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One-sided type-D Ricci-flat metrics

Paul Tod

Abstract. We consider four-dimensional, Riemannian, Ricci-flat metrics
for which one or other of the self-dual or anti-self-dual Weyl tensors is type-
D in the Petrov-Pirani-Penrose classification. Such metrics always admit a
valence-2 Killing spinor, and therefore a Hermitian structure and at least one
Killing vector. We rederive the results of Przanowski and collaborators, [14,
15, 16, 17], that these metrics can all be given in terms of a solution of the
𝑆𝑈(∞)-Toda field equation, and show that, when there is a second Killing
vector commuting with the first, the method of Ward, [22], can be applied to
show that the metrics can also be given in terms of an axisymmetric solution
of the flat three-dimensional Laplacian. Thus in particular the field equations
linearise.

As a corollary, we show that the same technique linearises the field equa-
tions for a four-dimensional Einstein metric with anti-self-dual Weyl tensor
and two commuting symmetries.

We reduce the Einstein equationswith non-zero scalar curvature and one-
sided type-D Weyl tensor, excluding the Kähler-Einstein case, to a modified
but not integrable Toda equation.

Some examples of the constructions are given.
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1. Introduction
In this note we consider four-dimensional, Riemannian, Ricci-flat metrics

for which one or other of the self-dual or anti-self-dual Weyl tensors is type-D
in the Petrov-Pirani-Penrose classification (for which see e.g. [12]). We’ll call
these metrics one-sided type-D, a term in use at least since 1984 (see [16]). Our
motivation comes indirectly from the discovery of the Chen-Teo metric, [7].
This metric has two commuting Killing vectors and is Riemannian and Ricci-
flat and was obtained by inverse-scattering methods, which are available since
the Einstein equations in this case are known to be completely integrable, (see
e.g. [4]). It was discovered by Aksteiner [2] (see also [3]) that the Chen-Teo
metric is one-sided type-D, and therefore, as we shall see, Hermitian. In this
note we ask: can one do more with it, in the light of the general solution of
one-sided type-D vacuum metrics in [16, 17]?
In [16, 17] the Einstein vacuum equations, subject to these restrictions, are

reduced to the 𝑆𝑈(∞)-Toda equation (we’ll omit the qualifier “𝑆𝑈(∞)” hence-
forth). It’s known that the Toda equation linearises if the solution has an extra
symmetry, [22], which suggests that the field equations for one-sided type-D
Ricci-flat metrics with a second symmetry commuting with the first linearise,
and we shall see here that they do.

The main result of this note is the explicit metric form given by (35) subject
to (36-38). While this is quite complicated in appearance, it has contributed
usefully to the classification of Ricci-flat, toric, Hermitian metrics in [6].

Our method is to start in Section 2 with the assumption of a 4-dimensional
Riemannian, Ricci-flat metric which is one-sided type-D, or equivalently (as
we show) is Hermitian. Then we use the two-component spinor formalism to
rederive the expressions of [17] for the metric in terms of a solution 𝑢 of the
Toda field equation (19). The metric automatically has a Killing vector which
arises from a valence-2 Killing spinor, which in turn is a consequence of the
type-D-ness (by [21]), and our rederivation serves to explain the occurence of
this Killing vector. Then in Section 3 we add the assumption that there is a sec-
ond Killing vector and deduce that, after possible redefinitions of coordinates
and 𝑢 preserving the Toda field equation, the second Killing vector must be a
symmetry of 𝑢 corresponding to an ignorable coordinate which can be taken
to be 𝑦 in (19). Then in Section 4 we exploit the observation in [22] that solu-
tions of the Toda field equation independent of 𝑦 correspond to axisymmetric
solutions of the flat 3-dimensional Laplacian. We arrive at our main result:
that Riemannian, Ricci-flat, one-sided type-D 4-metrics with two commuting
Killing vectors are in one-to-one correspondence with axisymmetric solutions
of the flat three-dimensional Laplacian. The field equations, known to be com-
pletely integrable in this case, in fact linearise. We also give a corollary: by [14]
(see also [18], [20]) the general ASD Einstein metric with a symmetry and non-
zero Ricci scalar can be found in terms of a solution of the Toda field equation;
consequently if there is a second Killing vector commuting with the first then
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again by [22] the solution can be given in terms of a solution of the axisymmetric
Laplace equation – in this case too the Einstein equations linearise. In Section
5 we show that the field equations for one-sided type-D Einstein metrics (and
by assumption not ASD) reduce to a modified Toda field equation which is not
integrable ([5]), in Section 6 we deal with an apparently puzzling feature of the
constructions, and in Section 7 we give some examples of all the reductions.

Acknowledgements: I am grateful to Dr Steffen Aksteiner, formerly of the
Albert Einstein Institute, Golm, for discussions about the Chen-Teometric, and
for telling me that it was one-sided type-D, and to the Institut Mittag-Leffler in
Djursholm, Sweden for hospitality as part of the programme ‘General Relativity,
Geometry and Analysis’ during September 2019, supported by the Swedish Re-
searchCouncil under grant no. 2016-06596. I amgrateful toDrMaciejDunajski
of DAMTP Cambridge for telling me of references [14, 15, 16, 17] and for useful
discussions, in the course of which we realised that the construction given here
must be possible, and I am grateful to Profs Jenya Ferapontov and Boris Krug-
likov for information about integrability of the modified Toda equation (46).

2. One-sided type-D
In this section, we rederive the results of [17] in the style of [18, 20]. The

virtue of this rederivation is that one sees how it follows from the algebraic as-
sumption on the Weyl spinor, and one also sees the origin of the first Killing
vector in this assumption. For background on the 2-component spinor formal-
ism see [10], [12] or [11].

Start then with a Riemannian, Ricci-flat and one-sided type-D metric. The
unprimedWeyl spinor (as a matter of convenience, call this the SDWeyl spinor
- it would more properly be the ASD Weyl spinor but this makes very little dif-
ference for us, and reduces the number of primed spinor indices in formulae)
can be taken to be

𝜓𝐴𝐵𝐶𝐷 = 𝜓𝑜(𝐴𝑜𝐵𝑜†𝐶𝑜
†
𝐷) (1)

with real 𝜓 = 6Ψ2 in NP conventions (so this is essentially the definition of
type-D; note in a Riemannian space we have the Hermitian conjugate, denoted
by dagger, taking spinors to spinors), and the spinor normalisation

𝑜𝐴𝑜†𝐴 = 1.
We’ll assume the metric is non-trivially type-D, in the sense that the SD Weyl
spinor is not zero, so that 𝜓 is not the zero function. The argument of [21] still
goes through to show that the spinor field 𝜔𝐴𝐵 defined as1

𝜔𝐴𝐵 = 𝑖𝜓−1∕3𝑜(𝐴𝑜†𝐵) (2)

is a (real) Killing spinor, or equivalently

∇𝐴′(𝐴𝜔𝐵𝐶) = 0.
1What follows is a local calculation, so we restrict to points where 𝜓 is non-zero.
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Therefore
∇𝐴′𝐴𝜔𝐵𝐶 = 𝜖𝐴(𝐵𝐾𝐶)𝐴′ (3)

for some real vector 𝐾𝐴𝐴′ , which is then necessarily a Killing vector. To see
this necessity, calculate commutators as follows (conventions following [12]):
by Ricci-flat-ness

0 = ∆𝐴′𝐵′𝜔𝐶𝐷 = ∇ (𝐶
(𝐴′ 𝐾 𝐷)

𝐵′) , (4)
and with zero Ricci scalar

∆𝐴𝐵𝜔𝐶𝐷 = 𝜓𝐸𝐴𝐵𝐶𝜔 𝐸
𝐷 + 𝜓𝐸𝐴𝐵𝐷𝜔 𝐸

𝐶 , (5)

whence
𝜓𝐸(𝐴𝐵𝐶𝜔 𝐸

𝐷) = 0,
as we know (this follows from (1), (2)), and the trace of (5) on 𝐵𝐶 gives

∇𝐴𝐴′𝐾 𝐴′
𝐷 = 𝜓𝐴𝐵𝐷𝐸𝜔𝐵𝐸 = −13𝜓𝜔𝐴𝐷 .

