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One-sided type-D Ricci-flat metrics

Paul Tod

ABSTRACT. We consider four-dimensional, Riemannian, Ricci-flat metrics
for which one or other of the self-dual or anti-self-dual Weyl tensors is type-
D in the Petrov-Pirani-Penrose classification. Such metrics always admit a
valence-2 Killing spinor, and therefore a Hermitian structure and at least one
Killing vector. We rederive the results of Przanowski and collaborators, [14,
15, 16, 17], that these metrics can all be given in terms of a solution of the
SU(o0)-Toda field equation, and show that, when there is a second Killing
vector commuting with the first, the method of Ward, [22], can be applied to
show that the metrics can also be given in terms of an axisymmetric solution
of the flat three-dimensional Laplacian. Thusin particular the field equations
linearise.

As a corollary, we show that the same technique linearises the field equa-
tions for a four-dimensional Einstein metric with anti-self-dual Weyl tensor
and two commuting symmetries.

We reduce the Einstein equations with non-zero scalar curvature and one-
sided type-D Weyl tensor, excluding the Kéhler-Einstein case, to a modified
but not integrable Toda equation.

Some examples of the constructions are given.
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1. Introduction

In this note we consider four-dimensional, Riemannian, Ricci-flat metrics
for which one or other of the self-dual or anti-self-dual Weyl tensors is type-D
in the Petrov-Pirani-Penrose classification (for which see e.g. [12]). We'll call
these metrics one-sided type-D, a term in use at least since 1984 (see [16]). Our
motivation comes indirectly from the discovery of the Chen-Teo metric, [7].
This metric has two commuting Killing vectors and is Riemannian and Ricci-
flat and was obtained by inverse-scattering methods, which are available since
the Einstein equations in this case are known to be completely integrable, (see
e.g. [4]). It was discovered by Aksteiner [2] (see also [3]) that the Chen-Teo
metric is one-sided type-D, and therefore, as we shall see, Hermitian. In this
note we ask: can one do more with it, in the light of the general solution of
one-sided type-D vacuum metrics in [16, 17]?

In [16, 17] the Einstein vacuum equations, subject to these restrictions, are
reduced to the SU(o0)-Toda equation (we’ll omit the qualifier “SU(c0)” hence-
forth). It’s known that the Toda equation linearises if the solution has an extra
symmetry, [22], which suggests that the field equations for one-sided type-D
Ricci-flat metrics with a second symmetry commuting with the first linearise,
and we shall see here that they do.

The main result of this note is the explicit metric form given by (35) subject
to (36-38). While this is quite complicated in appearance, it has contributed
usefully to the classification of Ricci-flat, toric, Hermitian metrics in [6].

Our method is to start in Section 2 with the assumption of a 4-dimensional
Riemannian, Ricci-flat metric which is one-sided type-D, or equivalently (as
we show) is Hermitian. Then we use the two-component spinor formalism to
rederive the expressions of [17] for the metric in terms of a solution u of the
Toda field equation (19). The metric automatically has a Killing vector which
arises from a valence-2 Killing spinor, which in turn is a consequence of the
type-D-ness (by [21]), and our rederivation serves to explain the occurence of
this Killing vector. Then in Section 3 we add the assumption that there is a sec-
ond Killing vector and deduce that, after possible redefinitions of coordinates
and u preserving the Toda field equation, the second Killing vector must be a
symmetry of u corresponding to an ignorable coordinate which can be taken
to be y in (19). Then in Section 4 we exploit the observation in [22] that solu-
tions of the Toda field equation independent of y correspond to axisymmetric
solutions of the flat 3-dimensional Laplacian. We arrive at our main result:
that Riemannian, Ricci-flat, one-sided type-D 4-metrics with two commuting
Killing vectors are in one-to-one correspondence with axisymmetric solutions
of the flat three-dimensional Laplacian. The field equations, known to be com-
pletely integrable in this case, in fact linearise. We also give a corollary: by [14]
(see also [18], [20]) the general ASD Einstein metric with a symmetry and non-
zero Ricci scalar can be found in terms of a solution of the Toda field equation;
consequently if there is a second Killing vector commuting with the first then
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again by [22] the solution can be given in terms of a solution of the axisymmetric
Laplace equation - in this case too the Einstein equations linearise. In Section
5 we show that the field equations for one-sided type-D Einstein metrics (and
by assumption not ASD) reduce to a modified Toda field equation which is not
integrable ([5]), in Section 6 we deal with an apparently puzzling feature of the
constructions, and in Section 7 we give some examples of all the reductions.

