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One-sided type-D metrics with an aligned
Einstein-Maxwell field
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ABSTRACT. We consider four-dimensional, Riemannian metrics for which
one or other of the self-dual or anti-self-dual Weyl tensors is type-D and which
satisfy the Einstein-Maxwell equations with the corresponding duality
Maxwell field aligned with the type-D Weyl spinor, in the sense of sharing
the same Principal Null Directions (or PNDs). Such metrics always have a
valence-2 Killing spinor, and therefore a Hermitian structure and at least one
Killing vector. We rederive the results of Araneda ([5]), that these metrics
can all be given in terms of a solution of the SU(0)-Toda field equation,
and show that, when there is a second Killing vector commuting with the
first, the method of Ward ([25]) can be applied to show that the metrics can
also be given in terms of a pair of axisymmetric solutions of the flat three-
dimensional Laplacian. Thus in particular the field equations linearise.
Some examples of the constructions are given.
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1. Introduction

This note is a sequel to [24]. There we considered four-dimensional, Rie-
mannian, Ricci-flat metrics for which one or other of the self-dual or anti-
self-dual Weyl tensors is type-D in the Petrov-Pirani-Penrose classification (for
which see e.g. [16]). It was convenient always to suppose that it was the un-
primed Weyl spinor which was type D (and not identically zero) to reduce the
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number of primed spinor indices in equations. Here we weaken the Ricci-
flat condition to allow for Einstein-Maxwell metrics for which the unprimed
Maxwell spinor is aligned with the unprimed Weyl spinor, in the sense that the
PNDs of the Maxwell spinor are both PNDs of the Weyl spinor. We continue
to insist that the Weyl spinor which is type D is not identically zero, and the
method used is 2-component spinor calculus.

With the assumption that the type-D Weyl spinor is not identically zero, we’ll
call these metrics one-sided type-D with an aligned Einstein-Maxwell field. The
Lorentzian Kerr-Newman metric has this property and that is where the term
aligned first arose. Much as our motivation in [24] came indirectly from the
Chen-Teo metric [8], here we are thinking about seeking a charged counter-
part of Chen-Teo (though see [6] where this is achieved by different methods).
The Chen-Teo metric was found by Aksteiner [2] (see also [3]) to be one-sided
type-D, and therefore Hermitian, so it is natural to wonder if it has a charged
counterpart with the corresponding properties, much as the Kerr-Newman so-
lution is related to the Kerr solution.

This problem was considered earlier by Araneda [5] and the first part of this
article re-derives his findings: one-sided type-D metrics with aligned Einstein-
Maxwell fields are obtained by choosing a solution of the SU(c0)-Toda equa-
tion ((24) below — we’ll omit the term “SU(o0)” henceforth, and just say “the
Toda equation”), together with the choice of a solution of a monopole-like equa-
tion (22) derived from that. It’s known that the Toda equation linearises if the
solution has an extra symmetry, [25], and we saw in [24] that one-sided type-
D Ricci-flat metrics with an extra symmetry commuting with the first can be
expressed in terms of an axisymmetric solution of the flat three-dimensional
Laplacian. This suggests that the field equations for one-sided type-D metrics
with aligned Einstein-Maxwell and a second symmetry commuting with the
first linearise in much the same way, and we shall see here that they do.

The principal result of this article is the explicit metric form (33) written in
terms of two axisymmetric harmonic functions, V and F.

Our method is to start in Section 2 with the assumption of a 4-dimensional
Riemannian metric subject to three inter-related conditions. For a Ricci-flat
metric the three conditions can be seen to be equivalent, with the aid of the
Goldberg-Sachs Theorem (see volume 2 of [16]) and there is a generalised ver-
sion of this result in [16] which helps us to a similar result, Proposition 1,
with an aligned Einstein-Maxwell solution. There are quite a few papers in the
literature generalising the Goldberg-Sachs theorem, to admit some restricted
forms of non-zero Ricci tensor and/or to apply to Riemannian metrics, see e.g.
[4, 18, 21, 22], and some contain results close to Proposition 1, but it seemed
easier to generate the result directly within the formalism we work with here.
It’s worth stating here that there is a considerable overlap with [13, 14] in the
general theory.

