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Kihler-Einstein submanifolds of
Cartan-Hartogs domains

Xu Zhang

ABSTRACT. In this short paper, we show that any Kihler-Ricci soliton on a
complex manifold which admits a holomorphic isometric embedding into a
Hartogs domain over an irreducible bounded symmetric domain equipped
with the Bergman metric must be a Kihler-Einstein metric.
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1. Introduction

Holomorphic isometric embedding is an important topic in complex geom-
etry. Calabi [2] obtained the celebrated results on the existence, global extend-
ability and rigidity of a local holomorphic isometric embedding into a complex
space form. In particular, Calabi proved that any complex space form cannot
be locally holomorphically isometrically embedded into another complex space
form with a different curvature sign with respect to the canonical Kéhler met-
rics. Calabi’s orginal idea is to reduce the metric tensor equation to the func-
tional identity involving the diastasis functions he introduced. On the other
hand, Umehara [14] studied a more general question whether two complex
space forms can share a common complex submanifold with the induced met-
rics and proved that two complex space forms with different curvature signs
cannot share a common Kéhler submanifold by using Calabi’s diastasis func-
tion. When two complex manifolds share a common K&hler submanifolds with
induced metrics, they are called relatives by Di Scala and Loi [7]. Furthermore,
Di Scala and Loi proved that a bounded domain equipped with its canonical
Bergman metric cannot be a relative to a Hermitian symmetric space of com-
pact type equipped with the canonical metric [7]. Using the method of Nash
algebraic functions developed in [8], Huang and Yuan showed that a complex
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Euclidean space and a Hermitian symmetric space of noncompact type can-
not be relatives [9]. This method introduced by Huang and Yuan turns out to
be very powerful and has been used by many authors in the study of relativity
problem (cf. [3], [17], [4], [19], [5] and references therein).

More recently, in a series of papers, Loi and Mossa considered the very inter-
esting rigidity problem of Kdhler-Ricci solitons that are holomophically isomet-
rically embedded in Kéhler manifold with canonical metrics, such as (indefi-
nite) complex space forms, bounded homogeneous domains, flag manifolds of
special type [11], [12], [13]. In particular, they showed that these Kédhler-Ricci
solitons must be trivial, i.e. Kdhler-Einstein metrics. Recall that a Kihler met-
ric wy,; on a complex manifold M is called a Kdhler-Ricci soliton if there exists a
holomorphic vector field X such that Ric(w;,) = Awy + Lxwy,. When X = 0 or
X is Killing with respect to w,,, then the Kihler-Ricci soliton becomes a Kédhler-
Einstein metric. In Loi and Mossa’s proofs, one crucial ingredient is the method
of Nash algebraic functions developed in [8], [9] by Huang and Yuan.

One interesting object in the study of the relativity problem is the Cartan-
Hartogs domain, which differs from the aforementioned objects because its
Bergman kernel function is much more complicated than being the product
of Nash algebraic functions to some powers. It is suspected that the Cartan-
Hartogs domain and the complex Euclidean space cannot be relatives. Only
partial results were obtained in [6], [4] before the full solution in [18] by Ji
and the author, where the automorphism group is used to handle the part of
non-Nash algebraic functions in the Bergman kernel. In this paper, along the
study of [11], [12], [13], we consider the rigidity problem of Kdhler-Ricci soli-
tons that are holomophically isometrically embedded in the Cartan-Hartogs do-
main. Note that the case of the general Cartan-Hartogs domain is not covered
in the studies of Loi and Mossa, where the potential functions of canonical met-
rics of the ambient spaces are the product of Nash algebraic functions to some
powers.

The Cartan-Hartogs domain is defined as follows. Let D C C¢ be a domain
and ¢ be a continuous positive function on D. The domain

Q={(¢,2)eChxD: | <pZ)} (1)

is called a Hartogs domain over D with dy-dimensional fibers. When D is a
bounded homogeneous domain and ¢(Z) = Kp(Z, Z)7S, the Bergman kernel
K((Z,£&),(W,n)) of Q is obtained by Ishi, Park and Yamamori [10]. In particu-
lar, when D is a bounded symmetric domain, Q is called a Cartan-Hartogs do-
main, whose Bergman kernel was obtained in [16] earlier. Denote the Bergman
metric on Q by wq, given by wg = V—188 logK((Z, £), (Z, £)).

