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Iterations of the functor of naive
𝔸𝟏-connected components of varieties

Nidhi Gupta

Abstract. For any sheaf of setsℱ on 𝑆𝑚∕𝑘, it is well known that the univer-
sal 𝔸1-invariant quotient of ℱ is given as the colimit of sheaves 𝒮𝑛(ℱ) where
𝒮(𝐹) is the sheaf of naive𝔸1-connected components ofℱ. We show that these
infinite iterations of naive 𝔸1-connected components in the construction of
universal 𝔸1-invariant quotient for a scheme are certainly required. For ev-
ery 𝑛, we construct an 𝔸1-connected variety 𝑋𝑛 such that 𝒮𝑛(𝑋𝑛) ≠ 𝒮𝑛+1(𝑋𝑛)
and 𝒮𝑛+2(𝑋𝑛) =∗.
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1. Introduction
Let 𝑘 be a field and𝑋 be any smooth, finite-type scheme over 𝑘. In the unsta-

ble𝔸1-homotopy categoryℋ(𝑘) [8], there are two notions of𝔸1-connectedness
for 𝑋. The genuine notion is the sheaf of 𝔸1-connected components 𝜋𝔸1

0 (𝑋),
which is given by the Nisnevich sheafication of the presheaf that associates
to any smooth scheme 𝑈 the set of morphisms from 𝑈 to 𝑋 in ℋ(𝑘). The
naive notion is given by the sheaf of𝔸1-chain connected components 𝒮(𝑋)(see
Definition 2.3). Both of these notions may not coincide even for smooth and
proper schemes [2]. However, if we take infinite iterations of 𝒮 and subse-
quently form the direct limit, the resulting sheaf ℒ(𝑋)(also known as the uni-
versal𝔸1-invariant quotient) will coincide with𝜋𝔸1

0 (𝑋), provided that the latter
is 𝔸1-invariant [2, Theorem 1].
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The 𝔸1-invariance of the sheaf of 𝔸1-connected components for a general
space 𝒳 inℋ(𝑘) has recently been disproved [1]. Nevertheless, there are vari-
ous examples of schemes where the equality of 𝜋𝔸1

0 andℒ has been established.
It is known to coincide for 𝔸1-rigid schemes, proper curves [2], smooth pro-
jective surfaces over an algebraically closed field [5], smooth projective retract
rational varieties over an infinite field [3], etc. Moreover,ℒ(𝑋) provides a com-
plete geometric description of 𝜋𝔸1

0 (𝑋) for sections over finitely generated, sep-
arable field extensions of 𝑘 [4, Theorem 1.1].
In all the above examples,ℒ has been shown to stabilise at some finite stage.

In other words, ℒ is shown to be equal to 𝒮𝑛 for some 𝑛 in all these cases. This
leads to a natural question: are these iterations really necessary? More specif-
ically, does there exist an 𝑛 such that 𝒮𝑛(𝑋) = ℒ(𝑋) for any scheme 𝑋? For a
general space 𝒳, it has already been answered in the negative by Balwe-Rani-
Sawant [4, Theorem 1.2]. For each 𝑛, they have constructed a sheaf of sets
for which the iterations of naive𝔸1-connected components do not stabilise be-
fore the 𝑛th stage. Moreover, they have remarked on the possibility of suitably
modifying their construction to produce schemes 𝑋𝑛 with the same property
[4, Remark 4.7].
The purpose of this note is to show that the infinite iterations of naive 𝔸1-

connected components in the construction of ℒ are certainly required in the
case of varieties aswell and that the suggested example in op. cit. indeedworks.
We prove the following:

Theorem 1.1. For each 𝑛 ∈ ℕ, there exists a variety𝑋𝑛 overℂ of dimension 𝑛+1
such that 𝒮𝑛(𝑋𝑛) ≠ 𝒮𝑛+1(𝑋𝑛).

The first example of a variety for which 𝒮(𝑋) ≠ 𝒮2(𝑋) is of a singular sur-
face 𝑆1 over ℂ [2, Construction 4.3]. Taking 𝑋1 = 𝑆1, we have inductively
constructed a sequence of varieties 𝑋𝑛 having two points, 𝛼𝑛 and 𝛽𝑛, in 𝑋𝑛(ℂ)
such that 𝛼𝑛 and 𝛽𝑛 have the same images in 𝒮𝑛+1(𝑋𝑛)(ℂ) but distinct images
in 𝒮𝑛(𝑋𝑛)(ℂ). We also show that these varieties 𝑋𝑛 are 𝔸1-connected and that
𝜋𝔸1

0 (𝑋𝑛) = 𝒮𝑛+2(𝑋𝑛) =∗.

Acknowledgment. The author wishes to express her gratitude to her PhD
supervisor, Dr. Chetan Balwe, for suggesting this problem, his constant guid-
ance, and many helpful suggestions during the preparation of this note. She
also thanks Dr. Anand Sawant for several insightful comments, which led to
Theorem 3.16. Additionally, the author is grateful to the anonymous referee
for their careful reading and various suggestions that improved the exposition
of the paper.

2. Preliminaries
In this section, we recall relevant material from [2, 8] to make our exposition

self-contained. We fix a base field 𝑘. Let 𝑆𝑚∕𝑘 denote the Grothendieck site of
smooth schemes of finite type over 𝑘 equipped with the Nisnevich topology.
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Notation 2.1. For any smooth scheme 𝑈 over 𝑘 and 𝑡 ∈ 𝑘, 𝑠𝑈𝑡 denotes the
morphism 𝑈 → 𝔸1

𝑘 × 𝑈 given by 𝑢 ↦ (𝑡, 𝑢). For any 𝐻 ∈ ℱ(𝔸1
𝑘 × 𝑈), define

𝐻(𝑡) ∶= 𝐻◦𝑠𝑈𝑡 .

Definition 2.2. Letℱ be a sheaf of sets in Nisnevich topology. For any smooth
scheme 𝑈 in 𝑆𝑚∕𝑘 and 𝑥0, 𝑥1 in ℱ(𝑈), we say 𝑥0 and 𝑥1 are 𝔸1-homotopic if
there exists ℎ ∈ ℱ(𝔸1

𝑘 × 𝑈) such that ℎ(0) = 𝑥0 and ℎ(1) = 𝑥1. Moreover, ℎ is
called an 𝔸1-homotopy connecting 𝑥0 and 𝑥1.

Definition 2.3. The sheaf of naive𝔸1-connected components of ℱ, denoted by
𝒮(ℱ) is defined as the Nisnevich sheafication of the presheaf 𝒮𝑝𝑟𝑒(ℱ),

𝒮𝑝𝑟𝑒(ℱ)(𝑈) ∶=
ℱ(𝑈)
∼ ,

where ∼ is the equivalence relation generated by 𝔸1-homotopy. Equivalently,
𝒮(ℱ) is the Nisnevich sheafication of the presheaf

𝑈 ↦ 𝜋0Sing
𝔸1

∗ (ℱ)(𝑈),

where Sing∗𝔸1(ℱ) is theMorel-Voevodsky singular construction on ℱ[8, p.87].

For any sheaf of sets ℱ, it is immediate from the definition of 𝒮, that 𝒮(𝐹)
satisfies the following universal property.

Lemma 2.4. Letℱ, 𝒢 ∈ 𝑆ℎ𝑣(𝑆𝑚∕𝑘)𝑁𝑖𝑠 be sheaves of sets. Suppose𝜓 ∶ ℱ → 𝐺 is
a morphism such that for any𝔸1-homotopy ℎ ∈ ℱ(𝔸1

𝑘 ×𝑈), and for any 𝑠, 𝑡 ∈ 𝑘,
the morphisms (𝜓◦ℎ)(𝑠) and (𝜓◦ℎ)(𝑡) are identical. Then 𝜓 factors through the
canonical morphismℱ → 𝒮(ℱ).

