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ABSTRACT. For hyperbolic 3-manifolds, the growth rate of their Turaev-Viro
invariants, evaluated at a certain root of unity, is conjectured to give the hy-
perbolic volume of the manifold. This has been verified for a handful of ex-
amples and several infinite families of link complements, including funda-
mental shadow links. Fundamental shadow links lie in connected sums of
copies of S! x S?, and their complements are built of regular ideal octahedra.
Another well-known family of links with complements built of regular ideal
octahedra are the octahedral fully augmented links in 3-sphere. The comple-
ments of these links are now known to be homeomorphic to complements
of fundamental shadow links, using topological techniques. We give a new,
geometric proof that complements of octahedral fully augmented links are
isometric to complements of fundamental shadow links. We then use skein
theoretic techniques to determine formulae for coloured Jones polynomials
of these links. In the case of no half-twists, this gives a new, more geometric
verification of the Turaev-Viro volume conjecture for these links.
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A major initiative in quantum and geometric topology is to relate geometric
invariants of knots and 3-manifolds to quantum invariants. An example of a
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geometric invariant is the hyperbolic volume, which is unique for any hyper-
bolic 3-manifold with torus boundary, such as a knot complement, by Mostow—
Prasad rigidity [23, 27]. An example of a quantum invariant is the Jones polyno-
mial [10]; other examples include coloured Jones polynomials [31] and Turaev-
Viro invariants [33], defined using quantum groups and 3-manifold trianglua-
tions respectively. Volume conjectures relate these, stating that the growth rate
of certain quantum invariants are given by the volume of the corresponding
knot complement. In this paper, we study a volume conjecture by Chen and
Yang [4], concerning the Turaev-Viro invariants.

The Turaev-Viro invariant TV (M, q) of a compact 3-manifold M is a real-
valued invariant, depending on an integer r > 3, given by a Laurent polynomial
in variable g, where q is a 2r'" or " root of unity. The invariant was formulated
in the early 1990s by Turaev and Viro [33]. In 2018, Chen and Yang [4] exten-

sively calculated growth rates of these invariants for the case ¢ = e?7V=D/7 and
stated the following conjecture.

Conjecture 1.1 (TV Volume Conjecture [4]). Let M be a hyperbolic 3-manifold,
either closed, cusped or with totally geodesic boundary and volume Vol(M). As r

varies over the odd integers, and q = CmV=D)/r ,

lim 2% log|TV,(M, g)| = Vol(M).

r—»oo I

Conjecture 1.1 has been verified for the complements of the Borromean rings
and the figure-8 knot by Detcherry, Kalfagianni and Yang [9], for hyperbolic
manifolds obtained by integral and rational Dehn surgery on the figure-8 knot
by Ohtsuki [26] and Wong and Yang [38] respectively, and for certain octahe-
dral links in S* called Whitehead chains by Wong [36]. In [15], Kumar con-
structs infinite families of links in S* which satisfy Conjecture 1.1. An exten-
sion of the conjecture to Gromov norms has been proposed by Detcherry and
Kalfagianni [8] and proved for several examples [16, 8, 9]. Conjecture 1.1 has
also been shown to be stable under certain link cabling and satellite opera-
tions [8, 7, 17].

In [2], Belletti, Detcherry, Kalfagianni and Yang proved Conjecture 1.1 for
an infinite class of links in connected sums #°*1(S! x S?) for any ¢ > 0, known
as fundamental shadow links. These links were first considered by Costantino
and Thurston [6]. They have complements decomposing into hyperbolic reg-
ular ideal octahedra, and they form a universal class in the sense that any ori-
entable 3-manifold with empty or toroidal boundary can be obtained from the
complement of a fundamental shadow link by Dehn filling [6].

Recently, Wong and Yang showed using surgery descriptions that certain
fundamental shadow links coincide with a subfamily of other links with well-
known geometric properties, called fully augmented links [37, Proposition 6.2].
These are links in S3, first studied by Adams [1] and Agol and D. Thurston [18,
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Appendix]. Wong and Yang showed that all fully augmented links with com-
plements decomposing into regular ideal octahedra have complements home-
omorphic to fundamental shadow links, reframing previous work of Van der
Veen [35]. Kumar also showed a correspondence between some of these links
n [15]. Thus, by the work of [2, 37], Conjecture 1.1 is true for all octahedral
fully augmented links.
The proofin [37] is topological and combinatorial. However, fully augmented
links are highly geometric. In this paper, we give a new proof of the correspon-
dence of these link complements, exploiting their geometry.

Theorem 2.12. Let L be an octahedral fully augmented link with c crossing cir-
cles. Then S* — L is isometric to #°(S* x §?) — L for some fundamental shadow
link L.

The proof of Theorem 2.12 draws on the circle packing structure that can
be obtained from the polyhedral decomposition of fully augmented links de-
scribed by Agol and Thurston [18, Appendix|. Our proof complements the
proofs of [37, 35], in that we use explicit geometric properties of the link to show
the correspondence. This also highlights the geometry of fundamental shadow
links. Our methods further give a correspondence between the diagrams pro-
duced by Wong and Yang and the circle packing geometry of fully augmented
links found in the literature; see for example [29, 28, 30].

We next give a diagrammatic construction of the coloured Jones polynomial
for octahedral fully augmented links, using recoupling theory of [12, 13, 21].
Our proof has similarities to work of Van der Veen [35], but we consider slightly
different links, a different colouring, a different root of unity, and his focus is a
different volume conjecture. When computing the coloured Jones polynomial,
we observe that the structure of the circle packing is closely matched by the
quantum contributions, in that adding one octahedron to one of the polyhedra
in the polyhedral decomposition contributes exactly one quantum 6 j-symbol
in the recoupling theory. Quantum 6 j-symbols are known to have growth rates
that are maximally given by the volume of a regular ideal hyperbolic octahe-
dron [2]. We then study the Turaev-Viro invariants of fully augmented links by
using a result of Detcherry, Kalfagianni and Yang [9], which gives the Turaev-
Viro invariants as a sum of coloured Jones polynomials.

This leads to a diagrammatic proof of Conjecture 1.1 for all octahedral fully
augmented links without half-twists. Note the result also follows from [37]
and [2], but our proof uses different methods. Our techniques are only avail-
able for diagrams of links in the 3-sphere, and not for links in other manifolds
such as connect sums of S x S2.

Theorem 4.15. Let L be an octahedral fully augmented link with c crossing circles
and without half-twists. Then as r varies over the odd integers,

lim 27” log |[TV,(S3~ L, q = e@™=D/1)| = 2(c — 1)vg = VoI(S3~ L),
r—oo

where vg = 3.66 is the volume of a regular ideal hyperbolic octahedron.
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We note related work on a different volume conjecture, namely the volume
conjecture of Kashaev [11], reformulated by Murakami, Murakami [24]. That
volume conjecture relates the coloured Jones polynomials to the hyperbolic vol-

ume of hyperbolic knot complements, evaluated at ¢ = A% = e@V=D/"_ van
der Veen proved the Kashaev—Murakami-Murakami volume conjecture holds
for Whitehead chains and knotted trivalent graphs [34, 35], which include oc-
tahedral fully augmented links. Again our work is related, but using different
quantum invariants at different roots of unity.

An outline of the paper is as follows. In Section 2, we introduce fully aug-
mented links and fundamental shadow links, and give our geometric proof that
fully augmented links correspond to fundamental shadow links. In Section 3,
we give a new calculation of the coloured Jones polynomials of octahedral fully
augmented links, using combinatorics of the diagram and recoupling theory.
Finally in Section 4, we give a new proof of the TV Volume Conjecture for oc-
tahedral fully augmented links without half-twists.

2. Fully augmented links and shadow links

In this section, we give a geometric proof that octahedral fully augmented
links are instances of fundamental shadow links. We begin by reviewing con-
structions.

2.1. Fully augmented links. We now introduce fully augmented links and
describe their key properties, following the exposition of [29]; see also [30, Chap-
ter 7].

Definition 2.1. A flat fully augmented link is a link in S* consisting of two types
of components:

(1) Components lying embedded on the plane of projection, called knot
strands;

(2) Unknotted components, perpendicular to the plane of projection, called
crossing circles. Each crossing circle bounds a disc punctured by exactly
two knot strands; this is called a crossing disc.

A fully augmented link is obtained from a flat fully augmented link by adding
single crossings, or half-twists, between two knot strands running through a
crossing disc, for some (possibly empty) subset of the crossing discs. A fully aug-
mented link is reduced if its diagram is connected, nonsplit, prime, and there
are no parallel crossing circles.

Remark 2.2. In the literature, fully augmented links are often described as
links obtained by augmenting prime, twist-reduced knot diagrams, as in [29],
since there are applications to the geometric properties of such knots after Dehn
filling. Here, we do not consider Dehn fillings. Our definition coincides with
that of [29] after removing pairs of crossings from the augmented diagrams.

