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Endpoint boundedness of singular integrals:
CMO space associated to Schrödinger

operators

Xueting Han, Ji Li and LiangchuanWu

Abstract. Let ℒ = −∆ + 𝑉 be a Schrödinger operator acting on 𝐿2(ℝ𝑛),
where the nonnegative potential 𝑉 belongs to the reverse Hölder class 𝑅𝐻𝑞

for some 𝑞 ≥ 𝑛∕2. This article is primarily concerned with the study of end-
point boundedness for classical singular integral operators in the context of
the space CMOℒ(ℝ

𝑛), consisting of functions of vanishing mean oscillation
associated with ℒ.

We establish the followingmain results: (i) the standardHardy–Littlewood
maximal operator is bounded on CMOℒ(ℝ

𝑛); (ii) for each 𝑗 = 1,… , 𝑛, the ad-
joint of the Riesz transform 𝜕𝑗ℒ

−1∕2 is bounded from 𝐶0(ℝ
𝑛) intoCMOℒ(ℝ

𝑛);
and (iii) the approximation to the identity generated by the Poisson and heat
semigroups associated with ℒ characterizes CMOℒ(ℝ

𝑛) appropriately.
These results recover the classical analogues corresponding to the Lapla-

cian as a special case. However, the presence of the potential 𝑉 introduces
substantial analytical challenges, necessitating tools beyond the scope of clas-
sical Calderón–Zygmund theory. Our approach leverages precise heat kernel
estimates and the structural properties ofCMOℒ(ℝ

𝑛) established by Song and
the third author in [19].
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1. Introduction and main results
Let us consider the Schrödinger operator

ℒ = −∆ + 𝑉(𝑥) on 𝐿2(ℝ𝑛), 𝑛 ≥ 3,

where the nonnegative potential 𝑉 is not identically zero, and 𝑉 ∈ 𝑅𝐻𝑞 for
some 𝑞 ≥ 𝑛∕2, which by definition means that 𝑉 ∈ 𝐿

𝑞

loc
(ℝ𝑛), 𝑉 ≥ 0, and there

exists a constant 𝐶 > 0 such that the reverse Hölder inequality

(
1

|𝐵|
∫
𝐵

𝑉(𝑦)𝑞𝑑𝑦)

1∕𝑞

≤
𝐶

|𝐵|
∫
𝐵

𝑉(𝑦) 𝑑𝑦 (1.1)

holds for all balls 𝐵 inℝ𝑛. Following [9], a locally integrable function 𝑓 belongs
to BMOℒ(ℝ

𝑛) if

‖𝑓‖BMOℒ(ℝ
𝑛) ∶= sup

𝐵=𝐵(𝑥𝐵 ,𝑟𝐵)∶ 𝑟𝐵<𝜌(𝑥𝐵)

1

|𝐵|
∫
𝐵

|||𝑓(𝑦) − 𝑓𝐵
||| 𝑑𝑦

+ sup
𝐵=𝐵(𝑥𝐵 ,𝑟𝐵)∶ 𝑟𝐵≥𝜌(𝑥𝐵)

1

|𝐵|
∫
𝐵

|𝑓(𝑦)| 𝑑𝑦 < ∞. (1.2)

The critical radii above are determined by the function 𝜌(𝑥; 𝑉) = 𝜌(𝑥), which
was first introduced by Shen [18, Definition 1.3] and takes the explicit form

𝜌(𝑥) = sup {𝑟 > 0 ∶
1

𝑟𝑛−2
∫
𝐵(𝑥,𝑟)

𝑉(𝑦) 𝑑𝑦 ≤ 1} . (1.3)

This article focuses on CMOℒ(ℝ
𝑛), the space of vanishing mean oscillation

associated to ℒ, which is the closure of 𝐶∞𝑐 (ℝ𝑛) (the space of smooth func-
tions with compact support) in the BMOℒ(ℝ

𝑛) norm. As a crucial subspace
of BMOℒ(ℝ

𝑛), it satisfies the duality relations

(CMOℒ(ℝ
𝑛))

∗
= 𝐻1

ℒ
(ℝ𝑛) and (𝐻1

ℒ
(ℝ𝑛))∗ = BMOℒ(ℝ

𝑛), (1.4)

where the Hardy-type space𝐻1
ℒ
(ℝ𝑛) is defined by

𝐻1
ℒ
(ℝ𝑛) = {𝑓 ∈ 𝐿1 (ℝ𝑛) ∶ 𝒫∗𝑓(𝑥) = sup

𝑡>0

||||||
𝑒−𝑡

√
ℒ𝑓(𝑥)

||||||
∈ 𝐿1(ℝ𝑛)}

with norm ‖𝑓‖𝐻1
ℒ
(ℝ𝑛) =

‖‖‖‖𝒫
∗𝑓

‖‖‖‖𝐿1(ℝ𝑛)
. See [7, 9, 14] for details. Additional

equivalent characterizations ofCMOℒ(ℝ
𝑛) viameanoscillation and tent spaces,

respectively, can be found in [19] by L. Song and the third author.
The space CMOℒ(ℝ

𝑛) shares key similarities with the classical vanishing
mean oscillation space: when 𝑉 ≡ 0, CMO∆(ℝ

𝑛) (resp. BMO∆(ℝ
𝑛)) coincides

exactly with the standard CMO(ℝ𝑛) (resp. BMO(ℝ𝑛)), and the dualities (1.4)
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reduce to their classical counterparts. However, CMOℒ(ℝ
𝑛) demonstrates cer-

tain properties distinct from the classical setting. For instance, the convolution
of a compactly supported bump function with a function of CMOℒ(ℝ

𝑛) may
fail to remain in CMOℒ(ℝ

𝑛); see [19, Lemma 4.1].
The aim of this paper is to study endpoint boundedness for classical singular

integral operators in the context of the spaceCMOℒ(ℝ
𝑛). Central to this pursuit

are the boundedness of cornerstone operators such as the Hardy–Littlewood
maximal operator and the Riesz transforms on this space. Additionally, the de-
velopment of suitable approximations to the identity compatible with the struc-
ture of this space requires careful consideration.
Part I. The (uncentered) Hardy–Littlewood maximal function 𝑀 on ℝ𝑛

is a well-known operator and plays a fundamental role in harmonic analysis.
However, its behaviour on CMOℒ(ℝ

𝑛) remains unclarified.
Recall that for the classical case with 𝑉 ≡ 0, it’s known that for a function

𝑓 ∈ BMO(ℝ𝑛), it may occur that𝑀𝑓 ≡ +∞, and a typical example is 𝑓(𝑥) =
log |𝑥| (in contrast, for any 𝑓 ∈ BMOℒ(ℝ

𝑛), we have 𝑀𝑓(𝑥) < +∞ for a.e.
𝑥 ∈ ℝ𝑛). Nevertheless, there exists a constant 𝐶 depending only on 𝑛 such that
for any 𝑓 ∈ BMO(ℝ𝑛) for which𝑀𝑓 is not identically equal to infinity, we have

‖𝑀𝑓‖BMO(ℝ𝑛) ≤ 𝐶‖𝑓‖BMO(ℝ𝑛);

see [1, Theorem 4.2] by Bennett, DeVore and Sharpley. The further bounded-
ness of𝑀 and its fractional counterpart on VMO were investigated in [17] and
[11], respectively, where VMO is the BMO-closure of UC ∩ BMO, and UC is
the class of all uniformly continuous functions. Alternatively, 𝑓 ∈ VMO(ℝ𝑛)

if and only if 𝑓 ∈ BMO(ℝ𝑛) and

lim
𝑎→0

sup
𝐵∶ 𝑟𝐵≤𝑎

|𝐵|−1 ∫
𝐵

|||𝑓(𝑥) − 𝑓𝐵
||| 𝑑𝑥 = 0.

Very recently, the boundedness of𝑀 on the classicalCMO(ℝ𝑛)was established
in [15]. Since the nonnegative potential𝑉 is assumed not to be identically zero,
we have

CMOℒ(ℝ
𝑛) ⫋ CMO(ℝ𝑛) ⫋ VMO(ℝ𝑛).

Our first result is to characterize the Hardy–Littlewood maximal operator𝑀
on CMOℒ(ℝ

𝑛), which also clarifies the boundedness of𝑀 on CMO(ℝ𝑛).

Theorem 1.1. Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2 and let ℒ = −∆ + 𝑉. For
each 𝑓 ∈ CMOℒ(ℝ

𝑛), the Hardy–Littlewood maximal function 𝑀𝑓 belongs to
CMOℒ(ℝ

𝑛) as well, with

‖𝑀𝑓‖BMOℒ(ℝ
𝑛) ≤ 𝐶‖𝑓‖BMOℒ(ℝ

𝑛), (1.5)

where the constant 𝐶 > 0 is independent of 𝑓.