Proof. View the morphism 𝜓 ∶ ℱ → 𝐺 as a morphism of presheaves. By
the definition of 𝒮𝑝𝑟𝑒(ℱ), for any smooth scheme 𝑈, 𝜓(𝑈) factors through the
morphism ℱ(𝑈)→ 𝒮𝑝𝑟𝑒(ℱ)(𝑈):

ℱ(𝑈) 𝒢(𝑈)

𝒮𝑝𝑟𝑒(ℱ)(𝑈)

𝜓(𝑈)

Since ℱ and 𝒢 are sheaves of sets, after Nisnevich sheafication, the lemma fol-
lows. □

Definition 2.5. A sheaf ℱ ∈ 𝑆ℎ𝑣(𝑆𝑚∕𝑘)𝑁𝑖𝑠 is called 𝔸1-invariant if the maps
ℱ(𝑈)→ ℱ(𝔸1

𝑘×𝑈), induced by the projections𝔸
1
𝑘×𝑈 → 𝑈, are bijections. We

say a scheme 𝑋 is 𝔸1-rigid if, when viewed as a sheaf of sets, 𝑋 is 𝔸1-invariant.

Iterating the construction of 𝒮 infinitely many times yields a sequence of epi-
morphisms

ℱ → 𝒮(𝐹)→ 𝒮2(ℱ) … .
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After taking the direct limit, we arrive at the universal 𝔸1-invariant quotient
ℒ(ℱ),

ℒ(𝐹) ∶= lim
→𝑛

𝒮𝑛(ℱ).

Definition 2.6. For any scheme 𝑋 over 𝑘, an elementary Nisnevich covering
comprises of the following two maps:

(1) An open immersion 𝑗 ∶ 𝑈 → 𝑋.
(2) An etale map 𝑝 ∶ 𝑉 → 𝑋 where its restriction to 𝑝−1(𝑋 ⧵ 𝑗(𝑈)) is an

isomorphism onto 𝑋 ⧵ 𝑗(𝑈).
The resulting cartesian square

𝑈 ×𝑋 𝑉 𝑉

𝑈 𝑋

𝑝

𝑗

is called an elementary distinguished square.

One of the significant aspects of using an elementary Nisnevich covering is
illustrated by the following result in [8, §3, Lemma 1.6 ].

Lemma 2.7. An elementary distinguished square is a cocartesian square in the
category 𝑆ℎ𝑣(𝑆𝑚∕𝑘)𝑁𝑖𝑠.

The lemma mentioned in [8] is originally stated for smooth schemes; how-
ever, the same proof holds for general schemes without any modifications. We
will recall some results from [9, 4, 7] thatwill be used to prove the𝔸1-connected-
ness of 𝑋𝑛. The following lemma is a standard result from [7, Lemma 6.1.3].

Lemma 2.8. A sheaf of setsℱ on 𝑆𝑚∕𝑘 is𝔸1-connected if𝜋𝔸1

0 (ℱ)(𝐾) =∗ for any
finitely generated separable extension 𝐾 of 𝑘.

The following theorem from [4, Theorem 2.2] provides an explicit formula
for computing 𝜋𝔸1

0 (ℱ)(𝐾) for any field 𝐾∕𝑘.

Theorem 2.9. Let ℱ be a sheaf of sets. For any finitely generated field extension
𝐾∕𝑘, the natural map 𝜋𝔸1

0 (ℱ)(𝐾)→ ℒ(ℱ)(𝐾) is a bijection.

The analogue of Lemma 2.8 for 𝒮 is given by the following result from [9,
Theorem 3.2].

Theorem2.10. Supposeℱ is a sheaf on sets such that𝒮(ℱ)(𝐾) =∗ for anyfinitely
generated separable 𝐾∕𝑘. Then, 𝒮2(ℱ) =∗.

Notation 2.11. For any sheaf of setsℱ and𝑥 inℱ(𝑈), wewill use [𝑥]𝑗 to denote
the image of 𝑥 in 𝒮𝑗(ℱ)(𝑈).

Notation 2.12. From now on, all schemes are defined over ℂ. For any two
schemes 𝑋 and 𝑌, and for any 𝑥 ∈ 𝑋(ℂ), we will denote the morphism 𝑌 →
Spec ℂ

𝑥
,→ 𝑋 by 𝑌

𝑥
,→ 𝑋.
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3. Proof of Theorem 1.1
We divide the proof into three parts. First, we construct the required se-

quence 𝑋𝑛 of varieties and fix two ℂ-valued points 𝛼𝑛 and 𝛽𝑛 in 𝑋𝑛. Second,
we provide geometric arguments to show that the images of 𝛼𝑛 and 𝛽𝑛 cannot
be equal in 𝒮𝑖(𝑋𝑛)(ℂ) for 𝑖 ≤ 𝑛. Finally, we use appropriate elementary Nis-
nevich covers of 𝑋𝑛 to construct maps from 𝑋𝑛 to 𝒮(𝑋𝑛+1) that map 𝛼𝑛 and 𝛽𝑛
to [𝛽𝑛+1]1 and [𝛼𝑛+1]1(see Notation 2.11), respectively. This allows us to con-
struct an𝔸1-homotopy connecting [𝛼𝑛]𝑛 and [𝛽𝑛]𝑛 in 𝒮𝑛(𝑋𝑛), thereby ensuring
that the images of 𝛼𝑛 and 𝛽𝑛 are equal in 𝒮𝑛+1(𝑋𝑛).

3.1. Construction of the varieties 𝑿𝒏. For 𝑛 ≥ 0, the variety 𝑋𝑛 is quasi
affine and has dimension 𝑛 + 1. In proving the theorem, it will be useful to
have the explicit equations defining 𝑋𝑛. Therefore, we will construct the affine
varieties 𝑌𝑛 in 𝔸2𝑛+1

ℂ , such that 𝑋𝑛 is an open subvariety of 𝑌𝑛. We begin by
constructing the varieties 𝑋𝑛. Set 𝑋0 = 𝑌0 ∶= 𝔸1

ℂ.

Construction 3.1. We now recall the construction of surface 𝑆1 from [2, Con-
struction 4.3] which will serve as our 𝑋1.

(1) Let 𝜆𝑖 ∈ ℂ ⧵ 0 for 𝑖 = 1, 2, 3, and let 𝑓(𝑥1) = (𝑥1 − 𝜆1)(𝑥1 − 𝜆2)(𝑥1 − 𝜆3)
with 𝜆 =

√
−𝜆1𝜆2𝜆3. Define 𝐸 as the following planar curve,

𝐸 ∶= Spec ℂ[𝑥1, 𝑦1]∕⟨𝑦21 − 𝑓(𝑥1)⟩.

Let𝜋 ∶ 𝐸 → 𝔸1 be the projection onto𝑥1-axis. Thus,𝜋−1(0) = {(0,±𝜆)}.
(2) Define 𝑌1 and 𝑋1 as the following surfaces in 𝔸3

ℂ,

𝑌1 ∶= Spec ℂ[𝑥0, 𝑥1, 𝑦1]∕⟨𝑦21 − 𝑥20𝑓(𝑥1)⟩ , 𝑋1 ∶= 𝑌1 ⧵ {(0, 0, 0)}.

