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One-sided type-D metrics with an aligned
Einstein-Maxwell field

Paul Tod

Abstract. We consider four-dimensional, Riemannian metrics for which
one or other of the self-dual or anti-self-dualWeyl tensors is type-D andwhich
satisfy the Einstein-Maxwell equations with the corresponding duality
Maxwell field aligned with the type-D Weyl spinor, in the sense of sharing
the same Principal Null Directions (or PNDs). Such metrics always have a
valence-2 Killing spinor, and therefore a Hermitian structure and at least one
Killing vector. We rederive the results of Araneda ([5]), that these metrics
can all be given in terms of a solution of the 𝑆𝑈(∞)-Toda field equation,
and show that, when there is a second Killing vector commuting with the
first, the method of Ward ([25]) can be applied to show that the metrics can
also be given in terms of a pair of axisymmetric solutions of the flat three-
dimensional Laplacian. Thus in particular the field equations linearise.

Some examples of the constructions are given.
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1. Introduction
This note is a sequel to [24]. There we considered four-dimensional, Rie-

mannian, Ricci-flat metrics for which one or other of the self-dual or anti-
self-dual Weyl tensors is type-D in the Petrov-Pirani-Penrose classification (for
which see e.g. [16]). It was convenient always to suppose that it was the un-
primed Weyl spinor which was type D (and not identically zero) to reduce the
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number of primed spinor indices in equations. Here we weaken the Ricci-
flat condition to allow for Einstein-Maxwell metrics for which the unprimed
Maxwell spinor is alignedwith the unprimedWeyl spinor, in the sense that the
PNDs of the Maxwell spinor are both PNDs of the Weyl spinor. We continue
to insist that the Weyl spinor which is type D is not identically zero, and the
method used is 2-component spinor calculus.
With the assumption that the type-DWeyl spinor is not identically zero, we’ll

call these metrics one-sided type-D with an aligned Einstein-Maxwell field. The
Lorentzian Kerr-Newman metric has this property and that is where the term
aligned first arose. Much as our motivation in [24] came indirectly from the
Chen-Teo metric [8], here we are thinking about seeking a charged counter-
part of Chen-Teo (though see [6] where this is achieved by different methods).
The Chen-Teo metric was found by Aksteiner [2] (see also [3]) to be one-sided
type-D, and therefore Hermitian, so it is natural to wonder if it has a charged
counterpart with the corresponding properties, much as the Kerr-Newman so-
lution is related to the Kerr solution.
This problem was considered earlier by Araneda [5] and the first part of this

article re-derives his findings: one-sided type-D metrics with aligned Einstein-
Maxwell fields are obtained by choosing a solution of the 𝑆𝑈(∞)-Toda equa-
tion ((24) below – we’ll omit the term “𝑆𝑈(∞)” henceforth, and just say “the
Toda equation"), togetherwith the choice of a solution of amonopole-like equa-
tion (22) derived from that. It’s known that the Toda equation linearises if the
solution has an extra symmetry, [25], and we saw in [24] that one-sided type-
D Ricci-flat metrics with an extra symmetry commuting with the first can be
expressed in terms of an axisymmetric solution of the flat three-dimensional
Laplacian. This suggests that the field equations for one-sided type-D metrics
with aligned Einstein-Maxwell and a second symmetry commuting with the
first linearise in much the same way, and we shall see here that they do.
The principal result of this article is the explicit metric form (33) written in

terms of two axisymmetric harmonic functions, 𝑉 and 𝐹.
Our method is to start in Section 2 with the assumption of a 4-dimensional

Riemannian metric subject to three inter-related conditions. For a Ricci-flat
metric the three conditions can be seen to be equivalent, with the aid of the
Goldberg-Sachs Theorem (see volume 2 of [16]) and there is a generalised ver-
sion of this result in [16] which helps us to a similar result, Proposition 1,
with an aligned Einstein-Maxwell solution. There are quite a few papers in the
literature generalising the Goldberg-Sachs theorem, to admit some restricted
forms of non-zero Ricci tensor and/or to apply to Riemannian metrics, see e.g.
[4, 18, 21, 22], and some contain results close to Proposition 1, but it seemed
easier to generate the result directly within the formalism we work with here.
It’s worth stating here that there is a considerable overlap with [13, 14] in the
general theory.
Then we use the two-component spinor formalism to rederive the expres-

sions of [5] for the metric in terms of a solution 𝑢 of the Toda field equation
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(24) and a solution 𝑊 of an associated monopole equation (22). The metric
automatically has a Killing vector which arises from a valence-2 Killing spinor,
which in turn is a consequence of the assumptions on the curvature (by a gen-
eralisation of [17]). Then in Section 3 we add the assumption that there is a
second Killing vector, commuting with the first, and deduce that, after possible
redefinitions of coordinates and 𝑢 preserving the Toda field equation, the sec-
ond Killing vectormust be a symmetry of 𝑢 corresponding to an ignorable coor-
dinatewhich can be taken to be 𝑦 in (24). Then in Section 4we exploit the obser-
vation in [25] that solutions of the Toda field equation independent of 𝑦 corre-
spond to axisymmetric solutions of the flat 3-dimensional Laplacian. We arrive
at our main result: that Riemannian, one-sided type-D 4-metrics with aligned
Einstein-Maxwell and two commuting Killing vectors are in one-to-one corre-
spondence with pairs of axisymmetric solutions of the flat three-dimensional
Laplacian. The field equations, known to be completely integrable in this case,
in fact linearise.

Acknowledgements: I am grateful to Dr. Bernardo Araneda and Prof. Ma-
ciej Dunajski for useful discussions.

2. One-sided type-D metrics with aligned Einstein-Maxwell
In this section, we rederive the results of [5] in the style of [23, 24]. For back-

ground on the 2-component spinor formalism see [12] or [16].