Recall that the boundedness of𝑀 on BMOℒ(ℝ
𝑛), namely,

‖𝑀𝑓‖BMOℒ(ℝ
𝑛) ≤ 𝐶‖𝑓‖BMOℒ(ℝ

𝑛), (1.6)
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was given in [9, Theorem 5]. To prove Theorem 1.1 based on this result, we
will apply the characterization ofCMOℒ(ℝ

𝑛) in terms of the behaviour ofmean
oscillation given in [19] (see (vi) of Theorem 2.1 below), and give amore refined
modification of the argument for [1, Theorem 4.2]. Note that CMO(ℝ𝑛) can
also be characterized via mean oscillation, which coincides with CMOℒ(ℝ

𝑛)

whenever taking 𝑉 ≡ 0, hence our proof also reveals the behaviour of 𝑀 on
the classical CMO(ℝ𝑛) (Remarkably, functions 𝑓 ∈ CMO(ℝ𝑛) for which𝑀𝑓 is
identically infinite must be ruled out, such as 𝑓(𝑥) = ln ln |𝑥| ⋅ 𝟣{|⋅|≥𝑒}(𝑥)). See
Remark 3.2 for details.
Part II. Consider the 𝑗 th Riesz transform 𝑅𝑗 =

𝜕

𝜕𝑥𝑗
ℒ−1∕2 associated to ℒ

onℝ𝑛, 𝑗 = 1,… , 𝑛. Shen [17] established that when 𝑉 ∈ 𝑅𝐻𝑞 for 𝑛∕2 ≤ 𝑞 < 𝑛,
then

‖𝑅𝑗𝑓‖𝐿𝑝(ℝ𝑛) ≤ 𝐶𝑝‖𝑓‖𝐿𝑝(ℝ𝑛) for 1 < 𝑝 ≤ 𝑝0,

where 1

𝑝0
=
1

𝑞
−
1

𝑛
. When 𝑉 ∈ 𝑅𝐻𝑛, 𝑅𝑗 is a Calderón–Zygmund operator for

each 𝑗. Hence it suffices to consider the case 𝑉 ∈ 𝑅𝐻𝑞 with 𝑛∕2 ≤ 𝑞 < 𝑛. Let
𝑅𝑗(𝑥, 𝑦) be the kernel of the Riesz transform 𝑅𝑗. Then the adjoint of 𝑅𝑗 is given
by

𝑅∗
𝑗
𝑔(𝑥) = lim

𝜀→0
∫
|𝑦−𝑥|>𝜀

𝑅𝑗(𝑦, 𝑥)𝑔(𝑦)𝑑𝑦.

By duality, the above boundedness of 𝑅𝑗 deduces that 𝑅∗𝑗 is bounded on 𝐿
𝑝′(ℝ𝑛)

with 𝑝′
0
≤ 𝑝′ < ∞, where 1

𝑝
+

1

𝑝′
= 1. Moreover, 𝑅∗

𝑗
is bounded from 𝐿∞(ℝ𝑛)

to BMOℒ(ℝ
𝑛), which is useful to give a characterization of BMOℒ(ℝ

𝑛) via 𝑅∗
𝑗
.

Concretely, for each 𝑓 ∈ BMOℒ(ℝ
𝑛), we can write

𝑓 = 𝜙0 +

𝑛∑

𝑗=1

𝑅∗
𝑗
𝜙𝑗, 𝜙𝑗 ∈ 𝐿∞(ℝ𝑛), 0 ≤ 𝑗 ≤ 𝑛.

See [22, Theorem 1.3] by the third author and L.X. Yan.
To continue this line, our second result is as follows. Let 𝐶0(ℝ𝑛) be the space

of all continuous functions on ℝ𝑛 which vanish at infinity.

Theorem 1.2. Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2 and let ℒ = −∆ + 𝑉. The
adjoint Riesz transform𝑅∗

𝑗
associated toℒ is bounded from𝐶0(ℝ

𝑛) toCMOℒ(ℝ
𝑛)

for 𝑗 = 1,… , 𝑛.

When 𝑉 ≡ 0, the boundedness above is known, based on the Fourier trans-
form of the classical Riesz transform

𝜕

𝜕𝑥𝑗
(−∆)−1∕2, 𝑗 = 1, … , 𝑛;

see [6, Lemma 1] for details. For any generic potential 𝑉 ∈ 𝑅𝐻𝑞, techniques
from Fourier transform are not workable, and we will show Theorem 1.2 by
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exploiting estimates for the kernels of Riesz transforms and applying prelimi-
naries in [18].
As a consequence, we will show (see Lemma 4.1 below) a Riesz-type rep-

resentation that for every continuous linear functional 𝓁 on CMOℒ(ℝ
𝑛), there

exists a uniquely finite Borel measure 𝜇0 such that 𝓁 can be realized by

𝓁(𝑔) = ∫
ℝ𝑛

𝑔(𝑥) 𝑑𝜇0(𝑥), ∀ 𝑔 ∈ CMOℒ(ℝ
𝑛),

where 𝜇0 satifies that its Riesz transforms 𝑅𝑗(𝑑𝜇0)(𝑥) = ∫ 𝑅𝑗(𝑥, 𝑦) 𝑑𝜇0(𝑦) asso-
ciated to ℒ for 𝑗 = 1, 2, … , 𝑛, are all finite Borel measures.
Part III. Consider the approximation to the identity on CMOℒ(ℝ

𝑛). As
aforementioned, the standard approximation to the identity can not match
CMOℒ(ℝ

𝑛) well due to the potential 𝑉. Even for a radial bump function 𝜙
satisfying

supp 𝜙 ⊆ 𝐵(0, 1), 0 ≤ 𝜙 ≤ 1 and ∫ 𝜙(𝑥) 𝑑𝑥 = 1,

the convolution 𝐴𝑡𝑓 = 𝑡−𝑛𝜙(𝑡−1⋅) ∗ 𝑓 for 𝑓 ∈ CMOℒ(ℝ
𝑛) may not belong to

CMOℒ(ℝ
𝑛), unless assuming additional conditions such as 𝑓 ∈ 𝐶∞𝑐 (ℝ

𝑛). In
this article, we consider the approximation to the identity arising from semi-
groups associated to ℒ.

Theorem 1.3. Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2 and let ℒ = −∆ + 𝑉. For

any 𝑓 ∈ CMOℒ(ℝ
𝑛), we have 𝑒−𝑡

√
ℒ𝑓 ∈ CMOℒ(ℝ

𝑛) for each 𝑡 > 0, and

lim
𝑡→0

𝑒−𝑡
√
ℒ𝑓 = 𝑓 in BMOℒ(ℝ

𝑛). (1.7)

In particular, if 𝑓 ∈ 𝐶∞𝑐 (ℝ
𝑛), then we also have lim

𝑡→0
𝑒−𝑡

√
ℒ𝑓(𝑥) = 𝑓(𝑥) uniformly

for all 𝑥 ∈ ℝ𝑛.

The analogous conclusion remains valid when replacing the Poisson semi-
group 𝑒−𝑡

√
ℒ by the heat semigroup 𝑒−𝑡ℒ.

To establish this, we first show that for any 𝑓 ∈ BMOℒ(ℝ
𝑛) and 𝑡 > 0, the

function 𝑒−𝑡
√
ℒ𝑓 also belongs to BMOℒ(ℝ

𝑛), and a corresponding result holds
in CMOℒ(ℝ

𝑛) (see Lemma 5.1). Our main ingredient is the characterization of
CMOℒ(ℝ

𝑛) via the theory of tent spaces established in [19]. Consequently, it
suffices to verify (1.7) for functions in 𝐶∞𝑐 (ℝ𝑛), and we can utilize the classical
Poisson semigroup 𝑒−𝑡

√
−∆ to streamline the argument.

This paper is organized as follows. In Section 2 we introduce the necessary
preliminaries in characterizations of CMOℒ(ℝ

𝑛) and the auxiliary function 𝜌.
In Section 3 we provide the proof of Theorem 1.1. In Section 4 we present the
proof of Theorem 1.2. The argument for Theorem 1.3 will be discussed in the
last section.
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2. Preliminaries
We recall some preliminaries on CMOℒ(ℝ

𝑛) and the auxiliary function 𝜌
defined in (1.3).
A remarkable fact is the self-improvement property: if 𝑉 ∈ 𝑅𝐻𝑞 with 𝑞 >

1, then there exists 𝜀 > 0 depending only on the constant 𝐶 in (1.1) and the
dimension 𝑛 such that 𝑉 ∈ 𝑅𝐻𝑞+𝜀. Consequently, the assumption “𝑉 ∈ 𝑅𝐻𝑞

for some 𝑞 ≥ 𝑛∕2” can be rewritten as “𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 > 𝑛∕2”. This fact
is useful for dealing with some critical indices that appear in our article below.

Combining works in [7, 14, 19], we have the following characterizations of
CMOℒ(ℝ

𝑛).

Theorem 2.1. Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2 and let ℒ = −∆ + 𝑉. The
following statements are equivalent.

(i) 𝑓 is in CMOℒ(ℝ
𝑛).

(ii) 𝑓 is in the closure in the BMOℒ(ℝ
𝑛) norm of 𝐶∞𝑐 (ℝ𝑛).

(iii) 𝑓 is in the closure in the BMOℒ(ℝ
𝑛) norm of 𝐶0(ℝ𝑛).

(iv) 𝑓 is in the pre-dual space of the Hardy space𝐻1
ℒ
(ℝ𝑛).