Acknowledgements: I am grateful to Dr Steffen Aksteiner, formerly of the
Albert Einstein Institute, Golm, for discussions about the Chen-Teo metric, and
for telling me that it was one-sided type-D, and to the Institut Mittag-Leffler in
Djursholm, Sweden for hospitality as part of the programme ‘General Relativity,
Geometry and Analysis’ during September 2019, supported by the Swedish Re-
search Council under grant no. 2016-06596. I am grateful to Dr Maciej Dunajski
of DAMTP Cambridge for telling me of references [14, 15, 16, 17] and for useful
discussions, in the course of which we realised that the construction given here
must be possible, and I am grateful to Profs Jenya Ferapontov and Boris Krug-
likov for information about integrability of the modified Toda equation (46).

2. One-sided type-D

In this section, we rederive the results of [17] in the style of [18, 20]. The
virtue of this rederivation is that one sees how it follows from the algebraic as-
sumption on the Weyl spinor, and one also sees the origin of the first Killing
vector in this assumption. For background on the 2-component spinor formal-
ism see [10], [12] or [11].

Start then with a Riemannian, Ricci-flat and one-sided type-D metric. The
unprimed Weyl spinor (as a matter of convenience, call this the SD Weyl spinor
- it would more properly be the ASD Weyl spinor but this makes very little dif-
ference for us, and reduces the number of primed spinor indices in formulae)
can be taken to be

Yapcp = ¢0(A03020£) €))
with real p = 6%, in NP conventions (so this is essentially the definition of

type-D; note in a Riemannian space we have the Hermitian conjugate, denoted
by dagger, taking spinors to spinors), and the spinor normalisation

040 =1.

We'll assume the metric is non-trivially type-D, in the sense that the SD Weyl
spinor is not zero, so that ¥ is not the zero function. The argument of [21] still
goes through to show that the spinor field w4 defined as’

Wap = il)b_l/go(AO;) (2)
is a (real) Killing spinor, or equivalently
VA’(ACUBC) =0.

IWhat follows is a local calculation, so we restrict to points where 3 is non-zero.
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Therefore
Varawpe = €aKeyar (3)
for some real vector K44/, which is then necessarily a Killing vector. To see
this necessity, calculate commutators as follows (conventions following [12]):
by Ricci-flat-ness
0= AA/B/CUCD =V (CK D), (4)
(A"7"B")
and with zero Ricci scalar
Apwcp = Ypapcwy + szABDCOCE’ (3
whence
¢E(ABCCUD]§ =0,
as we know (this follows from (1), (2)), and the trace of (5) on BC gives

’ 1
VAA’KDA = ¢ABDECOBE = —§¢'CUAD-

From the trace of this we deduce VK¢ = 0, so with (4) we see that K is a
Killing vector, as claimed, and furthermore we may write

1
VaaKpp = _gwwABeA'B' + XA'B€aB> (6)
for some symmetric y 45 (Which we use in Section 6). The identity
Vo VpK,. = Rbcade’
which holds for any Killing vector, now gives
1 D
VAA’(_€¢wBC) = —tapcpK,/

which is equivalent to

wacK,§ =~V ™)
and which also follows by contracting (3) with w?C, so this is an identity, and
Vaaxpc = —PapcpK AD,- (8)
We find, introducing ¢ 45 as
bap = ZiO(AO;) = 2913wy, )
that there is an almost complex structure determined by
Q=¢84 (10)

which is then easily seen to be integrable - thus the metric is Hermitian by
virtue of being type-D and Ricci-flat. Conversely, if there is an integrable com-
plex structure of the form of (10) (i.e. with this duality) then necessarily 0“4
is geodesic and shear-free and therefore, by the Goldberg-Sachs Theorem (see
e.g. [12]), is a repeated PND of the Weyl spinor. Then 04 is another and so the
Weyl spinor is type-D. Therefore the properties of being Hermitian and being
one-sided type-D are here seen to be equivalent.
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With (9) we obtain
¢apK®, = 2¢1/3wABKEf4/ =V, (713, (11)

(By a general argument, this must be a gradient as it defines the Hamiltonian
for K).