Let 𝑖1 denote the inclusion of 𝑋1 into 𝑌1.
(3) Let �̄�1 and �̄�1 ∶ 𝑌1 → 𝑋0 be the projection onto the 𝑥0-axis and 𝑥1-axis,

respectively. Define 𝜙1 and𝜓1 as the restrictions of �̄�1 and �̄�1 to𝑋1. The
surface 𝑋1 can be viewed as a family of curves parametrized by 𝔸1

ℂ via
𝜙1, where the fiber over 0 is 𝔾𝑚 and the fiber over any nonzero point is
𝐸.

(4) Let 𝛼1 = (1, 0, 𝜆) and 𝛽1 = (0, 1, 0). Then, 𝛼1 is contained in the copy
of 𝐸 in 𝑋1 corresponding to 𝑥0 = 1, while 𝛽1 is contained in the copy of
𝔾𝑚 in 𝑋1 corresponding to 𝑥0 = 0. 𝔸1-rigidity of 𝐸 and𝔾𝑚 will be used
to show that 𝛼1 and 𝛽1 cannot be connected by a chain of 𝔸1

ℂ in 𝑋1.
(5) Let𝔸1

ℂ×𝐸 denote the surface Specℂ[𝑥0, 𝑥1, 𝑦1]∕⟨𝑦
2
1−𝑓(𝑥1)⟩, and let 𝜌1 ∶

𝔸1
ℂ × 𝐸 → 𝑌1 be the morphism given by (𝑥0, 𝑥1, 𝑦1) ↦ (𝑥0, 𝑥1, 𝑥0𝑦1).

Then, 𝜌1 is an isomorphism outside �̄�−11 ({0}). 𝜌1 will be used to con-
struct an 𝔸1-homotopy in 𝒮(𝑋1) connecting [𝛼1]1 and [𝛽1]1.

Next, we inductively define the varieties 𝑋𝑛 and the morphisms 𝜙𝑛, 𝜓𝑛 ∶
𝑋𝑛 → 𝑋𝑛−1.
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Construction 3.2. For 𝑛 ≥ 2, assuming that 𝑋𝑛−1, 𝜙𝑛−1 and 𝜓𝑛−1 are defined,
we define 𝑋𝑛 as the pullback of the following diagram.

𝑋𝑛 𝑋𝑛−1

𝑋𝑛−1 𝑋𝑛−2

𝜓𝑛

𝜙𝑛 𝜙𝑛−1

𝜓𝑛−1

We now define 𝛼𝑛 and 𝛽𝑛. These are the ℂ-valued points of 𝑋𝑛 whose im-
ages are not equal in 𝒮𝑛(𝑋𝑛)(ℂ) but will be equal in 𝒮𝑛+1(𝑋𝑛)(ℂ). We start by
defining 𝛼2 and 𝛽2. Since 𝜓1(𝛼1) = 𝜙1(𝛽1) = 0, the pair (𝛼1, 𝛽1) induces the
morphism

Spec ℂ
(𝛼1,𝛽1),,,,,,→ 𝑋1 ×𝜓1,𝑋0,𝜙1 𝑋1.

Similarly, since𝜓1(𝛽1) = 𝜙1(𝛼1) = 1, the pair (𝛽1, 𝛼1)will induce themorphism

Spec ℂ
(𝛽1,𝛼1),,,,,,→ 𝑋1 ×𝜓1,𝑋0,𝜙1 𝑋1.

Define 𝛼2, 𝛽2 ∶ Spec ℂ→ 𝑋2 by the following morphisms,

𝛼2 ∶= (𝛼1, 𝛽1) and 𝛽2 ∶= (𝛽1, 𝛼1).

To define 𝛼𝑛 and 𝛽𝑛 for 𝑛 ≥ 3, an alternative definition of 𝑋𝑛 will be more
convenient.

Remark 3.3. 𝑋𝑛 can be realised as the 𝑛-fold fiber product of 𝑋1 over 𝔸1
ℂ as

follows: For 𝑖 ≥ 2, we see immediately that 𝑋𝑖 = 𝑋1 ×𝔸1
ℂ
𝑋𝑖−1 via the following

pullback square.

𝑋𝑖 𝑋𝑖−1

𝑋1 𝔸1
ℂ

𝜙2◦…𝜙𝑖

𝜓𝑖

𝜙1◦…𝜙𝑖−1

𝜓1

Applying this definition of 𝑋𝑖 repeatedly, we will find that 𝑋𝑛 can also be ex-
pressed as the 𝑛-fold fiber product, specifically,𝑋𝑛 = 𝑋1×𝜓1,𝔸1

ℂ,𝜙1
𝑋1⋯×𝜓1,𝔸1

ℂ,𝜙1
𝑋1.

For all 𝑛 ≥ 3, 𝛼𝑛 and 𝛽𝑛 are defined using the above 𝑛-fold fiber product
description of 𝑋𝑛. The morphisms are given by

𝛼𝑛 ∶ Spec ℂ
(𝑎1,…,𝑎𝑛),,,,,,,,→ 𝑋𝑛 and 𝛽𝑛 ∶ Spec ℂ

(𝑏1,…,𝑏𝑛),,,,,,,,→ 𝑋𝑛,

where 𝑎𝑖, 𝑏𝑖 ∈ {𝛼1, 𝛽1} such that (𝑎1,… , 𝑎𝑛) and (𝑏1,… , 𝑏𝑛) form alternating
sequences of 𝛼1 and 𝛽1 with 𝑎1 = 𝛼1 and 𝑏1 = 𝛽1. More precisely,

𝛼𝑛 ∶= (𝛼1, 𝛽1, 𝛼1,… , 𝑎𝑛) and 𝛽𝑛 ∶= (𝛽1, 𝛼1, 𝛽1,… , 𝑏𝑛).

Since 𝜓1(𝛽1) = 𝜙1(𝛼1) = 1 and 𝜓1(𝛼1) = 𝜙1(𝛽1) = 0, the above definitions are
well defined. Similar to the definition of 𝑋𝑛, we define 𝑌𝑛 inductively.
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Construction 3.4. For 𝑛 ≥ 2, assuming 𝑌𝑛−1, �̄�𝑛−1 and �̄�𝑛−1 are defined, we
define 𝑌𝑛 using the following pullback square.

𝑌𝑛 𝑌𝑛−1

𝑌𝑛−1 𝑌𝑛−2

�̄�𝑛

�̄�𝑛 �̄�𝑛−1

�̄�𝑛−1

The following simple lemma provides a geometric description of 𝑋𝑛 and 𝑌𝑛.

Lemma 3.5. Let 𝑛 ≥ 1.
(1) 𝑋𝑛 is an open subscheme of 𝑌𝑛. Moreover, 𝜙𝑛 and 𝜓𝑛 are the restrictions

of �̄�𝑛 and �̄�𝑛 to 𝑋𝑛.
(2) 𝑌𝑛 = Spec ℂ[𝑥0, 𝑥1, 𝑦1… , 𝑥𝑛, 𝑦𝑛]∕⟨{𝑦2𝑖 − 𝑥2𝑖−1𝑓(𝑥𝑖)}

𝑛
𝑖=1⟩. The morphism

�̄�𝑛 is given by

(𝑥0, 𝑥1, 𝑦1,…𝑥𝑛, 𝑦𝑛)↦ (𝑥0, 𝑥1, 𝑦1… , 𝑥𝑛−1, 𝑦𝑛−1),

and the morphism �̄�𝑛 is given by

(𝑥0, 𝑥1, 𝑦1,…𝑥𝑛, 𝑦𝑛)↦ (𝑥1, 𝑥2, 𝑦2… , 𝑥𝑛, 𝑦𝑛).