From the trace of this we deduce ∇𝑎𝐾𝑎 = 0, so with (4) we see that 𝐾𝑎 is a
Killing vector, as claimed, and furthermore we may write

∇𝐴𝐴′𝐾𝐵𝐵′ = −16𝜓𝜔𝐴𝐵𝜖𝐴′𝐵′ + 𝜒𝐴′𝐵′𝜖𝐴𝐵, (6)

for some symmetric 𝜒𝐴′𝐵′ (which we use in Section 6). The identity

∇𝑎∇𝑏𝐾𝑐 = 𝑅𝑏𝑐𝑎𝑑𝐾𝑑,
which holds for any Killing vector, now gives

∇𝐴𝐴′(−16𝜓𝜔𝐵𝐶) = −𝜓𝐴𝐵𝐶𝐷𝐾 𝐷
𝐴′ ,

which is equivalent to

𝜔𝐴𝐶𝐾 𝐶
𝐴′ = −16𝜓

−5∕3∇𝑎𝜓, (7)

and which also follows by contracting (3) with 𝜔𝐵𝐶 , so this is an identity, and
∇𝐴𝐴′𝜒𝐵′𝐶′ = −𝜓𝐴′𝐵′𝐶′𝐷′𝐾 𝐷′

𝐴 . (8)

We find, introducing 𝜙𝐴𝐵 as
𝜙𝐴𝐵 = 2𝑖𝑜(𝐴𝑜†𝐵) = 2𝜓1∕3𝜔𝐴𝐵, (9)

that there is an almost complex structure determined by

𝐽 𝑏𝑎 ∶= 𝜙 𝐵
𝐴 𝛿 𝐵′

𝐴′ , (10)

which is then easily seen to be integrable – thus the metric is Hermitian by
virtue of being type-D and Ricci-flat. Conversely, if there is an integrable com-
plex structure of the form of (10) (i.e. with this duality) then necessarily 𝑜𝐴
is geodesic and shear-free and therefore, by the Goldberg-Sachs Theorem (see
e.g. [12]), is a repeated PND of the Weyl spinor. Then 𝑜†𝐴 is another and so the
Weyl spinor is type-D. Therefore the properties of being Hermitian and being
one-sided type-D are here seen to be equivalent.
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With (9) we obtain

𝜙𝐴𝐵𝐾𝐵
𝐴′ = 2𝜓1∕3𝜔𝐴𝐵𝐾𝐵

𝐴′ = ∇𝑎(𝜓−1∕3). (11)

(By a general argument, this must be a gradient as it defines the Hamiltonian
for 𝐾).
We can proceed to find a metric ansatz as follows: set 𝑊−1 ∶= 𝐾𝑏𝐾𝑏 and

start to construct an orthonormal basis of one-forms with

𝜃0 = 𝑊1∕2𝐾 = 𝑊−1∕2(𝑑𝑡 + 𝜔),
where 𝐾𝑎𝜕𝑎 = 𝜕𝑡 and we’ve introduced a presently unknown one form 𝜔. In-
troduce 𝜃1 as

𝜃1 = 𝐽𝜃0 = 𝑊1∕2𝐽𝐾 = 𝑊1∕2𝜙 𝐵
𝐴𝐾𝐵𝐴′ = −𝑊1∕2𝑑(𝜓−1∕3),

using (11), and so 𝜃1 = 𝑊1∕2𝑑𝑧 with 𝑧 = −𝜓−1∕3 (a real coordinate). Next we
can choose 𝜃2, 𝜃3 orthogonal to 𝜃0, 𝜃1 and such that 𝐽𝜃2 = 𝜃3. There will be a
complex coordinate 𝜁 such that

𝜃2 + 𝑖𝜃3 = 𝑊1∕2𝑒𝑢∕2𝑑𝜁,
for some real 𝑢, and the metric is

𝑔 = 𝑊−1(𝑑𝑡 + 𝜔)2 +𝑊(𝑑𝑧2 + 𝑒𝑢𝑑𝜁𝑑𝜁), (12)

in terms of functions 𝑢,𝑊 and the one-form 𝜔, all to be determined.
We haven’t exhausted the information in integrability of the complex struc-

ture. The holomorphic one-forms are

𝑒1 ∶= 𝜃0 + 𝑖𝜃1 = 𝑊−1∕2(𝑑𝑡 + 𝜔) + 𝑖𝑊1∕2𝑑𝑧, 𝑒2 ∶= 𝜃2 + 𝑖𝜃3 = 𝑊1∕2𝑒𝑢∕2𝑑𝜁,
and at once

𝑒1 ∧ 𝑒2 ∧ 𝑑𝑒2 = 0,
but the vanishing of 𝑒1 ∧ 𝑒2 ∧ 𝑑𝑒1 leads to

𝑑𝜁 ∧ (𝑑𝜔 − 𝑖𝑑𝑧 ∧ 𝑑𝑊) = 0, (13)

which we leave for the moment (this will be part of the ‘monopole’ equation,
(21) below).
From (6) we have, written as forms

𝑑𝐾 = −16𝜓
2∕3𝐽 + ASD terms, (14)

with 𝐽 the complex structure as a 2-form:
𝐽 = 2(𝜃0 ∧ 𝜃1 + 𝜃2 ∧ 𝜃3).

However, with

𝑑𝜔 = 𝛼𝑑𝑦 ∧ 𝑑𝑧 + 𝛽𝑑𝑧 ∧ 𝑑𝑥 + 𝛾𝑑𝑥 ∧ 𝑑𝑦, (15)
for unknowns 𝛼, 𝛽, 𝛾 to be found, we obtain

𝑑𝐾 = 𝑑(𝑊−1(𝑑𝑡 + 𝜔)) = (𝑑𝑡 + 𝜔) ∧𝑊−2𝑑𝑊 +𝑊−1𝑑𝜔
= 𝑐1𝑧−2(𝜃0∧𝜃1+𝜃2∧𝜃3)+𝑓1(𝜃0∧𝜃1−𝜃2∧𝜃3)+𝑓2(𝜃0∧𝜃2−𝜃3∧𝜃1)+𝑓3(𝜃0∧𝜃3−𝜃1∧𝜃2)
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where the 𝑓𝑖 are the coefficients of the ASD terms in (14). From this we read
off