If D is abounded homogeneous domain, by the formula in [10], the Bergman

kernel K((Z, &), (W,n)) is a rational function, for s € Z. Then the rigidity prob-
lem of Kdhler-Ricci solitons in this case is covered in [12]. However, in general,
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fors ¢ Q, K((Z, ), (W,n)) becomes much more complicated and the general
argument in [9] is inapplicable. The result of this paper is:

Theorem 1.1. Let Q be a Hartogs domain over an irreducible bounded symmet-
ric domain D defined by (1). Let wy; be a Kahler-Ricci soliton on a complex mani-
foldMand F : (M, w,;) = (Q,wq) be a local holomorphic isometric embedding.
Then wy; must be a Kihler-Einstein metric.

The proof of Theorem 1.1 is based on the general strategy in [8] [9], the re-
duction to functional equation introduced in [11], and the new input developed
in [18] to treat the functional equation.

We conclude the paper with a remark. One notes that Theorem 1.1 also holds
for the Hartogs domain Q over a bounded, complete circular, homogeneous, Lu
Qi-Keng domain equipped with the Bergman metric. All the argument works
the same provided that Lemma 2.1 holds for such Hartogs domain and we ex-
plain there why this is the case.

2. Proof of Theorem 1.1

Let us now collect some results that will be used in the proof of Theorem
1.1. The first lemma is a consequence of Proposition 2 in [15]. Although in [15]
a more general result was merely stated for the Hartogs domain over an irre-
ducible bounded symmetric domain, if the reader applies the argument in [16],
[1] carefully, it is not difficulty to find out Lemma 2.1 also holds for the Har-
togs domain Q over a bounded, complete circular, homogeneous, Lu Qi-Keng
domain. As in the solution of relativity problem [18], this lemma is crucial. Let
Q be the Hartogs domain over a bounded symmetric domain defined in (1).

Lemma 2.1 ([15]). For any point (§y,Z,) € Q, there exists ® € Aut(Q), such
that ®(&o, Zy) = (§;,0).
The second lemma is an explicit description of the Bergman kernel functions

over Q. Note that if D is a bounded homogeneous domain, its Bergman kernel
function Kp(Z, W) is a rational function on D X conj(D)

Lemma 2.2 ([10]). When D is a bounded homogeneous domain and let (Z) =
Kp(Z,Z)~5, the Bergman kernel of Q is

K((Z,8),(W,n) = Kp(Z, W)Ws+1R(p), (2)

—dood (s . . —
where R(t) = m~% ijo C(f_ﬂ)#ofl is a rational functionint = Kp(Z, W)S(&,n),
with constants c(s, j) satisfying that F(ks) = Z?:o c(s, j)(k + 1)}, for the polyno-

mial function F given by (18) in [10].

Recall that with the Bochner coordinates z with z(p) = 0 at p in a Kéhler
manifold M with a real analytic Kdhler metric w,,, the diastasis function can
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be locally written as
DM(z,0)=|z|>+ ), bjzlzF
jl.1k|>2

near p. Then the following result follows from Calabi’s classical result and the
definition of Bochner coordinates (cf. Proposition 3.1 in [11]).

Lemma 2.3. Let (M, w,,) be a Kdhler manifold, and z be the Bochner coordinate
near p € M with z(p) = 0. Then neither the diastasis function D™ (z,0) nor
det [62DM(Z,0)

ZiaZj

] has pluriharmonic terms in its Taylor expansion.

The last lemma is contained in the proof of Theorem 1.1 in [9] and this ver-
sion is used in the proof of Theorem 2.1 in [11].

Lemma 2.4. Let S = {¢;,---,$;} be a finite set of holomorphic functions on
an open neighborhood U of 0 in C". Then there exists a maximal algebraic in-
dependent subset {¢, -+, ¢} C S over the field R of rational functions on U,
and holomorphic Nash algebraic functions $j(t,X1, -+, X}), such that ¢j(t) =
cﬁj(t,cﬁl(t), e () forall 1 < j < I after shrinking U toward the origin if
needed.

We are now in the position to prove the theorem.

