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Kähler-Einstein submanifolds of
Cartan-Hartogs domains

Xu Zhang

Abstract. In this short paper, we show that any Kähler-Ricci soliton on a
complex manifold which admits a holomorphic isometric embedding into a
Hartogs domain over an irreducible bounded symmetric domain equipped
with the Bergman metric must be a Kähler-Einstein metric.
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1. Introduction
Holomorphic isometric embedding is an important topic in complex geom-

etry. Calabi [2] obtained the celebrated results on the existence, global extend-
ability and rigidity of a local holomorphic isometric embedding into a complex
space form. In particular, Calabi proved that any complex space form cannot
be locally holomorphically isometrically embedded into another complex space
form with a different curvature sign with respect to the canonical Kähler met-
rics. Calabi’s orginal idea is to reduce the metric tensor equation to the func-
tional identity involving the diastasis functions he introduced. On the other
hand, Umehara [14] studied a more general question whether two complex
space forms can share a common complex submanifold with the induced met-
rics and proved that two complex space forms with different curvature signs
cannot share a common Kähler submanifold by using Calabi’s diastasis func-
tion. When two complexmanifolds share a commonKähler submanifolds with
inducedmetrics, they are called relatives by Di Scala and Loi [7]. Furthermore,
Di Scala and Loi proved that a bounded domain equipped with its canonical
Bergman metric cannot be a relative to a Hermitian symmetric space of com-
pact type equipped with the canonical metric [7]. Using the method of Nash
algebraic functions developed in [8], Huang and Yuan showed that a complex
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Euclidean space and a Hermitian symmetric space of noncompact type can-
not be relatives [9]. This method introduced by Huang and Yuan turns out to
be very powerful and has been used by many authors in the study of relativity
problem (cf. [3], [17], [4], [19], [5] and references therein).
More recently, in a series of papers, Loi andMossa considered the very inter-

esting rigidity problem of Kähler-Ricci solitons that are holomophically isomet-
rically embedded in Kähler manifold with canonical metrics, such as (indefi-
nite) complex space forms, bounded homogeneous domains, flag manifolds of
special type [11], [12], [13]. In particular, they showed that these Kähler-Ricci
solitons must be trivial, i.e. Kähler-Einstein metrics. Recall that a Kähler met-
ric 𝜔𝑀 on a complex manifold𝑀 is called a Kähler-Ricci soliton if there exists a
holomorphic vector field 𝑋 such that 𝑅𝑖𝑐(𝜔𝑀) = 𝜆𝜔𝑀 +𝐿𝑋𝜔𝑀 . When 𝑋 = 0 or
𝑋 is Killing with respect to𝜔𝑀 , then the Kähler-Ricci soliton becomes a Kähler-
Einsteinmetric. In Loi andMossa’s proofs, one crucial ingredient is themethod
of Nash algebraic functions developed in [8], [9] by Huang and Yuan.
One interesting object in the study of the relativity problem is the Cartan-

Hartogs domain, which differs from the aforementioned objects because its
Bergman kernel function is much more complicated than being the product
of Nash algebraic functions to some powers. It is suspected that the Cartan-
Hartogs domain and the complex Euclidean space cannot be relatives. Only
partial results were obtained in [6], [4] before the full solution in [18] by Ji
and the author, where the automorphism group is used to handle the part of
non-Nash algebraic functions in the Bergman kernel. In this paper, along the
study of [11], [12], [13], we consider the rigidity problem of Kähler-Ricci soli-
tons that are holomophically isometrically embedded in theCartan-Hartogs do-
main. Note that the case of the general Cartan-Hartogs domain is not covered
in the studies of Loi andMossa, where the potential functions of canonical met-
rics of the ambient spaces are the product of Nash algebraic functions to some
powers.