We can proceed to find a metric ansatz as follows: set W~! := KK, and
start to construct an orthonormal basis of one-forms with

00 = W2k = w1/2(dt + w),

where K%3, = J, and we’ve introduced a presently unknown one form w. In-
troduce 61 as

61 =J6° = W/2JK = W/2¢ BKp, = —W1/2d(71/3),
using (11), and so 8! = W'/2dz with z = —~1/3 (a real coordinate). Next we

can choose 62, 63 orthogonal to 6°,6' and such that J62 = 03. There will be a
complex coordinate ¢ such that

62 +i6° = Wl/2e4/2d¢,
for some real u, and the metric is
g = Wldt + w)? + W(dz? + etd¢d?), (12)

in terms of functions u, W and the one-form w, all to be determined.
We haven’t exhausted the information in integrability of the complex struc-
ture. The holomorphic one-forms are

el 1= 60 40! = WU2(dt + w) + iWY2dz, € := 6 +i63 = W/2eu/2dy,
and at once
el Ae2 Ade? =0,
but the vanishing of e! A €2 A de! leads to
d¢ A(dw —idz AdW) =0, (13)

which we leave for the moment (this will be part of the ‘monopole’ equation,
(21) below).
From (6) we have, written as forms

dK = —%¢2/3J + ASD terms, (14)

with J the complex structure as a 2-form:
J=26°A0'+6%A6%.
However, with
dw =ady Adz + fdz Adx + ydx A dy, (15)
for unknowns «, 3, ¥ to be found, we obtain
dK = d(W~l(dt + w)) = (dt + ©) AW2dW + W dw
=127 2(0O N0 +02 A0+ f1(BOAOL =02 A3+ (8O AE2 =03 AOV)+ f5(6° A3 —01 AO?)
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where the f; are the coefficients of the ASD terms in (14). From this we read
off

W2
a = —Wx, ‘3 = —Wy, Yy = —e“(WZ — 201?), (16)
and c; is a constant fixed by earlier choices (in fact c; = —1/3 but it is conve-

nient to leave it in the formulae). Note (13) is a consequence of these, but there
is a stronger integrability condition to check for (15), namely

0 = d?w = (a, + B, +y)dx Ady Adz. 17)

We’ll come back to this when we have an expression for W.

We next calculate the SD curvature with this choice for dw by Cartan calculus
based on a normalised triad of SD 2-forms: with an orthonormal basis of one-
forms chosen as

00 = W12(dt + w), 61 = W2dz, 62 = W/2e¥/2dx, 63 = W1/ 2e4/2(dy,
define an orthonormal basis of SD 2-forms as
PL=0"N0  +62A03,¢p2=0"N0>+ B3 A0, P> =0"N03+0 AO?,
solve _ . _
d¢' = —oc‘j AP (18)
for the connection one-forms oclj to find
al, =C6% o’ = -C6°, o, = E6° + G6* + HE?,
with
E=—c;z72W'/2, G = %W‘l/ze_“/zuy, H= —%W‘l/ze‘“/zux,

and

C= —%W‘I/zuz — ¢z 2w/,
Now obtain the curvature components subject to Ricci flatness from

Q) =da'; +a Ak = Q¢
with el/kQ, ik = 0 (which encodes vanishing Ricci scalar; these indices are

raised and lowered by &;;,6"), to find from Q', + iQ'; that necessarily

z%u,
W=-— 2, + f(2),
with 5
f’—2£+01% =0,
so that
72
f= cz+c’

for a constant c¢,. Then from 023 we find that u satisfies the Toda field equation:

Uy + Uy, +(e*),, =0, (19)
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and c; f = z so thatc, = 0 and

1 1

W=—z(1-2 . 20

220~ 32u;) (20)
Now we can check the integrability condition (17). In fact G = W /z satisfies a
familiar monopole equation:

Gyx + Gy, +(e*G),; = 0. (21)
The SD curvature components are now
le == CIZ_3¢3, le == CIZ_3¢2, 023 = —2012_3¢1,

which is recognisably type-D, as expected (in this setting, type-D is the con-
dition that the SD Weyl tensor, which is here represented by the real trace-
free symmetric matrix E;; := €, ""Q,,,.;, should be degenerate, in having a
repeated eigen-value).

We have recovered the expressionsin [16] as deductions from the assumption
of Riemannian, Ricci-flat and either Hermitian or one-sided type-D, and we see
why there is always a Killing vector preserving the complex structure.

Note that
« The holomorphic one-forms are now
el = WV2(dt + w) + iW/2dz, €2 = W1/2e%/2(dx + idy). (22)

« We can always set ¢; = 1 by a constant rescaling of the metric and re-
definition of some coordinates, and this is the value arrived at in [17]:
we’ve recovered their expressions exactly.

« The 2-form z~2¢! is closed: this is the rescaling that makes the metric
Kéhler (for the fact that there must be one, see e.g. [8]).

