑊 which
is in general position with respect to a basis 𝑆 of 𝑉 as in Definition 2.6. The
following result, whose proof we refer to [10, Chapter 2, Proposition 4.2], will
be used to prove acyclicity.

Proposition 2.7. Let 𝑛 ≥ 2 be an integer and assume 𝑇𝑖 , 𝑖 = 1, … , 𝓁 are finitely
many subsets of𝑅2𝑛 such that each𝑇𝑖 is a basis of a free totally isotropic summand
of 𝑅2𝑛 with 𝑘 elements, where 𝑘 ≤ 𝑛 − 1. Then, there is a basis, 𝑇 = {𝑤1, … , 𝑤𝑛},
of a free totally isotropic summand of 𝑅2𝑛 such that 𝑇 is in general position with
all 𝑇𝑖 , 𝑖 = 1, … , 𝓁. Moreover, dim(𝑊 ∩ 𝑉⟂

𝑖 ) = 𝑛 − 𝑘, where𝑊 =Span(𝑇) and
𝑉𝑖 =Span(𝑇𝑖), 𝑖 = 1, … , 𝓁.

In addition, the following lemma will be both useful and reassuring.

Lemma 2.8. Let𝑊 and 𝑉 be totally isotropic subspaces of 𝑅2𝑛. Assume that𝑊
is in general position with respect to 𝑉. Then𝑊 ∩𝑉 = {0}.
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Remark 2.9. Lemma 2.8 implies that if𝑊 is in general position with respect to
a unimodular sequence (𝑢1, … , 𝑢𝑘) for 𝑘 < 𝑛, then (𝑢1, … , 𝑢𝑘, 𝑤) is unimodular
for every unimodular vector 𝑤 ∈ 𝑊.

Proof of Lemma 2.8. As𝑊 is in general position with respect to 𝑉, the map

𝜋 ∶𝑊 ↠ 𝑅𝑘

𝑤 ↦ (⟨𝑤, 𝑣1⟩, … , ⟨𝑤, 𝑣𝑘⟩)

is surjective. Therefore, for every 1 ≤ 𝑖 ≤ 𝑘, there exists a 𝑣#𝑖 ∈ 𝑊 such that
𝜋(𝑣#𝑖 ) = (0, … , 0, 1, 0, … , 0), the 1 being in the 𝑖th position. Now, let 𝑦 ∈ 𝑊∩𝑉.
Note, as 𝑦 ∈ 𝑉 and 𝑉 is free with basis 𝑣1, … , 𝑣𝑘, we may write 𝑦 uniquely as
𝑦 =

∑
𝑖 𝑎𝑖𝑣𝑖 for some 𝑎𝑖 ∈ 𝑅. Evaluating ⟨𝑣#𝑖 , ⋅⟩ on 𝑦 and noting that ⟨𝑣

#
𝑖 , 𝑣𝑗⟩ =

𝛿𝑖𝑗, we deduce that 𝑎𝑖 = ⟨𝑣#𝑖 , 𝑦⟩ for every 𝑖 = 1, … , 𝑘. But 𝑣#𝑖 , 𝑦 ∈ 𝑊 and𝑊 is
totally isotropic, so ⟨𝑣#𝑖 , 𝑦⟩ = 0 for 𝑖 = 1, … , 𝑘. Therefore, 𝑦 = 0. □

For 𝑢 =
∑

𝑖𝑚𝑖𝑢𝑖 ∈ ℤ[ℐ𝒰𝑝(𝑅2𝑛)] and 𝑣 =
∑

𝑗 𝑛𝑗𝑣𝑗 ∈ ℤ[ℐ𝒰𝑞(𝑅2𝑛)] such that
(𝑢𝑖, 𝑣𝑗) ∈ ℐ𝒰𝑝+𝑞(𝑅2𝑛) for all 𝑖, 𝑗, we will write (𝑢, 𝑣) for the element

(𝑢, 𝑣) =
∑

𝑖,𝑗
𝑚𝑖𝑛𝑗(𝑢𝑖, 𝑣𝑗) ∈ ℤ[ℐ𝒰𝑝+𝑞(𝑅2𝑛)].

Using Proposition 2.7 and Lemma 2.8, we prove the following.

Lemma 2.10. Let 𝑝, 𝑞 ≥ 0 and 𝑝 + 𝑞 < 𝑛. Let (𝑢, 𝑓) ∈ ℤ[ℐ𝒰𝑝+𝑞(𝑅2𝑛)] such
that 𝑢 ∈ ℐ𝒰𝑝 and 𝑓 ∈ ℤ[𝒰𝑞(𝑊)], where𝑊 is a free totally isotropic summand
of 𝑅2𝑛 of dimension 𝑛 in general position with respect to 𝑈 =Span(𝑢). If 𝑑𝑓 =
0 ∈ ℤ[𝒰𝑞−1(𝑊)], then there exists an element 𝑔 ∈ ℤ[𝒰𝑞+1(𝑊)] such that 𝑑𝑔 = 𝑓
and (𝑢, 𝑔) ∈ ℤ[ℐ𝒰𝑝+𝑞+1(𝑅2𝑛)].

Proof. Since

𝑓 ∈ ℤ[𝒰𝑞(𝑊)], (𝑢, 𝑓) ∈ ℤ[ℐ𝒰𝑝+𝑞(𝑅2𝑛)],

we have 𝑓 ∈ ℤ[𝒰𝑞(𝐿)], where 𝐿 = 𝑊 ∩ 𝑈⟂. As𝑊 is in general position with
respect to 𝑈, 𝐿 is a finitely generated free 𝑅-module of rank 𝑛 − 𝑝. Write 𝑓 =∑

𝑖 𝑛𝑖(𝑣
𝑖
1, … , 𝑣

𝑖
𝑞). Then, as 𝑅 is a local ring with infinite residue field and 𝐿 is

a finitely generated free 𝑅-module of rank 𝑛 − 𝑝 > 𝑞, we deduce that there
exists a 𝑣 ∈ 𝐿, such that (𝑣, 𝑣𝑖1, … , 𝑣

𝑖
𝑞) ∈ 𝒰𝑞(𝐿) for every 𝑖. This is standard;

see for instance [15, Lemmas 5.5 and 5.6]. Let 𝑔 ∶=
∑

𝑖 𝑛𝑖(𝑣, 𝑣
𝑖
1, … , 𝑣

𝑖
𝑞). Then

𝑑𝑔 = 𝑓 by construction. Moreover as 𝑔 ∈ ℤ[𝒰𝑞+1(𝐿)], (𝑢, 𝑔) defines a totally
isotropic sequence of vectors and as 𝑔 ∈ ℤ[𝒰𝑞+1(𝑊)], by Lemma 2.8, (𝑢, 𝑔) is a
unimodular sequence, so that (𝑢, 𝑔) ∈ ℤ[ℐ𝒰𝑝+𝑞+1(𝑅2𝑛)]. □

Corollary 2.11. Let 𝑘 ≤ 𝑛 − 1, and let 𝑧 ∈ 𝐶𝑘(𝑛) = ℤ[ℐ𝒰𝑘(𝑅2𝑛)] be a cycle.
Then, 𝑧 is homologous to a cycle 𝑧′ ∈ ℤ[𝒰𝑘(𝑊)] ⊂ 𝐶𝑘(𝑛) contained within a free
totally isotropic summand𝑊 of 𝑅2𝑛 of dimension 𝑛.
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Proof. Suppose 𝑧 =
∑

𝑖 𝑛𝑖𝑢𝑖 where 𝑛𝑖 ∈ ℤ and 𝑢𝑖 ∈ ℐ𝒰𝑘(𝑅2𝑛). By Proposition
2.7, there exists a free totally isotropic subspace𝑊 of rank 𝑛 in general position
with respect to all 𝑈𝑖 =Span(𝑢𝑖). Choose unimodular vectors 𝑓𝑖 ∈ 𝑊 ∩ 𝑈⟂

𝑖
which is possible since dim𝑊 ∩ 𝑈⟂

𝑖 ≥ 1, by Proposition 2.7. Note, by Lemma
2.8, (𝑢𝑖, 𝑓𝑖) ∈ ℐ𝒰𝑘+1(𝑅2𝑛) for every 𝑖. Consider the chain 𝜉 ∶=

∑
𝑖 𝑛𝑖(𝑢𝑖, 𝑓𝑖) ∈

𝐶𝑘+1(𝑛). Note that

𝑑𝜉 =
∑

𝑖
𝑛𝑖(𝑑𝑢𝑖, 𝑓𝑖) + (−1)𝑘+1

∑

𝑖
𝑛𝑖𝑢𝑖 =

∑

𝑖
𝑛𝑖(𝑑𝑢𝑖, 𝑓𝑖) + (−1)𝑘+1𝑧,

so that 𝑧1 ∶= (−1)𝑘+1
∑

𝑖 𝑛𝑖(𝑑𝑢𝑖, 𝑓𝑖) is homologous to 𝑧, which we write as 𝑧1 ∼
𝑧. Now, recursively assume that 𝑧𝑞 ∈ 𝐶𝑘(𝑛) is cycle such that 𝑧𝑞 ∼

∑
𝑖(𝑢𝑖, 𝑓𝑖),

where 𝑢𝑖 ∈ ℐ𝒰𝑝(𝑅2𝑛); 𝑓𝑖 ∈ ℤ[𝒰𝑞(𝑊)],𝑊 is a free totally isotropic summand
of 𝑅2𝑛 of dimension 𝑛 in general position with respect to all 𝑢𝑖, 𝑝, 𝑞 ≥ 0 such
that 𝑝 + 𝑞 = 𝑘 < 𝑛. Then we collect terms so that 𝑢𝑖 ≠ 𝑢𝑗 for every 𝑖 ≠ 𝑗. By
assumption, we have

0 = 𝑑𝑧𝑞 =
∑

𝑖
𝑑(𝑢𝑖, 𝑓𝑖) =

∑

𝑖

[
(𝑑𝑢𝑖, 𝑓𝑖) + (−1)𝑝+1(𝑢𝑖, 𝑑𝑓𝑖)

]
.

As 𝑢𝑖 ≠ 𝑢𝑗 and𝑊 is in general position with every 𝑢𝑖, hence, no column vec-
tor of 𝑢𝑖 is in 𝑊, we deduce 𝑑𝑓𝑖 = 0 for every 𝑖. Therefore, by Lemma 2.10,
for every 𝑖, there exists 𝑔𝑖 ∈ ℤ[𝒰𝑞+1(𝑊)] such that 𝑑𝑔𝑖 = 𝑓𝑖 and (𝑢𝑖, 𝑔𝑖) ∈
ℤ[ℐ𝒰𝑘+1(𝑅2𝑛)]. Note that

𝑑(𝑢𝑖, 𝑔𝑖) = (𝑑𝑢𝑖, 𝑔𝑖) + (−1)𝑝+1(𝑢𝑖, 𝑑𝑔𝑖) = (𝑑𝑢𝑖, 𝑔𝑖) + (−1)𝑝+1(𝑢𝑖, 𝑓𝑖).

We deduce 𝑧𝑞 ∼
∑

𝑖(𝑢𝑖, 𝑓𝑖) ∼ (−1)𝑝
∑

𝑖(𝑑𝑢𝑖, 𝑔𝑖) = 𝑧𝑞+1. The corollary is the
case 𝑞 = 𝑘, 𝑝 = 0 setting 𝑧′ = 𝑧𝑘. □

Theorem 2.12. The complex (𝐶∗(𝑛), 𝑑) is (𝑛 − 1) − 𝑎𝑐𝑦𝑐𝑙𝑖𝑐, that is,

𝐻𝑖(𝐶∗(𝑛), 𝑑) = 0 for 𝑖 ≤ 𝑛 − 1.

Proof. Let 𝑘 ≤ 𝑛 − 1 and let 𝑧 ∈ 𝐶𝑘(𝑛) a cycle. By Corollary 2.11, 𝑧 is homol-
ogous to a cycle 𝑧′ ∈ ℤ[𝒰𝑘(𝑊)] contained within a free totally isotropic sum-
mand𝑊 of 𝑅2𝑛 of dimension 𝑛. As 𝑅 is a local ring with infinite residue field,
we deduce that there exists a 𝜏 ∈ ℤ[𝒰𝑘+1(𝑊)] ⊂ 𝐶𝑘+1(𝑛) such that 𝑑𝜏 = 𝑧′, by
the standard argument recalled in the proof of Lemma 2.10. In paricular, 𝑧 is a
boundary. □

3. Homological stability for 𝑶𝒏,𝒏

From now on, unless stated otherwise, 𝑅 will be a commutative local ring
with infinite residue field and 2 ∈ 𝑅∗. We will also abbreviate the integral
homology of a group 𝐺 as𝐻𝑘(𝐺) whenever it is convenient for us to do so.
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3.1. Transitivity of the group action. We need to prove that the action of
𝑂𝑛,𝑛 on ℐ𝒰𝑝(𝑅2𝑛) is transitive for all 𝑝 ≤ 𝑛. It suffices to prove the following
lemma.

Lemma 3.1. Let 𝑝 ≤ 𝑛 and let (𝑢1, … , 𝑢𝑝) ∈ ℐ𝒰𝑝(𝑅2𝑛). Then, (𝑢1, … , 𝑢𝑝)may
be extended to a hyperbolic basis of 𝑅2𝑛.

Proof. By Witt’s Cancellation Theorem, which holds when 𝑅 is a local ring
with 2 invertible (cf. [9, Chapter I, Theorem 4.4]), it is sufficient to find
𝑢#1 , … , 𝑢

#
𝑝 such that (𝑢1, 𝑢#1 , … , 𝑢𝑝, 𝑢

#
𝑝 ) has Gram matrix 𝜓2𝑝. (Note that

Span {𝑢1, 𝑢#1 , … , 𝑢𝑝, 𝑢
#
𝑝 } is a non-degenerate subspace.)

We have that (𝑢1, … , 𝑢𝑝) ∈ ℐ𝒰𝑝(𝑅2𝑛), so this sequence is in particular a uni-
modular sequence of vectors in 𝑅2𝑛. Thus, the matrix 𝑢 = (𝑢1, … , 𝑢𝑝) is left
invertible. Therefore, the matrix 𝑡𝑢𝜓2𝑛 is right invertible. This is equivalent to
saying that the map

𝑇 ∶𝑅2𝑛 → 𝑅𝑝

𝑥 ↦
(
⟨𝑢1, 𝑥⟩, … , ⟨𝑢𝑝, 𝑥⟩

)

is surjective. Thus, for 𝑖 = 1, ..., 𝑝, there exists 𝑢#𝑖 such that 𝑇(𝑢#𝑖 ) is the 𝑖-th

standard basis vector of 𝑅𝑝. Replacing 𝑢#𝑖 with 𝑢
#
𝑖 −

⟨𝑢#𝑖 ,𝑢
#
𝑖 ⟩

2
𝑢𝑖, we conclude the

Gram matrix of (𝑢1, 𝑢#1 , … , 𝑢𝑝, 𝑢
#
𝑝 ) is 𝜓2𝑝. □

3.2. Analysis of stabilisers.

3.2.1. Computation of stabilisers. Let 𝐺 be a group acting on a set 𝑆 from
the left. Shapiro’s Lemma gives an isomorphism

⨁

[𝑥]∈𝑆∕𝐺
(𝑖𝑥, 𝑥)∗ ∶

⨁

[𝑥]∈𝑆∕𝐺
𝐻∗(𝐺𝑥, ℤ)

≅
,→ 𝐻∗(𝐺,ℤ[𝑆])

of homology groups, where the direct sum is over a set of representatives 𝑥 ∈ 𝑆
of equivalence classes [𝑥] ∈ 𝑆∕𝐺; the group 𝐺𝑥 is the stabiliser of 𝐺 at 𝑥 ∈
𝑆; the homomorphism 𝑖𝑥 ∶ 𝐺𝑥 ⊆ 𝐺 is the inclusion; and 𝑥 also denotes the
homomorphism of abelian groups ℤ → ℤ[𝑆] ∶ 1 ↦ 𝑥. For example, see [2,
Chapter III, Corollary 5.4 and Proposition 6.2].
We apply Shapiro’s Lemma in the case 𝐺 = 𝑂𝑛,𝑛(𝑅) and 𝑆 = ℐ𝒰𝑝(𝑅2𝑛).

In particular, as the action of 𝑂𝑛,𝑛(𝑅) on ℐ𝒰𝑝(𝑅2𝑛) is transitive for all 𝑝 ≤ 𝑛,
Shapiro’s Lemma gives isomorphisms

𝐻∗(𝑆𝑡(𝑒1, … , 𝑒𝑝))
≅
,→ 𝐻∗(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)), (8)

for all𝑝 ≤ 𝑛, where𝑆𝑡(𝑒1, … , 𝑒𝑝)denotes the stabiliser of (𝑒1, … , 𝑒𝑝) ∈ ℐ𝒰𝑝(𝑅2𝑛).
We compute these stabilisers:
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Proposition 3.2. Let 1 ≤ 𝑘 ≤ 𝑛. Then, in the above notation, the stabilisers
𝐴 ∈ 𝑆𝑡(𝑒1, … , 𝑒𝑘) are of the form

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑘
𝑡𝑢1

0 1 0 0 ⋯ 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑘

𝑡𝑢2
0 0 0 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 𝑐𝑘1 0 𝑐𝑘2 ⋯ 1 𝑐𝑘𝑘

𝑡𝑢𝑘
0 0 0 0 ⋯ 0 1 0
0 𝑥1 0 𝑥2 ⋯ 0 𝑥𝑘 𝐵

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where 𝑐𝑖𝑗 ∈ 𝑅; 𝑢𝑖, 𝑥𝑖 ∈ 𝑅2(𝑛−𝑘) and 𝐵 ∈ 𝑀2(𝑛−𝑘)(𝑅), subject to the conditions

𝑢𝑖 + 𝑡𝐵𝜓2(𝑛−𝑘)𝑥𝑖 = 0, (9)

𝑐𝑖𝑗 + 𝑐𝑗𝑖 + ⟨𝑥𝑖, 𝑥𝑗⟩ = 0, (10)

𝐵 ∈ 𝑂𝑛−𝑘,𝑛−𝑘. (11)

For example, for 𝑘 = 1, we have

𝑆𝑡(𝑒1) =
⎧

⎨
⎩

⎛
⎜
⎝

1 𝑐 𝑡𝑢
0 1 0
0 𝑥 𝐵

⎞
⎟
⎠

|||||||||
𝑢 + 𝑡𝐵𝜓2(𝑛−1)𝑥 = 0; 2𝑐 + ⟨𝑥, 𝑥⟩ = 0; 𝐵 ∈ 𝑂𝑛−1,𝑛−1.

⎫

⎬
⎭

.

Proof. Let 𝐴 ∈ 𝑆𝑡(𝑒1, … , 𝑒𝑘). Then, 𝐴𝑒𝑖 = 𝑒𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 by definition,
which gives the 1st, 3rd, … , (2𝑘 − 1)st columns of 𝐴. Moreover, for a fixed
1 ≤ 𝑖 ≤ 𝑘 and any 1 ≤ 𝑗 ≤ 𝑛, we have

⟨𝑒𝑖, 𝐴𝑒𝑗⟩ = ⟨𝐴𝑒𝑖, 𝐴𝑒𝑗⟩ = ⟨𝑒𝑖, 𝑒𝑗⟩ = 0

and

⟨𝑒𝑖, 𝐴𝑓𝑗⟩ = ⟨𝐴𝑒𝑖, 𝐴𝑓𝑗⟩ = ⟨𝑒𝑖, 𝑓𝑗⟩ = 𝛿𝑖𝑗.

Therefore, as ⟨𝑒𝑘, 𝑒𝑙⟩ = 0 and ⟨𝑒𝑘, 𝑓𝑙⟩ = 𝛿𝑘𝑙 for all 1 ≤ 𝑘, 𝑙 ≤ 𝑛, we deduce that
the coefficient of 𝑓𝑖 in the expression for 𝐴𝑒𝑗 and 𝐴𝑓𝑗 is 0 for all 𝑗 ≠ 𝑖 and the
coefficient of 𝑓𝑖 in the expression for 𝐴𝑓𝑖 is 1. This gives the 2nd, 4th, … , 2𝑘th
rows of 𝐴. The remaining coefficients give the 𝑐𝑖𝑗 ∈ 𝑅; 𝑢𝑖, 𝑥𝑖 ∈ 𝑅2(𝑛−𝑘) and 𝐵 ∈
𝑀2(𝑛−𝑘)(𝑅). We use the equation 𝑡𝐴𝜓2𝑛𝐴 = 𝜓2𝑛 to determine the conditions on
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these variables. Specifically, one has that for any 𝐴 ∈ 𝑆𝑡(𝑒1, … , 𝑒𝑘),

𝑡𝐴𝜓𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯ 0 0 0
𝑐11 1 𝑐21 0 ⋯ 𝑐𝑘1 0 𝑡𝑥1
0 0 1 0 ⋯ 0 0 0
𝑐12 0 𝑐22 1 ⋯ 𝑐𝑘2 0 𝑡𝑥2
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1 0 0
𝑐1𝑘 0 𝑐2𝑘 0 ⋯ 𝑐𝑘𝑘 1 𝑡𝑥𝑘
𝑢1 0 𝑢2 0 ⋯ 𝑢𝑘 0 𝑡𝐵

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝜓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑘
𝑡𝑢1

0 1 0 0 ⋯ 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑘

𝑡𝑢2
0 0 0 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 𝑐𝑘1 0 𝑐𝑘2 ⋯ 1 𝑐𝑘𝑘

𝑡𝑢𝑘
0 0 0 0 ⋯ 0 1 0
0 𝑥1 0 𝑥2 ⋯ 0 𝑥𝑘 𝐵

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 ⋯ 0 0 0
1 𝑐11 + 𝑐11 + ⟨𝑥1, 𝑥1⟩ 0 𝑐12 + 𝑐21 + ⟨𝑥1, 𝑥2⟩ ⋯ 0 𝑐1𝑘 + 𝑐𝑘1 + ⟨𝑥1, 𝑥𝑘⟩ 𝑡𝑢1 + 𝑡𝑥1𝜓𝐵
0 0 0 1 ⋯ 0 0 0
0 𝑐12 + 𝑐21 + ⟨𝑥2, 𝑥1⟩ 1 𝑐22 + 𝑐22 + ⟨𝑥2, 𝑥2⟩ ⋯ 0 𝑐2𝑘 + 𝑐𝑘2 + ⟨𝑥2, 𝑥𝑘⟩ 𝑡𝑢2 + 𝑡𝑥2𝜓𝐵
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 1 0
0 𝑐1𝑘 + 𝑐𝑘1 + ⟨𝑥𝑘 , 𝑥1⟩ 0 𝑐2𝑘 + 𝑐𝑘2 + ⟨𝑥𝑘 , 𝑥2⟩ ⋯ 1 𝑐𝑘𝑘 + 𝑐𝑘𝑘 + ⟨𝑥𝑘 , 𝑥𝑘⟩ 𝑡𝑢𝑘 + 𝑡𝑥𝑘𝜓𝐵
0 𝑢1 + 𝑡𝐵𝜓𝑥1 0 𝑢2 + 𝑡𝐵𝜓𝑥2 ⋯ 0 𝑢𝑘 + 𝑡𝐵𝜓𝑥𝑘 𝑡𝐵𝜓𝐵

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 𝜓.