The Cartan-Hartogs domain is defined as follows. Let 𝐷 ⊂ ℂ𝑑 be a domain
and 𝜑 be a continuous positive function on 𝐷. The domain

Ω =
{
(𝜉, 𝑍) ∈ ℂ𝑑0 × 𝐷 ∶ |𝜉|2 < 𝜑(𝑍)

}
(1)

is called a Hartogs domain over 𝐷 with 𝑑0-dimensional fibers. When 𝐷 is a
bounded homogeneous domain and 𝜑(𝑍) = 𝐾𝐷(𝑍, 𝑍)−𝑠, the Bergman kernel
𝐾((𝑍, 𝜉), (𝑊, 𝜂)) of Ω is obtained by Ishi, Park and Yamamori [10]. In particu-
lar, when 𝐷 is a bounded symmetric domain, Ω is called a Cartan-Hartogs do-
main, whose Bergman kernel was obtained in [16] earlier. Denote the Bergman
metric on Ω by 𝜔Ω, given by 𝜔Ω =

√
−1𝜕𝜕̄ log𝐾((𝑍, 𝜉), (𝑍, 𝜉)).

If𝐷 is a bounded homogeneous domain, by the formula in [10], the Bergman
kernel𝐾((𝑍, 𝜉), (𝑊, 𝜂)) is a rational function, for 𝑠 ∈ ℤ. Then the rigidity prob-
lem of Kähler-Ricci solitons in this case is covered in [12]. However, in general,
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for 𝑠 ∉ ℚ, 𝐾((𝑍, 𝜉), (𝑊, 𝜂)) becomes much more complicated and the general
argument in [9] is inapplicable. The result of this paper is:

Theorem 1.1. LetΩ be a Hartogs domain over an irreducible bounded symmet-
ric domain𝐷 defined by (1). Let𝜔𝑀 be a Kähler-Ricci soliton on a complex mani-
fold𝑀 and 𝐹 ∶ (𝑀,𝜔𝑀) → (Ω, 𝜔Ω) be a local holomorphic isometric embedding.
Then 𝜔𝑀 must be a Kähler-Einstein metric.

The proof of Theorem 1.1 is based on the general strategy in [8] [9], the re-
duction to functional equation introduced in [11], and the new input developed
in [18] to treat the functional equation.

We conclude the paperwith a remark. One notes that Theorem1.1 also holds
for theHartogs domainΩ over a bounded, complete circular, homogeneous, Lu
Qi-Keng domain equipped with the Bergman metric. All the argument works
the same provided that Lemma 2.1 holds for such Hartogs domain and we ex-
plain there why this is the case.

2. Proof of Theorem 1.1
Let us now collect some results that will be used in the proof of Theorem

1.1. The first lemma is a consequence of Proposition 2 in [15]. Although in [15]
a more general result was merely stated for the Hartogs domain over an irre-
ducible bounded symmetric domain, if the reader applies the argument in [16],
[1] carefully, it is not difficulty to find out Lemma 2.1 also holds for the Har-
togs domain Ω over a bounded, complete circular, homogeneous, Lu Qi-Keng
domain. As in the solution of relativity problem [18], this lemma is crucial. Let
Ω be the Hartogs domain over a bounded symmetric domain defined in (1).

Lemma 2.1 ([15]). For any point (𝜉0, 𝑍0) ∈ Ω, there exists Φ ∈ Aut(Ω), such
that Φ(𝜉0, 𝑍0) = (𝜉′0, 0).

The second lemma is an explicit description of the Bergman kernel functions
over Ω. Note that if 𝐷 is a bounded homogeneous domain, its Bergman kernel
function 𝐾𝐷(𝑍,𝑊) is a rational function on 𝐷 × conj(𝐷)

Lemma 2.2 ([10]). When 𝐷 is a bounded homogeneous domain and let 𝜑(𝑍) =
𝐾𝐷(𝑍, 𝑍)−𝑠, the Bergman kernel ofΩ is

𝐾((𝑍, 𝜉), (𝑊, 𝜂)) = 𝐾𝐷(𝑍,𝑊)𝑑0𝑠+1𝑅(𝑡), (2)

where 𝑅(𝑡) = 𝜋−𝑑0 ∑𝑑
𝑗=0

𝑐(𝑠,𝑗)(𝑗+𝑑0)!
(1−𝑡)𝑗+𝑑0+1

is a rational function in 𝑡 = 𝐾𝐷(𝑍,𝑊)𝑠⟨𝜉, 𝜂⟩,

with constants 𝑐(𝑠, 𝑗) satisfying that 𝐹(𝑘𝑠) = ∑𝑑
𝑗=0 𝑐(𝑠, 𝑗)(𝑘 + 1)𝑗 , for the polyno-

mial function 𝐹 given by (18) in [10].