3. A second Killing vector
Now suppose there is a second Killing vector, then we may write it as
L= Ad; +Bd,+Cd, + D3,

(with C not as in the previous section). We start by showing it must have a
restricted form, which then allows the Toda field equation to be linearised.
Write £ for the Lie derivative along L, and assume L commutes with K = 9,
so that
L(K)=0,
which forces A, B, C, D to be independent of ¢. Also
0 = L(g(K,K)) = L(W™1) so that L(W) = 0.

The curvature is constant along L so that L 4pcp is zero, therefore L = 0
(with 3 the scalar in (1)) and then by the previous section £z = 0 and so D = 0.
Also the Lie derivative of ¢ 45 must be zero (since =4y 4pcp = PPapPcp)), and
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so the complex structure is preserved. From the vanishing of £L(W) we now
deduce

L(u,) = 0. (23)
Since K, W and J are preserved by L, we deduce
LeH) =0,
when, by raising the index, we’ll also have
0= L(W25, +iw~123,) = iw=1/2£(3,),

so that £(3,) = 0 and A, B, C are independent of z.
What can we say about £(e?)? The complex structure is preserved so

L£(e?) = ae! + Be?
for some a, 8 (not to be confused with «, 8 in (15)). Already
£(e') = 0soalso £(@E) =0
and
£(g(@, %)) = 0 whence g(& , £(e?)) = 0,

so o = 0, and by considering L(g(Ez, e?)) we find B pure imaginary: L rotates
the o.n. basis in the (62, 63)-plane.
From (12) we have the freedom

t->t+ f(x,y), o > w—df,
and under this
L= Ad, +Bd,+C0, » Ad; + B(3x + fxd,) + C(3, + f,3,),
and in particular
A—>A+Bf+Cfy,

which we can exploit to set A = 0.
From

0= L(K) = LW~(dt + w)) we deduce L(w) = 0.
Now all that remains of the Killing equation for L is
L(e*(dx? + dy?)) = 0, (24)

ie. L = B(x,y)d, + C(x,y)d, is a Killing vector of the 2-metric h = et(dx? +
dy?). We consider solving this reduced problem in a subsection.
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3.1. Solving (24) for L. We are considering the 2-metric

h := e*(dx? + dy?),
with u(x,y, z) which for our problem we can assume analytic (as solutions of
the Toda equation must be). We perform the following calculation at a fixed
but arbitrary z, which we can take to be z = 0. First calculate the Ricci scalar
of h:

R = —e"(uy, + uyy).
We are requiring the existence of a Killing vector

L = B(x,y)0, + C(x,y)d,,

which must preserve R and so must be orthogonal to dR, so for some Q(x,y)
we have
B =-QR),, C=QR,. (25)
The Killing equations are
0= Lrhy, = L3.hyp + he0pLE + hepd,LE.
With ab = 12 this gives
B, +C, =0, (26)
while with ab = 11 or 22
1
B, =Cy = —5L(w). (27)
Substitute from (25) into (26) and (27) to obtain the following system for dQ:
QR — Q,R, = QR,, — R,,)
Q.R, + Q,R, = —20R
which algebraically solves to give

Q
Ex = DM (Ry(Ryy — Ryx) — 2RyR,y),

Xy

Q
Y -
E =D 1(_Ry(Rxx - Ryy) - 2Rxny)’

with D = (R,)* + (R))* = |dR|? (note this is not h(dR,dR)). This can be sim-
plified by moving some terms to the left since
Dy = 2R,R, + 2R R, D, = 2R,R,, + 2R,R,,

so that

(log(QD)), = D_le(Rxx + Ryy)’

(IOg(QD))y = D_lRy(Rxx + Ryy)a
or

d(log(QD)) = D"'AyRdR, (28)

with AgR := Ry, + R, (Which again is not Aj,). Integrability for (28) is then

d(D7'A4R) AdR =0,
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which is solved by

D7'A4R = F(R)
for some (analytic) F. This says

AoR + F(R)|VR|?> =0

so solve G”" /G’ = F for G to deduce

V-(G'VR) =0,
and

A(G(R)) =0,

with A, or Ay,.