2.1. Some general theory. Start then with a Riemannian metric 𝑔 on a 4-
manifold𝑀.
In [24] we considered three conditions on such an (𝑀, 𝑔), which was as-

sumed to be Ricci-flat:
(1) (𝑀, 𝑔) admits an integrable complex structure compatible with themet-

ric and of the form

𝐽 𝑏𝑎 = 𝐽 𝐵𝐴 𝛿
𝐵′
𝐴′ with 𝐽𝐴𝐵 ∶= 𝐽 𝐶𝐴 𝜖𝐶𝐵 = 2𝑖𝑜(𝐴𝑜†𝐵),

for some spinor field 𝑜𝐴 with the normalisation 𝑜𝐴𝑜†𝐴 = 1.
(2) (𝑀, 𝑔) admits a valence-2 Killing spinor, which is to say a spinor field

𝜔𝐴𝐵 = 2𝑖𝜔𝑜(𝐴𝑜†𝐵) for a real function 𝜔 and a normalised spinor field 𝑜𝐴,
satisfying

∇𝐴′(𝐴𝜔𝐵𝐶) = 0. (1)
(3) The SD Weyl spinor of (𝑀, 𝑔) takes the form

𝜓𝐴𝐵𝐶𝐷 = 𝜓𝑜(𝐴𝑜𝐵𝑜†𝐶𝑜
†
𝐷),

for a real function 𝜓 and a normalised spinor field 𝑜𝐴 (and the Ricci
spinor is zero by assumption).

Then these conditions are all equivalent: condition (1) forces 𝑜𝐴 to be geodesic
and shear-free (recall this condition is

𝑜𝐴𝑜𝐵∇𝐴𝐴′𝑜𝐵 = 0, (2)
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and henceforth write this condition as gsf ), and therefore 𝑜†𝐴 is gsf as well;
then the Goldberg-Sachs Theorem [16] forces condition (3) to hold – given a
4-dimensional Ricci-flat 𝑀, a gsf spinor must be a repeated PND of the Weyl
spinor, and in the Riemannian setting can only be twice repeated, whence con-
dition (3); and the calculation in [17] then forces condition (2) from condition
(3) for suitable 𝜔 (in fact 𝜔 is a constant multiple of 𝜓−1∕3); finally condition (2)
forces 𝑜𝐴 to be gsf which implies integrability of 𝐽 𝑏𝑎 in (1).
In this sequel to [24], we wish tomodify the assumptions to allow a non-zero

Ricci spinor of a particular form. We replace the assumption of Ricci-flatness by
the Einstein-Maxwell condition, that there are two Maxwell fields of opposite
duality

𝐹(−)𝑎𝑏 = 𝜙𝐴𝐵𝜖𝐴′𝐵′ , and 𝐹
(+)
𝑎𝑏 = 𝜌𝐴′𝐵′𝜖𝐴′𝐵′ ,

both satisfying the source-free Maxwell equations:

∇𝐴𝐴′𝜙𝐴𝐵 = 0 = ∇𝐴𝐴′𝜌𝐴′𝐵′ , (3)

and the Ricci spinor is expressed in terms of them via

Φ𝐴𝐵𝐴′𝐵′ = 𝜙𝐴𝐵𝜌𝐴′𝐵′ . (4)

It necessarily follows that the Ricci scalar is constant, and we shall set it to zero.
Now we consider three modified conditions and show that they are again

equivalent.

Proposition 1. The following three conditions on a 4-dimensional Riemannian
Einstein-Maxwell space (𝑀, 𝑔) are equivalent.

1’. (𝑀, 𝑔) admits an integrable complex structure compatible with the metric
and of the form

𝐽 𝑏𝑎 = 𝐽 𝐵𝐴 𝛿
𝐵′
𝐴′ with 𝐽𝐴𝐵 ∶= 𝐽 𝐶𝐴 𝜖𝐶𝐵 = 2𝑖𝑜(𝐴𝑜†𝐵),

for some spinor field 𝑜𝐴 with the normalisation 𝑜𝐴𝑜†𝐴 = 1. Furthermore,
the Ricci tensor is 𝐽-invariant (this is what enforces ‘aligned’, and it also
enforces the condition ‘strongly Hermitian’ introduced in [13, 14])).

2. (𝑀, 𝑔)admits a valence-2 unprimedKilling spinor, so again this is a spinor
field 𝜔𝐴𝐵 = 2𝑖𝜔𝑜(𝐴𝑜†𝐵) for a real function 𝜔 and a normalised spinor field
𝑜𝐴, satisfying

∇𝐴′(𝐴𝜔𝐵𝐶) = 0. (5)
3’ . the SD Weyl spinor of (𝑀, 𝑔) takes the form

𝜓𝐴𝐵𝐶𝐷 = 𝜓𝑜(𝐴𝑜𝐵𝑜†𝐶𝑜
†
𝐷),

for a real function𝜓 andanormalised spinor field 𝑜𝐴, and the Ricci spinor
takes the form

Φ𝐴𝐵𝐴′𝐵′ = 𝜙𝐴𝐵𝜌𝐴′𝐵′

where 𝜙𝐴𝐵 and 𝜌𝐴′𝐵′ both satisfy Maxwell’s equations:

∇𝐴𝐴′𝜙𝐴𝐵 = 0 = ∇𝐴𝐴′𝜌𝐴′𝐵′ ,
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and 𝜙𝐴𝐵 is aligned with the Weyl spinor in the sense that

𝜙𝐴𝐵 = 2𝑖𝜙𝑜(𝐴𝑜†𝐵),

for some real function 𝜙.

Proof. (1′) implies (3′): Starting from (1′), this still implies that 𝑜𝐴 is gsf, but
we need a generalisation of the Goldberg-Sachs Theorem to bring in condition
(3′). This is available in Proposition 7.3.35 of volume 2 of [16]1. Adapted to the
Riemannian case this asserts:

Prop 7.3.35: Of the following three conditions:

(i) 𝑜𝐴 is a twice repeated PND of 𝜓𝐴𝐵𝐶𝐷;
(ii) 𝑜𝐴 is gsf.
(iii) 𝑜𝐴𝑜𝐵𝑜𝐶∇𝐷𝐴′𝜓𝐴𝐵𝐶𝐷 = 0.

(i) and (ii) together imply (iii); (i) and (iii) together imply (ii); (ii) and (iii) to-
gether imply (i).

This will give us what we want. In (1′) the assumption that the Ricci tensor
is 𝐽-invariant implies that 𝜙𝐴𝐵 in (4) is proportional to 𝐽𝐴𝐵

𝜙𝐴𝐵 = 𝜙𝐽𝐴𝐵 = 2𝑖𝜙𝑜(𝐴𝑜†𝐵), (6)

for some real function 𝜙. Now the Bianchi identity is

∇𝐴𝐴′𝜓𝐴𝐵𝐶𝐷 = ∇𝐵′
𝐵 Φ𝐶𝐷𝐴′𝐵′ = 𝜌𝐴′𝐵′∇𝐵′

𝐵 𝜙𝐶𝐷,

using (4) and (3). Contract this with 𝑜𝐵𝑜𝐶𝑜𝐷 to find that the right-hand-side
vanishes by the gsf condition on 𝑜𝐴, therefore so does the left-hand-side, which
is condition (iii) of Prop 7.3.35; we already have (ii), by virtue of (1′), so wemay
conclude that (i) holds: 𝑜𝐴 is a repeated PND of 𝜓𝐴𝐵𝐶𝐷, and we have proved
condition (3′).