Proof. For (1), we first claim that similar to 𝑋𝑛, 𝑌𝑛 can be obtained as the 𝑛-
fold fiber product of𝑌1 over𝔸1

ℂ. Indeed, by replacing the roles of 𝜙𝑖 and𝜓𝑖 with
�̄�𝑖 and �̄�𝑖 in Remark 3.3, we find that

𝑌𝑛 = 𝑌1 ×�̄�1,𝔸1
ℂ,�̄�1

𝑌1⋯ ×�̄�1,𝔸1
ℂ,�̄�1

𝑌1.

Now, since 𝑖1 ∶ 𝑋1 → 𝑌1 is an open immersion, and since 𝜙1 and 𝜓1 are simply
the restrictions of �̄�1, �̄�1 to 𝑋1 respectively, the following morphism

𝑋1 ×𝜓1,𝔸1
ℂ,𝜙1

𝑋1⋯ ×𝜓1,𝔸1
ℂ,𝜙1

𝑋1
𝑖1×⋯×𝑖1,,,,,,,→ 𝑌1 ×�̄�1,𝔸1

ℂ,�̄�1
𝑌1⋯ ×�̄�1,𝔸1

ℂ,�̄�1
𝑌1

must be an open immersion. Now, 𝜙𝑛, 𝜓𝑛 ∶ 𝑋𝑛−1 ×𝜓𝑛−1,𝑋𝑛−2,𝜙𝑛−1 𝑋𝑛−1 → 𝑋𝑛−1
are the first and second projections onto 𝑋𝑛−1, respectively. Therefore, in the
𝑛-fold fiber product description, 𝜙𝑛 and 𝜓𝑛 will project𝑋𝑛 onto the first and last
𝑛 − 1 factors of 𝑋𝑛, respectively. Similarly, �̄�𝑛 and �̄�𝑛 will project 𝑌𝑛 onto the
first and last 𝑛−1 factors of 𝑌𝑛, respectively. It follows that the morphisms 𝜙𝑛,
𝜓𝑛 are precisely the restrictions of 𝜙𝑛, 𝜓𝑛 to 𝑋𝑛.
For (2), because 𝑌𝑛 = 𝑌1 ×�̄�1,𝔸1

ℂ,�̄�1
𝑌1⋯ ×�̄�1,𝔸1

ℂ,�̄�1
𝑌1, the coordinate ring 𝐴𝑛

of 𝑌𝑛 is given by

𝐴𝑛 =
ℂ[𝑥0, 𝑥1, 𝑦1]
⟨𝑦21 − 𝑥20𝑓(𝑥1)⟩

⊗�̄�∗1 ,ℂ[𝑥],�̄�
∗
1

ℂ[𝑥0, 𝑥1, 𝑦1]
⟨𝑦21 − 𝑥20𝑓(𝑥1)⟩

⋯⊗�̄�∗1 ,ℂ[𝑥],�̄�
∗
1

ℂ[𝑥0, 𝑥1, 𝑦1]
⟨𝑦21 − 𝑥20𝑓(𝑥1)⟩

.

Since �̄�1 and �̄�1 project onto the 𝑥0 and 𝑥1 axis, respectively, this tensor product
equals

𝐴𝑛 = Spec ℂ[𝑥0, 𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛]∕⟨{𝑦2𝑖 − 𝑥2𝑖−1𝑓(𝑥𝑖)}
𝑛
𝑖=1⟩.
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Moreover, since �̄�𝑛 and �̄�𝑛 project 𝑌𝑛 onto the first and last 𝑛− 1 factors of 𝑌𝑛,
respectively, �̄�𝑛 is the projection onto the coordinates (𝑥0, 𝑥1, 𝑦1… , 𝑥𝑛−1, 𝑦𝑛−1),
and �̄�𝑛 is the projection onto the coordinates (𝑥1, 𝑥2, 𝑦2… , 𝑥𝑛, 𝑦𝑛). □

3.2. Geometric properties of 𝑿𝒏. In this subsection, we apply the universal
property of 𝒮 from Lemma 2.4 to the morphism 𝜓𝑛 in order to construct maps
𝒮(𝑋𝑛) → 𝑋𝑛−1. Then, using an inductive argument, we show that the images
of 𝛼𝑛 and 𝛽𝑛 cannot be equal in 𝒮𝑖(𝑋𝑛)(ℂ) for 𝑖 ≤ 𝑛.

Lemma 3.6. Let 𝑛 ≥ 1. Then the fibers of closed points under 𝜙𝑛 are𝔸1-rigid.

Proof. From Lemma 3.5, it follows that 𝜙𝑛 is the restriction of the affine map
𝑌𝑛 → 𝑌𝑛−1 corresponding to the natural ring homomorphism of coordinate
rings:

ℂ[𝑥0, 𝑥1, 𝑦1,… , 𝑥𝑛−1, 𝑦𝑛−1]
⟨{𝑦2𝑖 − 𝑥2𝑖−1𝑓(𝑥𝑖)}

𝑛−1
𝑖=1 ⟩

�̄�∗𝑛,,→
ℂ[𝑥0, 𝑥1, 𝑦1,… , 𝑥𝑛−1, 𝑦𝑛−1][𝑥𝑛, 𝑦𝑛]

⟨{𝑦2𝑖 − 𝑥2𝑖−1𝑓(𝑥𝑖)}
𝑛−1
𝑖=1 ⟩ + ⟨𝑦2𝑛 − 𝑥2𝑛−1𝑓(𝑥𝑛)⟩

.

Now, let𝑄 be a closed point of𝑋𝑛−1. Thus,𝑄 = (𝑎0, 𝑎1, 𝑏1,… , 𝑎𝑛−1, 𝑏𝑛−1)where
𝑎𝑖, 𝑏𝑖 ∈ ℂ. Hence, 𝜙−1𝑛 (𝑄) is isomorphic to Spec ℂ[𝑥𝑛 ,𝑦𝑛]

⟨𝑦2𝑛−𝑎2𝑛−1𝑓(𝑥𝑛)⟩
⧵ (0, 0, 0). If

𝑎𝑛−1 ≠ 0, then 𝜙−1𝑛 (𝑄) is isomorphic to 𝐸, and otherwise, it is isomorphic to
Spec ℂ[𝑥𝑛 ,𝑦𝑛]

⟨𝑦2𝑛⟩
∖(0, 0, 0). Since both of these varieties are 𝔸1-rigid, this completes

the proof. □

Lemma 3.7. Let 𝑛 ≥ 1 and let 𝛾 be any morphism 𝔸1
ℂ → 𝑋𝑛. Then 𝜓𝑛◦𝛾 is a

constant morphism.

Proof. We prove this by induction on 𝑛. Let’s verify the base case for 𝑛 = 1.
Let 𝛾 be a morphism𝔸1

ℂ → 𝑋1. Recall that 𝜌1 ∶ 𝔸1
𝐶 ×𝐸 → 𝑌1(see Construction

3.1,(5)) defined by (𝑥0, 𝑥1, 𝑦1) ↦ (𝑥0, 𝑥1, 𝑥0𝑦1) is an isomorphism outside the
fiber �̄�−11 (0). Therefore, it induces a rational map 𝑋1 ⤏ 𝔸1

ℂ × 𝐸. Since 𝜓1 is
the projection onto the 𝑥1- axis, 𝜓1 is the same as the morphism induced by
the rational map 𝑋1 ⤏ 𝔸1

ℂ × 𝐸 → 𝐸
𝜋
,→ 𝔸1

ℂ. Now, either the image of 𝜓1◦𝛾
lies completely in the fiber 𝜙−11 (0), or 𝜓1◦𝛾 factors through the rational map
𝔸1
ℂ ⤏ 𝐸, which can be completed to a morphism 𝔸1