𝛼 = −𝑊𝑥, 𝛽 = −𝑊𝑦, 𝛾 = −𝑒𝑢(𝑊𝑧 − 2𝑐1
𝑊2

𝑧2 ), (16)

and 𝑐1 is a constant fixed by earlier choices (in fact 𝑐1 = −1∕3 but it is conve-
nient to leave it in the formulae). Note (13) is a consequence of these, but there
is a stronger integrability condition to check for (15), namely

0 = 𝑑2𝜔 = (𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧)𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧. (17)

We’ll come back to this when we have an expression for𝑊.
Wenext calculate the SD curvaturewith this choice for𝑑𝜔 byCartan calculus

based on a normalised triad of SD 2-forms: with an orthonormal basis of one-
forms chosen as

𝜃0 = 𝑊−1∕2(𝑑𝑡 + 𝜔), 𝜃1 = 𝑊1∕2𝑑𝑧, 𝜃2 = 𝑊1∕2𝑒𝑢∕2𝑑𝑥, 𝜃3 = 𝑊1∕2𝑒𝑢∕2𝑑𝑦,
define an orthonormal basis of SD 2-forms as

𝜙1 = 𝜃0 ∧ 𝜃1 + 𝜃2 ∧ 𝜃3, 𝜙2 = 𝜃0 ∧ 𝜃2 + 𝜃3 ∧ 𝜃1, 𝜙3 = 𝜃0 ∧ 𝜃3 + 𝜃1 ∧ 𝜃2,
solve

𝑑𝜙𝑖 = −𝛼𝑖𝑗 ∧ 𝜙𝑗 (18)

for the connection one-forms 𝛼𝑖𝑗 to find

𝛼12 = 𝐶𝜃2, 𝛼31 = −𝐶𝜃3, 𝛼23 = 𝐸𝜃0 + 𝐺𝜃2 +𝐻𝜃3,
with

𝐸 = −𝑐1𝑧−2𝑊1∕2, 𝐺 = 1
2𝑊

−1∕2𝑒−𝑢∕2𝑢𝑦, 𝐻 = −12𝑊
−1∕2𝑒−𝑢∕2𝑢𝑥,

and
𝐶 = −12𝑊

−1∕2𝑢𝑧 − 𝑐1𝑧−2𝑊1∕2.
Now obtain the curvature components subject to Ricci flatness from

Ω𝑖
𝑗 = 𝑑𝛼𝑖𝑗 + 𝛼𝑖𝑘 ∧ 𝛼

𝑘
𝑗 = Ω𝑖

𝑗⋅𝑘𝜙𝑘,

with 𝜖𝑖𝑗𝑘Ω𝑖𝑗⋅𝑘 = 0 (which encodes vanishing Ricci scalar; these indices are
raised and lowered by 𝛿𝑖𝑗, 𝛿𝑖𝑗), to find from Ω1

2 + 𝑖Ω1
3 that necessarily

𝑊 = −𝑧
2𝑢𝑧
2𝑐1

+ 𝑓(𝑧),

with

𝑓′ − 2𝑓𝑧 + 𝑐1
𝑓2
𝑧2 = 0,

so that
𝑓 = 𝑧2

𝑐1𝑧 + 𝑐2
,

for a constant 𝑐2. Then fromΩ2
3 we find that 𝑢 satisfies the Toda field equation:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + (𝑒𝑢)𝑧𝑧 = 0, (19)
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and 𝑐1𝑓 = 𝑧 so that 𝑐2 = 0 and

𝑊 = 1
𝑐1
𝑧(1 − 1

2𝑧𝑢𝑧). (20)

Now we can check the integrability condition (17). In fact 𝐺 = 𝑊∕𝑧 satisfies a
familiar monopole equation:

𝐺𝑥𝑥 + 𝐺𝑦𝑦 + (𝑒𝑢𝐺)𝑧𝑧 = 0. (21)

The SD curvature components are now

Ω1
2 = 𝑐1𝑧−3𝜙3, Ω3

1 = 𝑐1𝑧−3𝜙2, Ω2
3 = −2𝑐1𝑧−3𝜙1,

which is recognisably type-D, as expected (in this setting, type-D is the con-
dition that the SD Weyl tensor, which is here represented by the real trace-
free symmetric matrix 𝐸𝑖𝑗 ∶= 𝜖 𝑚𝑛

𝑖 Ω𝑚𝑛⋅𝑗, should be degenerate, in having a
repeated eigen-value).

Wehave recovered the expressions in [16] as deductions from the assumption
of Riemannian, Ricci-flat and either Hermitian or one-sided type-D, andwe see
why there is always a Killing vector preserving the complex structure.

Note that
∙ The holomorphic one-forms are now

𝑒1 = 𝑊−1∕2(𝑑𝑡 + 𝜔) + 𝑖𝑊1∕2𝑑𝑧, 𝑒2 = 𝑊1∕2𝑒𝑢∕2(𝑑𝑥 + 𝑖𝑑𝑦). (22)

∙ We can always set 𝑐1 = 1 by a constant rescaling of the metric and re-
definition of some coordinates, and this is the value arrived at in [17]:
we’ve recovered their expressions exactly.

∙ The 2-form 𝑧−2𝜙1 is closed: this is the rescaling that makes the metric
Kähler (for the fact that there must be one, see e.g. [8]).

3. A second Killing vector
Now suppose there is a second Killing vector, then we may write it as

𝐿 = 𝐴𝜕𝑡 + 𝐵𝜕𝑥 + 𝐶𝜕𝑦 + 𝐷𝜕𝑧,
(with 𝐶 not as in the previous section). We start by showing it must have a
restricted form, which then allows the Toda field equation to be linearised.
Write ℒ for the Lie derivative along 𝐿, and assume 𝐿 commutes with 𝐾 = 𝜕𝑡

so that
ℒ(𝐾) = 0,

which forces 𝐴, 𝐵, 𝐶, 𝐷 to be independent of 𝑡. Also
0 = ℒ(𝑔(𝐾, 𝐾)) = ℒ(𝑊−1) so that ℒ(𝑊) = 0.

The curvature is constant along 𝐿 so that ℒ𝜓𝐴𝐵𝐶𝐷 is zero, therefore ℒ𝜓 = 0
(with 𝜓 the scalar in (1)) and then by the previous sectionℒ𝑧 = 0 and so𝐷 = 0.
Also the Lie derivative of 𝜙𝐴𝐵 must be zero (since−4𝜓𝐴𝐵𝐶𝐷 = 𝜓𝜙(𝐴𝐵𝜙𝐶𝐷)), and
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so the complex structure is preserved. From the vanishing of ℒ(𝑊) we now
deduce

ℒ(𝑢𝑧) = 0. (23)

Since 𝐾,𝑊 and 𝐽 are preserved by 𝐿, we deduce

ℒ(𝑒1) = 0,

when, by raising the index, we’ll also have

0 = ℒ(𝑊1∕2𝜕𝑡 + 𝑖𝑊−1∕2𝜕𝑧) = 𝑖𝑊−1∕2ℒ(𝜕𝑧),

so that ℒ(𝜕𝑧) = 0 and 𝐴, 𝐵, 𝐶 are independent of 𝑧.
What can we say about ℒ(𝑒2)? The complex structure is preserved so