Then we use the two-component spinor formalism to rederive the expres-
sions of [5] for the metric in terms of a solution u of the Toda field equation
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(24) and a solution W of an associated monopole equation (22). The metric
automatically has a Killing vector which arises from a valence-2 Killing spinor,
which in turn is a consequence of the assumptions on the curvature (by a gen-
eralisation of [17]). Then in Section 3 we add the assumption that there is a
second Killing vector, commuting with the first, and deduce that, after possible
redefinitions of coordinates and u preserving the Toda field equation, the sec-
ond Killing vector must be a symmetry of u corresponding to an ignorable coor-
dinate which can be taken to be y in (24). Then in Section 4 we exploit the obser-
vation in [25] that solutions of the Toda field equation independent of y corre-
spond to axisymmetric solutions of the flat 3-dimensional Laplacian. We arrive
at our main result: that Riemannian, one-sided type-D 4-metrics with aligned
Einstein-Maxwell and two commuting Killing vectors are in one-to-one corre-
spondence with pairs of axisymmetric solutions of the flat three-dimensional
Laplacian. The field equations, known to be completely integrable in this case,
in fact linearise.

Acknowledgements: I am grateful to Dr. Bernardo Araneda and Prof. Ma-
ciej Dunajski for useful discussions.

2. One-sided type-D metrics with aligned Einstein-Maxwell

In this section, we rederive the results of [ 5] in the style of [23, 24]. For back-
ground on the 2-component spinor formalism see [12] or [16].

2.1. Some general theory. Start then with a Riemannian metric g on a 4-
manifold M.

In [24] we considered three conditions on such an (M, g), which was as-
sumed to be Ricci-flat:

(1) (M, g) admits an integrable complex structure compatible with the met-
ric and of the form

JE =788 B withJ,p :=J Cecp = 2io(Ao£),

for some spinor field 0, with the normalisation 040™ = 1.

(2) (M, g) admits a valence-2 Killing spinor, which is to say a spinor field
wyp = 2iw0( Aog) for a real function w and a normalised spinor field 04,
satisfying

V ara®pcy = 0. (1)

(3) The SD Weyl spinor of (M, g) takes the form

Papcep = ¢0(A03020£),
for a real function 3 and a normalised spinor field 04 (and the Ricci
spinor is zero by assumption).

Then these conditions are all equivalent: condition (1) forces 0 to be geodesic
and shear-free (recall this condition is

OAOBVAA/OB =0, (2)
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and henceforth write this condition as gsf), and therefore 0™ is gsf as well;
then the Goldberg-Sachs Theorem [16] forces condition (3) to hold - given a
4-dimensional Ricci-flat M, a gsf spinor must be a repeated PND of the Weyl
spinor, and in the Riemannian setting can only be twice repeated, whence con-
dition (3); and the calculation in [17] then forces condition (2) from condition
(3) for suitable w (in fact w is a constant multiple of p~1/3); finally condition (2)
forces 04 to be gsf which implies integrability of J.? in (1).

In this sequel to [24], we wish to modify the assumptions to allow a non-zero
Ricci spinor of a particular form. We replace the assumption of Ricci-flatness by
the Einstein-Maxwell condition, that there are two Maxwell fields of opposite
duality

Ffl;’) = $apeapy, and F ((1-1:) = ParB€ap
both satisfying the source-free Maxwell equations:

VAYG s = 0= VA0 g, (3)
and the Ricci spinor is expressed in terms of them via
D parp = PaBParp- 4

It necessarily follows that the Ricci scalar is constant, and we shall set it to zero.
Now we consider three modified conditions and show that they are again
equivalent.