(v) 𝑓 is in ℬℒ, where ℬℒ is the subspace of BMOℒ(ℝ
𝑛) satisfying 𝛾𝑖(𝑓) = 0

for 1 ≤ 𝑖 ≤ 5, where

𝛾1(𝑓) = lim
𝑎→0

sup
𝐵∶ 𝑟𝐵≤𝑎

(|𝐵|−1 ∫
𝐵

|||𝑓(𝑥) − 𝑓𝐵
|||
2
𝑑𝑥)

1∕2

;

𝛾2(𝑓) = lim
𝑎→∞

sup
𝐵∶ 𝑟𝐵≥𝑎

(|𝐵|−1 ∫
𝐵

|||𝑓(𝑥) − 𝑓𝐵
|||
2
𝑑𝑥)

1∕2

;

𝛾3(𝑓) = lim
𝑎→∞

sup
𝐵∶𝐵⊆(𝐵(0,𝑎))𝑐

(|𝐵|−1 ∫
𝐵

|||𝑓(𝑥) − 𝑓𝐵
|||
2
𝑑𝑥)

1∕2

;

𝛾4(𝑓) = lim
𝑎→∞

sup
𝐵∶ 𝑟𝐵≥max{𝑎, 𝜌(𝑥𝐵)}

(|𝐵|−1 ∫
𝐵

|||𝑓(𝑥)
|||
2
𝑑𝑥)

1∕2

;

𝛾5(𝑓) = lim
𝑎→∞

sup
𝐵∶𝐵⊆(𝐵(0,𝑎))𝑐

𝑟𝐵≥𝜌(𝑥𝐵)

(|𝐵|−1 ∫
𝐵

|||𝑓(𝑥)
|||
2
𝑑𝑥)

1∕2

.

Here 𝑥𝐵 denotes the center of 𝐵, and the function 𝜌 is defined in (1.3).

(vi) 𝑓 is in BMOℒ(ℝ
𝑛) and satisfies 𝛾1(𝑓) = 𝛾3(𝑓) = 𝛾5(𝑓) = 0.

Next we review the slowly varying property of the critical radii function 𝜌(𝑥).
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Lemma 2.2. ( [18, Lemma 1.4].) Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2. There
exist 𝑐 > 1 and 𝑘0 ≥ 1 such that for all 𝑥, 𝑦 ∈ ℝ𝑛,

𝑐−1 (1 +
|𝑥 − 𝑦|

𝜌(𝑥)
)

−𝑘0

𝜌(𝑥) ≤ 𝜌(𝑦) ≤ 𝑐 (1 +
|𝑥 − 𝑦|

𝜌(𝑥)
)

𝑘0

𝑘0+1

𝜌(𝑥). (2.1)

In particular, 𝜌(𝑥) ≈ 𝜌(𝑦) when 𝑦 ∈ 𝐵(𝑥, 𝑟) and 𝑟 ≲ 𝜌(𝑥).

Hence 0 < 𝜌(𝑥) < ∞ for each 𝑥 ∈ ℝ𝑛, and 𝜌 is locally bounded from above
and below. This fact will be used frequently in our article.

3. Hardy–Littlewood maximal operator on 𝐂𝐌𝐎ℒ(ℝ
𝒏): proof of

Theorem 1.1
Let𝑀 denote the uncentered Hardy–Littlewood maximal function. The aim

of this section is to explore the boundedness of𝑀 on CMOℒ(ℝ
𝑛).

Proof of Theorem 1.1. Step I. We begin by showing that for any given 𝑓 ∈

BMOℒ(ℝ
𝑛), we have𝑀𝑓 < +∞ for a.e. 𝑥 ∈ ℝ𝑛.

This fact has been proven in [9] by splitting the function 𝑓 into a local part
and a nonlocal part. Alternatively, here we present an alternative proof by di-
rectly applying the definition (1.2) of the BMOℒ norm.
Indeed, for any 𝑓 ∈ BMOℒ, it follows from the definition of the BMOℒ norm

that

𝑀𝑓(𝑥) ≤ 𝐶𝑛 sup
𝑟>0

1

|𝐵(𝑥, 𝑟)|
∫
𝐵(𝑥,𝑟)

|𝑓(𝑦)|𝑑𝑦

≤ 𝐶𝑛‖𝑓‖BMOℒ
sup
𝑟>0

max {
(𝜌(𝑥)

𝑟

)𝑛
, 1} ,

and the sup
𝑟>0

can be improved to sup
𝑟>𝛿

for some 𝛿 > 0 due to the Lebesgue
differentiation theorem. Specifically, for any 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀, 𝑥) > 0

such that

𝑀𝑓(𝑥) ≤ max {|𝑓(𝑥)| + 𝜀, 𝐶𝑛‖𝑓‖BMOℒ
sup
𝑟>𝛿

max {
(𝜌(𝑥)

𝑟

)𝑛
, 1}} ,

Since 0 < 𝜌(𝑥) < ∞ for each 𝑥 ∈ ℝ𝑛, we obtain𝑀𝑓(𝑥) < +∞, a.e. 𝑥 ∈ ℝ𝑛.
Step II.Nowwe show that𝑀𝑓 belongs toCMOℒ(ℝ

𝑛)when 𝑓 ∈ CMOℒ(ℝ
𝑛).

For any given 𝑓 ∈ CMOℒ(ℝ
𝑛), it follows from Theorem 2.1 that it’s equiva-

lent to 𝑓 ∈ BMOℒ(ℝ
𝑛) and 𝛾1(𝑓) = 𝛾3(𝑓) = 𝛾5(𝑓) = 0. By (1.6), we have𝑀𝑓 ∈

BMOℒ(ℝ
𝑛), hence it suffices to verify that 𝛾1(𝑀𝑓) = 𝛾3(𝑀𝑓) = 𝛾5(𝑀𝑓) = 0.

The following argument refines and modifies the approach in [1, Theorem
4.2]; see also [17].
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Note that for any 𝐵,

1

|𝐵|
∫
𝐵

|||𝑓(𝑥) − 𝑓𝐵
|||
2
𝑑𝑥 ≤

1

|𝐵|2
∬

𝐵×𝐵

|||𝑓(𝑥) − 𝑓(𝑦)|||
2
𝑑𝑦𝑑𝑥

=
1

|𝐵|2
∬

𝐵×𝐵

|||𝑓(𝑥) − 𝑓𝐵 + 𝑓𝐵 − 𝑓(𝑦)|||
2
𝑑𝑦𝑑𝑥

≤
2

|𝐵|
∫
𝐵

|||𝑓(𝑥) − 𝑓𝐵
|||
2
𝑑𝑥, (3.1)

and

1

|𝐵|2
∬

𝐵×𝐵

|||||𝑓(𝑥)| − |𝑓(𝑦)|
||||

2
𝑑𝑦𝑑𝑥 ≤

1

|𝐵|2
∬

𝐵×𝐵

|||𝑓(𝑥) − 𝑓(𝑦)|||
2
𝑑𝑦𝑑𝑥,

from which it follows readily that |𝑓| ∈ CMOℒ(ℝ
𝑛). Besides, 𝑀|𝑓| = 𝑀𝑓.

Thus we may assume without loss of generality that 𝑓 is nonnegative.
Now, for any 0 ≤ 𝑓 ∈ CMOℒ(ℝ

𝑛), note that 𝑀𝑓 and 𝛾𝑖(𝑀𝑓) for 𝑖 = 1, 3, 5

can be defined using cubes with sides parallel to the coordinate axes instead of
balls. In the following proof, “cube” always refers to such cubes. For any given
cube 𝑄, denote its sidelength by 𝓁(𝑄). Let 𝜅 > 0 be a constant to be chosen
later. For each 𝑥 ∈ 𝑄, define

𝑀1𝑓(𝑥) ∶= sup
𝑄′∋𝑥∶𝓁(𝑄′)<𝜅𝓁(𝑄)

𝑓𝑄′ and 𝑀2𝑓(𝑥) ∶= sup
𝑄′∋𝑥∶𝓁(𝑄′)≥𝜅𝓁(𝑄)

𝑓𝑄′ .

Clearly,𝑀𝑓 = max
{
𝑀1𝑓,𝑀2𝑓

}
on 𝑄. Set

Ω =
{
𝑥 ∈ 𝑄 ∶ 𝑀𝑓(𝑥) > (𝑀𝑓)𝑄

}
, Ω1 = {𝑥 ∈ Ω ∶ 𝑀1𝑓(𝑥) ≥ 𝑀2𝑓(𝑥)}

and Ω2 = Ω ⧵ Ω1. Then

1

|𝑄|
∫
𝑄

||||𝑀𝑓(𝑥) − (𝑀𝑓)𝑄
|||| 𝑑𝑥 =

2

|𝑄|
∫
Ω

(
𝑀𝑓(𝑥) − (𝑀𝑓)𝑄

)
𝑑𝑥

= 2

2∑

𝑖=1

1

|𝑄|
∫
Ω𝑖

(
𝑀𝑖𝑓(𝑥) − (𝑀𝑓)𝑄

)
𝑑𝑥. (3.2)

We begin by considering the term involving𝑀1 in (3.2). For the above cube
𝑄, let𝑄∗ = (2𝜅+1)𝑄 denote the cube with the same center as𝑄 and sidelength
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𝑄

𝑄′

𝑄′′

Figure 1. 𝑄′′ contains 𝑄 and 𝑄′, and shares a common vertex
with 𝑄′.