Proof of Theorem 1.1. Let p be a point on M and {z = (zy, -*+, z,,,)} be the
Bochner coordinate in an open neighborhood U of p such that z(p) = 0, where
the Calabi’s diastasis function is denoted by DM(z,w). By the reduction of the
Kihler-Ricci soliton equation

Ric(wys) = Awyr + Lywy,

in [11], we have

- 52 M ,
exp {—%DM(Z, 0) — ¢m(2) + frni1(2) + fm+1(z)} = det [%;0)] ’

where f,,; is a germ of holomorphic function at p and

<, 0DM(z,0) . —38DM(z,0)
$m = JZZlfj 3 + f 3z,

is the soliton potential function, for germs of holomorphic functions f1, -+, f1u
at p, satisfying
\[ -1 -

It follows from Lemma 2.3 that

32DM(z,0)

XD pu(2, 2+ frnna @)+ frun (2]} = det | =

l exp {%DM(Z, 0)} 3)
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does not have pluriharmonic terms. Denote

Pm(2,2) = ~¢u(2,2) + frn1(2) + i1 (2)- (4)

Since exp{@,} does not have pluriharmonic terms, so is @,;.

On the other hand, by Lemma 2.2, Calabi’s diastasis function for the Bergman
metric wg, is given by
KD(Z’ Z_)KD(Wa W)
Kp(Z,W)Kp(W,2Z)
R(Kp(Z, 2)*(&, ENREKp(W, W)*(n, 7))
R(KD(Z7 W)S<§’ ﬁ))R(KD(Wz Z)S<779 g))

By Calabi’s fundamental result, G = (g,h) : M — Q is a holomorphic isomet-
ric embedding in the sense F*wg = uwy, if and only if

DM(z,0) = uD*(g(2), h(2), g(0), h(0)) (5)

DY, Z,n, W) = (sdy + 1) log

for any z near z(p) =

By Lemma 2.1, there exists a holomorphic isometry o of Q such that o(F(p)) =
(&,0). Moreover, coF : M — Q is again a local holomorphic isometric em-
bedding, still denoted by F. Now, (5) reads
Kp(h(2), h(z))Kp(0, 0)
Kp(h(z),0)Kp(0, h(z))
R(Kp(h(2), h(2))(3(2), g(2))R(K (0, 0)S<§o,§o>)
R(Kp(h(2),0)(g(2), E)R(Kp (0, R(2)) (&0, 82N

Since D is a bounded complete circular domain, K;(0,-) = Kp(-,0) = ¢y is a
constant. This reduces (6) to

DM(z,0) = u(sdy + 1) log
(6)

+ ulog

R(Kp(h(z), h(2))(g(2), g(2)))
R(ci(g(2), ENR(ci(E0, 8(2)))

where ¢; = u(sdy+1), ¢, = —c; logco+plog(cs |p|?) are real constants. Denote

DM(z,0) = ¢; log Kp(h(z), h(z))+u log +cy, (7)

H(z,2) = Kp(h(z), h(2))*(g(2), 8(2)),

where K (h(z), h(z))® is a rational function in h and h to a power of s. Write

LM (2,0) = e, T Kp(h(2), KE) + ¢ log REDUELHEV G@) 8N

R(cy(g(2), DR (c)(éo 8 (Z)))
(8)
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for real constants cs, ¢4, cs. It thus follows from (7) that

AT e
aDM(Z, 0) _. 0Z,

52; ' Kp(h(2), h(2) ©
R’(c0<g( z), §o>) g 98 )y R (H(z,2) 8H(z, 2)
OR@(E@).E) 32 VTP REG2) oz

where the straightforward calculation yields

>

0H(z,z)
oz

dKp(h(2), h(z)) ah
9z,

= sKp(h(z), h(z))*! ( Xg(2), 2(2))

J

(10)
+ Kp(h(z), h(Z))S< (Z) g()).