Proposition 1. The following three conditions on a 4-dimensional Riemannian
Einstein-Maxwell space (M, g) are equivalent.
1. (M, g) admits an integrable complex structure compatible with the metric
and of the form

Jab = JB5B, Wlﬂ’lJAB = JACGCB = 2iO(AOB),

ATA

for some spinor field o , with the normalisation 0,0 = 1. Furthermore,
the Ricci tensor is J-invariant (this is what enforces ‘aligned; and it also
enforces the condition ‘strongly Hermitian’ introduced in [13, 14])).

2. (M, g) admits avalence-2 unprimed Killing spinor, so again this is a spinor
field w,p = Ziwo(Aog)for a real function w and a normalised spinor field
0,4, satisfying

V ara®pcy = 0. (5)

3’ . the SD Weyl spinor of (M, g) takes the form

Tt
Yapcp = ¢0(AOBOCOD),

forareal functiony and a normalised spinor field 0 4, and the Ricci spinor
takes the form

@ parp = PaBP B
where ¢ 4,5 and p 45 both satisfy Maxwell’s equations:

VAY G5 =0=V4%p,p,
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and ¢ 45 is aligned with the Weyl spinor in the sense that
bap = 2i¢o o
AB (A B)’
for some real function ¢.

Proof. (1') implies (3): Starting from (1’), this still implies that o4 is gsf, but
we need a generalisation of the Goldberg-Sachs Theorem to bring in condition
(3'). This is available in Proposition 7.3.35 of volume 2 of [16]'. Adapted to the
Riemannian case this asserts:

Prop 7.3.35: Of the following three conditions:

(i) 04 is a twice repeated PND of ) apcps
(i) o4 is gsf.
(lll) OAOBOCVDA,'(PABCD =0.

(i) and (ii) together imply (iii); (i) and (iii) together imply (ii); (ii) and (iii) to-
gether imply (i).

This will give us what we want. In (1") the assumption that the Ricci tensor
is J-invariant implies that ¢ 45 in (4) is proportional to J 45

bap = PJap = 2i¢O(A0£)’ (6)
for some real function ¢. Now the Bianchi identity is
VAYY upep = Vﬁ Qcparp = Parp Vﬁ $cps

using (4) and (3). Contract this with 080€0” to find that the right-hand-side
vanishes by the gsf condition on o, therefore so does the left-hand-side, which
is condition (iii) of Prop 7.3.35; we already have (ii), by virtue of (1’), so we may
conclude that (i) holds: o4 is a repeated PND of 9 45cp, and we have proved
condition (3').

(2) follows from (1’) and (3’) and therefore from (1’) alone. By assumption,
we have the Maxwell equation on ¢ 45:

0=VAY¢,p = iVAA'(c;b(vo;; + oBoj;)).
Contract this with —o® to obtain
—04V 40 ® + 2¢0P0™V 4405 = 0. (7)
Now consider the Killing spinor equation:
0= Vuwpe) = ZiVA,(AcuoBoZ,).

As noted in the Introduction, there have been several papers generalising the Goldberg-
Sachs theorem, to a Riemannian setting or to allow varieties of nonzero Ricci tensor, e.g. [4, 21,
22], and results similar to this Proposition can be found in this literature.
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The contraction of this with 040P0o® is satisfied if 04 is gsf (which by (1') it is)
so it just remains to impose the contraction with 040P0"C (the vanishing of all
other components then follows by complex conjugation):

20
voBoTCVA/(A(ZiwoBoz)) = g(—oAVAA,cu — woPo™V 4 40p). (8)

Compare this with (7): given ¢ satisfying (7), we may take w = ¢~1/2 to satisfy
(8), and we have a Killing spinor.
(1’) and (3') both follow from (2): This needs some more theory. We’ll as-

sume (2) and Einstein-Maxwell, with the scalar curvature zero. From (5) we
have

Vaarwpe = €apKear + €acKpar, )
for a vector K“. Differentiate again and symmetrise
VA/(AV,?)CUCD = 2¢EAB(CCUED)
but also
= ZVI(:GB)(CKD)A"
Deduce that
sz(ABCC‘)ED) =0,
which is part of (3”) (type-D-ness of the Weyl spinor), and that

VA/(AK]?), = _%¢ABCDwCDs (10)
which we use below, and
V.,K* =0,

which is the trace-part of the Killing equation on K*“.