(2) follows from (1′) and (3′) and therefore from (1′) alone. By assumption,
we have the Maxwell equation on 𝜙𝐴𝐵:

0 = ∇𝐴𝐴′𝜙𝐴𝐵 = 𝑖∇𝐴𝐴′(𝜙(𝑜𝐴𝑜†𝐵 + 𝑜𝐵𝑜†𝐴)).

Contract this with −𝑜𝐵 to obtain

−𝑜𝐴∇𝐴𝐴′𝜙 + 2𝜙𝑜𝐵𝑜†𝐴∇𝐴𝐴′𝑜𝐵 = 0. (7)

Now consider the Killing spinor equation:

0 = ∇𝐴′(𝐴𝜔𝐵𝐶) = 2𝑖∇𝐴′(𝐴𝜔𝑜𝐵𝑜†𝐶).

1As noted in the Introduction, there have been several papers generalising the Goldberg-
Sachs theorem, to a Riemannian setting or to allow varieties of nonzero Ricci tensor, e.g. [4, 21,
22], and results similar to this Proposition can be found in this literature.



308 PAUL TOD

The contraction of this with 𝑜𝐴𝑜𝐵𝑜𝐶 is satisfied if 𝑜𝐴 is gsf (which by (1′) it is)
so it just remains to impose the contraction with 𝑜𝐴𝑜𝐵𝑜†𝐶 (the vanishing of all
other components then follows by complex conjugation):

𝑜𝐴𝑜𝐵𝑜†𝐶∇𝐴′(𝐴(2𝑖𝜔𝑜𝐵𝑜†𝐶)) =
2𝑖
3 (−𝑜

𝐴∇𝐴𝐴′𝜔 − 𝜔𝑜𝐵𝑜†𝐴∇𝐴𝐴′𝑜𝐵). (8)

Compare this with (7): given 𝜙 satisfying (7), we may take 𝜔 = 𝜙−1∕2 to satisfy
(8), and we have a Killing spinor.

(1′) and (3′) both follow from (2): This needs some more theory. We’ll as-
sume (2) and Einstein-Maxwell, with the scalar curvature zero. From (5) we
have

∇𝐴𝐴′𝜔𝐵𝐶 = 𝜖𝐴𝐵𝐾𝐶𝐴′ + 𝜖𝐴𝐶𝐾𝐵𝐴′ , (9)
for a vector 𝐾𝑎. Differentiate again and symmetrise

∇𝐴′(𝐴∇𝐴′

𝐵)𝜔𝐶𝐷 = 2𝜓𝐸𝐴𝐵(𝐶𝜔𝐸𝐷)
but also

= 2∇𝐴′

(𝐴𝜖𝐵)(𝐶𝐾𝐷)𝐴′ .
Deduce that

𝜓𝐸(𝐴𝐵𝐶𝜔𝐸𝐷) = 0,
which is part of (3′) (type-D-ness of the Weyl spinor), and that

∇𝐴′(𝐴𝐾𝐴′

𝐵) = −12𝜓𝐴𝐵𝐶𝐷𝜔
𝐶𝐷, (10)

which we use below, and
∇𝑎𝐾𝑎 = 0,

which is the trace-part of the Killing equation on 𝐾𝑎.
Bringing in the Ricci spinor we have

∇𝐴(𝐴′∇𝐴
𝐵′)𝜔𝐶𝐷 = 2Φ𝐴′𝐵′𝐸(𝐶𝜔𝐸𝐷)

but also
= −2∇(𝐷(𝐴′𝐾𝐵′)𝐶).

Condition (3′) on the Ricci spinor requires this to vanish but we don’t have that
yet. When we do then this is the trace-free part of the Killing equation on 𝐾𝑎

and we may deduce that 𝐾𝑎 is a Killing vector.
Note from condition (2) that

𝜔𝐴𝐵𝜔𝐴𝐵 = 2𝜔2

and then contract (9) with 𝜔𝐵𝐶 to find
2𝜔∇𝐴𝐴′𝜔 = 𝜔𝐵𝐶∇𝐴𝐴′𝜔𝐵𝐶 = −2𝜔 𝐶

𝐴 𝐾𝐶𝐴′ = −2𝜔𝐽 𝐶𝐴 𝐾𝐶𝐴′ ,
i.e.

∇𝐴𝐴′𝜔 = −𝐽 𝐶𝐴 𝐾𝐶𝐴′ or ∇𝑎𝜔 = 𝐾𝑐𝐽𝑐𝑎, (11)
so that the function𝜔 is theHamiltonian for theKilling vector𝐾𝑎, and of course
𝐾𝑎∇𝑎𝜔 = 0.
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We can complete the proof that condition (2) implies condition (3′) by ex-
ploiting the familiar fact that the presence of a Killing spinor implies that the
metric 𝑔 is conformal to Kähler ([10, 19]): one rescales with the conformal fac-
tor Ω = 𝜔−1:

𝑔̂𝑎𝑏 = Ω2𝑔𝑎𝑏 = 𝜔−2𝑔𝑎𝑏, (12)
and rescales the Killing spinor according to

𝜔̂𝐴𝐵 = Ω2𝜔𝐴𝐵
as this conformal rescaling preserves theKilling spinor equation, and theKilling
spinor becomes the Kähler form for (𝑀̂, 𝑔̂). The normalised PNDs of the Killing
spinor rescale according to

𝑜̂𝐴 = Ω1∕2𝑜𝐴, 𝑜̂𝐴 = Ω−1∕2𝑜𝐴.
Since the Kähler form is parallel we have

0 = ∇̂𝐴′(𝐴∇̂𝐴′

𝐵)𝜔̂𝐶𝐷 = 𝜓̂𝐶𝐷𝐸(𝐴𝜔̂𝐸𝐷)
and

0 = ∇̂𝐴(𝐴′∇̂𝐴
𝐵′)𝜔̂𝐶𝐷 = Φ̂𝐴′𝐵′𝐸(𝐶𝜔̂𝐸𝐷).

