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ABSTRACT. We improve homological stability ranges for the orthogonal
group, special orthogonal group, elementary orthogonal group and the spin
group over a commutative local ring R with infinite residue field such that
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1. Introduction

In this paper, motivated by Hermitian K-Theory, we improve homological
stability results for the orthogonal group, special orthogonal group, elementary
orthogonal group and the spin group with respect to the hyperbolic form. In
the orthogonal case, this improves the range for homological stability given by
Mirzaii [10] by 1 and generalises the result obtained by Sprehn and Wahl [18] to
the case of local rings. In the special orthogonal case, this generalises the result
obtained by Essert [4] for infinite fields to the case of local rings, and is the first
homological stability result for the special orthogonal group over a local ring.
For the elementary orthogonal group, this improves the range for homological
stability given by Randal-Williams and Wahl [13] by a factor of 3. For the spin
group, this coincides with H,-stability and H,-stability results stated in Hahn-
O’Meara [5], and is the first homological stability result that accounts for all
homology groups.
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Recall, for a ring R, the (split) orthogonal group O, ,(R) € GL,,(R), is the
subgroup
On,n(R) = {A € GLZn(R)l tAz/)ZnA = 11b2n}
of R-linear automorphisms preserving the form

b,

Yon = V2 . =$¢2, ¢2=<(1) (l)),
2

where ‘A denotes the transpose matrix of A. Define SO, ,(R) to be the sub-
group of O,, ,(R) consisting of all matrices with determinant 1. We will always
consider O, ,(R) as a subgroup of O, ,,+1(R) via the embedding

1 0 0
On,n(R) c On+1,n+1(R) AP |0 1 0]
0 0 A

Consider Oy, (R) := h_r)n O, ,(R). For a commutative ring R with 2 € R*,
the higher Hermitian K-Theory groups GW;(R) may be modeled as the homo-
topy groups of the plus construction applied to the classifying space BO, o,(R):

GW;i(R) = m;(BOy (R)*) foralli> 0.

Here, the plus construction is taken with respect to the maximal perfect
subgroup of O, «(R), which in this case equals the commutator subgroup
[0 .00(R), Ogo 0 (R)]. See for example [16]. Therefore, we have a Hurewicz map
from GW;(R) into the homology group H;(O, «(R), Z), which is why we are in-
terested in studying this homological stability problem.

The homology of the orthogonal group O,, , haslong been known to stabilise,
in quite large generality; see, e.g., [20], [1], [3]. Recently, Sprehn and Wahl in
[18] have shown that for every field F other than the field [, Hi(O,, ,(F), Z) —
Hy (0,41 n4+1(F), Z) is an isomorphism for k < n—1 and surjective for k < n. In
the context of fields, this is currently the best known range of stability. However,
they were unable to extend their results to local rings, essentially because the
framework that they use is only applicable to vector spaces, rather than modules
over local rings. In the context of local rings, the first precise range of stability
was given by Mirzaii in [10]. Specfically, he proved that for R commutative
local ring with infinite residue field, Hy(O,,,(R), Z) = Hy(Op410+1(R), Z) is
an isomorphism for k < n — 2 and surjective for k < n — 1.

Our first main result is an improvement on the known stability range for O,, ,
over local rings with infinite residue field, with the additional assumption that
we require 2 to be invertible. Specifically, we prove that:

Theorem 1.1. Let R be a commutative local ring with infinite residue field such
that 2 € R*. Then, the natural homomorphism

Hk(on,n(R)a Z) — Hk(on+1,n+1(R)’ Z)

is an isomorphism for k < n — 1 and surjective for k < n.
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The proof is modelled on the homological stability proofs given in [11] and
[15]. Specifically, we consider a highly acyclic chain complex on which O, ,
acts, and analyse the resulting hyperhomology spectral sequences. This is a
standard method of proving such results, but the main innovation that gives us
the improvement in stability is the use of the technique of localising homology
groups. This technique was first introduced in [15]. It is this technique that
makes it possible to analyse the hyperhomology spectral sequences.

In addition, the methods we use to prove homological stability for O, ,(R)
may be used to prove homological stability for SO, ,,(R), which gives our second
main result:

Theorem 1.2. Let R be a commutative local ring with infinite residue field such
that 2 € R*. Then, the natural homomorphism

Hk(son,n(R)a Z) — Hk(SOn+1,n+1(R)’ Z)
is an isomorphism for k < n — 1 and surjective for k < n.

This is the first homological stability result for the special orthogonal group
over a local ring, and generalises the analogous result for infinite fields obtained
by Essert [4].

Next, the elementary orthogonal group EO,, ,,(R) may be defined in terms of
generators and should be viewed as the orthogonal analogue of the elementary
linear group E,(R).

Forr € Rand 1 < k # | < n, define y;,(r) to be the n X n matrix with r in
the (k, 1) position, —r in the (I, k) position, and 0 elsewhere. Define y;(r) to be
the zero matrix. In addition, for 1 < i # j < n, define ¢; j(r) tobethen X n
elementary linear matrix with 1 along the diagonal and r in the (i, j) position.
We then define the family of elementary orthogonal matrices as

Faallr) = (yk?(lr) In>’ M
Byaan ) 1= (" 740, @

and for k # [,
B = (7 ). ®)

We define the elementary orthogonal group EO,, ,(R) as the subgroup of O, ,,(R)
generated by the elementary orthogonal matrices. We refer the reader to [5,
Sections 5.3A and 5.3B] for more information about EO,, ,(R), including a list
of relations amongst these generators.

Remark 1.3. For the sake of notation, we have in the above definitions used
the convention that the hyperbolic form on R?" is taken with respect to matrix
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( IO IS) This convention therefore differs from the standard convention used
n

in this paper up to conjugation by a suitable permutation matrix, and we will
always tacitly assume this whenever working with EO,, ,(R).

Our third main result:

Theorem 1.4. Let R be a commutative local ring with infinite residue field such
that 2 € R*. Then, the natural homomorphism

Hy(EOpn(R), Z) — Hk(EOy 41 n41(R), Z)
is an isomorphism for k < n — 1 and surjective for k < n.

This improves the range for homological stability given by Randal-Williams
and Wahl in [13] by a factor of 3.

Finally, let R be a commutative ring, which for the purposes of this article is
such that 2 € R*. We define Spin, ,(R) to be the Spin group of the quadratic
module (R**, (-, -)), where (-, -) is the symmetric bilinear form associated to the
matrix ¥,, as above. We refer the reader to the appendix for more information
about Spin groups. The reader may also want to look at [5], [14] and [8] as
alternative references.

In the case R is a commutative local ring with infinite residue field such that
2 € R, homological stability for Spin,, ,(R) will follow immediately from ho-
mological stability of EO,, ,(R) via the relative Hochschild-Serre Spectral Se-
quence applied to short exact sequence

1— Z, — Spin, ,(R) — EO, ,(R) — 1,

see Theorem A.26 in the appendix. Indeed, for the purposes of this paper, it is
perhaps best to think of EO,, ,,(R) as being defined in terms of this short exact
sequence. This is the perspective that we will adopt.

This gives us our fourth main result:

Theorem 1.5. Let R be a commutative local ring with infinite residue field such
that 2 € R*. Then, the natural homomorphism

Hk(Spinn,n(R), 7) — H;(Spin (R), 2)

n+1,n+1

is an isomorphism for k < n — 1 and surjective for k < n.

This coincides with known H; and H,-stability results for Spin, , given in
[5], and is the first such homological stability result that accounts for all ho-
mology groups.

1.1. Acknowledgements. The authors thank the anonymous referee for pro-
viding very detailed feedback on this paper. The second author also gratefully
acknowledges funding from the University of Warwick and the UK Engineer-
ing and Physical Sciences Research Council (Grant number: EP/V520226/1)
during his time as a PhD student, when this paper was first written.
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2. The complex of totally isotropic unimodular sequences

In this section, R will be a commutative local ring with infinite residue field.

2.1. The chain complex. To define the chain complex we want to consider,
we need to make some preliminary definitions.

Definition 2.1. A space over aring R is a projective R-module of finite rank. A
submodule M C V of a space V is called a subspace if it is a direct factor.

Definition 2.2. Let g > 0 be an integer, and W a free R-module of rank n. A
sequence of g vectors (vy, ..., Ug) in W will be called unimodular if every subse-
quence of length r < min{n, q} generates a subspace of rank r. We denote by
Uy(W) the set of unimodular sequences of length g in W.

Remark 2.3. For R a local ring, the sequence of vectors (vy, ..., Ug) in R?" is
unimodular if and only if (0y, ..., 0,) in k?" is unimodular, where k denotes the
residue field of R and v; the class of v; in k?".

Definition 2.4. A sequence of vectors (v, ..., Ug) in R?* will be called totally
isotropic if for every i, j = 1, ..., q we have (v;,v;) = 0.

We now introduce the chain complex that we want to consider. Specifically,
consider chain complex

C.(n) 1= (C.(R?"),d) = --- — Co(R?") = Cy(R?") > Z - 0 (5)

where for k > 1, C;,(R*") is the free abelian group Cy(R*") := Z[TU(R*)]
generated by the set of unimodular totally isotropic sequences of length k in
R?":

JULR?™) = {(vy, ..., V) : v; € R*, (vy, ..., vy) totally isotropic and unimodular}.

We set Cy(n) := Z.
The differential d is defined on basis elements by

k
d(vla see Uk) = Z(_l)i-‘-ldi(vla eeey Uk),
i=1

~

d;(Uy, ., Ug) i= (U1, e, Uy eee s Up ),
and the map ¢ : C;(R*") — Z is the augmentation map sending a generator (v)
to 1.

Remark 2.5. The simplicial set that gives rise to chain complex (5) has already
been studied in [12] and [10]. As we do not need to consider simplicial sets in
this article, we stick to chain complex notation.

Note that, for A € 0,,(R), A acts from the left on the chain complex
(C.(R*"), d) by acting on basis elements:

A-(vq,...,0r) := (Avy, ..., AUp).
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For a resolution P, of the trivial O,, ,(R)-module Z by projective right O,, ,(R)-
modules, the bicomplex P, ®, , C.(n) gives rise to two hyperhomology spectral
sequences

E2 4 (1) = Hy(Op s Hy(Co(1))) = Hipyg (O, Cu() ©)
E 4(1) = Hy(Opn, Cp(1)) = Hypyg(Op s Cu(0)). )

For a reference on hyperhomology spectral sequences, we refer the reader to
[2, Chapter VII, Section 5]. Replacing O, , with SO,, , and EO,, ,, we similarly
obtain hyperhomology spectral sequences

E2 (1) = Hy(SOp 0, Hy(Co(1))) = Hiyp (SO, Co())
B} (1) = Hy(SOy , Cp(1)) = Hpo(SOp n Co())

and
E2 (1) = Hy(EO, , Hy(C,(n))) = Hp o(EO,,,, C,(n))
Ep ¢(n) = Hy(EOy , Cp(n)) = Hppyg(EOyy, C..(1)).

These spectral sequences will eventually give us our desired homological sta-
bility results.

2.2. Proving acyclicity. We would like to prove that the complex (C,(n),d)
is (n — 1)-acyclic. This has already been proven by Mirzaii [10], but our proof
has the advantage that it does not refer to the simplicial techniques used in [19].
However, we do make use of a concept general position. This was first defined in
[12], and used in both [12] and [10] to prove their respective acyclicity results.
We give the definition as stated in [10].

Definition 2.6. Let S = {vy,..., v }and T = {w;, ..., Wy} be basis of two totally
isotropic free summands of R**. We say that T is in general position with S, if
k <k’ and the k" x k- matrix ((w;, v;)) has a left inverse.

We may also say that a totally isotropic subspace W is in general position
with respect to a totally isotropic subspace V if there is a basis T of W which
is in general position with respect to a basis S of V' as in Definition 2.6. The
following result, whose proof we refer to [10, Chapter 2, Proposition 4.2], will
be used to prove acyclicity.

Proposition 2.7. Let n > 2 be an integer and assume T;, i = 1, ..., € are finitely
many subsets of R*" such that each T; is a basis of a free totally isotropic summand
of R** with k elements, where k < n — 1. Then, there is a basis, T = {wy, ..., W, },
of a free totally isotropic summand of R*" such that T is in general position with
allT;, i = 1,...,€. Moreover, dim(W N Vl.l) = n — k, where W =Span(T) and
V; =Span(T;),i=1,...,¢.

In addition, the following lemma will be both useful and reassuring.

Lemma 2.8. Let W and V be totally isotropic subspaces of R*". Assume that W
is in general position with respect to V. Then W NV = {0}.
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Remark 2.9. Lemma 2.8 implies that if W is in general position with respect to
a unimodular sequence (u, ..., u;) for k < n, then (u, ..., Uy, w) is unimodular
for every unimodular vector w € W.

Proof of Lemma 2.8. As W is in general position with respect to V, the map
W > RK
w > (W, v1), ..., (W, Ug))

is surjective. Therefore, for every 1 < i < k, there exists a vl# € W such that
ﬂ(vf) =(0,...,0,1,0,...,0), the 1 being in the ith position. Now, lety € WnV.
Note, as y € V and V is free with basis vy, ..., Uy, we may write y uniquely as
y = 2., a;v; for some a; € R. Evaluating (vl#, -y on y and noting that (vl#, vj) =
8;j, we deduce that a; = (v¥, y) for every i = 1,...,k. Butv¥,y € W and W is
totally isotropic, so (v, y) = 0fori = 1,..., k. Therefore, y = 0. a

Foru = ), mu; € Z[JUH(R*™)] and v = Z]. nv; € Z[JU,(R*)] such that
(u;,v)) € Jup+q(R2") for all i, j, we will write (u, v) for the element

(w,0) = Y. min;(u;,v;) € Z[IU 4o (R?M)].
L,j

Using Proposition 2.7 and Lemma 2.8, we prove the following.