Note that the right side of (10) is a rational function in g, &, h, h, the first order

holomorphic derivatives of g, h, and Kp(h(z), h(z))’. So is the right side of (9).
Denote f = (f1,*, fm+1), and the first order holomorphic derivative of g, h
along any z; direction by g’, h’. Therefore, by (4), we may write

éM(Z’ Z) =
R, (8(2), h(2), f(2),8'(2), W' (2),8(2), h(2), [ (2), &' (2), I (2), Kp(h(2), h())')
(11)

where R, isarational functioning, h, f,g',h’, g, h, f,g',h’,and K (h, h)*. Also
a straightforward calculation yields

0°H(z,2) _ — 0K (h(2), h(z)) 0K p(h(2), h(z))
m = s(s — DKp(h(z), h(z))*~2 623 3z,

32K (h(z), h(z)) ah

+ sKp(h(z), h(z))*™ 522,

+ skoh(z), Ry KD M) S ). 22
_ ah

+ sKp(h(2), R@)* 15KD(”‘;2 h(z)) e )<—<z) 2@)

— 0 o)
+ Kp(h(2), h(z))%a—f_(z), é(z»,
J
(12)
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and the right side is a rational function in g, h,g’,h’, g, h,g’,h’ and Kp(h, h)’.
32DM(z,0)
It follows det [

z,-@Zj

] is also a rational function in g, h,g’, h’, g, h,g’, h’ and

Kp(h, h)* and thus we may write

det

9°DM(z,0)
5Zl-62j

= R, (8(2), h(2). g (2), ' (2), 8(2), h(2). & (2), W (2), Kp(h(2), h(2))")

where R, isarational functionin g, h,g’,h’, g, h,g', h’,and K (h, h)*. By taking
logarithmic, (3) reads

Ry (8(2), h(2), f(2),8'(2), W' (2),8(2), h(2), [ (2). &' (2), W(2). Kp(h(2), h(2))’)
= log R, (8(2), h(2), &'(2), W(2), 8(2), h(2),'(2), W' (2), Kp(h(2), h(2))')

RKp(h(z), h(@)g(@).82) |,
R(ci(g(2), EDR(C(E, 8(2)))

+ ¢3l0g Kpp(h(z), h(z)) + ¢4 log 5.

By polarization, it is equivalent to
Ry (8(2), h(2), f(2),8'(2), W' (2), §(w), A(w), f(w), §'(w), A’ (w), Kp(h(z), A(w))*)
= log R, (g(2), h(2),g'(2), W (2), g(w), h(w), &' (w), B’ (w), Kp(h(2), h(w))*)
R(Kp(h(z), h(w))*(g(2), §w)))
R(c(g(2), EoDR(ci (&, &(w)))

+ ¢; log Kp(h(z), h(w)) + ¢4 log cs,

(13)

where y(w) = y(w) for w € U. Applying Lemma 2.4, there exists a subset of
all components of g(z), h(z), f(z), g’ (z), h'(z), denoted by ¢, (2), -+, $x(z), such
that any y € {g, h, f,g’, W'} can be written as

X(Z) = )Z(Z’ ¢1(Z)’ T ¢k(z))’

for a holomorphic Nash algebraic function 7(z,X) in z and X = (X3, -+, X}).
Define

¥(z,X,w) =R, (g(z,X), h(z,X), f(z,X),8' (z,X), ' (z,X),
g(w), h(w), f(w), g'(w), ' (w), Kp(h(z,X), Ft(w))s>
—logR, (g(z,X), h(z,X),8 (z,X),h (z,X), (14)

g(w), ﬁ<w>,g—'<w),ﬁ’(w),KDm(z,X),ﬁ(w»S)

—¢c; log Kp(h(z,X), A(w))
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R(Kp(h(z,X), h(w))*(§(z,X), gw)))

+c4lo =
R(c(8(z,X), §o))R(co(§o, §(w)))

Cs
and
wh(z, X, w) = (6511’) (z,X,w)
stands for the holomorphic mixed derivative of ¥(z, X, w) along w of order |8].
Lemma 2.5. For any w near 0 and any (z,X), ¥(z,X,w) = ¥(z,X,0).

Proof. It suffices to show that Wh(z,X,0) = 0 for all | 3| > 0. Note that g(0) =
&y, h(0) = 0. It follows that

Kp(h(z,X), h(0)) = c3.