ℂ → �̄�, where �̄� is the
projective closure of 𝐸 . Since both 𝜙−11 (0) and �̄� are 𝔸1-rigid, this completes
the argument for the case 𝑛 = 1.
Assuming the lemma holds for 𝑛−1, we will prove it for 𝑛. Let 𝛾 ∶ 𝔸1

ℂ → 𝑋𝑛
be fixed. Recall that 𝑋𝑛 is defined by the following Cartesian square:

𝑋𝑛 𝑋𝑛−1

𝑋𝑛−1 𝑋𝑛−2

𝜓𝑛

𝜙𝑛 𝜙𝑛−1

𝜓𝑛−1
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Define 𝛾1 ∶= 𝜙𝑛◦𝛾 and 𝛾2 ∶= 𝜓𝑛◦𝛾. We aim to show that 𝛾2 is a constant
morphism. By the induction hypothesis, 𝜓𝑛−1◦𝛾1 is constant. From the com-
mutativity of the square above, it follows that 𝜙𝑛−1◦𝛾2 is constant. This implies
that the image of 𝛾2 lies in a fiber of 𝜙𝑛−1, which is 𝔸1-rigid by Lemma 3.6.
Therefore, it follows that 𝛾2 must be a constant morphism. □

Lemma 3.8. The morphism 𝜓𝑛 ∶ 𝑋𝑛 → 𝑋𝑛−1 in 𝑆ℎ𝑣(𝑆𝑚∕𝑘)𝑁𝑖𝑠 factors through
the epimorphism 𝑋𝑛 → 𝒮(𝑋𝑛).

Proof. By Lemma 2.4, it suffices to show that for any smooth scheme 𝑈 and
any𝔸1-homotopy 𝐹 ∈ 𝑋𝑛(𝔸1×𝑈), 𝜓𝑛◦𝐹 is a constant𝔸1-homotopy. Let 𝐺 ∶=
𝜓𝑛◦𝐹 and let 𝑠, 𝑡 ∈ ℂ. We need to show that the morphisms 𝐺(𝑡), 𝐺(𝑠) ∶ 𝑈 →
𝑋𝑛−1 are identical. Since𝑋 is separated, the set𝑆 ∶= {𝑥 ∈ 𝑈|𝐺(𝑡)(𝑥) = 𝐺(𝑠)(𝑥)}
forms a closed subscheme of 𝑈. From Lemma 3.7, we know that 𝑈(ℂ) ⊂ 𝑆,
which further implies that𝑈 = 𝑆. Hence, 𝐺(𝑠) = 𝐺(𝑡) for any 𝑠, 𝑡 ∈ ℂ, and the
result follows. □

Theorem 3.9. [𝛼𝑛]𝑛 ≠ [𝛽𝑛]𝑛 for all 𝑛.

Proof. We prove the theorem by induction on 𝑛. For 𝑛 = 1, we need to show
that [𝛼1]1 and [𝛽1]1 cannot be connected by an 𝔸1-chain homotopy. To es-
tablish this, it suffices to show that any morphism 𝛾 ∶ 𝔸1

ℂ → 𝑋1 contain-
ing 𝛼1 = (1, 0, 𝜆) in its image is a constant morphism. Recall that the mor-
phism 𝜌1 ∶ 𝔸1

ℂ ×ℂ 𝐸 → 𝑌1 defined by (𝑥0, 𝑥1, 𝑦1) → (𝑥0, 𝑥1, 𝑥0𝑦1) is an iso-
morphism outside �̄�−11 ({0}). Since 𝛼1 ∉ �̄�−11 ({0}), 𝜌−11 induces a rational map
𝛾′ ∶ 𝔸1

ℂ ⤏ 𝔸1
ℂ ×ℂ 𝐸 → 𝐸. This rational map can be completed to a morphism

𝔸1
ℂ → �̄�. Consequently, 𝛾′ is constant, implying that the image of 𝛾 is contained

in affine line corresponding to 𝜌1(𝔸1
ℂ×(0, 𝜆)). Since 𝜌((0, 0, 𝜆)) = (0, 0, 0) is not

in 𝑋1, the image of 𝛾 must be contained in affine line excluding origin, which
is 𝔸1-rigid. Thus, 𝛾 must be a constant morphism.
Assuming the theoremholds for 𝑛−1, wewill prove it for 𝑛. On the contrary,

assume that [𝛼𝑛]𝑛 = [𝛽𝑛]𝑛 in 𝒮𝑛(𝑋𝑛)(ℂ). Since the morphism 𝜓𝑛 ∶ 𝑋𝑛 →
𝑋𝑛−1 factors through the morphism 𝑋𝑛 → 𝒮(𝑋𝑛) by Lemma 3.8, we obtain the
following commutative diagram:

𝒮𝑛−1(𝑋𝑛)(ℂ) 𝒮𝑛−1(𝑋𝑛−1)(ℂ)

𝒮𝑛(𝑋𝑛)(ℂ)

𝒮𝑛−1(𝜓𝑛)

Since 𝜓𝑛(𝛼𝑛) = 𝛽𝑛−1 and 𝜓𝑛(𝛽𝑛) = 𝛼𝑛−1, and we have assumed that [𝛼𝑛]𝑛 =
[𝛽𝑛]𝑛, it follows from the commutativity of the above diagram that [𝛼𝑛−1]𝑛−1 =
[𝛽𝑛−1]𝑛−1. This conclusion contradicts the induction hypothesis. Therefore,
the theorem holds. □
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3.3. 𝔸𝟏-homotopies in 𝒮𝒏(𝑿𝒏). An explicit 𝔸1-homotopy between [𝛼1]1 and
[𝛽1]1 in 𝒮(𝑋1) has been constructed in [2, Construction 4.3]. This will be the
key input in the following construction of 𝔸1-homotopies in 𝒮𝑛(𝑋𝑛).

Theorem 3.10. [𝛼𝑛]𝑛 and [𝛽𝑛]𝑛 are𝔸1-homotopic in 𝒮𝑛(𝑋𝑛).

Proof. For every 𝑛 ≥ 1, we will construct an𝔸1-homotopy𝔸1
ℂ → 𝒮𝑛(𝑋𝑛) such

that [𝛼𝑛]𝑛 and [𝛽𝑛]𝑛 are contained in its image. We begin by constructing an
elementary Nisnevich cover of 𝑋𝑛 for all 𝑛 ≥ 0. Let 𝑉 = 𝑉1 ⊔ 𝑉2, where

𝑉1 = 𝐸 ⧵ {(𝜆𝑖, 0)
3
𝑖=1(0,−𝜆)} and 𝑉2 = 𝔸1

ℂ ⧵ {0}.

Define 𝑝1 ∶= 𝜋|𝑉1 and 𝑝2 to be the inclusion 𝑉2 → 𝔸1
ℂ. The morphism 𝑝1 is

etale and 𝑝−11 (0) = (0, 𝜆), thus the map 𝑝1 ⊔ 𝑝2 forms a Nisnevich cover of 𝔸1
ℂ.

Now, for 𝑛 ≥ 1, consider 𝑋𝑛 as schemes over 𝔸1
ℂ through Φ𝑛 ∶= 𝜙1◦…𝜙𝑛. We

then obtain the following elementary distinguished square,

𝑊 ×𝔸1
ℂ
𝑋𝑛 𝑉2 ×𝔸1

ℂ
𝑋𝑛

𝑉1 ×𝔸1
ℂ
𝑋𝑛 𝔸1

ℂ ×𝔸1
ℂ
𝑋𝑛

𝑝𝑟2

𝑝𝑟1 𝑝2×𝑖𝑑

𝑝1×𝑖𝑑

where𝑊 = 𝑉1 ×𝔸1
ℂ
𝑉2.