Lemma 2.10. Let p,q > Oand p+q < n. Let (u, f) € Z[ﬂup+q(R2”)] such
thatu € JU, and f € Z[Uy(W)], where W is a free totally isotropic summand
of R*" of dimension n in general position with respect to U =Span(u). If df =
0 € Z[Uy_(W)), then there exists an element g € Z[Ug,(W)] such that dg = f
and (u, g) € Z[TU py g1 (RZ)].

Proof. Since
FEeZIUW),  (u,f) € ZITU,, (R,

we have [ € Z[U4(L)], where L = W n U'. As W is in general position with
respect to U, L is a finitely generated free R-module of rank n — p. Write f =
Zi ni(vi, s vé). Then, as R is a local ring with infinite residue field and L is
a finitely generated free R-module of rank n — p > g, we deduce that there
exists a v € L, such that (v, v}, ..., vfz) € U, (L) for every i. This is standard;
see for instance [15, Lemmas 5.5 and 5.6]. Let g := Zl. n;(v, vi, . vf]). Then
dg = f by construction. Moreover as g € Z[Ug,(L)], (u, g) defines a totally
isotropic sequence of vectors and as g € Z[U,,,(W)], by Lemma 2.8, (u,g) is a
unimodular sequence, so that (u,g) € Z[JU p+q+1(R2”)]. O

Corollary 2.11. Letk < n—1, and let z € Ci(n) = Z[TU,(R*™)] be a cycle.
Then, z is homologous to a cycle z' € Z|[U;(W)] C C)(n) contained within a free
totally isotropic summand W of R*" of dimension n.
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Proof. Suppose z = Zi n;u; where n; € Z and u; € JU;(R*"). By Proposition
2.7, there exists a free totally isotropic subspace W of rank n in general position
with respect to all U; =Span(y;). Choose unimodular vectors f; € W N Ul.l
which is possible since dim W N Ul.l > 1, by Proposition 2.7. Note, by Lemma
2.8, (u;, f;) € JU;1(R*™) for every i. Consider the chain ¢ := Zi n;(u;, f;) €
Ci4+1(n). Note that

d§ = Z ni(du;, f;) + (—1)k*1 Z nju; = Z n(du;, f7) + (—1)k*z,

sothat z; := (=1)k+! Zi n;(du;, f;) is homologous to z, which we write as z; ~
z. Now, recursively assume that z, € Cy(n) is cycle such that z;, ~ 3’.(w;, f7),
where u; € JU p(RZ”); fi € Z[Uy(W)], W is a free totally isotropic summand
of R?" of dimension n in general position with respect to all u;, p,q > 0 such
that p + g = k < n. Then we collect terms so that u; # u; for every i # j. By
assumption, we have

0=dz; = Zd(ui’fi) = 2 [(du, f) + (=D)P*(w;, df)] -

As u; # uj and W is in general position with every u;, hence, no column vec-
tor of u; is in W, we deduce df; = 0 for every i. Therefore, by Lemma 2.10,
for every i, there exists g; € Z[Ug,;(W)] such that dg; = f; and (u;,8;) €
Z[IU; 1 (R?™)]. Note that

d(u;, g) = (duy, &) + (1P (w;, dgy) = (duy, &) + (=D (uy, f)).

We deduce zq ~ X.(w;, fi) ~ (=1)P 3.(du;, &) = 2z441. The corollary is the
case q = k, p = O setting z’ = z. O

Theorem 2.12. The complex (C,(n),d) is (n — 1) — acyclic, that is,
H,(C,(n),d)=0 fori<n-—1.

Proof. Let k < n—1andlet z € Cy(n) a cycle. By Corollary 2.11, z is homol-
ogous to a cycle z’ € Z[U;(W)] contained within a free totally isotropic sum-
mand W of R?" of dimension n. As R is a local ring with infinite residue field,
we deduce that there exists a 7 € Z[Uj,(W)] C Cj41(n) such that dt = Z/, by
the standard argument recalled in the proof of Lemma 2.10. In paricular, z is a
boundary. O

3. Homological stability for O,,,

From now on, unless stated otherwise, R will be a commutative local ring
with infinite residue field and 2 € R*. We will also abbreviate the integral
homology of a group G as H(G) whenever it is convenient for us to do so.
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3.1. Transitivity of the group action. We need to prove that the action of
Op,onJU p(RZ”) is transitive for all p < n. It suffices to prove the following
lemma.

Lemma 3.1. Let p < nand let (uy, ..., up) € JUP(RZ”). Then, (uy, ..., up) may
be extended to a hyperbolic basis of R*".

Proof. By Witt’s Cancellation Theorem, which holds when R is a local ring
with 2 invertible (cf. [9, Chapter I, Theorem 4.4]), it is sufficient to find
uf,...,uf,’E such that (ul,uf,...,up,uff) has Gram matrix 1,b2p. (Note that
Span {uy,u’, ..., u,,u}} is a non-degenerate subspace.)

We have that (u,, ..., up) € JU p(Rzn), so this sequence is in particular a uni-
modular sequence of vectors in R**. Thus, the matrix u = (uy, ..., up) is left
invertible. Therefore, the matrix ‘ui,,, is right invertible. This is equivalent to
saying that the map

T :R*" - RP
x = ((ug, x), o, (Up, X))

is surjective. Thus, for i = 1, ..., p, there exists ul# such that T(uf) is the i-th

(uf uf)
2

standard basis vector of RP. Replacing ul# with ul# — u;, we conclude the

Gram matrix of(ul,uf,...,up,uﬁ)is ¢2p. O
3.2. Analysis of stabilisers.

3.2.1. Computation of stabilisers. Let G be a group acting on a set S from
the left. Shapiro’s Lemma gives an isomorphism
D G.x.: P H.(G.2)— H.(G,ZISD

[x]es/G [x]es/G

of homology groups, where the direct sum is over a set of representatives x € S
of equivalence classes [x] € S/G; the group G, is the stabiliser of G at x €
S; the homomorphism i, : G, C G is the inclusion; and x also denotes the
homomorphism of abelian groups Z — Z[S] : 1 — x. For example, see [2,
Chapter III, Corollary 5.4 and Proposition 6.2].

We apply Shapiro’s Lemma in the case G = O, ,(R) and S = JU p(RZ”).
In particular, as the action of O, ,,(R) on JU p(RZ”) is transitive for all p < n,
Shapiro’s Lemma gives isomorphisms

H,(St(ey, -, ) = H,(Opn Cp(n)), ®)

forall p < n,where St(ey, ..., ¢,) denotes the stabiliser of (ey, ..., ep) € JUP(RZ”).
We compute these stabilisers:
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Proposition 3.2. Let 1 < k < n. Then, in the above notation, the stabilisers

A € St(ey, ..., ;) are of the form

1 ¢ 0 c 0 ¢ ‘uy

0 1 0 O 0 0 O
2 2 2t

0 ¢ 1 ¢ 0 ¢ ‘up

R
k k Lokt

0 ¢ 0 ¢ 1 ¢ ‘ug

0 0 0 O 0 1 O

0 x; 0 x, 0 x, B

where c;. € Ryu;, x; € R*"0 and B € My, _1)(R), subject to the conditions

u; + ‘Byn_iyX; = 0, )
c; +¢) 4+ (x;,x)) =0, (10)
B e On—k,n—k- (11)

For example, for k = 1, we have

‘u

1 ¢
St(e;) =410 1 U+ ‘Bhyy_1)x = 0; 2¢ +(x,x) = 0; B € Op_y 1.
0 x

0
B

Proof. Let A € St(ey,...,e;). Then, Ae; = ¢; for all 1 < i < k by definition,
which gives the 1st, 3rd, ..., (2k — 1)st columns of A. Moreover, for a fixed
1<i<kandanyl < j <n,wehave

(el-,Aej) = (Ael-,Aej) = <ei’ej> =0
and
<ei’Afj> = <Aei,Afj> = <ei’fj> = 51']-

Therefore, as (e, e;) = 0 and (e, f;) = &y, forall 1 < k,l < n, we deduce that
the coefficient of f; in the expression for Ae; and Af; is 0 for all j # i and the
coefficient of f; in the expression for Af; is 1. This gives the 2nd, 4th, ..., 2kth
rows of A. The remaining coefficients give the 03 € R;u;,x; € R?" and B €

M- (R). We use the equation ' A,, A = 1, to determine the conditions on
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these variables. Specifically, one has that for any A € St(ey, ..., e;),

10 0 0 - 0 0 O 1 ¢ 0 c 0 ¢ 'y
¢ 1 ¢ o ¢ 0 ‘x;f |0 1 0 0 0 0 0
0 0 1 0 0 0 O 0 ¢ 1 ¢ 0 ¢ ‘u,
k
aga=|¢ 0 G 1 @ 0 fafyl0 0 01 000
0 0 0 O 1 0 0 0 ¢ o 1 ¢ 'y
¢ 0 ¢ 0 ¢ 1 'x] |0 0 0 0 0 1 o0
w, 0 u, 0 - u, 0 B)lo x, 0 x, -~ 0 x, B
0 1 0 0 0 0 0
1 e +o+{x,x) 0 c+c+(x,x,) 0 ¢ +cf+(x,x) ‘u+ 'xYB
0 0 0 1 0 0 0
_|o A+ +(n,x) 1 G+cd+(x,xy) 0 ¢+ +(xx) 'uy+ 'X, 9B
0 0 0 0 0 1 0
0 ci+ci+(x,x) 0 c+ck+(x,x) - 1 cf+cf+(x,x) ‘u+ 'xPB
0 u, + '‘Bypx; 0 u, + '‘Bpx, 0 u, + 'Byxy ‘BYB
=1
Whence the equations. O

To ease notation, we will from now on denote T}, := St(ey, ..., ;). We will
use the convention that T, = O,,,. Note, we may see from the structure of the
matrices in T that the projection map p : Ty » Oy _k ,—k, sending the matrix
A in Proposition 3.2 to p(A) = B, defines a group homomorphism. We denote
its kernel by L, so that we have a short exact sequence of groups

1 g Lk e Tk ﬁ) Ol’l—k,n—k — 1 (12)
The associated Hochschild-Serre Spectral Sequence is
Ezz),q = Hp(on—k,n—k;Hq(Lk)) = Hp+q(Tk). (13)

3.2.2. The local R*-action. In this section, we will define an R*-action on
short exact sequence (12) which we call ‘local action’. Using Spectral Sequence
(13), we will show that, after localisation, the homology of Ty and O,,_y ,_x co-
incide. In the next section, we will see that the local actions are induced by a
‘global’ R*-action on the Spectral Sequence (7).

Definition 3.3 (Local action). Let a € R*. For 0 < k < n, define a 2n X 2n
matrix D, by

Dq

k
a O
Dyy 1= D = @Da @12@—")’ Dq ::(0 a‘1>'
a
1

Lon_ok

Note that D, € O, ,(R). The local action of R* on T}, is the conjugation action
of D,y on Ty.
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The local action preserves T, because

1 1 1
1 ¢ 0 ¢ 0 ¢ 'y
0O 1 0 O 0O 0 O
2 2 2 ¢
0 ¢ 1 ¢ 0 ¢ ‘up
0001 00 0]
Dy O S : Da,}c
k k kot
0 ¢ 0 ¢ 1 ¢, ‘u
0O 0 0 O 0 1 0
0 x4 0 x, 0 x, B
1 a’c; 0 a’c) 0 a’c, 'wa
0 1 0 0 0 0 0
0 a’c¢ 1 a%c; 0 a’c ‘'uxa
0 0 0 1 0 0 0
=1 . . . . . . . . S Tk'
0 a’k 0 a®k - 1 d’ 'wa
0 0 0 0 - 0 1 0
0 ax; 0 ax, -+ 0 axy B

Also notice that this conjugation action restricted to O,,_y ,_x C T} is trivial.
Thus, we have an R*-action on short exact sequence (12), which will induce an
R*-action on Spectral Sequence (13).

We now introduce the idea of localising homology groups. Let m > 1 be an
integer. Choose units ay, ...,a,, € R* such that for every non-empty subset
I c{1,...,m}, the partial sum a; := Ziel a; is a unit in R. Call such a sequence
(ay, ..., a,;,) an S(m)-sequence. Choosing an S(m)-sequence is possible for every
m > 0 because R has infinite residue field.

Let s,, € Z[R*] be the element

sm=—, (Da;) € Z[R*],
@#Ic{1,...,m}

first considered in [15], where (u) € Z[R*] denotes the element of the group
ring corresponding to u € R*. Note that

1=— > (D"

FAICL,...om}

so that a trivial R*-action induces a trivial action by the elements s,,. If R*
acts on a group G through group homomorphisms, then the homology groups
H,(G) aquire an R*-action by functoriality of group homology. This makes the
groups H,(G) into a left module over the commutative ring Z[R*], and we can
localize them with respect to the element s,, € Z[R*] to obtain the abelian
groups s,  H,,(G). The magic of the elements s,, lie in the following proposition,
for the proof of which we refer the reader to [17, Proposition D.4.].
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Proposition 3.4. Let R be a commutative ring and u = (uy, ..., u,,) an S(m)-
sequence in R. Let
1>-N->-G—-A-1

be a central extension of groups. Assume that the group of units R* acts on the
exact sequence. Assume furthermore that the groups A and N are the underlying
abelian groups (A, +,0) and (N, +,0) of R-modules (A, +,0,-) and (N, +,0,-),
and the R*-actions on A and N in the exact sequence are given by

R*XA—->A:(t,a)~t-a
and
R*XN - N : (t,y) = 2.y
respectively. Then, foreveryl < n <m/2,
sy H,(G) = 0.