Whence the equations. □

To ease notation, we will from now on denote 𝑇𝑘 ∶= 𝑆𝑡(𝑒1, … , 𝑒𝑘). We will
use the convention that 𝑇0 = 𝑂𝑛,𝑛. Note, we may see from the structure of the
matrices in 𝑇𝑘 that the projection map 𝜌 ∶ 𝑇𝑘 ↠ 𝑂𝑛−𝑘,𝑛−𝑘, sending the matrix
𝐴 in Proposition 3.2 to 𝜌(𝐴) = 𝐵, defines a group homomorphism. We denote
its kernel by 𝐿𝑘, so that we have a short exact sequence of groups

1 → 𝐿𝑘 → 𝑇𝑘
𝜌
,→ 𝑂𝑛−𝑘,𝑛−𝑘 → 1. (12)

The associated Hochschild-Serre Spectral Sequence is

𝐸2𝑝,𝑞 = 𝐻𝑝(𝑂𝑛−𝑘,𝑛−𝑘; 𝐻𝑞(𝐿𝑘)) ⇒ 𝐻𝑝+𝑞(𝑇𝑘). (13)

3.2.2. The local 𝑹∗-action. In this section, we will define an 𝑅∗-action on
short exact sequence (12) which we call ‘local action’. Using Spectral Sequence
(13), we will show that, after localisation, the homology of 𝑇𝑘 and 𝑂𝑛−𝑘,𝑛−𝑘 co-
incide. In the next section, we will see that the local actions are induced by a
‘global’ 𝑅∗-action on the Spectral Sequence (7).

Definition 3.3 (Local action). Let 𝑎 ∈ 𝑅∗. For 0 ≤ 𝑘 ≤ 𝑛, define a 2𝑛 × 2𝑛
matrix 𝐷𝑎,𝑘 by

𝐷𝑎,𝑘 ∶=
⎛
⎜
⎜
⎝

𝐷𝑎
⋱

𝐷𝑎
12𝑛−2𝑘

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

𝑘⨁

1
𝐷𝑎
⎞
⎟
⎠

⨁
12(𝑛−𝑘), 𝐷𝑎 ∶= (𝑎 0

0 𝑎−1) .

Note that 𝐷𝑎,𝑘 ∈ 𝑂𝑛,𝑛(𝑅). The local action of 𝑅∗ on 𝑇𝑘 is the conjugation action
of 𝐷𝑎,𝑘 on 𝑇𝑘.
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The local action preserves 𝑇𝑘 because

𝐷𝑎,𝑘

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑘
𝑡𝑢1

0 1 0 0 ⋯ 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑘

𝑡𝑢2
0 0 0 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 𝑐𝑘1 0 𝑐𝑘2 ⋯ 1 𝑐𝑘𝑘

𝑡𝑢𝑘
0 0 0 0 ⋯ 0 1 0
0 𝑥1 0 𝑥2 ⋯ 0 𝑥𝑘 𝐵

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝐷−1
𝑎,𝑘

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑎2𝑐11 0 𝑎2𝑐12 ⋯ 0 𝑎2𝑐1𝑘
𝑡𝑢1𝑎

0 1 0 0 ⋯ 0 0 0
0 𝑎2𝑐21 1 𝑎2𝑐22 ⋯ 0 𝑎2𝑐2𝑘

𝑡𝑢2𝑎
0 0 0 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 𝑎2𝑐𝑘1 0 𝑎2𝑐𝑘2 ⋯ 1 𝑎2𝑐𝑘𝑘

𝑡𝑢𝑘𝑎
0 0 0 0 ⋯ 0 1 0
0 𝑎𝑥1 0 𝑎𝑥2 ⋯ 0 𝑎𝑥𝑘 𝐵

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ 𝑇𝑘.

Also notice that this conjugation action restricted to 𝑂𝑛−𝑘,𝑛−𝑘 ⊂ 𝑇𝑘 is trivial.
Thus, we have an 𝑅∗-action on short exact sequence (12), which will induce an
𝑅∗-action on Spectral Sequence (13).
We now introduce the idea of localising homology groups. Let 𝑚 ≥ 1 be an

integer. Choose units 𝑎1, … , 𝑎𝑚 ∈ 𝑅∗ such that for every non-empty subset
𝐼 ⊂ {1, … ,𝑚}, the partial sum 𝑎𝐼 ∶=

∑
𝑖∈𝐼 𝑎𝑖 is a unit in 𝑅. Call such a sequence

(𝑎1, … , 𝑎𝑚) an 𝑆(𝑚)-sequence. Choosing an 𝑆(𝑚)-sequence is possible for every
𝑚 > 0 because 𝑅 has infinite residue field.
Let 𝑠𝑚 ∈ ℤ[𝑅∗] be the element

𝑠𝑚 = −
∑

∅≠𝐼⊂{1,…,𝑚}
(−1)|𝐼|⟨𝑎𝐼⟩ ∈ ℤ[𝑅∗],

first considered in [15], where ⟨𝑢⟩ ∈ ℤ[𝑅∗] denotes the element of the group
ring corresponding to 𝑢 ∈ 𝑅∗. Note that

1 = −
∑

∅≠𝐼⊂{1,…,𝑚}
(−1)|𝐼|,

so that a trivial 𝑅∗-action induces a trivial action by the elements 𝑠𝑚. If 𝑅∗
acts on a group 𝐺 through group homomorphisms, then the homology groups
𝐻𝑛(𝐺) aquire an 𝑅∗-action by functoriality of group homology. This makes the
groups𝐻𝑛(𝐺) into a left module over the commutative ring ℤ[𝑅∗], and we can
localize them with respect to the element 𝑠𝑚 ∈ ℤ[𝑅∗] to obtain the abelian
groups 𝑠−1𝑚 𝐻𝑛(𝐺). Themagic of the elements 𝑠𝑚 lie in the following proposition,
for the proof of which we refer the reader to [17, Proposition D.4.].
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Proposition 3.4. Let 𝑅 be a commutative ring and 𝑢 = (𝑢1, … , 𝑢𝑚) an 𝑆(𝑚)-
sequence in 𝑅. Let

1 → 𝑁 → 𝐺 → 𝐴 → 1
be a central extension of groups. Assume that the group of units 𝑅∗ acts on the
exact sequence. Assume furthermore that the groups 𝐴 and𝑁 are the underlying
abelian groups (𝐴,+, 0) and (𝑁,+, 0) of 𝑅-modules (𝐴,+, 0, ⋅) and (𝑁,+, 0, ⋅),
and the 𝑅∗-actions on 𝐴 and𝑁 in the exact sequence are given by

𝑅∗ × 𝐴 → 𝐴 ∶ (𝑡, 𝑎) ↦ 𝑡 ⋅ 𝑎

and
𝑅∗ × 𝑁 → 𝑁 ∶ (𝑡, 𝑦) ↦ 𝑡2 ⋅ 𝑦

respectively. Then, for every 1 ≤ 𝑛 < 𝑚∕2,

𝑠−1𝑚 𝐻𝑛(𝐺) = 0.

□
Wemay now localise the Spectral Sequence (13) with respect to the elements

𝑠𝑚 to obtain for all𝑚 ≥ 1 the localised spectral sequences

𝑠−1𝑚 𝐸2𝑝𝑞 = 𝑠−1𝑚 𝐻𝑝(𝑂𝑛−𝑘,𝑛−𝑘; 𝐻𝑞(𝐿𝑘))

≅ 𝐻𝑝(𝑂𝑛−𝑘,𝑛−𝑘; 𝑠−1𝑚 𝐻𝑞(𝐿𝑘))
⇒ 𝑠−1𝑚 𝐻𝑝+𝑞(𝑇𝑘), (14)

the isomorphism coming from the fact that 𝑅∗ acts trivially on 𝑂𝑛−𝑘,𝑛−𝑘.
We show that localising with respect to the elements 𝑠𝑚 kills the non-zero

homology groups of 𝐿𝑘 when𝑚 is taken to infinity.

Lemma 3.5. We have 𝑠−1𝑚 𝐻0(𝐿𝑘) = ℤ and for all 1 ≤ 2𝑞 < 𝑚, 𝑠−1𝑚 𝐻𝑞(𝐿𝑘) = 0.

Proof. We claim there is a short exact sequence of groups

1 → (𝑅(
𝑘
2), +) → 𝐿𝑘 → ((𝑅2(𝑛−𝑘))𝑘, +) → 1. (15)

The first arrow maps
(𝑐1, … ) ↦ 𝐴(𝑐1,… )

where 𝐴(𝑐1,… ) ∈ 𝐿𝑘 is defined by the conditions (9), (10) and (11) subject to
𝐵 = 1, 𝑥𝑖 = 0 and using equation (10) to determine the remaining constants
(with some ordering specified beforehand). Note that we have used here that 2
is invertible, as (10) implies 2𝑐𝑖𝑖 = 0 for all 𝑖. The second arrow maps

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑘
𝑡𝑢1

0 1 0 0 ⋯ 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑘

𝑡𝑢2
0 0 0 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 𝑐𝑘1 0 𝑐𝑘2 ⋯ 1 𝑐𝑘𝑘

𝑡𝑢𝑘
0 0 0 0 ⋯ 0 1 0
0 𝑥1 0 𝑥2 ⋯ 0 𝑥𝑘 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↦ (𝑥1, … , 𝑥𝑘).
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One may check that these arrows define group homomorphisms, fitting into
the short exact sequence (15), and (15) is actually a central extension.
Furthermore, this central extension is 𝑅∗-equivariant where 𝑏 ∈ 𝑅∗ acts on

(𝑅(
𝑘
2), +) via pointwise multiplication by 𝑏2, the element 𝑏 ∈ 𝑅∗ acts on 𝐿𝑘 via

conjugation by 𝐷𝑏,𝑘, and it acts on ((𝑅2(𝑛−𝑘))𝑘, +) via pointwise multiplication
by 𝑏. By Proposition 3.4, 𝑠−1𝑚 𝐻𝑞(𝐿𝑘) = 0 for all 1 ≤ 2𝑞 < 𝑚. The equality
𝑠−1𝑚 𝐻0(𝐿𝑘) = ℤ follows from fact that 𝑅∗ acts trivially on𝐻0(𝐿𝑘). □

Corollary 3.6. The inclusion 𝑂𝑛−𝑘,𝑛−𝑘 ↪ 𝑇𝑘 induces isomorphism

𝐻𝑡(𝑂𝑛−𝑘,𝑛−𝑘)
≅
,→ 𝑠−1𝑚 𝐻𝑡(𝑇𝑘)

for all 𝑡 < 𝑚∕2.

Proof. By Lemma 3.5, the localised Hochschild-Serre Spectral Sequence de-
generates at 𝐸2 for 1 ≤ 2𝑡 < 𝑚 to yield isomorphism

𝜌 ∶ 𝑠−1𝑚 𝐻𝑡(𝑇𝑘)
≅
,→ 𝐻𝑡(𝑂𝑛−𝑘,𝑛−𝑘)

for all 𝑡 < 𝑚∕2. Since 𝜌 is a retract of the inclusion, we are done. □

3.2.3. A global action on the spectral sequence. Next, we want to realise
these ‘local actions’ as a ‘global action’ on the spectral sequence

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑂𝑛,𝑛, 𝐶∗(𝑛)). (16)

We do this by defining an action on the associated exact couple with abutment.
Recall that for a group 𝐺 and a chain complex of 𝐺-modules 𝐶∗, the spectral

sequence
𝐸1𝑝,𝑞 = 𝐻𝑞(𝐺, 𝐶𝑝) ⇒ 𝐻𝑝+𝑞(𝐺, 𝐶∗)

may be obtained from the exact couple with abutment
⨁

𝑝,𝑞 𝐸
1
𝑝,𝑞

⨁
𝑝,𝑞 𝐷

1
𝑝,𝑞

⨁
𝑝+𝑞 𝐴𝑝+𝑞

⨁
𝑝,𝑞 𝐷

1
𝑝,𝑞

𝑘

𝑖

𝜎

𝑗
𝜎 (17)

with 𝐸1𝑝,𝑞 = 𝐻𝑝+𝑞(𝐺, 𝐶≤𝑝∕𝐶≤𝑝−1); 𝐷1
𝑝,𝑞 = 𝐻𝑝+𝑞(𝐺, 𝐶≤𝑝); 𝐴𝑝+𝑞 = 𝐻𝑝+𝑞(𝐺, 𝐶∗);

the maps 𝑖, 𝑗, 𝑘 being the maps of the long exact sequence of homology groups
associated to the short exact sequence of complexes

0 → 𝐶≤𝑝−1 → 𝐶≤𝑝 → 𝐶≤𝑝∕𝐶≤𝑝−1 → 0,

and 𝜎 is induced by the inclusion.
To define the global action, it will be convenient to introduce the general split

orthogonal group, which is defined as follows.
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Definition 3.7. For a ring 𝑅, define 𝐺𝑂𝑛,𝑛(𝑅) ⊂ 𝐺𝐿2𝑛(𝑅) as the subgroup

𝐺𝑂𝑛,𝑛(𝑅) ∶= {𝐴 ∈ 𝐺𝐿2𝑛(𝑅)| 𝑡𝐴𝜓2𝑛𝐴 = 𝑎𝜓2𝑛, for some 𝑎 ∈ 𝑅∗}.

In the above notation, we will call 𝑎 ∈ 𝑅∗ the associated unit of 𝐴.

For 𝑛 ≥ 1 we have short exact sequence of groups

1 → 𝑂𝑛,𝑛 → 𝐺𝑂𝑛,𝑛 → 𝑅∗ → 1 (18)

where the first arrow is given by the inclusion and the second arrow maps 𝐴 ∈
𝐺𝑂𝑛,𝑛 to its associated unit. For instance, for 𝑎 ∈ 𝑅∗, the matrix

𝐵𝑎 ∶=

⎛
⎜
⎜
⎜
⎝

1
𝑎

⋱
1

𝑎

⎞
⎟
⎟
⎟
⎠

is in 𝐺𝑂𝑛,𝑛 and has associated unit 𝑎 which proves exactness at the right.

Definition 3.8 (Global action). The group homomorphism 𝐺𝑂𝑛,𝑛(𝑅) → 𝑅∗
makes ℤ[𝑅∗] into a right 𝐺𝑂𝑛,𝑛(𝑅)-module and left 𝑅∗-module, and both ac-
tions commute. In particular, for any bounded below complex of𝐺𝑂𝑛,𝑛-modules
𝑀∗, the groups

Tor𝐺𝑂𝑛,𝑛𝑖 (ℤ[𝑅∗],𝑀∗) = 𝐻𝑖(ℤ[𝑅∗] ⊗𝕃
𝐺𝑂𝑛,𝑛

𝑀∗)

are left ℤ[𝑅∗]-modules functorial in𝑀∗, and the spectral sequence

𝐸1𝑝,𝑞 = Tor𝐺𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗],𝑀𝑝) ⇒ Tor𝐺𝑂𝑛,𝑛𝑝+𝑞 (ℤ[𝑅∗],𝑀∗) (19)

is a spectral sequence of left 𝑅∗-modules. (For more information about the de-
rived tensor product, see [21]). This spectral sequence is the spectral sequence
of the exact couple (17) with
𝐸1𝑝,𝑞 = Tor𝐺𝑂𝑛,𝑛𝑝+𝑞 (ℤ[𝑅∗],𝑀≤𝑝∕𝑀≤𝑝−1); 𝐷1

𝑝,𝑞 = Tor𝐺𝑂𝑛,𝑛𝑝+𝑞 (ℤ[𝑅∗],𝑀≤𝑝); 𝐴𝑝+𝑞 =

Tor𝐺𝑂𝑛,𝑛𝑝+𝑞 (ℤ[𝑅∗],𝑀∗). For 𝑛 ≥ 1, the inclusions ℤ ⊂ ℤ[𝑅∗] ∶ 1 ↦ 1 and 𝑂𝑛,𝑛 ⊂
𝐺𝑂𝑛,𝑛 yield isomorphisms

ℤ⊗𝕃
𝑂𝑛,𝑛

𝑀∗
∼
⟶ℤ[𝑅∗] ⊗𝕃

𝐺𝑂𝑛,𝑛
𝑀∗

by Shapiro’s Lemma. For𝑀∗ = 𝐶∗(𝑛), this identifies the Spectral Sequence (19)
with (16) and makes the latter into a spectral sequence of 𝑅∗-modules. We use
this structure to define the global action of 𝑅∗ on (16).

Specifically, we now show that, under the isomorphism (8), the local actions
corresponding to conjugation with 𝐷𝑎,𝑘 are induced by the global action corre-
sponding to multiplication with 𝑎−2 ∈ 𝑅∗. For this end, we will need to prove
that the appropriate diagrams commute. Wewill use the following two lemmas.
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Lemma 3.9. Let 𝐺 and 𝐾 be groups. Let 𝑀 and 𝑁 be a 𝐺-module and a 𝐾-
module, respectively. Consider the diagram of morphisms

(𝐺,𝑀)
(𝑓1,𝜑1)
⇉

(𝑓2,𝜑2)
(𝐾,𝑁)

where 𝑓1, 𝑓2 are group homomorphisms and 𝜑1, 𝜑2 𝐺-module homomorphisms,
𝑁 is considered a 𝐺-module via 𝑓1 and 𝑓2 respectively. Suppose there exists a
𝜅 ∈ 𝐾 such that for all 𝑔 ∈ 𝐺 and for all𝑚 ∈ 𝑀,

𝑓2(𝑔) = 𝜅𝑓1(𝑔)𝜅−1 and 𝜑2(𝑚) = 𝜅𝜑1(𝑚).

Then
(𝑓1, 𝜑1)∗ = (𝑓2, 𝜑2)∗ ∶ 𝐻∗(𝐺,𝑀) → 𝐻∗(𝐾,𝑁).

Proof. By assumption, we have the following commutative diagram:

𝐻∗(𝐺,𝑀)

𝐻∗(𝐾,𝑁) 𝐻∗(𝐾,𝑁),

(𝑓1,𝜑1)∗
(𝑓2,𝜑2)∗

(𝑐𝜅 ,𝜇𝜅)∗

where (𝑐𝜅, 𝜇𝜅) ∶ (𝐾,𝑁) → (𝐾,𝑁) is the map (𝑘, 𝑛) ↦ (𝜅𝑘𝜅−1, 𝜅𝑛). By [2,
Chapter III.8], the bottom horizontal map equals the identity. □

Wewill also need to recall functoriality of Tor. This is given by the following
lemma.

Lemma 3.10. Let𝐺 and𝐾 be groups; let𝑀 and 𝑃 be a right𝐺-module and right
𝐾-module respectively; and let 𝑁 and 𝑄 be a left 𝐺-module and left 𝐾-module
respectively.
Consider the diagram of morphisms

(𝑀,𝐺,𝑁)
(𝑓1,𝜑1,𝑔1)
⇉

(𝑓2,𝜑2,𝑔2)
(𝑃, 𝐾, 𝑄)

where 𝜑1, 𝜑2 are group homomorphisms; 𝑓1, 𝑓2 right𝐺-module homomorphisms
where 𝑃 is considered a right 𝐺-module via 𝜑1 and 𝜑2 respectively and 𝑔1, 𝑔2 left
𝐺-module homomorphisms where 𝑄 is considered a left 𝐺-module via 𝜑1 and 𝜑2
respectively.
Suppose there exists a 𝜅 ∈ 𝐾 such that for all 𝑔 ∈ 𝐺; for all𝑚 ∈ 𝑀 and for all

𝑛 ∈ 𝑁,

𝑓2(𝑚) = 𝑓1(𝑚)𝜅−1, 𝜑2(𝑔) = 𝜅𝜑1(𝑔)𝜅−1 and 𝑔2(𝑚) = 𝜅𝑔1(𝑛).

Then
(𝑓1, 𝜑1, 𝑔1)∗ = (𝑓2, 𝜑2, 𝑔2)∗ ∶ Tor

𝐺
∗ (𝑀,𝑁) → Tor𝐾∗ (𝑃, 𝑄).



60 MARCO SCHLICHTING AND SUNNY SOOD

Proof. By assumption, the following diagram commutes:

𝐻∗(𝑀 ⊗𝕃
𝐺 𝑁)

𝐻∗(𝑃 ⊗𝕃
𝐾 𝑄) 𝐻∗(𝑃 ⊗𝕃

𝐾 𝑄),

(𝑓1,𝜑1,𝑔1)∗
(𝑓2,𝜑2,𝑔2)∗

(𝜆𝜅−1 ,𝑐𝜅 ,𝜇𝜅)∗

where

𝜆𝜅−1 ∶ 𝑃 → 𝑃, 𝑝 ↦ 𝑝𝜅−1, 𝑐𝜅 ∶ 𝐾 → 𝐾, 𝑘 ↦ 𝜅𝑘𝜅−1, 𝜇𝜅 ∶ 𝑄 → 𝑄, 𝑞 ↦ 𝜅𝑞.

Therefore, the bottom horizontal map is induced by the map

𝑃 ⊗𝐺 𝑄 → 𝑃 ⊗𝐺 𝑄
𝑝 ⊗ 𝑞 ↦ 𝑝𝜅−1 ⊗ 𝜅𝑞 = 𝑝 ⊗ 𝑞

which is the identity. □

By definition the 𝑅∗-action on Tor𝐺𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗], 𝐶𝑘(𝑛)) corresponding to left
multiplication with 𝑎 ∈ 𝑅∗ is induced by the map

(ℤ[𝑅∗], 𝐺𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
(𝑎,𝑖𝑑,𝑖𝑑)
,,,,,,,→ (ℤ[𝑅∗], 𝐺𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

where 𝑎 ∶ ℤ[𝑅∗] → ℤ[𝑅∗] is the map corresponding to left multiplication with
𝑎. With this, we have the following proposition, which gives us a model of this
action in terms of the groups Tor𝑂𝑛,𝑛𝑞 (ℤ, 𝐶𝑘(𝑛)) ≅ 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛)).

