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On pinned distance problem for Cartesian
product sets: the parabolic method

Ji Li, Chong-Wei Liang and Chun-Yen Shen

ABSTRACT. The Falconer distance problem for Cartesian product sets was
introduced and studied by Iosevich and Liu ([13]). In this paper, by imple-
menting a new observation on Cartesian product sets associated with a par-
ticular parabolic structure, we study the pinned version of Falconer distance
problem for Cartesian product sets, and improve the threshold for the Fal-
coner distance set in [13] in certain cases.
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1. Introduction and statement of main results

The Falconer distance conjecture ([8]) says that if the Hausdorff dimension
of ECRY,d>2,is greater than g, then the Lebesgue measure of the distance

set A(E) = {|x —y| : x,y € E}is positive. Recent celebrated results [12, 4, 5]
show that for every compact subset E of R¢ with d > 2, the Lebesgue measure
of the distance set A(E) = {|x — y| : x,y € E} is positive if the Hausdorff

dimension of E satisfies dim4-(E) > % + i when d is even, and dim4(E) >

% + i + ﬁ when d is odd. This improved the well-known result by Wolff [22]

in two dimensions and Erdogan [7] in higher dimensions.
Recall that Falconer distance problem on Cartesian product sets was studied
by Iosevich and Liu ([13]) via Mattila integral, which states as follows.

Theorem A ([13]). Let E = A X B, where A and B are compact subsets of R
with positive $4, sg-dimensional Hausdorff measure, respectively. If s, + sg +
max(sy, Sg) > 2, the Lebesgue measure of A(E) is positive.

Theorem B ([13]). Suppose that E is a compact subset of R? of the form A; X
Ay X -+- X Ag, where Aj C R has positive s;-dimensional Hausdorff measure for
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2
all1l < j < d. Suppose that ijl sj > 25—_1. Then the Lebesgue measure of A(E)
is positive.
Their result improved Erdogan’s g + % exponent in higher dimension for

Cartesian products. Note also that they studied the pinned version of Falconer
distance problem [15].

In this paper, we study the pinned version of Falconer distance problem for
Cartesian product sets by implementing a new observation on Cartesian prod-
uct sets associated with a particular parabolic structure. We improve the thresh-
old for the Falconer distance set of product sets A; XA, X---XA, in Theorem B in
a certain case which has been widely studied in numerous contexts ([14, 3, 2]).

We now state our main results in detail. In what follows, for any set E C R4
and let x € E, we define /\,(E) to be the pinned version of the distance set,
that is

Ay(E) :={|x—-y| : y €E}.

Moreover, for a set A C R, we denote A2 = A X --- x A C RY.

Theorem 1.1. Let A,B C R be compact subsets and d > 3.

1. If one of the following conditions holds:

1 < dimy((A N B?) < %
| .. d-2) d—1 d>—3d+f-d+1
dimg(A) + dimg(B) + dimgy(ANB) > ,
(moe g dimac B+ gy A ANB) = T
14 5
el < dimg((ANB)*) < 1
d-2) . . 16d —16 3dB +4d — 4
dimg(B) + dimy(4)| + ——— - dimy:(ANB) > 1+ ———————,
P img(B) + dimg(A) +3d(d—2) img(ANB)>1+ 3d(d—2)
5 . 5
Z<d1m}f((AnB))
| (d-2) Bd —2d +2

di B)>1+ ——
img:(B) > 1+ dd—2

then thereis a point (by, ..., by) € B% such that the Hausdorff dimension of pinned

.....

set of A.
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2. If one of the following conditions holds:

1 < dims((ANBY) < %

. d-2) .. d— d2—d+1
dimg (A dimy (B dimy(ANB) > ———~
imye(A) + P imy( )+d(d 2) imy(ANB) > )
14 55
E < dlmg.[((A ﬁB) ) Z
l1@-2 . . 16d —16 . 10d — 4
dimy(B) + dimg (A)| + ——— - dimy(ANB) > 1 + ————,
g Ama®dmaD]* 30g ) AmANB > 1 5y

Z < dimye((A N B)?)

dimy(A) + @=2)

dd-2)’

then there is (by, ...,by) € B® such that A(bl ,,,,, bd)(A ) contains an non-empty
interval, where A? is the product set of A.