O
We may now localise the Spectral Sequence (13) with respect to the elements
s,, to obtain for all m > 1 the localised spectral sequences

S;11E12)q = S;lep(On—k,n—k;Hq(Lk))
= 5, Hpyq(Tk), (14)
= Hp(on—k,n—k; Sr_anq(Lk))
the isomorphism coming from the fact that R* acts trivially on O,,_y ,,_.
We show that localising with respect to the elements s, kills the non-zero

homology groups of L, when m is taken to infinity.
Lemma 3.5. We have s,;'Hy(Ly) = Z and for all 1 < 2q < m, s,;"Hy(Ly) = 0.

Proof. We claim there is a short exact sequence of groups

k
1= RY,4) = [ > (@0, 4) - 1 (15)
The first arrow maps
(c1,) = Ay,
where A ) € Ly is defined by the conditions (9), (10) and (11) subject to
B =1, x; = 0 and using equation (10) to determine the remaining constants

(with some ordering specified beforehand). Note that we have used here that 2
is invertible, as (10) implies 2¢; = 0 for all i. The second arrow maps

t

I A

0 ¢ 1 ¢ 0 ¢ ‘u

0 0 0 1 0 O 0

L : . L e (oqy e Xp)-
k k kot

0 ¢ 0 ¢ 1 ¢ ‘ug

0 0 0 O 0 1 0

0 x; 0 x, 0 x, 1
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One may check that these arrows define group homomorphisms, fitting into
the short exact sequence (15), and (15) is actually a central extension.
Furthermore, this central extension is R*-equivariant where b € R* acts on

k
(R(z), +) via pointwise multiplication by b2, the element b € R* acts on L, via
conjugation by Dy, s, and it acts on ((R¥n=kyk | 1) via pointwise multiplication
by b. By Proposition 3.4, s,,'H qLi) = 0forall1 < 2g < m. The equality
s, Hy(Ly) = Z follows from fact that R* acts trivially on Hy(Ly). O

Corollary 3.6. The inclusion O,,_y ,_ < T} induces isomorphism

Hy(Optont) = S Hi(T)
forallt < m/2.
Proof. By Lemma 3.5, the localised Hochschild-Serre Spectral Sequence de-
generates at E2 for 1 < 2t < m to yield isomorphism
P ¢ St H(Ti) = Hy(Opien-i)
for all t < m/2. Since p is a retract of the inclusion, we are done. O

3.2.3. A global action on the spectral sequence. Next, we want to realise
these ‘local actions’ as a ‘global action’ on the spectral sequence

Ellj,q(n) = Hq(on,n’ Cp(n)) = Hp+q(on,n’ C.(n)). (16)

We do this by defining an action on the associated exact couple with abutment.
Recall that for a group G and a chain complex of G-modules C,,, the spectral
sequence

E,, =Hy(G,Cp) = Hp,(G,C,)

may be obtained from the exact couple with abutment
1 k \ 1 7\
69p,q Epaq 69p,q DP,q G9p+q AP"‘q

IR )

1
®p,q DP,q

with Ezlxq = p+q§G’ Cep/Cep-1); Dzln,q = Hp1q(G,Cgp); Aprq = Hp1q(G, C);
the maps i, j, k being the maps of the long exact sequence of homology groups
associated to the short exact sequence of complexes

and o is induced by the inclusion.
To define the global action, it will be convenient to introduce the general split
orthogonal group, which is defined as follows.
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Definition 3.7. For a ring R, define GO, ,(R) C GL,,(R) as the subgroup
GO, ,(R) :={A € GL,,(R)| 'A,,A = ay,,, for some a € R*}.
In the above notation, we will call a € R* the associated unit of A.
For n > 1 we have short exact sequence of groups
1-0,,—-G0O,,—>R"—>1 (18)

where the first arrow is given by the inclusion and the second arrow maps A €
GO, , to its associated unit. For instance, for a € R*, the matrix

a
is in GO,, , and has associated unit a which proves exactness at the right.

Definition 3.8 (Global action). The group homomorphism GO, ,(R) — R*
makes Z[R*] into a right GO, ,(R)-module and left R*-module, and both ac-
tions commute. In particular, for any bounded below complex of GO,, ,-modules
M., the groups

GOy

Tor{ " (Z[R*], M.) = H/(ZIR*] ®%, M.)

are left Z[R*]-modules functorial in M,,, and the spectral sequence

GO,

GO, p
q r

E,q = Torg ""(Z[R*],M,) = Tor, " (Z[R*], M) (19)

is a spectral sequence of left R*-modules. (For more information about the de-
rived tensor product, see [21]). This spectral sequence is the spectral sequence
of the exact couple (17) with

GO, , " . GOp * .
E,, = Tor, " (Z[R*],M<p/M<p_1); D,, = Tor,, " (Z[R*],M<p); Apsq =
TorGO””‘(Z[R*],M*). For n > 1, the inclusions Z € Z[R*] : 1~ 1and O, , C

p+q 0 . .
GO, , yield isomorphisms

Z®p, M, — Z[R*] ®o,, M.

by Shapiro’s Lemma. For M,, = C,(n), this identifies the Spectral Sequence (19)
with (16) and makes the latter into a spectral sequence of R*-modules. We use
this structure to define the global action of R* on (16).

Specifically, we now show that, under the isomorphism (8), the local actions
corresponding to conjugation with D,  are induced by the global action corre-
sponding to multiplication with a2 € R*. For this end, we will need to prove
that the appropriate diagrams commute. We will use the following two lemmas.
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Lemma 3.9. Let G and K be groups. Let M and N be a G-module and a K-
module, respectively. Consider the diagram of morphisms

(f1.e1)
(G,M) = (K,N)
(f2,92)
where f, f, are group homomorphisms and ¢y, ¢, G-module homomorphisms,
N is considered a G-module via f, and f, respectively. Suppose there exists a
x € K such that forall g € G and forallm € M,

f28) =xfi@x™"  and  @,(m) = xp(m).
Then
(fl’ §01)* = (f2’ @2)* : H*(G’M) e H*(K’N)

Proof. By assumption, we have the following commutative diagram:

H.(G,M)

(fliqol)*\L %2)*

H.(K,N H.(K,N),
(K.N) — H.(K.N)

where (¢, i) : (K,N) — (K,N) is the map (k,n) —~ (xkx~',xn). By [2,
Chapter II1.8], the bottom horizontal map equals the identity. O

We will also need to recall functoriality of Tor. This is given by the following
lemma.

Lemma 3.10. Let G and K be groups; let M and P be a right G-module and right
K-module respectively; and let N and Q be a left G-module and left K-module
respectively.

Consider the diagram of morphisms

(fl’¢1’g1)
M,G,N) = (P,K,Q)
(f2,92.82)

where @1, @, are group homomorphisms; f, f, right G-module homomorphisms
where P is considered a right G-module via ¢, and ¢, respectively and g,, g, left
G-module homomorphisms where Q is considered a left G-module via ¢, and ¢,
respectively.

Suppose there exists a x € K such that for all g € G; for all m € M and for all
n €N,

! and g(m) = xg;(n).

fa(m) = fr(m)™, P2(8) = xp1 (g~
Then

(f1, 21, 80)% = (f2, 92, 82). : Tors (M, N) — Tork (P, Q).
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Proof. By assumption, the following diagram commutes:

H,(M Q5 N)

(fl’¢l’gl )XJ/ Wgé)*

H,(P®% Q) W H,(P ®% Q)

— Lt Mi )%

where

A1 :P—>P,pr—>p1<‘1, Cp - K - K,k — xkx™!, Me 2 Q= Q,q P xq.

Therefore, the bottom horizontal map is induced by the map
P®cQ—P®cQ
P®q- px ' ®xq=p®q

which is the identity. O

By definition the R*-action on ToquO"’”(Z [R*], Ci(n)) corresponding to left
multiplication with a € R* is induced by the map

(a,id,id)
(Z[R*], Gon,n’ Ck(n)) — (Z[R*], GOn,m Ck(n))

where a : Z[R*] — Z[R*] is the map corresponding to left multiplication with
a. With this, we have the following proposition, which gives us a model of this

action in terms of the groups Torg"’"(Z, Cr(n)) = Hy(Oy p, Cr(n)).

Proposition 3.11. Letk,q > 0 and n > 1. Then, for all a € R*, the following
diagram commutes:

GO, (a,id,id),

Tor, " (Z[R*], Ci(n)) Tory ""(Z[R*], C(n))

(i,i,id)*/]\g E/r(i,i,id)*

Onn Onn
Tor,""(Z, C(n)) W Tor,""(Z,C(n)),
where the vertical maps are the isomorphisms given by Shapiro’s Lemma; B, de-
notes left multiplication by B, € GO, and Cg_denotes the map induced by
conjugation with the element B, on O, ,,.

Proof. We use Lemma 3.10. Specifically, consider the diagram

(f1.91.81) «
(Z,0p,Cr(n)) = (ZIR*], GOy p, Ci(n))

(f2:92,82)
where (f1,91,81) 1= (Ug,1,1) and (f2, 2, 8) 1= (i,Cp,, up,)- Here, y, is de-
fined via u,(1) := a and yup_is defined via left multiplication on basis elements
by B,. Letx := B, € GO, ,. Note that from short exact sequence (18), we
deduce B, acts on R* by multiplication with a. Thus, i(1) = 1 = u,(1)x~!. Fur-
thermore, Cp = xix~! and for every (vy,...,0r) € TJUL(R?™), up, (U155 V) =
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x(vq, ..., Ug) (the case k = 0 being trivial). Thus, by Lemma 3.10, the diagram
commutes. O

Next, note that the action on TorO"’"(Z, Cy(n)) induced by

Ba a)

(Z On n» Ck(n)) —) (Z On ns» Ck(n))
is equivalent to the action on Hy(O,, », Cx(n)) induced by

(CBa ’Ba)
(On,n’ Cy(n)) —— (On,n’ Ci(n)).

To make the connection with the action induced by conjugation with D, ;, we
prove the following intermediate proposition.

Proposition 3.12. Let k,q > 0 and n > 1. Then, for all a € R*, the following
diagram commutes:

H,(Opp, Ci(n)) Erbed g (00, Cr(n))

idT Tid

H (On n» Ck(n)) (d—%)*> H (On n» Ck(n)),

where for a € R*, the map

(id’ ¢a) . (On,n’ Ck(n)) - (On,ns Ck(n))
is defined to be the identity on O, ,, and on basis elements of C.(n) as

$a (U1, ) = (@70p, e a7 ).

Proof. We use Lemma 3.9. Specifically, consider the diagram

(f1.91)
(On,n’ Cr(n) = (On,n’ Cr(n))

2:$2
where (f1,¢1) 1= (id, ¢,) and (f5, ¢,) := (Cp__,, B4-2). Define
a
a-!
K =Dy, =
a
a1
Denoting for a € R¥,
a
a
a:= ;
a
a

note that B,» = xa™, so that Cp , = C,Cy-1. But, Cg-1 = id, sothatCp , =
C,. Furthermore, note that for every (vy, ... vk) S ﬂuk(RZ") Bg2(vg, ... vk) =
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x¢p,(v1, ..., Uy), since B,> = Kg‘l. Thus, by Lemma 3.9, the diagram com-

mutes. (]
Finally, we show that (id, ¢,) induces the desired local actions.

Proposition 3.13. Let k,q > 0. Then, for all a € R*, the following diagram
commutes:

Hoy(Op s Ce() 228 H (0,100 Cie(m)

Hq(Tk’ Z) T Hq(Tk’ Z)a
a,k

where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and
the map Cp_, denotes the map induced by conjugation with the element D,y on
the stabiliser Ty.

Proof. We use Lemma 3.9. Specifically, we have to consider the diagram

(fre1)
(Ty, Z) = (Opp, Cr(n))
(f2.92)

where (f1,¢1) := (i,(a ey, ..,a ")) and (f2,9,) 1= (iCp,,. (e, ..., €)), and
i : Ty = O, is the natural inclusion of groups. Letx = D, € O, ,. Then,
for every A € Ty,

f2(A) =iCp,, (A) = Dy AD;} = Do xi(A)D,; = xf1(A)x!
and
(e1.....ex) =Dy (a7 ter,...,a le) = x(a ey, ..., a ey).
By Lemma 3.9, the diagram commutes. O
Thus, we have shown that there exists an R*-action on the spectral sequence
Ell),q(n) = Hq(on,na Cp(n)) = Hp+q(on,n, C.(n))

which induces the desired local actions considered previously. Using Corollary
3.6, we obtain the following.

Corollary 3.14. For every m > 1, the localised spectral sequence
mE}),q(n) = S;zlE[l),q(n) = S;11Hp+q(on,ns C*(I’l)) (20)
has ,E}, , terms
mEpq = S Hg(Oppn, Cp(n)) = Hy(Op—p n—p)
forallq < m/2 and forall p < n.

O
Under these identifications, the differentials d' : ,E,, = ,E,_  take

p-1q
the form
dl : Hq(On—p,n—p) - Hq(On—p+1,n—p+1)
whenever ¢ < m/2 and p < n. Our next task is to compute these differentials.
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3.3. Computation of the localised d! differentials, and proof of homo-
logical stability.

Proposition 3.15. For all integers ¢ < m/2 and p < n, the homomorphism
dll),q : Hq(on—p,n—p) - Hq(on—p+1,n—p+1) is

ql = 0, peven
P4 li., podd,
wherei @ Op_pn_p < Op_pi1n—p1 denotes the inclusion.

Proof. For all p < n, we want to show that the following diagram commutes:

(A €5))s
Hy(Onpn-p) S S Hy(O 0, Cp(n)

zi \L(dl-)* (21)

> Hq(on,na Cp—l(n)),

Hy(On—prin-pr1) —o— ep1):

where t : O,_p,—p < Op, denotes the inclusion map; (e;,..,e,) : 1
(e, ..., ep) and recall that d;(vy, ..., vp) = (vy, ..., Uj. ... , Up). Again, we will prove
this diagram commutes using Lemma 3.9. Specifically, consider the diagram

(On—p,n—p’ Z) 3 (On,n: Cp—l(n))'

(toi(eq,evlpy
Define A € O, by sending a hyperbolic basis to a hyperbolic basis as follows:

(€155 65 r€p) > (€1, €p1)

(f1ees fis s ) 2 (1o f 1)
e~ ep
fi = fp

ej —ej andfijjforallp+1§j§n.