(2𝜅 + 1)𝓁(𝑄). Then𝑀1𝑓(𝑥) = 𝑀1(𝑓𝟣𝑄∗)(𝑥) for any 𝑥 ∈ 𝑄, and

1

|𝑄|
∫
Ω1

(
𝑀1𝑓(𝑥) − (𝑀𝑓)𝑄

)
𝑑𝑥

≤
1

|𝑄|
∫
Ω1

(
𝑀1𝑓(𝑥) − (𝑀1𝑓)𝑄

)
𝑑𝑥

≤
1

|𝑄|
∫
𝑄

||||𝑀1𝑓(𝑥) − 𝑓𝑄∗ + 𝑓𝑄∗ − (𝑀1𝑓)𝑄
|||| 𝑑𝑥

≤
2

|𝑄|
∫
𝑄

||||𝑀1𝑓(𝑥) − 𝑓𝑄∗
|||| 𝑑𝑥

≤2 (
1

|𝑄|
∫
𝑄

||||𝑀1

(
𝑓𝟣𝑄∗ − 𝑓𝑄∗

)
(𝑥)

||||

2
𝑑𝑥)

1∕2

≤2 (
1

|𝑄|
∫
𝑄

||||𝑀
[(
𝑓 − 𝑓𝑄∗

)
𝟣𝑄∗

]
(𝑥)

||||

2
𝑑𝑥)

1∕2

≤𝐶𝜅𝑛∕2(
1

|𝑄∗|
∫
𝑄∗

||||𝑓(𝑥) − 𝑓𝑄∗
||||

2
𝑑𝑥)

1∕2

. (3.3)

It remains to consider the other term (i.e., 𝑖 = 2) on the right-hand side of
(3.2). For any fixed 𝑥 ∈ Ω2, we have 𝑀𝑓(𝑥) = 𝑀2𝑓(𝑥) > (𝑀𝑓)𝑄. Let 𝑄′ be
any cube containing 𝑥 with 𝓁(𝑄′) ≥ 𝜅𝓁(𝑄). Let 𝑄′′ be a cube with 𝓁(𝑄′′) =

𝓁(𝑄) + 𝓁(𝑄′) which contains both 𝑄 and 𝑄′ and shares some common faces
(i.e., they have a common vertex); see Figure 1.
Then 𝑀𝑓(𝑦) ≥ 𝑓𝑄′′ for any 𝑦 ∈ 𝑄, so 𝑓𝑄′′ ≤ (𝑀𝑓)𝑄. Without loss of gen-

erality, one may assume that 𝓁(𝑄′)∕𝓁(𝑄) ∈ ℕ+, thus 𝑄′′∖𝑄′ can be partitioned
into |𝑄′′|−|𝑄′|

|𝑄|
= (1 +

𝓁(𝑄′)

𝓁(𝑄)
)𝑛 − (

𝓁(𝑄′)

𝓁(𝑄)
)𝑛 mutually disjoint cubes of side length

𝓁(𝑄). Hence, by the pigeonhole principle, there exists a cube 𝑃 ⊂ 𝑄′′ ⧵ 𝑄 with
𝓁(𝑃) = 𝓁(𝑄) such that 𝑓𝑃 ≤ 𝑓𝑄′′⧵𝑄′ . As a consequence and by the nonnegative
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assumption of 𝑓,

𝑓𝑄′ − (𝑀𝑓)𝑄 ≤ 𝑓𝑄′ − 𝑓𝑄′′

= 𝑓𝑄′ −
|𝑄′|

|𝑄′′|
𝑓𝑄′ −

1

|𝑄′′|
∫
𝑄′′⧵𝑄′

𝑓(𝑦)𝑑𝑦

≤
|𝑄′′| − |𝑄′|

|𝑄′′|

[
𝑓𝑄′ − 𝑓𝑄′′⧵𝑄′

]

≤
|𝑄′′| − |𝑄′|

|𝑄′′|

[
𝑓𝑄′ − 𝑓𝑃

]

≲
(𝓁(𝑄′) + 𝓁(𝑄))𝑛 − 𝓁(𝑄′)𝑛

(𝓁(𝑄′) + 𝓁(𝑄))𝑛
log (

𝓁(𝑄′)

𝓁(𝑄)
) ‖𝑓‖BMO

≲
log 𝜅

𝜅
‖𝑓‖BMO.

Taking the supremum over all such cubes 𝑄′, we obtain

𝑀2𝑓(𝑥) − (𝑀𝑓)𝑄 ≤ 𝐶
log 𝜅

𝜅
‖𝑓‖BMO for 𝑥 ∈ Ω2.

Consequently,
1

|𝑄|
∫
Ω2

(
𝑀2𝑓(𝑥) − (𝑀𝑓)𝑄

)
𝑑𝑥 ≤ 𝐶

log 𝜅

𝜅
‖𝑓‖BMO.

Therefore, for any 𝜅 > 1,
1

|𝑄|
∫
𝑄

||||𝑀𝑓(𝑥) − (𝑀𝑓)𝑄
|||| 𝑑𝑥

≤ 𝐶 [𝜅𝑛∕2(
1

|𝑄∗|
∫
𝑄∗

||||𝑓(𝑥) − 𝑓𝑄∗
||||

2
𝑑𝑥)

1∕2

+
log 𝜅

𝜅
‖𝑓‖BMO] . (3.4)

Now we verify 𝛾𝑖(𝑀𝑓) = 0 for 𝑖 = 1, 3, 5. For any given 𝜀 > 0, since 𝑓 ∈

CMOℒ(ℝ
𝑛) satisfies 𝛾𝑖(𝑓) = 0 for 𝑖 = 1, 3, 5, there exist two integers 𝐼𝜀 >> 1

and 𝐽𝜀 >> 1 such that

sup
𝑃∶𝓁(𝑃)≤2−𝐼𝜀

(
1

|𝑃|
∫
𝑃

|𝑓(𝑥) − 𝑓𝑃|
2𝑑𝑥)

1∕2

< 𝜀, (3.5a)

sup
𝑃∶𝑃⊆(𝑄(0,2𝐽𝜀 ))𝑐

(
1

|𝑃|
∫
𝑃

|𝑓(𝑥) − 𝑓𝑃|
2𝑑𝑥)

1∕2

< 𝜀, (3.5b)

sup
𝑃⊆(𝑄(0,2𝐽𝜀 ))𝑐 , 𝓁(𝑃)≥𝜌(𝑐𝑃)

(
1

|𝑃|
∫
𝑃

|𝑓(𝑥)|2𝑑𝑥)

1∕2

< 𝜀, (3.5c)

where 𝑐𝑃 dentoes the center of the cube 𝑃, and 𝑄(0, 2𝐽𝜀) denotes the cube with
𝑐𝑄 = 0 and 𝓁(𝑄) = 2𝐽𝜀 .
Hence, taking 𝜅 = 𝜀−1∕𝑛,
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∙ one may combine (3.4) and (3.5a) to see when (2𝜅 + 1)𝓁(𝑄) ≤ 2−𝐼𝜀 , we
have

1

|𝑄|
∫
𝑄

||||𝑀𝑓(𝑥) − (𝑀𝑓)𝑄
|||| 𝑑𝑥 ≤ 𝐶

[
𝜀1∕2 + ‖𝑓‖BMO 𝜀

1∕(2𝑛)
]
, (3.6)

so

lim
𝑎→0

sup
𝑄∶𝓁𝑄≤𝑎

(|𝑄|−1 ∫
𝑄

||||𝑀𝑓(𝑥) − (𝑀𝑓)𝑄
|||| 𝑑𝑥) = 0.

Applying a John–Nirenberg type inequality associated to small cubes
with (2𝜅 +1)𝓁(𝑄) ≤ 2−𝐼𝜀 , we conclude that 𝛾1(𝑀𝑓) = 0. This approach
can be used to verify 𝛾3(𝑀𝑓) = 𝛾5(𝑀𝑓) = 0, that is, the 𝐿2 integrals
involved therein can be replaced by the corresponding 𝐿1 integrals.

∙ Similarly, one may combine (3.4) and (3.5b) to see when 𝑄∗ = (2𝜅 +

1)𝑄 ⊆ (𝑄(0, 2𝐽𝜀))𝑐, (3.6) still holds. Hence, 𝛾3(𝑀𝑓) = 0.

It remains to show 𝛾5(𝑀𝑓) = 0. Note that for any cube𝑄with 𝓁(𝑄) ≥ 𝜌(𝑐𝑄),
there exists a constant𝐶 > 0 independent of𝑄 such that there exists a sequence
{𝑄(𝑥𝑘, 𝜌(𝑥𝑘))}𝑘 such that

𝑄 ⊆
⋃

𝑘

𝑄(𝑥𝑘, 𝜌(𝑥𝑘)) and
∑

𝑘

|𝑄(𝑥𝑘, 𝜌(𝑥𝑘))| ≤ 𝐶|𝑄|. (3.7)

Hence, to verify 𝛾5(𝑀𝑓) = 0 for any given 0 ≤ 𝑓 ∈ CMOℒ(ℝ
𝑛), it suffices to

show

lim
𝑎→∞

sup
𝑄∶𝑄⊆(𝑄(0,𝑎))𝑐

𝓁(𝑄)=𝜌(𝑐𝑄)

1

|𝑄|
∫
𝑄

𝑀𝑓(𝑥)𝑑𝑥 = 0. (3.8)

For any given 𝑄 with 𝓁(𝑄) = 𝜌(𝑐𝑄) and for any 𝑥 ∈ 𝑄, define

𝑀′
1
𝑓(𝑥) ∶= sup

𝑄′∋𝑥∶𝓁(𝑄′)<𝜌(𝑐𝑄)

𝑓𝑄′ and 𝑀′
2
𝑓(𝑥) ∶= sup

𝑄′∋𝑥∶𝓁(𝑄′)≥𝜌(𝑐𝑄)

𝑓𝑄′ .