Fully augmented links have a polyhedral decomposition of their comple-
ments, described by Agol and Thurston [18, Appendix|. We summarise in the
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FIGURE 1. The steps to obtain a polyhedral decomposition of
the link complement of a fully augmented link.

following proposition. Although the proof appears in [18, 29, 30], we also in-
clude a summary here.

Proposition 2.3. Let L be a fully augmented link. The link complement S°\L can
be decomposed into two identical ideal polyhedra with the following properties:

(1) Faces of the polyhedra are checkerboard coloured. Shaded faces are trian-
gles corresponding to crossing discs, and white faces correspond to com-
ponents of the projection plane.

(2) Allideal vertices are 4-valent.

(3) Each edge class in the polyhedral gluing of the link complement contains
exactly 4 edges.

Proof. First, cut along the projection plane to slice the complement into two
identical pieces. For each piece, slice each remnant of a crossing disc up the
middle, to replace it with two parallel copies. If the crossing disc is adjacent to a
half-twist, unwind the half-twist by reflecting the crossing disc in a vertical axis.
Then collapse each remnant of the link into a single ideal vertex. This gives two
identical polyhedra, one from each piece coming from slicing the projection
plane in half. This process is shown in Figure 1. Note that each shaded face
is adjacent to exactly one crossing circle. Observe also that ideal vertices meet
two shaded and two white faces, hence are 4-valent. Finally, observe that any
edge lies in the intersection of white and shaded faces; four of these meet in the
fully augmented link.

One can obtain S3 \ L from the two polyhedra by reversing the decomposi-
tion procedure as follows. Shaded triangles are glued to shaded faces on the
same polyhedron in pairs by folding across a vertex corresponding to a crossing
circle. If there are half-twists, the gluing is modified slightly; shaded triangles
are still glued to shaded faces on the same polyhedron in pairs across a vertex
corresponding to a crossing circle, but the gluing is by reflection fixing the ideal
vertex coming from the crossing circle. Finally, glue corresponding white faces
of the two polyhedra. That is, reflect across the white faces. O

Note that our gluing for half-twists varies slightly from [29], but gives an
equivalent 3-manifold.

In [28, Theorem 6.1], it is shown that the complement of a reduced fully
augmented link with at least two crossing circles admits a complete hyperbolic
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FIGURE 2. Polyhedron (leftmost), circle packing obtained from
the polyhedron (second from left), circle packing with its nerve
superimposed (second from right), nerve (rightmost).

structure. This is proven by showing that the ideal polyhedra obtained in Propo-
sition 2.3 correspond to totally geodesic hyperbolic polyhedra, which glue to
give the link complement. The totally geodesic polyhedra are obtained using
circle packings, as follows.

Definition 2.4. A circle packing is a finite collection of Euclidean circles either
in R? or S? which meet only in points of tangency. The nerve of a circle pack-
ing is the graph obtained by placing a single vertex in each circle and an edge
between two vertices whenever the corresponding circles are tangent.

Lemma 2.5 (Lemma 2.3 of [29]). Given a hyperbolic fully augmented link L, the
polyhedral decomposition of S* \ L corresponds to a circle packing of S* whose
nerve gives a triangulation of S2. The nerve has the following properties:

« Each edge of the nerve has distinct endpoints.
« No two vertices are joined by more than one edge.

The circle packing in Lemma 2.5 is obtained by taking a circle for each white
face of the ideal polyhedral decomposition. The nerve therefore consists of ver-
tices for each white face, with edges corresponding to ideal vertices of the ideal
polyhedron. Since edges then enclose shaded faces, which are ideal triangles,
the nerve is a triangulation of S?. View the boundary at infinity of H* as the
sphere S%. Each circle in the circle packing gives a geodesic plane in H3. The
interstitial regions between circles form curvilinear triangles corresponding to
shaded faces. There is a unique circle through the three ideal vertices of an
interstial circle; call this a shaded circle in H*. The region bounded by hemi-
spheres coming from white circles and shaded circles gives a totally geodesic
polyhedron. A circle packing and its nerve is shown in Figure 2.

The next lemma is a converse to Lemma 2.5.

Lemma 2.6 (Lemma 2.4 of [29]). Lety be a triangulation of S? such that no two
vertices are joined by more than one edge and each edge has distinct ends. Choose
a collection of “red” edges such that each triangle of y meets exactly one red edge.
Then there is a hyperbolic fully augmented link associated to this painted graph;
it has y as its nerve.

Remark 2.7. The collection of red edges in Lemma 2.6 is called a dimer.
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FIGURE 3. Given a triangulation of S? and a choice of red edges
(shown dashed) as in Lemma 2.6, one can obtain a fully aug-
mented link as shown.

FIGURE 4. An example of obtaining a fully augmented link
from the dual graph of a triangulation. The leftmost diagram
shows the triangulation (black) and its dimer (red dashed), the
dual graph (grey) and its dimer (green dotted). The follow-
ing three diagrams show the process of obtaining the fully aug-
mented link starting with the dual graph.

Given a triangulation of S? as described in Lemma 2.6 with a dimer, one
constructs a fully augmented link as follows. On each edge in the dimer, place
a crossing circle parallel to that edge. Draw two short strands through each
crossing circle. Then join two strands together across an edge which is not in
the dimer, such that each strand is joined to the nearest strand from another
crossing circle. An example is shown in Figure 3. Note that at each edge in the
dimer, one may insert a half-twist or not.

The dual graph of a triangulation is obtained by taking a vertex for each face
and putting an edge between two vertices whenever the corresponding faces are
adjacent across an edge. Given a triangulation G as described in Lemma 2.6,
one can obtain the corresponding fully augmented link using the dual graph G’
of G as follows. First, the dimer of G’ is given by the edges of G’ which intersect
the dimer of G. For each edge in the dimer of G’, replace the edge by two strands
running parallel to the edge and a crossing circle perpendicular to the edge,
such that the two strands pass through the crossing circle. Connect the strands
following along the non-dimer edges of the graph as shown in Figure 4. This
gives a fully augmented link. Again, at each edge in the dimer there is the
choice of whether or not to insert a half-twist.
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FIGURE 5. Left: Building block of a fundamental shadow link;
the six arcs are shown in (thicker) red. Centre: The block is

homeomorphic to a truncated tetrahedron. Right: Truncating
maximally, removing all edges, gives an ideal octahedron.

Definition 2.8. A fully augmented link with polyhedral decomposition ob-
tained by gluing regular ideal octahedra is called octahedral.

2.2. Fundamental shadow links. Fundamental shadow links are a family
of links in connected sums of copies of S' x S2, first considered by Costantino
and Thurston [6], who defined them using Turaev’s theory of shadows [32].
The building blocks of fundamental shadow links are a collection of 3-balls,
each with four shaded discs on its boundary and six arcs connecting them, as in
Figure 5. Take c of these building blocks and glue them along the shaded discs,
in such a way that the endpoint of each arc is glued to the endpoint of another
arc, possibly the same arc. This yields a genus ¢ + 1 handlebody H; (possibly
non-orientable) with a link in its boundary, coming from the arcs. Take the
orientable double of this handlebody, that is, glue H; to an identical copy of
itself by the identity map on dH;. We obtain a manifold M, := #*1(S! x
S2) with a link L inside. The link L is called a fundamental shadow link. The
number c is called its shadow complexity.

Remark 2.9. Note each building block is homeomorphic to a tetrahedron with
its vertices truncated. The shaded discs correspond to triangular faces coming
from the truncation; specifying a gluing of building blocks is equivalent to spec-
ifying gluing isometries for each pair of triangular faces. There are six possible
ways to glue two triangles together, described by the dihedral group on three
elements D;. We call the faces of a truncated tetrahedron coming from the
truncation shaded and the other faces white.

We next describe a relationship between a fundamental shadow link and a 4-
valent graph with gluing information. This will specify a fundamental shadow
link L up to Dehn twists about meridians on the corresponding handlebody
H;. Since such Dehn twists give homeomorphisms of the link complement,
our graph relationship will suffice to uniquely determine the link complement.
Descriptions of fundamental shadow links in terms of 4-valent graphs can be
found in the literature [6, 5]; see [15] for a summary.

Let M be the complement in #°t1(S! x §2) of a fundamental shadow link L,
obtained by gluing c building blocks. Construct a labelled 4-valent graph from
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M as follows. Begin with ¢ disconnected vertices, one for each building block,
which we view as a truncated tetrahedron. Draw edges between vertices accord-
ing the gluing of the shaded faces: thatis, if two shaded faces are glued together,
draw an edge between the vertices corresponding to truncated tetrahedra with
those faces. Finally, label each edge with an element of D5 according to the way
in which the corresponding shaded faces are glued to obtain a labelled 4-valent
graph.