Then, by construction, (es, ...,e,_1) = A(ey, ..., ¢, ...e,). Note the matrix of A

(C 12 n—p )
( )

for some permutation matrix o. Therefore, we deduce that 10i(B) = At(B)A™!
for every B € O,,_p —p-

By Lemma 3.9, the diagram commutes. The proposition then follows from
the fact that the differential d' : Hy(Op, Cp(n)) = Hy(Op,, Cp_i(n)) is in-
duced by the differential d = Zle(—l)i“di : Cp(n) = Cp_1(n) and the above
remains true after localisation, with the horizontal arrows becoming the iden-
tification isomorphisms. O

We immediately deduce the following corollary:
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Corollary 3.16. Forallq < m/2 and forall p < n,
L
ker (Hq(on—p,n—p) - Hq(On—p+1,n—p+1))) ) p odd

E3, = .
m i,
coker (Hq(on—p—l,n—p—l) — Hq(On_p,n_p))> , D even.

p.q

To prove homological stability, we will need to prove the following.

Proposition 3.17. The differentials dj, , in Spectral Sequence (20) are zero for

r>2andq <m/2, p <n. Hence, forallg < m/2and p < n, mEIZ,,q = mEpg

Proof. Similar to [11] and [15], we argue by induction on n. For n = 0, 1, the
spectral sequence under consideration is located in columns 0 and 1. Therefore,
the differentials d" for r > 2 are zero by dimension arguments.
Assume n > 2. We seek to define a homomorphism of complexes of O,,_, ,_»-
modules
T:C.(n-2)[-2] - C.(n).

For (vy, ..., Up_3) € Cp(n — 2)[-2], define

To(vl, cen y Up_z) = (el, ez, 61, vee ﬁp_z)

71U, s Up2) 1= (€1, €3 — €1, 01, e, Up_3)

T2(U1, ey Up_z) = (ez, €, —éq, Ul’ cee sy Up—2)’

where

€ R*".

o © OO

U;

Define t := 1ty — 71 + 7,. Note that 7 commutes with differentials and com-
mutes with O,_,,_, multiplication from the left, so that it indeed defines a
homomorphism of chain complexes of O,,_, ,_,-modules. We need to check
that r is equivariant for the global R*-actions on the spectral sequences so that
T induces a map on the localised spectral sequences. By Proposition 3.11, the
global action is induced by the map (Cg_, B,) on the Spectral Sequence (16).
Therefore, R*-equivariance follows from the fact that for every a € R* and for
all j = 0,1, 2, the diagrams

Onsnns Cpa(t = 2)) —2% (0 s Cp()

(Ch, ,Ba)T T(cga B)

(On—2,n—2’ Cp—z(n - 2)) ﬁ (On,n’ Cp(l’l)),
ot

commute, wherei : O,_,,_, < O, , denotes the inclusion. The point is that
B,(e;) = e;. Therefore, T induces a map of spectral sequences of R*-modules

7, .E—>E
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where E := E(n —2)[-2,0] and E := E(n).

Recall from Propositions 3.12 and 3.13 that the local actions are globally in-
duced by multiplication with a=2 for a € R*. Localising with respect to the last
action, we obtain a map on the localised spectral sequences

Note thatforallg <m/2and2 < p <n,

mBpq = mEpq(n—2)[-2,0] = mE;_z’q(n —2) = Hy(0p_pn—p)-

The claim will then follow by induction on r using the following lemma:

Lemma 3.18. The map ,,7, : ,E

g,q - mEIl,’q is the identity forallq < m/2 and
2<p<n

Proof. If we can show that for j = 0, 1, 2, the diagrams

(ermp-2)),

Hq(on—p,n—p) —> Hq(on—z,n—z’ Cp—z(n - 2))

:i J/(z,r s (22)

Hq(on—p,n—p) > Hq(on,n’ Cp(l’l)),

(l,(el ----- ep))*

commute, where the ¢’s denote inclusions, we will be done, as t = 7y — 71 + 75.
Again, we will prove these diagrams commute using Lemma 3.9. Specifically,
consider diagram

(wtj(ersep_2))

(On—p,n—p’ Z) = (On,n’ Cp(l’l))

(t.(eq,em€p)

Note that 7y(ey, ... ,ep_z) = (eq,€y,63, .. ,ep), so that diagram (22) commutes
in the case for j = 0 by functoriality of group homology. For j = 1,2, we
have 7,(ey,....ep_2) = (e1,€; — €1,€3,...,€p) and 75(ey, ..., €,5) = (€3,€; —
€1, €3, ..., €p). Define a matrix A € O, , by

e — e

e, e, — e

fir fitfa

far fa
ej>ejforall3<j<n
fjm fjforall3<j<n.



66 MARCO SCHLICHTING AND SUNNY SOOD

Similarly, define B € O,, ,, by

e — e,

e, e, —e

fir fi+ 12

fae=fi
ejejforall3<j<n
fjm fjforall3<j<n.

Then, A(ey, ...ep) = T1(ey, -, €p-2), B(ey, ... €p) = T5(ey, ..., €,_5) and for every
M € Op_ppp, M) = A(M)A™" = Bu(M)B~'. Thus, by Lemma 3.9, Dia-
gram (22) commutes for every j = 0,1,2. These diagrams still commute after
localisation, but now the horizontal maps become the identification isomor-
phisms. (]

This proves the lemma, and thus Proposition 3.17. ]

Theorem 3.19. Let R be a commutative local ring with infinite residue field such
that 2 € R*. Then, the natural homomorphism

Hk(on,n(R)) — Hk(on+1,n+1(R))
is an isomorphism for k < n — 1 and surjective for k < n.

Remark 3.20. This improves Mirzaii’s result [10] by 1 and matches the analo-
gous result for fields obtained by Sprehn-Wahl [18].

Proof. Choose m > 0 sufficiently large so that we may apply Corollary 3.16
wheng <n-—1.

Recall from Theorem 2.12 that H,(C,(n)) = 0 for all ¢ < n — 1. Thus, from
the Spectral Sequences (6) and (20), Corollary 3.16 and Proposition 3.17, we
deduce

[
coker (Hq(on—l,n—l) - Hq(on,n))) = mEg,q

forallg <mn-—1,and

forallg <n-—2.
The theorem follows. ([
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4. Homological stability for SO, ,
Recall we have two hyperhomology spectral sequences
E2 (1) = Hy(SOp p, Hy(Co(1))) = Hpyg(SOp s C()) (23)
EL () = Hy(SOy n, Cp(1)) = Hpyo(SOp s C.()). 24)

Moreover, recall that in Theorem 2.12, we proved H,(C.(n)) = 0 for every g <
n—1. As we expect the homological stability range for SO,, ,, to be the same as for
O, areasonable proof strategy is to localise Spectral Sequence (24) in the same
manner as we did for the O,, , and analyse the localised spectral sequences. The
analysis will turn out to be very similar to the O, ,, case, except for the situation
when p = n, corresponding to the fact that the action of SO,, ,, on JU p(RZ") is
transitive only for p < n, see Lemma 4.2. But in the end, this will not prove to
be too significant.
Note that for all n > 0, we have short exact sequences

1-580,,—0,, > 2Z,-1,

where the right arrow given is by the determinant map. Moreover, if we define
ST\ < Ty to be the subgroup of matrices in T having determinant 1, the pro-
jectionmap p : Ty — Op_k ,— restricts toamap p : STy — SO, _g k. Note
that

ker(p : Ty = Oy n—i) = ker(p : STy = SOp_g ni),

since, by inspection on the matrices in T}, we deduce that det A = detp(A)
for every A € T}, and that both kernels consist precisely of those matrices
that map to the identity matrix. This observation will turn out to be significant
in the forthcoming analysis. Furthermore, note that ST,, = T,. We use the
conventions that SO,y = 1 and ST, = SO, ,,.

We obtain short exact sequences for every 0 < k < n.

1—- Lk - STk - SOn_k’n_k - 1. (25)
4.1. Local R*-actions and transitivity. Define a local R*-action on short ex-
act sequence (25) in exactly the same was as we did in Section 3.2.2, namely
we conjugate matrices in ST with the matrix D, € SO, ,. Asker(p : Ty —
Oy—kn—k) = ker(p : STy = SO, _ n—k), the exact same reasoning as in Section

3.2.2 can be used to conclude that, after localistaion, the homology of ST} and
SOy, _k n—k coincide:

Corollary 4.1. The inclusion SO,,_y ,_x < Ty induces isomorphisms
H(SOn—tnt) = Sy Hi(STy)
forallt <m/2.
Next, we study the transitivity of the SO,, , action on JU ,(R*").

Lemma 4.2. The action of SO, , on JU p(RZ”) is transitive for all p < n.
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Proof. Let (ul,...,up),(vl,...,vp) € JUP(RZ”). By Lemma 3.1, there exist
uf, ...,uff such that (uy,u?, ... ,up,uff) has Gram matrix ,,, and can be ex-
tended to a hyperbolic basis (u;, uf, ey Upy ug, X1, xf, wees Xp_p> x,f_p). Similarly,
there exist v, ..., v such that (vy, v}, ..., vp, v}) has Gram matrix 1,,,, and can
: : # # # #
be extended to a hyperbohc.bams (vy, VY s e s Ups U V1, V1 s wovs Y ps yn_p).
Let B € O, , be the matrix
B =y uf e U ug X, xf
and let C € O, ,, be the matrix

#
xn—p xn—p)’

Ci=(; vf - v, vF ¥ Y o Yap Vi)

If detB = detC, then CB™! € S0,,,, and maps (ul,...,up) to (vl,...,vp). If
det B # detC, then define C := CT, where T is the matrix that swaps y,,_ pand

yff_ » in the columns of C. Then, as det T = —1, it follows det B = det C, and we
are in the previous case. O

#
p

Recall that Shapiro’s Lemma gives an isomorphism
P G.x.: P H.(G.2) > H.(G,ZIS)
[xles/G [x]eS/G

of homology groups, where the direct sum is over a set of representatives x € S
of equivalence classes [x] € S/G; the group G, is the stabiliser of G at x €
S; the homomorphism i, : G, C G is the inclusion; and x also denotes the
homomorphism of abelian groups Z — Z[S] : 1 — x.
We apply Shapiro’s Lemma in the case G = SO, ,(R) and S = JU p(RZ”).
Thus, by Lemma 4.2 we have identification isomorphisms given by Shapiro’s
Lemma for every,0 < p<nandqg >0

Hy(ST,) = Hy(SO, . Cp(n)). (26)
For p = n, we claim that the action of SO,, ,, on JU,,(R*") has two orbits:

Proposition 4.3. For n > 1, the action of SO, ,, on JU,(R*") has orbits corre-
sponding to Z,.

Proof. We know by Lemma 3.1 that the action of O,, , on JU,,(R*") is transitive,
so that we have an isomorphism of O,, ,—sets
On,n/Tn = jun(Rzn)~

Furthermore, note that T,, = ST,, < SO,,,, < O,,,,, so that we have a canonical
surjection O, , /T, — O,,/SO, , with fibre SO, , /T,. Therefore, we have an
isomorphism of O,, ,-sets U, (R*") /SOy, ,, = O0,,,/SO,,. .. This gives us

|‘7un(R2n)/SOn,n’ = |On,n/SOn,n| = |Z,],
where the last equality follows from the short exact sequence
1-S50,,—->0,,—>2Z,—->1. U
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Therefore, Shapiro’s Lemma gives us an isomorphism

Hy(St(ey, . €2)) ® Hy(St(e1, .. n1, f) = Hy(SOpm, Calm)).  (27)

where St(ey, ...,e,_1, f,,) denotes the stabiliser of (e, ..., e,_, f,,) in SO, ,,, and
the identification map is given by Shapiro’s Lemma. To ease notation, we define

Tn = St(el, vee y en_llfn).
We will compute T, and show that, after localisation, all non-zero homology
groups of T, vanish.

4.2. Computation of T, and a local R*-action. We first compute T,,.

Proposition 4.4. Matrices A € T, are of the form

1 ¢ 0 q 0 c , ¢ O
O 1 o0 o0 0 0O O
0 ¢ 1 ¢ 0 c, ¢ O
O o0 o0 1 0 0O o0
A=]|: : : : : : : :
-1 -1 -1 -1
0 c;™0 0 ¢ 1L co™ ¢ 0
0O 0 o0 0 0 1 0 O
O 0 o0 0 0O O 1 0
0 cf 0 ¢ 0 ¢, 0 1
where cj. € R, subject to the conditions
c§. + clj =0. (28)

Proof. Let A € T,. Then, Ae; = ey,...,Ae,_; = e,_, and Af, = f,. This
gives the 1st, 3rd, ....,(2n — 3)rd and 2n-th column of A. Moreover, for a fixed
1<i<nandforanyl < j < n, we have

(e, Af ) = (Aej, Af ;) = (e, ) = &;j
and
(ei’Aen> = <Aei’Aen> = <ei’en> = 0.

This gives the 2nd, 4th, ..., (2n — 2)nd rows of A.
Furthermore, note that for 1 < j < n,

<fn’Afj> = <Afn’AfJ> = <fn’fj> =0,

<fn’Aej> = <Afn,A€J> = <fnaej> =0
and
(fnrAey) =(Afp, Aey) = (fn,€n) = 1.
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This gives the (2n — 1)th row of A. Filling in the remaining entries by constants
to be determined, we have that

1 ¢ 0 ¢ 0 c , ¢ 0
O 1 o0 o 0 0O o0
0 ¢ 1 ¢ 0 c, ¢ O
0O 0 O 1 0 0 O
A=|: ¢ S
0t o ot 1 "1 oo
O o0 o0 o 0 1 0O O
O o0 o0 o 0O O 1 0
0 ¢ 0 ¢ 0 ¢, A 1

where c;, A €R.