The first of these forces 𝜓̂𝐴𝐵𝐶𝐷 to be type D and since the Weyl spinor is un-
changed under conformal rescaling the same is then true of 𝜓𝐴𝐵𝐶𝐷 - this is the
part of condition (3′) that we already have. The second forces the hatted Ricci
spinor to take the form

Φ̂𝐴𝐵𝐴′𝐵′ = 𝜔̂𝐴𝐵𝜌̂𝐴′𝐵′ ,
a form that we want for the unhatted Ricci spinor to complete condition (3′)
(and the 𝐽-invariance of the Ricci tensor which is part of condition (1′)). Under
conformal rescaling the Ricci spinor changes according to

Φ̂𝐴𝐵𝐴′𝐵′ = Φ𝐴𝐵𝐴′𝐵′ − ∇𝐴′(𝐴Υ𝐵)𝐵′ + Υ𝐴′(𝐴Υ𝐵)𝐵′ , (13)

where Υ𝑎 = Ω−1∇𝑎Ω = −𝜔−1∇𝑎𝜔. Contract (13) withΩ𝑜̂𝐴𝑜̂𝐵 = 𝑜𝐴𝑜𝐵 then the
left-hand-side vanishes so that

0 = 𝑜𝐴𝑜𝐵(Φ𝐴𝐵𝐴′𝐵′ + 𝜔−1∇𝐴𝐴′∇𝐵𝐵′𝜔). (14)

Now consider the second term in this:

𝑜𝐴𝑜𝐵∇𝐴𝐴′∇𝐵𝐵′𝜔 = 𝑜𝐴∇𝐴𝐴′(𝑜𝐵∇𝐵𝐵′𝜔) − (𝑜𝐴∇𝐴𝐴′𝑜𝐵)∇𝐵𝐵′𝜔,
= 𝑜𝐴∇𝐴𝐴′(−𝑜𝐵𝐽 𝐶𝐵 𝐾𝐶𝐵′) + (𝑜𝐴∇𝐴𝐴′𝑜𝐵)𝐽 𝐶𝐵 𝐾𝐶𝐵′

using (11). The gsf condition (2) implies

𝑜𝐴∇𝐴𝐴′𝑜𝐵 = 𝑜𝐵𝛼𝐴′

for some 𝛼𝐴′ , and the definition of 𝐽 𝐵𝐴 implies

𝑜𝐴𝐽 𝐵𝐴 = −𝑖𝑜𝐵,
so that

𝑜𝐴𝑜𝐵∇𝐴𝐴′∇𝐵𝐵′𝜔 = 𝑖𝑜𝐴∇𝐴𝐴′(𝑜𝐶𝐾𝐶𝐴′) − 𝑖𝛼𝐴′𝑜𝐶𝐾𝐶𝐵′ = 𝑖𝑜𝐴𝑜𝐶∇𝐴𝐴′𝐾𝐶𝐶′
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which is zero by (10). From (14) this means that

𝑜𝐴𝑜𝐵Φ𝐴𝐵𝐴′𝐵′ = 0,
and so

Φ𝐴𝐵𝐴′𝐵′ = 2𝑖𝜙𝑜(𝐴𝑜†𝐵)𝜌𝐴′𝐵′

for a suitable 𝜙 (in fact 𝜙 = 𝜔−2), and we have recovered condition (3′) from
condition (2) (this 𝜙𝐴𝐵 can be seen to satisfy the Maxwell equations since it
is the rescaling of 𝜔̂𝐴𝐵, which trivially satisfies the Maxwell equations in 𝑀̂, by
the conformal factorΩ−1 which is the correct rescaling to preserve theMaxwell
equations). We also have that the Ricci spinor is 𝐽-invariant, which completes
the proof of condition (1’).
That completes the proof the Proposition. □

We now turn to the study of the metric and curvature subject to the three
conditions in the proposition above.

2.2. The metric and curvature for 𝑴. We make the metric ansatz in the
usual way. We introduce a coordinate 𝑡 so that 𝐾𝑎𝜕𝑎 = 𝜕𝑡 and then 𝐾𝑎𝑑𝑥𝑎 =
𝑊−1(𝑑𝑡 + 𝐴) for a one-form 𝐴 and scalar 𝑊 = (𝑔𝑎𝑏𝐾𝑎𝐾𝑏)−1. We introduce
mutually orthogonal unit-length one-forms

𝜃0 = 𝑊1∕2𝐾 = 𝑊−1∕2(𝑑𝑡 + 𝐴), 𝜃1 = 𝐽𝜃0 = −𝑊1∕2𝑑𝜔
and then on the two-plane orthogonal to the span of (𝜃0, 𝜃1)

𝜃2 + 𝑖𝜃3 = 𝑊1∕2𝑒𝑢∕2(𝑑𝑥 + 𝑖𝑑𝑦),
with a presently-unknown function 𝑢(𝑥, 𝑦, 𝑧). It’s convenient to set 𝑧 = −𝜔,
and the metric is then

𝑔 = 𝑊(𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧2) +𝑊−1(𝑑𝑡 + 𝐴)2. (15)

We shall have to calculate the curvature to obtain equations constraining 𝑢,𝑊
and 𝐴 but first there is information to be obtained from the observation that
this metric is conformal to Kähler. The Kähler metric, by (12), is

𝑔̂ = 𝑊
𝑧2 (𝑒

𝑢(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧2) + (𝑧2𝑊)−1(𝑑𝑡 + 𝐴)2, (16)

which we may also write as

𝑔̂ = 𝑊̂(𝑒𝑢̂(𝑑𝑥2 + 𝑑𝑦2) + 𝑑𝑧̂2) + 𝑊̂−1(𝑑𝑡 + 𝐴)2,
so that

𝑊̂ = 𝑧2𝑊, 𝑒𝑢̂ = 𝑧−4𝑒𝑢, 𝑑𝑧̂2 = 𝑑𝑧2∕𝑧4, (17)
and we’ll choose 𝑧̂ = −1∕𝑧. The Kähler form 𝐽 is