3. If one of the following conditions holds:

1 < dim«((ANB)?) < 1—2
].. d-2) .. (d—1)
dimg(A) + P dlm}((B)+d(d 2) dlmﬂ(AnB)_d(d 2’
14 "5
E<d1mg{((AnB)) 1
l1d-2 .. ) 16d —16 . 7d — 4
dimy(B) + dimy (A) | + ——— - dimy(ANB) > 1 + ————,
P img(B) + dimy(A) +3d(d—2) img(ANB) > +3d(d—2)

Z < dimy:((A N B)?)

G - 2 dimge(B) > 1 —

dimg(A) + 7

then thereis (by, ..., by) € BY such that AN 1b d)(A ) has positive Lebesgue mea-
sure, where A4 is the product set of A.

Note that our main theorem implies the following special case.

Corollary 1.2. Let A C R be a compact subset and d > 3.
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1. If one of the following conditions holds:
(

14
. 2 -
1 < dimg(A%) < 3
‘ d2-3d+g-d+1
di A) > ,
imye(A4) 2 (d-1)2d -3)

\

14 W5
. < dimg(A%) < 2

3d(d—-2+f) 2
(d-1)6d+4) 3d+2’

2 < dimy(A2)

d’>—4d +pd +2

dimyc(A) > o Gd—2)

269

then there is (yy, ..., yq) € A? such that the Hausdorff dimension of pinned dis-

,,,,,

set of A.
2. If one of the following conditions holds:

i

14
1 < dimg(A%) < 3
‘ d?—d+1
dimg(A) > —————
imy(4) 2 a9
14 5
- <z
3 < dimg (A )_4
) 1 5d —2

dimg(A) > 5 + m,

% < dimy(A2)

. 1 d
dimg(A) > 3 + m,

\

.....

interval, where A? is the product set of A.
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3. If one of the following conditions holds:

(

4
3

(d -1y
dimg(A) > m,

1 < dimy(A42%) < 1

4 5
< dim,-(A?) < )
1 1
d1m A)> = +
5c(A) 3d +2°

(5 . )
7 < dimg-(A%)

dimg-(A) > %,

.....

sure, where A% is the product set of A.

Based on part 3 in the Corollary 1.2 on the pinned version of the distance set,
we improve the threshold for the Falconer distance set of product sets A; X A, X
-+ X Ag in [13] in certain case: the Hausdorff dimensions s;_; and s; of A;_;

and A, respectively, satisfying s;_; + 54 > ;. We state this in details in below.

Corollary 1.3. Let d > 3. Suppose that E is a compact subset of R% of the form
Ay XAy X+ X Ag, where A; C R has positive s;-dimensional Hausdorff measure

foralll < j < d. Suppose that 27;12 sj > g —landsg_q +s5 > ;. Then there is

a point (y1, ..., ¥q) € E such that the Lebesgue measure of the pinned distance set
Agy, ...y (E) is positive.

Remark 1.4. Note that Iosevich and Liu ([15]) studied the pinned version of dis-
tance set for general set E,F C R®. Our results improve the threshold obtained
by [15] when applying their results to E = Ay X -+ X Agjand F = B; X --- X By.
In fact, one can see from our proofs below that as long as one can prove a variant
of distance result for the particular parabolic distance, one can improve the result
for the classical distance for product sets.