We use the equation ‘Ay,,A = 1,, to determine the conditions on these
variables. Specifically, we have that

1 0 o0 0 0 0 0 0 1 ¢ 0 g 0 c 0
1 2 n—1 n n-1

[ 1 [ 0 cf 0 0 (< 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 ¢ 1 0 ¢, ¢ 0

g 0 ¢ 1 - gt 0o 0 o o 0o o0 1 0 0 0

APA = : : H : H oyl : : : : : : :

0 0o o0 0 - 1 0 0 0 (O 1 e et o

1 2 n—1 n n=t "

ek, 0 &, 0 A I L 0 1 0 0

ch 0 cfl 0 " 0 1 A 0 0 0 0 0 0 1 0

0 0 0 0 0 0o o0 1 0 cf 0 cy 0 ¢, A 1
0 1 0 0 0 0 0 0
1 o +cf 0 e +ct 0 ¢+t e+t 0
0 0 0 1 0 0 0 0
0 e+t 1 c+c 0 &+t o+ 0
0 0 0 0 0 1 0 0

1 -1 2 -1 -1 -1 -1
0 ¢, +cf 0 cn_% +cy 1 cy+ey ¢ +e ., O
0 e+ 0 cpt+cy 0 ¢y +ep 2A 1
0 0 0 0 0 1 0
=1,

Thus, we conclude A = 0 necessarily and we derive the required equations. [J

We now define a local R*-action on T,. This will be slightly different from the
local actions on T},. We will show that, after localisation, the non-zero homol-
ogy groups of T, vanish. Eventually, we will show the global action considered
in subsection 3.2.3 induces this local action on T,.

Definition 4.5 (Local action). Let a € R*. Define a 2n X 2n matrix ﬁa,n by

a

n-1
D,y = a =
1

(& 2D o).
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Note that 5(1,,1 € SO, ,(R). The local action of R* on T, is the conjugation
action of D, on T,.

The local action preserves T, because

1 1 1 1
1 ¢ 0 ¢ 0 ¢c,., ¢ O
0 1 0 O 0 0 o
2 2 2 2
0 ¢ 1 o 0 ¢, ¢ O
10 0 0 1 0 0 Of__,
Dynl: : : : : : i |Dan
0t o ot 1 "1 et oo
0 o0 0 O 0 1 0 o
0 o0 0 O 0 o0 1 0
0 ¢ 0 ¢ 0 c,., 0 1
2,1 2,1 2,1 2,1
1 ac; 0 a‘c 0 a%, , ac, O
0 1 0 0 0 0 0 0
2.2 2,2 2.2 2.2
0 a%c; 1 a‘cq 0 a%, , a‘c, O
0 0 0 1 0 0 0 of _
=|: : : : oo : : | ETy.
0 a’*cf™ 0 a*c! 1 "] a’ct 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 a*} 0 a*) - 0 a’ch 0 1

We show that localising with respect to the elements s, kills the non-zero

homology groups of T, when m is taken to infinity. This is used to make the
identifications in Corollary 4.9.

Lemma 4.6. We have s;;'Hy(T,) = Z and for all 1 < 2q < m, s,;,'Hy(T,) = 0.
Proof. We claim there is a short exact sequence of groups

1-— (R(z),+) >T,—>1-1 (29)
The first arrow maps

(c150) = A,

where A, ) € T, is defined by conditions (28) (with some ordering specified
beforehand). The second maps A € T, to its bottom right identity matrix. One
may check that T, is abelian, and these arrows define a short exact sequence of

abelian groups.
Furthermore, this short exact sequence of abelian groups is R*-equivariant

where b € R* acts on (R(2), +) via pointwise multiplication by b?, the element

b € R* acts on T, via conjugation by Eb,n and the action of b on 1 is taken to
be trivial.
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By Proposition 3.4, we have s,,,' H q(il) = 0forall 1 < 2g < m. The equality

s 1H(T,) = Z follows from fact that R* acts trivially on Hy(T,,). O

4.3. A global action on the SO, ,, spectral sequence. As before, we want to
realise these ‘local actions’ as a ‘global action’ on the spectral sequence

Epq(n) = Hy(SOy n, Cp(n)) = Hpyq(SOp p, C(M)). (30)

Again, we do this by defining an action on the associated exact couple with
abutment. Specifically, the spectral sequence

E} o = Hy(SOy, Cp(n) = Hpig(SOp 0, (1))

may be obtained from the exact couple with abutment
D, Epa — ©,,40pa — Dprq Ap+a

S~ G
®pq b4
with
Epg = Hp1g(SOnn, C<p(n)/Cep1(n));
D} g = Hprg(SOnm Cp(n);
Aprq = Hp4g(SOp, Ci(n)).

The maps i, j, k being the maps of the long exact sequence of homology groups
associated to the short exact sequence of complexes

0— Ccp1(n) = Cgp(n) = Ccp(n)/Cepy(n) - 0,

and o is induced by the inclusion.

For a € R*, we define the global action on Spectral Sequence (30) to be the
action induced by the map (Cp__,,B,-2) on exact couple (31), where Cp__, de-
notes conjugation by the matrix B,-. of Section 3.2.3, and B, also refers to
multiplication by this matrix.

As D, € SO, , for every 0 < k < n, the proof of Proposition 3.12 may be
used to prove the following.

Proposition 4.7. Let k,q > 0 and n > 1. Then, for all a € R*, the following
diagram commutes:

=2 a2

H (Son n» Ck(n)) —> H (Son n» Ck(n))

d i

H (Son n’Ck(n)) (d—%)*> H (Son n’ck(n))

where for a € R, the map
(id’ ¢a) : (Son,na Ck(n)) - (Son,n’ck(n))
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is defined to be the identity on SO,, ,, and on basis elements of C.(n) as
bg 2 (U1, 08) = (@ Tvg, ..., a7 o).
For the next proposition, we need to treat the case k = n separately:

Proposition 4.8. Let g > 0 and 0 < k < n. Then, for all a € R¥, the following
diagram commutes:

(id,¢a )«
Ho (SO, Ce(n) 228 H (0,11, Cie(m)

Hy(STy, Z) —o—— H,(STy. 2),
a,k

where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and
the map Cp_, denotes the map induced by conjugation with the element D,y on

the stabiliser STy.
Moreover, forq > 0and k = n, the following diagram commutes forall a € R*:
(dgade
Hy(SOy,n, Cp(n)) > Hy(SOp,p, Cp(n))
(i,(e1,n)) (s (e1 oo fn))*/]\% E/]\(i,(el ,,,,, €n))x Ds(e1,,fn))x

Hy(Ty, Z) ® Hy(T}, Z) W Hy(T,, Z) ® Hy(Ty, Z),

where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and the
map Cp, @ Cp denotes the map induced by conjugation with the element D ,

on the stabiliser Tn sum with the map induced by conjugation with the element
D, , on the stabiliser T ,.

Proof. The proof of the first half of the proposition is exactly the same as the
O, case, since D, € SO, ,. See Proposition 3.13. The proof that the first
component commutes is exactly the same as the O, , case, since D, ,, € SO,, .
For the second component, consider the diagram

— (f1.91)
Tp,2) = (Son,n’ C,(n))
(f2,92)

where (f1,91) = (i,(a ey, a” f)) and (f1,92) = (iCp_,(er,, fi)),
andi : T, — SO, , is the natural inclusion of groups. Let x = Ba,n € SO, -

Then, for every A € Tn,
_ -1 _ —1
fZ(A) = icﬁa’n(A) = Da,nADa,n = Da,ni(A)Da,n = Kfl(A)K_l

and
(e1, s fn) =Dgnlatey,...,a™ f) = x(a ey, ...,a”l f).

By Lemma 3.9, the diagram commutes. O
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Thus, we have shown that there exists an R*-action on the spectral sequence
Ell),q(n) = Hq(SOn,n’ Cp(n)) = Hp+q(son,na C.(n))

which induces the desired local actions considered previously. Putting every-
thing together, we obtain the following.

Corollary 4.9. For every m > 1 and every q < m/2, the localised spectral se-
quence

mEp (M) = 5, EL () = 55 Hpp (SO, 4, C(1)) (32)
has ,E, , terms
Hy(SO,_pn—p) 0<p<n
mEll),q(n) = S;11Hq(son,n’ Cp(n)) =1 7Z[2Z,] p=n4g=0
0 p=mn,q>0.
Our next task is to compute the localised d' differentials
1. 1 1
d: uEpq— mEp_Lq.

4.4. Computation of the localised d! differentials, and proof of homo-
logical stability.

Proposition 4.10. Forallq < m/2 and 0 < p < n, the homomorphism d;,’q is

ql = 0, peven
pq~);
i,, podd,
wherei : SOyu_ppp < SOu_py1n—ps1 denotes the inclusion. For p = n, the
homomorphism d,ll’q is0ifg > O orifniseven; and for g = 0 and n odd, d}l1 o ls
the augmentation map e : Z|Z,]| - Z.

Proof. For all p < n, we want to show that the following diagram commutes:

(t,(eq5€p))s N
Hy(SOp—pn-p) > Hy(SOp, 0, Cp(n))

i i@.)* (33)

Hq(SOn—p+1,n—p+1) > Hq(SOn,na Cp—l(n)):

(L’(eli“"ep—l))*

where ¢ 1 SO,_,,p, < SO,, denotes the inclusion map; (e;,...,ep) @ 1
(e, . ep) and recall that d;(vy, ..., vp) = (U1, Ujy ene s vp).

The same proof as in Proposition 3.15 will work, so long as we can show o
has determinant 1. Note that permutation matrix o will be of the form

c=( fi - e fia €p fp e fi €p-1 fp—1)-
From this, we may write id = ¢ - Ty - T, -+ Ty(p—;), Where the matrices T; are
the elementary matrices needed to swap columns in o to transform it into the
identity matrix. Note that each of these matrices has determinant —1, and there
are an even number of such matrices.
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Thus, we deduce 1 = det(id) = det(o-T;T; -+ Typ_p) = (=1)*PD det(o) =
det(o).
For p = n, it suffices to show that the following diagram commutes:

1(€15e8),0> (€155 f 1)

> Cn(n)SOn,n

Js

> Co1(Mso,,,,-

- N
NN

1-(eq,e€p_1)

For i = n, it is easy to see by inspection that the diagram commutes.

For1 < i < n,commutativity follows from the fact that SO,, , acts transitively
on JU,_;(R*™).

These diagrams still commutes after localisation, but now the horizontal ar-
rows become the identification isomorphisms. O

We need to prove the following:
Proposition 4.11. The differentials d}, , in Spectral Sequence (32) are zero for
r>2andq < m/2, p <n. Hence, forallg < m/2and p < n, mEf,,q = Epg

Proof. For n = 0,1, the spectral sequence under consideration is located in
columns 0 and 1. Therefore, the differentials d" for r > 2 are zero by dimension
arguments.

For n > 2, consider the homomorphism of complexes of SO,,_, ,_,-modules

7 :C,(n—=2)[-2] - C.(n).

as defined in Proposition 3.17. Note that the diagram

()
(Son—2,n—2’ Cp—z(n - 2)) —J> (Son,n’ Cp(n))

(C3, ,Ba>T T(cga B)

(SOp—2n-2, Cp—z(n —-2)) (z—rj)> (SOp Cp(n)):

still commutes, so that we have an induced map on localised spectral sequences
mTs - mE = nE.
The claim would then follow by induction on r using the following lemma:

Lemma 4.12. The map 7, : mEll,,q - mEll,,q is the identity forall g < m/2 and
2<p<n

Proof. For 2 < p < n, the same proof as in Lemma 3.18 works, as the matrices
A and B in Lemma 3.18 have determinant 1. Thus, we only need to consider
the case p = n.
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It suffices to show that for j = 0, 1, 2, the following diagram commutes:

1(eq,evep_2),0>(€1,5ees fi—2)

VAVA) > Coa(n—2)s0, ,,.,

| b

z(z,) > CalM)so, -

I(eq5nsen)s0=> (€150 )

For j = 0, the diagram is easily seen to commute by inspection.
For j = 1, we have that

Aley,...,e,) = (e;,e;—e,€3,...,€,)
A(el, vae fn) = (el, 62 - el, 33, ,fn),

where A € SO, , is the matrix A in the proof of Lemma 3.18.
Similarly, for j = 2, we have that

B(ey,...,e,) = (e,65 —€1,€3,...,€,)
B(el, ceey fn) == (ez, ez - el, e3, cee sy fl’l)’

where B € SO, , is the matrix B in the proof of Lemma 3.18.
Thus, the diagrams commute. These diagrams still commute after locali-
sation, but now the horizontal maps become the identification isomorphisms.
O

This proves the lemma, and thus Proposition 4.11. O

Theorem 4.13. Let R be a commutative local ring with infinite residue field such
that 2 € R*. Then, the natural homomorphism

Hk(SOn,n(R)) -— Hk(SOn+1,n+1(R))
is an isomorphism for k < n — 1 and surjective for k < n.

Remark 4.14. Thisis the first known homological stability result for SO,, ,, over
a local ring and generalises the result obtained by Essert [4] for infinite fields.

Proof. Choose m > 0 sufficiently large. We have a Spectral Sequence (32)
with E!-terms given by Corollary 4.9 and d},,q was computed for all ¢ < m/2
in Proposition 4.10. From Theorem 2.12, Spectral Sequences (23) and (32) and
Proposition 4.11, we deduce mElzJ,q =mEpgforallp+g<n-1landq<m/2.
The theorem follows. ]

5. Homological stability for EO,,,
We define EO,, ,, as follows.
Definition 5.1. Define EO,, , to be the image of the map
EOy, :=Im(z : Spin, , — SOy,),

where 77 @ Spin, , — SO, ,, is the canonical map from the Spin group into the
special orthogonal group.
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From this definition, we see that EO,, ,, sits inside short exact sequence

1—Z,— Spin, , N EO,, - L

We refer the reader to the appendix for more information about the Spin
group and the exact sequence above.