ℒ(𝑒2) = 𝛼𝑒1 + 𝛽𝑒2

for some 𝛼, 𝛽 (not to be confused with 𝛼, 𝛽 in (15)). Already

ℒ(𝑒1) = 0 so also ℒ(𝑒1) = 0

and

ℒ(𝑔(𝑒1, 𝑒2)) = 0 whence 𝑔(𝑒1, ℒ(𝑒2)) = 0,

so 𝛼 = 0, and by considering ℒ(𝑔(𝑒2, 𝑒2)) we find 𝛽 pure imaginary: 𝐿 rotates
the o.n. basis in the (𝜃2, 𝜃3)-plane.
From (12) we have the freedom

𝑡 → 𝑡 + 𝑓(𝑥, 𝑦), 𝜔 → 𝜔 − 𝑑𝑓,

and under this

𝐿 = 𝐴𝜕𝑡 + 𝐵𝜕𝑥 + 𝐶𝜕𝑦 → 𝐴𝜕𝑡 + 𝐵(𝜕𝑥 + 𝑓𝑥𝜕𝑡) + 𝐶(𝜕𝑦 + 𝑓𝑦𝜕𝑡),

and in particular

𝐴 → 𝐴 + 𝐵𝑓𝑥 + 𝐶𝑓𝑦,
which we can exploit to set 𝐴 = 0.
From

0 = ℒ(𝐾) = ℒ(𝑊−1(𝑑𝑡 + 𝜔)) we deduce ℒ(𝜔) = 0.
Now all that remains of the Killing equation for 𝐿 is

ℒ(𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2)) = 0, (24)

i.e. 𝐿 = 𝐵(𝑥, 𝑦)𝜕𝑥 + 𝐶(𝑥, 𝑦)𝜕𝑦 is a Killing vector of the 2-metric ℎ = 𝑒𝑢(𝑑𝑥2 +
𝑑𝑦2). We consider solving this reduced problem in a subsection.
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3.1. Solving (24) for 𝑳. We are considering the 2-metric
ℎ ∶= 𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2),

with 𝑢(𝑥, 𝑦, 𝑧) which for our problem we can assume analytic (as solutions of
the Toda equation must be). We perform the following calculation at a fixed
but arbitrary 𝑧, which we can take to be 𝑧 = 0. First calculate the Ricci scalar
of ℎ:

𝑅 = −𝑒−𝑢(𝑢𝑥𝑥 + 𝑢𝑦𝑦).
We are requiring the existence of a Killing vector

𝐿 = 𝐵(𝑥, 𝑦)𝜕𝑥 + 𝐶(𝑥, 𝑦)𝜕𝑦,
which must preserve 𝑅 and so must be orthogonal to 𝑑𝑅, so for some Ω(𝑥, 𝑦)
we have

𝐵 = −Ω𝑅𝑦, 𝐶 = Ω𝑅𝑥. (25)
The Killing equations are

0 = ℒ𝐿ℎ𝑎𝑏 = 𝐿𝑐𝜕𝑐ℎ𝑎𝑏 + ℎ𝑎𝑐𝜕𝑏𝐿𝑐 + ℎ𝑐𝑏𝜕𝑎𝐿𝑐.
With 𝑎𝑏 = 12 this gives

𝐵𝑦 + 𝐶𝑥 = 0, (26)
while with 𝑎𝑏 = 11 or 22

𝐵𝑥 = 𝐶𝑦 = −12𝐿(𝑢). (27)

Substitute from (25) into (26) and (27) to obtain the following system for 𝑑Ω:
Ω𝑥𝑅𝑥 −Ω𝑦𝑅𝑦 = Ω(𝑅𝑦𝑦 − 𝑅𝑥𝑥)
Ω𝑥𝑅𝑦 +Ω𝑦𝑅𝑥 = −2Ω𝑅𝑥𝑦,

which algebraically solves to give
Ω𝑥
Ω = 𝐷−1(𝑅𝑥(𝑅𝑦𝑦 − 𝑅𝑥𝑥) − 2𝑅𝑦𝑅𝑥𝑦),

Ω𝑦
Ω = 𝐷−1(−𝑅𝑦(𝑅𝑥𝑥 − 𝑅𝑦𝑦) − 2𝑅𝑥𝑅𝑥𝑦),

with 𝐷 = (𝑅𝑥)2 + (𝑅𝑦)2 = |𝑑𝑅|2 (note this is not ℎ(𝑑𝑅, 𝑑𝑅)). This can be sim-
plified by moving some terms to the left since

𝐷𝑥 = 2𝑅𝑥𝑅𝑥𝑥 + 2𝑅𝑦𝑅𝑥𝑦, 𝐷𝑦 = 2𝑅𝑥𝑅𝑥𝑦 + 2𝑅𝑦𝑅𝑦𝑦
so that

(log(Ω𝐷))𝑥 = 𝐷−1𝑅𝑥(𝑅𝑥𝑥 + 𝑅𝑦𝑦),
(log(Ω𝐷))𝑦 = 𝐷−1𝑅𝑦(𝑅𝑥𝑥 + 𝑅𝑦𝑦),

or
𝑑(log(Ω𝐷)) = 𝐷−1∆0𝑅𝑑𝑅, (28)

with ∆0𝑅 ∶= 𝑅𝑥𝑥 + 𝑅𝑦𝑦 (which again is not ∆ℎ). Integrability for (28) is then
𝑑
(
𝐷−1∆0𝑅

)
∧ 𝑑𝑅 = 0,
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which is solved by
𝐷−1∆0𝑅 = 𝐹(𝑅)

for some (analytic) 𝐹. This says
∆0𝑅 + 𝐹(𝑅)|∇𝑅|2 = 0

so solve 𝐺′′∕𝐺′ = 𝐹 for 𝐺 to deduce

∇ ⋅ (𝐺′∇𝑅) = 0,
and

∆(𝐺(𝑅)) = 0,
with ∆0 or ∆ℎ.
We have a necessary condition: some function of 𝑅 is harmonic. Next

we exploit the coordinate freedom: with 𝜁 = 𝑥 + 𝑖𝑦 we can make the change
𝜁 → 𝜁 = 𝑓(𝜁), 𝑥̂ = 𝜙(𝑥, 𝑦), 𝑦̂ = 𝜓(𝑥, 𝑦),

where 𝜙, 𝜓 are conjugate harmonic functions, if we accompany this by

𝑢 → 𝑢̂ = 𝑢 − log 𝑓′ − log(𝑓
′
),

and then 𝑅 is unchanged (this is also of course a symmetry of the Toda field
equation (19)). Now if 𝐺(𝑅) is harmonic then there is a new coordinate system
in which it is 𝑥̂. Drop the hats then w.l.o.g. 𝑅 = 𝑅(𝑥) and the candidate Killing
vector is 𝜕𝑦. (If preferred we could choose new coordinates so that 𝑅 = 𝑅(𝑟)
i.e. radially symmetric at least in some neighbourhood, possibly not including
either the origin or a complete circle.)
We have

𝐿 = 𝜕𝑦 and 𝑢𝑦 = 0 at 𝑧 = 0. (29)
By (23) we shall also have

0 = ℒ(𝑢𝑧) = 𝑢𝑧𝑦
at 𝑧 = 0. Now by uniqueness of solution for the Toda field equation (19) we
shall have 𝑢𝑦 = 0 for all 𝑧, and the second Killing vector is, without loss of
generality, 𝐿 = 𝜕𝑦 everywhere.