Proposition 3.11. Let 𝑘, 𝑞 ≥ 0 and 𝑛 ≥ 1. Then, for all 𝑎 ∈ 𝑅∗, the following
diagram commutes:

Tor𝐺𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗], 𝐶𝑘(𝑛)) Tor𝐺𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗], 𝐶𝑘(𝑛))

Tor𝑂𝑛,𝑛𝑞 (ℤ, 𝐶𝑘(𝑛)) Tor𝑂𝑛,𝑛𝑞 (ℤ, 𝐶𝑘(𝑛)),

(𝑎,𝑖𝑑,𝑖𝑑)∗

(𝑖,𝑖,𝑖𝑑)∗ ≅

(𝑖𝑑,𝐶𝐵𝑎 ,𝐵𝑎)∗

(𝑖,𝑖,𝑖𝑑)∗≅

where the vertical maps are the isomorphisms given by Shapiro’s Lemma; 𝐵𝑎 de-
notes left multiplication by 𝐵𝑎 ∈ 𝐺𝑂𝑛,𝑛 and 𝐶𝐵𝑎 denotes the map induced by
conjugation with the element 𝐵𝑎 on 𝑂𝑛,𝑛.

Proof. We use Lemma 3.10. Specifically, consider the diagram

(ℤ, 𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
(𝑓1,𝜑1,𝑔1)
⇉

(𝑓2,𝜑2,𝑔2)
(ℤ[𝑅∗], 𝐺𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

where (𝑓1, 𝜑1, 𝑔1) ∶= (𝜇𝑎, 𝑖, 1) and (𝑓2, 𝜑2, 𝑔2) ∶= (𝑖, 𝐶𝐵𝑎 , 𝜇𝐵𝑎). Here, 𝜇𝑎 is de-
fined via 𝜇𝑎(1) ∶= 𝑎 and 𝜇𝐵𝑎 is defined via left multiplication on basis elements
by 𝐵𝑎. Let 𝜅 ∶= 𝐵𝑎 ∈ 𝐺𝑂𝑛,𝑛. Note that from short exact sequence (18), we
deduce 𝐵𝑎 acts on 𝑅∗ bymultiplication with 𝑎. Thus, 𝑖(1) = 1 = 𝜇𝑎(1)𝜅−1. Fur-
thermore, 𝐶𝐵𝑎 = 𝜅𝑖𝜅−1 and for every (𝑣1, … , 𝑣𝑘) ∈ ℐ𝒰𝑘(𝑅2𝑛), 𝜇𝐵𝑎(𝑣1, … , 𝑣𝑘) =
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𝜅(𝑣1, … , 𝑣𝑘) (the case 𝑘 = 0 being trivial). Thus, by Lemma 3.10, the diagram
commutes. □

Next, note that the action on Tor𝑂𝑛,𝑛𝑞 (ℤ, 𝐶𝑘(𝑛)) induced by

(ℤ, 𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
(𝑖𝑑,𝐶𝐵𝑎 ,𝐵𝑎),,,,,,,,,,→ (ℤ,𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

is equivalent to the action on𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) induced by

(𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
(𝐶𝐵𝑎 ,𝐵𝑎),,,,,,,→ (𝑂𝑛,𝑛, 𝐶𝑘(𝑛)).

To make the connection with the action induced by conjugation with 𝐷𝑎,𝑘, we
prove the following intermediate proposition.

Proposition 3.12. Let 𝑘, 𝑞 ≥ 0 and 𝑛 ≥ 1. Then, for all 𝑎 ∈ 𝑅∗, the following
diagram commutes:

𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛)),

(𝐶𝐵𝑎−2 ,𝐵𝑎−2 )∗

𝑖𝑑

(𝑖𝑑,𝜙𝑎)∗

𝑖𝑑

where for 𝑎 ∈ 𝑅∗, the map
(𝑖𝑑, 𝜙𝑎) ∶ (𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) → (𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

is defined to be the identity on 𝑂𝑛,𝑛 and on basis elements of 𝐶𝑘(𝑛) as

𝜙𝑎 ∶ (𝑣1, … , 𝑣𝑘) ↦ (𝑎−1𝑣1, … , 𝑎−1𝑣𝑘).

Proof. We use Lemma 3.9. Specifically, consider the diagram

(𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
(𝑓1,𝜑1)
⇉

(𝑓2,𝜑2)
(𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

where (𝑓1, 𝜑1) ∶= (𝑖𝑑, 𝜙𝑎) and (𝑓2, 𝜑2) ∶= (𝐶𝐵𝑎−2 , 𝐵𝑎−2). Define

𝜅 ∶= 𝐷𝑎,𝑛 =

⎛
⎜
⎜
⎜
⎝

𝑎
𝑎−1

⋱
𝑎

𝑎−1

⎞
⎟
⎟
⎟
⎠

.

Denoting for 𝑎 ∈ 𝑅∗,

𝑎 ∶=

⎛
⎜
⎜
⎜
⎝

𝑎
𝑎

⋱
𝑎

𝑎

⎞
⎟
⎟
⎟
⎠

,

note that 𝐵𝑎−2 = 𝜅𝑎−1, so that 𝐶𝐵𝑎−2 = 𝐶𝜅𝐶𝑎−1 . But, 𝐶𝑎−1 = 𝑖𝑑, so that 𝐶𝐵𝑎−2 =
𝐶𝜅. Furthermore, note that for every (𝑣1, … , 𝑣𝑘) ∈ ℐ𝒰𝑘(𝑅2𝑛), 𝐵𝑎−2(𝑣1, … , 𝑣𝑘) =
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𝜅𝜙𝑎(𝑣1, … , 𝑣𝑘), since 𝐵𝑎−2 = 𝜅𝑎−1. Thus, by Lemma 3.9, the diagram com-
mutes. □

Finally, we show that (𝑖𝑑, 𝜙𝑎) induces the desired local actions.

Proposition 3.13. Let 𝑘, 𝑞 ≥ 0. Then, for all 𝑎 ∈ 𝑅∗, the following diagram
commutes:

𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

𝐻𝑞(𝑇𝑘, ℤ) 𝐻𝑞(𝑇𝑘, ℤ),

(𝑖𝑑,𝜙𝑎)∗

(𝑖,(𝑒1,…,𝑒𝑘))∗ ≅

𝐶𝐷𝑎,𝑘

(𝑖,(𝑒1,…,𝑒𝑘))∗≅

where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and
the map 𝐶𝐷𝑎,𝑘 denotes the map induced by conjugation with the element 𝐷𝑎,𝑘 on
the stabiliser 𝑇𝑘.

Proof. We use Lemma 3.9. Specifically, we have to consider the diagram

(𝑇𝑘, ℤ)
(𝑓1,𝜑1)
⇉

(𝑓2,𝜑2)
(𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

where (𝑓1, 𝜑1) ∶= (𝑖, (𝑎−1𝑒1, … , 𝑎−1𝑒𝑘)) and (𝑓2, 𝜑2) ∶= (𝑖𝐶𝐷𝑎,𝑘 , (𝑒1, … , 𝑒𝑘)), and
𝑖 ∶ 𝑇𝑘 → 𝑂𝑛,𝑛 is the natural inclusion of groups. Let 𝜅 = 𝐷𝑎,𝑘 ∈ 𝑂𝑛,𝑛. Then,
for every 𝐴 ∈ 𝑇𝑘,

𝑓2(𝐴) = 𝑖𝐶𝐷𝑎,𝑘 (𝐴) = 𝐷𝑎,𝑘𝐴𝐷−1
𝑎,𝑘 = 𝐷𝑎,𝑘𝑖(𝐴)𝐷−1

𝑎,𝑘 = 𝜅𝑓1(𝐴)𝜅−1

and
(𝑒1. … , 𝑒𝑘) = 𝐷𝑎,𝑘(𝑎−1𝑒1, … , 𝑎−1𝑒𝑘) = 𝜅(𝑎−1𝑒1, … , 𝑎−1𝑒𝑘).

By Lemma 3.9, the diagram commutes. □

Thus, we have shown that there exists an 𝑅∗-action on the spectral sequence
𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑂𝑛,𝑛, 𝐶∗(𝑛))

which induces the desired local actions considered previously. Using Corollary
3.6, we obtain the following.

Corollary 3.14. For every𝑚 ≥ 1, the localised spectral sequence

𝑚𝐸1𝑝,𝑞(𝑛) = 𝑠−1𝑚 𝐸1𝑝,𝑞(𝑛) ⇒ 𝑠−1𝑚 𝐻𝑝+𝑞(𝑂𝑛,𝑛, 𝐶∗(𝑛)) (20)

has 𝑚𝐸1𝑝,𝑞 terms

𝑚𝐸1𝑝,𝑞 = 𝑠−1𝑚 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ≅ 𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝)

for all 𝑞 < 𝑚∕2 and for all 𝑝 ≤ 𝑛.

□
Under these identifications, the differentials 𝑑1 ∶ 𝑚𝐸1𝑝,𝑞 → 𝑚𝐸1𝑝−1,𝑞 take

the form
𝑑1 ∶ 𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝) → 𝐻𝑞(𝑂𝑛−𝑝+1,𝑛−𝑝+1)

whenever 𝑞 < 𝑚∕2 and 𝑝 ≤ 𝑛. Our next task is to compute these differentials.
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3.3. Computation of the localised 𝒅𝟏 differentials, and proof of homo-
logical stability.

Proposition 3.15. For all integers 𝑞 < 𝑚∕2 and 𝑝 ≤ 𝑛, the homomorphism
𝑑1𝑝,𝑞 ∶ 𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝) → 𝐻𝑞(𝑂𝑛−𝑝+1,𝑛−𝑝+1) is

𝑑1𝑝,𝑞 = {
0, 𝑝 even
𝑖∗, 𝑝 odd,

where 𝑖 ∶ 𝑂𝑛−𝑝,𝑛−𝑝 ↪ 𝑂𝑛−𝑝+1,𝑛−𝑝+1 denotes the inclusion.

Proof. For all 𝑝 ≤ 𝑛, we want to show that the following diagram commutes:

𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝) 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

𝐻𝑞(𝑂𝑛−𝑝+1,𝑛−𝑝+1) 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝−1(𝑛)),

𝑖∗

(𝜄,(𝑒1,…,𝑒𝑝))∗

(𝑑𝑖)∗

(𝜄,(𝑒1,…,𝑒𝑝−1))∗

(21)

where 𝜄 ∶ 𝑂𝑛−𝑝,𝑛−𝑝 ↪ 𝑂𝑛,𝑛 denotes the inclusion map; (𝑒1, … , 𝑒𝑝) ∶ 1 ↦
(𝑒1, … , 𝑒𝑝) and recall that 𝑑𝑖(𝑣1, … , 𝑣𝑝) = (𝑣1, … , 𝑣𝑖. … , 𝑣𝑝). Again, wewill prove
this diagram commutes using Lemma 3.9. Specifically, consider the diagram

(𝑂𝑛−𝑝,𝑛−𝑝, ℤ)
(𝜄,(𝑒1,…,𝑒𝑖 ,…,𝑒𝑝))

⇉
(𝜄◦𝑖,(𝑒1,…,𝑒𝑝−1))

(𝑂𝑛,𝑛, 𝐶𝑝−1(𝑛)).

Define 𝐴 ∈ 𝑂𝑛,𝑛 by sending a hyperbolic basis to a hyperbolic basis as follows:

(𝑒1, … , 𝑒𝑖, … , 𝑒𝑝) ↦ (𝑒1, … , 𝑒𝑝−1)

(𝑓1, … , 𝑓𝑖, … , 𝑓𝑝) ↦ (𝑓1, … , 𝑓𝑝−1)
𝑒𝑖 ↦ 𝑒𝑝
𝑓𝑖 ↦ 𝑓𝑝

𝑒𝑗 ↦ 𝑒𝑗 and 𝑓𝑗 ↦ 𝑓𝑗 for all 𝑝 + 1 ≤ 𝑗 ≤ 𝑛.

Then, by construction, (𝑒1, … , 𝑒𝑝−1) = 𝐴(𝑒1, … , 𝑒𝑖, … 𝑒𝑝). Note the matrix of 𝐴
has the form

𝐴 = (𝜎 0
0 12(𝑛−𝑝)

)

for some permutation matrix 𝜎. Therefore, we deduce that 𝜄◦𝑖(𝐵) = 𝐴𝜄(𝐵)𝐴−1

for every 𝐵 ∈ 𝑂𝑛−𝑝,𝑛−𝑝.
By Lemma 3.9, the diagram commutes. The proposition then follows from

the fact that the differential 𝑑1 ∶ 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) → 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝−1(𝑛)) is in-
duced by the differential 𝑑 =

∑𝑝
𝑖=1(−1)

𝑖+1𝑑𝑖 ∶ 𝐶𝑝(𝑛) → 𝐶𝑝−1(𝑛) and the above
remains true after localisation, with the horizontal arrows becoming the iden-
tification isomorphisms. □

We immediately deduce the following corollary:
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Corollary 3.16. For all 𝑞 < 𝑚∕2 and for all 𝑝 ≤ 𝑛,

𝑚𝐸2𝑝,𝑞 =
⎧

⎨
⎩

ker (𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝)
𝑖∗,→ 𝐻𝑞(𝑂𝑛−𝑝+1,𝑛−𝑝+1))) , 𝑝 odd

coker (𝐻𝑞(𝑂𝑛−𝑝−1,𝑛−𝑝−1)
𝑖∗,→ 𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝))) , 𝑝 even.

To prove homological stability, we will need to prove the following.

Proposition 3.17. The differentials 𝑑𝑟𝑝,𝑞 in Spectral Sequence (20) are zero for
𝑟 ≥ 2 and 𝑞 < 𝑚∕2, 𝑝 ≤ 𝑛. Hence, for all 𝑞 < 𝑚∕2 and 𝑝 ≤ 𝑛, 𝑚𝐸2𝑝,𝑞 ≅ 𝑚𝐸∞𝑝,𝑞.

Proof. Similar to [11] and [15], we argue by induction on 𝑛. For 𝑛 = 0, 1, the
spectral sequence under consideration is located in columns 0 and 1. Therefore,
the differentials 𝑑𝑟 for 𝑟 ≥ 2 are zero by dimension arguments.
Assume𝑛 ≥ 2. We seek to define ahomomorphismof complexes of𝑂𝑛−2,𝑛−2-

modules
𝜏 ∶ 𝐶∗(𝑛 − 2)[−2] → 𝐶∗(𝑛).

For (𝑣1, … , 𝑣𝑝−2) ∈ 𝐶𝑝(𝑛 − 2)[−2], define

𝜏0(𝑣1, … , 𝑣𝑝−2) ∶= (𝑒1, 𝑒2, 𝑣1, … , 𝑣𝑝−2)
𝜏1(𝑣1, … , 𝑣𝑝−2) ∶= (𝑒1, 𝑒2 − 𝑒1, 𝑣1, … , 𝑣𝑝−2)
𝜏2(𝑣1, … , 𝑣𝑝−2) ∶= (𝑒2, 𝑒2 − 𝑒1, 𝑣1, … , 𝑣𝑝−2),

where

𝑣𝑖 ∶=

⎛
⎜
⎜
⎜
⎝

0
0
0
0
𝑣𝑖

⎞
⎟
⎟
⎟
⎠

∈ 𝑅2𝑛.

Define 𝜏 ∶= 𝜏0 − 𝜏1 + 𝜏2. Note that 𝜏 commutes with differentials and com-
mutes with 𝑂𝑛−2,𝑛−2 multiplication from the left, so that it indeed defines a
homomorphism of chain complexes of 𝑂𝑛−2,𝑛−2-modules. We need to check
that 𝜏 is equivariant for the global 𝑅∗-actions on the spectral sequences so that
𝜏 induces a map on the localised spectral sequences. By Proposition 3.11, the
global action is induced by the map (𝐶𝐵𝑎 , 𝐵𝑎) on the Spectral Sequence (16).
Therefore, 𝑅∗-equivariance follows from the fact that for every 𝑎 ∈ 𝑅∗ and for
all 𝑗 = 0, 1, 2, the diagrams

(𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2)) (𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

(𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2)) (𝑂𝑛,𝑛, 𝐶𝑝(𝑛)),

(𝑖,𝜏𝑗)

(𝐶𝐵𝑎 ,𝐵𝑎)

(𝑖,𝜏𝑗)

(𝐶𝐵𝑎 ,𝐵𝑎)

commute, where 𝑖 ∶ 𝑂𝑛−2,𝑛−2 ↪ 𝑂𝑛,𝑛 denotes the inclusion. The point is that
𝐵𝑎(𝑒𝑖) = 𝑒𝑖. Therefore, 𝜏 induces a map of spectral sequences of 𝑅∗-modules

𝜏∗ ∶ 𝐸̃ → 𝐸
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where 𝐸̃ ∶= 𝐸(𝑛 − 2)[−2, 0] and 𝐸 ∶= 𝐸(𝑛).
Recall from Propositions 3.12 and 3.13 that the local actions are globally in-

duced by multiplication with 𝑎−2 for 𝑎 ∈ 𝑅∗. Localising with respect to the last
action, we obtain a map on the localised spectral sequences

𝑚𝜏∗ ∶ 𝑚𝐸̃ → 𝑚𝐸.

Note that for all 𝑞 < 𝑚∕2 and 2 ≤ 𝑝 ≤ 𝑛,

𝑚𝐸̃1𝑝,𝑞 = 𝑚𝐸1𝑝,𝑞(𝑛 − 2)[−2, 0] = 𝑚𝐸1𝑝−2,𝑞(𝑛 − 2) ≅ 𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝).

The claim will then follow by induction on 𝑟 using the following lemma:

Lemma 3.18. Themap 𝑚𝜏∗ ∶ 𝑚𝐸̃1𝑝,𝑞 → 𝑚𝐸1𝑝,𝑞 is the identity for all 𝑞 < 𝑚∕2 and
2 ≤ 𝑝 ≤ 𝑛.

Proof. If we can show that for 𝑗 = 0, 1, 2, the diagrams

𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝) 𝐻𝑞(𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2))

𝐻𝑞(𝑂𝑛−𝑝,𝑛−𝑝) 𝐻𝑞(𝑂𝑛,𝑛, 𝐶𝑝(𝑛)),

=

(𝜄,(𝑒1,…,𝑒𝑝−2))∗

(𝜄,𝜏𝑗)∗

(𝜄,(𝑒1,…,𝑒𝑝))∗

(22)

commute, where the 𝜄’s denote inclusions, we will be done, as 𝜏 = 𝜏0 − 𝜏1 + 𝜏2.
Again, wewill prove these diagrams commuteusingLemma3.9. Specifically,

consider diagram

(𝑂𝑛−𝑝,𝑛−𝑝, ℤ)
(𝜄,𝜏𝑗(𝑒1,…,𝑒𝑝−2))

⇉
(𝜄,(𝑒1,…,𝑒𝑝))

(𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

Note that 𝜏0(𝑒1, … , 𝑒𝑝−2) = (𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑝), so that diagram (22) commutes
in the case for 𝑗 = 0 by functoriality of group homology. For 𝑗 = 1, 2, we
have 𝜏1(𝑒1, … , 𝑒𝑝−2) = (𝑒1, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑝) and 𝜏2(𝑒1, … , 𝑒𝑝−2) = (𝑒2, 𝑒2 −
𝑒1, 𝑒3, … , 𝑒𝑝). Define a matrix 𝐴 ∈ 𝑂𝑛,𝑛 by

𝑒1 ↦ 𝑒1
𝑒2 ↦ 𝑒2 − 𝑒1
𝑓1 ↦ 𝑓1 + 𝑓2
𝑓2 ↦ 𝑓2
𝑒𝑗 ↦ 𝑒𝑗 for all 3 ≤ 𝑗 ≤ 𝑛
𝑓𝑗 ↦ 𝑓𝑗 for all 3 ≤ 𝑗 ≤ 𝑛.
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Similarly, define 𝐵 ∈ 𝑂𝑛,𝑛 by

𝑒1 ↦ 𝑒2
𝑒2 ↦ 𝑒2 − 𝑒1
𝑓1 ↦ 𝑓1 + 𝑓2
𝑓2 ↦ −𝑓1
𝑒𝑗 ↦ 𝑒𝑗 for all 3 ≤ 𝑗 ≤ 𝑛
𝑓𝑗 ↦ 𝑓𝑗 for all 3 ≤ 𝑗 ≤ 𝑛.

Then, 𝐴(𝑒1, … 𝑒𝑝) = 𝜏1(𝑒1, … , 𝑒𝑝−2), 𝐵(𝑒1, … 𝑒𝑝) = 𝜏2(𝑒1, … , 𝑒𝑝−2) and for every
𝑀 ∈ 𝑂𝑛−𝑝,𝑛−𝑝, 𝜄(𝑀) = 𝐴𝜄(𝑀)𝐴−1 = 𝐵𝜄(𝑀)𝐵−1. Thus, by Lemma 3.9, Dia-
gram (22) commutes for every 𝑗 = 0, 1, 2. These diagrams still commute after
localisation, but now the horizontal maps become the identification isomor-
phisms. □

This proves the lemma, and thus Proposition 3.17. □

Theorem 3.19. Let 𝑅 be a commutative local ring with infinite residue field such
that 2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(𝑂𝑛,𝑛(𝑅))⟶ 𝐻𝑘(𝑂𝑛+1,𝑛+1(𝑅))

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

Remark 3.20. This improves Mirzaii’s result [10] by 1 and matches the analo-
gous result for fields obtained by Sprehn-Wahl [18].