Recall that with the Bochner coordinates 𝑧 with 𝑧(𝑝) = 0 at 𝑝 in a Kähler
manifold 𝑀 with a real analytic Kähler metric 𝜔𝑀 , the diastasis function can
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be locally written as

𝐷𝑀(𝑧, 0) = |𝑧|2 +
∑

|𝑗|,|𝑘|≥2
𝑏𝑗𝑘𝑧𝑗𝑧̄𝑘

near 𝑝. Then the following result follows from Calabi’s classical result and the
definition of Bochner coordinates (cf. Proposition 3.1 in [11]).

Lemma 2.3. Let (𝑀, 𝜔𝑀) be a Kähler manifold, and 𝑧 be the Bochner coordinate
near 𝑝 ∈ 𝑀 with 𝑧(𝑝) = 0. Then neither the diastasis function 𝐷𝑀(𝑧, 0) nor
det [ 𝜕

2𝐷𝑀(𝑧,0)
𝜕𝑧𝑖𝜕𝑧̄𝑗

] has pluriharmonic terms in its Taylor expansion.

The last lemma is contained in the proof of Theorem 1.1 in [9] and this ver-
sion is used in the proof of Theorem 2.1 in [11].

Lemma 2.4. Let 𝑆 = {𝜙1,⋯ , 𝜙𝑙} be a finite set of holomorphic functions on
an open neighborhood 𝑈 of 0 in ℂ𝑛. Then there exists a maximal algebraic in-
dependent subset {𝜙1,⋯ , 𝜙𝑘} ⊂ 𝑆 over the field ℛ of rational functions on 𝑈,
and holomorphic Nash algebraic functions 𝜙̂𝑗(𝑡, 𝑋1,⋯ ,𝑋𝑘), such that 𝜙𝑗(𝑡) =
𝜙̂𝑗(𝑡, 𝜙1(𝑡),⋯ , 𝜙𝑘(𝑡)) for all 1 ≤ 𝑗 ≤ 𝑙 after shrinking 𝑈 toward the origin if
needed.

We are now in the position to prove the theorem.

Proof of Theorem 1.1. Let 𝑝 be a point on𝑀 and {𝑧 = (𝑧1,⋯ , 𝑧𝑚)} be the
Bochner coordinate in an open neighborhood𝑈 of 𝑝 such that 𝑧(𝑝) = 0, where
the Calabi’s diastasis function is denoted by 𝐷𝑀(𝑧, 𝑤). By the reduction of the
Kähler-Ricci soliton equation

𝑅𝑖𝑐(𝜔𝑀) = 𝜆𝜔𝑀 + 𝐿𝑋𝜔𝑀
in [11], we have

exp {−𝜆2𝐷
𝑀(𝑧, 0) − 𝜙𝑀(𝑧) + 𝑓𝑚+1(𝑧) + 𝑓𝑚+1(𝑧)} = det [𝜕

2𝐷𝑀(𝑧, 0)
𝜕𝑧𝑖𝜕𝑧̄𝑗

] ,

where 𝑓𝑚+1 is a germ of holomorphic function at 𝑝 and

𝜙𝑀 =
𝑚∑

𝑗=1
𝑓𝑗
𝜕𝐷𝑀(𝑧, 0)

𝜕𝑧𝑗
+ 𝑓𝑗

𝜕𝐷𝑀(𝑧, 0)
𝜕𝑧̄𝑗

is the soliton potential function, for germs of holomorphic functions 𝑓1,⋯ , 𝑓𝑚
at 𝑝, satisfying

𝐿𝑋𝜔𝑀 =
√
−1
2 𝜕𝜕̄𝜙𝑀 .