Bringing in the Ricci spinor we have

Vau V%,)CUCD = 2¢A’B’E(Cw%)
but also
= —2VpuKpc)-

Condition (3”) on the Ricci spinor requires this to vanish but we don’t have that
yet. When we do then this is the trace-free part of the Killing equation on K¢
and we may deduce that K¢ is a Killing vector.

Note from condition (2) that

COABCUAB = 2w

and then contract (9) with w?C to find

2

ZCUVAA/CU = C()BCVAA/CUBC = —ZCOACKCA/ = —ZCOJACKCA/,
ie.
VAA/CO = _JfKCA’ or VaCU = Kc]ca, (11)
so that the function w is the Hamiltonian for the Killing vector K¢, and of course
K%V, 0w = 0.
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We can complete the proof that condition (2) implies condition (3") by ex-
ploiting the familiar fact that the presence of a Killing spinor implies that the
metric g is conformal to Kdhler ([10, 19]): one rescales with the conformal fac-
tor Q = w™L:

Sap = ngab = C‘)_Zgab’ (12)
and rescales the Killing spinor according to
Dap = Qg
as this conformal rescaling preserves the Killing spinor equation, and the Killing
spinor becomes the Kihler form for (M, §). The normalised PNDs of the Killing
spinor rescale according to
04 = QY%0,, 64 = Q71204
Since the K&dhler form is parallel we have
0= vAf(zcxvg)C?JCD = EZ’CDE(ACZ’%)
and
0= VA(A’ Vg,)cDCD - q)A’B’E(CcaED)‘

The first of these forces 1 45cp to be type D and since the Weyl spinor is un-
changed under conformal rescaling the same is then true of ) sg¢p - this is the
part of condition (3’) that we already have. The second forces the hatted Ricci
spinor to take the form
Qaparp = Daplarpr

a form that we want for the unhatted Ricci spinor to complete condition (3")
(and the J-invariance of the Ricci tensor which is part of condition (1’)). Under
conformal rescaling the Ricci spinor changes according to

D aparp = Papay — VaraYpyp + YaaYpyms (13)

where Y, = Q7!'V,Q = -0~ 'V, . Contract (13) with Q646® = 0%0” then the
left-hand-side vanishes so that

0 = 040P(®yparp + @'V 44 Vpp ). 14)

Now consider the second term in this:
0408V 4 4 V@ = 04V 4 4/ (0P Vppw) — (04V 440%) Vg,
= 04V 4 u (0BT FKep) + (04V g ur 0B S K ey
using (11). The gsf condition (2) implies
04V 4405 = 0gats
for some a4, and the definition of J f implies
0] J = —io®,

so that

OAOBVAA/VBB/CO = iOAVAA/(OCKCA/) - iOCA/OCKCB/ = iOAOCVAA/KC(y
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which is zero by (10). From (14) this means that

OAOB(IJABA/B/ = 0,
and so

@ aparp = 2i¢O(AOZ;)pA’B’

for a suitable ¢ (in fact ¢ = w~2), and we have recovered condition (3") from
condition (2) (this ¢ 45 can be seen to satisfy the Maxwell equations since it
is the rescaling of & 45, which trivially satisfies the Maxwell equations in M, by
the conformal factor Q! which is the correct rescaling to preserve the Maxwell
equations). We also have that the Ricci spinor is J-invariant, which completes

the proof of condition (1°).
That completes the proof the Proposition. O

We now turn to the study of the metric and curvature subject to the three
conditions in the proposition above.