𝐽 = (𝑑𝑡 + 𝐴) ∧ 𝑑𝑧̂ + 𝑊̂𝑒𝑢̂𝑑𝑥 ∧ 𝑑𝑦.
We write

𝑑𝐴 = 𝛼̂𝑑𝑦 ∧ 𝑑𝑧̂ + 𝛽𝑑𝑧̂ ∧ 𝑑𝑥 + 𝛾̂𝑑𝑥 ∧ 𝑑𝑦 (18)
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for some 𝛼̂, 𝛽, 𝛾̂ to be found, and then
𝑑𝐽 = 𝑑𝐴 ∧ 𝑑𝑧̂ + 𝑑(𝑊̂𝑒𝑢̂) ∧ 𝑑𝑥 ∧ 𝑑𝑦 = 0,

gives 𝛾̂ = −(𝑊̂𝑒𝑢̂)𝑧̂.
The type (1,0) forms for the metric (16) are spanned by

(𝑑𝑡 + 𝐴) + 𝑖𝑊̂𝑑𝑧̂, 𝑑𝑥 + 𝑖𝑑𝑦
so integrability of the complex structure requires just

(𝑑𝐴 + 𝑖𝑑𝑊̂ ∧ 𝑑𝑧̂) ∧ (𝑑𝑥 + 𝑖𝑑𝑦) = 0,
whence we obtain all of 𝑑𝐴 in the form of (18) with

𝛼̂ = −𝑊̂𝑥, 𝛽 = −𝑊̂𝑦, 𝛾̂ = −(𝑊̂𝑒𝑢̂)𝑧̂. (19)

We can express 𝑑𝐴 in unhatted variables with the aid of (17), (18) and (19) as

𝑑𝐴 = −𝑊𝑥𝑑𝑦 ∧ 𝑑𝑧 −𝑊𝑦𝑑𝑧 ∧ 𝑑𝑥 − 𝑧2 (𝑊𝑒𝑢
𝑧2 )

𝑧
𝑑𝑥 ∧ 𝑑𝑦. (20)

This needs to be closed, which requires

𝑊𝑥𝑥 +𝑊𝑦𝑦 + (𝑧2 (𝑊𝑒𝑢
𝑧2 )

𝑧
)
𝑧
= 0, (21)

and this is equation (2.25) in [5]. It can be simplified slightly by setting𝑊 = 𝑧𝑋
when it becomes

𝑋𝑥𝑥 + 𝑋𝑦𝑦 + (𝑋𝑒𝑢)𝑧𝑧 = 0, (22)
and this can conveniently be called the monopole equation for 𝑋.
Along the way we obtain the unprimed Maxwell field in𝑀 as

𝜑 = 1
𝑧2 ((𝑑𝑡 + 𝐴) ∧ 𝑑𝑧 +𝑊𝑒𝑢𝑑𝑥 ∧ 𝑑𝑦), (23)

and this is easily seen to be closed (and therefore also co-closed).

For the curvature, we’ll use Cartan calculus on an orthonormal basis of SD
2-forms, so introduce this basis by

𝜙1 = 𝜃0 ∧ 𝜃1 + 𝜃2 ∧ 𝜃3, 𝜙2 = 𝜃0 ∧ 𝜃2 + 𝜃3 ∧ 𝜃1, 𝜙3 = 𝜃0 ∧ 𝜃3 + 𝜃1 ∧ 𝜃2,
and a corresponding basis of ASD 2-forms by

𝜓1̄ = 𝜃0 ∧ 𝜃1 − 𝜃2 ∧ 𝜃3, 𝜓2̄ = 𝜃0 ∧ 𝜃2 − 𝜃3 ∧ 𝜃1, 𝜓3̄ = 𝜃0 ∧ 𝜃3 − 𝜃1 ∧ 𝜃2.

We introduce the connection one-forms 𝛼 𝑗
𝑖 by

𝑑𝜙𝑖 = −𝛼𝑖𝑗 ∧ 𝜙
𝑗

(these indices are raised and lowered by 𝛿𝑖𝑗, 𝛿𝑖𝑗) and solve for 𝛼𝑖𝑗 to find

𝛼12 = 𝐶𝜃2, 𝛼31 = −𝐶𝜃3, 𝛼23 = 𝐸𝜃0 + 𝐺𝜃2 +𝐻𝜃3,
with

𝐶 = −𝑊−1∕2𝑧−1, 𝐸 = 𝑊−1∕2 (𝑢𝑧2 − 1
𝑧) ,
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and
𝐺 = 1

2𝑊
−1∕2𝑒−𝑢∕2𝑢𝑦, 𝐻 = −12𝑊

−1∕2𝑒−𝑢∕2𝑢𝑥.

Now obtain the curvature components from

Ω𝑖
𝑗 = 𝑑𝛼𝑖𝑗 + 𝛼𝑖𝑘 ∧ 𝛼

𝑘
𝑗 = Ω𝑖

𝑗⋅𝑘𝜙
𝑘 +Ω𝑖

𝑗⋅𝑘̄𝜓
𝑘̄.

With our curvature assumptions, namely zero Ricci scalar, type-D SD Weyl
spinor and (4) for the Ricci spinor, we may identify

Ω1
2.𝑘 = 𝐸33𝛿3𝑘, Ω

2
3.𝑘 = 𝐸11𝛿1𝑘, Ω

3
1.𝑘 = 𝐸22𝛿2𝑘,

other independent components zero, where 𝐸22 = 𝐸33 = − 1
2
𝐸11 = 𝜓∕6 are

the nonzero components of the SD Weyl spinor as an endomorphism on SD
2-forms, and

Ω1
2.𝑘̄ = Ω3

1.𝑘̄ = 0,

withΩ2
3.𝑘̄ equal to the components of 𝜌𝐴′𝐵′ in the basis {𝜓𝑘̄}. Calculating these,

we obtain the Ω2
3.𝑘̄, which we have no interest in, but also the Toda field equa-

tion
𝑢𝑥𝑥 + 𝑢𝑦𝑦 + (𝑒𝑢)𝑧𝑧 = 0, (24)

and an expression for 𝜓:

𝜓 = 6𝐸22 =
1

2𝑊𝑧2 (2 − 𝑧𝑢𝑧). (25)

To summarise, with the metric form (15), we choose a solution 𝑢 of (24) and
then a solution 𝑋 of (22); set𝑊 = 𝑧𝑋 and solve (20) for 𝐴 and substitute into
(15). The remaining unknown component of the unprimedWeyl spinor is given
by (25), and the aligned Maxwell field by (23).