It follows from Lemma 2.3 that

exp{−𝜙𝑀(𝑧, 𝑧̄) +𝑓𝑚+1(𝑧)+𝑓𝑚+1(𝑧)} = det [𝜕
2𝐷𝑀(𝑧, 0)
𝜕𝑧𝑖𝜕𝑧̄𝑗

] exp {𝜆2𝐷
𝑀(𝑧, 0)} (3)
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does not have pluriharmonic terms. Denote

𝜙̃𝑀(𝑧, 𝑧̄) = −𝜙𝑀(𝑧, 𝑧̄) + 𝑓𝑚+1(𝑧) + 𝑓𝑚+1(𝑧). (4)

Since exp{𝜙̃𝑀} does not have pluriharmonic terms, so is 𝜙̃𝑀 .
On the other hand, byLemma2.2, Calabi’s diastasis function for theBergman

metric 𝜔Ω is given by

𝐷Ω(𝜉, 𝑍, 𝜂,𝑊) = (𝑠𝑑0 + 1) log 𝐾𝐷(𝑍, 𝑍̄)𝐾𝐷(𝑊, 𝑊̄)
𝐾𝐷(𝑍, 𝑊̄)𝐾𝐷(𝑊, 𝑍̄)

+ log 𝑅(𝐾𝐷(𝑍, 𝑍̄)
𝑠⟨𝜉, 𝜉̄⟩)𝑅(𝐾𝐷(𝑊, 𝑊̄)𝑠⟨𝜂, 𝜂⟩)

𝑅(𝐾𝐷(𝑍, 𝑊̄)𝑠⟨𝜉, 𝜂⟩)𝑅(𝐾𝐷(𝑊, 𝑍̄)𝑠⟨𝜂, 𝜉̄⟩)
.

By Calabi’s fundamental result, 𝐺 = (𝑔, ℎ) ∶ 𝑀 → Ω is a holomorphic isomet-
ric embedding in the sense 𝐹∗𝜔Ω = 𝜇𝜔𝑀 if and only if

𝐷𝑀(𝑧, 0) = 𝜇𝐷Ω(𝑔(𝑧), ℎ(𝑧), 𝑔(0), ℎ(0)) (5)

for any 𝑧 near 𝑧(𝑝) = 0.
By Lemma2.1, there exists a holomorphic isometry𝜎 ofΩ such that𝜎(𝐹(𝑝)) =

(𝜉0, 0). Moreover, 𝜎◦𝐹 ∶ 𝑀 → Ω is again a local holomorphic isometric em-
bedding, still denoted by 𝐹. Now, (5) reads

𝐷𝑀(𝑧, 0) = 𝜇(𝑠𝑑0 + 1) log 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝐾𝐷(0, 0̄)
𝐾𝐷(ℎ(𝑧), 0̄)𝐾𝐷(0, ℎ(𝑧))

+ 𝜇 log 𝑅(𝐾𝐷(ℎ(𝑧), ℎ(𝑧))
𝑠⟨𝑔(𝑧), 𝑔(𝑧)⟩)𝑅(𝐾𝐷(0, 0̄)𝑠⟨𝜉0, 𝜉̄0⟩)

𝑅(𝐾𝐷(ℎ(𝑧), 0̄)𝑠⟨𝑔(𝑧), 𝜉̄0⟩)𝑅(𝐾𝐷(0, ℎ(𝑧))𝑠⟨𝜉0, 𝑔(𝑧)⟩)
.

(6)

Since 𝐷 is a bounded complete circular domain, 𝐾𝐷(0, ⋅) = 𝐾𝐷(⋅, 0̄) = 𝑐0 is a
constant. This reduces (6) to

𝐷𝑀(𝑧, 0) = 𝑐1 log𝐾𝐷(ℎ(𝑧), ℎ(𝑧))+𝜇 log
𝑅(𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠⟨𝑔(𝑧), 𝑔(𝑧)⟩)
𝑅(𝑐𝑠0⟨𝑔(𝑧), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔(𝑧)⟩)

+𝑐2, (7)

where 𝑐1 = 𝜇(𝑠𝑑0+1), 𝑐2 = −𝑐1 log 𝑐0+𝜇 log(𝑐𝑠0|𝜉0|
2) are real constants. Denote

𝐻(𝑧, 𝑧̄) = 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠⟨𝑔(𝑧), 𝑔(𝑧)⟩,

where 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠 is a rational function in ℎ and ℎ̄ to a power of 𝑠. Write