2.2. The metric and curvature for M. We make the metric ansatz in the
usual way. We introduce a coordinate ¢ so that K3, = 9, and then K, dx® =
W~l(dt + A) for a one-form A and scalar W = (g,,K*K?)~!. We introduce
mutually orthogonal unit-length one-forms

6% = W/2K = W12(dt + A), 6! =J6° = —-W'/2dw
and then on the two-plane orthogonal to the span of (8°,6')
6% +i6° = W/2e¥/2(dx + idy),

with a presently-unknown function u(x,y, z). It’s convenient to set z = —w,
and the metric is then
g = W(e*(dx?* + dy?) + dz?) + W=1(dt + A)%. (15)

We shall have to calculate the curvature to obtain equations constraining u, W
and A but first there is information to be obtained from the observation that
this metric is conformal to Kihler. The Kéhler metric, by (12), is

g= g(e“(dxz +dy?) + dz?) + (22W)-L(dt + A, (16)

which we may also write as

¢ = W(e(dx? + dy?) +dz?) + WI(dt + A)?,

so that
W = z22W, e = z7%e¥, d2? = dz?/z*, 17)
and we’ll choose 2 = —1/z. The Kihler form J is
J=(dt+ A) Adz + Weldx A dy.
We write

dA = ady Ad2 + Bdz Adx + pdx A dy (18)
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for some &, 3,7 to be found, and then
df =dAAdE+dWet) Adx Ady =0,

gives 7 = —(Weh),.
The type (1,0) forms for the metric (16) are spanned by

(dt + A) + iWwdz, dx + idy
so integrability of the complex structure requires just
(dA + idW Ad2) A (dx +idy) =0,

whence we obtain all of dA in the form of (18) with

a=-Wy, p=-W,, 7=-(We"),. (19)
We can express dA in unhatted variables with the aid of (17), (18) and (19) as
dA =-W,dy Adz — W,dz Adx — z* (W;;z”) dx A dy. (20)
This needs to be closed, which requires i
W + W,y + (z2 (u;‘) ) — 0, 21)
z/z

and this is equation (2.25) in [5]. It can be simplified slightly by setting W = zX
when it becomes
Xxx +ny + (Xeu)zz =0, (22)
and this can conveniently be called the monopole equation for X.
Along the way we obtain the unprimed Maxwell field in M as
o= %((dt + A) Adz + Wetdx A dy), (23)

and this is easily seen to be closed (and therefore also co-closed).

For the curvature, we’ll use Cartan calculus on an orthonormal basis of SD
2-forms, so introduce this basis by

PL=0N0 +02A03 p?=0"N02+03A0L, ¢3=06"A0%+01 AG?,
and a corresponding basis of ASD 2-forms by
Pl=00N01—02A0% P2 =0"NO2 -3 NOL, 3 =00 A6 — 01 A B2
We introduce the connection one-forms ocl.j by
dg' = —a'; A ¢

(these indices are raised and lowered by §;;, §*/) and solve for ocij to find

j
al, = C6% o’ = —C6° a4 = E6° + G6* + HE?,
with

C=-w12z1 E=w"1/2 (ﬁ —_ l)
2 z



312 PAUL TOD

and
1 1
G = EW_I/Ze_”/Zuy, H= —EW_l/ze_“/zux.
Now obtain the curvature components from
i — i i k _ oi 4k i k
Qj = docj taaal = Qj~k¢ +Qj.E1,b .
With our curvature assumptions, namely zero Ricci scalar, type-D SD Weyl
spinor and (4) for the Ricci spinor, we may identify

1 _ 3 02 — 1 o3 _ 2
QO = Exsdp, Q5 = Endy, O = Endy,

other independent components zero, where E,, = E;3; = —%En = /6 are

the nonzero components of the SD Weyl spinor as an endomorphism on SD
2-forms, and

1 _03 —
Q 2k T Q 1k~ 0
with 023 c equal to the components of p 4 5 in the basis {p*}. Calculating these,

we obtain the 923 o which we have no interest in, but also the Toda field equa-
tion '

Uy + Uyy +(e%),; =0, (24)
and an expression for ¥:
1
= 6Ey; = ——(2 — zu,). 25
¥ 22 2sz( zZu;) (25)

To summarise, with the metric form (15), we choose a solution u of (24) and
then a solution X of (22); set W = zX and solve (20) for A and substitute into
(15). The remaining unknown component of the unprimed Weyl spinor is given
by (25), and the aligned Maxwell field by (23).