We have a necessary condition: some function of R is harmonic. Next
we exploit the coordinate freedom: with { = x + iy we can make the change

¢ =& =fO), % =¢(x,y), § = p(x, ),

where ¢, ¢ are conjugate harmonic functions, if we accompany this by

—/
u—a=u-logf —log(f),
and then R is unchanged (this is also of course a symmetry of the Toda field
equation (19)). Now if G(R) is harmonic then there is a new coordinate system
in which it is X. Drop the hats then w.l.o.g. R = R(x) and the candidate Killing
vector is 0,. (If preferred we could choose new coordinates so that R = R(r)
i.e. radially symmetric at least in some neighbourhood, possibly not including
either the origin or a complete circle.)
We have

L=9J,andu, =0atz =0. (29)

By (23) we shall also have
0=2L(u,) = Uzy

at z = 0. Now by uniqueness of solution for the Toda field equation (19) we
shall have u, =0 for all z, and the second Killing vector is, without loss of
generality, L = d,, everywhere.

4. Ward’s linearisation of the Toda field equation

In this section, we follow [22] to relate the y-independent Toda field equa-
tion:

Uyx T (eu)zz =0, (30)
to the axisymmetric Laplace equation in cylindrical polars:
V7 + R (RVg)g =0. (31)

This will lead to a solution of the Ricci-flat equations for the general one-sided
type-D metric with an extra symmetry in terms of a solution of the axisymmetric
Laplace equation in three dimensions.
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To see how u and V are related, and following [22], set
x=Vy z= %RVR, u = log(R?*/4), (32)

(sowe need to suppose that Vi, V, are not constant). We calculate the Jacobian
matrix

1
0(x,z) | Vzr —3RVzz
OR.Z) | Vzz RViz

with the aid of (31), and the inverse is

1 1
d(x,z)

(33)

_VZZ VRZ

with A = %R((VRZ)2 +(V,2)?) (since Vg, V, are not constant, A is nonzero). In
particular therefore

1
R, = 5A—leRZ, R, = -A"1V,,,

so with u = log(R?/4) as in (32) we deduce

2 R
U = 2R = AWy = Z,, euy = =5 AWy = -7, (34)

and by cross-differentiating, we see that u satisfies (30).
With u, = 0, dw as in (15) subject to (16) becomes

2
dow = -W,dy Adz —e*(W, — 2¢; %)dx Ady = d(Fdy),

with

and
u W2 1 u 2 2
F, = —e*(W, —2c;—) = =——e*(—z*(uy, + (u,)") + 2zu, — 2).
z2 2¢;

To integrate for F we need the function H conjugate to V. From (31) this satis-
fies

HR = RVZ, HZ = —RVR,

and then one verifies that

1 1
F = —(z*u, — =xR?> + H).
201(Z Uy = 5% + H)
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Now transform the metric. First note that
2 2

dz? + etdx? = (%(RVR)RdR + %Rszdz> + RT (VrzdR + V ,,dZ)’

= RTZ ((=V22dR + VzdZ)? + (VgzdR + V;,dZ)?)
= %RA(dRZ +dZz?),
with the aid of (31) and the definition of A. Now the metric is
g = Wit + w)? + W(dz? + e*(dx? + dy?))

= W~I(dt + Fdy)? + We*dy? + %WRA(dRZ +dZz?)

-1 -1
=(dt dy) ( Fu‘;,_l FZuf_‘f/Jr Wt ) ( g; ) + Q*(dR* +dZ*) (35)
which is in the canonical form for a Ricci-flat metric with two commuting
Killing vectors. Note that the determinant of the matrix of Killing vector con-
tractions is e* = R?/4 so that R (up to a constant factor) is the standard radial
coordinate, and then Z is its harmonic conjugate. The metric components can
be given explicitly in terms of V, R, Z via

_ Ve (R((Vez)* + (V22)*) + ViV
Yo ( (Vez? + (V220 ) ’ G0
_ 1 R(VR)*Vzz =RV z(Vgz)* + (Vz2)%)
T (H * 2P + V22D ) @7
@ = SLCIRZVR R((Vr2)* + (Vz2)») + VRV zz) . (38)
Note that:

+ We have linearised the field equations for a Ricci-flat metric with two
commuting symmetries. These field equations are already known to
be linear if one of the symmetries is hypersurface orthogonal. We can
be sure that we haven’t inadvertently reduced to this case by looking
at the examples which follow, specifically the Riemannian Kerr solu-
tion which does not in general admit a hypersurface orthogonal Killing
vector.