Besides, there are other variant distance problems related to the classical Fal-
coner distance set. (see for example [9, 10, 16, 6, 18, 11, 1, 19]) Our technique
can be also applied to improve the threshold for those distance problems in the
case of Cartesian product sets. Finally, before we proceed to prove our results,
we note here that the key observation is to use parabolic distance which allows
us to get improvement when we change to the usual Euclidean distance. In
other words, the proofs in different theorems are similar.
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2. Proofs of Theorem 1.1 and Corollary 1.2: parabolic attack

Let ® : R?x RY — R be a smooth function that satisfies Phong-Stein
rotation curvature condition and Sogge’s cinematic curvature condition, that is ®
has a nonzero Monge-Ampere determinant

0 V. ®
2
det V,o 2o |#£0
0xdy

andforanyt > 0,x € R4, {Vydb D P(x,y) = t} hasnonzero Gaussian curvature.
In particular, the parabolic distance ®(x, y) := (x;—y1)*+---+(xX4_1 —Y4-1)*+
(x4 — yq) satisfies both curvature conditions.

Theorem 2.1 ([15]). Let ® € C®*(RYxRY), E,F c R% Suppose that ® satisfies

the Phong-Stein rotation curvature condition and the cinematic curvature condi-
tion. Then there is a probability measure up on F such that for up-a.e. y € F,

(1) dimy (AF(E)) 2 B, if dimy(E) +
d—

d+

() (A2(E)) # 0, if dimy(E) + j

We then have a direct corollary from Theorem 2.1 as follows when applying
their E and F to product sets.

d+

1dim%(F) Sd—1+8,

@ [ALE)] >0, if dimy(B) + S dimy(F) > d,

-1 ..
7 dimye(F) > d +1.

Corollary 2.2. In particular, ifE=F := AX---X A C RY where A C Risa
compact subset. Then there is a probability measure up on F such that for up-a.e
y€eF,

(1) dimye(a) > G- 1AM+ D

= dimy(AJE) > B,

2d2
(2) dimy(A) > % = QA;I’(E)‘ >0,
(d +1)?

(3) dimy(A) >

= (AN®) .

Remark 2.3. The threshold in Corollary 1.2 is better than the threshold in Corol-
lary 2.2 for all large d.

Next, we recall the following two auxiliary lemmas.

Lemma 2.4 ([17]). For any compact set Q C R? with dim,-(Q) > 1, there exists
a point x € Q such that

dimy (A, (Q)) > mingg - dimy(Q) — % 1}.

Shmerkin [20] improved this bound for small values of dim4-(Q) € (1, 1.04),
dims(/\, (Q)) > § + 41—2 for many x. Very recently, D.M. Stull further improves
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the lower bound of the dimension of the pinned planar distance set for the small
value of dim4.(Q) by using the effective dimension.

Lemma 2.5 ([21]). For any analytic set Q C R? with dim4-(Q) > 1, there exists
a point x € Q such that
dim4(Q)

4 2'
Remark 2.6. When dim4-(Q) is close to 1, then the lower bound obtained by
Stull is bigger than the lower bound min {g dimg(Q) — 2 1}. To compare these
two lemmas, one can actually have that there is a point x € Q such that

dims (A (Q) > ———

dimy (A (Q)) > dlmT}[(Q) —, if 1 <dimg(Q) < 1: and
2 dimy(Q) — 2 if 1‘3‘ < dimy(Q) < %,
dimy (A, (Q)) > (2.1)

2.1. Proof of Theorem 1.1. Letd > 3and y;_1,y4 € AN B and x4, x; € B.
Consider the sets in R4,

=(AX - X A)X AZ yd)(Az) C R92xR!; and
=(BX--XB)x— A(xx)(Bz)cRd‘leRl.