𝜆
2𝐷

𝑀(𝑧, 0) = 𝑐3 log𝐾𝐷(ℎ(𝑧), ℎ(𝑧)) + 𝑐4 log
𝑅(𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠⟨𝑔(𝑧), 𝑔(𝑧)⟩)
𝑅(𝑐𝑠0⟨𝑔(𝑧), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔(𝑧)⟩)

+ 𝑐5,

(8)



260 XU ZHANG

for real constants 𝑐3, 𝑐4, 𝑐5. It thus follows from (7) that

𝜕𝐷𝑀(𝑧, 0)
𝜕𝑧𝑗

= 𝑐1

𝜕𝐾𝐷(ℎ(𝑧),ℎ(𝑧))
𝜕𝑍𝛼

𝜕ℎ𝛼
𝜕𝑧𝑗

(𝑧)

𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

− 𝜇𝑐𝑠0
𝑅′(𝑐𝑠0⟨𝑔(𝑧), 𝜉̄0⟩)
𝑅(𝑐𝑠0⟨𝑔(𝑧), 𝜉̄0⟩)

⟨ 𝜕𝑔𝜕𝑧𝑗
(𝑧), 𝜉̄0⟩ + 𝜇𝑅

′(𝐻(𝑧, 𝑧̄)
𝑅(𝐻(𝑧, 𝑧̄))

𝜕𝐻(𝑧, 𝑧̄)
𝜕𝑧𝑗

,

(9)

where the straightforward calculation yields

𝜕𝐻(𝑧, 𝑧̄)
𝜕𝑧𝑗

= 𝑠𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠−1
𝜕𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

𝜕𝑍𝛼
𝜕ℎ𝛼
𝜕𝑧𝑗

(𝑧)⟨𝑔(𝑧), 𝑔(𝑧)⟩

+ 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠⟨
𝜕𝑔
𝜕𝑧𝑗

(𝑧), 𝑔(𝑧)⟩.
(10)

Note that the right side of (10) is a rational function in 𝑔, 𝑔̄, ℎ, ℎ̄, the first order
holomorphic derivatives of 𝑔, ℎ, and 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠. So is the right side of (9).
Denote 𝑓 = (𝑓1,⋯ , 𝑓𝑚+1), and the first order holomorphic derivative of 𝑔, ℎ
along any 𝑧𝑗 direction by 𝑔′, ℎ′. Therefore, by (4), we may write

𝜙̃𝑀(𝑧, 𝑧̄) =

𝑅1
(
𝑔(𝑧), ℎ(𝑧), 𝑓(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝑔(𝑧), ℎ(𝑧), 𝑓(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠

)
,

(11)

where𝑅1 is a rational function in 𝑔, ℎ, 𝑓, 𝑔′, ℎ′, 𝑔̄, ℎ̄, 𝑓, 𝑔̄′, ℎ̄′, and𝐾𝐷(ℎ, ℎ̄)𝑠. Also
a straightforward calculation yields

𝜕2𝐻(𝑧, 𝑧̄)
𝜕𝑧𝑗𝜕𝑧̄𝑘

= 𝑠(𝑠 − 1)𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠−2
𝜕𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

𝜕𝑍̄𝛽
𝜕𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

𝜕𝑍𝛼

𝜕ℎ𝛼
𝜕𝑧𝑗

(𝑧)
𝜕ℎ𝛽
𝜕𝑧𝑘

(𝑧)⟨𝑔(𝑧), 𝑔(𝑧)⟩

+ 𝑠𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠−1
𝜕2𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

𝜕𝑍𝛼𝜕𝑍̄𝛽
𝜕ℎ𝛼
𝜕𝑧𝑗

(𝑧)
𝜕ℎ𝛽
𝜕𝑧𝑘

(𝑧)⟨𝑔(𝑧), 𝑔(𝑧)⟩

+ 𝑠𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠−1
𝜕𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

𝜕𝑍𝛼
𝜕ℎ𝛼
𝜕𝑧𝑗

(𝑧)⟨𝑔(𝑧), 𝜕𝑔𝜕𝑧𝑘
(𝑧)⟩

+ 𝑠𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠−1
𝜕𝐾𝐷(ℎ(𝑧), ℎ(𝑧))