+ We have an expression for the metric given harmonic V (R, Z). We could
think about getting back to V starting from g. One route is to set Q =
RVi when

8¢;0% = Q((Q2)* + (Qr)* — R7'QQR)

which needs to be solved for Q given Q, with Q also subject to

Qrr —R'Qr +Qzz =0.
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4.1. A Corollary: linearising the SD Einstein equations with two com-
muting symmetries. Asa corollary to the previous section, we recall that the
general solution to the (four-dimensional) SD (or ASD) Einstein equations with
a symmetry was given in [14] (see also [18], [20]) and it also depends on a solu-
tion to the Toda field equation. Thus with a second symmetry, the Ward trans-
formation can be applied again to give the general solution in this case in terms
of an axisymmetric solution of the Laplace equation.
Recall, from [18], the metric in this case is

_ 1 2. P 2 2
g= ﬁ(dt + w)* + ;(dz + e¥(dx” + dy?)), (39)
with
Uy + Uy, +(e"),; =0, 2AP = zu, — 2,

where A is proportional to the (constant) Ricci scalar, and
dw = —P,dy Adz — Pydz A dx — (Pe"),dx Ady.
If we add a second symmetry then the argument goes through as before, and
without loss of generality we can suppose u, = 0 and the second symmetry is
L =d,. We can solve for w:
1
w=Fdy, F= m(zux -Q),
with Q conjugate to u in the sense
Uy = Qg (eu)z = —Qx.
We follow the Ward transformation as before, set:
1
x=Vz, 2= 3RV, u= log(R?/4),

then as before .
dz? + etdx? = ERA(dR2 +dZ?),

with )
A= ER((VRZ)Z + (Vz2)?).
The metric becomes
SAA 20+ VRV
g=—— (dt + Fdy)* + (—RZZZ)d 2
R2V2(2A + ViVyzy) 2AAV2
20 + VRV
+ w(dm +dz?). (40)
RV,
For F we note from (34) that Q = Z and from the Jacobian matrix (33)
1
ZUy = ERVRVZZ’
so that
1 1
F = _(_RVRVZZ —Z)

T 2A2A
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This then is the general SD Einstein metric with A # 0 and two commuting
symmetries, written in terms of a solution V' of the axisymmetric Laplace equa-
tion (31). We’ll give an example in Section 7.

5. One-sided type-D Einstein metrics

It’s natural to ask whether the addition of a non-zero scalar curvature in-
terferes with the integrability of the field equations: for ASD vacuum with a
symmetry it does not while for vacuum with two commuting Killing vectors it
does. In the case considered in this section it does — we can reduce the field
equations to a modified Toda field equation but not an integrable one.”

To see this, suppose we still have (1) but with a nonzero A, in NP conventions.
Then (2) still defines a Killing spinor (the argument in [21] for its existence uses
the contracted Bianchi identity, which is unchanged in this case). We need to
assume that 1 is not constant as we shall want to use it as a coordinate. By
making this assumption we are eliminating some cases: if ¢ is constant then K¢
is zero and w5 defines a Kéhler form, thus we are excluding Einstein-K&dhler
metrics. Equation (3) still defines a Killing vector K¢, but (6) is changed to

1
VAA’KBB’ = —g(lp + 12A)C0AB€A/B/ + Xa'B€aB> (41)

with a corresponding change in (14). With dw as in (15) we find a and 8 as in
(16) unchanged but

2
y=—e'W,+ 3@+ 12A))p~1/3). (42)
We may introduce z = —~'/3 as before and then it is convenient to introduce
1 12Az° — 1
g@) = 397 +128) = (43)
3 3z2

The connection coefficients ocij of (18) take the same form with G and H un-
changed but with

C=wl2g— %W‘l/zuz, (44)
and
E = gWw/2, (45)
We calculate the curvature forms Qij but this time with €;;,Q;; . = 24A. From
Q) +iQ% we find
1
gwW = —5Uz + h(z)
with &’ = h? so that h = —(z —¢)~! for some c. Then Q leads to ¢ = 0 and the
modified Toda equation
Uy + Uy +(e*); + e*(A(2)u, + B(2)) = 0, (46)

2This class of metrics was considered in [15] but it is not straightforward to compare results
obtained.
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for u, with
72Az? 144Az

T 1-12Az3"  1-12Az3
One can now verify that the expression for dw is consistent (i.e. that d(dw) = 0).
One can also check that (46) cannot just be transformed back into the Toda
equation by the simple change of variable:

z—>Z=f(z), u—>U=u+F(2). 47

This in fact shows that (46) is not integrable: it is known ([5]) that the only mod-
ifications of Toda of the form of (46) which are integrable are those obtained by
the transformation (47). We can check the expressions for A(z) and B(z) by ob-
taining the known one-sided type D Einstein space which is the Schwarzschild-
de Sitter metric. We do this in the final section, with other examples. In the
next section we dispose of an apparent puzzle concerning the one-sided type-D
vacuum and Einstein metrics.