Proof. Choose 𝑚 > 0 sufficiently large so that we may apply Corollary 3.16
when 𝑞 ≤ 𝑛 − 1.
Recall from Theorem 2.12 that 𝐻𝑞(𝐶∗(𝑛)) = 0 for all 𝑞 ≤ 𝑛 − 1. Thus, from

the Spectral Sequences (6) and (20), Corollary 3.16 and Proposition 3.17, we
deduce

coker (𝐻𝑞(𝑂𝑛−1,𝑛−1)
𝑖∗,→ 𝐻𝑞(𝑂𝑛,𝑛))) = 𝑚𝐸20,𝑞

≅ 𝑚𝐸∞0,𝑞
= 0

for all 𝑞 ≤ 𝑛 − 1, and

ker (𝐻𝑞(𝑂𝑛−1,𝑛−1)
𝑖∗,→ 𝐻𝑞(𝑂𝑛,𝑛))) = 𝑚𝐸21,𝑞

≅ 𝑚𝐸∞1,𝑞
= 0

for all 𝑞 ≤ 𝑛 − 2.
The theorem follows. □
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4. Homological stability for 𝑺𝑶𝒏,𝒏

Recall we have two hyperhomology spectral sequences

𝐸2𝑝,𝑞(𝑛) = 𝐻𝑝(𝑆𝑂𝑛,𝑛, 𝐻𝑞(𝐶∗(𝑛))) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛)) (23)

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛)). (24)

Moreover, recall that in Theorem 2.12, we proved 𝐻𝑞(𝐶∗(𝑛)) = 0 for every 𝑞 ≤
𝑛−1. Aswe expect the homological stability range for𝑆𝑂𝑛,𝑛 to be the same as for
𝑂𝑛,𝑛, a reasonable proof strategy is to localise Spectral Sequence (24) in the same
manner as we did for the𝑂𝑛,𝑛 and analyse the localised spectral sequences. The
analysis will turn out to be very similar to the𝑂𝑛,𝑛 case, except for the situation
when 𝑝 = 𝑛, corresponding to the fact that the action of 𝑆𝑂𝑛,𝑛 on ℐ𝒰𝑝(𝑅2𝑛) is
transitive only for 𝑝 < 𝑛, see Lemma 4.2. But in the end, this will not prove to
be too significant.
Note that for all 𝑛 > 0, we have short exact sequences

1 → 𝑆𝑂𝑛,𝑛 → 𝑂𝑛,𝑛 → ℤ2 → 1,

where the right arrow given is by the determinant map. Moreover, if we define
𝑆𝑇𝑘 ≤ 𝑇𝑘 to be the subgroup of matrices in 𝑇𝑘 having determinant 1, the pro-
jection map 𝜌 ∶ 𝑇𝑘 → 𝑂𝑛−𝑘,𝑛−𝑘 restricts to a map 𝜌 ∶ 𝑆𝑇𝑘 → 𝑆𝑂𝑛−𝑘,𝑛−𝑘. Note
that

ker(𝜌 ∶ 𝑇𝑘 → 𝑂𝑛−𝑘,𝑛−𝑘) = ker(𝜌 ∶ 𝑆𝑇𝑘 → 𝑆𝑂𝑛−𝑘,𝑛−𝑘),
since, by inspection on the matrices in 𝑇𝑘, we deduce that det𝐴 = det 𝜌(𝐴)
for every 𝐴 ∈ 𝑇𝑘, and that both kernels consist precisely of those matrices
that map to the identity matrix. This observation will turn out to be significant
in the forthcoming analysis. Furthermore, note that 𝑆𝑇𝑛 = 𝑇𝑛. We use the
conventions that 𝑆𝑂0,0 = 1 and 𝑆𝑇0 = 𝑆𝑂𝑛,𝑛.
We obtain short exact sequences for every 0 ≤ 𝑘 ≤ 𝑛.

1 → 𝐿𝑘 → 𝑆𝑇𝑘 → 𝑆𝑂𝑛−𝑘,𝑛−𝑘 → 1. (25)

4.1. Local 𝑹∗-actions and transitivity. Define a local 𝑅∗-action on short ex-
act sequence (25) in exactly the same was as we did in Section 3.2.2, namely
we conjugate matrices in 𝑆𝑇𝑘 with the matrix 𝐷𝑎,𝑘 ∈ 𝑆𝑂𝑛,𝑛. As ker(𝜌 ∶ 𝑇𝑘 →
𝑂𝑛−𝑘,𝑛−𝑘) = ker(𝜌 ∶ 𝑆𝑇𝑘 → 𝑆𝑂𝑛−𝑘,𝑛−𝑘), the exact same reasoning as in Section
3.2.2 can be used to conclude that, after localistaion, the homology of 𝑆𝑇𝑘 and
𝑆𝑂𝑛−𝑘,𝑛−𝑘 coincide:

Corollary 4.1. The inclusion 𝑆𝑂𝑛−𝑘,𝑛−𝑘 ↪ 𝑇𝑘 induces isomorphisms

𝐻𝑡(𝑆𝑂𝑛−𝑘,𝑛−𝑘)
≅
,→ 𝑠−1𝑚 𝐻𝑡(𝑆𝑇𝑘)

for all 𝑡 < 𝑚∕2.

Next, we study the transitivity of the 𝑆𝑂𝑛,𝑛 action on ℐ𝒰𝑝(𝑅2𝑛).

Lemma 4.2. The action of 𝑆𝑂𝑛,𝑛 on ℐ𝒰𝑝(𝑅2𝑛) is transitive for all 𝑝 < 𝑛.
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Proof. Let (𝑢1, … , 𝑢𝑝), (𝑣1, … , 𝑣𝑝) ∈ ℐ𝒰𝑝(𝑅2𝑛). By Lemma 3.1, there exist
𝑢#1 , … , 𝑢

#
𝑝 such that (𝑢1, 𝑢#1 , … , 𝑢𝑝, 𝑢

#
𝑝 ) has Gram matrix 𝜓2𝑝, and can be ex-

tended to a hyperbolic basis (𝑢1, 𝑢#1 , … , 𝑢𝑝, 𝑢
#
𝑝 , 𝑥1, 𝑥#1 , … , 𝑥𝑛−𝑝, 𝑥

#
𝑛−𝑝). Similarly,

there exist 𝑣#1 , … , 𝑣
#
𝑝 such that (𝑣1, 𝑣#1 , … , 𝑣𝑝, 𝑣

#
𝑝 ) has Grammatrix 𝜓2𝑝, and can

be extended to a hyperbolic basis (𝑣1, 𝑣#1 , … , 𝑣𝑝, 𝑣
#
𝑝 , 𝑦1, 𝑦#1 , … , 𝑦𝑛−𝑝, 𝑦

#
𝑛−𝑝).

Let 𝐵 ∈ 𝑂𝑛,𝑛 be the matrix

𝐵 ∶= (𝑢1 𝑢#1 ⋯ 𝑢𝑝 𝑢#𝑝 𝑥1 𝑥#1 ⋯ 𝑥𝑛−𝑝 𝑥#𝑛−𝑝),

and let 𝐶 ∈ 𝑂𝑛,𝑛 be the matrix

𝐶 ∶= (𝑣1 𝑣#1 ⋯ 𝑣𝑝 𝑣#𝑝 𝑦1 𝑦#1 ⋯ 𝑦𝑛−𝑝 𝑦#𝑛−𝑝).

If det 𝐵 = det 𝐶, then 𝐶𝐵−1 ∈ 𝑆𝑂𝑛,𝑛 and maps (𝑢1, … , 𝑢𝑝) to (𝑣1, … , 𝑣𝑝). If
det 𝐵 ≠ det 𝐶, then define 𝐶̂ ∶= 𝐶𝑇, where 𝑇 is the matrix that swaps 𝑦𝑛−𝑝 and
𝑦#𝑛−𝑝 in the columns of 𝐶. Then, as det 𝑇 = −1, it follows det 𝐵 = det 𝐶̂, and we
are in the previous case. □

Recall that Shapiro’s Lemma gives an isomorphism
⨁

[𝑥]∈𝑆∕𝐺
(𝑖𝑥, 𝑥)∗ ∶

⨁

[𝑥]∈𝑆∕𝐺
𝐻∗(𝐺𝑥, ℤ)

≅
,→ 𝐻∗(𝐺,ℤ[𝑆])

of homology groups, where the direct sum is over a set of representatives 𝑥 ∈ 𝑆
of equivalence classes [𝑥] ∈ 𝑆∕𝐺; the group 𝐺𝑥 is the stabiliser of 𝐺 at 𝑥 ∈
𝑆; the homomorphism 𝑖𝑥 ∶ 𝐺𝑥 ⊆ 𝐺 is the inclusion; and 𝑥 also denotes the
homomorphism of abelian groups ℤ → ℤ[𝑆] ∶ 1 ↦ 𝑥.
We apply Shapiro’s Lemma in the case 𝐺 = 𝑆𝑂𝑛,𝑛(𝑅) and 𝑆 = ℐ𝒰𝑝(𝑅2𝑛).
Thus, by Lemma 4.2 we have identification isomorphisms given by Shapiro’s

Lemma for every, 0 ≤ 𝑝 < 𝑛 and 𝑞 ≥ 0

𝐻𝑞(𝑆𝑇𝑝)
≅
,→ 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)). (26)

For 𝑝 = 𝑛, we claim that the action of 𝑆𝑂𝑛,𝑛 on ℐ𝒰𝑛(𝑅2𝑛) has two orbits:

Proposition 4.3. For 𝑛 ≥ 1, the action of 𝑆𝑂𝑛,𝑛 on ℐ𝒰𝑛(𝑅2𝑛) has orbits corre-
sponding to ℤ2.

Proof. WeknowbyLemma3.1 that the action of𝑂𝑛,𝑛 on ℐ𝒰𝑛(𝑅2𝑛) is transitive,
so that we have an isomorphism of 𝑂𝑛,𝑛−sets

𝑂𝑛,𝑛∕𝑇𝑛 ≅ ℐ𝒰𝑛(𝑅2𝑛).

Furthermore, note that 𝑇𝑛 = 𝑆𝑇𝑛 ≤ 𝑆𝑂𝑛,𝑛 ≤ 𝑂𝑛,𝑛, so that we have a canonical
surjection 𝑂𝑛,𝑛∕𝑇𝑛 → 𝑂𝑛,𝑛∕𝑆𝑂𝑛,𝑛 with fibre 𝑆𝑂𝑛,𝑛∕𝑇𝑛. Therefore, we have an
isomorphism of 𝑂𝑛,𝑛-sets ℐ𝒰𝑛(𝑅2𝑛)∕𝑆𝑂𝑛,𝑛 ≅ 𝑂𝑛,𝑛∕𝑆𝑂𝑛,𝑛. This gives us

||||ℐ𝒰𝑛(𝑅2𝑛)∕𝑆𝑂𝑛,𝑛
|||| =

||||𝑂𝑛,𝑛∕𝑆𝑂𝑛,𝑛
|||| = |ℤ2| ,

where the last equality follows from the short exact sequence

1 → 𝑆𝑂𝑛,𝑛 → 𝑂𝑛,𝑛 → ℤ2 → 1. □
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Therefore, Shapiro’s Lemma gives us an isomorphism

𝐻𝑞(𝑆𝑡(𝑒1, … , 𝑒𝑛)) ⊕ 𝐻𝑞(𝑆𝑡(𝑒1, … , 𝑒𝑛−1, 𝑓𝑛))
≅
,→ 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑛(𝑛)). (27)

where 𝑆𝑡(𝑒1, … , 𝑒𝑛−1, 𝑓𝑛) denotes the stabiliser of (𝑒1, … , 𝑒𝑛−1, 𝑓𝑛) in 𝑆𝑂𝑛,𝑛, and
the identificationmap is given by Shapiro’s Lemma. To ease notation, we define
𝑇𝑛 ∶= 𝑆𝑡(𝑒1, … , 𝑒𝑛−1, 𝑓𝑛).
We will compute 𝑇𝑛 and show that, after localisation, all non-zero homology

groups of 𝑇𝑛 vanish.

4.2. Computation of 𝑻𝒏 and a local 𝑹∗-action. We first compute 𝑇𝑛.

Proposition 4.4. Matrices 𝐴 ∈ 𝑇𝑛 are of the form

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑛−1 𝑐1𝑛 0
0 1 0 0 ⋯ 0 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑛−1 𝑐2𝑛 0
0 0 0 1 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 𝑐𝑛−11 0 𝑐𝑛−12 ⋯ 1 𝑐𝑛−1𝑛−1 𝑐𝑛−1𝑛 0
0 0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 0 1 0
0 𝑐𝑛1 0 𝑐𝑛2 ⋯ 0 𝑐𝑛𝑛−1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where 𝑐𝑖𝑗 ∈ 𝑅, subject to the conditions

𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 0. (28)

Proof. Let 𝐴 ∈ 𝑇𝑛. Then, 𝐴𝑒1 = 𝑒1, … , 𝐴𝑒𝑛−1 = 𝑒𝑛−1 and 𝐴𝑓𝑛 = 𝑓𝑛. This
gives the 1st, 3rd, ...., (2𝑛 − 3)rd and 2𝑛-th column of 𝐴. Moreover, for a fixed
1 ≤ 𝑖 < 𝑛 and for any 1 ≤ 𝑗 < 𝑛, we have

⟨𝑒𝑖, 𝐴𝑓𝑗⟩ = ⟨𝐴𝑒𝑖, 𝐴𝑓𝑗⟩ = ⟨𝑒𝑖, 𝑓𝑗⟩ = 𝛿𝑖𝑗

and
⟨𝑒𝑖, 𝐴𝑒𝑛⟩ = ⟨𝐴𝑒𝑖, 𝐴𝑒𝑛⟩ = ⟨𝑒𝑖, 𝑒𝑛⟩ = 0.

This gives the 2nd, 4th, … , (2𝑛 − 2)nd rows of 𝐴.
Furthermore, note that for 1 ≤ 𝑗 < 𝑛,

⟨𝑓𝑛, 𝐴𝑓𝑗⟩ = ⟨𝐴𝑓𝑛, 𝐴𝑓𝑗⟩ = ⟨𝑓𝑛, 𝑓𝑗⟩ = 0,

⟨𝑓𝑛, 𝐴𝑒𝑗⟩ = ⟨𝐴𝑓𝑛, 𝐴𝑒𝑗⟩ = ⟨𝑓𝑛, 𝑒𝑗⟩ = 0

and
⟨𝑓𝑛, 𝐴𝑒𝑛⟩ = ⟨𝐴𝑓𝑛, 𝐴𝑒𝑛⟩ = ⟨𝑓𝑛, 𝑒𝑛⟩ = 1.
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This gives the (2𝑛−1)th row of𝐴. Filling in the remaining entries by constants
to be determined, we have that

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑛−1 𝑐1𝑛 0
0 1 0 0 ⋯ 0 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑛−1 𝑐2𝑛 0
0 0 0 1 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 𝑐𝑛−11 0 𝑐𝑛−12 ⋯ 1 𝑐𝑛−1𝑛−1 𝑐𝑛−1𝑛 0
0 0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 0 1 0
0 𝑐𝑛1 0 𝑐𝑛2 ⋯ 0 𝑐𝑛𝑛−1 ∆ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where 𝑐𝑖𝑗, ∆ ∈ 𝑅.
We use the equation 𝑡𝐴𝜓2𝑛𝐴 = 𝜓2𝑛 to determine the conditions on these

variables. Specifically, we have that

𝑡𝐴𝜓𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 ⋯ 0 0 0 0
𝑐11 1 𝑐21 0 ⋯ 𝑐𝑛−11 0 0 𝑐𝑛1
0 0 1 0 ⋯ 0 0 0 0
𝑐12 0 𝑐22 1 ⋯ 𝑐𝑛−12 0 0 𝑐𝑛2
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1 0 0 0

𝑐1𝑛−1 0 𝑐2𝑛−1 0 ⋯ 𝑐𝑛−1𝑛−1 1 0 𝑐𝑛𝑛−1
𝑐1𝑛 0 𝑐2𝑛 0 ⋯ 𝑐𝑛−1𝑛 0 1 ∆
0 0 0 0 ⋯ 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝜓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑛−1 𝑐1𝑛 0
0 1 0 0 ⋯ 0 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑛−1 𝑐2𝑛 0
0 0 0 1 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 𝑐𝑛−11 0 𝑐𝑛−12 ⋯ 1 𝑐𝑛−1𝑛−1 𝑐𝑛−1𝑛 0
0 0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 0 1 0
0 𝑐𝑛1 0 𝑐𝑛2 ⋯ 0 𝑐𝑛𝑛−1 ∆ 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 ⋯ 0 0 0 0
1 𝑐11 + 𝑐11 0 𝑐12 + 𝑐21 ⋯ 0 𝑐1𝑛−1 + 𝑐𝑛−11 𝑐1𝑛 + 𝑐𝑛1 0
0 0 0 1 ⋯ 0 0 0 0
0 𝑐12 + 𝑐21 1 𝑐22 + 𝑐22 ⋯ 0 𝑐2𝑛−1 + 𝑐𝑛−12 𝑐2𝑛 + 𝑐𝑛2 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 1 0 0
0 𝑐1𝑛−1 + 𝑐𝑛−11 0 𝑐2𝑛−1 + 𝑐𝑛−12 ⋯ 1 𝑐𝑛−1𝑛−1 + 𝑐𝑛−1𝑛−1 𝑐𝑛−1𝑛 + 𝑐𝑛𝑛−1 0
0 𝑐1𝑛 + 𝑐𝑛1 0 𝑐2𝑛 + 𝑐𝑛2 ⋯ 0 𝑐𝑛−1𝑛 + 𝑐𝑛𝑛−1 2∆ 1
0 0 0 0 ⋯ 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 𝜓.

Thus, we conclude∆ = 0necessarily andwe derive the required equations. □

Wenowdefine a local𝑅∗-action on𝑇𝑛. Thiswill be slightly different from the
local actions on 𝑇𝑘. We will show that, after localisation, the non-zero homol-
ogy groups of 𝑇𝑛 vanish. Eventually, we will show the global action considered
in subsection 3.2.3 induces this local action on 𝑇𝑛.

Definition 4.5 (Local action). Let 𝑎 ∈ 𝑅∗. Define a 2𝑛 × 2𝑛matrix 𝐷𝑎,𝑛 by

𝐷𝑎,𝑛 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎
𝑎−1

⋱
𝑎

𝑎−1
𝑎−1

𝑎

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎝

𝑛−1⨁

1
(𝑎 0
0 𝑎−1)

⎞
⎟
⎠

⨁
(𝑎

−1 0
0 𝑎) .
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Note that 𝐷𝑎,𝑛 ∈ 𝑆𝑂𝑛,𝑛(𝑅). The local action of 𝑅∗ on 𝑇𝑛 is the conjugation
action of 𝐷𝑎,𝑛 on 𝑇𝑛.

The local action preserves 𝑇𝑛 because

𝐷𝑎,𝑛

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑐11 0 𝑐12 ⋯ 0 𝑐1𝑛−1 𝑐1𝑛 0
0 1 0 0 ⋯ 0 0 0 0
0 𝑐21 1 𝑐22 ⋯ 0 𝑐2𝑛−1 𝑐2𝑛 0
0 0 0 1 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 𝑐𝑛−11 0 𝑐𝑛−12 ⋯ 1 𝑐𝑛−1𝑛−1 𝑐𝑛−1𝑛 0
0 0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 0 1 0
0 𝑐𝑛1 0 𝑐𝑛2 ⋯ 0 𝑐𝑛𝑛−1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝐷
−1
𝑎,𝑛

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝑎2𝑐11 0 𝑎2𝑐12 ⋯ 0 𝑎2𝑐1𝑛−1 𝑎2𝑐1𝑛 0
0 1 0 0 ⋯ 0 0 0 0
0 𝑎2𝑐21 1 𝑎2𝑐22 ⋯ 0 𝑎2𝑐2𝑛−1 𝑎2𝑐2𝑛 0
0 0 0 1 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 𝑎2𝑐𝑛−11 0 𝑎2𝑐𝑛−12 ⋯ 1 𝑎2𝑐𝑛−1𝑛−1 𝑎2𝑐𝑛−1𝑛 0
0 0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 0 1 0
0 𝑎2𝑐𝑛1 0 𝑎2𝑐𝑛2 ⋯ 0 𝑎2𝑐𝑛𝑛−1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ 𝑇𝑛.

We show that localising with respect to the elements 𝑠𝑚 kills the non-zero
homology groups of 𝑇𝑛 when 𝑚 is taken to infinity. This is used to make the
identifications in Corollary 4.9.

Lemma 4.6. We have 𝑠−1𝑚 𝐻0(𝑇𝑛) = ℤ and for all 1 ≤ 2𝑞 < 𝑚, 𝑠−1𝑚 𝐻𝑞(𝑇𝑛) = 0.

Proof. We claim there is a short exact sequence of groups

1 → (𝑅(
𝑛
2), +) → 𝑇𝑛 → 1 → 1. (29)

The first arrow maps
(𝑐1, … ) ↦ 𝐴(𝑐1,… )

where 𝐴(𝑐1,… ) ∈ 𝑇𝑛 is defined by conditions (28) (with some ordering specified
beforehand). The second maps 𝐴 ∈ 𝑇𝑛 to its bottom right identity matrix. One
may check that 𝑇𝑛 is abelian, and these arrows define a short exact sequence of
abelian groups.
Furthermore, this short exact sequence of abelian groups is 𝑅∗-equivariant

where 𝑏 ∈ 𝑅∗ acts on (𝑅(
𝑛
2), +) via pointwise multiplication by 𝑏2, the element

𝑏 ∈ 𝑅∗ acts on 𝑇𝑛 via conjugation by 𝐷𝑏,𝑛 and the action of 𝑏 on 1 is taken to
be trivial.
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By Proposition 3.4, we have 𝑠−1𝑚 𝐻𝑞(𝑇𝑛) = 0 for all 1 ≤ 2𝑞 < 𝑚. The equality
𝑠−1𝑚 𝐻0(𝑇𝑛) = ℤ follows from fact that 𝑅∗ acts trivially on𝐻0(𝑇𝑛). □

4.3. A global action on the 𝑺𝑶𝒏,𝒏 spectral sequence. As before, we want to
realise these ‘local actions’ as a ‘global action’ on the spectral sequence

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛)). (30)

Again, we do this by defining an action on the associated exact couple with
abutment. Specifically, the spectral sequence

𝐸1𝑝,𝑞 = 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛))

may be obtained from the exact couple with abutment
⨁

𝑝,𝑞 𝐸
1
𝑝,𝑞

⨁
𝑝,𝑞 𝐷

1
𝑝,𝑞

⨁
𝑝+𝑞 𝐴𝑝+𝑞

⨁
𝑝,𝑞 𝐷

1
𝑝,𝑞

𝑘

𝑖

𝜎

𝑗
𝜎 (31)

with

𝐸1𝑝,𝑞 = 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶≤𝑝(𝑛)∕𝐶≤𝑝−1(𝑛));

𝐷1
𝑝,𝑞 = 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶≤𝑝(𝑛));

𝐴𝑝+𝑞 = 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛)).

The maps 𝑖, 𝑗, 𝑘 being the maps of the long exact sequence of homology groups
associated to the short exact sequence of complexes

0 → 𝐶≤𝑝−1(𝑛) → 𝐶≤𝑝(𝑛) → 𝐶≤𝑝(𝑛)∕𝐶≤𝑝−1(𝑛) → 0,

and 𝜎 is induced by the inclusion.
For 𝑎 ∈ 𝑅∗, we define the global action on Spectral Sequence (30) to be the

action induced by the map (𝐶𝐵𝑎−2 , 𝐵𝑎−2) on exact couple (31), where 𝐶𝐵𝑎−2 de-
notes conjugation by the matrix 𝐵𝑎−2 of Section 3.2.3, and 𝐵𝑎−2 also refers to
multiplication by this matrix.
As 𝐷𝑎,𝑘 ∈ 𝑆𝑂𝑛,𝑛 for every 0 ≤ 𝑘 ≤ 𝑛, the proof of Proposition 3.12 may be

used to prove the following.