In this section, we will study the homological stability of EO,, ,,. We will then
apply the relative Hochschild-Serre Spectral Sequence to the above short exact
sequence. This will then give us a homological stability result for Spin, .

Remark 5.2. The given definition of the elementary group EO,,, coincides
with the one presented in the introduction as stated in [5, Theorem 9.2.8].

Remark 5.3. Note that [5, Theorem 9.2.8] as stated is true for n > 2. For
n = 1, we use the convention that EO, ;(R) = R*2, so that the above short exact
sequence is still true.

To prove homological stability of EO,, ,,, we will study the hyperhomology
spectral sequences

E2 (1) = Hy(EO, s Hy(Co(n) = Hp (B0, Cu(n)) (34
EL (1) = Hy(EOy , Cp(n)) = Hypyg(EOp . Cy(0)). (35)

As the action of EO,, ,, on JU p(RZ”) is transitive only for p < n, see Lemma 5.4,
it is reasonable to expect that the analysis for the EO,, ,, case should be similar
to the SO,, , case. This is indeed what happens.

By Theorem A.26, EO,, ,, also sits inside the short exact sequence

0
1 - EO,, - SO, , —» R*/R** > 1,

where the first arrow is the inclusion and the second arrow 6 is the spinor
norm (this short exact sequence is also true for n = 1, given our convention
EO;;(R) = R*?). We refer the reader to the Appendix A for more details about
the spinor norm. See also [14] and [5] as additional references. From this
short exact sequence, we have the inclusion [SO,, ,,SO,,,] € EO,,, where
[SOy, 4, SOy, ] denotes the commutator subgroup of SO,, ,,. Therefore, to prove
a matrix is in EO,, ,, it will be sufficient to prove itisin [SO, ,, SO, ,]. This will
be very convenient for us.

5.1. Transitivity and local R*-actions. We want to prove that the canonical
action of EO,, ,, on JU p(RZ”) is transitive for all p < n.

Lemma 5.4. The action of EO,, , on JUP(RZ”) is transitive for all p < n.

Proof. Let (vy,...,v,) € JU p(RZ”). It suffices to show that there exists an A €
EO, , such that A(ey, ..., ep) = (U, ..., Up)-
We know by Lemma 4.2 that the action of SO,, ,, is transitive for all p < n.
Therefore, there exists a B € SO, , such that B(ey, ..., ep) = (v, - vp).
Furthermore, note that we have surjections STp = Stabso,,,,, (e, .. ,ep) >

SO and SO - R*/R*2,

n—p,n—p n—p,n—p
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Therefore, we deduce that there existsa C € ST, < SO, ,, such that 6(BC) =
0(B)0(C) = 1 and BC(ey, ..., ep) = B(ey, ..., €p) = (Ug, ..., Up).

As 6(BC) = 1, we have that BC € ker(6) = EO,,,,. We may thusset A :=
BC.

O

6
Define ET). := Stabgo, (€1, ..., e). Note that ET) is precisely ker(ST) —
R*/R*?). This gives us the following diagram with exact rows:

0

1 —— ETy > ST > R*/R*? —3 1

|
P = ’
y ool
1 —> Eon—k,n—k — SOn—k,n—k — R*/R*2 — 1

where the existence of the dashed arrow for all n > 2 will follow if we can show
that the right square commutes (the map trivially exists for n = 1). Let us prove
this.

Proposition 5.5. For every n > 2, the square

ST, —2 % R*/R*?
e * *
Son—k,n—k — R /R 2
commutes.
Proof. Let n > 2. Recall that [SO, ,,SO,,] € EO,,. Let A € ST\ such
that p(A) = B. Want to show 6(A) = 6 ((12k B)) Equivalently, want to

show 6 ((12" B_1> A) = 1. Therefore, we want to show that (12k B_1> A€
[SOu,n>SOnunl € EOy .
Note that (12k B_1> A € Ly, it thus suffices to prove Ly C [SO,, ,, SO0, ,].

The inclusion L, < SO,, , induces a map on homology H,(Ly) — Hy(SOy, ).
We claim this is the zero map for every q > 1.

Recall from Lemma 3.5 that S,_anq(Lk) = 0 for every 1 < 2q < m and note
that s;llHq(SOn’n) = Hy(SO,,), as the R*-action defining this localization is
trivial on Hy (SO, ).

Taking m sufficiently large, we obtain for every ¢ > 1 commutative diagrams

Hq(Lk) > Hq(SOn,n)

+ ¥

Sr_anq(Lk) =0 —— Sr_anq(SOn,n) = Hq(SOn,n)
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We therefore deduce that Hy(Ly) — Hy(SO, ) is the zero map for every g >
1. In particular, as H; corresponds to taking abelianization, we have that the
diagram

Lk < > Son,n

4 +

Lk/[Lk’Lk] —0> Son,n/[son,nsson,n]

commutes. Therefore, we conclude that the inclusion L, < SO, , factors
through [SO,, ,, SO, 1. O

Thus, the projection map p : STy » SO, _k ,—k induces a map p : ET; -
EO,_j n—k- Moreover, the above proof shows that ET,, = ST,, = T,, and L, =
ker (p : ETy » EO,_ ,_x), S0 that we have short exact sequence

1- Lk - ETk - EOn_k,n_k — 1.
The associated Hochschild-Serre Spectral Sequence is
E; o = Hy(EO,_k i Hy(Ly)) = Hpyq(ET)).
Knowing that ET,, = ST,, = T,, allows us to prove the following proposition:

Proposition 5.6. Forn > 1, the action of EO,, ,, on JU,(R*") has orbits corre-
sponding to R* /R*?> X Z,.

Proof. We know by Lemma 3.1 that the action of O,, ,, on JU,,(R*") is transitive,
so that we have an isomorphism of O, ,,—sets

On,n/Tn = gun(Rzn)-

Furthermore, note that T, = ET, < EO,, < O, ,, so that we have a canonical
surjection O, , /T, — O,,,/EO,,, with fibre EO,, , /T,. Therefore, we have an
isomorphism of O, ,-sets JU,,(R*")/EO,, ,, = O,, ,/EO,, ,. This gives us

|92 (R*) /EOy 1| = [Opn/EOnn| = |R* /R X Z,,
where the last equality follows from the short exact sequence
1> EO,, > O,, > R*/R*?* X Z, > 1, (36)
see Theorem A.26. O

5.2. The local R*-action. Note that for every a € R*,

6(D,) = 0 ((%2 a92>> ~1,

so that

Do, € EO, .

12n—2k
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We will define the local action of R* on ET}, to be the conjugation action of D 2 j
on ET,.

Replacing every unit by its square where necessary in the proof of Lemma
3.5 shows that:

Corollary 5.7. The inclusion EO,_y ,_x < ET} induces isomorphisms

H(EOp i n-) = sy H(ET})
forallt <m/2.

5.3. A global action on the EO,,, spectral sequence. As before, we want
to realise these local actions as a global action on the spectral sequence

E2 (1) = Hy(EO 1, Cp(1)) = Hpg(EO, , C.(n). (37)

Again, we do this by defining an action on the associated exact couple with
abutment. Specifically, the spectral sequence

E}, = Hy(EOy, Cp(n) = Hpy(EO, n, Cu(n))

may be obtained from the exact couple with abutment

@q pqﬁ@q pq—>@p+q p+q

IR o

69p q P q
with

E;J,q = Hpy(EOp 5, C<p(n)/Cep1(n));
Dp g = Hpig(EO, , Cp(n));
Aprg = Hpy(EOy . Ci(n)).

Here i, j, k are the maps of the long exact sequence of homology groups associ-
ated to the short exact sequence of complexes

0— CSP—I(”) - Cgp(n) - Cgp(n)/CSP—l(n) -0,

and o is induced by the inclusion.

For a € R*, we define the global action on Spectral Sequence (37) to be the
action induced by the map (Cp__,,B,-+) on exact couple (38), where Cp__, de-
notes conjugation by the matrix B,-s of Section 3.2.3, and B,-4+ also refers to
multiplication by this matrix.
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Proposition 5.8. Letk,q > Oandn >

> 1. Then, for all a € R*, the following
diagram commutes:

H,(EO, ,, C(n)) —> H,(EO,,, C(n))

idT Tid

Hy(EOy, , Ci(n)) W Hy(EO, ,, Ci(n)),

where for a € R*, the map

(id, ¢g2) - (Eon,n: Cr(n)) — (Eon,n’ Ci(n))
is defined to be the identity on EO,, ,, and on basis elements of Cy(n) as

G2 ¢ (U1, .., ) = (@ 20q, ..., a”20y).

Proof. We use Lemma 3.9. Specifically, consider the diagram

(fr.e1)
(Eon,n, Ck(n)) =3 (Eon,n’ Ck(n))

(f2.92)
where (f1,¢1) 1= (id, ¢,2) and (f, ¢,) 1= (Cp__,, Bs-+). Define
o>
a2
X .= Daz,n =
a?
a2
Denoting for a € R¥,
a
a
a:= )
a
a

note that B;-+ = xa™", so that Cp _, = C,Cy-2. But, Cq2 = id, sothatCp , =

C,. Furthermore, note that for every (vy, ... vk) eJ uk(RZ") Bg-4(vg, ... vk)
kP2 (U1, ..., Uy), since By« = xa~2. Thus, by Lemma 3.9, the diagram com-
mutes. U

Proposition 5.9. Letq > 0 and 0 < k < n. Then, for all a € R*, the following
diagram commutes:

(id)¢a *
Hy(EO,  Cie(n)) =28 Hq<Eon s Cie(1)

Hy(ETy, Z) —F—> Hq(ETk, Z),
a2 k
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where the vertical arrows are the isomorphisms given by Shapiro’s Lemma and
the map Cp, , denotes the map induced by conjugation with the element Dy . on
the stabiliser ET}.

Proof. We use Lemma 3.9. Specifically, we have to consider the diagram

(Fre1)
(ETy,Z2) = (EOpu, Ci(n))
(f2.92)

where (f1,91) = (i,(a 2%ey,...,a"%¢y)) and (f, ;) = (iCDaz’k:(ely )
andi : ETy, — EO,, is the natural inclusion of groups. Let x = D2 € EO,, ,.
Then, for every A € T},

f2(4) =iCp,, (A) = D2k AD,;, = Dy ki(A)DZ;, = xfr(A)x
and
(€1, ) = Dgag(a2ey, ...,a2e;) = k(a%ey, ..., a %ep).

By Lemma 3.9, the diagram commutes. O

Furthermore, we need to compute H,(EO,, ,, C,,(n)) and show that, after lo-
calisation, they vanish for all g > 0.

Proposition 5.10. Forevery m > 1and q < m/2, we have

ZIR*/R*x Z,] q=0

S};lHq(EOn,n, C,(n) = 0 g> 0

Proof. We have isomorphisms

EOp
Hy(EOyn, Z[IU,]) = Tor, "(Z,Z[TU,])

~ Tor,""(Z[R* /R*2 X Z,), Z[IU,))

~ Hy(Z[R* /R** X Z,] @an,n Z[7u,])

= Hq(Z[R*/R>x<2 X Zz] ®%n,n Z[On,n/Tn])

~ Hy(Z[R* /R** X Z,] ®%n Z)

= Hy(Ty,, Z[R* /R** X Z,])

= Z[R*/R*2 X Zz] ®Z Hq(Tna Z)’
where we have used Short Exact Sequence (36), transitivity of the O, ,-action,
the identity Z[G/N] = Z ®k Z|G] for N a subgroup of a group G and the
Universal Coefficient Theorem. We therefore want to show that the action kills
the H,(T,) terms for all g > 0, whilst leaving the Z[R* / R*?x7Z,] term invariant.

This will follow from the commutativity of the following two diagrams, which
we state as lemmas.
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Lemma 5.11. The following diagram commutes:

(id,id, a )* nn
o2z, ZI91,)) e s Tor2 O (7, Z[7U,,])

(i,i,id)*\l/é E\l/(i,i,id)*

Tory " IR /R x Za), ZIUn) ~rosd Tory " (2R /R  Za), 217U,
2 )x

where the vertical maps are the isomorphisms given by short exact sequence (36);
i:Zs ZIR*/R*? X Z,]andi : EO,, < O,, denote the canonical inclusions
and recall that ¢,> : Z[IU,| — Z[ITU,] is the map defined on basis elements by
(v, ..., Uy) P~ (@ 20y, ..., a72D,).

Proof. Easily seen by inspection. O
Lemma 5.12. The following diagram commutes:

a2 )*

O (ZIR® JR X Z,, ZITUy ) ~2 ey Tord™ (Z[R [R x 2,1, Z[IL,)

Tn * Tn
Tor,"(Z[R* /R** X Z,), Z) - — Tor,"(Z[R*/R* X Z,)],7),
(Dazyn,CDaz’n,ld)*
where the vertical maps are the isomorphisms given by the transitivity of the O, ,,-
action; D’ 1 , denotes the map induced right multiplication by D__ 1 € 0,, and
Cp n denotes the map induced by conjugation with D . ,,.