4. Ward’s linearisation of the Toda field equation
In this section, we follow [22] to relate the 𝑦-independent Toda field equa-

tion:
𝑢𝑥𝑥 + (𝑒𝑢)𝑧𝑧 = 0, (30)

to the axisymmetric Laplace equation in cylindrical polars:

𝑉𝑍𝑍 + 𝑅−1(𝑅𝑉𝑅)𝑅 = 0. (31)

This will lead to a solution of the Ricci-flat equations for the general one-sided
type-Dmetricwith an extra symmetry in terms of a solution of the axisymmetric
Laplace equation in three dimensions.
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To see how 𝑢 and 𝑉 are related, and following [22], set

𝑥 = 𝑉𝑍 , 𝑧 =
1
2𝑅𝑉𝑅, 𝑢 = log(𝑅2∕4), (32)

(so we need to suppose that𝑉𝑅, 𝑉𝑍 are not constant). We calculate the Jacobian
matrix

𝜕(𝑥, 𝑧)
𝜕(𝑅, 𝑍) =

⎛
⎜
⎝

𝑉𝑍𝑅 − 1
2
𝑅𝑉𝑍𝑍

𝑉𝑍𝑍
1
2
𝑅𝑉𝑅𝑍

⎞
⎟
⎠

with the aid of (31), and the inverse is

𝜕(𝑅, 𝑍)
𝜕(𝑥, 𝑧) = ∆−1 (

1
2
𝑅𝑉𝑍𝑅

1
2
𝑅𝑉𝑍𝑍

−𝑉𝑍𝑍 𝑉𝑅𝑍
) (33)

with ∆ = 1
2
𝑅((𝑉𝑅𝑍)2+(𝑉𝑍𝑍)2) (since𝑉𝑅, 𝑉𝑍 are not constant, ∆ is nonzero). In

particular therefore

𝑅𝑥 =
1
2∆

−1𝑅𝑉𝑅𝑍 , 𝑅𝑧 = −∆−1𝑉𝑍𝑍 ,

so with 𝑢 = log(𝑅2∕4) as in (32) we deduce

𝑢𝑥 =
2
𝑅𝑅𝑥 = ∆−1𝑉𝑅𝑍 = 𝑍𝑧, 𝑒𝑢𝑢𝑧 = −𝑅2∆

−1𝑉𝑍𝑍 = −𝑍𝑥, (34)

and by cross-differentiating, we see that 𝑢 satisfies (30).
With 𝑢𝑦 = 0, 𝑑𝜔 as in (15) subject to (16) becomes

𝑑𝜔 = −𝑊𝑥𝑑𝑦 ∧ 𝑑𝑧 − 𝑒𝑢(𝑊𝑧 − 2𝑐1
𝑊2

𝑧2 )𝑑𝑥 ∧ 𝑑𝑦 = 𝑑(𝐹𝑑𝑦),

with

𝐹𝑧 = 𝑊𝑥 = −𝑧
2𝑢𝑥𝑧
2𝑐1

,

and

𝐹𝑥 = −𝑒𝑢(𝑊𝑧 − 2𝑐1
𝑊2

𝑧2 ) =
1
2𝑐1

𝑒𝑢(−𝑧2(𝑢𝑧𝑧 + (𝑢𝑧)2) + 2𝑧𝑢𝑧 − 2).

To integrate for 𝐹 we need the function𝐻 conjugate to 𝑉. From (31) this satis-
fies

𝐻𝑅 = 𝑅𝑉𝑍 , 𝐻𝑍 = −𝑅𝑉𝑅,
and then one verifies that

𝐹 = 1
2𝑐1

(𝑧2𝑢𝑥 −
1
2𝑥𝑅

2 +𝐻).
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Now transform the metric. First note that

𝑑𝑧2 + 𝑒𝑢𝑑𝑥2 = (12(𝑅𝑉𝑅)𝑅𝑑𝑅 +
1
2𝑅𝑉𝑅𝑍𝑑𝑍)

2
+ 𝑅2

4 (𝑉𝑅𝑍𝑑𝑅 + 𝑉𝑍𝑍𝑑𝑍)2

= 𝑅2
4
(
(−𝑉𝑍𝑍𝑑𝑅 + 𝑉𝑅𝑍𝑑𝑍)2 + (𝑉𝑅𝑍𝑑𝑅 + 𝑉𝑍𝑍𝑑𝑍)2

)

= 1
2𝑅∆(𝑑𝑅

2 + 𝑑𝑍2),

with the aid of (31) and the definition of ∆. Now the metric is

𝑔 = 𝑊−1(𝑑𝑡 + 𝜔)2 +𝑊(𝑑𝑧2 + 𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2))

= 𝑊−1(𝑑𝑡 + 𝐹𝑑𝑦)2 +𝑊𝑒𝑢𝑑𝑦2 + 1
2𝑊𝑅∆(𝑑𝑅2 + 𝑑𝑍2)

=
(
𝑑𝑡 𝑑𝑦

)
( 𝑊−1 𝐹𝑊−1

𝐹𝑊−1 𝐹2𝑊−1 +𝑊𝑒𝑢 ) ( 𝑑𝑡
𝑑𝑦 ) + Ω2(𝑑𝑅2 + 𝑑𝑍2) (35)

which is in the canonical form for a Ricci-flat metric with two commuting
Killing vectors. Note that the determinant of the matrix of Killing vector con-
tractions is 𝑒𝑢 = 𝑅2∕4 so that 𝑅 (up to a constant factor) is the standard radial
coordinate, and then 𝑍 is its harmonic conjugate. The metric components can
be given explicitly in terms of 𝑉, 𝑅, 𝑍 via

𝑊 = 𝑉𝑅
2𝑐1

(𝑅((𝑉𝑅𝑍)
2 + (𝑉𝑍𝑍)2) + 𝑉𝑅𝑉𝑍𝑍

((𝑉𝑅𝑍)2 + (𝑉𝑍𝑍)2)
) , (36)

𝐹 = 1
2𝑐1

(𝐻 + 𝑅(𝑉𝑅)2𝑉𝑅𝑍 − 𝑅2𝑉𝑍((𝑉𝑅𝑍)2 + (𝑉𝑍𝑍)2)
2((𝑉𝑅𝑍)2 + (𝑉𝑍𝑍)2)

) , (37)

Ω2 = 1
8𝑐1

𝑅2𝑉𝑅
(
𝑅((𝑉𝑅𝑍)2 + (𝑉𝑍𝑍)2) + 𝑉𝑅𝑉𝑍𝑍

)
. (38)

Note that:
∙ We have linearised the field equations for a Ricci-flat metric with two
commuting symmetries. These field equations are already known to
be linear if one of the symmetries is hypersurface orthogonal. We can
be sure that we haven’t inadvertently reduced to this case by looking
at the examples which follow, specifically the Riemannian Kerr solu-
tion which does not in general admit a hypersurface orthogonal Killing
vector.