𝜕𝑍̄𝛽

𝜕ℎ𝛽
𝜕𝑧𝑘

(𝑧)⟨ 𝜕𝑔𝜕𝑧𝑗
(𝑧), 𝑔(𝑧)⟩

+ 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠⟨
𝜕𝑔
𝜕𝑧𝑗

(𝑧), 𝜕𝑔𝜕𝑧𝑘
(𝑧)⟩,

(12)
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and the right side is a rational function in 𝑔, ℎ, 𝑔′, ℎ′, 𝑔̄, ℎ̄, 𝑔̄′, ℎ̄′ and 𝐾𝐷(ℎ, ℎ̄)𝑠.
It follows det [ 𝜕

2𝐷𝑀(𝑧,0)
𝜕𝑧𝑖𝜕𝑧̄𝑗

] is also a rational function in 𝑔, ℎ, 𝑔′, ℎ′, 𝑔̄, ℎ̄, 𝑔̄′, ℎ̄′ and
𝐾𝐷(ℎ, ℎ̄)𝑠 and thus we may write

det [𝜕
2𝐷𝑀(𝑧, 0)
𝜕𝑧𝑖𝜕𝑧̄𝑗

]

= 𝑅2
(
𝑔(𝑧), ℎ(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝑔(𝑧), ℎ(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠

)
,

where𝑅2 is a rational function in 𝑔, ℎ, 𝑔′, ℎ′, 𝑔̄, ℎ̄, 𝑔̄′, ℎ̄′, and𝐾𝐷(ℎ, ℎ̄)𝑠. By taking
logarithmic, (3) reads

𝑅1
(
𝑔(𝑧), ℎ(𝑧), 𝑓(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝑔(𝑧), ℎ(𝑧), 𝑓(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠

)

= log 𝑅2
(
𝑔(𝑧), ℎ(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝑔(𝑧), ℎ(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠

)

+ 𝑐3 log𝐾𝐷(ℎ(𝑧), ℎ(𝑧)) + 𝑐4 log
𝑅(𝐾𝐷(ℎ(𝑧), ℎ(𝑧))𝑠⟨𝑔(𝑧), 𝑔(𝑧)⟩)
𝑅(𝑐𝑠0⟨𝑔(𝑧), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔(𝑧)⟩)

+ 𝑐5.

By polarization, it is equivalent to

𝑅1
(
𝑔(𝑧), ℎ(𝑧), 𝑓(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝑔̄(𝑤), ℎ̄(𝑤), 𝑓(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ(𝑧), ℎ̄(𝑤))𝑠

)

= log 𝑅2
(
𝑔(𝑧), ℎ(𝑧), 𝑔′(𝑧), ℎ′(𝑧), 𝑔̄(𝑤), ℎ̄(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ(𝑧), ℎ̄(𝑤))𝑠

)

+ 𝑐3 log𝐾𝐷(ℎ(𝑧), ℎ̄(𝑤)) + 𝑐4 log
𝑅(𝐾𝐷(ℎ(𝑧), ℎ̄(𝑤))𝑠⟨𝑔(𝑧), 𝑔̄(𝑤)⟩)
𝑅(𝑐𝑠0⟨𝑔(𝑧), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔̄(𝑤)⟩)

+ 𝑐5,

(13)

where 𝜒̄(𝑤) = 𝜒(𝑤̄) for 𝑤̄ ∈ 𝑈. Applying Lemma 2.4, there exists a subset of
all components of 𝑔(𝑧), ℎ(𝑧), 𝑓(𝑧), 𝑔′(𝑧), ℎ′(𝑧), denoted by𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧), such
that any 𝜒 ∈ {𝑔, ℎ, 𝑓, 𝑔′, ℎ′} can be written as

𝜒(𝑧) = 𝜒̂(𝑧, 𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧)),

for a holomorphic Nash algebraic function 𝜒̂(𝑧, 𝑋) in 𝑧 and 𝑋 = (𝑋1,⋯ ,𝑋𝑘).
Define

Ψ(𝑧, 𝑋,𝑤) = 𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(𝑤), ℎ̄(𝑤), 𝑓(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))𝑠)

− log 𝑅2(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋), (14)

𝑔̄(𝑤), ℎ̄(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))𝑠)

− 𝑐3 log𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))
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+ 𝑐4 log
𝑅(𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))𝑠⟨𝑔̂(𝑧, 𝑋), 𝑔̄(𝑤)⟩)
𝑅(𝑐𝑠0⟨𝑔̂(𝑧, 𝑋), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔̄(𝑤)⟩)

− 𝑐5

and
Ψ𝛽(𝑧, 𝑋,𝑤) =

(
𝜕𝛽𝑤Ψ

)
(𝑧, 𝑋,𝑤)

stands for the holomorphic mixed derivative of Ψ(𝑧, 𝑋,𝑤) along𝑤 of order |𝛽|.

Lemma 2.5. For any 𝑤 near 0 and any (𝑧, 𝑋), Ψ(𝑧, 𝑋,𝑤) ≡ Ψ(𝑧, 𝑋, 0).

Proof. It suffices to show that Ψ𝛽(𝑧, 𝑋, 0) ≡ 0 for all |𝛽| > 0. Note that 𝑔̄(0) =
𝜉̄0, ℎ̄(0) = 0. It follows that

𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0))𝑠 = 𝑐𝑠0.

It thus follows from the expression in (14) that Ψ𝛽(𝑧, 𝑋, 0) is a holomorphic
Nash algebraic function in (𝑧, 𝑋). Assume it is not constant. Then there exists
a holomorphic polynomial 𝑃(𝑧, 𝑋, 𝑦) = 𝐴𝑑(𝑧, 𝑋)𝑦𝑑 + ⋯ + 𝐴0(𝑧, 𝑋) of degree
𝑑 in 𝑦, with 𝐴0(𝑧, 𝑋) ≢ 0 such that 𝑃(𝑧, 𝑋,Ψ𝛽(𝑧, 𝑋, 0)) ≡ 0, where all 𝐴𝑗(𝑧, 𝑋)
are polynomials in 𝑧, 𝑋 for 0 ≤ 𝑗 ≤ 𝑑. As Ψ(𝑧, 𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧), 𝑤) ≡ 0 for
𝑧 ∈ 𝑈, 𝑤̄ ∈ 𝑈 by (13), it follows that Ψ𝛽(𝑧, 𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧), 0) ≡ 0 and there-
fore 𝐴0(𝑧, 𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧)) ≡ 0. This means that 𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧) are algebraic
dependent over ℛ. This is a contradiction and it follows that Ψ𝛽(𝑧, 𝑋, 0) is a
constant. Therefore, Ψ𝛽(𝑧, 𝑋, 0) = Ψ𝛽(𝑧, 𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧), 0) ≡ 0. □

Lemma 2.6. Assume (𝑀, 𝜔𝑀) is a non-trivial Kähler-Ricci soliton, i.e. 𝐿𝑋𝜔𝑀 ≠
0. Then there exists some 𝑤 ≠ 0, such that

𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(𝑤), ℎ̄(𝑤), 𝑓(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))𝑠)

− 𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(0), ℎ̄(0), 𝑓(0), 𝑔̄′(0), ℎ̄′(0), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0))𝑠)

must depend on (𝑧, 𝑋).

Proof. We argue by contradiction. Suppose not. Namely, for any 𝑤̄ ∈ 𝑈,

𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(𝑤), ℎ̄(𝑤), 𝑓(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))𝑠)

− 𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(0), ℎ̄(0), 𝑓(0), 𝑔̄′(0), ℎ̄′(0), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0))𝑠)
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does not depend on (𝑧, 𝑋). It thus only depends on 𝑤 holomorphically. Let
𝑤 = 𝑧̄, 𝑋 = 𝜙 = (𝜙1(𝑧),⋯ , 𝜙𝑘(𝑧)). By the polarization of (11),

𝑅1(𝑔̂(𝑧, 𝜙), ℎ̂(𝑧, 𝜙), 𝑓(𝑧, 𝜙), 𝑔̂′(𝑧, 𝜙), ℎ̂′(𝑧, 𝜙),

𝑔̄(𝑧̄), ℎ̄(𝑧̄), 𝑓(𝑧̄), 𝑔̄′(𝑧̄), ℎ̄′(𝑧̄), 𝐾𝐷(ℎ̂(𝑧, 𝜙), ℎ̄(𝑧̄))𝑠)