Proof. We use Lemma 3.10. Specifically, consider the diagram

12 (f1, (P1 81) . w2
(Z[R*/R** X Z,],Ty, Z) y )(Z[R [R* X Z3], 040, Z|TU,])
2:$2.82

where the maps are (f1,¢q,8;) := (id,i,(a ey, ...,a"%e,)) and (f5, 95, 8,) :=
(Daz” iCp, (e, ....ey)). Letx 1= Dy, € Oy y. We have that ¢, = xp1x L

g, = xg; and f, = f1x !, so that by Lemma 3.10, the diagram commutes. [

Note that in the previous lemma, D,., € EO,,, so that the action on
[R*/R*? X Z,] is trivial. It follows therefore that the action on Z[R*/R*? x
Z,1®7 Hy(Ty, Z) is trivial on Z[R* /R**x Z,] and is the action induced by con-
jugation by D2 , on Hy(T,). By Lemma 3.5 (using the fact that T, = L,), the
proposition follows. O

Thus, we have shown that there exists an R*-action on the spectral sequence
E}),q(n) = Hq(EOn,n’ Cp(n)) = Hp+q(EOn,n’ C.(n))

which induces the desired local actions considered previously. Using Corollary
5.7 and Proposition 5.10, we obtain the following.
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Corollary 5.13. For every m > 1 and every q < m/2, the localised spectral
sequence

mEp (M) = 5, E} () = s,/ Hpyy o (EO, ,, C(1)) (39)
1
has ,Ep, 4 terms

Hy(EOu_pu—p), 0<p<n
mEpo(n) = 5, Hy(EO, ,,Cp(n)) = { Z[R*/R** X Z,], p=n,q=0

0 p=n,q>0.
[l
Our next task is to compute the localised d' differentials d' : ,E,, —
1
mEp—l,q'

5.4. Computation of the localised d! differentials, and proof of homo-
logical stability.

Proposition 5.14. Forallq < m/2 and 0 < p < n, the homomorphism dll,’q is

ql = 0, peven
P4 dd
k9 p o ’
wherei @ EOp_p,_p < EO,_py1,—p41 denotes the inclusion. For p = n, the
homomorphism d,ll’q is0ifq > O orifniseven; and for g = 0 and n odd, dl}[ 0 ls

the augmentation map ¢ : Z[R*/R*? x Z,] — Z.
Proof. For all p < n, we want to show that the following diagram commutes:

(t,(eqse€p))s

Hy(EOy_pn—p) 7 Hg(EOy, Cp(n))

i i@m* (40)

Hq(EOn—p+1,n—p+1) > Hq(EOn,n, Cp—l(n)),

(l,(€1 ----- ep—l))*

where t © EO,_p,_p, < EO,, denotes the inclusion map; (e;,...,e,) : 1 —
(e, ..., €p) and recall that d;(vy, ..., v,) = (vy, ..., 0. ... , Up). Suppose the matrix
A in the proof of Proposition 3.15 has spinor norm 6(A) = a. Note that,as A =

(G 1 )), it follows that 8(A) = 6(o). If a = 1, we are done. Otherwise,
2(nh—p
define A € O,,, by sending a hyperbolic basis to a hyperbolic basis as follows:

(15565 s €p) > (€1, €p1)

Frsoes fis s ) = (Frses o)
e — Clep
fi = a_lfp

ejejand fj - f;forall p+1<j<n.



ON THE HOMOLOGICAL STABILITY OF ORTHOGONAL AND SPIN GROUPS 85

Write A = (G 1 ), so that 6(A) = 6(8). We prove that & € EO,, ,. Indeed,
2(n-p)
this follows from the matrix equation
1
6= 1 [of
a
a1

We still have (e, ... ,ep_l) = A(el, ey €1y e ep) and for every B € EO_pn—ps
10i(B) = AuB)A™1,

so that by Lemma 3.9, the diagram commutes.
For p = n, it suffices to show that the diagram commutes:

Z|R*/R*? X Z,] ——— Cr()go,,

ok

> Cn—1(n)Eon,n’

1(eq,e€n_1)

where the top horizontal arrow maps a given basis element x € R*/R*? X Z, to
the element given by the isomorphism of O,, ,-sets R* /R**XZ, = O,,,,/EO,, , =
JU,(R*")/EO,,,, see Proposition 5.6. But this follows from the fact that EO,, ,,
acts transitively on JU,_,(R*"). O

In the proof of the next proposition, we will use the so called hyperbolic map.

Definition 5.15. The hyperbolic map is the group homomorphism H : GL,(R)
— 0, ,(R) given by

H: GLn(R) - On,n(R)

A
Remark 5.16. In the above definition, we have used the convention that R?"

is equipped with symmetric bilinear form given by ( IO IS‘), and has ordered
n

basis ej, ..., €y, f1, .., [, 50 that {e;,e;) = (f}, f;) = 0and {(e;, ;) = &;;. We
have done this for the sake of notation. It is clear that this convention differs
from our usual convention up to matrix conjugation (by a suitable permutation
matrix). We tacitly assume this whenever using the hyperbolic map.

We need to prove the following proposition:
Proposition 5.17. The differentials d}, , in Spectral Sequence (39) are zero for

r>2andq <m/2, p <n. Hence, forallgq < m/2and p < n, mEIZ,,q = mEpg
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Proof. For n = 0,1, the spectral sequence under consideration is located in
columns 0 and 1. Therefore, the differentials d” for r > 2 are zero by dimension
arguments.

For n > 2, consider the homomorphism of complexes of EO,,_, ,_,-modules

7 :C,(n—=2)[-2] - C.(n).
as defined in Proposition 3.17. Note that the diagram

(i’T')
(EOp_3n—2,Cp_a(n—2)) —» (EO,, Cp(n))

(CBa aBa)/]\ /]\(CBa ’Ba)

(Eon—Z,n—z’ Cp—z(” - 2)) W (Eon,n’ Cp(n))a
ot

still commutes, so that we have an induced map on localised spectral sequences
mTs + mE = ,E.
The claim would then follow by induction on r using the following lemma:

Lemma 5.18. The map ,,7, : B}, — mE} , istheidentity forallq < m/2 and
2<p<n

Proof. For 2 < p < n, the same proof as in Lemma 3.18 will work, as long as
the matrices A and B of Lemma 3.18 are in EO,,,. Recall that A € O,,,, was
defined by

e~ e
e, e, —e
fir fi+ )2
far fa
ej>ejforall3<j<n
fjo fjforall3<j<n,
and B € O, , was defined by
e, e
e, e, —e
firfit+fa
fam—f1
ejejforall3<j<n
fjm fjforall3<j<n.

It suffices to prove that
-1

S O O
— o = O
o = O

—_ o O O
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and
0O 0 -1 O
_]o1 0o -1
N = 1 0 1 0
01 O 0

are in EO,,. Note that the hyperbolic map H : GL,(R) — 0O,,(R) is a group
homomorphism. In addition, note that SL,(R) is perfect. For example, this
follows from [5, Theorem 4.3.9.] and [15, Lemma 3.8.]. Therefore, we de-
duce H(SLy(R)) € [SO,,(R),S0,,(R)] € EO,,(R). We then note that M =

1 -1 0 -1
H((o 7)) man=n([; 7))
Finally, we need to consider the case p = n. It suffices to show that for
j =0,1,2, the following diagram commutes:

Z|R*/R? X Z,] —— Cpp(n—2)po, .,

| I

ZIR*/R*? X Z3] ——— Cy(W)go,,»

where the top and bottom horizontal arrows map a given basis element x €
R* /R**X Z, to the element given by the isomorphism of O,,_, ,,_,-sets R* /R*? X
Zy = Oy_n2/EOp_5p_n = U, ,(R¥"2)/EO,_, ,_, and isomorphism of
O, n-setsR*/R*?*xZ, =~ 0, ,/EO,, , = JU,(R*")/EO,, , respectively, see Propo-
sition 5.6.

Under the isomorphism R*/R*? X Z, = JU,_,(R¥""?)/EO,_, ,_,, an el-
ement x € R*/R*? x Z, is sent to the element P(ey, ...,e,_,) for some P €
O,_3n—2, and under the isomorphism R*/R** X Z, = JU,(R*")/EO,,,, the
same element x € R*/R*? x Z, is sent to the element P(ey,...,e,), where

P = (14 P)' Recalling that each 7; is a map of O,,_, ,_,-modules, we have
that
P(ey, ...,e,), j=0
Tj(P(ey, ..., €4-2)) = Prj(ey, ..., en_2) = {Pleg, e — g, 3,...,¢,), j=1
P(e29eZ _el’e3:---’en)’ J =2.

Thus, for j = 0, the diagram commutes by inspection. For j = 1, we note that

AP(ey,e,,e5,...,e,) = PA(ey,e5,05,...,e,) = P(eg, e, — ey, 65, ...,2,),

ar=(" ) (" p)=( (M 1)=ra

Similarly, for j = 2, we note that

since

Bp(ela €7,€3,..., en) = PB(el’ €2,€3,..., el’l) = p(eZa €) —€1,€3,..., en)s
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where B and P commute for similar reasons. Thus, the diagrams commute.
These diagrams still commute after localisation, but now the horizontal maps
become the identification isomorphisms. (|

This proves the lemma, and thus Proposition 5.17. U

Theorem 5.19. Let R be a commutative local ring with infinite field such that
2 € R*. Then, the natural homomorphism

Hk(EOn,n(R)) e Hk(EOn+1,n+1(R))
is an isomorphism for k < n — 1 and surjective for k < n.

Remark 5.20. This improves the range for homological stability given by Randal-
Williams and Wahl in [13, Theorem 5.16.] by a factor of 3.

Proof. Choose m > 0 sufficiently large. We have a Spectral Sequence (39)
with E'-terms given by Corollary 5.13 and dll,,q was computed for all g < m/2
in Proposition 5.14. From Theorem 2.12, Spectral Sequences (34) and (39) and
Proposition 5.17, we deduce mElzj,q =mEpgforallp+g<n-1landq<m/2.
The theorem follows. O

6. Homological stability for Spin, ,

Homological stability for EO,, , immediately gives homological stability for
Spin, :

Theorem 6.1. Let R be commutative local ring with infinite field such that 2 €
R*. Then, the natural homomorphism

H(Spin,, ,(R)) — Hy(Spin,,; ,,,(R))
is an isomorphism for k < n — 1 and surjective for k < n.

Remark 6.2. This coincides with the H,-stability result for Spin, , in [5, The-
orem 9.1.15.] and the H,-stability result for Spin,, ,, in [5, Theorem 9.1.17, The-
orem 9.1.19 and discussion thereafter]. To our best knowledge, this is the first
known homological stability result for Spin, , that accounts for all homology
groups.

Proof. Immediate from Theorem 5.19 and the relative Hochschild-Serre Spec-
tral Sequence

Epq = Hp(EOy , EOy_y 13 Ho(Z5)) = Hpyq(Spin,, ., Spin,_, ;)

obtained from the short exact sequence 1 — Z, — Spin, , - EO,, —» 1. [
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Appendix A. Spin groups and the spinor norm over a local ring

A.1. Definitions, existence and basic properties. To begin with, let M =
(M, q) be a non-singular quadratic module over a commutative ring R, which
for the purposes of this paper, is such that 2 € R*. We will call an element

X € M anisotropic if g(x) € R*. We define b(x,y) = by(x,y) := %(q(x +y)—
g(x) — q(y)) to be the symmetric bilinear form associated to g. We will say that
X,y € M are orthogonal if b(x,y) = 0.

Definition A.1. A pair (A4, f) consisting of an R-algebra A and a homomor-
phism of R-modules f : M — A is said to be compatible with M if for every
XEM,

f(x)? = g1,

Definition A.2. A Clifford algebra of M is a compatible pair (CI(M), i) which
satisfies the following universal property:

If (A, f) is any pair which is compatible with M, then there exists a unique
homomorphism of R-algebras g : CI(M) — A such that the diagram

M —Ls Cl(M)
g
f '
A

commutes.
We establish that any quadratic module M has a Clifford algebra:

Theorem A.3. Let M be a quadratic module over R. Then, M has a Clifford
algebra (CI(M), i), which is unique up to unique isomorphism.

Proof. The uniqueness statement follows from the universal property of the
Clifford algebra, so it suffices to prove existence. We define

M®" =M Qg --- QM (ntimes) forn >0,
M®0 =R,
M®" :=0 forn <0,

and define

(M) := P m®",

nezZ

the tensor algebra of M. Leti : M — T(M) denote the inclusion.
Note that the tensor algebra T(M) is a Z-graded R-algebra, with product

(X1 @+ ® X)) (X1 ® -+ @ Xp) 1= (X1 @+ @ Xy ® X1 @ -+ ® Xp).

Also note that T(M) has the following universal property: If A is a R-algebra
and f : M — A is a R-module homomorphism, then there exists a unique
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R-algebra homomorphism g : T(M) — A such that the diagram

M — T(M)
g
f v
A

commutes. Of course, g is defined by

g(xl Q- ® xn) = f(xl) f(xn)

Continuing with the construction, define I(q) to be the two-sided ideal of
T(M) generated by the set

{x ®x —q(x)|x € M}.
We then define the quotient R-algebra
CI(M) :=T(M)/1(q),
and definei : M — CI(M) to be the canonical map. By construction, it is
clear that (CI(M), i) is a compatible pair, so it remains to check the universal
property.
Let (A, f) be a pair compatible with M. By the universal property of T(M),

there exists an unique R-algebra homomorphism g : T(M) — A such that
gi = f. Furthermore, note that

gx ® x — q(x)) = g(x)* — q(x) = f(x)* — q(x) = g(x) — q(x) = 0.
Thus, g factors through the quotient, to give amap g : CI(M) — A. ]

Remark A4. If x,y € M are orthogonal, then in CI(M), xy = —yx, as 0 =
b(x,y) = q(x +y) — q(x) —q(y) = (x + y)* = x* = y* = xy + yx.

Remark A.5. The identity of C1(M), denoted 1¢j(y, together with the elements
{i(x)|x € M}, generate CI(M) as an R-algebra.