6. An apparent puzzle

From the assumption of one-sided type-D-ness and either vacuum or Ein-
stein, we have been able to reduce the Einstein equations to one of two PDEs
for a single function u. It is striking that at no stage do we consider the ASD
Weyl spinor, only ever the SD Weyl spinor, but the ASD Weyl spinor is evidently
uniquely defined from the metric. This could be contrasted with linear (grav-
ity) theory in which there are degrees of freedom and therefore free data to be
specified for both SD and ASD linearised Weyl spinors. One way to explain this
apparent puzzle is to point to the Killing vector arising from the Killing spinor,
which necessarily satisfies the identity

ViVpKe = Rbcade’ (48)
a relation that one doesn’t have in linear theory but which, in the full theory,
clearly connects the ASD and SD Weyl spinors. Dealing first with one-sided
type-D vacuum solutions, we have the Killing spinor w5 from (2), defining
the Killing vector K¢ via (3), which in turn satisfies (6). If we contract (6) with
K? we obtain
1 _ 1 /
EVaW 1= KbVaKb = _gz,bwABKlZ/ — )(A’B’Ki

which we may rearrange as

/ 1 1
B _ -2/3 -1 _
XapKly = 297V = SV W = V,Q
where we introduce Q = —%W‘l — %z_l. Multiplying by K, gives an expres-

sion for y 45 as

Xap = WKE, Vi Q
which is therefore known explicitly when we know u. This in turn is a potential
for the SD Weyl spinor via (8) so that, as must be the case, knowledge of u fixes
both the ASD and the SD Weyl spinor - there is no more free data.
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7. Examples

« Starting with one-sided type-D vacua, flat space is not an example of the
construction, as we’re assuming the SD Weyl spinor isn’t zero. However,
we could have chosen the zero solution of the Toda equation, when,
taking ¢; = 1 for simplicity,

u=0, W:Z, CO=Xdy,

and the metric is
g= %(dt + xdy)? + z(dz* + dx* + dy?),

which is recognisably the Gibbons-Hawking metric with potential z
(see e.g. [9]). In particular, this metric is hyper-Kéhler with the other

orientation so that the primed Weyl spinor is zero. With T = §z3/ 2t
can be written
3T

g=dT2+<—

3/2 5 \3/2
> ) (dx? 4+ dy») + (—) (dt + xdy)?,

3T

which makes the isometry group manifest: this is LRS Bianchi-type II.
Because u = 0, this doesn’t have a Ward form.

« There are separable solutions of the Toda equation (19) in the sense
u = f(x,y) + g(z) (see e.g. [19]) some of which can be written

u = —2log(1 + x? + y?) + log(4(z> + 2mz + a)),
for real constants a, m, when

z(a + mz)

=—————" w=—acosBdg,
zZ2+2mz+a

and we’ve introduced polar coordinates by ¢ = tan(8/2)e®. The metric
can be written
_(Z2+2mz +a) z(a + mz) iz
~ z(a+mz2) 22 +2mz +a
+ z(a + mz)(d6? + sin” 6d¢?), (49)

(dt — acos6d¢)? +

which has LRS Bianchi-type-IX form. When a = 0 it is the Riemannian
Schwarzschild solution; with a = m?,n = —m?3/2/2 it is the self-dual
Taub-NUT metric as given in equation (3.9) of [9]; with m = 0 it is the
Eguchi-Hanson metric as in (3.20) of [9] but with a* there replaced by
—16a3 from here (in particular it isn’t the Riemannian Kerr solution).

There will be more, probably unfamiliar, one-sided type-D metrics
determined by the ‘quadric ansatz’ [19] for solutions of the Toda equa-
tion.
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« To illustrate the Ward transformation on a one-sided type-D vacuum

with an extra symmetry, we consider the particular separable solution
of the Toda equation given by

u = 2logsech x + log(z? + 2mz + a),

when
z(mz + a
= g, w = atanhxdy,
zZ+2mz+a
and with cos 6 = tanh x,¢ = —y we arrive at the metric in (49) again,

but this time with u such that u, = 0. For simplicity put a = m?, and
then

R =2(z+ m)sechx, Z = —2(z + m) tanh x,

and

V = —2mlogR + (R* + Z»)V/2 — Ztanh ™' __Zz ,
(Rz + 22)1/2

which one verifies is harmonic. (In spherical polars the terms indepen-
dent of m are

V =r(1 —cosBlogcot(6/2).)