Conversely, given a 4-valent graph G with c vertices and with its edges la-
belled by elements of D5, obtain the complement of a fundamental shadow link
as follows. To each vertex v of G, associate a truncated tetrahedron T,. Asso-
ciate each shaded face of T, to a distinct edge incident to v. If there is a loop
incident to v, associate each endpoint of the loop to distinct triangular faces.
Then each edge e of G has two shaded triangular faces associated to it. Glue
together the two shaded faces associated to e, where the gluing is determined
by the label on e. This gives rise to a genus c + 1 handlebody. Finally, double
this handlebody to obtain #°*(S! x S?) with a link inside, coming from the
edges of the truncated tetrahedra. The link will be a fundamental shadow link,
since its complement is obtained by gluing the building blocks of Figure 5.

Definition 2.10. A gluing graph is a 4-valent graph G with edges labelled by
elements of D;. The edge labels are called the gluing information of G.

Observe that if the vertices of a tetrahedron are truncated maximally, as on
the right of Figure 5, the result is an octahedron. Every fundamental shadow
link can be given a hyperbolic structure by realising the building blocks as reg-
ular ideal octahedra, and gluing according to the gluing graph. The following
proposition is then an immediate consequence.

Proposition 2.11 (Costantino and Thurston [6]). Let L C M, be a fundamental
shadow link. Then the complement M, ~ L can be given a complete hyperbolic
metric with volume 2cuvg, where vy is the volume of a regular ideal hyperbolic oc-
tahedron, and c is the shadow complexity. O

2.3. Correspondence between links. We now prove Theorem 2.12, that oc-
tahedral fully augmented links are fundamental shadow links.

Theorem 2.12. Let L be an octahedral fully augmented link with c crossing cir-
cles. Then S3 — L is isometric to #°(S' x S?) — L for some fundamental shadow
link L.

Our main tool is the following definition and result from [29].

Definition 2.13. Given a triangle T, the central subdivision of T is the subdivi-
sion obtained by inserting a vertex in the centre of T, then adding three edges
which run from the new vertex to each of the three vertices of T. See Figure 6,
left.

Proposition 2.14 (Proposition 3.8 of [29]). Let L be a fully augmented link with
decomposition into two ideal polyhedra isometric to P. Let N be the nerve as-
sociated with the circle packing of L. Then P is obtained by gluing regular ideal



10 DIONNE IBARRA, EMMA N. MCQUIRE AND JESSICA S. PURCELL

AB G

FIGURE 6. Subdividing a triangle in the nerve (left) corre-
sponds to adding a circle to the circle packing (right). A dotted

PO @)

FIGURE 7. Borromean family: Borromean rings (leftmost) and
Borromean twisted sisters.

octahedra if and only if N is obtained by central subdivision of the complete graph
on four vertices. In this case, there are c — 1 such octahedra, where c is the number
of crossing circles in the diagram of L.

Let L be an octahedral fully augmented link with complement decomposing
into two polyhedra isometric to P. Since P is a union of a finite number of reg-
ular ideal octahedra, by Proposition 2.14, the nerve N associated to the circle
packing of L is obtained by subdividing the complete graph on four vertices a fi-
nite number of times. We will prove Theorem 2.12 by induction on the number
of times we must subdivide the complete graph on four vertices to obtain N. If
zero times, then L corresponds to the Borromean rings or one of the Borromean
twisted sisters; see Figure 7.

Lemma 2.15. Any fully augmented link of the Borromean family corresponds
to a fundamental shadow link with associated graph consisting of a single vertex
and two edges that are loops.

Proof. If L is one of the links in the Borromean family, then its ideal polyhe-
dral decomposition consists of two regular ideal octahedra. In particular, P is a
single octahedron, as seen from the circle packing of L, shown on the left of Fig-
ure 8. The colours of the shaded faces indicate the gluing. Applying a M6bius
transformation taking one of the ideal vertices in the leftmost figure to infinity
gives the middle figure. We obtain the 4-valent planar graph shown on the right
by taking a 4-valent vertex and connecting its edges according to the gluing of
the shaded faces of P.
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FIGURE 8. The leftmost figure shows the circle packing. Ap-
plying a Mobius transformation taking one of the ideal vertices
in the leftmost figure to infinity gives the middle figure. The
rightmost figure shows the corresponding 4-valent planar
graph.

To turn this 4-valent graph into a gluing graph, view each edge as correspond-
ing to a pair of shaded faces coming from a crossing disc. Label the edges as ei-
ther the identity isometry, if there is no half-twist adjacent to the corresponding
crossing circle, or a reflection if the corresponding crossing circle is adjacent to
a half-twist. Here, the reflection is across the ideal vertex of the octahedron
shared by the two shaded faces. Thus, when viewing the octahedron as a trun-
cated tetrahedron, the reflection is across the edge that joins the two shaded
triangles. Doing so gives a gluing graph G. Let L be the fundamental shadow
link obtained from G. Then by construction, #2(S! x S?)\ L has identical gluing
to S \ L, where we note that reflecting across the white faces in the polyhe-
dral decomposition is equivalent to doubling across the white faces to obtain
#2(S! x S2). O
Definition 2.16. A basic graph is a graph that is a single vertex with two loops,
with edges labelled by elements of D;. A Borromean basic graph is a basic graph
corresponding to fully augmented links in the Borromean family.

By Lemma 2.15, Borromean basic graphs have each edge labelled either by
the identity or a reflection giving a half twist. Note that there are three Bor-
romean basic graphs, corresponding to the Borromean rings or one of the Bor-
romean twisted sisters. Two of the Borromean twisted sisters have homeomor-
phic complements. Finally, note that both edges in a Borromean basic graph
correspond to shaded faces that glue to form crossing discs. When an octa-
hedral fully augmented link corresponds to a fundamental shadow link, and
an edge of the associated graph corresponds to gluing two shaded faces into a
crossing disc, we will call the edge a crossing circle edge.

Definition 2.17. Given a gluing graph G as in Definition 2.10, define a graph
move on an edge of G as follows. Replace an edge of the graph with three edges
and a vertex as illustrated in Figure 9 (left). There are two horizontal edges
created with vertices labelled v, and v;. Call these the free edges. Label one of
the free edges with the identity, and the other labelled the same as the gluing
information on the deleted edge. (The two choices of labeling the right versus
the left free edge by the identity give isometric links. For concreteness, we will
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FIGURE 9. A graph move (left) corresponds to a gluing of tetra-
hedra shown on the right.

choose to label the free edge on the left by the identity.) The loop is labelled with
either the identity or reflection across the edge joining the two corresponding
triangular faces. We call the new piece added by the graph move the loop piece.

Lemma 2.18. Suppose the nerve of L differs from that of L' by a central subdivi-
sion, where both L and L' are octahedral fully augmented links. Suppose S3~ L' is
homeomorphic to the complement of a fundamental shadow link obtained from
gluing graph G'. Then S3\ L is homeomorphic to the complement of a fundamen-
tal shadow link obtained from gluing graph G, where G differs from that of G’ by
a graph move along an edge of G’ that is a crossing circle edge.

Proof. Let N denote the nerve of L, and let N’ denote the nerve of L', so N is
obtained by subdividing N’ once. Let P/ denote one of the ideal polyhedra in the
decomposition of S* \ L’. Now, subdividing a triangle in the nerve corresponds
to adding a circle inside a shaded face of the circle packing [29], as in Figure 6.
Let O, be the regular ideal octahedron which is attached to P’ in the subdivision,
so that O, is attached to some octahedron O, of P’ along a shaded face S of O,.
The shaded face S is shown with dotted lines before adding the octahedron on
the right of Figure 6.

Consider the circle packing. A shaded face corresponds to a crossing disc.
So the ideal vertex coloured blue on the right of Figure 6 comes from a crossing
circle. This forces the ideal vertex coloured red to also correspond to a crossing
circle. See Figure 10. Since shaded faces glue to shaded faces on the same
polyhedron across an ideal vertex coming from a crossing circle, this forces the
two shaded faces of O, adjacent to the red vertex to be glued together.

Now, one of the shaded faces of O; must be glued to S. But in the gluing of
P’, S is glued to some other shaded face S’ of some octahedron O5, which may
or may not be distinct to O,. It follows that the final shaded face of O; must be
glued to S’ to complete the gluing. (Note S and S’ are distinct since in the gluing
of P/, each shaded face glues to a distinct shaded face.) Thus, in the gluing of
P, O, has one shaded face which glues to S, one shaded face which glues to S’,
and a pair of shaded faces which glue to each other.

By assumption, L’ can be viewed as a fundamental shadow link, so there is
a corresponding gluing graph G’. Let v,, v; be the vertices corresponding to
0,, 05 respectively in G’, and we may have v, = v;. Since S glues to S’ in
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FIGURE 10. Left: Zoomed in diagram of rightmost diagram of
Figure 6. The blue and red dots are ideal vertices corresponding
to crossing circles. A dotted line indicates a shaded face. Right:
Subdividing the nerve corresponds to altering the link diagram
locally as shown.

the gluing of P/, there is an edge e connecting v, and v;. Let G be the gluing
graph encoding the gluing of the octahedra in P, then G is obtained from G’ by
performing a graph move on e. To see this, first note that since the gluing of
P matches the gluing of P’ except for gluings involving O,, G is identical to G’
(including gluing information) except for the following. There is a vertex v; in
G corresponding to O,. The edge e between v, and v; is not present in G; since
O, has shaded faces gluing to S and S’, there is an edge from v; to v, and an
edge from v; to v;. The remaining two shaded faces of O, glue to each other, so
there is a loop on v;. See Figure 9.