3. A second Killing vector and theWard transformation
If there is a secondKilling vector, then by the same argument as in [24], there

is no loss of generality is assuming it is 𝐿 = 𝜕𝑦 and the functions 𝑢,𝑊 and 𝑋
and the components of 𝐴 are independent of 𝑦. As in [24], we can apply the
transformation of [25] to linearise (24) and simplify (22).
Starting from (24) with 𝑢 independent of 𝑦:

𝑢𝑥𝑥 + (𝑒𝑢)𝑧𝑧 = 0, (26)

we change from coordinates (𝑥, 𝑧) to coordinates (𝑅, 𝑍) and from dependent
function 𝑢(𝑥, 𝑧) to dependent function 𝑉(𝑅, 𝑍) via

𝑥 = 𝑉𝑍 , 𝑧 =
1
2𝑅𝑉𝑅, 𝑢 = log(𝑅2∕4) so that 𝑅2 = 4𝑒𝑢, (27)

with the assumption that 𝑉 is axisymmetric and harmonic:

(𝑅𝑉𝑅)𝑅 + 𝑅𝑉𝑍𝑍 = 0, (28)
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(and that its second derivatives 𝑉𝑍𝑍 , 𝑉𝑅𝑍 are not both zero). The Jacobian ma-
trix of the coordinate transformation, taking account of (28), is

𝜕(𝑥, 𝑧)
𝜕(𝑅, 𝑍)

=
⎛
⎜
⎝

𝑉𝑍𝑅 − 1
2
𝑅𝑉𝑍𝑍

𝑉𝑍𝑍
1
2
𝑅𝑉𝑍𝑅

⎞
⎟
⎠
,

with inverse
𝜕(𝑅, 𝑍)
𝜕(𝑥, 𝑧)

= 1
∆ (

1
2
𝑅𝑉𝑍𝑅

1
2
𝑅𝑉𝑍𝑍

−𝑉𝑍𝑍 𝑉𝑍𝑅
) ,

where ∆ = 1
2
𝑅((𝑉𝑍𝑅)2 + (𝑉𝑍𝑍)2).

Aside: I’ve precisely followed Ward’s original presentation of this transfor-
mation [25] but it has a small disadvantage for our purposes: note that, from
(27),

∆𝑑𝑅 ∧ 𝑑𝑍 = 𝑑𝑥 ∧ 𝑑𝑧,
which has the effect of changing the orientation of the spatial metric ℎ in (30)
and consequently introducing a sign change in the choice of the canonicalWeyl-
Papapetrou coordinates later.

Now calculate

𝑒𝑢 𝜕𝑢𝜕𝑧 = −𝜕𝑍𝜕𝑥 ,
𝜕𝑢
𝜕𝑥 = 𝜕𝑍

𝜕𝑧 , (29)

from which (26) follows. For the converse, given 𝑢 satisfying (26), obtain 𝑍
from (29) and take 𝑅 = 2𝑒𝑢∕2, discover that

1
2𝑅

𝜕𝑥
𝜕𝑅 − 𝜕𝑧

𝜕𝑍 = 0 = 𝑅 𝜕𝑥𝜕𝑍 + 2 𝜕𝑧𝜕𝑅 ,

so introduce 𝑉 with
𝑥 = 𝑉𝑍 , 𝑧 =

1
2𝑅𝑉𝑅,

by the first of these and find it is harmonic by the second.
We also want to transform (21) or (22). For this, first note that

ℎ ∶= 𝑑𝑧2 + 𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2) = 1
2𝑅∆(𝑑𝑅

2 + 𝑑𝑍2) + 1
4𝑅

2𝑑𝑦2, (30)

so for any 𝜙(𝑥, 𝑧) calculate

∆ℎ𝜙 = 𝑒−𝑢(𝜙𝑥𝑥 + (𝑒𝑢𝜙𝑧)𝑧) =
2
𝑅2∆((𝑅𝜙𝑅)𝑅 + 𝑅𝜙𝑍𝑍),

where ∆ℎ is the Laplacian for the metric ℎ.
We can solve (22) by setting 𝑋 = 𝐹𝑧 where

𝐹𝑥𝑥 + 𝐹𝑦𝑦 + (𝑒𝑢𝐹𝑧)𝑧 = 0,

and for an 𝐹 independent of 𝑦 this is the Laplace equation for ℎ, so 𝐹 is equiv-
alently found as a harmonic function of (𝑅, 𝑍).
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In the metric, we need𝑊 as a function of (𝑅, 𝑍) and this is2

𝑊 = 𝑧𝐹𝑧 =
𝑅𝑉𝑅
2∆ (𝐹𝑍𝑉𝑍𝑅 − 𝐹𝑅𝑉𝑍𝑍). (31)

To complete the metric (15) we need an expression for 𝐴. For this we need
the function𝐻 conjugate to 𝐹, in the sense that

𝐹𝑥 = 𝐻𝑧, 𝑒𝑢𝐹𝑧 = −𝐻𝑥,

and then it can be checked (by solving (20)) that a candidate for 𝐴 is

𝐴 = 𝐵𝑑𝑦 with 𝐵 = (𝑧𝐻𝑧 −𝐻).

We want to express this in terms of (𝑅, 𝑍) so first note that

𝐻𝑅 = −12𝑅𝐹𝑍 , 𝐻𝑍 =
1
2𝑅𝐹𝑅

and then

𝐴 = 𝐵𝑑𝑦 = (
𝑅2𝑉𝑅
4∆ (𝐹𝑅𝑉𝑍𝑅 + 𝐹𝑍𝑉𝑍𝑍) − 𝐻)𝑑𝑦. (32)

Now we may assemble the metric (16) by taking the spatial metric from (30),
𝑊 from (31) and 𝐴 from (32), remembering that 𝑒𝑢 = 𝑅2∕4. The result can be
written in the standard toric form as

𝑔 = Ω2(𝑑𝑅2+𝑑𝑍2)+
(
𝑑𝑡 𝑑𝑦

)
( 𝑊−1 𝐵𝑊−1

𝐵𝑊−1 𝐵2𝑊−1 +𝑊𝑅2∕4 ) ( 𝑑𝑡
𝑑𝑦 ) , (33)

with

Ω2 = 𝑅2𝑉𝑅
4 (𝐹𝑍𝑉𝑍𝑅 − 𝐹𝑅𝑉𝑍𝑍),

𝑊 = 𝑅𝑉𝑅
2∆ (𝐹𝑍𝑉𝑍𝑅 − 𝐹𝑅𝑉𝑍𝑍),

𝐵 = 𝑅2𝑉𝑅
4∆ (𝐹𝑅𝑉𝑍𝑅 + 𝐹𝑍𝑉𝑍𝑍) − 𝐻,

and still

∆ = 1
2𝑅((𝑉𝑍𝑅)

2 + (𝑉𝑍𝑍)2).