We now construct maps from 𝑋𝑛 to 𝒮(𝑋𝑛+1) that send 𝛼𝑛 and 𝛽𝑛 to [𝛽𝑛+1]1
and [𝛼𝑛+1]1, respectively. Since the above square is cocartesian in𝑆ℎ𝑣(𝑆𝑚∕𝑘)𝑁𝑖𝑠
by Lemma 2.7, it suffices to construct morphisms ℎ𝑛𝑖 ∶ 𝑉𝑖 ×𝔸1

ℂ
𝑋𝑛 → 𝑋𝑛+1 for

𝑖 = 1 and 2, such that the following two compositions are identical:

𝑊 ×𝔸1
ℂ
𝑋𝑛

𝑝𝑟𝑖◦ℎ𝑛𝑖,,,,,,→ 𝑋𝑛+1 → 𝒮(𝑋𝑛+1) for 𝑖 = 1, 2.

By Remark 3.3, 𝑋𝑛+1 = 𝑋1×𝜓1,𝔸1
ℂ,Φ𝑛

𝑋𝑛. Thus, we will define ℎ𝑛𝑖 ∶ 𝑉𝑖 ×𝔸1
ℂ
𝑋𝑛 →

𝑋𝑛+1 as ℎ𝑖 × 𝑖𝑑, where
∙ ℎ1 ∶ 𝑉1 → 𝑋1 ; (𝑥1, 𝑦1)↦ (1, 𝑥1, 𝑦1),
∙ ℎ2 ∶ 𝑉2 → 𝑋1 ; (𝑥1)↦ (0, 𝑥1, 0).

The maps ℎ𝑛𝑖 are well defined because 𝜓1◦ℎ𝑖 = 𝑝𝑖.
Now, we will defineℋ𝑛 ∶ 𝔸1

ℂ ×ℂ (𝑊 ×𝔸1
ℂ
𝑋𝑛) → 𝑋𝑛+1 such thatℋ𝑛(0) =

𝑝𝑟2◦ℎ𝑛2 andℋ
𝑛(1) = 𝑝𝑟1◦ℎ𝑛1 . Similar to ℎ

𝑛
𝑖 ,ℋ

𝑛 is a product of twomorphisms,
ℋ × 𝑖𝑑 ∶ (𝔸1

ℂ ×ℂ 𝑊) ×𝔸1
ℂ
𝑋𝑛 → 𝑋𝑛+1, whereℋ is the restriction of 𝜌1:

ℋ ∶ 𝔸1
ℂ ×ℂ 𝑊 → 𝑋1 ; (𝑥0, 𝑥1, 𝑦1)↦ (𝑥0, 𝑥1, 𝑥0𝑦1).

Clearly, ℋ𝑛(0) = 𝑝𝑟2◦ℎ𝑛2 and ℋ
𝑛(1) = 𝑝𝑟1◦ℎ𝑛1 . Therefore, the morphisms

𝑝𝑟2◦ℎ𝑛2 and 𝑝𝑟1◦ℎ
𝑛
1 become identical in 𝒮(𝑋𝑛+1). Thus, ℎ

𝑛
1 and ℎ

𝑛
2 can be glued

together to obtain the maps ℱ𝑛 ∶ 𝑋𝑛 → 𝒮(𝑋𝑛+1) for all 𝑛 ≥ 0.
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Finally, for 𝑚 ≥ 1, define the required 𝔸1-homotopy in 𝒮𝑚(𝑋𝑚) as the fol-
lowing composition:

𝔸1
ℂ

ℱ0,,→ 𝒮(𝑋1)
𝒮(ℱ1),,,,,→ 𝒮2(𝑋2)

𝒮2(ℱ2),,,,,,→ 𝒮3(𝑋3)→⋯→ 𝒮𝑚(𝑋𝑚).

To ensure that the above 𝔸1-homotopy indeed connects [𝛼𝑚]𝑚 and [𝛽𝑚]𝑚 in
𝒮𝑚(𝑋𝑚), what remains is to show that:

(1) ℱ0(0) = [𝛼1]1 and ℱ0(1) = [𝛽1]1,
(2) For all 𝑛 ≥ 1, ℱ𝑛(𝛽𝑛) = [𝛼𝑛+1]1 and ℱ𝑛(𝛼𝑛) = [𝛽𝑛+1]1.

Since ℎ1(0, 𝜆) = 𝛼1 and ℎ2(1) = 𝛽1, we obtain (1). For (2), consider the follow-
ing commutative diagram:

(𝑉1 ×𝔸1
ℂ
𝑋𝑛) ⊔ (𝑉2 ×𝔸1

ℂ
𝑋𝑛) 𝑋𝑛+1

Spec ℂ ⊔ Spec ℂ 𝑋𝑛 𝒮(𝑋𝑛+1)

ℎ𝑛1⊔ℎ
𝑛
2

((0,𝜆),𝛽𝑛)⊔(1,𝛼𝑛)

𝛽𝑛⊔𝛼𝑛 ℱ𝑛

Since ℎ𝑛1 ((0, 𝜆), 𝛽𝑛) = (𝛼1, 𝛽𝑛) = 𝛼𝑛+1 and ℎ𝑛2 ((1), 𝛼𝑛) = (𝛽1, 𝛼𝑛) = 𝛽𝑛+1, we are
done. □

Proof of Theorem 1.1. By Theorem 3.9 and Theorem 3.10, we have

[𝛼𝑛]𝑛 ≠ [𝛽𝑛]𝑛 and [𝛼𝑛]𝑛+1 = [𝛽𝑛]𝑛+1.

Hence, 𝒮𝑛(𝑋𝑛)(ℂ) ≠ 𝒮𝑛+1(𝑋𝑛)(ℂ). □

Remark 3.11. For any scheme 𝑋∕𝑘, the field value sections of the sheaf of𝔸1-
connected components of 𝑋 can be computed by the following formula [4]:

𝜋𝔸1

0 (𝑋)(𝐹) = ℒ(𝑋)(𝐹) ∶= lim
→𝑛

𝒮𝑛(𝒳)(𝐹) for any 𝐹∕𝑘.

If 𝑋 is proper, then 𝒮(𝑋)(𝐹) = 𝒮2(𝑋)(𝐹). However, for non-proper 𝑋, the proof
of Theorem 1.1 shows that the infinite iterations of 𝒮 in the above formula are
essential.

In [6, Question 2.16], it is asked whether 𝒮(𝑋)(𝐹) = 𝒮2(𝑋)(𝐹) for non-proper
smooth schemes over 𝑘when 𝑘 = �̄�. This questionwas already answered in the
negative in [2, Construction 4.5], where 𝑋1 was embedded in a smooth variety
𝑇 using [2, Lemma 4.4], such that 𝒮(𝑇)(ℂ) ≠ 𝒮2(𝑇)(ℂ). We will use a slight
generalisation of the same lemma(see Lemma 3.13) to embed𝑋𝑛 in the smooth
varieties 𝑍𝑛 such that 𝒮𝑛(𝑍𝑛)(ℂ) ≠ 𝒮𝑛+1(𝑍𝑛)(ℂ). This shows that the infinite
iterations of 𝒮 are required even for field value points of non-proper smooth
schemes over an algebraically closed field.
The following lemma is a reformulation of [5, Lemma 2.12] and will be used

in the construction of 𝑍𝑛.

Lemma 3.12. Let𝜙 ∶ ℱ → 𝒢 be amorphism of sheaves of sets on 𝑆𝑚∕𝑘. Assume
that 𝒢 is 𝔸1-invariant. Then, for any 𝑛 and any 𝔸1-homotopy ℎ ∶ 𝔸1 × 𝑈 →
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𝒮𝑛(ℱ), there exists 𝛾 ∶ 𝑈 → 𝒢 such that the given 𝔸1-homotopy factors through
𝒮𝑛(ℱ ×𝒢,𝛾 𝑈)→ 𝒮𝑛(ℱ).