For the transformation (32) to be nontrivial, we need Vi and V, to be
nonconstant, so for an example with a simple V consider

V =R*-277%
Then
1
x=V,=-4Z, z = ERVR = R?, u=log(R?*/4),

and we have the simple solution u = log(z/4) of (30). After a change of
variable, the metric (12) becomes the LRS Riemannian Kasner solution:

g =dT? + T723dU? + T*3(dX? + dY?).

Riemannian Kerr: We start with the NP tetrad (of vectors) tied to the
Principal Null Directions for Lorentzian Kerr as given in [1], (24)—(26),
lower to one-forms and transform to Boyer-Lindquist coordinates via
(35) of [1] to obtain

2 ~
¢ =di— %dr — asin?6dg, n = %(dt _ asin26dg) + %dr,

m = —(iasin6d — 32d6 — i(r + a?)sin 6d¢),
2T

where

Y2 =r’+a’*cos?8, A=r*—2mr+a? T'=r+iacosb.
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In this form we can analytically continue to Riemannian signature by
changing (¢, a) to (it,ia). It’s convenient to boost and rotate the basis a
little to arrive at

L = (—i®)¢ = O(dt — asin®6d¢) + %dr, N =1,
and
M = —1(=32d6 + isin6(adt + (% — a®)de))
2z
where now

VA

6=—""—=, A=r*-2mr—a? X?=r?—-a?cos?6.
=2
Since both Weyl spinors are type-D we have a choice of complex struc-
tures, both of them integrable: one, say J;, has L, M as holomorphic
one-forms and the other, J,, has L, M. We lower the Killing vector
K = 0, and take its exterior derivative to obtain

dK =iX(LAL+MAM)+iY(LAL—M AM)
with
X =-m@r—acosb®)? Y =—-m@r+acosf)?,
so if we stick with J; then i(LAL+M AM) is the 2-form corresponding to
the Killing spinor under consideration, the scalar ¢ is a multiple of (r —

a cos ©)~3 and the coordinate z is a multiple of r — a cos 6. Comparing
the Riemannian Kerr metric, which is now

2
g = 20%(dt — asin’ 0d$)? + % + 32d6?

.2
sin” 6

+22

(adt + (r* — a?)d¢)?

with the metric form (12) and using z = r — a cos 6, we are led to
etd¢d¢ = Asin® 6 ((aA='dr — csc 0d0)? + d¢?)

when a choice for ¢ is

r—m—b)_a/Zb

§=x+iy=10g<<r_m+b tan(9/2)ei¢),

where b? = a? + m?, so in particular y = ¢, and then u is given by
et = (r* = 2mr — a?)sin’ 6,

in agreement with (32) (as this is the determinant of the (¢, t)-part of
the metric). It is straightforward to verify that

J— u J—
U, =2, €e‘*u,=-27,,
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with Z = 2(r — m) cos 6, so that u does satisfy (30) but we can’t obtain
u(x, z) explicitly. From (32) we have

R? = de* = 4(r? — 2mr — a?)sin” 6,

together with
Z =2(r —m)cos9,

so that (r, 0) are ellipsoidal coordinates in the (R, Z) plane. It is straight-
forward to obtain V' (r, 6): we find

V =2 —acosf)+ 2((r —m)cos6 — a)logtan(6/2)

+2mlogsin® + ((m + b) — %(r — m) cos 0) log(r — m — b)
+((m—b)+ %(r — m) cos 6) log(r — m + b).

This isn’t simple for V' in terms of R, Z (or x, z).

» We can give a simple example of the construction described in the Corol-
lary (Section 4.1) by again taking V = R? — 2Z%. With A = 2 for con-
venience (which leads to Ricci scalar equal to —24), and Y = y/4, the
metric turns out to be

4 1
g = y(dt = ZdY)? + E(dRz +dY? +dZz?). (50)

This is easily to be seen to be ASD Einstein-K&hler with constant holo-
morphic sectional curvature and negative Ricci scalar, so it must be the
Bergman metric.

+ As an example of one-sided type-D Einstein from Section 5, we note
that (46) has solutions of the form

u = —2log(1 + k(x?* + y%)) + F(2),
with ef a 2-parameter family of quartic polynomials in z:
el = ¢;(1 + 24A23) + c3z(1 + 6Az>) + 4kz2,

and these include the Schwarzschild-de Sitter metric if k = 1,¢c, = 0,
and c; is negative and related to the mass parameter. This calculation
also confirms the accuracy of the expressions for A and B in (46).
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