Proposition 4.7. Let 𝑘, 𝑞 ≥ 0 and 𝑛 ≥ 1. Then, for all 𝑎 ∈ 𝑅∗, the following
diagram commutes:

𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛)),

(𝐶𝐵𝑎−2 ,𝐵𝑎−2 )∗

𝑖𝑑

(𝑖𝑑,𝜙𝑎)∗

𝑖𝑑

where for 𝑎 ∈ 𝑅∗, the map

(𝑖𝑑, 𝜙𝑎) ∶ (𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) → (𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
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is defined to be the identity on 𝑆𝑂𝑛,𝑛 and on basis elements of 𝐶𝑘(𝑛) as

𝜙𝑎 ∶ (𝑣1, … , 𝑣𝑘) ↦ (𝑎−1𝑣1, … , 𝑎−1𝑣𝑘).

For the next proposition, we need to treat the case 𝑘 = 𝑛 separately:

Proposition 4.8. Let 𝑞 ≥ 0 and 0 ≤ 𝑘 < 𝑛. Then, for all 𝑎 ∈ 𝑅∗, the following
diagram commutes:

𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

𝐻𝑞(𝑆𝑇𝑘, ℤ) 𝐻𝑞(𝑆𝑇𝑘, ℤ),

(𝑖𝑑,𝜙𝑎)∗

(𝑖,(𝑒1,…,𝑒𝑘))∗ ≅

𝐶𝐷𝑎,𝑘

(𝑖,(𝑒1,…,𝑒𝑘))∗≅

where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and
the map 𝐶𝐷𝑎,𝑘 denotes the map induced by conjugation with the element 𝐷𝑎,𝑘 on
the stabiliser 𝑆𝑇𝑘.
Moreover, for 𝑞 ≥ 0 and 𝑘 = 𝑛, the following diagram commutes for all𝑎 ∈ 𝑅∗:

𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑛(𝑛)) 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑛(𝑛))

𝐻𝑞(𝑇𝑛, ℤ) ⊕ 𝐻𝑞(𝑇𝑛, ℤ) 𝐻𝑞(𝑇𝑛, ℤ) ⊕ 𝐻𝑞(𝑇𝑛, ℤ),

(𝑖𝑑,𝜙𝑎)∗

(𝑖,(𝑒1,…,𝑒𝑛))∗⊕(𝑖,(𝑒1,…,𝑓𝑛))∗ ≅

𝐶𝐷𝑎,𝑛⊕𝐶𝐷𝑎,𝑛

(𝑖,(𝑒1,…,𝑒𝑛))∗⊕(𝑖,(𝑒1,…,𝑓𝑛))∗≅

where the vertical arrows are the isomorphisms given by Shapiro’s Lemmaand the
map 𝐶𝐷𝑎,𝑛 ⊕𝐶𝐷𝑎,𝑛

denotes the map induced by conjugation with the element𝐷𝑎,𝑛
on the stabiliser 𝑇𝑛 sum with the map induced by conjugation with the element
𝐷𝑎,𝑛 on the stabiliser 𝑇𝑛.

Proof. The proof of the first half of the proposition is exactly the same as the
𝑂𝑛,𝑛 case, since 𝐷𝑎,𝑘 ∈ 𝑆𝑂𝑛,𝑛. See Proposition 3.13. The proof that the first
component commutes is exactly the same as the 𝑂𝑛,𝑛 case, since 𝐷𝑎,𝑛 ∈ 𝑆𝑂𝑛,𝑛.
For the second component, consider the diagram

(𝑇𝑛, ℤ)
(𝑓1,𝜑1)
⇉

(𝑓2,𝜑2)
(𝑆𝑂𝑛,𝑛, 𝐶𝑛(𝑛))

where (𝑓1, 𝜑1) ∶= (𝑖, (𝑎−1𝑒1, … , 𝑎−1𝑓𝑛)) and (𝑓2, 𝜑2) ∶= (𝑖𝐶𝐷𝑎,𝑛
, (𝑒1, … , 𝑓𝑛)),

and 𝑖 ∶ 𝑇𝑛 → 𝑆𝑂𝑛,𝑛 is the natural inclusion of groups. Let 𝜅 = 𝐷𝑎,𝑛 ∈ 𝑆𝑂𝑛,𝑛.
Then, for every 𝐴 ∈ 𝑇𝑛,

𝑓2(𝐴) = 𝑖𝐶𝐷𝑎,𝑛
(𝐴) = 𝐷𝑎,𝑛𝐴𝐷

−1
𝑎,𝑛 = 𝐷𝑎,𝑛𝑖(𝐴)𝐷

−1
𝑎,𝑛 = 𝜅𝑓1(𝐴)𝜅−1

and
(𝑒1, … , 𝑓𝑛) = 𝐷𝑎,𝑛(𝑎−1𝑒1, … , 𝑎−1𝑓𝑛) = 𝜅(𝑎−1𝑒1, … , 𝑎−1𝑓𝑛).

By Lemma 3.9, the diagram commutes. □
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Thus, we have shown that there exists an 𝑅∗-action on the spectral sequence
𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛))

which induces the desired local actions considered previously. Putting every-
thing together, we obtain the following.

Corollary 4.9. For every 𝑚 ≥ 1 and every 𝑞 < 𝑚∕2, the localised spectral se-
quence

𝑚𝐸1𝑝,𝑞(𝑛) = 𝑠−1𝑚 𝐸1𝑝,𝑞(𝑛) ⇒ 𝑠−1𝑚 𝐻𝑝+𝑞(𝑆𝑂𝑛,𝑛, 𝐶∗(𝑛)) (32)

has 𝑚𝐸1𝑝,𝑞 terms

𝑚𝐸1𝑝,𝑞(𝑛) = 𝑠−1𝑚 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ≅
⎧

⎨
⎩

𝐻𝑞(𝑆𝑂𝑛−𝑝,𝑛−𝑝) 0 ≤ 𝑝 < 𝑛
ℤ[ℤ2] 𝑝 = 𝑛, 𝑞 = 0
0 𝑝 = 𝑛, 𝑞 > 0.

Our next task is to compute the localised 𝑑1 differentials
𝑑1 ∶ 𝑚𝐸1𝑝,𝑞 → 𝑚𝐸1𝑝−1,𝑞.

4.4. Computation of the localised 𝒅𝟏 differentials, and proof of homo-
logical stability.

Proposition 4.10. For all 𝑞 < 𝑚∕2 and 0 ≤ 𝑝 < 𝑛, the homomorphism 𝑑1𝑝,𝑞 is

𝑑1𝑝,𝑞 = {
0, 𝑝 even
𝑖∗, 𝑝 odd,

where 𝑖 ∶ 𝑆𝑂𝑛−𝑝,𝑛−𝑝 ↪ 𝑆𝑂𝑛−𝑝+1,𝑛−𝑝+1 denotes the inclusion. For 𝑝 = 𝑛, the
homomorphism 𝑑1𝑛,𝑞 is 0 if 𝑞 > 0 or if 𝑛 is even; and for 𝑞 = 0 and 𝑛 odd, 𝑑1𝑛,0 is
the augmentation map 𝜀 ∶ ℤ[ℤ2] → ℤ.

Proof. For all 𝑝 < 𝑛, we want to show that the following diagram commutes:

𝐻𝑞(𝑆𝑂𝑛−𝑝,𝑛−𝑝) 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

𝐻𝑞(𝑆𝑂𝑛−𝑝+1,𝑛−𝑝+1) 𝐻𝑞(𝑆𝑂𝑛,𝑛, 𝐶𝑝−1(𝑛)),

𝑖∗

(𝜄,(𝑒1,…,𝑒𝑝))∗

(𝑑𝑖)∗

(𝜄,(𝑒1,…,𝑒𝑝−1))∗

(33)

where 𝜄 ∶ 𝑆𝑂𝑛−𝑝,𝑛−𝑝 ↪ 𝑆𝑂𝑛,𝑛 denotes the inclusion map; (𝑒1, … , 𝑒𝑝) ∶ 1 ↦
(𝑒1, … , 𝑒𝑝) and recall that 𝑑𝑖(𝑣1, … , 𝑣𝑝) = (𝑣1, … , 𝑣𝑖, … , 𝑣𝑝).
The same proof as in Proposition 3.15 will work, so long as we can show 𝜎

has determinant 1. Note that permutation matrix 𝜎 will be of the form
𝜎 = (𝑒1 𝑓1 ⋯ 𝑒𝑖−1 𝑓𝑖−1 𝑒𝑝 𝑓𝑝 𝑒𝑖 𝑓𝑖⋯ 𝑒𝑝−1 𝑓𝑝−1).

From this, we may write 𝑖𝑑 = 𝜎 ⋅ 𝑇1 ⋅ 𝑇2⋯𝑇2(𝑝−𝑖), where the matrices 𝑇𝑖 are
the elementary matrices needed to swap columns in 𝜎 to transform it into the
identitymatrix. Note that each of thesematrices has determinant−1, and there
are an even number of such matrices.
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Thus, we deduce 1 = det(𝑖𝑑) = det(𝜎⋅𝑇1 ⋅𝑇2⋯𝑇2(𝑝−𝑖)) = (−1)2(𝑝−𝑖) det(𝜎) =
det(𝜎).
For 𝑝 = 𝑛, it suffices to show that the following diagram commutes:

ℤ[ℤ2] 𝐶𝑛(𝑛)𝑆𝑂𝑛,𝑛

ℤ 𝐶𝑛−1(𝑛)𝑆𝑂𝑛,𝑛 .

𝜀

1↦(𝑒1,…,𝑒𝑛),𝜎↦(𝑒1,…,𝑓𝑛)

𝑑𝑖

1↦(𝑒1,…,𝑒𝑛−1)

For 𝑖 = 𝑛, it is easy to see by inspection that the diagram commutes.
For 1 ≤ 𝑖 < 𝑛, commutativity follows from the fact that𝑆𝑂𝑛,𝑛 acts transitively

on ℐ𝒰𝑛−1(𝑅2𝑛).
These diagrams still commutes after localisation, but now the horizontal ar-

rows become the identification isomorphisms. □

We need to prove the following:

Proposition 4.11. The differentials 𝑑𝑟𝑝,𝑞 in Spectral Sequence (32) are zero for
𝑟 ≥ 2 and 𝑞 < 𝑚∕2, 𝑝 ≤ 𝑛. Hence, for all 𝑞 < 𝑚∕2 and 𝑝 ≤ 𝑛, 𝑚𝐸2𝑝,𝑞 ≅ 𝑚𝐸∞𝑝,𝑞.

Proof. For 𝑛 = 0, 1, the spectral sequence under consideration is located in
columns 0 and 1. Therefore, the differentials 𝑑𝑟 for 𝑟 ≥ 2 are zero by dimension
arguments.
For 𝑛 ≥ 2, consider the homomorphism of complexes of 𝑆𝑂𝑛−2,𝑛−2-modules

𝜏 ∶ 𝐶∗(𝑛 − 2)[−2] → 𝐶∗(𝑛).

as defined in Proposition 3.17. Note that the diagram

(𝑆𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2)) (𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

(𝑆𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2)) (𝑆𝑂𝑛,𝑛, 𝐶𝑝(𝑛)),

(𝑖,𝜏𝑗)

(𝐶𝐵𝑎 ,𝐵𝑎)

(𝑖,𝜏𝑗)

(𝐶𝐵𝑎 ,𝐵𝑎)

still commutes, so that we have an inducedmap on localised spectral sequences

𝑚𝜏∗ ∶ 𝑚𝐸̃ → 𝑚𝐸.

The claim would then follow by induction on 𝑟 using the following lemma:

Lemma 4.12. Themap 𝑚𝜏∗ ∶ 𝑚𝐸̃1𝑝,𝑞 → 𝑚𝐸1𝑝,𝑞 is the identity for all 𝑞 < 𝑚∕2 and
2 ≤ 𝑝 ≤ 𝑛.

Proof. For 2 ≤ 𝑝 < 𝑛, the same proof as in Lemma 3.18 works, as the matrices
𝐴 and 𝐵 in Lemma 3.18 have determinant 1. Thus, we only need to consider
the case 𝑝 = 𝑛.
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It suffices to show that for 𝑗 = 0, 1, 2, the following diagram commutes:

ℤ[ℤ2] 𝐶𝑛−2(𝑛 − 2)𝑆𝑂𝑛−2,𝑛−2

ℤ[ℤ2] 𝐶𝑛(𝑛)𝑆𝑂𝑛,𝑛 .

=

1↦(𝑒1,…,𝑒𝑛−2),𝜎↦(𝑒1,…,𝑓𝑛−2)

𝜏𝑗

1↦(𝑒1,…,𝑒𝑛),𝜎↦(𝑒1,…,𝑓𝑛)

For 𝑗 = 0, the diagram is easily seen to commute by inspection.
For 𝑗 = 1, we have that

𝐴(𝑒1, … , 𝑒𝑛) = (𝑒1, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑛)
𝐴(𝑒1, … , 𝑓𝑛) = (𝑒1, 𝑒2 − 𝑒1, 𝑒3, … , 𝑓𝑛),

where 𝐴 ∈ 𝑆𝑂𝑛,𝑛 is the matrix 𝐴 in the proof of Lemma 3.18.
Similarly, for 𝑗 = 2, we have that

𝐵(𝑒1, … , 𝑒𝑛) = (𝑒2, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑛)
𝐵(𝑒1, … , 𝑓𝑛) = (𝑒2, 𝑒2 − 𝑒1, 𝑒3, … , 𝑓𝑛),

where 𝐵 ∈ 𝑆𝑂𝑛,𝑛 is the matrix 𝐵 in the proof of Lemma 3.18.
Thus, the diagrams commute. These diagrams still commute after locali-

sation, but now the horizontal maps become the identification isomorphisms.
□

This proves the lemma, and thus Proposition 4.11. □

Theorem 4.13. Let 𝑅 be a commutative local ring with infinite residue field such
that 2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(𝑆𝑂𝑛,𝑛(𝑅))⟶ 𝐻𝑘(𝑆𝑂𝑛+1,𝑛+1(𝑅))

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

Remark 4.14. This is the first knownhomological stability result for 𝑆𝑂𝑛,𝑛 over
a local ring and generalises the result obtained by Essert [4] for infinite fields.

Proof. Choose 𝑚 > 0 sufficiently large. We have a Spectral Sequence (32)
with 𝐸1-terms given by Corollary 4.9 and 𝑑1𝑝,𝑞 was computed for all 𝑞 < 𝑚∕2
in Proposition 4.10. From Theorem 2.12, Spectral Sequences (23) and (32) and
Proposition 4.11, we deduce 𝑚𝐸2𝑝,𝑞 = 𝑚𝐸∞𝑝,𝑞 for all 𝑝 + 𝑞 ≤ 𝑛 − 1 and 𝑞 < 𝑚∕2.
The theorem follows. □

5. Homological stability for 𝑬𝑶𝒏,𝒏

We define 𝐸𝑂𝑛,𝑛 as follows.

Definition 5.1. Define 𝐸𝑂𝑛,𝑛 to be the image of the map

𝐸𝑂𝑛,𝑛 ∶= Im(𝜋 ∶ Spin𝑛,𝑛 ⟶𝑆𝑂𝑛,𝑛),

where 𝜋 ∶ Spin𝑛,𝑛 ⟶𝑆𝑂𝑛,𝑛 is the canonical map from the Spin group into the
special orthogonal group.
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From this definition, we see that 𝐸𝑂𝑛,𝑛 sits inside short exact sequence

1 → ℤ2 → Spin𝑛,𝑛
𝜋
,→ 𝐸𝑂𝑛,𝑛 → 1.

We refer the reader to the appendix for more information about the Spin
group and the exact sequence above.
In this section, wewill study the homological stability of 𝐸𝑂𝑛,𝑛. Wewill then

apply the relative Hochschild-Serre Spectral Sequence to the above short exact
sequence. This will then give us a homological stability result for Spin𝑛,𝑛.

Remark 5.2. The given definition of the elementary group 𝐸𝑂𝑛,𝑛 coincides
with the one presented in the introduction as stated in [5, Theorem 9.2.8].

Remark 5.3. Note that [5, Theorem 9.2.8] as stated is true for 𝑛 ≥ 2. For
𝑛 = 1, we use the convention that 𝐸𝑂1,1(𝑅) = 𝑅∗2, so that the above short exact
sequence is still true.

To prove homological stability of 𝐸𝑂𝑛,𝑛, we will study the hyperhomology
spectral sequences

𝐸2𝑝,𝑞(𝑛) = 𝐻𝑝(𝐸𝑂𝑛,𝑛, 𝐻𝑞(𝐶∗(𝑛))) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛)) (34)

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛)). (35)

As the action of 𝐸𝑂𝑛,𝑛 on ℐ𝒰𝑝(𝑅2𝑛) is transitive only for 𝑝 < 𝑛, see Lemma 5.4,
it is reasonable to expect that the analysis for the 𝐸𝑂𝑛,𝑛 case should be similar
to the 𝑆𝑂𝑛,𝑛 case. This is indeed what happens.
By Theorem A.26, 𝐸𝑂𝑛,𝑛 also sits inside the short exact sequence

1 → 𝐸𝑂𝑛,𝑛 → 𝑆𝑂𝑛,𝑛
𝜃
,→ 𝑅∗∕𝑅∗2 → 1,

where the first arrow is the inclusion and the second arrow 𝜃 is the spinor
norm (this short exact sequence is also true for 𝑛 = 1, given our convention
𝐸𝑂1,1(𝑅) = 𝑅∗2). We refer the reader to the Appendix A for more details about
the spinor norm. See also [14] and [5] as additional references. From this
short exact sequence, we have the inclusion [𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛] ⊆ 𝐸𝑂𝑛,𝑛, where
[𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛] denotes the commutator subgroup of 𝑆𝑂𝑛,𝑛. Therefore, to prove
a matrix is in 𝐸𝑂𝑛,𝑛, it will be sufficient to prove it is in [𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛]. This will
be very convenient for us.

5.1. Transitivity and local 𝑹∗-actions. We want to prove that the canonical
action of 𝐸𝑂𝑛,𝑛 on ℐ𝒰𝑝(𝑅2𝑛) is transitive for all 𝑝 < 𝑛.

Lemma 5.4. The action of 𝐸𝑂𝑛,𝑛 on ℐ𝒰𝑝(𝑅2𝑛) is transitive for all 𝑝 < 𝑛.

Proof. Let (𝑣1, … , 𝑣𝑝) ∈ ℐ𝒰𝑝(𝑅2𝑛). It suffices to show that there exists an 𝐴 ∈
𝐸𝑂𝑛,𝑛 such that 𝐴(𝑒1, … , 𝑒𝑝) = (𝑣1, … , 𝑣𝑝).
We know by Lemma 4.2 that the action of 𝑆𝑂𝑛,𝑛 is transitive for all 𝑝 < 𝑛.

Therefore, there exists a 𝐵 ∈ 𝑆𝑂𝑛,𝑛 such that 𝐵(𝑒1, … , 𝑒𝑝) = (𝑣1, … , 𝑣𝑝).
Furthermore, note that we have surjections 𝑆𝑇𝑝 = Stab𝑆𝑂𝑛,𝑛(𝑒1, … , 𝑒𝑝) ↠

𝑆𝑂𝑛−𝑝,𝑛−𝑝 and 𝑆𝑂𝑛−𝑝,𝑛−𝑝 ↠ 𝑅∗∕𝑅∗2.
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Therefore, we deduce that there exists a 𝐶 ∈ 𝑆𝑇𝑝 ≤ 𝑆𝑂𝑛,𝑛 such that 𝜃(𝐵𝐶) =
𝜃(𝐵)𝜃(𝐶) = 1 and 𝐵𝐶(𝑒1, … , 𝑒𝑝) = 𝐵(𝑒1, … , 𝑒𝑝) = (𝑣1, … , 𝑣𝑝).
As 𝜃(𝐵𝐶) = 1, we have that 𝐵𝐶 ∈ ker(𝜃) = 𝐸𝑂𝑛,𝑛. We may thus set 𝐴 ∶=

𝐵𝐶. □

Define 𝐸𝑇𝑘 ∶= Stab𝐸𝑂𝑛,𝑛(𝑒1, … , 𝑒𝑘). Note that 𝐸𝑇𝑘 is precisely ker(𝑆𝑇𝑘
𝜃
,→

𝑅∗∕𝑅∗2). This gives us the following diagram with exact rows:

1 𝐸𝑇𝑘 𝑆𝑇𝑘 𝑅∗∕𝑅∗2 1

1 𝐸𝑂𝑛−𝑘,𝑛−𝑘 𝑆𝑂𝑛−𝑘,𝑛−𝑘 𝑅∗∕𝑅∗2 1

𝜌

𝜃

=

𝜃

,

where the existence of the dashed arrow for all 𝑛 ≥ 2will follow if we can show
that the right square commutes (themap trivially exists for 𝑛 = 1). Let us prove
this.

Proposition 5.5. For every 𝑛 ≥ 2, the square

𝑆𝑇𝑘 𝑅∗∕𝑅∗2

𝑆𝑂𝑛−𝑘,𝑛−𝑘 𝑅∗∕𝑅∗2

𝜃

=

𝜃

commutes.

Proof. Let 𝑛 ≥ 2. Recall that [𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛] ⊆ 𝐸𝑂𝑛,𝑛. Let 𝐴 ∈ 𝑆𝑇𝑘 such

that 𝜌(𝐴) = 𝐵. Want to show 𝜃(𝐴) = 𝜃 ((12𝑘 𝐵)). Equivalently, want to

show 𝜃 ((12𝑘 𝐵−1)𝐴) = 1. Therefore, we want to show that (12𝑘 𝐵−1)𝐴 ∈

[𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛] ⊆ 𝐸𝑂𝑛,𝑛.

Note that (12𝑘 𝐵−1)𝐴 ∈ 𝐿𝑘, it thus suffices to prove 𝐿𝑘 ⊆ [𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛].