For the gluing information, consider the shaded faces in the octahedral de-
composition of P. There are two possibilities for the gluing of any two shaded
faces: if a pair of shaded face come from a crossing circle, then they are glued
by a reflection preserving the crossing circle vertex if the corresponding cross-
ing circle is adjacent to a half-twist, and by the identity isometry otherwise.
All other pairs of shaded faces come from splitting P into octahedra, hence are
glued by the identity. Label the edges incident to v; according to the gluing of
the corresponding shaded faces: the edge from v; to v, is assigned the identity,
the edge from v, to v is assigned the edge label of e in G’, the loop on v; is
assigned a reflection preserving the vertex on the ideal octahedron correspond-
ing to the crossing circle if there is a half-twist adjacent to the corresponding
crossing circle and the identity isometry otherwise. The resulting gluing graph
is exactly the gluing graph obtained from G’ by performing the graph move on
e. Note that e is a crossing circle edge; S, S” are shaded faces of P’ so they come
from a crossing circle disc.

Let L be the fundamental shadow link obtained from the gluing graph G. By
construction, L and L have homeomorphic complements. Since the gluing is
by isometry, the complements are in fact isometric. O

Proof of Theorem 2.12. The proofis by induction on the number of times we
perform central subdivision to obtain the nerve of L.
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Q‘»é@

FIGURE 11. The move described by Wong and Yang.

If zero times, then L is in the Borromean family, and Lemma 2.15 implies that
S3\ L is a fundamental shadow link with associated graph one of the three Bor-
romean basic graphs. Note both edges on a Borromean basic graph are crossing
circle edges.

So suppose L is obtained by performing central subdivision k times. Let N’
be the nerve obtained by performing central subdivision k—1 times, with dimer
inherited from that of L. By induction, S*~L’ is a fundamental shadow link. By
Lemma 2.18, S \ L is also a fundamental shadow link, with associated graph
G obtained from that of L’ by a graph move along a crossing circle edge.

Finally, we relate the number of crossing circles to the number of connected
sums. If L has c crossing circles, then by Proposition 2.14, P is obtained by
gluing ¢ — 1 regular ideal octahedra, hence there are ¢ — 1 building blocks.
Gluing these gives a genus ¢ handlebody, and doubling yields #¢(S! x $2). O

Corollary 2.19. Let L be a fully augmented link. Then L is octahedral if and only
if the gluing graph of L is obtained by graph moves on one of the three Borromean
basic graphs. O

2.4. Comparison to change-of-pair operation. In [37], Wong and Yang de-
scribe a surgery move which allows one to transform an octahedral fully aug-
mented link L into a fundamental shadow link L with homeomorphic comple-
ments. Their move is shown in Figure 11; each crossing circle of L is given
the 0-framing and then encircled with a framed trivial unknot. Note that this
move is an example of the change-of-pair operation which Wong and Yang de-
fine, a topological operation which changes the pair (M, L) where M is a closed
oriented 3-manifold and L C M is a framed link, but does not change the com-
plement M \ L. In the case of transitioning from octahedral fully augmented
links to fundamental shadow links, the move in Figure 11 can be seen from our
proof, specifically, from the loop piece.
The following is proved in [37]. Our methods give a new proof.

Proposition 2.20. Let L be an octahedral fully augmented link and L its corre-
sponding fundamental shadow link from Theorem 2.12. Then the diagram of L is
obtained from the diagram of L by applying the change-of-pair move in Figure 11
to each crossing circle.

Proof. Since L is octahedral, by Corollary 2.19, we prove the statement on the
number of graph moves needed to obtain the gluing graph G of L from one of
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FIGURE 12. A fundamental shadow link determined from one
of the Borromean sisters. Black arrows indicate isotopy. The
0-framed unknots are indicated by a thicker line to avoid over-
crowding the diagram.

0 0

\—\

FIGURE 13. How graph move affects diagram.

the Borromean basic graphs. Suppose zero moves are needed. Then L is one of
the Borromean rings family. Take a single truncated tetrahedron and glue the
faces coming from the truncation according to G. Since the edges of the tetrahe-
dron form L, one can use the gluing to determine a diagram of L; see Figure 12.
There, the 0-framed unknots originally bound compressing discs in the handle-
body, which are then doubled. Observe that after isotoping, the resulting link
diagram has exactly the form claimed. Figure 12 shows an example for one of
the Borromean twisted sisters; the other links in the Borromean family can be
analogously verified.

Next suppose that G is obtained by n graph moves on one of the Borromean
basic graphs. Let L be the fully augmented link after n — 1 graph moves with
gluing graph G’ and corresponding fundamental shadow link L’. Consider the
local diagram obtained from the gluing of tetrahedra according to the graph
move; see Figure 9 and Figure 13.

By our construction, the edge e in G’ which was deleted in the n* graph
move was a crossing circle edge. Hence, by induction, one of the strands in the
left diagram of Figure 13 forms part of an unknotted component, without loss of
generality the thicker blue strand at the top. Since each truncated tetrahedron
is added so that one of the shaded faces glues to match the gluing in G’, the
new tetrahedron will be glued so that an edge joining two shaded faces is in
the position of the blue edge, preserving the unknotted component. See also
Figure 9. Gluing the shaded faces on the new tetrahedron according to the loop
piece as in Figure 9 gives the right diagram in Figure 13. Again the 0-framed
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unknots indicate doubled compression discs. Observe that we obtain the same
local diagram as the local diagram obtained from one central subdivision on
the nerve; compare Figure 10. (In these examples, the gluing on all edges is the
identity.) By induction #"*1(S? x S2) \ L’ has the presentation claimed. O

3. Coloured Jones polynomials for augmented links

The purpose of this section is to give a new calculation of coloured Jones
polynomials for octahedral fully augmented links. Our methods use recoupling
theory. We note that Van der Veen has calculations that are similar in [35], but
his focus is a different colouring, a different root of unity, and a different volume
conjecture. Note also that Van der Veen allows many more augmentation rings
than we do in the links that he considers.

3.1. Recoupling theory and coloured Jones polynomials. We first review
background and definitions required to compute coloured Jones polynomials,
using Jones-Wenzl idempotents and Kauffman brackets.

Definition 3.1 (Coloured Jones polynomial). Let L be an oriented link in S3
with n ordered components. Let D be a diagram of L equipped with blackboard
framing. Denoted by Ik;;(D) the linking number of D; and D, and by lk;;(D) the
writhe of D;. Let w;(D) = Z;lzl lk;;(D). The (i +1)!" coloured Jones polynomial
of L is defined as

TLinn(A) = (DL AT DS, (7), ..., (1) Ay, (2)),

Here (-, ..., -)p is the Kaufman multi-bracket, S; denotes the k-th Chebyshev
polynomial of the second kind andi = (iy, i, ..., i,,) is a multi-integer withi+1 =
(i;+1,i,+1,...,i, +1). In particular, for A € C with |A| = 1, |} ;41(A)| is well
defined for an unoriented link L and

Vrir (Al =[S, (2), ..., S;, (2))pl )]

We will not need the full formal definitions of the terms in Definition 3.1.
Instead, in an attempt to keep the exposition clean and as self-contained as
possible, we will present here only the tools we use, and refer to the works of
Lickorish [19], [21, Chapter 13 and 14] and Kauffman and Lins [13, Chapter 9]
for further details and further applications. A succinct description of the tech-
niques involved can be found in [22].

To compute the coloured Jones polynomial of an octahedral fully augmented
link, we use results in [19, 21, 13], which state that (1) can be computed by
decorating each component of the link with a Jones-Wenzl idempotent, and
evaluating the resulting diagram in the Kauffman multi-bracket. We represent
the Jones-Wenzl idempotent by n strands entering a box and »n strands exiting
it:

l’l|:|
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As described in [22], diagrams decorated by Jones-Wenzl idempotents can
be evaluated using recoupling theory [13, 21]. The central object in recoupling
theory is the following 3-valent vertex.

(3)
FIGURE 14. From left toright: (1) a 3-vertex, (2) decorated theta
net 6(a, b, ¢), and (3) tetrahedral network Tet [; rfa Z]

Definition 3.2. Assume (a, b, c) is such that a + b + c is even and satisfy a <
b+c,b <c+a,c <a+b. Such a triple (a,b,c) is called admissible. Let
i =(a+b—c)/2,j = (a+c—b)/2,k = (b+c—a)/2. Define an admissible 3-vertex
to be the Jones-Wenzl idempotents decorating the graphs given in Figure 14 (1).