Also the determinant of the Gram matrix (i.e. the matrix of inner products of
the Killing vectors) is 𝑅2∕4 so the Weyl-Papapetrou canonical coordinates are
(𝑅∕2, 𝑍∕2).3

2This incidentally shows that, having chosen 𝑉, we choose 𝐹 to be an arbitrary second har-
monic function, but we must not choose 𝐹 = 𝑉𝑍 or𝑊 is identically zero and the construction
collapses.

3As noted in the aside above, strictly speaking these should be (𝑅∕2, −𝑍∕2).
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4. Some examples
∙ Riemannian IWP

Before imposing the second symmetry, let us consider the case 𝑢 = 0,
which can’t be the subject of the Ward transformation. Now𝑊 = 𝑧𝑋
and

∆0𝑋 ∶= 𝑋𝑥𝑥 + 𝑋𝑦𝑦 + 𝑋𝑧𝑧 = 0,
while from (20)

𝑑𝐴 = −𝑧𝑋𝑥𝑑𝑦 ∧ 𝑑𝑧 − 𝑧𝑋𝑦𝑑𝑧 ∧ 𝑑𝑥 − (𝑧𝑋𝑧 − 𝑋)𝑑𝑥 ∧ 𝑑𝑦,

and the metric is

𝑔 = 𝑧𝑋(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) + (𝑧𝑋)−1(𝑑𝑡 + 𝐴)2.

This is a special case of a familiar class ofmetrics, namely the Riemann-
ian IWP solutions [9, 26, 27]. To obtain these, take two harmonic func-
tions 𝑈1, 𝑈2 and solve

𝑑𝐴 =∗ (𝑈1𝑑𝑈2 −𝑈2𝑑𝑈1),

for the 1-form 𝐴. Here ∗ is the dual in the flat 3-metric, and the RHS is
closed by harmonicity of 𝑈1, 𝑈2. Then the metric is

𝑔1 = 𝑈1𝑈2(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) + (𝑈1𝑈2)−1(𝑑𝑡 + 𝐴)2,

sowe choose𝑈1 = 𝑋,𝑈2 = 𝑧 to get the case under consideration. These
particular Riemannian IWP metrics are neither regular nor ALF nor
ALE.
Comment: Since the Riemannian IWP metrics depend on a choice

of two harmonic functions, as do the type-D aligned Einstein-Maxwell
metrics given here, onemightworry that all themetrics given herewere
in this class. Here are two arguments why they aren’t: first, the obvious
𝐽, given by

𝐽(𝑑𝑥) = 𝑑𝑦, 𝐽(𝑑𝑡 + 𝐴) = 𝑈1𝑈2𝑑𝑧

is only integrable if either 𝑈1𝑥 = 𝑈1𝑦 = 0 or the same with 𝑈2; second,
the IWP metrics include the Majumdar-Papapetrou solutions, which
are not always type-D, so not always Hermitian.

∙ Examples with 𝑒𝑢 separable
This case includes the spherically symmetric solutions which were

discussed in [5] but there’s a little bit to add. Choose the separable so-
lution (i.e. separable as a sum; 𝑒𝑢 is separable as a product)

𝑢 = 𝑓(𝑥, 𝑦) + 𝑔(𝑧) = −2 log cosh 𝑥 + log(𝑧2 + 2𝑎𝑧 + 𝑏),

with 𝑎, 𝑏 constant (the solution

𝑢 = 𝑓(𝑥, 𝑦) + 𝑔(𝑧) = −2 log(1 + 𝑥2 + 𝑦2) + log(4(𝑧2 + 2𝑎𝑧 + 𝑏))
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gives the same result but the one we’ve chosen is independent of 𝑦, so
is an example for application of the theory in Section 3.). Then choose
𝑊 as a function only of 𝑧, for which the general solution is

𝑊 = 𝑧(𝑐𝑧 + 2𝑛)
(𝑧2 + 2𝑎𝑧 + 𝑏)

,

where 𝑐, 𝑛 are two more constants, and then calculate
𝐴 = 2𝑛 cos 𝜃𝑑𝜙,

having introduced angular coordinates 𝜃, 𝜙 by
𝑦 = 𝜙, 𝑥 = log tan(𝜃∕2), (34)

so that also cos 𝜃 = tanh 𝑥 and sin 𝜃 = sech 𝑥. Relabel the constants
according to

𝑐 = 𝑘2, 𝑛 = 𝑘𝑁, 𝑎 = −1𝑘 (𝑚 − 𝑁), 𝑏 = 1
𝑘2 (2𝑁

2 − 2𝑚𝑁 + 𝑒2),

and introduce 𝑟, 𝜒 by
𝑟 = 𝑘𝑧 + 𝑁, 𝑡 = 𝑘𝜒

then the metric (15) becomes

𝑔 = 𝑑𝑟2
𝑈(𝑟)

+ (𝑟2 −𝑁2)(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) + 𝑈(𝑟)(𝑑𝜒 + 2𝑁 cos 𝜃𝑑𝜙)2,

with
𝑈(𝑟) = (𝑟2 − 2𝑚𝑟 + 𝑁2 + 𝑒2)(𝑟2 −𝑁2)−1,

and this is theWick-rotated charged Taub-NUT solution, [20], reducing
to the Reissner-Nordstrom solution if 𝑁 = 0.4
The Taub-bolt solution is obtained from the Riemannian Taub-NUT

solution by setting 𝑚 = 5𝑁∕4, [15], and that restriction applied here
will give a charged version of the Taub-bolt solution.
With the Reissner-Nordstrom solution we can obtain expressions for

𝑉 and 𝐹. First, from (27) and (34), and with the constants as identified
above (and 𝑁 = 0)

𝑅 = 2
𝑘 (𝑟

2 − 2𝑚𝑟 + 𝑒2)1∕2sech 𝑥,

then by integrating (29)

𝑍 = −2𝑘 (𝑟 − 𝑚) tanh 𝑥,

(you would expect not to see the minus sign on the right in this expres-
sion; its presence is due to the clash of conventions noted above).