∙ Wehave an expression for themetric given harmonic𝑉(𝑅, 𝑍). We could
think about getting back to 𝑉 starting from 𝑔. One route is to set 𝑄 =
𝑅𝑉𝑅 when

8𝑐1Ω2 = 𝑄((𝑄𝑍)2 + (𝑄𝑅)2 − 𝑅−1𝑄𝑄𝑅)
which needs to be solved for 𝑄 given Ω, with 𝑄 also subject to

𝑄𝑅𝑅 − 𝑅−1𝑄𝑅 + 𝑄𝑍𝑍 = 0.
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4.1. A Corollary: linearising the SD Einstein equations with two com-
muting symmetries. As a corollary to the previous section, we recall that the
general solution to the (four-dimensional) SD (or ASD) Einstein equationswith
a symmetry was given in [14] (see also [18], [20]) and it also depends on a solu-
tion to the Toda field equation. Thus with a second symmetry, the Ward trans-
formation can be applied again to give the general solution in this case in terms
of an axisymmetric solution of the Laplace equation.
Recall, from [18], the metric in this case is

𝑔 = 1
𝑃𝑧2 (𝑑𝑡 + 𝜔)2 + 𝑃

𝑧2 (𝑑𝑧
2 + 𝑒𝑢(𝑑𝑥2 + 𝑑𝑦2)), (39)

with
𝑢𝑥𝑥 + 𝑢𝑦𝑦 + (𝑒𝑢)𝑧𝑧 = 0, 2Λ𝑃 = 𝑧𝑢𝑧 − 2,

where Λ is proportional to the (constant) Ricci scalar, and

𝑑𝜔 = −𝑃𝑥𝑑𝑦 ∧ 𝑑𝑧 − 𝑃𝑦𝑑𝑧 ∧ 𝑑𝑥 − (𝑃𝑒𝑢)𝑧𝑑𝑥 ∧ 𝑑𝑦.
If we add a second symmetry then the argument goes through as before, and
without loss of generality we can suppose 𝑢𝑦 = 0 and the second symmetry is
𝐿 = 𝜕𝑦. We can solve for 𝜔:

𝜔 = 𝐹𝑑𝑦, 𝐹 = 1
2Λ(𝑧𝑢𝑥 − 𝑄),

with 𝑄 conjugate to 𝑢 in the sense
𝑢𝑥 = 𝑄𝑧, (𝑒𝑢)𝑧 = −𝑄𝑥.

We follow the Ward transformation as before, set:

𝑥 = 𝑉𝑍 , 𝑧 =
1
2𝑅𝑉𝑅, 𝑢 = log(𝑅2∕4),

then as before
𝑑𝑧2 + 𝑒𝑢𝑑𝑥2 = 1

2𝑅∆(𝑑𝑅
2 + 𝑑𝑍2),

with
∆ = 1

2𝑅((𝑉𝑅𝑍)
2 + (𝑉𝑍𝑍)2).

The metric becomes

𝑔 = 8Λ∆
𝑅2𝑉2

𝑅(2∆ + 𝑉𝑅𝑉𝑍𝑍)
(𝑑𝑡 + 𝐹𝑑𝑦)2 + (2∆ + 𝑉𝑅𝑉𝑍𝑍)

2Λ∆𝑉2
𝑅

𝑑𝑦2

+ (2∆ + 𝑉𝑅𝑉𝑍𝑍)
𝑅𝑉2

𝑅
(𝑑𝑅2 + 𝑑𝑍2). (40)

For 𝐹 we note from (34) that 𝑄 = 𝑍 and from the Jacobian matrix (33)

𝑧𝑢𝑥 =
1
2∆𝑅𝑉𝑅𝑉𝑍𝑍 ,

so that
𝐹 = 1

2Λ(
1
2∆𝑅𝑉𝑅𝑉𝑍𝑍 − 𝑍).
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This then is the general SD Einstein metric with Λ ≠ 0 and two commuting
symmetries, written in terms of a solution𝑉 of the axisymmetric Laplace equa-
tion (31). We’ll give an example in Section 7.

5. One-sided type-D Einstein metrics
It’s natural to ask whether the addition of a non-zero scalar curvature in-

terferes with the integrability of the field equations: for ASD vacuum with a
symmetry it does not while for vacuum with two commuting Killing vectors it
does. In the case considered in this section it does – we can reduce the field
equations to a modified Toda field equation but not an integrable one.2
To see this, supposewe still have (1) butwith a nonzeroΛ, inNP conventions.

Then (2) still defines a Killing spinor (the argument in [21] for its existence uses
the contracted Bianchi identity, which is unchanged in this case). We need to
assume that 𝜓 is not constant as we shall want to use it as a coordinate. By
making this assumptionwe are eliminating some cases: if𝜓 is constant then𝐾𝑎

is zero and 𝜔𝐴𝐵 defines a Kähler form, thus we are excluding Einstein-Kähler
metrics. Equation (3) still defines a Killing vector 𝐾𝑎, but (6) is changed to

∇𝐴𝐴′𝐾𝐵𝐵′ = −16(𝜓 + 12Λ)𝜔𝐴𝐵𝜖𝐴′𝐵′ + 𝜒𝐴′𝐵′𝜖𝐴𝐵, (41)

with a corresponding change in (14). With 𝑑𝜔 as in (15) we find 𝛼 and 𝛽 as in
(16) unchanged but

𝛾 = −𝑒𝑢(𝑊𝑧 +
2
3(𝜓 + 12Λ)𝜓−1∕3). (42)

We may introduce 𝑧 = −𝜓−1∕3 as before and then it is convenient to introduce

𝑔(𝑧) = 1
3𝜓

−1∕3(𝜓 + 12Λ) = 12Λ𝑧3 − 1
3𝑧2 . (43)

The connection coefficients 𝛼𝑖𝑗 of (18) take the same form with 𝐺 and 𝐻 un-
changed but with

𝐶 = 𝑊1∕2𝑔 − 1
2𝑊

−1∕2𝑢𝑧, (44)

and
𝐸 = 𝑔𝑊1∕2. (45)

We calculate the curvature forms Ω𝑖
𝑗 but this time with 𝜖𝑖𝑗𝑘Ω𝑖𝑗.𝑘 = 24Λ. From

Ω1
2 + 𝑖Ω1

3 we find

𝑔𝑊 = −12𝑢𝑧 + ℎ(𝑧)
with ℎ′ = ℎ2 so that ℎ = −(𝑧 − 𝑐)−1 for some 𝑐. ThenΩ2

3 leads to 𝑐 = 0 and the
modified Toda equation

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + (𝑒𝑢)𝑧𝑧 + 𝑒𝑢(𝐴(𝑧)𝑢𝑧 + 𝐵(𝑧)) = 0, (46)

2This class of metrics was considered in [15] but it is not straightforward to compare results
obtained.
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for 𝑢, with
𝐴 = 72Λ𝑧2

1 − 12Λ𝑧3 , 𝐵 = − 144Λ𝑧
1 − 12Λ𝑧3 .

One cannowverify that the expression for𝑑𝜔 is consistent (i.e. that𝑑(𝑑𝜔) = 0).
One can also check that (46) cannot just be transformed back into the Toda
equation by the simple change of variable:

𝑧 → 𝑍 = 𝑓(𝑧), 𝑢 → 𝑈 = 𝑢 + 𝐹(𝑧). (47)
This in fact shows that (46) is not integrable: it is known ([5]) that the onlymod-
ifications of Toda of the form of (46) which are integrable are those obtained by
the transformation (47). We can check the expressions for𝐴(𝑧) and 𝐵(𝑧) by ob-
taining the known one-sided type DEinstein space which is the Schwarzschild-
de Sitter metric. We do this in the final section, with other examples. In the
next section we dispose of an apparent puzzle concerning the one-sided type-D
vacuum and Einstein metrics.