Two elementary 3-valent graphs are the decorated theta net and tetrahedral
network, shown in Figure 14 (2) and (3).

Definition 3.3. Define the trihedron coefficient 6(a, b, c) to be the evaluation
of the decorated theta net of Figure 14 (2) in the Kauffman bracket. We call
(a, b, c¢) the trihedron entries of 6(a, b, ¢).

Define the tetrahedron coefficient Tet [; rJn "

k
decorated tetrahedral network of Figure 14 (3) in the Kauffman bracket.

] to be the evaluation of the

Formulae for trihedron and tetrahedron coefficients can be found in [13,
Chapter 9] and [22]. We will not yet need explicit formulae. Instead, we will
relate them to quantum 6 j-symbols.

For the rest of this paper, let 7 > 3 be an odd integer and g = A2 = e@7V=-D/r,
Let I, = {0,1,...,r — 2} be the set of non-negative integers less than or equal to
r—2.

Definition 3.4. The quantum integer [n] € R is defined by
[n] :=(q"—q/(@a—q™".

The associated quantum factorial is [n]! := [n][n — 1]...[1]. We define [0]! =1
by convention.
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The quantum 6 j-symbol was introduced by Kirillov and Reshetikhin [14]
from representations of the quantum group U, (sl,). Itis a complex number de-
fined for an admissible 6-tuple (i, j, k, [, m, n), denoted by the symbol ; ’;”1 Z .
Its precise definition is postponed to Section 4. For now, we need the following.

Lemma 3.5. The quantum 6 j-symbols relate to the trihedron coefficients 6 and
tetrahedron coefficients Tet by the following formula.

;’ ;il E:(\/G(i, j,k)@(i,m,n)e(j,l,n)e(k,l’m)>_1Tet[; rJn Z] @

By convention, when the real number x is negative, we take \/_ =4/|x|V -1

Proof. Formulae for the evaluation of the trihedral and tetrahedral networks
can be found in [13, 22], and compared with the definition of the quantum 6j-
symbol. O

3.2. Coloured Jones and octahedral links. We next provide a new formula
for the coloured Jones polynomial of any octahedral fully augmented link. The
following lemmas are key to our computations.

Lemma 3.6 (Merging strands, Figure 14.15 of [21]).
W _ Z AC V C y
T~ T 6@bo A R

where the sum is over all ¢ such that the triple (a, b, ¢) is admissible, and the term

A,, denotes the evaluation in the Kauffman bracket of the closure of the Jones—
Wengzl idempotent in the plane.

More information on A,, will be required in the next section, but we postpone
it to Lemma 4.3.

Lemma 3.7 (Removing crossing circle, Lemma 14.2 of [21]).
n_D_ - = /ln,a ﬁ|:|_’
:| |:a

where /ln .= (_1)a(A2(n+1)(a+1) _A—z(n+1)(a+1))/(A2(n+l) _A—Z(n+1))‘ In partic-
ular, when A is a 2r-th root of unity,

_ (=1)*sin@r(n+1)(a +1)/r)
B sin(2mr(n + 1)/r)

Ana (3)

Lemma 3.8 (Removing a half-twist, Theorem 3 of [22]). For (a,b,c) admissi-
ble,leti = (b+c—a)/2,j = (a+c—Db)/2,k = (a+b—c)/2. Letygb =
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(_1)kAk(i+j+k+2)+ij' Then:

-
b =y
c Cc

Moreover, reversing the sign of the crossing replaces y2° by its conjugate 7°°, where
conjugation is defined by A = A=,

Lemma 3.9 (Triangle pop, page 122 of [13]).

! — — o ]
e - \/9(p,l,])@(k,q, NG,k D |p i ]I ”
PN o(p.q,D) kg 1jp q

Definition 3.10. Given a 3-valent vertex, define the triangle move to be the
move shown in Figure 15 right. Define the triangle pop to be the reverse of the
triangle remove, shown in (4). For the configuration on the left of (4), we refer
to [ as the head and j as the base of the triangle pop. These are also the edges
coloured red on the right of Figure 15.

VNV - A A

FIGURE 15. Triangle move is dual to central subdivision.

We remark that the triples involved in the trihedron coefficients in (4) are
precisely the triples corresponding to the four vertices of the tetrahedral net
obtained from the left of (4) by connecting the strands coloured p, q,! into a
fourth 3-vertex.

By considering the dual graph of a fully augmented link instead of its nerve,
one obtains the following corollary to Proposition 2.14.

Corollary 3.11 (Corollary to Proposition 2.14). Let L be a fully augmented link
with c crossing circles and complement decomposing into two polyhedra isometric
to P. Then P is obtained by gluing c — 1 regular ideal octahedra if and only if the
dual graph of L is obtained by successive triangle moves on the complete graph on
fourvertices. In this case, there are c — 2 triangle moves.

Proof. The dual graph of the complete graph on four vertices is still the com-
plete graph on four vertices. Altering a triangle of the nerve by central subdi-
vision alters the dual graph by a triangle move; see Figure 15. Now, a single
central subdivision corresponds to adding exactly one octahedron. Thus, ¢ — 2
subdivisions are required to obtain ¢ — 1 octahedra comprising P, noting that if
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the nerve of L is the complete graph on four vertices, then P is a single octahe-
dron. This corresponds to ¢ — 2 triangle moves on the dual graph. O

Proposition 3.12. Let L be an octahedral fully augmented link of n components
with c crossing circles and diagram D. Decorate D by

i=(a1,ay...,00,01, 02 w5 ip_c),

where a, ..., a, colour the crossing circles and iy, ..., i,,_. colour the knot strands.
LetH C {a;, a,, ..., a.} be the colours of the crossing circles adjacent to half-twists;
H = @ if L has no half-twists. Then the Kauffman multi-bracket

<Sa1 (Z)9 ceey Sac(z)’ Sil (Z), ceey Sin_c(z)>D
is
(Sg,(2), 80, (2), 84, (2), s Si (@)D= D, Nijjpior (5)
J1sJ2seesde

where each j; is a summation variable arising from merging the strands passing
between the crossing circle coloured a; according to Lemma 3.6, and N; is
a product of:

(1) Aj A for1<Il<gc,

Ji,a

sJ1sd2seesde

(2) a power ofy;’;’im foreachl € {1,2,...,c} such that a; € H and iy, i,, are
the colours of the knot strands passing through the crossing circle coloured
a,

(3) c¢—1quantum 6 j-symbols, each of the form ll.q ll.p ij , forsomeq, p,r,s

r s l

e{l,..,n—c} k,l €{1,...,c}, and every summation variable appears at

least once in such a quantum 6 j-symbol.

Proof. We compute (S, (2),...,S;_ (2))p as follows. At each crossing circle
apply Lemma 3.6 to the strands passing between the crossing circle, then re-
move the crossing circle by Lemma 3.7. If necessary, remove half-twists by

Lemma 3.8. The first step contributes a sum of the form Zj e(é}'{" 5 where j
Lk,j

is the colour on the merged strand and i and k are the colours on the knot
strand passing through that crossing circle. This gives the term A; in (1). The
second step contributes a factor of 4; ,, where a is the colour of the crossing
circle. This gives 4 ja I (1). If two strands coloured i, k have a half-twist, then

by Lemma 3.8 removing the half-twist contributes a factor of y;’k , where jisa
summation variable. This gives the terms in (2). Observe that after perform-
ing these operations we are left with a network Gi’ that is exactly the network
obtained by decorating the dual graph G’ of L with the relevant Jones-Wenzl
idempotents: We have exactly reversed the process shown in Figure 4.

By Corollary 3.11, after performing ¢ — 2 triangle pops on Gi’ , we obtain a
tetrahedral network, and we complete the evaluation using Lemma 3.5. This
proves there are ¢ — 1 quantum 6 j-symbols.



AUGMENTED LINKS, SHADOW LINKS, AND TV VOLUME CONJECTURE 21

Consider the configuration for a triangle pop in the trivalent dual graph. Re-
call that every vertex in the dual graph is adjacent to exactly one dimer edge.
The edges in the dimer are precisely the edges which are coloured by the sum-
mation variables in Gi’ after we have applied Lemma 3.6, Lemma 3.7 and
Lemma 3.8. It follows that every triple around a vertex in Gi’ consists of ex-
actly one summation variable. Moreover, this property of triples is preserved
by triangle pops; see Lemma 3.9. It follows that in all of the ¢ — 2 triangle pops
which are applied to Gi’ , there are always precisely two summation variables
involved. In our decoration of the network before the triangle pop, we can al-
ways take these summation variables to be in the position of the head and base.
Moreover, the final tetrahedral network will have exactly one outer edge and
one opposite inner edge coloured by summation variables, as in Figure 15, left.
This proves that the form of the quantum 6j-symbol is as in (3). In the process
of obtaining G’ from the complete graph on four vertices by successive triangle
moves, every edge in the dimer arises either in a triangle move or it is in the
complete graph on four vertices to begin with. Hence every summation vari-
able appears at least once in a quantum 6 j-symbol.