Clearly,𝑀𝑓 = max
{
𝑀′

1
𝑓,𝑀′

2
𝑓
}
on 𝑄, and so

1

|𝑄|
∫
𝑄

𝑀𝑓(𝑥)𝑑𝑥 ≤

2∑

𝑖=1

1

|𝑄|
∫
𝑄

𝑀′
𝑖
𝑓(𝑥)𝑑𝑥.
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Note that
1

|𝑄|
∫
𝑄

𝑀′
1
𝑓(𝑥)𝑑𝑥 =

1

|𝑄|
∫
𝑄

𝑀′
1
(𝑓𝟣3𝑄)(𝑥)𝑑𝑥

= (
1

|𝑄|
∫
𝑄

||||𝑀
′(𝑓𝟣3𝑄)(𝑥)

||||

2
𝑑𝑥)

1∕2

≤ 𝐶 (
1

|𝑄|
∫
ℝ𝑛

||||𝑓𝟣3𝑄(𝑥)
||||

2
𝑑𝑥)

1∕2

≤ 𝐶 (
1

|3𝑄|
∫
3𝑄

||||𝑓(𝑥)
||||

2
𝑑𝑥)

1∕2

. (3.9)

On the other hand, there exists a constant 𝐶 > 0 such that for any cube
𝑄′ ∋ 𝑥 with 𝓁(𝑄′) ≥ 𝜌(𝑐𝑄), 𝑓𝑄′ ≤ 𝐶𝑓𝑄′′ ≤ 𝐶𝑀′

2
𝑓(𝑐𝑄), where 𝑄′′ is the smallest

cube containg 𝑄 and 𝑄′. Hence,

1

|𝑄|
∫
𝑄

𝑀′
2
𝑓(𝑥)𝑑𝑥 ≤ 𝐶𝑀′

2
𝑓(𝑐𝑄).

For any given 𝜀 > 0, let 𝐽𝜀 be the positive integer as in (3.5c). For any
𝑄(𝑦, 𝜌(𝑦)) ∩ 𝑄(0, 2𝐽𝜀) ≠ ∅, it follows from Lemma 2.2 that 𝜌(𝑦) ≈ 𝜌(𝑧) for
any 𝑧 ∈ 𝑄(𝑦, 𝜌(𝑦)) ∩ 𝑄(0, 2𝐽𝜀), thus 𝑄(𝑦, 𝜌(𝑦)) ⊂ 𝑄(𝑧, 𝐶𝜌(𝑧)) for some 𝐶 > 1

independent of 𝑦 and 𝑧. Without loss of generality, we may assume that

𝜌(0) ≤ 2𝐽𝜀 , (3.10)

which can be achieved by taking 𝐽𝜀 sufficiently large. Then by Lemma2.2 again,

sup
𝑥∈𝑄(0,2𝐽𝜀 )

𝜌(𝑥) ≤ 𝑐𝜌(𝑥0)

1

𝑘0+1 2
𝐽𝜀⋅

𝑘0

𝑘0+1 ≤ 𝑐2𝐽𝜀

for some 𝑐 > 1. Hence,
⋃

𝑄(𝑦,𝜌(𝑦))∶𝑄(𝑦,𝜌(𝑦))∩𝑄(0,2𝐽𝜀 )≠∅

𝑄(𝑦, 𝜌(𝑦)) ⊆ 𝑄(0, 𝐶′2𝐽𝜀) (3.11)

for some 𝐶′ > 1.
Note that𝑀′

2
is bounded by its corresponding centeredmaximal counterpart,

thus when 𝑐𝑄 is far away from the origin,

𝑀′
2
𝑓(𝑐𝑄) ≤ 𝐶 sup

𝑄′=𝑄′(𝑐𝑄,𝓁(𝑄
′))∶ 𝓁(𝑄′)≥𝜌(𝑐𝑄)

𝑓𝑄′

= 𝐶max { sup
𝑄′(𝑐𝑄,𝓁(𝑄

′))⊆(𝑄(0,2𝐽𝜀 ))𝑐∶𝓁(𝑄′)≥𝜌(𝑐𝑄)

𝑓𝑄′ ,

sup
𝑄′(𝑐𝑄,𝓁(𝑄

′))∩𝑄(0,2𝐽𝜀 )≠∅∶𝓁(𝑄′)≥𝜌(𝑐𝑄)

𝑓𝑄′} .
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For any 𝑄′(𝑐𝑄, 𝓁(𝑄
′)) with 𝓁(𝑄′) ≥ 𝜌(𝑐𝑄), if 𝑄′(𝑐𝑄, 𝓁(𝑄

′)) ⊆ (𝑄(0, 2𝐽𝜀))𝑐, it
follows from (3.5c) to see 𝑓𝑄′ < 𝜀, as desired.
On the other hand, 𝑄′(𝑐𝑄, 𝓁(𝑄

′)) ∩ 𝑄(0, 2𝐽𝜀) ≠ ∅ and 𝓁(𝑄′) ≥ 𝜌(𝑐𝑄). Similar
to (3.7), there exists a sequence {𝑄(𝑥𝑘, 𝜌(𝑥𝑘))}𝑘 such that

𝑄′(𝑐𝑄, 𝓁(𝑄
′)) ⊆

⋃

𝑘

𝑄(𝑥𝑘, 𝜌(𝑥𝑘)) and
∑

𝑘

|𝑄(𝑥𝑘, 𝜌(𝑥𝑘))| ≤ 𝐶|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|.

Denote
Λ1 =

{
𝑘 ∶ 𝑄(𝑥𝑘, 𝜌(𝑥𝑘)) ⊆ (𝑄(0, 2𝐽𝜀))𝑐

}

and
Λ2 =

{
𝑘 ∶ 𝑄(𝑥𝑘, 𝜌(𝑥𝑘)) ∩ 𝑄(0, 2

𝐽𝜀) ≠ ∅
}
.

Combining the definition (1.2), (3.5c) and (3.11), whenever

𝑄′(𝑐𝑄, 𝓁(𝑄
′)) ∩ 𝑄(0, 2𝐽𝜀) ≠ ∅,

we have

𝑓𝑄′(𝑐𝑄,𝓁(𝑄′)) ≤
1

|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|

∑

𝑘∈Λ1

∫
𝑄(𝑥𝑘 ,𝜌(𝑥𝑘))

𝑓(𝑥)𝑑𝑥

+
1

|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|

∫
⋃

𝑘∈Λ2
𝑄(𝑥𝑘 ,𝜌(𝑥𝑘))

𝑓(𝑥)𝑑𝑥

≤ 𝐶𝜀

∑

𝑘∈Λ1
|𝑄(𝑥𝑘, 𝜌(𝑥𝑘))|

|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|

+ 𝐶
|𝑄(0, 𝐶′2𝐽𝜀)|

|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|

𝑓𝑄(0,𝐶′2𝐽𝜀 )

≤ 𝐶𝜀 + 𝐶‖𝑓‖BMOℒ

|𝑄(0, 𝐶′2𝐽𝜀)|

|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|

,

where the last inequality follows from (3.10) and 𝐶′ > 1.
To continue, observe that there exists a positive 𝐽′𝜀 > 𝐽𝜀 such that for any

𝑄(𝑐𝑄, 𝜌(𝑐𝑄)) ⊆ 𝑄(0, 2𝐽
′
𝜀)𝑐, we have

|𝑄(0, 𝐶′2𝐽𝜀)|

|𝑄′(𝑐𝑄, 𝓁(𝑄
′))|

< 𝜀 whenever 𝑄′(𝑐𝑄, 𝓁(𝑄
′)) ∩ 𝑄(0, 2𝐽𝜀) ≠ ∅, 𝓁(𝑄′) ≥ 𝜌(𝑐𝑄).

(3.12)
Indeed, since |𝑐𝑄| ≥ 2𝐽

′
𝜀 , for any cube 𝑄′(𝑐𝑄, 𝓁(𝑄

′)) having nonnempty inter-
section with 𝑄(0, 2𝐽𝜀), we have

𝓁(𝑄′) ≳ |𝑐𝑄| − 2𝐽𝜀 ≥ 2𝐽
′
𝜀−1,

which ensures (3.12) by taking 𝐽′𝜀 ≳ 𝐽𝜀 − (log
2
𝜀)∕𝑛. Note that the condition

“𝓁(𝑄′) ≥ 𝜌(𝑐𝑄)” for such 𝑄′ is also compatible: since 𝑄(𝑐𝑄, 𝜌(𝑐𝑄)) ⊆ 𝑄(0, 2𝐽
′
𝜀)𝑐,

there exists some integer 𝑗 ≥ 0 such that |𝑐𝑄| ≈ 2𝐽
′
𝜀+𝑗, then by Lemma 2.2 and

(3.10),

𝜌(𝑐𝑄) ≲ 2
(𝐽′𝜀+𝑗)⋅

𝑘0

𝑘0+1 ,

which implies that if 𝑄′(𝑐𝑄, 𝓁(𝑄
′)) ∩ 𝑄(0, 2𝐽𝜀) ≠ ∅, we must have 𝓁(𝑄′) ≥

2𝐽
′
𝜀+𝑗−1 − 2𝐽𝜀 ≥ 𝜌(𝑐𝑄) by taking 𝐽′𝜀 ≳ (𝑘0 + 1)𝐽𝜀 sufficently large.
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Therefore, for any 𝜀 > 0, there exists a positive integer 𝐽′𝜀 > 𝐽𝜀 such that for
any cube 𝑄(𝑐𝑄, 𝜌(𝑄)) ⊆ (𝑄(0, 2𝐽

′
𝜀))𝑐,

𝑀′
2
𝑓(𝑐𝑄) ≲ 𝜀.