3. A second Killing vector and the Ward transformation

If there is a second Killing vector, then by the same argument as in [24], there
is no loss of generality is assuming it is L = d,, and the functions u, W and X
and the components of A are independent of y. As in [24], we can apply the
transformation of [25] to linearise (24) and simplify (22).

Starting from (24) with u independent of y:

Uyy + (eu)zz =0, (26)
we change from coordinates (x, z) to coordinates (R, Z) and from dependent

function u(x, z) to dependent function V (R, Z) via

1
x=Vy z= ERVR’ u = log(R?/4) so that R? = 4e*, 27

with the assumption that V' is axisymmetric and harmonic:

(RVR@)r + RV 7z =0, (28)
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(and that its second derivatives V,,, Vi, are not both zero). The Jacobian ma-
trix of the coordinate transformation, taking account of (28), is

1
0(x,z2) | Vzr —3RVzz
0(R,Z) Vzz %RVZR

B

with inverse

dR.Z) 1 %RVZR %RVZZ
o(x,z) A ’

—Vzz  Vzr
where A = iR((VzR)2 + (Vz2)2).

Aside: T've precisely followed Ward’s original presentation of this transfor-
mation [25] but it has a small disadvantage for our purposes: note that, from
(27),

AdRANdZ =dx Adz,

which has the effect of changing the orientation of the spatial metric & in (30)
and consequently introducing a sign change in the choice of the canonical Weyl-
Papapetrou coordinates later.

Now calculate
ou 0Z du 0Z
8z  dx dx dz’
from which (26) follows. For the converse, given u satisfying (26), obtain Z
from (29) and take R = 2¢%*/2, discover that

1 _dx o0z O0x o0z

ERa—R—a—Z=0=Ra—Z+Za—R,

et (29)

so introduce V with
1
X = Vz, zZ = ERVR,

by the first of these and find it is harmonic by the second.
We also want to transform (21) or (22). For this, first note that

h o= dz? + eM(dx? + dy?) = %RA(dRz +d7?) + %deyz, (30)
so for any ¢(x, z) calculate

My = ¢ B+ (€9),) = (R + Réz),

where A, is the Laplacian for the metric h.
We can solve (22) by setting X = F, where

Fyx + Fy, +(e"F;), =0,

and for an F independent of y this is the Laplace equation for h, so F is equiv-
alently found as a harmonic function of (R, Z).
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In the metric, we need W as a function of (R, Z) and this is?
RV
W =zF, = Z_AR(FZVZR — FrVzz). (3D

To complete the metric (15) we need an expression for A. For this we need
the function H conjugate to F, in the sense that

Fy=H,, ¢"F, = —H,,
and then it can be checked (by solving (20)) that a candidate for A is
A = Bdy with B = (zH, — H).

We want to express this in terms of (R, Z) so first note that
1 1
HR = _ERFZ, HZ = ERFR

and then
R*Vg
4A

Now we may assemble the metric (16) by taking the spatial metric from (30),
W from (31) and A from (32), remembering that e# = R?/4. The result can be
written in the standard toric form as

w-l BW~! dt
— 02 2 2
g = QX(dR*+dz*)+( dr dy )< BW™! BW-l 4+ WR2/4 )( dy ) (33)

with
Q= RZXR (FzVzr — FrVz2),
W= %(FZVZR — FrVz2),
B = RzZR (FrVzr + FzVzz) — H,
and still

A= %R((VZR)Z +(V22)%).