We have now shown that all the terms in (1), (2), and (3) appear as claimed.
It remains to show that no other terms arise. The only other terms that occur
in the process are trihedron coefficients. We show that the product of all trihe-
dron coefficients is one. Trihedron coefficients arise from merging strands in
Lemma 3.6, from triangle pops Lemma 3.9, and from the evaluation of the final
tetrahedral network; no other trihedron coefficients arise.

In Lemma 3.6, trihedron entries are a triple of two colours from knot strands
and a summation variable. In Lemma 3.9, using the observation above that ex-
actly the head and base are labelled with summation variables, the trihedron
entries that arise must be a triple of two colours from knot strands and one sum-
mation variable. Finally, when evaluating the final tetrahedron network using
Lemma 3.5, again by the observation that exactly dimer edges are coloured by
the summation variables, it follows that the trihedron entries that appear have
exactly two entries that are colours from knot strands, and exactly one summa-
tion variable. Thus, it suffices to show that for each summation variable j, the
product of all trihedron coefficients containing j is equal to one.

First suppose ¢ = 2. Then Gi’ is a tetrahedral net and L is the Borromean
rings or one of the Borromean twisted sisters as in Figure 7. Hence, L has either
one knot strand coloured i, or in the case of two half-twists, it has two knot
strands coloured i and k. Merging in Lemma 3.6 introduces terms of the form
(6(i, k, j1)0(, k, j,))~', where j;, j, are the summation variables; set i = k if
there is just one knot strand. Then applying Lemma 3.5 contributes

V60K, j1)6G K 0BG k. 28 k. j2) = 6(G, k. j1)B( k. )

which cancels with (8(i, k, j;)0(i, k, j,))~! from Lemma 3.6.
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Next, suppose ¢ > 2. After applying Lemma 3.6, Lemma 3.7 and Lemma 3.8,
each summation variable j appears in Lemma 3.6 meeting two 3-vertices la-
belled (i, k, j), where i, k colour knots strands. This term is multiplied by
6(i, k, j)~', from Lemma 3.6.

Suppose j is involved in a triangle pop as a base edge. By Lemma 3.9, the
contribution is 1/6(i, k, ))8(i, k, j) = 6(i, k, j), and so this cancels with the tri-
hedron coefficient from Lemma 3.6. The triangle popping removes j from the
diagram, so it contributes to no further trihedron coefficients.

Now suppose the first triangle pop involving j is with j as a head. There may
be a sequence of triangle pops with j as head, and each contributes two trihe-
dron coefficients involving j. The first coefficient is of the form (6(x, y, N2,
where (x,y, j) decorates a 3-vertex that is removed by the triangle pop. The
other coefficient has the form (8(p, q, j))~'/2, where (p, q, j) decorates the new
3-vertex that is created by the triangle pop.

Consider additional terms involving (p, g, j). There will be exactly one other
such term, arising when this 3-vertex is removed, either by a triangle pop with
Jj as head, or as base, or by evaluating the final tetrahedron network. In all
three cases, since (p,q,j) is an existing vertex, it contributes (6(p, q, Nz,
which cancels with the (8(p, g, j))~'/? contributed at the initial creation of the
3-vertex. This argument also shows that if a triangle pop removes a 3-vertex
that was created by a previous triangle pop, then the numerator term always
cancels with a denominator from a previous step. So if a triangle pop is not the
first to involve the edge coloured j, then the only 6 contribution involving j will
contribute to the denominator, which subsequently cancels by the argument of
this paragraph.

So consider the first triangle pop. Because the edge coloured j arose by a
merge move from Lemma 3.6, there are two 3-vertices meeting j labeled (i, k, j)
at thisinitial step. One 3-vertex is removed under the first triangle pop, with j as
head by assumption, contributing (8(i, k, j))!/2. Since the merge move already
contributed (8(i, k, j))~!, these simplify to give a contribution of (6(i, k, j))~*/2.
Then the argument proceeds as in the previous paragraph. At some stage, the
other 3-vertex with colours (i, k, j) will be removed, by a triangle pop with j
as head, or as base, or by the evaluation of the final tetrahedron network. As
above, the removal contributes (6(i, k, j))l/ 2 which cancels. O

4. Turaev-Viro invariants

This section provides a new proof of Conjecture 1.1 for flat octahedral fully
augmented links.

We utilise a formula of Detcherry, Kalfagianni and Yang [9, Theorem 1.1], to
relate the Turaev-Viro invariants of an octahedral fully augmented link com-
plement to its coloured Jones polynomial:

Theorem 4.1 (Theorem 1.1 of [9]). Let L be a link in S with n components. Let
r = 2m+1 > 3 bean odd integer and A a primitive 2r'" root of unity, with q = A2.
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Then
TVAS*~L,q) = 2" ()% D) WLi(A). (6)
1<i<m
Heren! = (A2 — A=2)/\/-randi = (iy, ...,ip) and 1 <i < mmeans1 < iy <m
foreach k.

Remark 4.2. Note that [9] uses a different normalisation of the coloured Jones
polynomial than we used in the previous section, following [13, 21]. Our def-
inition takes into account a correction factor for the framing of the links, and
differs from that of [9] by a power of A. However, since A is a root of unity and
we are only interested in the modulus of |Jp ;| in Theorem 4.1, our formula will
suffice.

We will use Theorem 4.1 with Proposition 3.12 and (1) to evaluate limits of
TV,. By Proposition 3.12, we will have terms involving A;, 4, ,, y;.’k, and quan-
tum 6j-symbols. We will need further information on these terms to find and
apply bounds.

We first consider A; and 4 ,. Recall A; is the closure of the Jones-Wenzl
idempotent in the plane evaluated in the Kauffman bracket, and 4; , is defined
in Lemma 3.7.

Lemma 4.3 (Lemma 4 of [13]). The term A; = (=1)/[j + 1], where [n] is the
quantum integer of Definition 3.4. It is the j"" Chebyshev polynomial of second
kind in variable (—A? — A™2?):
(=1)/ (A2 — A—20+D)
A2 — A2
If ¢ = A? is a primitive r-th root of unity, wherer > 3 is odd, then A,_; = 0 and
forall0 < j<r-2,

B sin(2z(j + 1)/r)
A= sin(27 /r) #0. @)

A quantum 6j-symbol has an associated admissible 6-tuple (i, j, k, [, m, n),
as follows.

Definition 4.4. A triple (i, j, k) of elements of I, is called r-admissible (or ad-
missible), if

(1) i+ j+kiseven,

2 i<j+k,j<k+ik<i+j,and

B)i+j+k<2r—4
A 6-tuple (i, j, k,1,m,n) of elements of I, is admissible if each of the triples
,j,k), (j,L,n), (i, m,n), (k, 1, m) are r-admissible.

Throughout, let n, = % ifr =1 mod 4 and n, = ? if r = 3 mod 4.

Note that for j € I,, if (n,, n,, j) is admissible, then the admissibility conditions
imply that j € {0,2,4,...,r — 3}.
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Lemma 4.5. Letn, = (r —1)/2ifr =1 mod4andn, = (r —3)/2ifr =
3 mod 4. For j, ji,j, € I, such that (n,,n,,j),n,,n,.,j),(n,,n,.,j,) are r-
admissible, the following hold.
(1) Thesign of A is positive if 0 < j < (r — 3)/2 and negative if (r —1)/2 <
Jj<r—2
(2) Thesignof 1, , defined as in (3), is
_ sgn(Aj), r=3 mod 4,

1. )=
sg0(%jn,) —sgn(4;), r=1 mod 4.

Proof. For (1), by Lemma 4.3,
sin(2z(j + 1)/r)
sin(27 /r)
By admissibility conditions on (n,, n,, j), the integer j must be even. The de-
nominator sin(27 /r) is positive for all r > 3. The term (27(j + 1))/r lies in
(0,7)for0 < j < (r—3)/2,and liesin (7, 27) for r —1)/2 < j < r —2. The
statement of (1) follows.
For (2), by (3), we have
_sin2z(j + 1)(n, + 1)/r)
b sin2z(j +1)/r)

eR
Now,

7(j+1)—2(+1), r=3 mod 4,
r

27
Z(i+1 +1)=
’ (.] )(”r ) 7T(j+1)+§(j+l)’ r=1 mod 4.

By the argument of (1), %(j +1) € (0, %) for0<j<(r—3)/2and %(j +1) e
(g,n') for (r —1)/2 < j < r — 2. Note also that j + 1 is odd since j is even by
admissibility. Hence, if r = 3 mod 4, then 27”(]' +1D(n+1)e(jr,n(j+1)—
g) ur(+1)— %, 7(j + 1)), which is in the first and second quadrant of the
unit circle. Therefore, sin (27”( j+ D, + 1)) > 0, so the sign of 4; , is given
by sgn (sin (27(j + 1)/r)) = sgn(4)). If r =1 mod 4, then 2771(]' +1)(n,+1)is
in the third and fourth quadrant and the result follows analogously. (]

We need to determine the signs of the quantum 6 j-symbols as well. To do
so, we need more information on these symbols. We now recall their full defi-
nition, and related results.