Ifd,_; : R&IxRI! —s Ris the parabolic distance, then there is a probability
measure ur on F such that for ug-a.e. y € F which is of the form

(bys ey ba—gs = (%0 — bg—1|* + |1 — byl?)),
satisfying

(1) dimg(AZE)) 2 B, if dimy(E) + =2 4im, (F)>d—2+ 8,

(2) | A‘D(E)| > 0, if dim4(E) + d—2 dimy (F) >d -1,

d

3) (AL®) # 0. if dimy(E) +4
However note that
DEy — A2
which says the set A?y yd)(Ad) is a translation of Ag’(E) so that we have
1

. ® — di 2 d
(1) dlmg{(Ay (E)) - dlm}[(A(bl,...,bd_z,}’d—l’yd)(A ))
= dim}((A(bl Wbg Z:yd—led)(Ad))’ and

@) |AY®)| = |AY, (AD] < Ca - | Aoy e roAD)] . and

dlm%(F) >d.

d 2 2
1)~~~,bd—2’}’d—1’Yd)(A ) + |x0 - bd_ll + |x1 - bdl ’

»ba—2:Yda-1,ya)
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@) (ALE) 9 = (Dorotysrersn@D) #0.
Then one has

(1) dim%(A(bla--ubd—z,)’d—l,ycl)(Ad)) 2 ﬁ’
d-2
d

(2) ’A(bl,--->bd—2aYd—1aYd)(Ad)| >0, if dlm}((E) +

if dim(E) + dimy (F) > d -2 + 6,

d—2

dimy(F) > d — 1,
d—2

3) (AtorobysyesmnAD) # 6, if dimy(E) + dimye(F) > d.

To guarantee the condition dimgy(E) + % dimg-(F) > d — 2+ 3 holds, we note

that
dim () + 122
> (d — 2) dimy(A) + dimy (A, ,y(A%)

+ 22 ((d = D dimg(B) + dimg (A (B)

(@-2)
d
922 imac( Ay (B 22)

To apply Lemma 2.4 and Lemma 2.5, we need to assume that the Hausdorff

dimension of the set A N B is at least %, and hence we have the following three
cases:

dimgy (F)

=d-2) dimy(B) + dimyc(A) | + dimy (A, (A2)

+

Case(1): Assume 1 < dim((ANB)?) < %, then (2.2) reveals that if we choose

the point (y4_1,y4) = (X9, X%1) € A N B such that Lemma 2.5 holds for the set
(A N B)?, then

dima(E) + % dim (F)
[(d —2)
d

dimge(/\ (x, x,)((A N B)?))

[(d —2)

>(d-2)

dimye(B) + dimye(A)| + dimyc (A, (AN B))
d—2

+

2d — 2 [Zdim%(AnB) +l]

> (d -2) - > o1

dimy(B) + dim.(A)| +

Suppose that

@—»[@=2

2d -2 [2dimﬂ(AnB) s 1]

4 2

>d—-2+4,
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then we have

d=2) . d-1 . d>-3d+B-d+1
d B d ANB) > ,
myc(B) + g =g A AnB) 2 —— 575

whenever d > 3.

Case(2): Assume g < dim4((AnB)?) < Z, then (2.2) reveals that if we choose

the point (y4_1,¥4) = (xo, X;) such that Lemma 2.4 holds for the set (A N B)?,
then

dimg(E) + d—2 dimg(F) > (d — 2) [(d —2) dim.(B) + dimg((A)]
2d—2 (4 . 2
>(d—-2) [(d d‘ 2) dim,.(B) + dimﬂ(A)]
16d —16 . 4d — 4
+T'dlm}((AﬁB)— 3d
Suppose that
d-2) [(d 2 Gimy(B) + dim%(A)] + 16 =16 Gim, (anB)— 24=4
d 3d 3d
>d—-2+8,
then we have
(d-2) .. . 16d — 16 .
[ 7 dimg(B) + dlm}((A)] + m -dimg (A N B)
3df +4d — 4
3dd-2) ’

whenever d > 3.