From the above, (3.8) holds, and 𝛾5(𝑀𝑓) = 0 follows readily.
We complete the proof of Theorem 1.1. □

Remark 3.1. Let 𝑅∗
𝑗
be the adjoint of the Riesz transform 𝑅𝑗 associated to ℒ for

𝑗 = 1, 2, … , 𝑛. Recall that (see [18, (5.5)]) for 𝑉 ∈ 𝑅𝐻𝑞 with 𝑞 > 𝑛∕2,

‖𝑅∗
𝑗
𝑓‖𝐿𝑝(ℝ𝑛) ≤ 𝐶𝑝‖𝑓‖𝐿𝑃(ℝ𝑛) for 𝑝′

0
≤ 𝑝 < ∞,

where 𝑝′
0
= 𝑝0∕(𝑝0 − 1) and 1∕(𝑝0) = (1∕𝑞) − (1∕𝑛).

For the endpoint case 𝑝 = ∞, we have

‖𝑅∗
𝑗
𝑓‖BMOℒ

≤ 𝐶‖𝑓‖𝐿∞(ℝ𝑛).

More precisely, for each 𝑔 ∈ BMOℒ(ℝ
𝑛), we can represent 𝑔 as 𝑔 = 𝜑0+

𝑛∑

𝑗=0

𝑅∗
𝑗
𝜑𝑗 ,

where 𝜑𝑗 ∈ 𝐿∞(ℝ𝑛) for 0 ≤ 𝑗 ≤ 𝑛, and ‖𝑔‖BMOℒ
≈

𝑛∑

𝑗=0

‖𝜑𝑗‖𝐿∞ ; see [22, Theorem

1.3].
Furthermore, one may combine (1.6) and the John–Nirenberg type inequality

to see for 1 ≤ 𝑝 < ∞ and 𝑓 ∈ 𝐿∞(ℝ𝑛),

sup
𝐵=𝐵(𝑥𝐵 ,𝑟𝐵)∶ 𝑟𝐵≥𝜌(𝑥𝐵)

(
1

|𝐵|
∫
𝐵

|𝑅∗
𝑗
𝑓(𝑥)|𝑝𝑑𝑥)

1∕𝑝

≤ 𝐶𝑝‖𝑓‖𝐿∞ .

Remark 3.2. As a straightforward consequence, when 𝑉 ≡ 0 (i.e., 𝜌(𝑥) ≡ +∞),
our Theorem 1.1 implies that theHardy–Littlewoodmaximal operator is bounded
on the classicalCMO(ℝ𝑛), which has been established in [15]. Specifically, for any
𝑓 belongs to CMO(ℝ𝑛) for which𝑀𝑓 is not identically equal to infinity, then𝑀𝑓

also belongs to CMO(ℝ𝑛), and

‖𝑀𝑓‖BMO(ℝ𝑛) ≤ 𝐶‖𝑓‖BMO(ℝ𝑛).

This result is a straightforward consequence of our argument by noting that 𝑓 ∈

CMO(ℝ𝑛) if and only if 𝑓 ∈ BMO(ℝ𝑛) and 𝛾1(𝑓) = 𝛾2(𝑓) = 𝛾3(𝑓) = 0, hence
it suffices to prove 𝛾1(𝑀𝑓) = 𝛾2(𝑀𝑓) = 𝛾3(𝑀𝑓) = 0. Among them, 𝛾1(𝑀𝑓) =

𝛾3(𝑀𝑓) = 0has been proved, and onemay combine (3.4) and 𝛾2(𝑓) = 0 to deduce
(3.6)also holds for any cubewhose sidelength is sufficiently large, that is, we obtain
the remaining 𝛾2(𝑀𝑓) = 0.
Now we address the fact that there exists 𝑓 ∈ CMO(ℝ𝑛) such that𝑀𝑓 ≡ +∞.

An interesting example illustrating this phenomenonwas constructed in [15], and
we present a distinct one here.
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We consider 𝑛 = 1 for simplicity. Define

𝑓(𝑥) =

⎧

⎨

⎩

ln ln |𝑥|, |𝑥| ≥ 𝑒,

0, |𝑥| < 𝑒.

It’s clear 𝑓 is a uniformly continuous function onℝ. As a consequence, 𝛾1(𝑓) = 0.
We begin by verifying that 𝑓 ∈ BMO(ℝ). To see it, we will use

‖𝑓‖BMO(ℝ) ≈ sup
𝐼∶=[𝑎,𝑏]⊆ℝ

inf
𝖠𝗏𝗀

𝐼
∈ℝ

1

𝑏 − 𝑎
∫

𝑏

𝑎

||||𝑓(𝑥) − 𝖠𝗏𝗀
𝐼

|||| 𝑑𝑥.

Let𝑀 be a sufficiently large integer. For any interval 𝐼 = [𝑎, 𝑏],

∙ Case I. 𝐼 ⊆ [−10𝑀, 10𝑀]. Then

1

𝑏 − 𝑎
∫

𝑏

𝑎

||||𝑓(𝑥) − 𝑓[𝑎,𝑏]
|||| 𝑑𝑥 ≤ 2‖𝑓‖𝐿∞([−10𝑀,10𝑀]).

∙ Case II. 𝐼 ∩ (ℝ ⧵ [−10𝑀, 10𝑀]) ≠ ∅.
Write [𝑎, 𝑏] = [𝑐 − 𝑅, 𝑐 + 𝑅] with 𝑐 = 𝑎+𝑏

2
and 𝑅 =

𝑏−𝑎

2
.

– Subcase 1. 𝐼 ∩ [−𝑀,𝑀] = ∅.
Since 𝑓 is an even function, one may assume that [𝑎, 𝑏] ⊆ (𝑀,+∞).

∗ Subsubcase 1-1. If 𝑐 > 2𝑅, let 𝖠𝗏𝗀
𝐼
= ln ln 𝑐. Combining

𝑎 = 𝑐 − 𝑅 > max{𝑀, 𝑅}, we have

1

𝑏 − 𝑎
∫

𝑏

𝑎

||||𝑓(𝑥) − 𝖠𝗏𝗀
𝐼

|||| 𝑑𝑥

≤max
{
ln ln 𝑐 − ln ln(𝑐 − 𝑅), ln ln(𝑐 + 𝑅) − ln ln 𝑐

}

≤max

⎧

⎨

⎩

ln
⎛

⎜

⎝

1 +

ln(1 +
𝑅

𝑎
)

ln 𝑎

⎞

⎟

⎠

, ln
⎛

⎜

⎝

1 +

ln(1 +
𝑅

𝑐
)

ln 𝑐

⎞

⎟

⎠

⎫

⎬

⎭

≤ ln (1 +
ln 2

ln𝑀
) ,

which is sufficiently small.
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∗ Subsubcase 1-2. Otherwise, if 𝑐 < 2𝑅, let 𝖠𝗏𝗀
𝐼
= ln ln 𝑅.

1

𝑏 − 𝑎
∫

𝑏

𝑎

||||𝑓(𝑥) − 𝖠𝗏𝗀
𝐼

|||| 𝑑𝑥

=
1

2𝑅
∫
𝑀<𝑥<3𝑅

|||||||||||

ln
⎛

⎜

⎝

1 +

ln
𝑥

𝑅

ln 𝑅

⎞

⎟

⎠

|||||||||||

𝑑𝑥

≲ ∫

3

0

|||||||
ln (1 +

ln 𝑥

ln𝑀
)
|||||||
𝑑𝑥 ≤ 𝐶𝑀 ,

and 𝐶𝑀 is sufficiently small since𝑀 >> 1.
Note that the argument in Subcase 1 also implies that 𝛾3(𝑓) = 0 (in
fact we do not use the assumption “𝐼 ∩ (ℝ ⧵ [−10𝑀, 10𝑀]) ≠ ∅”).

– Subcase 2. 𝐼 ∩ [−𝑀,𝑀] ≠ ∅. Then 𝑅 > 9𝑀∕2 and it’s obvious that
|𝑐| < 2𝑅, thus [𝑎, 𝑏] ⊆ [−3𝑅, 3𝑅]. Similar to Subsubcase 1-2, let
𝖠𝗏𝗀

𝐼
= ln ln 𝑅 and

1

𝑏 − 𝑎
∫

𝑏

𝑎

||||𝑓(𝑥) − 𝖠𝗏𝗀
𝐼

|||| 𝑑𝑥

≤
1

2𝑅
∫
𝑒<|𝑥|<3𝑅

||||||||||||

ln
⎛

⎜

⎝

1 +

ln
|𝑥|

𝑅

ln 𝑅

⎞

⎟

⎠

||||||||||||

𝑑𝑥

≲ ∫
|𝑥|<3

|||||||
ln (1 +

ln |𝑥|

ln𝑀
)
|||||||
𝑑𝑥

≤2𝐶𝑀 .

Notably, we also complete the proof of 𝛾2(𝑓) = 0.

From the above, we obtain 𝑓 ∈ BMO(ℝ) and 𝛾1(𝑓) = 𝛾2(𝑓) = 𝛾3(𝑓) = 0.
Hence 𝑓 ∈ CMO(ℝ), as desired.