Remark A.6. The Clifford algebra CI(M) is canonically a Z,-graded algebra,
with the grading defined as follows: We define CI(M), be the submodule of
CI(M) spanned by 1) and {i(x; ) ... i(x; )|k even}; and we define CI(M), be
the submodule of CI(M) spanned by {i(x; ) ... i(x; )|k odd}. Clearly, CI(M), is a
subalgebra of CI(M).

Remark A.7. Consider the graded centre Z,.(CI(M)) of the Clifford algebra
CI(M). This is defined to be the graded subspace of the Clifford algebra CI(M)
whose homogeneous elements h(Z,,(CI(M))) are determined by

¢ € h(Zy(CU(M))) <= cs = —(1)%%sc Vs € h(CI(M)),

where h(CI(M)) denotes the homogeneous elements of CI(M) and J denotes
the degree of the homogeneous element.

When M is free of finite rank, we cite the following important structural re-
sult:
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Lemma A.8. Let M be a free non-singular quadratic module of finite rank. Then
Zg(CI(M)) = R.
Proof. See [5, Theorem 7.1.11.]. O

Remark A.9. By the universal property of the Clifford algebra, every o € O(M)
in the orthogonal group of M uniquely determines an automorphism of R-
algebras Cl(o) : CI(M) — CI(M). This association gives rise to a group ho-
momorphism

Cl : O(M) - Aut(CI(M)).
Taking o := —1,, provides a unique automorphism
Cl(—1y) : CI(M) — CI(M)

such that Cl(—1y)(i(x)) = —i(x) for all x € M. Observe that Cl(—1y)|ciam), =

Leiy, @and Cl(—=1yp)|ciny, = —Leiy, -

The map CI(—1,,) is used to define the so called ‘canonical involution’ ~ on
CI(M).

But first, let C1(M)°P denote the opposite algebra of CI(M). By the universal
property of the Clifford algebra, there exists an unique algebra homomorphism
~: CI(M) — CI(M)°P such that the diagram

M —L Ccl(M)

|
; |~
i ~

Cl(M)°P

commutes. We will consider ~ asamap ~: CI(M) — CI(M). Note that cd = dé
for every ¢,d € CI(M), and l(f\xj = i(x) for every x € M, so that ¢ = c for every
¢ € CI(M) and ~ is therefore an involution on CI(M).

We then define the canonical involution — : ClI(M) — CI(M) to be the com-
posite

Cl(-1) ~
CI(M) —— CI(M) — CI(M).

One easily checks that this does indeed define an involution on CI(M). Olﬁrve

that ™ is the unique R-linear anti-automorphism of CI(M) which satisfies i(x) =
—i(x) for every x € M. We will use the canonical involution in our definition
of the Spin group.

A.2. The groups I'(M), ST(M), Spin(M) and the Spinor Norm. We define
the groups I'(M), ST(M) and Spin(M). We also define the Spinor norm and
study some of its basic properties, as needed in this paper. Unless stated other-
wise, our exposition will closely follow [5, Chapter 7].
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A.2.1. The groups I'(M), ST(M), Spin(M).
Definition A.10. We define the Clifford group T'(M) to be the group
I'(M) :={c € CI(M)*|cMc™! = M}.
Note that for every ¢ € I'(M), we canonically obtain a map
nc:M->M
(me)(x) :=cxc™t.
Furthermore, note that ¢ preserves the quadratic form g as
q(me(x)) = glexc™) = exe™! @ exe™ = ex?c™! = g(x).
Thus, the assignment ¢ — 7c defines a group homomorphism
m: T(M) - O(M).
Definition A.11. We define the Special Clifford group ST(M) to be the group
ST(M) :={c € CI(M)j|cMc™! = M}.
Note that ST(M) = ['(M) n CI(M);.
Definition A.12. We define the Spin group Spin(M) to be the group
Spin(M) := {c € ST(M)|cc = 1}.

Thus, by construction, we have a chain of inclusions Spin(M) C ST(M) C
[(M).
Later, it will be important for us to understand ker(7 | sras)) and ker(7 | gpinar))-

Proposition A.13. ker(z7 : ST(M) - O(M)) = R*.

Proof. Let ¢ € ker(7|srp)- Then, ¢ € CI(M); and cxc™! = x forevery x €
M. Therefore, as M generates CI(M) as an R-algebra, we use Lemma A.8 to
conclude that ¢ € Z,,(CI(M)) = R. Similarly, c™! € R, so that ker(z|srar) €
R*. The other inclusion is trivial. O

Corollary A.14. ker(z : Spin(M) — O(M)) = Z,.
Proof. From Proposition A.13, it is clear that
ker(rr : Spin(M) = O(M)) = {r € R*|r* = 1}.

Passing to the residue field, we deduce that the square roots of 1 are of the form
r = ¢ + 1 for some ¢ in the maximal ideal. Using the equation r? = 1, we obtain
equation e(e +2) = 0. As 2 is a unit, we deduce ¢ + 2 isa unit, sothate = 0. [

Definition A.15. We define the spinorial kernel
0'(M)
to be the image of the homomorphism 7 : Spin(M) — O(M).
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When R isalocal ring with 2 € R*, we show that O’(M) is precisely the kernel
of the spinor map 6 : SO(M) — R*/R*?, see Definition A.21 and Proposition
A.25.

In addition, we cite the following theorem, which says that when R*" is a free
hyperbolic module over a (semi-)local ring R, the spinorial kernel is precisely the
elementary orthogonal group EO,, ,,(R) when n > 2.

Theorem A.16. Let R be a commutative semi-local ring. Let R*" be the free hy-
perbolic module. Denote O}, ,(R) := O'(R*"). Then, for every n > 2, O}, ,(R) =
EO, ,(R).

Proof. See [5, Theorem 9.2.8.]. O

Thus, when R is a (semi-)local ring with 2 € R* and n > 2, we have the short
exact sequences

1 - Z, - Spin,, ,(R) = EO,,(R) — 1.

From now on, we will assume that R is a local ring with 2 € R*, and all modules
over R are finitely generated projective, so that they are free of finite rank.

A.2.2. The spinor norm. In order to define the spinor norm, we first need to
define an important class of isometries.

Definition A.17. Let x € M be anisotropic and define N := (x)1. Then, the
linear map

T, . M->M
- y_zb(x,y)x
b(x, x)

is called a reflection in hyperplane N orthogonal to x.
This name is suggested by the following lemma:

Lemma A.18. (1) 7,(x) = =x, T, |y = 1n.
(2) 7, is an isometry of (M, b).
() T0T, = 1.
(4) dett, = —1.

Proof. The first three statements follow from direct computations. For the last
statement, note that M = (x) @ N. Therefore, by Witt’s Cancellation Theorem
[9, Chapter I, Theorem 4.4], we may choose a basis e,, ..., e,, of N and complete
it to a basis of M by setting e; = x. The matrix of 7, with respect to this basis
shows that dett, = —1. O

Proposition A.19. For every x € M anisotropic, we have w(x) = —7,.
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Proof. For every y € M, we have

() =y- ZZg:z;x
_ 9 +y) -9 —q90)
q(x)
=y—(xy+yx)x~!
= —xyx~!
= —(x)(y). U

The next proposition will be used to show that our definition of the spinor
norm is well-defined.

Proposition A.20. Let u,,...,u, be anisotropic elements in M. If the product
Ty, Tu, *** Ty, IS the identity in O(M), then the product q(u,) --- q(u,) belongs to
R*2.
Proof. We proceed in a similar way to [7, Proposition 1.12.V]. By Proposition
A9, r(u)|py = —1y, so that 1, = (=1)"'7w(u, --- u,)|p. But,
(=1)" = det(ry, 7y, -~ 7y,,) =det(ly) =1.
Thus, we deduce that » must be even. Therefore, we have that
¢ =1u - u, € CI(M)y N Z(CI(M)) C Z,,(CI(M)) = R.

Similarly, we have that ¢c™! € R, so that ¢ € R*. We conclude that

R®?>c?=cc=uy - uu, -u; = quy) - qu,). O

Consider any isometry o € O(M), where the rank of M is at least 2. By
the Cartan-Dieudonné Theorem for local rings, see for example [6, Theorem
2], there exists a factorisation o = 7, 7, - 7, , Where the u; are anisotropic
vectors. We define

0(o) := q(uy) --- q(u,) € R* /R*?.
By Proposition A.20, 6(c) does not depend on the choice of factorisation chosen
to represent o.

Definition A.21. The map 6 : O(M) — R*/R*? is called the spinor norm.

The spinor norm is the unique group homomorphism satisfying the property
0(r,) = q(u)R*? for every anisotropic element u € M.

For R a local ring with 2 € R*, we want to establish the existence of short
exact sequences

6
1 - EO,,(R) > SO, ,(R) = R*/R** - 1

Oxdet )
1 - EO,,(R) » 0, ,(R) —— R*/R* X Z, - 1.

We begin with the following proposition, which is useful when computing
with the Spinor norm.
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Proposition A.22. Let (M, qy;) and (N, qy) be free non-singular quadratic mod-
ules of finite rank over R. Let A € O(M) and let B € O(N), considered as matrices.

Let A@B € O(M L N)denote the block sum of matrices A@B = <A B)' Then,
6(A & B) = 6(A)6(B).

Proof. Suppose A € O(M) is represented by A = 7, --- 7, and suppose B €
O(N) is represented by B = 7, -+ 7,,. Then, A@B € O(M L N)is represented
by 75, *** Tp, T, *** Tw» Where U, w; € M L N are the images of of the vectors
v; and w; under the canonical embeddingsM < M L Nand N & M L N
respectively.

Therefore,

6(A @ B) = quun(01) - qman (O )M in(@1) -+ gy (D)
= gqu (1) - qu(vgn(Wy) -+~ gn(wy)
= 6(A)0(B). O
The above proposition is used to prove that the spinor norm 6 : SO, ,(R) —
R*/R*? is surjective.
Proposition A.23. The spinor norm 6 : SO, ,(R) — R*/R*? is surjective.
r

Proof. Let r € R*, and consider the matrix ¢ = r1 . Note that

1
o € S0, ,(R). By Proposition A.22, we have that 6(c) = 6 ((g r(_)1>>' As

0 r! 0/\1 0
and (1, —1), we compute that

(r 0 ) = (,,91 r) (0 1) isa product of reflections defined by vectors (r, —1)

2] ((S r91>> =q(r,—1)q(1,—1) =4r =r (mod R*?). O

Finally, we want to show that the spinorial kernel O’(M) is precisely the ker-
nel of the spinor map 6 : SO(M) — R*/R*2. This is done in by the following
two propositions.

Proposition A.24. Im(7 : ST(M) —» O(M)) = SO(M).

Proof. Firstly, note that SO(M) C Im(x). Indeed, if 7,7, are a product of any
two reflections, then 7(vw) = 7,7y,

Suppose that SO(M) € Im(x). Then, there exists a 0 € O(M) \ SO(M)
such that ¢ € Im(7). As o € O(M) \ SO(M), we have thato = 7, --- 7, fory;
anisotropic and k odd. Furthermore, as ¢ € Im(x), there exists ¢ € ST(M) such
that (c) = o. Note, 7(v; - v) = =7, -+ T, = —0. Definingd = vy -+ vy,
we deduce 7(cd™!) = —1,,. This means that cd~'x(cd™')~! = —x for every
x €M.
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Note that ¢ € CI(M), and d=! € CI(M),. Therefore, cd=! € CI(M),. As
cd'x(cd™1)~! = —x for every x € M and M generates CI(M) as an R-algebra,
we use Lemma A.8 to conclude that cd=! € Zg(CI(M)) = R. Thus, ¢ = dr
for some r € R, and it therefore follows that ¢ € CI(M);. Thus, ¢ € CI(M), N
CI(M); = 0, which is a contradiction as c is invertible. O

Proposition A.25. We have O'(M) = ker(6 : SO(M) — R*/R*?).

Proof. Let o € ker(6|so). We want to show o € Oy, ,,(M). Suppose o =
Ty, *** Ty, - Note that k is even and each v; is anisotropic.

By definition, 1 = 6(g) = q(vy) --- q(vy). Therefore, r := q(vy)--- q(vy) €
R*2. Suppose that r = s*. As T, = Ty1,, We may replace v; with s™'v;
to obtain ¢ = 7, ---7, such that gq(v;)---q(v) = 1. Therefore, in CI(M),
Uy -+ UV - U = 1. Define ¢ := vy ...v;. As all v; € CI(M)* and k is even, we
deduce ¢ € Spin(M). By construction, 7(c) = 7, --- 7, = 0,sothatc € O'(M).

Now let ¢ € Spin(M) and consider 7z(c) € O’'(M). We want to show 7(c) €
ker(6|sor))- By Proposition A.24, 7(c) € SO(M). Therefore, 7(c) = 7, -+- 7y,
for v; anisotropic and k even. As k is even, we deduce ¢ v, --- v, € ST(M).
Furthermore, by definition, (¢~ !v; --- v;) = 1. Therefore, by Proposition A.13
¢ vy ...vx € ker(m|gr) = R*. Thus, ¢ = rv; ---vy forsome r € R*. Asc €
Spin(M), we obtain 1 = cc = r?q(vy) --- q(vy), so that g(v;) --- q(v;) € R*2.
Thus, by definition, 6(z(c)) = 1. O

1

Thus, for R a local ring with 2 € R*, we have established the following theo-
rem:

Theorem A.26. Let R be a commutative local ring with 2 € R*, and letn > 2.
Then, we have short exact sequences

1 - Z, - Spin, (R) = EO, ,(R) — 1
6
1 - EO,,(R) - SO, ,(R) = R*/R** > 1

Oxdet ) )
1> EO,,(R) > 0, ,(R) — R*/R*?*x Z, - 1.

Proof. Combine Corollary A.14; Theorem A.16; Proposition A.25 and Propo-
sition A.23. (]

These short exact sequences are used to prove homological stability for
EO, ,(R) and Spin, , (R), when R is a local ring with infinite residue field such
that 2 € R*.
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