− 𝑅1(𝑔̂(𝑧, 𝜙), ℎ̂(𝑧, 𝜙), 𝑓(𝑧, 𝜙), 𝑔̂′(𝑧, 𝜙), ℎ̂′(𝑧, 𝜙),

𝑔̄(0), ℎ̄(0), 𝑓(0), 𝑔̄′(0), ℎ̄′(0), 𝐾𝐷(ℎ̂(𝑧, 𝜙), ℎ̄(0))𝑠)

= 𝜙̃𝑀(𝑧, 𝑧̄) − 𝜙̃𝑀(𝑧, 0) = 𝜙̃𝑀(𝑧, 𝑧̄) − constant,

because 𝜙̃𝑀(𝑧, 0) ≡ a constant as 𝜙̃𝑀 does not have non-constant plurihar-
monic terms in its Taylor expansion. However, by the contradiction hypothesis,

𝜙̃𝑀(𝑧, 𝑧̄)must depend on 𝑧̄ holomorphically. Therefore 𝐿𝑋𝜔𝑀 =
√
−1
2
𝜕𝜕̄𝜙̃𝑀 = 0.

This is a contradiction. □

We denote

𝐻̃1(𝑧, 𝑋,𝑤) = 𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(𝑤), ℎ̄(𝑤), 𝑓(𝑤), 𝑔̄′(𝑤), ℎ̄′(𝑤), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤))𝑠)

− 𝑅1(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑓(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(0), ℎ̄(0), 𝑓(0), 𝑔̄′(0), ℎ̄′(0), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0))𝑠).

Then by Lemma 2.6, one may fix𝑤 = 𝑤0 as in Lemma 2.6 and a complex plane
inℂ𝑚+𝑘, whose holomorphic coordinate denoted by 𝑡, such that the restriction
of 𝐻̃1(𝑧, 𝑋,𝑤0) to 𝑡-plane, denoted by 𝐻̃1(𝑡), is not constant. Denote the restric-
tion of

log 𝑅2(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(𝑤0), ℎ̄(𝑤0), 𝑔̄′(𝑤0), ℎ̄′(𝑤0), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤0))𝑠)

+ 𝑐3 log𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤0)) − 𝑐4 log
𝑅(𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(𝑤0))𝑠⟨𝑔̂(𝑧, 𝑋), 𝑔̄(𝑤0)⟩)
𝑅(𝑐𝑠0⟨𝑔̂(𝑧, 𝑋), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔̄(𝑤0)⟩)

− log 𝑅2(𝑔̂(𝑧, 𝑋), ℎ̂(𝑧, 𝑋), 𝑔̂′(𝑧, 𝑋), ℎ̂′(𝑧, 𝑋),

𝑔̄(0), ℎ̄(0), 𝑔̄′(0), ℎ̄′(0), 𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0))𝑠)
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− 𝑐3 log𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0)) + 𝑐4 log
𝑅(𝐾𝐷(ℎ̂(𝑧, 𝑋), ℎ̄(0))𝑠⟨𝑔̂(𝑧, 𝑋), 𝑔̄(0)⟩)
𝑅(𝑐𝑠0⟨𝑔̂(𝑧, 𝑋), 𝜉̄0⟩)𝑅(𝑐

𝑠
0⟨𝜉0, 𝑔̄(0)⟩)

to 𝑡-plane by log 𝐻̃2(𝑡). Then it follows from Lemma 2.5 that

exp {𝐻̃1(𝑡)} = 𝐻̃2(𝑡). (15)

Since 𝐻̃1(𝑡) is not constant, then there exists some point 𝑡0 ∈ ℂ ∪ {∞}, such
that 𝐻̃1(𝑡) blows up as 𝑡 → 𝑡0. By the expression, 𝐻̃1 blows up at a polynomial
rate. By (15), 𝐻̃2(𝑡) also blows up as 𝑡 → 𝑡0. Moreover, By the expression, 𝐻̃2
blows up at a polynomial rate as well. This contradicts to (15) and the theorem
is proved. □
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