Also the determinant of the Gram matrix (i.e. the matrix of inner products of
the Killing vectors) is R?/4 so the Weyl-Papapetrou canonical coordinates are
(R/2,Z/2).2

2This incidentally shows that, having chosen V, we choose F to be an arbitrary second har-
monic function, but we must not choose F = V, or W is identically zero and the construction
collapses.

3As noted in the aside above, strictly speaking these should be (R/2,-Z/2).
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4. Some examples

+ Riemannian IWP
Before imposing the second symmetry, let us consider the case u = 0,
which can’t be the subject of the Ward transformation. Now W = zX
and

AoX 1= Xy + Xy + X, = 0,
while from (20)
dA = —zX,dy Adz — zX,dz A dx — (zX, — X)dx A dy,
and the metric is
g = zX(dx? + dy? + dz?) + (zX)~'(dt + A)%.

This is a special case of a familiar class of metrics, namely the Riemann-
ian IWP solutions [9, 26, 27]. To obtain these, take two harmonic func-
tions U, U, and solve

dA =k (UldUz - Usz1)5

for the 1-form A. Here * is the dual in the flat 3-metric, and the RHS is
closed by harmonicity of U;, U,. Then the metric is

g, = U Uy(dx? + dy? + dz?) + (U U,)~1(dt + A)?,

sowe choose U; = X, U, = z to get the case under consideration. These
particular Riemannian IWP metrics are neither regular nor ALF nor
ALE.

Comment: Since the Riemannian IWP metrics depend on a choice
of two harmonic functions, as do the type-D aligned Einstein-Maxwell
metrics given here, one might worry that all the metrics given here were
in this class. Here are two arguments why they aren’t: first, the obvious
J, given by

J(dx) =dy, J(dt + A) = U,U,dz

is only integrable if either U;, = U,, = 0 or the same with U,; second,
the TWP metrics include the Majumdar-Papapetrou solutions, which
are not always type-D, so not always Hermitian.
« Examples with ¢" separable
This case includes the spherically symmetric solutions which were
discussed in [5] but there’s a little bit to add. Choose the separable so-
lution (i.e. separable as a sum; e* is separable as a product)

u = f(x,y) + g(z) = —2log cosh x + log(z? + 2az + b),
with a, b constant (the solution

u=f(x,y)+g(z) = —2log(1 + x> + y?) + log(4(z% + 2az + b))
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gives the same result but the one we’ve chosen is independent of y, so
is an example for application of the theory in Section 3.). Then choose
W as a function only of z, for which the general solution is

_ z(cz+2n)
(z2 +2az +b)’
where c, n are two more constants, and then calculate
A =2ncosfdg,
having introduced angular coordinates 6, ¢ by
y =¢, x =logtan(6/2), (34)

so that also cos & = tanh x and sin6 = sech x. Relabel the constants
according to

c=k* n=kN, a= —%(m—N), b= %(2N2—2mN+e2),

and introduce r, y by
r=kz+N,t=ky
then the metric (15) becomes

2
_ % (12 — N2)(d6? + sin® 6d¢?) + U(r)(dyy + 2N cos 6d¢)?,
with

U@r) = (r? =2mr + N2+ e?)(r> = N>,
and this is the Wick-rotated charged Taub-NUT solution, [20], reducing
to the Reissner-Nordstrom solution if N = 0.*

The Taub-bolt solution is obtained from the Riemannian Taub-NUT
solution by setting m = 5N /4, [15], and that restriction applied here
will give a charged version of the Taub-bolt solution.

With the Reissner-Nordstrom solution we can obtain expressions for
V and F. First, from (27) and (34), and with the constants as identified
above (and N = 0)

R= %(r2 — 2mr + e2)'/2sech x,
then by integrating (29)
Z= —%(r — m)tanh x,

(you would expect not to see the minus sign on the right in this expres-
sion; its presence is due to the clash of conventions noted above).