The proof of the next lemma runs along the same lines as in [2, Lemma 4.4].

Lemma 3.13. Let 𝑋 be an affine scheme over a field 𝑘. Then there exists a closed
embedding of 𝑋 into a smooth scheme 𝑇 over 𝑘 such that for any 𝑛, if𝐻 ∶ 𝔸1

𝑘 →
𝒮𝑛(𝑇) is an𝔸1-homotopy containing [𝑥]𝑛 in its image for some 𝑥 ∈ 𝑋(𝑘), then𝐻
factors through 𝒮𝑛(𝑋)→ 𝒮𝑛(𝑇).

Proof. Suppose 𝑋 ⊂ 𝔸𝑛
𝑘 is defined by the ideal ⟨𝑓1,… , 𝑓𝑟⟩ ⊂ 𝑘[𝑥1,…𝑥𝑛]. Con-

sider the map 𝑓 ∶ 𝔸𝑛
𝑘 → 𝔸𝑟

𝑘 which is given by (𝑥1,… , 𝑥𝑛) ↦ (𝑓1,… , 𝑓𝑟). Then
the fiber of 𝑓 at (0,… , 0) is 𝑋. Now, choose some etale map 𝑔 ∶ 𝐶 → 𝔸1

𝑘 such
that 𝐶 is a smooth curve of positive genus and 0 ∈ 𝔸1

𝑘 has a unique preimage

say 𝑐. Then, 𝐶𝑟
𝑔𝑟
,,→ 𝔸𝑟

𝑘 is etale. Define 𝑇 ∶= 𝔸𝑛
𝑘 ×𝑓,𝔸𝑟

𝑘 ,𝑔
𝑟 𝑉𝑟

1. Then the fiber of
the map 𝑇 → 𝑉𝑟

1 over (𝑐,… , 𝑐) is 𝑋. Clearly, 𝑇 is a smooth scheme containing
𝑋.
We claim that 𝑇 is the required smooth scheme. Suppose that 𝐻 is an 𝔸1-

homotopy in 𝒮𝑛(𝑇) whose image contains [𝑥]𝑛 for some 𝑥 ∈ 𝑋(𝑘). Since 𝐶𝑟
is 𝔸1-invariant, by Lemma 3.12, there exists 𝑄 ∶ Spec 𝑘 → 𝐶𝑟 such that the
𝔸1-homotopy 𝐻 factors through 𝒮𝑛(𝑇 ×𝐶𝑟 ,𝑄 Spec 𝑘) → 𝒮𝑛(𝑇). Since [𝑥]𝑛 is
contained in the image of 𝐻 and 𝑥 ∈ 𝑋(𝑘), the point (𝑐,… , 𝑐) belongs to the

image of the composition 𝔸1
𝑘

𝐻
,,→ 𝒮𝑛(𝑇) → 𝐶𝑟. Hence, 𝑄 = (𝑐,… , 𝑐), and 𝐻

factors through the map 𝒮𝑛(𝑋)→ 𝒮𝑛(𝑇). □

Proposition 3.14. For every 𝑛 ∈ 𝑁, there exists a smooth variety 𝑍𝑛 overℂ, such
that 𝒮𝑛(𝑍𝑛)(ℂ) ≠ 𝒮𝑛+1(𝑍𝑛)(ℂ).

Proof. For every 𝑛 and 𝑌𝑛(see Construction 3.4), let 𝑇𝑛 be the smooth variety
corresponding to 𝑌𝑛 arising from Lemma 3.13. Then there exists a morphism
𝛾𝑛 from 𝑇𝑛 to an 𝔸1-rigid scheme 𝑉𝑛 and a point 𝑃𝑛 ∈ 𝑉𝑛(ℂ) such that fiber
of the morphism 𝛾𝑛 over 𝑃𝑛 is 𝑌𝑛. Choose a suitable open subscheme 𝑍𝑛 of 𝑇𝑛
such that 𝛾𝑛|−1𝑍𝑛 (𝑃𝑛) = 𝑋𝑛. Since any𝔸1

𝑘 → 𝒮𝑛(𝑍𝑛)whose image contains [𝛼𝑛]𝑛
factors through themap 𝒮𝑛(𝑋𝑛)→ 𝒮𝑛(𝑍𝑛), we have [𝛼𝑛]𝑛 ≠ [𝛽𝑛]𝑛 in 𝒮𝑛(𝑍𝑛)(ℂ),
while [𝛼𝑛]𝑛+1 = [𝛽𝑛]𝑛+1 in 𝒮𝑛+1(𝑍𝑛)(ℂ). □

3.4. 𝔸𝟏-connectedness of 𝑿𝒏. In this subsection, we show that the sequence
of sheaves (𝒮𝑚(𝑋𝑛))𝑚≥1 stabilises at the 𝑛 + 2 stage, and that

𝜋𝔸1

0 (𝑋𝑛) = 𝒮𝑛+2(𝑋𝑛) =∗ .

Theorem 3.15. Let 𝑘 be any finitely generated field extension ofℂ and let 𝑛 ≥ 1.
Then 𝒮𝑛+1(𝑋𝑛)(𝑘) =∗ .

Proof. It suffices to show that 𝒮𝑛+1(𝑋𝑛 ×ℂ Spec 𝑘)(𝑘) =∗. The maps ℱ𝑛 con-
structed in Theorem 3.10 will be used to prove the theorem. We will abuse
the notation and write 𝑋𝑛 for the schemes 𝑋𝑛 ×ℂ Spec 𝑘, and ℱ𝑛 for the maps
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ℱ𝑛×ℂ Spec 𝑘 ∶ 𝑋𝑛×ℂ Spec 𝑘 → 𝒮(𝑋𝑛+1×ℂ Spec 𝑘), applying same conventions
to all the maps involved in construction of ℱ𝑛. We prove that 𝒮𝑛+1(𝑋𝑛)(𝑘) =∗
by induction on 𝑛.

Case (𝑛 = 1). We claim that [𝑄]2 = [𝛽1]2 for any 𝑄 ∈ 𝑋1(𝑘). If ℱ0(𝑘) ∶
𝔸1
𝑘(𝑘) → 𝒮(𝑋1)(𝑘) is surjective, there would be nothing to prove. However,

since this is not the case, we will first list all 𝑘-valued points of 𝑋1, that do not
admit a lift to𝔸1

𝑘(𝑘) viaℱ0(𝑘). Wewill then slightlymodifyℱ0 toℱ𝑎
0 or ℱ̃

𝑎
0 such

that their images contain [𝛽1]1, and union of their images contain all 𝑘-valued
points of 𝒮(𝑋1).
Recall that the map ℱ0 includes the following morphisms:

∙ ℎ𝑖 ∶ 𝑉𝑖 → 𝑋1, for 𝑖 = 1, 2, and
∙ ℋ ∶ 𝔸1

𝑘 ×𝑊 → 𝑋1, whereℋ is the restriction of 𝜌1.