4Since 𝑘 does not appear in the metric, one expects to be able to set it eual to one, and this
can be achieved by adding 2 log 𝑘 to 𝑢.
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Next with 𝑉𝑅, 𝑉𝑍 from (27) and the chain rule find

𝑉𝑟 =
2𝑟(𝑟 − 𝑚)

𝑘(𝑟2 − 2𝑚𝑟 + 𝑒2)
− 2𝑥𝑘 cos 𝜃,

𝑉𝜃 =
2𝑟
𝑘 cot 𝜃 + 2

𝑘 (𝑟 − 𝑚)𝑥 sin 𝜃,

which integrate to give

𝑉 = 1
𝑘
(
−2(𝑟 − 𝑚)𝑥 cos 𝜃 + 2𝑚 log sin 𝜃 + 2𝑟 + 𝑟+ log(𝑟 − 𝑟+) + 𝑟− log(𝑟 − 𝑟−)

)
, (35)

where
𝑟± = 𝑚 ± (𝑚2 − 𝑒2)1∕2.

To find 𝐹 we have

𝑧𝐹𝑧 = 𝑊 = 𝑘2𝑧2
(𝑧2 + 2𝑎𝑧 + 𝑏)

,

whence

𝐹 = 𝑘2

2(𝑚2 − 𝑒2)1∕2
(𝑟+ log(𝑟 − 𝑟+) − 𝑟− log(𝑟 − 𝑟−)) + 𝑓(𝜃), (36)

where 𝑓(𝜃) is so far undetermined. To fix 𝑓(𝜃) recall we want 𝐹 har-
monic in the metric ℎ of (30). Transforming to the (𝑟, 𝜃)-coordinates,
we find

ℎ = 𝑑𝑧2 + 𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2) = 1
𝑘2𝑑𝑟

2 + ∆̃𝑑𝜃2 + ∆̃ sin2 𝜃𝑑𝑦2,

where ∆̃ = 𝑟2 − 2𝑚𝑟 + 𝑒2. The Laplace equation on 𝐹 becomes

𝑘2(∆̃𝐹𝑟)𝑟 +
1

sin 𝜃 (sin 𝜃𝐹𝜃)𝜃 = 0,

and imposing this on 𝐹 in (36) gives

𝐹 = 𝑘2

2(𝑚2 − 𝑒2)1∕2
(𝑟+ log(𝑟 − 𝑟+) − 𝑟− log(𝑟 − 𝑟−)) + 𝑘4 log sin 𝜃. (37)

The key component in the classification of 4-dimensional, Hermit-
ian, toric, Ricci-flat metrics in [7] is the investigation of𝑉 near the axis,
𝑅 = 0. The authors of [7] find

𝑉(𝑅, 𝑍) = 𝑎(𝑍) log 𝑅2 + lower order,
with 𝑎(𝑍) continuous and piece-wise linear with corners at the nodes of
the rod-structure (see e.g. [11] for the definitions of these terms). With
Reissner-Nordstrom there are two nodes, at 𝑍 = 𝑍± = ±2(𝑟+ − 𝑚)∕𝑘
and we find

𝑎(𝑍) = 𝑚
𝑘 − 𝑍

2 ,
𝑟+
𝑘 ,

𝑚
𝑘 + 𝑍

2 ,

on the three rods, starting from negative 𝑍.
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If we apply the same analysis to the second harmonic function 𝐹 of
(37) we find that the corresponding 𝑎(𝑍) is discontinuous and constant
on each rod.

∙ Riemannian Kerr-Newman: We can take the Kerr-Newman metric
from [1] and replace (𝑡, 𝑎) by (𝑖𝑡, 𝑖𝑎) to obtain it in Riemannian form

𝑔 = 2Θ̃2(𝑑𝑡 − 𝑎 sin2 𝜃𝑑𝜙)2 + 𝑑𝑟2
2Θ̃2 + Σ2𝑑𝜃2 + sin2 𝜃

Σ2 (𝑎𝑑𝑡 + (𝑟2 − 𝑎2)𝑑𝜙)2

with

Σ2 = 𝑟2 − 𝑎2 cos2 𝜃, ∆̃ = 𝑟2 − 2𝑚𝑟 − 𝑎2 + 𝑒2, Θ̃ =
√
∆̃

Σ
√
2
,

(and we’re again using ∆̃ to avoid confusion with ∆ in Section 3).
Comparing with (15) and the calculations in [24], we may take

𝑧 = 𝑟 − 𝑎 cos 𝜃, 𝑒𝑢 = ∆̃ sin2 𝜃, 𝑊 = Σ2(∆̃ + 𝑎2 sin2 𝜃)−1,
and then

𝑥 + 𝑖𝑦 = log ((𝑟 − 𝑚 − 𝑏
𝑟 − 𝑚 + 𝑏)

−𝑎∕2𝑏
tan(𝜃∕2)𝑒𝑖𝜙) ,

where𝑚 ± 𝑏 are the roots of ∆̃ = 0 i.e. 𝑏 = (𝑚2 + 𝑎2 − 𝑒2)1∕2.
It is straightforward to verify that 𝑢𝑥 = 𝑍𝑧 and 𝑒𝑢𝑢𝑧 = −𝑍𝑥, with

𝑍 = 2(𝑟 − 𝑚) cos 𝜃, so that 𝑢 does satisfy (26) but again we can’t obtain
𝑢(𝑥, 𝑧) explicitly.
From (27) we have

𝑅2 = 4𝑒𝑢 = 4(𝑟2 − 2𝑚𝑟 − 𝑎2 + 𝑒2) sin2 𝜃,
together with 𝑍 = 2(𝑟 − 𝑚) cos 𝜃, from (29), so that (𝑟, 𝜃) are elliptical
coordinates in the (𝑅, 𝑍) plane. It is straightforward, if lengthy, to obtain
𝑉(𝑟, 𝜃): we find

𝑉 = 2(𝑟 − 𝑎 cos 𝜃) + 2((𝑟 − 𝑚) cos 𝜃 − 𝑎) log tan(𝜃∕2) + 2𝑚 log sin 𝜃
+((𝑚 + 𝑏) − 𝑎

𝑏 (𝑟 − 𝑚) cos 𝜃) log(𝑟 − 𝑚 − 𝑏)

+((𝑚 − 𝑏) + 𝑎
𝑏 (𝑟 − 𝑚) cos 𝜃) log(𝑟 − 𝑚 + 𝑏), (38)

which is in the same form as 𝑉 for Kerr in [24] but with the 𝑏 appropri-
ate to Kerr-Newman.
Next we can follow the same strategy as for Reissner-Nordstrom to

find 𝐹, obtaining

𝐹 = 1
2𝑏 (𝑟+ log(𝑟 − 𝑟+) − 𝑟− log(𝑟 − 𝑟−)) + log sin 𝜃, (39)

which is very similar to (37).
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