Definition 4.6. The quantum 6 j-symbol associated with an admissible 6-tuple
(i, j,k,1,m,n) is the complex number

PGk e e .
I mon = (—1)UHHAmED2 A O A(ImR)A(LjR)A(IMK) DS, (8)
z
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FIGURE 16. Each of T, T,, T, T, corresponds to a face of the
tetrahedron. Each of Q;, Q,. Q5 corresponds to a quadrilateral
separating two pairs of vertices.

where the sum is over max{T, T,, T3, T4} < z < min{Q;, Q,, Q;}. Here, A(ijk)
is given by

[ iy Ly 1/2
CoN 2 2 2
- !
The term S, is defined as
—1)? !
< - (=1D?[z+1]! (10)

© [z =Tz ~ T5][z = Ts]llz = Tu]1Q; — z][Q; — z]![Qs — z]!

where the values T', correspond to faces of the tetrahedron as in Figure 16:

i+j+k j+l+n i+m+n k+l+m
h=—m— =77 h=—7%— Ti=—F5—
The values Q, correspond to quadrilaterals separating two pairs of vertices as

in Figure 16:

, (11)

i+j+l+m i+k+l+n _jtk+m+n

Ql:f’ szf’ Q3_ D)

In [2, Theorem A.1], the authors prove the following result of Costantino [5]

12)

for the root of unity e?™V=1/7. The form of the theorem that we need appears
in[16].

Theorem 4.7 (Theorem 3.4 (1) of [16]). If (ngr), n;r), ngr), nir), ngr), ng)) is a se-
quence of admissible 6-tuples with

() 0<Q;—T; <(r—2)/2for1 <i<4,1<j<3 and

(i) r—2)/2<T;<r—-2for1 <i<4
then for each r, the sign of S, is independent of the choice of z, for max{T;} < z <

min{Q;}.
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Lemma 4.8. Letn, = (r —1)/2ifr =1 mod 4, andn, = (r —3)/2ifr =3
mod 4. Then the quantum 6 j-symbol

n, n,. J1
n, n. Js

is real-valued. Its sign is positive ifr =3 mod 4 and negative ifr =1 mod 4.

Proof. The given quantum 6j-symbol is real-valued due to [16, Lemma 4.7].
The rest of the proof considers its sign, appealing to Definition 4.6.

For the admissible 6-tuple (n,, n,, j;, 1., 1y, j»), the values of T; and Q; are as
follows:
1+ )2

2
Thus Q; — T; is one of n, — (j;/2), n, — (j2/2), j1/2, or j,/2. Note also that by
admissibility, j;, j, € {0, 2,4, ...,r — 3}. Then by Definition 4.6,

J1 J2
hi=Ty=m+=, Thy=Ts=mn+7, Q=2n, Q=0=n+

J1+i2 }

min{2n,,n,+ 2

n n i J1tia . . j1,J
P M= (DT A A Y, SR (3)
M Ny J2 | max{jp.j}
e
where
i1 -1)?[z +1]!

(Iz = ny = L1020z = n, = 2102020, — 2100, + 2 + 2 — 212

Consider the case where j;, j, # 0. We show that the assumptions of The-
orem 4.7 hold if j,, j, # 0. By admissibility, for | € {1, 2}, we have j;/2 > 0
and j;/2 < n,, hence n, — (j;/2) > 0. This gives the lower inequality for as-
sumption (i). For the upper, j; <r —3so (j;/2) < (r —3)/2 < (r —2)/2. Also,
n,—(j/2) <n,=(r—-3)/2ifr=3 mod 4. Ifr =1 mod 4, since j; # 0, we
have n, — (j;/2) < (r —1)/2 — 1/2. This gives the upper bound of (i).

For assumption (ii) of Theorem 4.7, suppose first r = 1 mod 4. Then (r —
2)/2 < n,s0(@r—2)/2 < n,+ (j/2). Also, n, + (j;/2) < n, +(r—3)/2 =
r — 2. So (ii) holds when r = 1 mod 4. Now suppose r = 3 mod 4. Then
n.+/2)<n.+@—-3)/2=2n, <r-2,and n, + (j;/2) > (r—2)/2if j, > 0.
So (ii) holds provided j; # 0. Then Theorem 4.7 holds when j; # 0.

By Theorem 4.7, the sign of SJ'*2 is independent of z. For this case, we show

the sign of $J'*'? is also independent of j;, j,. Possible contributions to the sign
in (14) come from terms (—1)?, [z +1]!, and [2n, — z]!, since the other terms are
squares of real numbers (see Lemma 4.3) hence always positive. Since the sign
isindependent of z, to compute the sign it suffices to find the signs of terms [z +
1]! and [2n, — z]! for any value of z in the range of the sum of (13). In particular,
let j,, := max{j;, j,}, and consider the minimum value z = n, + j,, /2. Then
[z + 1]l = [n, + (j/2) + 1]! and [2n, — 2] = [1, — (i /2)]!

By our work checking (i) of Theorem 4.7, we have 0 < n,—(j,,/2) < (r—2)/2.
For any k € Z satisfying 0 < k < (r — 2)/2, the value 27k /r must lie in
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Quadrants I or II. Then
nr_(jm/z) s
. sin(27k /r)
[nr - (]m/z)]! = H o <
sin(27 /r)

k=1

(15)

By our work checking (ii), r/2 < n, + (j,,/2) + 1 < r — 1 (note the strict
inequality since j # 0 so j > 2 by admissibility). Any k € Z in this range
satisfies 7 < (27k)/r < 27(r — 1)/r, hence it lies in Quadrants III or IV and
the value of sin(27k /r) is negative. Then

. 22 sinQrk /r) 9 sin2rk /r)
[+ G/ +10 = T G520 sin(27 /1)

k=1

(16)

(r+1)/2

The first product consists of all positive terms, the second all negative, hence its
sign is given by (—1)"%+Un/2+1=0-=1)/2 1t follows that the sign of S}'** is given
by the product of this sign and (=1)"*Un/2), which is (=1)~"~3/2 since j,, is
even. Thus the sign is independent of z, j, j,. Itis1ifr =3 mod 4 and —1 if
r=1 mod 4.

Now, for [ € {1, 2}, by (9),

[, = L3[4 70y2

A(nr’nr’jl)z = j
[n, + 51 +1]!

Since ([%]l)2 is positive by Lemma 4.3, and [n, — j,/2]! is positive by (15), the
sign is that of (16), or

sgn (A(ny, 1y, j))?) = (=1)+i/2D=0-3)/2
It follows that
sgn ((=1)U+D2An,, 0y, j)2AM0,. 1y, o)) = 1

This concludes the proof in the case j;, j, # 0.

N ny J 1]
Ny ny j2
in Figure 14 (3). If one of j;, j, is zero, without loss of generality say j; = 0,
then there are two 3-vertices in that figure labeled (n,, n,, 0). By Definition 3.2,
it follows that labels for j, k, ¢ in Figure 14 (1) are all zero, and labels a, b, i are
all n,. This describes a single edge decorated by the Jones-Wenzl idempotent
labeled n,. Thus, we may remove the edge of the tetrahedral network labeled
0 and replace the adjacent two edges labeled n, by single edges labeled n,. The
result is a theta net labeled n,, n,, j,. Noting the trihedron coefficient is sym-
metric in its arguments, we conclude

Now, suppose one of j; or j, is zero. In this case, consider Tet [

n, n,

Tet [
n, n,

0 .
)| = et
J2
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Moreover, a similar argument as above shows that the theta net labeled (n,, n,, 0)
is just the closure of the Jones-Wenzl idempotent in the plane, so 6(n,, n,,0) =
A, . Hence, by (2),

n. n 0

) ! Tet[nr " (.)]zA‘l
n, n, Js

- An,e(nranr’jZ) e e J2

Applying Lemma 4.5 (1),

sgn (

Finally, suppose j; = j, = 0. Then by (2),

r=3 mod 4,

n, n, O) 1,
=sgn(h, ) =
I gn( ”’) {—1, r=1 mod 4.

n, n; j2

Ry ny 0 — A2 ny RNy, 0 — A2 — A1l
n n, 0‘ = A, “Tet [”r n o= ALCA, = A
and the result follows as in the previous case. (]

Corollary 4.9. Let L be a flat octahedral fully augmented link with c crossing
circles, and let N j, j, i be as in Proposition 3.12. Letn, = (n,,...,n,). Then
N, ji jrnje IS real-valued, with sign given by

1, r=3 mod 4,

SEUNr, jy..ic) = {—1 r=1 mod 4.