For any 𝑥 ∈ ℝ, we may assume 𝑥 ≥ 0 since 𝑓 is even. Consider the interval
𝐼𝑅 = [𝑥, 𝑥 + 2𝑅] for some 𝑅 >> 1,

1

2𝑅
∫
𝐼𝑅

|||𝑓(𝑦)
||| 𝑑𝑦 ≥

1

2𝑅
∫

𝑥+2𝑅

𝑥+𝑅

ln ln 𝑦 𝑑𝑦 ≥
ln ln 𝑅

2
,

which deduces that 𝑀𝑓(𝑥) = +∞ for every 𝑥 ∈ ℝ. This is a remarkable phe-
nomenon that 𝑓 ∈ CMO can not ensure that 𝑀𝑓 < +∞. However, for any 𝑓
that belongs to CMO for which𝑀𝑓 is not identically equal to infinity, then𝑀𝑓 is
bounded on CMO.
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4. Riesz transforms and 𝐂𝐌𝐎ℒ(ℝ
𝒏): proof of Theorem 1.2

For each 𝑗 = 1,… , 𝑛, let𝑅𝑗(𝑥, 𝑦) be kernels of Riesz transforms𝑅𝑗 =
𝜕

𝜕𝑥𝑗
ℒ−1∕2.

Then the adjoint of 𝑅𝑗 is given by

𝑅∗
𝑗
𝑔(𝑥) = lim

𝜀→0
∫
|𝑦−𝑥|>𝜀

𝑅𝑗(𝑦, 𝑥)𝑔(𝑦)𝑑𝑦.

Proof of Theorem 1.2. For each given 𝑗 = 1,… , 𝑛, recall that 𝑅∗
𝑗
is a bounded

linear operator from 𝐿∞(ℝ𝑛) to BMOℒ(ℝ
𝑛). This, combined with the fact that

𝐶0(ℝ
𝑛) is the closure of 𝐶∞𝑐 (ℝ𝑛) in 𝐿∞(ℝ𝑛), deduces that

𝑅∗
𝑗
(𝐶0(ℝ)) ⊆ 𝑅∗

𝑗
(𝐶∞𝑐 (ℝ

𝑛))
BMOℒ

,

where𝐶0(ℝ𝑛) is the space of all continuous functions onℝ𝑛 which vanish at in-
finity. Meanwhile, it follows fromTheoremC in [19] that the spacesCMOℒ(ℝ

𝑛)

is the closure in the BMOℒ(ℝ
𝑛) norm of 𝐶0(ℝ𝑛) (i.e., (iii) of Theorem 2.1).

Therefore, to prove Theorem 1.2, it suffices to show

𝑅∗
𝑗
(𝐶∞𝑐 (ℝ

𝑛)) ⊆ 𝐶0(ℝ
𝑛). (4.1)

Step I. Let𝑅0
𝑗
(𝑥, 𝑦) be kernels of the classical Riesz transforms𝑅0

𝑗
=

𝜕

𝜕𝑥𝑗
(−∆)−1∕2,

𝑗 = 1,… , 𝑛. Since𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2, wemay assume that𝑛∕2 ≤ 𝑞 < 𝑛

(the case for 𝑞 ≥ 𝑛 is simpler because the relevant kernels then exhibit better
regularity). Notably, one remarkable fact is the self-improvement of the 𝑅𝐻𝑞

class that for any 𝑉 ∈ 𝑅𝐻𝑞, there exists 𝜀 > 0 depending only on 𝐶 in (1.1)
and the dimension 𝑛 such that 𝑉 ∈ 𝑅𝐻𝑞+𝜀. Therefore, 𝑉 ∈ 𝐵𝑞1 for some
𝑛∕2 ≤ 𝑞 < 𝑞1 < 𝑛.
Applying Lemmas 5.7 and 5.8 in [18], we have for each 𝜑 ∈ 𝐶∞𝑐 (ℝ

𝑛),

|||||
𝑅∗
𝑗
(𝜑)(𝑥)

|||||
≤

|||||||||

∫
|𝑦−𝑥|>𝜌(𝑥)

𝑅𝑗(𝑦, 𝑥) 𝜑(𝑦) 𝑑𝑦

|||||||||

+

|||||||||

∫
|𝑦−𝑥|≤𝜌(𝑥)

[
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

]
𝜑(𝑦) 𝑑𝑦

|||||||||

+

|||||||||

∫
|𝑦−𝑥|≤𝜌(𝑥)

𝑅0
𝑗
(𝑦, 𝑥) 𝜑(𝑦) 𝑑𝑦

|||||||||

≤ 𝐶
[
𝑀
(
|𝜑|𝑝

′
1

)
(𝑥)

]1∕𝑝′
1

+ 2 sup
𝜏>0

|||||||||

∫
|𝑦−𝑥|>𝜏

𝑅0
𝑗
(𝑦, 𝑥) 𝜑(𝑦) 𝑑𝑦

|||||||||

, (4.2)
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where 1

𝑝′
1

= 1 −
1

𝑞1
+
1

𝑛
, and 𝑀 denotes the uncentered Hardy–Littlewood

maximal operator. It’s clear that
‖‖‖‖‖‖‖‖

[
𝑀
(
|𝜑|𝑝

′
1

)]1∕𝑝′
1
‖‖‖‖‖‖‖‖𝐿∞

≤ ‖𝜑‖𝐿∞ and
[
𝑀
(
|𝜑|𝑝

′
1

)
(𝑥)

]1∕𝑝′
1

→ 0 as |𝑥| → ∞,

provided by 𝜑 ∈ 𝐶∞𝑐 (ℝ
𝑛). Moreover, by Cotlar’s inequality,

sup
𝜏>0

|||||||||

∫
|𝑦−𝑥|>𝜏

𝑅0
𝑗
(𝑦, 𝑥) 𝜑(𝑦)𝑑𝑦

|||||||||

≤ 𝐶
[
𝑀
(
𝑅0
𝑗
(𝜑)

)
(𝑥) + 𝑀(𝜑)(𝑥)

]
. (4.3)

It’s clear that 𝑅0
𝑗
(𝜑) ∈ 𝐶0(ℝ

𝑛) since the Fourier transform of 𝑅0
𝑗
(𝜑) belongs to

𝐿1(ℝ𝑛). This allows us to verify readily that the left-hand side of (4.3) is an 𝐿∞
function and vanishes at infinity, as desired.
From the above, 𝑅∗

𝑗
(𝜑) ∈ 𝐿∞ and lim

|𝑥|→∞
𝑅∗
𝑗
(𝜑) = 0 for any given 𝜑 ∈ 𝐶∞𝑐 (ℝ

𝑛).

Step II. It remains to show 𝑅∗
𝑗
(𝜑) is continuous. To this end, it suffices to show

for any given 𝑥0 ∈ ℝ𝑛 and 𝜀 > 0, there exists a positive constant 𝜃 = 𝜃(𝑥0, 𝜀)

sufficiently small, such that for any 𝑥1 ∈ 𝐵(𝑥0, 𝜃),
|||||
𝑅∗
𝑗
(𝜑)(𝑥1) − 𝑅∗

𝑗
(𝜑)(𝑥0)

|||||
≲ 𝜀 for 𝑥1 ∈ 𝐵(𝑥0, 𝜃). (4.4)

Firstly, we fix a positive integer 𝜅0 >> 1 such that

2−𝜅0(2−𝑛∕𝑞1) <
𝜀

‖‖‖‖‖

[
𝑀
(
|𝜑|𝑝

′
1

)]1∕𝑝′
1 ‖‖‖‖‖𝐿∞

. (4.5)

For every 𝑗 = 1,… , 𝑛 and 𝑥 ∈ 𝐵(𝑥0, 2
−𝜅0𝜌(𝑥0)), rewrite

𝑅∗
𝑗
(𝜑)(𝑥) = ∫

|𝑦−𝑥|>2−𝜅0𝜌(𝑥0)

𝑅𝑗(𝑦, 𝑥) 𝜑(𝑦) 𝑑𝑦

+ lim
𝜏→0

∫
𝜏<|𝑦−𝑥|≤2−𝜅0𝜌(𝑥0)

[
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

]
𝜑(𝑦) 𝑑𝑦

+ [(𝑅0
𝑗
)∗(𝜑)(𝑥) − ∫

|𝑦−𝑥|>2−𝜅0𝜌(𝑥0)

𝑅0
𝑗
(𝑦, 𝑥) 𝜑(𝑦) 𝑑𝑦]

=∶ 𝑇1(𝜑)(𝑥) + 𝑇2(𝜑)(𝑥) + 𝑇3(𝜑)(𝑥),

where (𝑅0
𝑗
)∗(𝜑)(𝑥) = −𝑅0

𝑗
(𝜑)(𝑥) due to the anti-symmetric property of the ker-

nel of 𝑅0
𝑗
.

We observe the following facts:
∙ Note that (see [18, p. 540])

(∫
2𝑗−1𝜌(𝑥)<|𝑦−𝑥|≤2𝑗𝜌(𝑥)

|||||
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

|||||

𝑝1
𝑑𝑦)

1∕𝑝1

≤𝐶(2𝑗)2−(𝑛∕𝑞1)(2𝑗𝜌(𝑥))−𝑛∕𝑝
′
1 for 𝑗 ≤ 0,
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and 𝜌(𝑥) ≈ 𝜌(𝑥0) for 𝑥 ∈ 𝐵(𝑥0, 2
−𝜅0𝜌(𝑥0)), thus there exists a positive

integer𝖬 such that

(∫
2𝑗−1𝜌(𝑥0)<|𝑦−𝑥|≤2

𝑗𝜌(𝑥0)

|||||
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

|||||

𝑝1
𝑑𝑦)

1∕𝑝1

≤(∫
2𝑗−𝖬𝜌(𝑥)<|𝑦−𝑥|≤2𝑗+𝖬𝜌(𝑥)

|||||
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

|||||

𝑝1
𝑑𝑦)

1∕𝑝1

≤𝐶(2𝑗)2−(𝑛∕𝑞1)(2𝑗𝜌(𝑥0))
−𝑛∕𝑝′

1 for 𝑗 ≤ 0.