4Since k does not appear in the metric, one expects to be able to set it eual to one, and this

can be achieved by adding 2 log k to u.
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Next with Vg, V, from (27) and the chain rule find

2r(r — m) X
= —2=cosB,
" k(r2=2mr+e2) Tk cos
Vg = %cot@ + %(r — m)xsin6,

which integrate to give

V= %(—2(}’ — m)x cos 6 + 2mlogsin 6 + 2r + r, log(r —r,) + r_log(r —r_)), (35)

where
r.=m=+(m?—e?)/2,
To find F we have
k%2>
zF,=W=—"—— |
z (z2 4+ 2az +b)
whence

2
- 2(m? — e2)1/2

where f(0) is so far undetermined. To fix f(6) recall we want F har-
monic in the metric & of (30). Transforming to the (r, 8)-coordinates,
we find

(rylog(r —ry) —r_log(r —r_)) + f(6), (36)

h=dz? + e'(dx? + dy?) = %drz + Ad6? + Asin® 6dy?,
where A = r? — 2mr + e%. The Laplace equation on F becomes
~ 1 .
kz(AFr)r + m(Sln GFQ)Q =0,

and imposing this on F in (36) gives
k2

= S (rylog(r —ry) —r_log(r —r_)) + k*logsin®.  (37)

The key component in the classification of 4-dimensional, Hermit-
ian, toric, Ricci-flat metrics in [7] is the investigation of V' near the axis,
R = 0. The authors of [7] find

V(R,Z) = a(Z)log R? + lower order,

with a(Z) continuous and piece-wise linear with corners at the nodes of
the rod-structure (see e.g. [11] for the definitions of these terms). With
Reissner-Nordstrom there are two nodes, at Z = Z, = +2(r, — m)/k
and we find B
m Z Tri
T2k
on the three rods, starting from negative Z.

a(Z2) =
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If we apply the same analysis to the second harmonic function F of
(37) we find that the corresponding a(Z) is discontinuous and constant
on each rod.

Riemannian Kerr-Newman: We can take the Kerr-Newman metric
from [1] and replace (t, a) by (it, ia) to obtain it in Riemannian form

.2
dr? sin“ 0

— 9702 4 ein2 2, B 2302 2 2 2
g = 20%(dt — asin” 6d¢) +2®2+Z do- + P (adt + (r* — a*)d¢)

with
2 =r2—q2cos?9, A=r —2mr—a?+e2,0 = ,
/2

(and we’re again using A to avoid confusion with A in Section 3).
Comparing with (15) and the calculations in [24], we may take

z=r—acos6, e* = Asin’0, W = X2(A + a®sin” ).,

and then

, ((r—m—b>_a/2b
x+iy=log||———

r—m+b

tan(6/ 2)ei¢) ,

where m + b are the roots of A = 0 i.e. b = (m? + a? — e?)'/2,
It is straightforward to verify that u, = Z, and e*u, = —Z,, with
Z = 2(r — m) cos 6, so that u does satisfy (26) but again we can’t obtain
u(x, z) explicitly.
From (27) we have
R? = de* = 4(r? — 2mr — a® + €?)sin’ 6,

together with Z = 2(r — m) cos 6, from (29), so that (r, 0) are elliptical
coordinatesin the (R, Z) plane. Itis straightforward, if lengthy, to obtain
V(r,0): we find

= 2(r—acosb)+ 2((r—m)cosf —a)logtan(6/2) + 2mlogsin 6
+((m +b) — %(r —m)cosf)log(r —m —b)
+((m—Db) + %(r —m)cosf)log(r —m+ b), (38)

which is in the same form as V for Kerr in [24] but with the b appropri-
ate to Kerr-Newman.

Next we can follow the same strategy as for Reissner-Nordstrom to
find F, obtaining

F= %(u log(r — r,) — r_log(r — r_)) + logsin 6, (39)

which is very similar to (37).
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