In particular, the sign of Ny, j, isindependent of ji, j2, .- s Je-

,jl;jZ,---,

Proof. The fact that N,, ; ; is real-valued follows from the fact that it is a
product of real-valued terms by Lemma 4.5 and Lemma 4.8. Moreover, if r = 3
mod 4 then sgn(N,_; ;) = landifr =1 mod 4 then sgn(N,_j ; ;) =
(=1)¢(=1)*"! = —1, where the term (—1)° is the sign of the product of the ¢
terms Aj; 4; , by Lemma 4.5, and the (=1)¢"! comes from the ¢ — 1 quantum

6j-symbols, by Lemma 4.8. O

4.1. Bounds. Belletti, Detcherry, Kalfagianni and Yang [2] give the following
upper bound on the growth of rate of the quantum 6 j-symbol. Related results
on these growth rates are also due to Costantino [5].

Theorem 4.10 (Theorem 1.2 of [2]). For any r and any r-admissible 6-tuple
(i, j, k, 1, m, n), the following bound holds:
log(r

For a specific choice of colours, the following result is given by Kumar and
Melby [16]; compare also to [2, Lemma 3.13].

i j k
Il m n

2
“T o
r

q=eC@mV=D/r
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r—2+1

Theorem 4.11 (Lemma 3.6 of [16]). If the sign is chosen such that is even,
then the following holds:
r—2+1 r=2+1 r—2+1
27 2 2 2 _ log(r)
T 10g r=2+1  r—2+1 r—-2+1 =Ust O( r
2 2 2 lg=e@m/-D/r
Lemma 4.12. For any fixed integers j and a with0 < j,a <r —1,
|Aj/1j,a|q:e(27r\/?1)/r =0 (r)
Proof. Forg = A% = e@mV=D/r by (3) and (7) we have
-sin(2(j + 1)(a+ Dz /r
A1, = (ayees S+ Da+ D/
’ sin(27 /r)
Thus, [Ajd) 4| < | sin(27 /r)|~! < r/(27) for sufficiently large r. O

Proposition 4.13. Let L be an octahedral fully augmented link with c crossing
circles. Then

1
27” log|TV,(S*\ L, q)| < 2(c — Dvg + 0( Og;(r))

Proof. Let s denote the number of knot strands of L. By Theorem 4.1 and Def-
inition 3.1

TV, (S*NL,q) =2"71(n)? D Wpi(A)?

1<i<m

— 2c+s—1(}7£)2 Z

1<i<m

2 Nijijseie

JisJ2sese

where Nj ; ;. ;. is as in Proposition 3.12.

Let C, be the number of possible coloursi such that1 <i <m = (r —1)/2.
Then C, < m*S grows at most polynomially in r. The term 7, = (q—g™!)/ \/—_r
also grows at most polynomially in r. Observe that |J} ;(A)| consists of ¢ nested
sums. By admissibility, each summation variable j, issuch that0 < j, <r —2
for 1 <k < c. Hence, |J;(A)| consists of at most (r — 1)° terms.

LetI, denote the index realising max; ;< [J1;(A)|, so |/ j (A)| is this maxi-
mum value. LetJ = {j, ..., j,} be the choice of summation variables that realise

the maximum of [Ny ; . |. So [N ;| is this maximum. Then we obtain the

following bounds.
2 2 log(r)
- log |TVr(S3 NL, Q)‘ s — log 77,1, (A)* + O( é:, )
1
< 2771' -2log Ny, ;| + O( ogr(r))
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Now, N;_; is a product of terms including ¢ — 1 quantum 6 j-symbols. Thus
applying Lemma 4.12 and Theorem 4.10 we obtain

1
277T'210g|NI,,J| SZ(C—l)Ug'l'O( Ogr(r)) O

Lemma 4.14. Let L be an octahedral fully augmented link with c crossing circles,
and assume that L has no half-twists. Then for odd r,

.2
lim 2% log ‘TVr(S3 \L, q)| > 2(c — 1)ug
r-oco I
Proof. Let s denote the number of knot strands of L, so its total number of com-
ponents is ¢ + s. Consider the colouring n, = (n,,...,n,). Using Theorem 4.1
and the fact that »/ grows at most polynomially in r,
.2 .2
lim = log|TV,(S*~ L,g)| > lim =~ log |21/ 21, (A2
r—oo

r—-oo I

2
=2 lim —ﬂlog |Jrn (A)]
r—-oco I T

Z Nnr’jl ---- jc

Since L has no half-twists, by Corollary 4.9, all summands in |J; , (A)| have
the same sign, so we can bound the sum below by an individual summand. In

particular, we can bound Zh ..... i Nu, i e | from below by the term [Ny, _,, |-
That is, take the term with j, = j, = --- = j. = n,, noting that this is one of
the terms in the sum, since the sum runs over all j, with (n,, n,, j;) admissible
and 0 < j, <r—3,for1 < k < c. The triple (n,, n,, n,) is such an admissible

triple. Hence,

2
=2 lim 2% log
r—oo F

tim 2 log |7V, (5* < L.g)| 2 lim X 10g Ny, 1, .., | = 2(c ~ oy
r— o0 r—co
where the final equality follows from Lemma 4.12 and Theorem 4.11. ]

We are now ready to conclude our new proof of the TV volume conjecture
for octahedral fully augmented links, a result which is originally due to [37, 2].

Theorem 4.15. Let L be an octahedral fully augmented link with c crossing circles
and no half-twists. Then for odd r,

lim 27” log |TV,(S®~ L, q = ¢@™V=D/r)| = Vol(s*~ L) a7)
r—00

Proof. By Proposition 4.13, the limit on the left hand side of (17) is bounded
above by 2(c — 1)vg.
By Lemma 4.14, the left hand side of (17) is also bounded below by 2(c—1)uvs.
Thus the limit equals 2(c — 1)vg, which is the volume of S* \ L by Proposi-
tion 2.14. ([
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In [9], Detcherry, Kalfagianni, and Yang proposed a question about the
asymptotic behaviour of the coloured Jones polynomial. They asked whether

. 1
Trm(@) for ¢ = t = ™3 grows exponentially in m with growth rate
equal to the hyperbolic volume. We answer their question in the positive for
flat fully augmented links when m varies over the even integers.

Theorem 4.16. Let L be an octahedral fully augmented link with c crossing circles
and no half-twists. Then as m varies over the even integers,

47[\/—71
JL,(m,m...,m) t = e 2m+1

Proof. Letr =2m+1andn, = (r —1)/2. Letm = (m,m,...,m). Then as m
varies over the even integers

. 4
lim il

—_— —_ — 3
m—oo 2M + 1 = 2(c — 1)vg = Vol(S°\L)

log

4 4”\£ 27 21
lim log |J t=eon || =2lim — log|J =e -
m—oo 2Mm + 1 E/Lm ( e ) r—oco 1 & Ln, (q ¢ )
. 2r
= 2 rll)% T log Z Nnr’jl’jZV“’jL‘
JisJ2sede

asrvaries over the odd integers. The result follows as in the proof of Lemma 4.14.
O

Remark 4.17. We believe that Theorem 4.16 can be extended to all m by minor
modifications to Lemma 4.5 and Lemma 4.8, and by using Theorem A.1 of [2]
to show that

r—1 r—1 r—2+1
2 2

.27
lim — log
rooco r r—1 r—1 r—2+1

2 2 2

= US'

We now give a brief discussion of the issues which we encounter when we
attempt to extend Theorem 4.15 to octahedral fully augmented links with half-
twists. First note the following lemma.

Lemma 4.18. For a r-admissible triple (a, b, c),

. 27 ab _
fim 1082y ) =0
Proof. The formula for y¢° is given in Lemma 3.8. But A € C with |A| = 1, so
it follows that |y%°| = 1. O

By applying Lemma 4.18, we can prove an upper bound of 2(n — 1)vg for
octahedral fully augmented links with ¢ crossing circles and allowing for half-
twists, as in Theorem 4.15. The difficulty is in proving the lower bound. By
Proposition 3.12, each half-twist contributes a term yj.’k, where i, k are colours
of knot strands and j is a summation variable. For the colouringn,, we have j €
{0,2,4, ...,r—3},s0 y}q”n’ changes sign. Hence, the product of all y;.l””’ ’s from the
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half-twists changes sign depending on the summation variables. Moreover, y;’k

can be complex valued. It is not clear to us how to show that the term Ny, ,, ..
does not cancel with other terms, or to show that this term is a lower bound of
the sum in (5). One may, however, be able to use methods from analysis as in
[25] to prove a lower bound.

Note that such issues of sign do not arise in Belletti, Detcherry, Kalfagianni
and Yang’s proof [2] of Conjecture 1.1 for fundamental shadow links, as they
extend a result of [9] to prove a result relating the Turaev-Viro invariants to
relative Reshetikhin-Turaev invariants [3, 20]. The difference in the way these
invariants are computed as opposed to the coloured Jones polynomials means

that the only contributions from half-twists are products of the modulus |y§.’k |.

Since |7/§.’k| = 1, these contributions do not need to be considered.
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