The inclusion 𝐿𝑘 ↪ 𝑆𝑂𝑛,𝑛 induces amap on homology𝐻𝑞(𝐿𝑘) → 𝐻𝑞(𝑆𝑂𝑛,𝑛).
We claim this is the zero map for every 𝑞 ≥ 1.
Recall from Lemma 3.5 that 𝑠−1𝑚 𝐻𝑞(𝐿𝑘) = 0 for every 1 ≤ 2𝑞 < 𝑚 and note

that 𝑠−1𝑚 𝐻𝑞(𝑆𝑂𝑛,𝑛) = 𝐻𝑞(𝑆𝑂𝑛,𝑛), as the 𝑅∗-action defining this localization is
trivial on𝐻𝑞(𝑆𝑂𝑛,𝑛).
Taking𝑚 sufficiently large, we obtain for every 𝑞 ≥ 1 commutative diagrams

𝐻𝑞(𝐿𝑘) 𝐻𝑞(𝑆𝑂𝑛,𝑛)

𝑠−1𝑚 𝐻𝑞(𝐿𝑘) = 0 𝑠−1𝑚 𝐻𝑞(𝑆𝑂𝑛,𝑛) = 𝐻𝑞(𝑆𝑂𝑛,𝑛)

= .
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We therefore deduce that 𝐻𝑞(𝐿𝑘) → 𝐻𝑞(𝑆𝑂𝑛,𝑛) is the zero map for every 𝑞 ≥
1. In particular, as 𝐻1 corresponds to taking abelianization, we have that the
diagram

𝐿𝑘 𝑆𝑂𝑛,𝑛

𝐿𝑘∕[𝐿𝑘, 𝐿𝑘] 𝑆𝑂𝑛,𝑛∕[𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛]
0

commutes. Therefore, we conclude that the inclusion 𝐿𝑘 ↪ 𝑆𝑂𝑛,𝑛 factors
through [𝑆𝑂𝑛,𝑛, 𝑆𝑂𝑛,𝑛]. □

Thus, the projection map 𝜌 ∶ 𝑆𝑇𝑘 ↠ 𝑆𝑂𝑛−𝑘,𝑛−𝑘 induces a map 𝜌 ∶ 𝐸𝑇𝑘 ↠
𝐸𝑂𝑛−𝑘,𝑛−𝑘. Moreover, the above proof shows that 𝐸𝑇𝑛 = 𝑆𝑇𝑛 = 𝑇𝑛 and 𝐿𝑘 =
ker

(
𝜌 ∶ 𝐸𝑇𝑘 ↠ 𝐸𝑂𝑛−𝑘,𝑛−𝑘

)
, so that we have short exact sequence

1 → 𝐿𝑘 → 𝐸𝑇𝑘 → 𝐸𝑂𝑛−𝑘,𝑛−𝑘 → 1.

The associated Hochschild-Serre Spectral Sequence is

𝐸2𝑝,𝑞 = 𝐻𝑝(𝐸𝑂𝑛−𝑘,𝑛−𝑘; 𝐻𝑞(𝐿𝑘)) ⇒ 𝐻𝑝+𝑞(𝐸𝑇𝑘).

Knowing that 𝐸𝑇𝑛 = 𝑆𝑇𝑛 = 𝑇𝑛 allows us to prove the following proposition:

Proposition 5.6. For 𝑛 ≥ 1, the action of 𝐸𝑂𝑛,𝑛 on ℐ𝒰𝑛(𝑅2𝑛) has orbits corre-
sponding to 𝑅∗∕𝑅∗2 × ℤ2.

Proof. WeknowbyLemma3.1 that the action of𝑂𝑛,𝑛 on ℐ𝒰𝑛(𝑅2𝑛) is transitive,
so that we have an isomorphism of 𝑂𝑛,𝑛−sets

𝑂𝑛,𝑛∕𝑇𝑛 ≅ ℐ𝒰𝑛(𝑅2𝑛).

Furthermore, note that 𝑇𝑛 = 𝐸𝑇𝑛 ≤ 𝐸𝑂𝑛,𝑛 ≤ 𝑂𝑛,𝑛, so that we have a canonical
surjection 𝑂𝑛,𝑛∕𝑇𝑛 → 𝑂𝑛,𝑛∕𝐸𝑂𝑛,𝑛 with fibre 𝐸𝑂𝑛,𝑛∕𝑇𝑛. Therefore, we have an
isomorphism of 𝑂𝑛,𝑛-sets ℐ𝒰𝑛(𝑅2𝑛)∕𝐸𝑂𝑛,𝑛 ≅ 𝑂𝑛,𝑛∕𝐸𝑂𝑛,𝑛. This gives us

||||ℐ𝒰𝑛(𝑅2𝑛)∕𝐸𝑂𝑛,𝑛
|||| =

||||𝑂𝑛,𝑛∕𝐸𝑂𝑛,𝑛
|||| =

||||𝑅
∗∕𝑅∗2 × ℤ2

|||| ,

where the last equality follows from the short exact sequence

1 → 𝐸𝑂𝑛,𝑛 → 𝑂𝑛,𝑛 → 𝑅∗∕𝑅∗2 × ℤ2 → 1, (36)

see Theorem A.26. □

5.2. The local 𝑹∗-action. Note that for every 𝑎 ∈ 𝑅∗,

𝜃(𝐷𝑎2) = 𝜃 ((𝑎
2 0
0 𝑎−2)) = 1,

so that

𝐷𝑎2,𝑘 ∶=
⎛
⎜
⎜
⎝

𝐷𝑎2
⋱

𝐷𝑎2
12𝑛−2𝑘

⎞
⎟
⎟
⎠

∈ 𝐸𝑂𝑛,𝑛.
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Wewill define the local action of𝑅∗ on𝐸𝑇𝑘 to be the conjugation action of𝐷𝑎2,𝑘
on 𝐸𝑇𝑘.
Replacing every unit by its square where necessary in the proof of Lemma

3.5 shows that:

Corollary 5.7. The inclusion 𝐸𝑂𝑛−𝑘,𝑛−𝑘 ↪ 𝐸𝑇𝑘 induces isomorphisms

𝐻𝑡(𝐸𝑂𝑛−𝑘,𝑛−𝑘)
≅
,→ 𝑠−1𝑚 𝐻𝑡(𝐸𝑇𝑘)

for all 𝑡 < 𝑚∕2.

5.3. A global action on the 𝑬𝑶𝒏,𝒏 spectral sequence. As before, we want
to realise these local actions as a global action on the spectral sequence

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛)). (37)

Again, we do this by defining an action on the associated exact couple with
abutment. Specifically, the spectral sequence

𝐸1𝑝,𝑞 = 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛))

may be obtained from the exact couple with abutment

⨁
𝑝,𝑞 𝐸

1
𝑝,𝑞

⨁
𝑝,𝑞 𝐷

1
𝑝,𝑞

⨁
𝑝+𝑞 𝐴𝑝+𝑞

⨁
𝑝,𝑞 𝐷

1
𝑝,𝑞

𝑘

𝑖

𝜎

𝑗
𝜎 (38)

with

𝐸1𝑝,𝑞 = 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶≤𝑝(𝑛)∕𝐶≤𝑝−1(𝑛));

𝐷1
𝑝,𝑞 = 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶≤𝑝(𝑛));

𝐴𝑝+𝑞 = 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛)).

Here 𝑖, 𝑗, 𝑘 are the maps of the long exact sequence of homology groups associ-
ated to the short exact sequence of complexes

0 → 𝐶≤𝑝−1(𝑛) → 𝐶≤𝑝(𝑛) → 𝐶≤𝑝(𝑛)∕𝐶≤𝑝−1(𝑛) → 0,

and 𝜎 is induced by the inclusion.
For 𝑎 ∈ 𝑅∗, we define the global action on Spectral Sequence (37) to be the

action induced by the map (𝐶𝐵𝑎−4 , 𝐵𝑎−4) on exact couple (38), where 𝐶𝐵𝑎−4 de-
notes conjugation by the matrix 𝐵𝑎−4 of Section 3.2.3, and 𝐵𝑎−4 also refers to
multiplication by this matrix.
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Proposition 5.8. Let 𝑘, 𝑞 ≥ 0 and 𝑛 ≥ 1. Then, for all 𝑎 ∈ 𝑅∗, the following
diagram commutes:

𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛)),

(𝐶𝐵𝑎−4 ,𝐵𝑎−4 )∗

𝑖𝑑

(𝑖𝑑,𝜙𝑎2 )∗

𝑖𝑑

where for 𝑎 ∈ 𝑅∗, the map

(𝑖𝑑, 𝜙𝑎2) ∶ (𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) → (𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

is defined to be the identity on 𝐸𝑂𝑛,𝑛 and on basis elements of 𝐶𝑘(𝑛) as

𝜙𝑎2 ∶ (𝑣1, … , 𝑣𝑘) ↦ (𝑎−2𝑣1, … , 𝑎−2𝑣𝑘).

Proof. We use Lemma 3.9. Specifically, consider the diagram

(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛))
(𝑓1,𝜑1)
⇉

(𝑓2,𝜑2)
(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

where (𝑓1, 𝜑1) ∶= (𝑖𝑑, 𝜙𝑎2) and (𝑓2, 𝜑2) ∶= (𝐶𝐵𝑎−4 , 𝐵𝑎−4). Define

𝜅 ∶= 𝐷𝑎2,𝑛 =

⎛
⎜
⎜
⎜
⎝

𝑎2
𝑎−2

⋱
𝑎2

𝑎−2

⎞
⎟
⎟
⎟
⎠

.

Denoting for 𝑎 ∈ 𝑅∗,

𝑎 ∶=

⎛
⎜
⎜
⎜
⎝

𝑎
𝑎

⋱
𝑎

𝑎

⎞
⎟
⎟
⎟
⎠

,

note that 𝐵𝑎−4 = 𝜅𝑎−2, so that 𝐶𝐵𝑎−4 = 𝐶𝜅𝐶𝑎−2 . But, 𝐶𝑎−2 = 𝑖𝑑, so that 𝐶𝐵𝑎−4 =
𝐶𝜅. Furthermore, note that for every (𝑣1, … , 𝑣𝑘) ∈ ℐ𝒰𝑘(𝑅2𝑛), 𝐵𝑎−4(𝑣1, … , 𝑣𝑘) =
𝜅𝜙𝑎2(𝑣1, … , 𝑣𝑘), since 𝐵𝑎−4 = 𝜅𝑎−2. Thus, by Lemma 3.9, the diagram com-
mutes. □

Proposition 5.9. Let 𝑞 ≥ 0 and 0 ≤ 𝑘 < 𝑛. Then, for all 𝑎 ∈ 𝑅∗, the following
diagram commutes:

𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛)) 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

𝐻𝑞(𝐸𝑇𝑘, ℤ) 𝐻𝑞(𝐸𝑇𝑘, ℤ),

(𝑖𝑑,𝜙𝑎2 )∗

(𝑖,(𝑒1,…,𝑒𝑘))∗ ≅

𝐶𝐷𝑎2,𝑘

(𝑖,(𝑒1,…,𝑒𝑘))∗≅
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where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and
the map 𝐶𝐷𝑎2,𝑘 denotes the map induced by conjugation with the element𝐷𝑎2,𝑘 on
the stabiliser 𝐸𝑇𝑘.

Proof. We use Lemma 3.9. Specifically, we have to consider the diagram

(𝐸𝑇𝑘, ℤ)
(𝑓1,𝜑1)
⇉

(𝑓2,𝜑2)
(𝐸𝑂𝑛,𝑛, 𝐶𝑘(𝑛))

where (𝑓1, 𝜑1) ∶= (𝑖, (𝑎−2𝑒1, … , 𝑎−2𝑒𝑘)) and (𝑓2, 𝜑2) ∶= (𝑖𝐶𝐷𝑎2,𝑘 , (𝑒1, … , 𝑒𝑘)),
and 𝑖 ∶ 𝐸𝑇𝑘 → 𝐸𝑂𝑛,𝑛 is the natural inclusion of groups. Let 𝜅 = 𝐷𝑎2,𝑘 ∈ 𝐸𝑂𝑛,𝑛.
Then, for every 𝐴 ∈ 𝑇𝑘,

𝑓2(𝐴) = 𝑖𝐶𝐷𝑎2,𝑘 (𝐴) = 𝐷𝑎2,𝑘𝐴𝐷−1
𝑎2,𝑘 = 𝐷𝑎2,𝑘𝑖(𝐴)𝐷−1

𝑎2,𝑘 = 𝜅𝑓1(𝐴)𝜅−1

and
(𝑒1, … , 𝑒𝑘) = 𝐷𝑎2,𝑘(𝑎−2𝑒1, … , 𝑎−2𝑒𝑘) = 𝜅(𝑎−2𝑒1, … , 𝑎−2𝑒𝑘).

By Lemma 3.9, the diagram commutes. □

Furthermore, we need to compute𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑛(𝑛)) and show that, after lo-
calisation, they vanish for all 𝑞 > 0.

Proposition 5.10. For every𝑚 ≥ 1 and 𝑞 < 𝑚∕2, we have

𝑠−1𝑚 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑛(𝑛)) ≅ {
ℤ[𝑅∗∕𝑅∗2 × ℤ2] 𝑞 = 0
0 𝑞 > 0.

Proof. We have isomorphisms

𝐻𝑞(𝐸𝑂𝑛,𝑛, ℤ[ℐ𝒰𝑛]) ≅ Tor𝐸𝑂𝑛,𝑛𝑞 (ℤ,ℤ[ℐ𝒰𝑛])

≅ Tor𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ[ℐ𝒰𝑛])

≅ 𝐻𝑞(ℤ[𝑅∗∕𝑅∗2 × ℤ2] ⊗𝕃
𝑂𝑛,𝑛

ℤ[ℐ𝒰𝑛])

≅ 𝐻𝑞(ℤ[𝑅∗∕𝑅∗2 × ℤ2] ⊗𝕃
𝑂𝑛,𝑛

ℤ[𝑂𝑛,𝑛∕𝑇𝑛])

≅ 𝐻𝑞(ℤ[𝑅∗∕𝑅∗2 × ℤ2] ⊗𝕃
𝑇𝑛
ℤ)

≅ 𝐻𝑞(𝑇𝑛, ℤ[𝑅∗∕𝑅∗2 × ℤ2])
≅ ℤ[𝑅∗∕𝑅∗2 × ℤ2] ⊗ℤ 𝐻𝑞(𝑇𝑛, ℤ),

where we have used Short Exact Sequence (36), transitivity of the 𝑂𝑛,𝑛-action,
the identity ℤ[𝐺∕𝑁] ≅ ℤ ⊗𝕃

𝑁 ℤ[𝐺] for 𝑁 a subgroup of a group 𝐺 and the
Universal Coefficient Theorem. We therefore want to show that the action kills
the𝐻𝑞(𝑇𝑛) terms for all 𝑞 > 0, whilst leaving theℤ[𝑅∗∕𝑅∗2×ℤ2] term invariant.
This will follow from the commutativity of the following two diagrams, which
we state as lemmas.
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Lemma 5.11. The following diagram commutes:

Tor𝐸𝑂𝑛,𝑛𝑞 (ℤ,ℤ[ℐ𝒰𝑛]) Tor𝐸𝑂𝑛,𝑛𝑞 (ℤ,ℤ[ℐ𝒰𝑛])

Tor𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ[ℐ𝒰𝑛]) Tor𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ[ℐ𝒰𝑛]),

(𝑖,𝑖,𝑖𝑑)∗ ≅

(𝑖𝑑,𝑖𝑑,𝜙𝑎2 )∗

(𝑖,𝑖,𝑖𝑑)∗≅

(𝑖𝑑,𝑖𝑑,𝜙𝑎2 )∗

where the vertical maps are the isomorphisms given by short exact sequence (36);
𝑖 ∶ ℤ ↪ ℤ[𝑅∗∕𝑅∗2 × ℤ2] and 𝑖 ∶ 𝐸𝑂𝑛,𝑛 ↪ 𝑂𝑛,𝑛 denote the canonical inclusions
and recall that 𝜙𝑎2 ∶ ℤ[ℐ𝒰𝑛] → ℤ[ℐ𝒰𝑛] is the map defined on basis elements by
(𝑣1, … , 𝑣𝑛) ↦ (𝑎−2𝑣1, … , 𝑎−2𝑣𝑛).

Proof. Easily seen by inspection. □

Lemma 5.12. The following diagram commutes:

Tor𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ[ℐ𝒰𝑛]) Tor𝑂𝑛,𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ[ℐ𝒰𝑛])

Tor𝑇𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ) Tor𝑇𝑛𝑞 (ℤ[𝑅∗∕𝑅∗2 × ℤ2], ℤ),

(𝑖𝑑,𝑖𝑑,𝜙𝑎2 )∗

(𝑖𝑑,𝑖,(𝑒1,…,𝑒𝑛))∗ ≅

(𝐷−1
𝑎2,𝑛

,𝐶𝐷𝑎2,𝑛 ,𝑖𝑑)∗

(𝑖𝑑,𝑖,(𝑒1,…,𝑒𝑛))∗≅

where the vertical maps are the isomorphisms given by the transitivity of the𝑂𝑛,𝑛-
action; 𝐷−1

𝑎2,𝑛 denotes the map induced right multiplication by 𝐷
−1
𝑎2,𝑛 ∈ 𝑂𝑛,𝑛 and

𝐶𝐷𝑎2,𝑛 denotes the map induced by conjugation with 𝐷𝑎2,𝑛.

Proof. We use Lemma 3.10. Specifically, consider the diagram

(ℤ[𝑅∗∕𝑅∗2 × ℤ2], 𝑇𝑛, ℤ)
(𝑓1,𝜑1,𝑔1)
⇉

(𝑓2,𝜑2,𝑔2)
(ℤ[𝑅∗∕𝑅∗2 × ℤ2], 𝑂𝑛,𝑛, ℤ[ℐ𝒰𝑛])

where the maps are (𝑓1, 𝜑1, 𝑔1) ∶= (𝑖𝑑, 𝑖, (𝑎−2𝑒1, … , 𝑎−2𝑒𝑛)) and (𝑓2, 𝜑2, 𝑔2) ∶=
(𝐷−1

𝑎2,𝑛, 𝑖𝐶𝐷𝑎2,𝑛 , (𝑒1, … , 𝑒𝑛)). Let 𝜅 ∶= 𝐷𝑎2,𝑛 ∈ 𝑂𝑛,𝑛. We have that 𝜑2 = 𝜅𝜑1𝜅−1;
𝑔2 = 𝜅𝑔1 and 𝑓2 = 𝑓1𝜅−1, so that by Lemma 3.10, the diagram commutes. □

Note that in the previous lemma, 𝐷𝑎2,𝑛 ∈ 𝐸𝑂𝑛,𝑛, so that the action on
ℤ[𝑅∗∕𝑅∗2 × ℤ2] is trivial. It follows therefore that the action on ℤ[𝑅∗∕𝑅∗2 ×
ℤ2]⊗ℤ𝐻𝑞(𝑇𝑛, ℤ) is trivial onℤ[𝑅∗∕𝑅∗2×ℤ2] and is the action induced by con-
jugation by 𝐷𝑎2,𝑛 on 𝐻𝑞(𝑇𝑛). By Lemma 3.5 (using the fact that 𝑇𝑛 = 𝐿𝑛), the
proposition follows. □

Thus, we have shown that there exists an 𝑅∗-action on the spectral sequence

𝐸1𝑝,𝑞(𝑛) = 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ⇒ 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛))

which induces the desired local actions considered previously. Using Corollary
5.7 and Proposition 5.10, we obtain the following.
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Corollary 5.13. For every 𝑚 ≥ 1 and every 𝑞 < 𝑚∕2, the localised spectral
sequence

𝑚𝐸1𝑝,𝑞(𝑛) = 𝑠−1𝑚 𝐸1𝑝,𝑞(𝑛) ⇒ 𝑠−1𝑚 𝐻𝑝+𝑞(𝐸𝑂𝑛,𝑛, 𝐶∗(𝑛)) (39)

has 𝑚𝐸1𝑝,𝑞 terms

𝑚𝐸1𝑝,𝑞(𝑛) = 𝑠−1𝑚 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)) ≅
⎧

⎨
⎩

𝐻𝑞(𝐸𝑂𝑛−𝑝,𝑛−𝑝), 0 ≤ 𝑝 < 𝑛
ℤ[𝑅∗∕𝑅∗2 × ℤ2], 𝑝 = 𝑛, 𝑞 = 0
0 𝑝 = 𝑛, 𝑞 > 0.

□
Our next task is to compute the localised 𝑑1 differentials 𝑑1 ∶ 𝑚𝐸1𝑝,𝑞 →

𝑚𝐸1𝑝−1,𝑞.

5.4. Computation of the localised 𝒅𝟏 differentials, and proof of homo-
logical stability.

Proposition 5.14. For all 𝑞 < 𝑚∕2 and 0 ≤ 𝑝 < 𝑛, the homomorphism 𝑑1𝑝,𝑞 is

𝑑1𝑝,𝑞 = {
0, 𝑝 even
𝑖∗, 𝑝 odd,

where 𝑖 ∶ 𝐸𝑂𝑛−𝑝,𝑛−𝑝 ↪ 𝐸𝑂𝑛−𝑝+1,𝑛−𝑝+1 denotes the inclusion. For 𝑝 = 𝑛, the
homomorphism 𝑑1𝑛,𝑞 is 0 if 𝑞 > 0 or if 𝑛 is even; and for 𝑞 = 0 and 𝑛 odd, 𝑑1𝑛,0 is
the augmentation map 𝜀 ∶ ℤ[𝑅∗∕𝑅∗2 × ℤ2] → ℤ.

Proof. For all 𝑝 < 𝑛, we want to show that the following diagram commutes:

𝐻𝑞(𝐸𝑂𝑛−𝑝,𝑛−𝑝) 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

𝐻𝑞(𝐸𝑂𝑛−𝑝+1,𝑛−𝑝+1) 𝐻𝑞(𝐸𝑂𝑛,𝑛, 𝐶𝑝−1(𝑛)),

𝑖∗

(𝜄,(𝑒1,…,𝑒𝑝))∗

(𝑑𝑖)∗

(𝜄,(𝑒1,…,𝑒𝑝−1))∗

(40)

where 𝜄 ∶ 𝐸𝑂𝑛−𝑝,𝑛−𝑝 ↪ 𝐸𝑂𝑛,𝑛 denotes the inclusion map; (𝑒1, … , 𝑒𝑝) ∶ 1 ↦
(𝑒1, … , 𝑒𝑝) and recall that 𝑑𝑖(𝑣1, … , 𝑣𝑝) = (𝑣1, … , 𝑣𝑖. … , 𝑣𝑝). Suppose the matrix
𝐴 in the proof of Proposition 3.15 has spinor norm 𝜃(𝐴) = 𝑎. Note that, as𝐴 =

(𝜎 12(𝑛−𝑝)
), it follows that 𝜃(𝐴) = 𝜃(𝜎). If 𝑎 = 1, we are done. Otherwise,

define 𝐴̂ ∈ 𝑂𝑛,𝑛 by sending a hyperbolic basis to a hyperbolic basis as follows:

(𝑒1, … , 𝑒𝑖, … , 𝑒𝑝) ↦ (𝑒1, … , 𝑒𝑝−1)

(𝑓1, … , 𝑓𝑖, … , 𝑓𝑝) ↦ (𝑓1, … , 𝑓𝑝−1)
𝑒𝑖 ↦ 𝑎𝑒𝑝
𝑓𝑖 ↦ 𝑎−1𝑓𝑝

𝑒𝑗 ↦ 𝑒𝑗 and 𝑓𝑗 ↦ 𝑓𝑗 for all 𝑝 + 1 ≤ 𝑗 ≤ 𝑛.