6. An apparent puzzle
From the assumption of one-sided type-D-ness and either vacuum or Ein-

stein, we have been able to reduce the Einstein equations to one of two PDEs
for a single function 𝑢. It is striking that at no stage do we consider the ASD
Weyl spinor, only ever the SDWeyl spinor, but the ASDWeyl spinor is evidently
uniquely defined from the metric. This could be contrasted with linear (grav-
ity) theory in which there are degrees of freedom and therefore free data to be
specified for both SD and ASD linearisedWeyl spinors. One way to explain this
apparent puzzle is to point to the Killing vector arising from the Killing spinor,
which necessarily satisfies the identity

∇𝑎∇𝑏𝐾𝑐 = 𝑅𝑏𝑐𝑎𝑑𝐾𝑑, (48)
a relation that one doesn’t have in linear theory but which, in the full theory,
clearly connects the ASD and SD Weyl spinors. Dealing first with one-sided
type-D vacuum solutions, we have the Killing spinor 𝜔𝐴𝐵 from (2), defining
the Killing vector 𝐾𝑎 via (3), which in turn satisfies (6). If we contract (6) with
𝐾𝑏 we obtain

1
2∇𝑎𝑊−1 = 𝐾𝑏∇𝑎𝐾𝑏 = −16𝜓𝜔𝐴𝐵𝐾

𝐵
𝐴′ − 𝜒𝐴′𝐵′𝐾𝐵′

𝐴

which we may rearrange as

𝜒𝐴′𝐵′𝐾𝐵′
𝐴 = 1

36𝜓
−2∕3∇𝑎𝜓 −

1
2∇𝑎𝑊−1 = ∇𝑎𝑄

where we introduce 𝑄 = − 1
2
𝑊−1 − 1

12
𝑧−1. Multiplying by 𝐾𝐴

𝐴′ gives an expres-
sion for 𝜒𝐴′𝐵′ as

𝜒𝐴′𝐵′ = 𝑊𝐾𝐵
𝐴′∇𝐵𝐵′𝑄

which is therefore known explicitly whenwe know 𝑢. This in turn is a potential
for the SDWeyl spinor via (8) so that, as must be the case, knowledge of 𝑢 fixes
both the ASD and the SD Weyl spinor – there is no more free data.
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7. Examples
∙ Startingwith one-sided type-D vacua, flat space is not an example of the
construction, aswe’re assuming the SDWeyl spinor isn’t zero. However,
we could have chosen the zero solution of the Toda equation, when,
taking 𝑐1 = 1 for simplicity,

𝑢 = 0, 𝑊 = 𝑧, 𝜔 = 𝑥𝑑𝑦,

and the metric is

𝑔 = 1
𝑧(𝑑𝑡 + 𝑥𝑑𝑦)2 + 𝑧(𝑑𝑧2 + 𝑑𝑥2 + 𝑑𝑦2),

which is recognisably the Gibbons-Hawking metric with potential 𝑧
(see e.g. [9]). In particular, this metric is hyper-Kähler with the other
orientation so that the primed Weyl spinor is zero. With 𝑇 = 2

3
𝑧3∕2, it

can be written

𝑔 = 𝑑𝑇2 + (3𝑇2 )
3∕2

(𝑑𝑥2 + 𝑑𝑦2) + ( 2
3𝑇)

3∕2
(𝑑𝑡 + 𝑥𝑑𝑦)2,

which makes the isometry group manifest: this is LRS Bianchi-type II.
Because 𝑢 = 0, this doesn’t have a Ward form.

∙ There are separable solutions of the Toda equation (19) in the sense
𝑢 = 𝑓(𝑥, 𝑦) + 𝑔(𝑧) (see e.g. [19]) some of which can be written

𝑢 = −2 log(1 + 𝑥2 + 𝑦2) + log(4(𝑧2 + 2𝑚𝑧 + 𝑎)),

for real constants 𝑎,𝑚, when

𝑊 = 𝑧(𝑎 + 𝑚𝑧)
𝑧2 + 2𝑚𝑧 + 𝑎 , 𝜔 = −𝑎 cos 𝜃𝑑𝜙,

and we’ve introduced polar coordinates by 𝜁 = tan(𝜃∕2)𝑒𝑖𝜙. The metric
can be written

𝑔 = (𝑧2 + 2𝑚𝑧 + 𝑎)
𝑧(𝑎 + 𝑚𝑧) (𝑑𝑡 − 𝑎 cos 𝜃𝑑𝜙)2 + 𝑧(𝑎 + 𝑚𝑧)

𝑧2 + 2𝑚𝑧 + 𝑎𝑑𝑧
2

+ 𝑧(𝑎 + 𝑚𝑧)(𝑑𝜃2 + sin2 𝜃𝑑𝜙2), (49)

which has LRS Bianchi-type-IX form. When 𝑎 = 0 it is the Riemannian
Schwarzschild solution; with 𝑎 = 𝑚2, 𝑛 = −𝑚3∕2∕2 it is the self-dual
Taub-NUT metric as given in equation (3.9) of [9]; with𝑚 = 0 it is the
Eguchi-Hanson metric as in (3.20) of [9] but with 𝑎4 there replaced by
−16𝑎3 from here (in particular it isn’t the Riemannian Kerr solution).
There will be more, probably unfamiliar, one-sided type-D metrics

determined by the ‘quadric ansatz’ [19] for solutions of the Toda equa-
tion.
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∙ To illustrate the Ward transformation on a one-sided type-D vacuum
with an extra symmetry, we consider the particular separable solution
of the Toda equation given by

𝑢 = 2 log sech𝑥 + log(𝑧2 + 2𝑚𝑧 + 𝑎),
when

𝑊 = 𝑧(𝑚𝑧 + 𝑎)
𝑧2 + 2𝑚𝑧 + 𝑎 , 𝜔 = 𝑎tanh𝑥𝑑𝑦,

and with cos 𝜃 = tanh 𝑥, 𝜙 = −𝑦 we arrive at the metric in (49) again,
but this time with 𝑢 such that 𝑢𝑦 = 0. For simplicity put 𝑎 = 𝑚2, and
then

𝑅 = 2(𝑧 + 𝑚)sech𝑥, 𝑍 = −2(𝑧 + 𝑚) tanh 𝑥,
and

𝑉 = −2𝑚 log 𝑅 + (𝑅2 + 𝑍2)1∕2 − 𝑍 tanh−1 ( 𝑍
(𝑅2 + 𝑍2)1∕2

) ,

which one verifies is harmonic. (In spherical polars the terms indepen-
dent of𝑚 are

𝑉 = 𝑟(1 − cos 𝜃 log cot(𝜃∕2).)
∙ For the transformation (32) to be nontrivial, we need 𝑉𝑅 and 𝑉𝑍 to be
nonconstant, so for an example with a simple 𝑉 consider

𝑉 = 𝑅2 − 2𝑍2.
Then

𝑥 = 𝑉𝑍 = −4𝑍, 𝑧 = 1
2𝑅𝑉𝑅 = 𝑅2, 𝑢 = log(𝑅2∕4),

and we have the simple solution 𝑢 = log(𝑧∕4) of (30). After a change of
variable, themetric (12) becomes the LRSRiemannianKasner solution:

𝑔 = 𝑑𝑇2 + 𝑇−2∕3𝑑𝑈2 + 𝑇4∕3(𝑑𝑋2 + 𝑑𝑌2).
∙ Riemannian Kerr: We start with the NP tetrad (of vectors) tied to the
Principal Null Directions for Lorentzian Kerr as given in [1], (24)–(26),
lower to one-forms and transform to Boyer-Lindquist coordinates via
(35) of [1] to obtain

𝓁 = 𝑑𝑡 − Σ2
∆̃ 𝑑𝑟 − 𝑎 sin2 𝜃𝑑𝜙, 𝑛 = ∆̃

2Σ2 (𝑑𝑡 − 𝑎 sin2 𝜃𝑑𝜙) + 1
2𝑑𝑟,

𝑚 = 1√
2Γ
(𝑖𝑎 sin 𝜃𝑑𝑡 − Σ2𝑑𝜃 − 𝑖(𝑟2 + 𝑎2) sin 𝜃𝑑𝜙),

where

Σ2 = 𝑟2 + 𝑎2 cos2 𝜃, ∆̃ = 𝑟2 − 2𝑚𝑟 + 𝑎2, Γ = 𝑟 + 𝑖𝑎 cos 𝜃.
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In this form we can analytically continue to Riemannian signature by
changing (𝑡, 𝑎) to (𝑖𝑡, 𝑖𝑎). It’s convenient to boost and rotate the basis a
little to arrive at

𝐿 = (−𝑖Θ̃)𝓁 = Θ̃(𝑑𝑡 − 𝑎 sin2 𝜃𝑑𝜙) + 𝑖
2Θ̃𝑑𝑟, 𝑁 = 𝐿,

and

𝑀 = 1√
2Σ
(−Σ2𝑑𝜃 + 𝑖 sin 𝜃(𝑎𝑑𝑡 + (𝑟2 − 𝑎2)𝑑𝜙))

where now

Θ̃ =
√
∆̃

Σ
√
2
, ∆̃ = 𝑟2 − 2𝑚𝑟 − 𝑎2, Σ2 = 𝑟2 − 𝑎2 cos2 𝜃.

Since both Weyl spinors are type-D we have a choice of complex struc-
tures, both of them integrable: one, say 𝐽1, has 𝐿,𝑀 as holomorphic
one-forms and the other, 𝐽2, has 𝐿,𝑀. We lower the Killing vector
𝐾 = 𝜕𝑡 and take its exterior derivative to obtain

𝑑𝐾 = 𝑖𝑋(𝐿 ∧ 𝐿 +𝑀 ∧𝑀) + 𝑖𝑌(𝐿 ∧ 𝐿 −𝑀 ∧𝑀)
with

𝑋 = −𝑚(𝑟 − 𝑎 cos 𝜃)−2, 𝑌 = −𝑚(𝑟 + 𝑎 cos 𝜃)−2,
so if we stickwith 𝐽1 then 𝑖(𝐿∧𝐿+𝑀∧𝑀) is the 2-form corresponding to
the Killing spinor under consideration, the scalar 𝜓 is a multiple of (𝑟−
𝑎 cos 𝜃)−3 and the coordinate 𝑧 is a multiple of 𝑟 − 𝑎 cos 𝜃. Comparing
the Riemannian Kerr metric, which is now

𝑔 = 2Θ̃2(𝑑𝑡 − 𝑎 sin2 𝜃𝑑𝜙)2 + 𝑑𝑟2
2Θ̃2 + Σ2𝑑𝜃2

+ sin2 𝜃
Σ2 (𝑎𝑑𝑡 + (𝑟2 − 𝑎2)𝑑𝜙)2

with the metric form (12) and using 𝑧 = 𝑟 − 𝑎 cos 𝜃, we are led to
𝑒𝑢𝑑𝜁𝑑𝜁 = ∆̃ sin2 𝜃

(
(𝑎∆̃−1𝑑𝑟 − csc 𝜃𝑑𝜃)2 + 𝑑𝜙2

)
,

when a choice for 𝜁 is

𝜁 = 𝑥 + 𝑖𝑦 = log ((𝑟 − 𝑚 − 𝑏
𝑟 − 𝑚 + 𝑏)

−𝑎∕2𝑏
tan(𝜃∕2)𝑒𝑖𝜙) ,

where 𝑏2 = 𝑎2 +𝑚2, so in particular 𝑦 = 𝜙, and then 𝑢 is given by
𝑒𝑢 = (𝑟2 − 2𝑚𝑟 − 𝑎2) sin2 𝜃,

in agreement with (32) (as this is the determinant of the (𝜙, 𝑡)-part of
the metric). It is straightforward to verify that

𝑢𝑥 = 𝑍𝑧, 𝑒𝑢𝑢𝑧 = −𝑍𝑥,
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with 𝑍 = 2(𝑟 − 𝑚) cos 𝜃, so that 𝑢 does satisfy (30) but we can’t obtain
𝑢(𝑥, 𝑧) explicitly. From (32) we have

𝑅2 = 4𝑒𝑢 = 4(𝑟2 − 2𝑚𝑟 − 𝑎2) sin2 𝜃,
together with

𝑍 = 2(𝑟 − 𝑚) cos 𝜃,
so that (𝑟, 𝜃) are ellipsoidal coordinates in the (𝑅, 𝑍) plane. It is straight-
forward to obtain 𝑉(𝑟, 𝜃): we find
𝑉 = 2(𝑟 − 𝑎 cos 𝜃) + 2((𝑟 − 𝑚) cos 𝜃 − 𝑎) log tan(𝜃∕2)

+ 2𝑚 log sin 𝜃 + ((𝑚 + 𝑏) − 𝑎
𝑏 (𝑟 − 𝑚) cos 𝜃) log(𝑟 − 𝑚 − 𝑏)

+ ((𝑚 − 𝑏) + 𝑎
𝑏 (𝑟 − 𝑚) cos 𝜃) log(𝑟 − 𝑚 + 𝑏).

This isn’t simple for 𝑉 in terms of 𝑅, 𝑍 (or 𝑥, 𝑧).
∙ Wecan give a simple example of the construction described in theCorol-
lary (Section 4.1) by again taking 𝑉 = 𝑅2 − 2𝑍2. With Λ = 2 for con-
venience (which leads to Ricci scalar equal to −24), and 𝑌 = 𝑦∕4, the
metric turns out to be

𝑔 = 4
𝑅4 (𝑑𝑡 − 𝑍𝑑𝑌)2 + 1

𝑅2 (𝑑𝑅
2 + 𝑑𝑌2 + 𝑑𝑍2). (50)

This is easily to be seen to be ASD Einstein-Kähler with constant holo-
morphic sectional curvature and negative Ricci scalar, so it must be the
Bergman metric.

∙ As an example of one-sided type-D Einstein from Section 5, we note
that (46) has solutions of the form

𝑢 = −2 log(1 + 𝑘(𝑥2 + 𝑦2)) + 𝐹(𝑧),
with 𝑒𝐹 a 2-parameter family of quartic polynomials in 𝑧:

𝑒𝐹 = 𝑐2(1 + 24Λ𝑧3) + 𝑐3𝑧(1 + 6Λ𝑧3) + 4𝑘𝑧2,
and these include the Schwarzschild-de Sitter metric if 𝑘 = 1, 𝑐2 = 0,
and 𝑐3 is negative and related to the mass parameter. This calculation
also confirms the accuracy of the expressions for 𝐴 and 𝐵 in (46).
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