Case(3): Assume Z < dimy-(A?), then (2.2) reveals that if we choose the point
Vg—1,Ya) = (xo, X1) such that Lemma 2.4 holds for the set (A N B)?, then

dimy(E) + L=2 dimy(F) > (d — 2) [(d - 2 dimy (B + dimye(4)] + de_ 2
Suppose that
d-2)[9=2 dim,.B) + dim}((A)] + de_ 2o d—2+8
then we have
d-2) Bd—2d +2

dimye(A) + dimg (B) > 1+

dd-2) ’
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whenever d > 3. Therefore, we can conclude that for all d > 3, if one of the
following holds,

1 < dims((ANB)?) < 1—3

].. d-2) . d— d>—3d+8-d+1

d A d B d ANB R

img(A) + imag( )+d(d 2) imy(ANB) > ad—2)

14 S

'l < dimgx((ANnB)?) < 7

l1@d-2) . . 16d—16 3dB + 4d — 4
dimge(B) + dimye(A)| + ——— - dimy(ANB) > 14+ —
img(B) + dimg(A) +3d(d—2) imy(ANB)>1+ )

Z < dimy((A N B)?)

d-2) .. Bd —2d+2
P dimg(B) > 1+ W,

then the Hausdorff dimension of pinned distance set of the product A¢ is no
less than 8, which improve the threshold in the case of product sets. Similarly,
we have for all d > 3, if one of the following holds,

-

1 < dimy (AN BY) < ]1‘—‘3‘
1. d-2) .. d— (d—1)2
dimg(A) + P dim4.(B) + dd = 2) dims(ANB) > dd—2)
(14 55
- < dimg((ANB)?) < 7
d-2) .. . 16d —16 . 7d — 4
3 dimg (B) + dimg(A) | + m dimy(ANB)>1+ m,
5 >
‘ -2
kdim}((A) + (d 7 ) dimy(B) > 1 — %

then the pinned distance set of the product A% has positive Lebesgue measure;
and if one of the following holds,

1 < dimy((A N BY) < ]1“3‘
_ 2_
dimg(A) + @-2 dimg(B) + ———— d - dimg(ANB) > " —d+1

dld— 2) dd-2)
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-

14 . 5
d—2) 16d — 16 10d — 4

dimg (B) + dimg(A) | + -dimy(ANB)>1+

3d(d —2) 3d(d —2)’

% < dimge((A N B)?)

(d-2)
d

dd—-2)’

then the pinned distance set of the product A% contains an interval, which also
improve the threshold in the case of product sets.

2.2. Proof of Corollary 1.2. Letd > 3 and y;_1, Y4, X, X; € A. Consider the
sets in R4-1,
. 2 2 d-2 1.
E:=(Ax--xXA)X A(yd_l,yd)(A ) c R2 x R!; and
F:=(AX XA x—/A? (A%) c R%2 x R,

(o0,%1)

Ifd, ; : R&IxRI"1 —s Risthe parabolic distance, then there is a probability
measure yr on F such that for up-a.e. y € F which is of the form

(yl’ s Yd—2— (le - aOl2 + |x1 - a1|2)) ’
satisfying
d—2

(1) dimg(AZE)) 2 B, if dimy(E) + dimy (F) > d -2 + B,

dd_zdim}f(F) >d—1,

d—2
d

@) |AF®)] > o, if dimy(E) +

3) (A2E)) # 6, if dimy(E) + dimy(F) > d.

However note that

.....
.....

.....

d—2
..... d

dimy(F) > d — 2 + B,
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d—2

d—2
d

.....

..... dimg(F) > d.
To guarantee the condition dimg4(E) + % dimg (F) > d —2+ 8 holds, we note
that
d-2
d
> (d — 2) dimg(A) + dimge (A, 5(A2)
+ L2 (@ = 2)dimg(A) + dimge (A s, (A7)
_(2d-2)-(d-2)
h d
d—2
d
To apply Lemma 2.4 and Lemma 2.5, we need to assume that the Hausdorff

dimension of the set A is at least %, and hence we have the following three
cases:

dimg(E) + dimg (F)

dimye(A) + dimy (A, ) (A2)