ON THE HOMOLOGICAL STABILITY OF ORTHOGONAL AND SPIN GROUPS 85

Write 𝐴̂ = (𝜎̂ 12(𝑛−𝑝)
), so that 𝜃(𝐴̂) = 𝜃(𝜎̂). We prove that 𝜎̂ ∈ 𝐸𝑂𝑝,𝑝. Indeed,

this follows from the matrix equation

𝜎̂ =

⎛
⎜
⎜
⎜
⎝

1
⋱

1
𝑎

𝑎−1

⎞
⎟
⎟
⎟
⎠

𝜎.

We still have (𝑒1, … , 𝑒𝑝−1) = 𝐴̂(𝑒1, … , 𝑒𝑖, … 𝑒𝑝) and for every 𝐵 ∈ 𝐸𝑂𝑛−𝑝,𝑛−𝑝,

𝜄◦𝑖(𝐵) = 𝐴̂𝜄(𝐵)𝐴̂−1,

so that by Lemma 3.9, the diagram commutes.
For 𝑝 = 𝑛, it suffices to show that the diagram commutes:

ℤ[𝑅∗∕𝑅∗2 × ℤ2] 𝐶𝑛(𝑛)𝐸𝑂𝑛,𝑛

ℤ 𝐶𝑛−1(𝑛)𝐸𝑂𝑛,𝑛 ,

𝜀 𝑑𝑖

1↦(𝑒1,…,𝑒𝑛−1)

where the top horizontal arrowmaps a given basis element 𝑥 ∈ 𝑅∗∕𝑅∗2 ×ℤ2 to
the element given by the isomorphism of𝑂𝑛,𝑛-sets𝑅∗∕𝑅∗2×ℤ2 ≅ 𝑂𝑛,𝑛∕𝐸𝑂𝑛,𝑛 ≅
ℐ𝒰𝑛(𝑅2𝑛)∕𝐸𝑂𝑛,𝑛, see Proposition 5.6. But this follows from the fact that 𝐸𝑂𝑛,𝑛
acts transitively on ℐ𝒰𝑛−1(𝑅2𝑛). □

In the proof of the next proposition, we will use the so called hyperbolic map.

Definition 5.15. Thehyperbolicmap is the grouphomomorphism𝐻 ∶ 𝐺𝐿𝑛(𝑅)
→ 𝑂𝑛,𝑛(𝑅) given by

𝐻 ∶ 𝐺𝐿𝑛(𝑅)⟶ 𝑂𝑛,𝑛(𝑅)

𝐴⟼ (𝐴 𝑡(𝐴−1)) .

Remark 5.16. In the above definition, we have used the convention that 𝑅2𝑛

is equipped with symmetric bilinear form given by ( 0 𝐼𝑛
𝐼𝑛 0 ), and has ordered

basis 𝑒1, … , 𝑒𝑛, 𝑓1, … , 𝑓𝑛, so that ⟨𝑒𝑖, 𝑒𝑗⟩ = ⟨𝑓𝑖, 𝑓𝑗⟩ = 0 and ⟨𝑒𝑖, 𝑓𝑗⟩ = 𝛿𝑖𝑗. We
have done this for the sake of notation. It is clear that this convention differs
from our usual convention up to matrix conjugation (by a suitable permutation
matrix). We tacitly assume this whenever using the hyperbolic map.

We need to prove the following proposition:

Proposition 5.17. The differentials 𝑑𝑟𝑝,𝑞 in Spectral Sequence (39) are zero for
𝑟 ≥ 2 and 𝑞 < 𝑚∕2, 𝑝 ≤ 𝑛. Hence, for all 𝑞 < 𝑚∕2 and 𝑝 ≤ 𝑛, 𝑚𝐸2𝑝,𝑞 ≅ 𝑚𝐸∞𝑝,𝑞.



86 MARCO SCHLICHTING AND SUNNY SOOD

Proof. For 𝑛 = 0, 1, the spectral sequence under consideration is located in
columns 0 and 1. Therefore, the differentials 𝑑𝑟 for 𝑟 ≥ 2 are zero by dimension
arguments.
For 𝑛 ≥ 2, consider the homomorphism of complexes of 𝐸𝑂𝑛−2,𝑛−2-modules

𝜏 ∶ 𝐶∗(𝑛 − 2)[−2] → 𝐶∗(𝑛).
as defined in Proposition 3.17. Note that the diagram

(𝐸𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2)) (𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛))

(𝐸𝑂𝑛−2,𝑛−2, 𝐶𝑝−2(𝑛 − 2)) (𝐸𝑂𝑛,𝑛, 𝐶𝑝(𝑛)),

(𝑖,𝜏𝑗)

(𝐶𝐵𝑎 ,𝐵𝑎)

(𝑖,𝜏𝑗)

(𝐶𝐵𝑎 ,𝐵𝑎)

still commutes, so that we have an inducedmap on localised spectral sequences

𝑚𝜏∗ ∶ 𝑚𝐸̃ → 𝑚𝐸.
The claim would then follow by induction on 𝑟 using the following lemma:

Lemma 5.18. Themap 𝑚𝜏∗ ∶ 𝑚𝐸̃1𝑝,𝑞 → 𝑚𝐸1𝑝,𝑞 is the identity for all 𝑞 < 𝑚∕2 and
2 ≤ 𝑝 ≤ 𝑛.

Proof. For 2 ≤ 𝑝 < 𝑛, the same proof as in Lemma 3.18 will work, as long as
the matrices 𝐴 and 𝐵 of Lemma 3.18 are in 𝐸𝑂𝑛,𝑛. Recall that 𝐴 ∈ 𝑂𝑛,𝑛 was
defined by

𝑒1 ↦ 𝑒1
𝑒2 ↦ 𝑒2 − 𝑒1
𝑓1 ↦ 𝑓1 + 𝑓2
𝑓2 ↦ 𝑓2
𝑒𝑗 ↦ 𝑒𝑗 for all 3 ≤ 𝑗 ≤ 𝑛
𝑓𝑗 ↦ 𝑓𝑗 for all 3 ≤ 𝑗 ≤ 𝑛,

and 𝐵 ∈ 𝑂𝑛,𝑛 was defined by
𝑒1 ↦ 𝑒2
𝑒2 ↦ 𝑒2 − 𝑒1
𝑓1 ↦ 𝑓1 + 𝑓2
𝑓2 ↦ −𝑓1
𝑒𝑗 ↦ 𝑒𝑗 for all 3 ≤ 𝑗 ≤ 𝑛
𝑓𝑗 ↦ 𝑓𝑗 for all 3 ≤ 𝑗 ≤ 𝑛.

It suffices to prove that

𝑀 ∶=
⎛
⎜
⎜
⎝

1 0 −1 0
0 1 0 0
0 0 1 0
0 1 0 1

⎞
⎟
⎟
⎠
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and

𝑁 ∶=
⎛
⎜
⎜
⎝

0 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 0

⎞
⎟
⎟
⎠

are in 𝐸𝑂2,2. Note that the hyperbolic map 𝐻 ∶ 𝐺𝐿2(𝑅) → 𝑂2,2(𝑅) is a group
homomorphism. In addition, note that 𝑆𝐿2(𝑅) is perfect. For example, this
follows from [5, Theorem 4.3.9.] and [15, Lemma 3.8.]. Therefore, we de-
duce 𝐻(𝑆𝐿2(𝑅)) ⊆ [𝑆𝑂2,2(𝑅), 𝑆𝑂2,2(𝑅)] ⊆ 𝐸𝑂2,2(𝑅). We then note that 𝑀 =

𝐻 ((1 −1
0 1 )) and 𝑁 = 𝐻 ((0 −1

1 1 )).

Finally, we need to consider the case 𝑝 = 𝑛. It suffices to show that for
𝑗 = 0, 1, 2, the following diagram commutes:

ℤ[𝑅∗∕𝑅∗2 × ℤ2] 𝐶𝑛−2(𝑛 − 2)𝐸𝑂𝑛−2,𝑛−2

ℤ[𝑅∗∕𝑅∗2 × ℤ2] 𝐶𝑛(𝑛)𝐸𝑂𝑛,𝑛 ,

= 𝜏𝑗

where the top and bottom horizontal arrows map a given basis element 𝑥 ∈
𝑅∗∕𝑅∗2×ℤ2 to the element given by the isomorphism of𝑂𝑛−2,𝑛−2-sets 𝑅∗∕𝑅∗2×
ℤ2 ≅ 𝑂𝑛−2,𝑛−2∕𝐸𝑂𝑛−2,𝑛−2 ≅ ℐ𝒰𝑛−2(𝑅2(𝑛−2))∕𝐸𝑂𝑛−2,𝑛−2 and isomorphism of
𝑂𝑛,𝑛-sets𝑅∗∕𝑅∗2×ℤ2 ≅ 𝑂𝑛,𝑛∕𝐸𝑂𝑛,𝑛 ≅ ℐ𝒰𝑛(𝑅2𝑛)∕𝐸𝑂𝑛,𝑛 respectively, see Propo-
sition 5.6.
Under the isomorphism 𝑅∗∕𝑅∗2 × ℤ2 ≅ ℐ𝒰𝑛−2(𝑅2(𝑛−2))∕𝐸𝑂𝑛−2,𝑛−2, an el-

ement 𝑥 ∈ 𝑅∗∕𝑅∗2 × ℤ2 is sent to the element 𝑃(𝑒1, … , 𝑒𝑛−2) for some 𝑃 ∈
𝑂𝑛−2,𝑛−2, and under the isomorphism 𝑅∗∕𝑅∗2 × ℤ2 ≅ ℐ𝒰𝑛(𝑅2𝑛)∕𝐸𝑂𝑛,𝑛, the
same element 𝑥 ∈ 𝑅∗∕𝑅∗2 × ℤ2 is sent to the element 𝑃̃(𝑒1, … , 𝑒𝑛), where

𝑃̃ ∶= (14 𝑃). Recalling that each 𝜏𝑗 is a map of 𝑂𝑛−2,𝑛−2-modules, we have

that

𝜏𝑗(𝑃(𝑒1, … , 𝑒𝑛−2)) = 𝑃̃𝜏𝑗(𝑒1, … , 𝑒𝑛−2) =
⎧

⎨
⎩

𝑃̃(𝑒1, … , 𝑒𝑛), 𝑗 = 0
𝑃̃(𝑒1, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑛), 𝑗 = 1
𝑃̃(𝑒2, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑛), 𝑗 = 2.

Thus, for 𝑗 = 0, the diagram commutes by inspection. For 𝑗 = 1, we note that

𝐴𝑃̃(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛) = 𝑃̃𝐴(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛) = 𝑃̃(𝑒1, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑛),

since

𝐴𝑃̃ = (𝑀 1) (
14

𝑃) = (14 𝑃) (
𝑀

1) = 𝑃̃𝐴.

Similarly, for 𝑗 = 2, we note that

𝐵𝑃̃(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛) = 𝑃̃𝐵(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛) = 𝑃̃(𝑒2, 𝑒2 − 𝑒1, 𝑒3, … , 𝑒𝑛),



88 MARCO SCHLICHTING AND SUNNY SOOD

where 𝐵 and 𝑃̃ commute for similar reasons. Thus, the diagrams commute.
These diagrams still commute after localisation, but now the horizontal maps
become the identification isomorphisms. □

This proves the lemma, and thus Proposition 5.17. □

Theorem 5.19. Let 𝑅 be a commutative local ring with infinite field such that
2 ∈ 𝑅∗. Then, the natural homomorphism

𝐻𝑘(𝐸𝑂𝑛,𝑛(𝑅))⟶ 𝐻𝑘(𝐸𝑂𝑛+1,𝑛+1(𝑅))

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

Remark5.20. This improves the range for homological stability given byRandal-
Williams and Wahl in [13, Theorem 5.16.] by a factor of 3.

Proof. Choose 𝑚 > 0 sufficiently large. We have a Spectral Sequence (39)
with 𝐸1-terms given by Corollary 5.13 and 𝑑1𝑝,𝑞 was computed for all 𝑞 < 𝑚∕2
in Proposition 5.14. From Theorem 2.12, Spectral Sequences (34) and (39) and
Proposition 5.17, we deduce 𝑚𝐸2𝑝,𝑞 = 𝑚𝐸∞𝑝,𝑞 for all 𝑝 + 𝑞 ≤ 𝑛 − 1 and 𝑞 < 𝑚∕2.
The theorem follows. □

6. Homological stability for 𝐒𝐩𝐢𝐧𝒏,𝒏
Homological stability for 𝐸𝑂𝑛,𝑛 immediately gives homological stability for

Spin𝑛,𝑛:

Theorem 6.1. Let 𝑅 be commutative local ring with infinite field such that 2 ∈
𝑅∗. Then, the natural homomorphism

𝐻𝑘(Spin𝑛,𝑛(𝑅))⟶ 𝐻𝑘(Spin𝑛+1,𝑛+1(𝑅))

is an isomorphism for 𝑘 ≤ 𝑛 − 1 and surjective for 𝑘 ≤ 𝑛.

Remark 6.2. This coincides with the 𝐻1-stability result for Spin𝑛,𝑛 in [5, The-
orem 9.1.15.] and the𝐻2-stability result for Spin𝑛,𝑛 in [5, Theorem 9.1.17, The-
orem 9.1.19 and discussion thereafter]. To our best knowledge, this is the first
known homological stability result for Spin𝑛,𝑛 that accounts for all homology
groups.

Proof. Immediate from Theorem 5.19 and the relative Hochschild-Serre Spec-
tral Sequence

𝐸2𝑝,𝑞 = 𝐻𝑝(𝐸𝑂𝑛,𝑛, 𝐸𝑂𝑛−1,𝑛−1; 𝐻𝑞(ℤ2)) ⇒ 𝐻𝑝+𝑞(Spin𝑛,𝑛, Spin𝑛−1,𝑛−1)

obtained from the short exact sequence 1 → ℤ2 → Spin𝑛,𝑛 → 𝐸𝑂𝑛,𝑛 → 1. □
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Appendix A. Spin groups and the spinor norm over a local ring
A.1. Definitions, existence and basic properties. To begin with, let 𝑀 =
(𝑀, 𝑞) be a non-singular quadratic module over a commutative ring 𝑅, which
for the purposes of this paper, is such that 2 ∈ 𝑅∗. We will call an element
𝑥 ∈ 𝑀 anisotropic if 𝑞(𝑥) ∈ 𝑅∗. We define 𝑏(𝑥, 𝑦) = 𝑏𝑞(𝑥, 𝑦) ∶=

1
2
(𝑞(𝑥 + 𝑦) −

𝑞(𝑥) − 𝑞(𝑦)) to be the symmetric bilinear form associated to 𝑞. We will say that
𝑥, 𝑦 ∈ 𝑀 are orthogonal if 𝑏(𝑥, 𝑦) = 0.

Definition A.1. A pair (𝐴, 𝑓) consisting of an 𝑅-algebra 𝐴 and a homomor-
phism of 𝑅-modules 𝑓 ∶ 𝑀 → 𝐴 is said to be compatible with 𝑀 if for every
𝑥 ∈ 𝑀,

𝑓(𝑥)2 = 𝑞(𝑥)1𝐴.

Definition A.2. A Clifford algebra of𝑀 is a compatible pair (Cl(𝑀), 𝑖) which
satisfies the following universal property:
If (𝐴, 𝑓) is any pair which is compatible with𝑀, then there exists a unique

homomorphism of 𝑅-algebras 𝑔 ∶ Cl(𝑀) → 𝐴 such that the diagram

𝑀 Cl(𝑀)

𝐴

𝑖

𝑓
𝑔

commutes.

We establish that any quadratic module𝑀 has a Clifford algebra:

Theorem A.3. Let 𝑀 be a quadratic module over 𝑅. Then, 𝑀 has a Clifford
algebra (Cl(𝑀), 𝑖), which is unique up to unique isomorphism.

Proof. The uniqueness statement follows from the universal property of the
Clifford algebra, so it suffices to prove existence. We define

𝑀⊗𝑛 ∶= 𝑀 ⊗𝑅 ⋯⊗𝑅 𝑀 (𝑛 times) for 𝑛 > 0,
𝑀⊗0 ∶= 𝑅,
𝑀⊗𝑛 ∶= 0 for 𝑛 < 0,

and define
𝑇(𝑀) ∶=

⨁

𝑛∈ℤ
𝑀⊗𝑛,

the tensor algebra of𝑀. Let 𝑖 ∶ 𝑀 → 𝑇(𝑀) denote the inclusion.
Note that the tensor algebra 𝑇(𝑀) is a ℤ-graded 𝑅-algebra, with product

(𝑥1 ⊗⋯⊗ 𝑥𝑚)(𝑥𝑚+1 ⊗⋯⊗ 𝑥𝑛) ∶= (𝑥1 ⊗⋯⊗ 𝑥𝑚 ⊗ 𝑥𝑚+1 ⊗⋯⊗ 𝑥𝑛).

Also note that 𝑇(𝑀) has the following universal property: If 𝐴 is a 𝑅-algebra
and 𝑓 ∶ 𝑀 → 𝐴 is a 𝑅-module homomorphism, then there exists a unique
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𝑅-algebra homomorphism 𝑔 ∶ 𝑇(𝑀) → 𝐴 such that the diagram

𝑀 𝑇(𝑀)

𝐴

𝑖

𝑓
𝑔

commutes. Of course, 𝑔 is defined by

𝑔(𝑥1 ⊗⋯⊗ 𝑥𝑛) ∶= 𝑓(𝑥1) …𝑓(𝑥𝑛).

Continuing with the construction, define 𝐼(𝑞) to be the two-sided ideal of
𝑇(𝑀) generated by the set

{𝑥 ⊗ 𝑥 − 𝑞(𝑥)|𝑥 ∈ 𝑀}.

We then define the quotient 𝑅-algebra

Cl(𝑀) ∶= 𝑇(𝑀)∕𝐼(𝑞),

and define 𝑖 ∶ 𝑀 → Cl(𝑀) to be the canonical map. By construction, it is
clear that (Cl(𝑀), 𝑖) is a compatible pair, so it remains to check the universal
property.
Let (𝐴, 𝑓) be a pair compatible with𝑀. By the universal property of 𝑇(𝑀),

there exists an unique 𝑅-algebra homomorphism 𝑔 ∶ 𝑇(𝑀) → 𝐴 such that
𝑔𝑖 = 𝑓. Furthermore, note that

𝑔(𝑥 ⊗ 𝑥 − 𝑞(𝑥)) = 𝑔(𝑥)2 − 𝑞(𝑥) = 𝑓(𝑥)2 − 𝑞(𝑥) = 𝑞(𝑥) − 𝑞(𝑥) = 0.

Thus, 𝑔 factors through the quotient, to give a map 𝑔 ∶ Cl(𝑀) → 𝐴. □

Remark A.4. If 𝑥, 𝑦 ∈ 𝑀 are orthogonal, then in Cl(𝑀), 𝑥𝑦 = −𝑦𝑥, as 0 =
𝑏(𝑥, 𝑦) = 𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦) = (𝑥 + 𝑦)2 − 𝑥2 − 𝑦2 = 𝑥𝑦 + 𝑦𝑥.

RemarkA.5. The identity ofCl(𝑀), denoted 1Cl(𝑀), togetherwith the elements
{𝑖(𝑥)|𝑥 ∈ 𝑀}, generate Cl(𝑀) as an 𝑅-algebra.

Remark A.6. The Clifford algebra Cl(𝑀) is canonically a ℤ2-graded algebra,
with the grading defined as follows: We define Cl(𝑀)0 be the submodule of
Cl(𝑀) spanned by 1Cl(𝑀) and {𝑖(𝑥𝑖1) … 𝑖(𝑥𝑖𝑘 )|𝑘 even}; and we define Cl(𝑀)1 be
the submodule of Cl(𝑀) spanned by {𝑖(𝑥𝑖1) … 𝑖(𝑥𝑖𝑘 )|𝑘 odd}. Clearly, Cl(𝑀)0 is a
subalgebra of Cl(𝑀).

Remark A.7. Consider the graded centre 𝑍𝑔𝑟(Cl(𝑀)) of the Clifford algebra
Cl(𝑀). This is defined to be the graded subspace of the Clifford algebra Cl(𝑀)
whose homogeneous elements ℎ(𝑍𝑔𝑟(Cl(𝑀))) are determined by

𝑐 ∈ ℎ(𝑍𝑔𝑟(Cl(𝑀)))⟺ 𝑐𝑠 = −(1)𝜕𝑠𝜕𝑐𝑠𝑐 ∀𝑠 ∈ ℎ(Cl(𝑀)),

where ℎ(Cl(𝑀)) denotes the homogeneous elements of Cl(𝑀) and 𝜕 denotes
the degree of the homogeneous element.
When𝑀 is free of finite rank, we cite the following important structural re-

sult:
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LemmaA.8. Let𝑀 be a free non-singular quadraticmodule of finite rank. Then

𝑍𝑔𝑟(Cl(𝑀)) = 𝑅.

Proof. See [5, Theorem 7.1.11.]. □

RemarkA.9. By the universal property of theClifford algebra, every𝜎 ∈ 𝑂(𝑀)
in the orthogonal group of 𝑀 uniquely determines an automorphism of 𝑅-
algebras Cl(𝜎) ∶ Cl(𝑀) → Cl(𝑀). This association gives rise to a group ho-
momorphism

Cl ∶ 𝑂(𝑀) → Aut(Cl(𝑀)).