It thus follows from the expression in (14) that ¥8(z, X, 0) is a holomorphic
Nash algebraic function in (z, X). Assume it is not constant. Then there exists
a holomorphic polynomial P(z,X,y) = Ay(z,X)y? + --- + Ay(z,X) of degree
d in y, with Ay(z,X) # 0 such that P(z, X, wh(z,X,0)) = 0, where all Aj(z,X)
are polynomials in z,X for 0 < j < d. As ¥(z,¢,(2), -, ¢dx(2),w) = 0 for
z € U,w € U by (13), it follows that W#(z, ¢,(2), ---, ¢x(2),0) = 0 and there-
fore Ay(z, $1(2), -+, $r(2z)) = 0. This means that ¢,(z), ---, $,(z) are algebraic
dependent over R. This is a contradiction and it follows that wh(z,X,0)is a
constant. Therefore, W#(z, X,0) = ¥P(z, ¢,(2), ---, ¢r(2),0) = 0. O

Lemma 2.6. Assume (M, w,,) is a non-trivial Kdhler-Ricci soliton, i.e. Lywy; #
0. Then there exists some w # 0, such that

R1<g(Z,X), I:I.(Z,X), f(Z,X), g,(z’X)’ EI(Z’X)a
gw), h(w), f(w), &' (w), k' (w), Kp(h(z, X), Fz(w))s)
- R1<g(ZsX)s ];l(Z,X), f(Z,X), g/(ZaX)’ ]:l’(Z,X),

g(0), h(0), f(0),g'(0), '(0), Kp(h(z, X), ﬁ(O))S)
must depend on (z, X).

Proof. We argue by contradiction. Suppose not. Namely, for any w € U,

Rl(gxz,X),ﬁ(z,X),f<z,X),g'(z,X), (2,5,
8w), W), F(w), g/ (), K (w), Kn(iz, X), hw))')
—Rl(gxz,X),ﬁ(z,X),ﬂz,X),g'(z,X), B2, %),

£(0). Fi(0), 7(0). g(0), (0), Kp(i(z. X), ﬁ(o»S)
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does not depend on (z,X). It thus only depends on w holomorphically. Let
w=2zX=¢=($(2), -, ¢r(2)). By the polarization of (11),

R (86,929, /2.9, .9, K 2. 6),
820,52, [2),8/2), KD, Ko(h(z, ), h2)')
- Ri(8@. 9,79, [z 9). 8z 8. K . 9),
800, F(0), 7(0),/0), (), Kp(h(z, ), O)Y

= ¢p(z,2) — Pp(2,0) = ¢y (2, Z) — constant,

because ¢,,(z,0) = a constant as @), does not have non-constant plurihar-
monic terms in its Taylor expansion. However, by the contradiction hypothesis,

é(z, 2) must depend on z holomorphically. Therefore Lycw,, = gaécﬁ v = 0.
This is a contradiction. O

We denote
H(z,X,w) =R, (g(z,X), h(z,X), f(z,X),8' (z,X), ' (z,X),
gw), iw), Fw), 8w, K (w), Kp(h(z,X), hw))’)
- Ry(862. 50, 2,30, £ 2, 30,8 2,30, R 2,0,

g(0), A(0), £(0), &'(0), A'(0), Kp(h(z,X), ﬁ(O))S).

Then by Lemma 2.6, one may fix w = w, as in Lemma 2.6 and a complex plane
in C"™*k whose holomorphic coordinate denoted by ¢, such that the restriction

of H,(z, X, w,) to t-plane, denoted by H,(¢), is not constant. Denote the restric-
tion of

1ogR2(g<z,X),ﬁ(z,X),g'<z,X),ﬁ'<z,X),

8(wo), A(wo), & (wo), ' (o), Kp(h(z, X), ﬁ(wo))s)

R(Kp(h(z,X), h(wp))*(g(z,X), §(wo)))
R(cg(8(z, X), ENR(c) (&0, 8(wo)))

~logR, (g(z,x>, (2, X), 8(2,X), K'(2,X),

+ c; log Kp(h(z,X), h(w,)) — ¢4 log

£(0), f1(0), g'(0), F'(0), Kp(h(z.X), fz(o»S)
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R(Kp(h(z,X), h(0))*(g(z, X), £(0)))
R(c3(8(z,X), E0)R(ci(&0, 8(0)))

to t-plane by log H,(t). Then it follows from Lemma 2.5 that
exp {H,()} = H,(1). (15)

Since H,(t) is not constant, then there exists some point t, € C U {oo}, such
that H,(t) blows up as t — t,. By the expression, H; blows up at a polynomial
rate. By (15), H,(¢) also blows up as t — t,. Moreover, By the expression, H,
blows up at a polynomial rate as well. This contradicts to (15) and the theorem
is proved. (]

— ¢c; log Kp(h(z,X), h(0)) + ¢, log
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