If 𝑄 ∈ 𝑋1(𝑘) is contained in the image of any of these maps, then [𝑄]1 is in the
image of ℱ0, and we have nothing to prove.
Now, the map 𝜌1 ∶ 𝔸1

𝑘 × 𝐸 → 𝑌1 is an isomorphism when restricted to
𝔸1
𝑘 ⧵ {0} × 𝐸, while the image of 𝜌1(0) ⧵ {(0, 0, 0)} coincides with ℎ2(𝑉2). Since

𝑉1 = 𝐸 ⧵ {(𝜆1, 0)3𝑖=1, (0,−𝜆)}, ℎ1 = 𝜌(1)|𝑉1 , and𝑊 = 𝑉1 ⧵ {(0, 𝜆)}, the remaining
𝑘-valued points of 𝑋1 must belong to one of the following sets:

∙ 𝜌1(𝔸1
𝑘 ⧵ {0, 1} × {(0, 𝜆)}),

∙ 𝜌1(𝔸1
𝑘 ⧵ {0} × {(0,−𝜆)}), or

∙ 𝜌1(𝔸1
𝑘 ⧵ {0} × {(𝜆𝑖, 0)

3
𝑖=1}).

Let 𝑄 belong to any of the sets above. Then, the case 𝑛 = 1 will be completed
by proving [𝑄]2 = [𝛽1]2. Let 𝑎 ∈ 𝑘∗.
If 𝑄 = 𝜌1((𝑎, 0, 𝜆)), define the map ℎ𝑎1 ∶ 𝑉1 → 𝑋1 to be 𝜌1(𝑎)|𝑉1 . Then,

ℎ𝑎1 (𝑎)(0, 𝜆) = 𝑄. Now, replace ℎ1 by ℎ1𝑎 in the construction ofℱ0, while keeping
all the other maps the same. Sinceℋ(𝑎) = ℎ𝑎1 |𝑊 andℋ(0) = ℎ2|𝑊 , the maps
ℎ𝑎1 and ℎ2 can be glued together to produce the map ℱ

𝑎
0 ∶ 𝔸

1
𝑘 → 𝑆(𝑋1). Since

ℎ2(1) = 𝛽1, ℱ𝑎
0 contains both [𝑄]1 and [𝛽1]1 in its image. Hence, we have

[𝑄]2 = [𝛽1]2 as desired.
If 𝑄 = 𝜌1((𝑎, 0,−𝜆)), define 𝑉1 = 𝐸 ⧵ {(𝜆1, 0)3𝑖=1, (0, 𝜆)} and let ℎ̃

𝑎
1 = 𝜌(𝑎)|𝑉1 .

Then ℎ̃𝑎1 (𝑎)(0,−𝜆) = 𝑄. Use 𝑉1 ⊔𝑉2 as the Nisnevich cover instead of 𝑉1 ⊔𝑉2.
Thus, 𝑉1 ×𝔸1

𝑘
𝑉2 = 𝑊,ℋ(𝑎) = ℎ̃𝑎1 |𝑊 andℋ(0) = ℎ2|𝑊 . Hence, similar to ℱ𝑎

0 ,
we obtain ℱ̃𝑎

0 by gluing ℎ̃
𝑎
1 and ℎ2, which will contain both [𝑄]1 and [𝛽1]1 in its

image.
If 𝑄 = 𝜌1((𝑎, 𝜆𝑖, 0)), then [𝑄]1 = [(0, 𝜆𝑖, 0])1 via the 𝔸1

𝑘 corresponding to
𝜌1|𝔸1

𝑘×{(𝜆𝑖 ,0)}
. Since (0, 𝜆𝑖, 0) ∈ ℎ2(𝑉2), we have [(0, 𝜆𝑖, 0)]2 = [𝛽1]2 viaℱ0, hence

the claim is proved.

Case (𝑛 > 1). Assuming the statement of theorem for 𝑛, we will prove it for
𝑛 + 1. It is sufficient to prove the following claim.
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Claim: [𝑄]𝑛+2 = [𝛽𝑛+1]𝑛+2 for any 𝑄 ∈ 𝑋𝑛+1(𝑘).

Since 𝑋𝑛+1 = 𝑋1 ×𝔸1
𝑘
𝑋𝑛, we can write 𝑄 as (𝑄1, 𝑄2), for some 𝑄1 ∈ 𝑋1(𝑘) and

𝑄2 ∈ 𝑋𝑛(𝑘). Using notations from the case 𝑛 = 1, we see that

𝑄1 ∈ 𝜌
(
𝔸1
𝑘 × {(𝜆𝑖, 0)}

3
𝑖=1

)
∪
⎛
⎜
⎝

⋃

𝑎∈𝑘∗

(
ℎ𝑎1 (𝑉1) ∪ ℎ

𝑎
1 (𝑉1)

)⎞
⎟
⎠
∪ ℎ2(𝑉2).

If [𝑄1]1 ∈ ℎ𝑎1 (𝑉1), we can modify ℱ𝑛 to ℱ′
𝑛 ∶ 𝑋𝑛 → 𝒮(𝑋𝑛+1) such that [𝑄]1

and [𝛽𝑛+1]1 are in the image of ℱ′
𝑛. The map ℱ𝑛 was constructed by gluing

ℎ𝑖 × 𝑖𝑑 ∶ 𝑉𝑖 ×𝔸1
𝑘
𝑋𝑛 → 𝑋1 ×𝔸1

𝑘
𝑋𝑛 for 𝑖 = 1, 2. Replacing ℎ1 × 𝑖𝑑 with ℎ𝑎1 × 𝑖𝑑

in the construction of ℱ𝑛, ℎ𝑎1 × 𝑖𝑑 and ℎ2 × 𝑖𝑑 can be glued to give the required
ℱ′
𝑛. Then [𝛽]1 and [𝑄]1 can be lifted to 𝑋𝑛(𝑘) via ℱ′

𝑛 and since 𝒮𝑛+1(𝑋𝑛)(𝑘) =∗
by the induction hypothesis, we obtain [𝛽𝑛+1]𝑛+2 = [𝑄]𝑛+2.
For [𝑄1]1 ∈ ℎ̃𝑎1 (𝑉1), replace the Nisnevich cover 𝑉1 ⊔ 𝑉2 with �̃�1 ⊔ 𝑉2 and

replaceℎ1×𝑖𝑑with ℎ̃𝑎1×𝑖𝑑 in the construction ofℱ𝑛 and the rest of the argument
proceeds similarly as for the case [𝑄1]1 ∈ ℎ𝑎1 (𝑉1). If [𝑄1]1 ∈ ℎ𝑎2 (𝑉2), then [𝑄]1
is contained in the image of ℱ𝑛 and we are done.
Finally, suppose 𝑄1 is contained in the image of 𝜌1|𝔸1

𝑘×{(𝜆𝑖 ,0)}
for some 𝑖 ∈

{1, 2, 3}. Then (𝑄1, 𝑄2) and ((0, 𝜆𝑖, 0), 𝑄2) are in the image of the map

𝔸1
𝑘

(𝜌1|𝔸1𝑘×{(𝜆𝑖 ,0)}
,𝑄2)

,,,,,,,,,,,,,,→ 𝑋1 ×𝔸1
𝑘
𝑋𝑛.

Since ((0, 𝜆𝑖, 0), 𝑄2) is in the image of ℎ2 × 𝑖𝑑, we obtain
[((0, 𝜆𝑖, 0), 𝑄2)]𝑛+2 = [𝛽𝑛+1]𝑛+2,

which further implies that [𝛽𝑛+1]𝑛+2 = [𝑄]𝑛+2.

□

Theorem 3.16. 𝜋𝔸1

0 (𝑋𝑛) = 𝒮𝑛+2(𝑋𝑛) =∗.

Proof. Since 𝒮𝑛+1(𝑋𝑛)(𝑘) =∗ for any finitely generated and separable exten-
sion 𝑘 ofℂ, we have 𝒮𝑛+2(𝑋𝑛) =∗ from Theorem 2.10. Combining Theorem 2.9
with Lemma 2.8, we conclude that 𝜋𝔸1

0 (𝑋𝑛) =∗. □
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