+ dimye (A ) (A%)- (2.3)

Case(1): Assume 1 < dimg-(A?) < 1—:, then (2.3) reveals that if we choose the
point (¥4_1,¥q) = (xg, X1) such that Lemma 2.5 holds, then

d—2

dimg(E) + dimg (F)
(2d—-2)-(d-2) .. 2d —2 [2dimg(A) 1
> 7 dimg(A) + FE [ 7 + 5].
Suppose that
(2d—-2)-(d-2) . 2d -2 [Zdim%(A) 1]
. Zl>d-

d dimy(A) + 7 2 +5[2d-2+5

then we have
d?-3d -d+1
dimyc(4) > L ALA:

d-1@2d-3) °

whenever d > 3.

Case(2): Assume i—: < dimg(A?%) < Z, then (2.3) reveals that if we choose the
point (¥4_1,¥q) = (X9, X1) such that Lemma 2.4 holds, then

dimy (B) + =2 dim ()
d-2)-(d- -
T 5 ()
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_(d—-1)6d+4) . 4(d—-1)
= 3d dimg(A) -
Suppose that % dimg(A) — 4(‘;;1) > d — 2 + 3, then we have
3d(d—-2+f) 2

dimg(A) >

+ )
(d—1)6d+4) 3d+2
whenever d > 3.

Case(3): Assume Z < dimg-(A?), then (2.3) reveals that if we choose the point
(Vg-1,Y4) = (x, 2o) such that Lemma 2.4 holds, then

@d-2)-(d-2) .. 2d -2
7 di

dimﬂ(E)+%dim%(F)z mye(4) + 2222,

Suppose that W dimg(A) + de—_z > d — 2 + 3, then we have
d’>—4d +pd +2

dimye(A) > o)

whenever d > 3. Therefore, we can conclude that for all d > 3, if one of the
following holds,

r

14
. 2 i
1 < dimg(A%) < 3
‘ d2—3d+p-d+1
dimg(A) > ,
imye(4) 2 (d—2)(2d — 3)

\

14
1 < dimge(4?) < %

13
3d(d—-2+f) + 2
(d=1)(6d+4) 3d+2’

dimy (A) >

2 < dimy(A2)

d’>—4d+pd +2
(d-2)(2d-2)°

dimg(A) >

then the Hausdorff dimension of pinned distance set of the product A4 isno less
than 8, which improve the threshold in the case of product sets. Similarly, one
has the threshold for the product set such that the pinned distance set contains
an interval and has positive Lebesgue measure. The proof is complete.
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2.3. Proof of Corollary 1.3. Letd > 3and y;_; € A4_1, Ya € Ay4. Consider
the sets in R4,
G:=(A; X XAg_,)X A?yd o Ad1 X Ag) C R?-2 x R!; and
—1>.

F:i=(A X XAg_)x—/N\? (A4 X Ay) C R&2x RL,
Va-1Ya)

Ifd, ; : R&IxRY! — Risthe parabolic distance, then there is a probability
measure yr on F such that for up-a.e. y € F which is of the form
15> V2o = (I¥a=1 — o> + [y — a1%)) »
satisfying
d—2

|A;P(G)| > 0, if dimy(G) + dimy(F) > d — 1.

However note that

.....

.....

.....
.....

d—-2

dimg(F) >d -1,

.....

To guarantee that the Hausdorff dimension of G and F fit the threshold, we may
hope that

2d -2
< D s; + dimg (A?yd_l,yy)("‘d—l X Ad)> >d—1; (2.4)
j=1

By Lemma?2.4, we have if s;_; + s4 > 2, then dimg(Ag_; X Ay) > ‘—i and hence

dimg, (A?yd_l,yy)(Ad_l X Ad)) = dimy, (A(yd_l,yy)(Ad—l X Ad)) >1. (2.5

Combining (2.4) and (2.5), we have if Zj:f sj > % — 1, then

.....
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