Taking 𝜎 ∶= −1𝑀 provides a unique automorphism

Cl(−1𝑀) ∶ Cl(𝑀) → Cl(𝑀)

such that Cl(−1𝑀)(𝑖(𝑥)) = −𝑖(𝑥) for all 𝑥 ∈ 𝑀. Observe that Cl(−1𝑀)|Cl(𝑀)0 =
1Cl(𝑀)0 and Cl(−1𝑀)|Cl(𝑀)1 = −1Cl(𝑀)1 .
The map Cl(−1𝑀) is used to define the so called ‘canonical involution’ on

Cl(𝑀).
But first, let Cl(𝑀)𝑜𝑝 denote the opposite algebra of Cl(𝑀). By the universal

property of the Clifford algebra, there exists an unique algebra homomorphism
∼∶ Cl(𝑀) → Cl(𝑀)𝑜𝑝 such that the diagram

𝑀 Cl(𝑀)

Cl(𝑀)𝑜𝑝

𝑖

𝑖
∼

commutes. Wewill consider∼ as amap∼∶ Cl(𝑀) → Cl(𝑀). Note that 𝑐𝑑 = 𝑑𝑐
for every 𝑐, 𝑑 ∈ Cl(𝑀), and 𝑖(𝑥) = 𝑖(𝑥) for every 𝑥 ∈ 𝑀, so that ̃̃𝑐 = 𝑐 for every
𝑐 ∈ Cl(𝑀) and ∼ is therefore an involution on Cl(𝑀).
We then define the canonical involution ∶ Cl(𝑀) → Cl(𝑀) to be the com-

posite

Cl(𝑀)
Cl(−1)
,,,,,,→ Cl(𝑀)

∼
,→ Cl(𝑀).

One easily checks that this does indeed define an involution onCl(𝑀). Observe
that is the unique𝑅-linear anti-automorphism ofCl(𝑀)which satisfies 𝑖(𝑥) =
−𝑖(𝑥) for every 𝑥 ∈ 𝑀. We will use the canonical involution in our definition
of the Spin group.

A.2. The groups 𝚪(𝑴), 𝑺𝚪(𝑴), 𝐒𝐩𝐢𝐧(𝑴) and the Spinor Norm. We define
the groups Γ(𝑀), 𝑆Γ(𝑀) and Spin(𝑀). We also define the Spinor norm and
study some of its basic properties, as needed in this paper. Unless stated other-
wise, our exposition will closely follow [5, Chapter 7].
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A.2.1. The groups 𝚪(𝑴), 𝑺𝚪(𝑴), 𝐒𝐩𝐢𝐧(𝑴).

Definition A.10. We define the Clifford group Γ(𝑀) to be the group

Γ(𝑀) ∶= {𝑐 ∈ Cl(𝑀)∗|𝑐𝑀𝑐−1 = 𝑀}.

Note that for every 𝑐 ∈ Γ(𝑀), we canonically obtain a map

𝜋𝑐 ∶ 𝑀 → 𝑀
(𝜋𝑐)(𝑥) ∶= 𝑐𝑥𝑐−1.

Furthermore, note that 𝜋𝑐 preserves the quadratic form 𝑞 as

𝑞(𝜋𝑐(𝑥)) = 𝑞(𝑐𝑥𝑐−1) = 𝑐𝑥𝑐−1 ⊗ 𝑐𝑥𝑐−1 = 𝑐𝑥2𝑐−1 = 𝑞(𝑥).

Thus, the assignment 𝑐 ↦ 𝜋𝑐 defines a group homomorphism

𝜋 ∶ Γ(𝑀) → 𝑂(𝑀).

Definition A.11. We define the Special Clifford group 𝑆Γ(𝑀) to be the group

𝑆Γ(𝑀) ∶= {𝑐 ∈ Cl(𝑀)∗0|𝑐𝑀𝑐−1 = 𝑀}.

Note that 𝑆Γ(𝑀) = Γ(𝑀) ∩ Cl(𝑀)∗0 .

Definition A.12. We define the Spin group Spin(𝑀) to be the group

Spin(𝑀) ∶= {𝑐 ∈ 𝑆Γ(𝑀)|𝑐𝑐 = 1}.

Thus, by construction, we have a chain of inclusions Spin(𝑀) ⊆ 𝑆Γ(𝑀) ⊆
Γ(𝑀).
Later, itwill be important for us to understandker(𝜋|𝑆Γ(𝑀)) andker(𝜋|Spin(𝑀)).

Proposition A.13. ker(𝜋 ∶ 𝑆Γ(𝑀) → 𝑂(𝑀)) = 𝑅∗.

Proof. Let 𝑐 ∈ ker(𝜋|𝑆Γ(𝑀)). Then, 𝑐 ∈ Cl(𝑀)∗0 and 𝑐𝑥𝑐
−1 = 𝑥 for every 𝑥 ∈

𝑀. Therefore, as 𝑀 generates Cl(𝑀) as an 𝑅-algebra, we use Lemma A.8 to
conclude that 𝑐 ∈ 𝑍𝑔𝑟(Cl(𝑀)) = 𝑅. Similarly, 𝑐−1 ∈ 𝑅, so that ker(𝜋|𝑆Γ(𝑀)) ⊆
𝑅∗. The other inclusion is trivial. □

Corollary A.14. ker(𝜋 ∶ Spin(𝑀) → 𝑂(𝑀)) ≅ ℤ2.

Proof. From Proposition A.13, it is clear that

ker(𝜋 ∶ Spin(𝑀) → 𝑂(𝑀)) = {𝑟 ∈ 𝑅∗|𝑟2 = 1}.

Passing to the residue field, we deduce that the square roots of 1 are of the form
𝑟 = 𝜀 ±1 for some 𝜀 in the maximal ideal. Using the equation 𝑟2 = 1, we obtain
equation 𝜀(𝜀 ±2) = 0. As 2 is a unit, we deduce 𝜀 ±2 is a unit, so that 𝜀 = 0. □

Definition A.15. We define the spinorial kernel

𝑂′(𝑀)

to be the image of the homomorphism 𝜋 ∶ Spin(𝑀) → 𝑂(𝑀).
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When𝑅 is a local ringwith 2 ∈ 𝑅∗, we show that𝑂′(𝑀) is precisely the kernel
of the spinor map 𝜃 ∶ 𝑆𝑂(𝑀) → 𝑅∗∕𝑅∗2, see Definition A.21 and Proposition
A.25.
In addition, we cite the following theorem, which says that when𝑅2𝑛 is a free

hyperbolicmodule over a (semi-)local ring𝑅, the spinorial kernel is precisely the
elementary orthogonal group 𝐸𝑂𝑛,𝑛(𝑅) when 𝑛 ≥ 2.

Theorem A.16. Let 𝑅 be a commutative semi-local ring. Let 𝑅2𝑛 be the free hy-
perbolic module. Denote 𝑂′

𝑛,𝑛(𝑅) ∶= 𝑂′(𝑅2𝑛). Then, for every 𝑛 ≥ 2, 𝑂′
𝑛,𝑛(𝑅) =

𝐸𝑂𝑛,𝑛(𝑅).

Proof. See [5, Theorem 9.2.8.]. □

Thus, when 𝑅 is a (semi-)local ring with 2 ∈ 𝑅∗ and 𝑛 ≥ 2, we have the short
exact sequences

1 → ℤ2 → Spin𝑛,𝑛(𝑅)
𝜋
,→ 𝐸𝑂𝑛,𝑛(𝑅) → 1.

Fromnowon, wewill assume that𝑅 is a local ringwith 2 ∈ 𝑅∗, and allmodules
over 𝑅 are finitely generated projective, so that they are free of finite rank.

A.2.2. The spinor norm. In order to define the spinor norm, we first need to
define an important class of isometries.

Definition A.17. Let 𝑥 ∈ 𝑀 be anisotropic and define 𝑁 ∶= ⟨𝑥⟩⟂. Then, the
linear map

𝜏𝑥 ∶ 𝑀 → 𝑀

𝑦 ↦ 𝑦 − 2
𝑏(𝑥, 𝑦)
𝑏(𝑥, 𝑥)

𝑥

is called a reflection in hyperplane 𝑁 orthogonal to 𝑥.

This name is suggested by the following lemma:

Lemma A.18. (1) 𝜏𝑥(𝑥) = −𝑥, 𝜏𝑥|𝑁 = 1𝑁 .
(2) 𝜏𝑥 is an isometry of (𝑀, 𝑏).
(3) 𝜏𝑥◦𝜏𝑥 = 1𝑀 .
(4) det 𝜏𝑥 = −1.

Proof. The first three statements follow from direct computations. For the last
statement, note that𝑀 = ⟨𝑥⟩ ⊕ 𝑁. Therefore, by Witt’s Cancellation Theorem
[9, Chapter I, Theorem 4.4], we may choose a basis 𝑒2, … , 𝑒𝑛 of𝑁 and complete
it to a basis of𝑀 by setting 𝑒1 = 𝑥. The matrix of 𝜏𝑥 with respect to this basis
shows that det 𝜏𝑥 = −1. □

Proposition A.19. For every 𝑥 ∈ 𝑀 anisotropic, we have 𝜋(𝑥) = −𝜏𝑥.
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Proof. For every 𝑦 ∈ 𝑀, we have

𝜏𝑥(𝑦) = 𝑦 − 2
𝑏(𝑥, 𝑦)
𝑏(𝑥, 𝑥)

𝑥

= 𝑦 −
𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦)

𝑞(𝑥)
𝑥

= 𝑦 − (𝑥𝑦 + 𝑦𝑥)𝑥−1

= −𝑥𝑦𝑥−1

= −𝜋(𝑥)(𝑦). □

The next proposition will be used to show that our definition of the spinor
norm is well-defined.
Proposition A.20. Let 𝑢1, … , 𝑢𝑟 be anisotropic elements in M. If the product
𝜏𝑢1𝜏𝑢2 ⋯𝜏𝑢𝑟 is the identity in 𝑂(𝑀), then the product 𝑞(𝑢1)⋯𝑞(𝑢𝑟) belongs to
𝑅∗2.
Proof. We proceed in a similar way to [7, Proposition 1.12.V]. By Proposition
A.19, 𝜋(𝑢)|𝑀 = −𝜏𝑢, so that 1𝑀 = (−1)𝑟𝜋(𝑢1⋯𝑢𝑟)|𝑀 . But,

(−1)𝑟 = det(𝜏𝑢1𝜏𝑢2 ⋯𝜏𝑢𝑟) = det(1𝑀) = 1.
Thus, we deduce that 𝑟 must be even. Therefore, we have that

𝑐 ∶= 𝑢1⋯𝑢𝑟 ∈ Cl(𝑀)0 ∩ 𝑍(Cl(𝑀)) ⊂ 𝑍𝑔𝑟(Cl(𝑀)) = 𝑅.

Similarly, we have that 𝑐−1 ∈ 𝑅, so that 𝑐 ∈ 𝑅∗. We conclude that
𝑅∗2 ∋ 𝑐2 = 𝑐𝑐 = 𝑢1⋯𝑢𝑟𝑢𝑟⋯𝑢1 = 𝑞(𝑢1)⋯𝑞(𝑢𝑟). □

Consider any isometry 𝜎 ∈ 𝑂(𝑀), where the rank of 𝑀 is at least 2. By
the Cartan-Dieudonné Theorem for local rings, see for example [6, Theorem
2], there exists a factorisation 𝜎 = 𝜏𝑢1𝜏𝑢2 ⋯𝜏𝑢𝑟 , where the 𝑢𝑖 are anisotropic
vectors. We define

𝜃(𝜎) ∶= 𝑞(𝑢1)⋯𝑞(𝑢𝑟) ∈ 𝑅∗∕𝑅∗2.
By PropositionA.20, 𝜃(𝜎) does not depend on the choice of factorisation chosen
to represent 𝜎.
Definition A.21. The map 𝜃 ∶ 𝑂(𝑀) → 𝑅∗∕𝑅∗2 is called the spinor norm.
The spinor norm is the unique group homomorphism satisfying the property

𝜃(𝜏𝑢) = 𝑞(𝑢)𝑅∗2 for every anisotropic element 𝑢 ∈ 𝑀.
For 𝑅 a local ring with 2 ∈ 𝑅∗, we want to establish the existence of short

exact sequences

1 → 𝐸𝑂𝑛,𝑛(𝑅) → 𝑆𝑂𝑛,𝑛(𝑅)
𝜃
,→ 𝑅∗∕𝑅∗2 → 1

1 → 𝐸𝑂𝑛,𝑛(𝑅) → 𝑂𝑛,𝑛(𝑅)
𝜃×det
,,,,,→ 𝑅∗∕𝑅∗2 × ℤ2 → 1.

We begin with the following proposition, which is useful when computing
with the Spinor norm.
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PropositionA.22. Let (𝑀, 𝑞𝑀) and (𝑁, 𝑞𝑁) be free non-singular quadraticmod-
ules of finite rank over𝑅. Let𝐴 ∈ 𝑂(𝑀)and let𝐵 ∈ 𝑂(𝑁), considered asmatrices.

Let𝐴⊕𝐵 ∈ 𝑂(𝑀 ⟂ 𝑁) denote the block sum ofmatrices𝐴⊕𝐵 = (𝐴 𝐵). Then,

𝜃(𝐴 ⊕ 𝐵) = 𝜃(𝐴)𝜃(𝐵).

Proof. Suppose 𝐴 ∈ 𝑂(𝑀) is represented by 𝐴 = 𝜏𝑣1 ⋯𝜏𝑣𝑘 and suppose 𝐵 ∈
𝑂(𝑁) is represented by 𝐵 = 𝜏𝑤1

⋯𝜏𝑤𝑙 . Then,𝐴⊕𝐵 ∈ 𝑂(𝑀 ⟂ 𝑁) is represented
by 𝜏𝑣1 ⋯𝜏𝑣𝑘𝜏𝑤̄1

⋯𝜏𝑤̄𝑙 , where 𝑣𝑖, 𝑤̄𝑗 ∈ 𝑀 ⟂ 𝑁 are the images of of the vectors
𝑣𝑖 and 𝑤𝑗 under the canonical embeddings 𝑀 ↪ 𝑀 ⟂ 𝑁 and 𝑁 ↪ 𝑀 ⟂ 𝑁
respectively.
Therefore,

𝜃(𝐴 ⊕ 𝐵) = 𝑞𝑀⟂𝑁(𝑣1)⋯𝑞𝑀⟂𝑁(𝑣𝑘)𝑞𝑀⟂𝑁(𝑤̄1)⋯𝑞𝑀⟂𝑁(𝑤̄𝑙)
= 𝑞𝑀(𝑣1)⋯𝑞𝑀(𝑣1)𝑞𝑁(𝑤1)⋯𝑞𝑁(𝑤𝑙)
= 𝜃(𝐴)𝜃(𝐵). □

The above proposition is used to prove that the spinor norm 𝜃 ∶ 𝑆𝑂𝑛,𝑛(𝑅) →
𝑅∗∕𝑅∗2 is surjective.

Proposition A.23. The spinor norm 𝜃 ∶ 𝑆𝑂𝑛,𝑛(𝑅) → 𝑅∗∕𝑅∗2 is surjective.

Proof. Let 𝑟 ∈ 𝑅∗, and consider the matrix 𝜎 =
⎛
⎜
⎝

𝑟
𝑟−1

1

⎞
⎟
⎠
. Note that

𝜎 ∈ 𝑆𝑂𝑛,𝑛(𝑅). By Proposition A.22, we have that 𝜃(𝜎) = 𝜃 ((𝑟 0
0 𝑟−1)). As

(𝑟 0
0 𝑟−1) = ( 0 𝑟

𝑟−1 0) (
0 1
1 0) is a product of reflections defined by vectors (𝑟, −1)

and (1, −1), we compute that

𝜃 ((𝑟 0
0 𝑟−1)) = 𝑞(𝑟, −1)𝑞(1, −1) = 4𝑟 = 𝑟 (mod 𝑅∗2). □

Finally, we want to show that the spinorial kernel𝑂′(𝑀) is precisely the ker-
nel of the spinor map 𝜃 ∶ 𝑆𝑂(𝑀) → 𝑅∗∕𝑅∗2. This is done in by the following
two propositions.

Proposition A.24. Im(𝜋 ∶ 𝑆Γ(𝑀) → 𝑂(𝑀)) = 𝑆𝑂(𝑀).

Proof. Firstly, note that 𝑆𝑂(𝑀) ⊆ Im(𝜋). Indeed, if 𝜏𝑣𝜏𝑤 are a product of any
two reflections, then 𝜋(𝑣𝑤) = 𝜏𝑣𝜏𝑤.
Suppose that 𝑆𝑂(𝑀) ⊊ Im(𝜋). Then, there exists a 𝜎 ∈ 𝑂(𝑀) ⧵ 𝑆𝑂(𝑀)

such that 𝜎 ∈ Im(𝜋). As 𝜎 ∈ 𝑂(𝑀) ⧵ 𝑆𝑂(𝑀), we have that 𝜎 = 𝜏𝑣1 ⋯𝜏𝑣𝑘 for 𝑣𝑖
anisotropic and 𝑘 odd. Furthermore, as 𝜎 ∈ Im(𝜋), there exists 𝑐 ∈ 𝑆Γ(𝑀) such
that 𝜋(𝑐) = 𝜎. Note, 𝜋(𝑣1⋯𝑣𝑘) = −𝜏𝑣1 ⋯𝜏𝑣𝑘 = −𝜎. Defining 𝑑 ∶= 𝑣1⋯𝑣𝑘,
we deduce 𝜋(𝑐𝑑−1) = −1𝑀 . This means that 𝑐𝑑−1𝑥(𝑐𝑑−1)−1 = −𝑥 for every
𝑥 ∈ 𝑀.
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Note that 𝑐 ∈ Cl(𝑀)0 and 𝑑−1 ∈ Cl(𝑀)1. Therefore, 𝑐𝑑−1 ∈ Cl(𝑀)1. As
𝑐𝑑−1𝑥(𝑐𝑑−1)−1 = −𝑥 for every 𝑥 ∈ 𝑀 and𝑀 generates Cl(𝑀) as an 𝑅-algebra,
we use Lemma A.8 to conclude that 𝑐𝑑−1 ∈ 𝑍𝑔𝑟(Cl(𝑀)) = 𝑅. Thus, 𝑐 = 𝑑𝑟
for some 𝑟 ∈ 𝑅, and it therefore follows that 𝑐 ∈ Cl(𝑀)1. Thus, 𝑐 ∈ Cl(𝑀)0 ∩
Cl(𝑀)1 = 0, which is a contradiction as 𝑐 is invertible. □

Proposition A.25. We have 𝑂′(𝑀) = ker(𝜃 ∶ 𝑆𝑂(𝑀) → 𝑅∗∕𝑅∗2).

Proof. Let 𝜎 ∈ ker(𝜃|𝑆𝑂(𝑀)). We want to show 𝜎 ∈ 𝑂′
𝑛,𝑛(𝑀). Suppose 𝜎 =

𝜏𝑣1 ⋯𝜏𝑣𝑘 . Note that 𝑘 is even and each 𝑣𝑖 is anisotropic.
By definition, 1 = 𝜃(𝜎) = 𝑞(𝑣1)⋯𝑞(𝑣𝑘). Therefore, 𝑟 ∶= 𝑞(𝑣1)⋯𝑞(𝑣𝑘) ∈

𝑅∗2. Suppose that 𝑟 = 𝑠2. As 𝜏𝑣1 = 𝜏𝑠−1𝑣1 , we may replace 𝑣1 with 𝑠−1𝑣1
to obtain 𝜎 = 𝜏𝑣1 ⋯𝜏𝑣𝑘 such that 𝑞(𝑣1)⋯𝑞(𝑣𝑘) = 1. Therefore, in Cl(𝑀),
𝑣1⋯𝑣𝑘𝑣1⋯𝑣𝑘 = 1. Define 𝑐 ∶= 𝑣1…𝑣𝑘. As all 𝑣𝑖 ∈ Cl(𝑀)∗ and 𝑘 is even, we
deduce 𝑐 ∈ Spin(𝑀). By construction,𝜋(𝑐) = 𝜏𝑣1 ⋯𝜏𝑣𝑘 = 𝜎, so that 𝜎 ∈ 𝑂′(𝑀).
Now let 𝑐 ∈ Spin(𝑀) and consider 𝜋(𝑐) ∈ 𝑂′(𝑀). We want to show 𝜋(𝑐) ∈

ker(𝜃|𝑆𝑂(𝑀)). By Proposition A.24, 𝜋(𝑐) ∈ 𝑆𝑂(𝑀). Therefore, 𝜋(𝑐) = 𝜏𝑣1 ⋯𝜏𝑣𝑘
for 𝑣𝑖 anisotropic and 𝑘 even. As 𝑘 is even, we deduce 𝑐−1𝑣1⋯𝑣𝑘 ∈ 𝑆Γ(𝑀).
Furthermore, by definition, 𝜋(𝑐−1𝑣1⋯𝑣𝑘) = 1. Therefore, by Proposition A.13
𝑐−1𝑣1…𝑣𝑘 ∈ ker(𝜋|𝑆Γ) = 𝑅∗. Thus, 𝑐 = 𝑟𝑣1⋯𝑣𝑘 for some 𝑟 ∈ 𝑅∗. As 𝑐 ∈
Spin(𝑀), we obtain 1 = 𝑐𝑐 = 𝑟2𝑞(𝑣1)⋯𝑞(𝑣𝑘), so that 𝑞(𝑣1)⋯𝑞(𝑣𝑘) ∈ 𝑅∗2.
Thus, by definition, 𝜃(𝜋(𝑐)) = 1. □

Thus, for 𝑅 a local ring with 2 ∈ 𝑅∗, we have established the following theo-
rem:

Theorem A.26. Let 𝑅 be a commutative local ring with 2 ∈ 𝑅∗, and let 𝑛 ≥ 2.
Then, we have short exact sequences

1 → ℤ2 → Spin𝑛,𝑛(𝑅)
𝜋
,→ 𝐸𝑂𝑛,𝑛(𝑅) → 1

1 → 𝐸𝑂𝑛,𝑛(𝑅) → 𝑆𝑂𝑛,𝑛(𝑅)
𝜃
,→ 𝑅∗∕𝑅∗2 → 1

1 → 𝐸𝑂𝑛,𝑛(𝑅) → 𝑂𝑛,𝑛(𝑅)
𝜃×det
,,,,,→ 𝑅∗∕𝑅∗2 × ℤ2 → 1.

Proof. Combine Corollary A.14; Theorem A.16; Proposition A.25 and Propo-
sition A.23. □

These short exact sequences are used to prove homological stability for
𝐸𝑂𝑛,𝑛(𝑅) and Spin𝑛,𝑛(𝑅), when 𝑅 is a local ring with infinite residue field such
that 2 ∈ 𝑅∗.
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