Consequently, in combination with (4.5),

|𝑇2(𝜑)(𝑥)|

≤ ∫
|𝑦−𝑥|≤𝐶2−𝜅0𝜌(𝑥)

|||||
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

|||||
|𝜑(𝑦)| 𝑑𝑦

≤

−𝜅0∑

𝑗=−∞

(∫
|𝑦−𝑥|≤2𝑗𝜌(𝑥0)

|𝜑(𝑦)|𝑝
′
1𝑑𝑦)

1∕𝑝1

⋅ (∫
2𝑗−1𝜌(𝑥0)<|𝑦−𝑥|≤2

𝑗𝜌(𝑥0)

|||||
𝑅𝑗(𝑦, 𝑥) − 𝑅0

𝑗
(𝑦, 𝑥)

|||||

𝑝1
𝑑𝑦)

1∕𝑝1

≤𝐶2−𝜅0(2−𝑛∕𝑞1)
[
𝑀
(
|𝜑|𝑝

′
1

)
(𝑥)

]1∕𝑝′
1

≤𝐶𝜀

for any 𝑥 ∈ 𝐵(𝑥0, 2
−𝜅0𝜌(𝑥0)).

∙ For the continuity of 𝑇3(𝜑), note that (𝑅0𝑗 )
∗(𝜑) = −𝑅0

𝑗
(𝜑) ∈ 𝐶0(ℝ

𝑛)

mentioned in Step I, it remains to show the continuity of

𝑇4(𝜑) ∶= ∫
|𝑦−𝑥|>2−𝜅0𝜌(𝑥0)

𝑅0
𝑗
(𝑦, 𝑥) 𝜑(𝑦) 𝑑𝑦,

which is a bounded function by combining (4.3) and the fact

𝑅0
𝑗
(𝐶∞𝑐 (ℝ

𝑛)) ⊆ 𝐶0(ℝ
𝑛).

Denote 𝐸𝑥 ∶= {𝑦 ∶ |𝑦 − 𝑥| ≥ 2−𝜅0𝜌(𝑥)} for 𝑥 ∈ 𝐵(𝑥0, 2
−𝜅0𝜌(𝑥0)),

then

∆𝜇 ∶ 𝑥 ↦ |||∆𝐸(𝑥)
||| ∶=

||||

(
𝐸𝑥 ∩ 𝐸𝑥0

)
⧵
(
𝐸𝑥 ∩ 𝐸𝑥0

)||||

is continuous on 𝐵(𝑥0, 2−𝜅0𝜌(𝑥0)) and∆𝜇(𝑥0) = 0. This, combined with
the explicit expression of 𝑅0

𝑗
(𝑦, 𝑥), deduces that 𝑇4(𝜑) is continuous on

𝑥0, whenever 𝜑 ∈ 𝐶∞𝑐 (ℝ
𝑛).
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From the above, (4.4) follows readily if one could prove that for any given
𝑥0 ∈ ℝ𝑛, there exists 𝜃 < 2−𝜅0𝜌(𝑥0) such that

||||𝑇1(𝜑)(𝑥1) − 𝑇1(𝜑)(𝑥0)
|||| ≲ 𝜀 for 𝑥1 ∈ 𝐵(𝑥0, 𝜃). (4.6)

Step III. Now let’s verify the continuity of 𝑇1(𝜑) by proving (4.6).
Given 𝑥0 ∈ ℝ𝑛, for each 𝑥1 ∈ 𝐵(𝑥0, 2

−𝜅0𝜌(𝑥0)),

𝑇1(𝜑)(𝑥1) − 𝑇1(𝜑)(𝑥0)

= ∫
|𝑦−𝑥0|>2

−𝜅0𝜌(𝑥0)

[
𝑅𝑗(𝑦, 𝑥1) − 𝑅𝑗(𝑦, 𝑥0)

]
𝜑(𝑦) 𝑑𝑦 + ℰ(𝑥1),

where
||||ℰ(𝑥1)

|||| ≤ ∫
∆𝐸(𝑥1)

||||𝑅𝑗(𝑦, 𝑥1)
||||
|||𝜑(𝑦)

||| 𝑑𝑦 → 0 as 𝑥1 → 𝑥0.

Hence it remains to show

∫
|𝑦−𝑥0|>2

−𝜅0𝜌(𝑥0)

[
𝑅𝑗(𝑦, 𝑥1) − 𝑅𝑗(𝑦, 𝑥0)

]
𝜑(𝑦) 𝑑𝑦 → 0 as 𝑥1 → 𝑥0.

Let Γ(𝑥, 𝑦, 𝜏) denote the fundamental solution for the Schrödinger operator
−∆ + (𝑉 + 𝑖𝜏), 𝜏 ∈ ℝ. Clearly,

Γ(𝑥, 𝑦, 𝜏) = Γ(𝑦, 𝑥, −𝜏),

and∇𝑦Γ(𝑥, 𝑦, 𝜏) is a solution to the equation−∆𝑢+(𝑉+𝑖𝜏)𝑢 = 0 inℝ𝑛 ⧵ {𝑦} as
a function of 𝑥. Consequently, ∇𝑦Γ(𝑦, 𝑥, 𝜏) is a solution to the equation −∆𝑢 +
(𝑉+𝑖(−𝜏))𝑢 = 0 in𝐵(𝑥0, 2−(𝜅0+1)𝜌(𝑥0)), whenever |𝑦−𝑥0| > 2−𝜅0𝜌(𝑥0). Denote

𝛿 = 2 − 𝑛∕𝑞1 > 0 and 𝑟0 = 2−(𝜅0+2)𝜌(𝑥0).

By the imbedding theorem of Morrey and [18, Lemma 4.6] (see also the last
inequality in [18, page 534]), we have for any 𝑥1 ∈ 𝐵(𝑥0, 2

−(𝜅0+4)𝜌(𝑥0)) =

𝐵(𝑥0, 𝑟0∕4),
||||∇𝑦Γ(𝑦, 𝑥1, 𝜏) − ∇𝑦Γ(𝑦, 𝑥0, 𝜏)

||||

≤𝐶|𝑥1 − 𝑥0|
1−𝑛∕𝑝1 (∫

𝐵(𝑥0,𝑟0)

||||∇𝑥∇𝑦Γ(𝑦, 𝑥, 𝜏)
||||

𝑝1
𝑑𝑥)

1∕𝑝1

≤𝐶 (
|𝑥1 − 𝑥0|

𝑟0
)

𝛿
‖‖‖‖∇𝑦Γ(𝑦, 𝑥, 𝜏)

‖‖‖‖𝐿∞𝑥 (𝐵(𝑥0,2𝑟0))
[1 +

1

𝑟𝑛−2
0

∫
𝐵(𝑥0,2𝑟0)

𝑉(𝑥)𝑑𝑥] ,

where 𝑝1 is the index in (4.2). Alternatively, one can apply a similar argument
to that of [13, Proposition 2.12] to show the Hölder continuity.
To continue, we address the following facts.

∙ By Lemma 1.2 in [18],

1

𝑟𝑛−2
0

∫
𝐵(𝑥0,2𝑟0)

𝑉𝑑𝑥 ≤ 𝐶2−𝜅0𝛿 ≲ 1.
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∙ It’s known that 𝜌(𝑥) ≈ 𝜌(𝑥0) whenever |𝑥 − 𝑥0| ≲ 𝜌(𝑥0). Now regard
Γ(𝑦, 𝑥, 𝜏) is a solution to the equation−∆𝑢+(𝑉+𝑖𝜏)𝑢 = 0 inℝ𝑛 ⧵{𝑥} as
a function of 𝑦, and 𝐵(𝑦, |𝑦 − 𝑥0|∕4) ∩ 𝐵(𝑥0, 2𝑟0) = ∅. Hence it follows
from combining (4.8) and Theorem 2.7 in [18] that for each 𝑚 ∈ ℕ,
there exists a constant 𝐶𝑚 > 0 such that

‖‖‖‖∇𝑦Γ(𝑦, 𝑥, 𝜏)
‖‖‖‖𝐿∞𝑥 (𝐵(𝑥0,2𝑟0))

≤
𝐶𝑚

(
1 + |𝜏|1∕2𝑅𝑦

)𝑚 (
1 + 𝑅𝑦∕𝜌(𝑥0)

)𝑚

⋅ [
1

𝑅𝑛−2𝑦

∫
𝐵(𝑦,𝑅𝑦)

𝑉(𝑧)

|𝑧 − 𝑦|𝑛−1
𝑑𝑧 +

1

𝑅𝑛−1𝑦

] ,

where 𝑅𝑦 ∶= |𝑦 − 𝑥0|∕4.

Therefore, when 𝑥1 ∈ 𝐵(𝑥0, 𝑟0∕4) and |𝑦 − 𝑥0| > 2−𝜅0𝜌(𝑥0) = 4𝑟0, one may
combine these estimates above to obtain

||||∇𝑦Γ(𝑦, 𝑥1, 𝜏) − ∇𝑦Γ(𝑦, 𝑥0, 𝜏)
||||

≤
𝐶𝑚

(
1 + |𝜏|1∕2𝑅𝑦

)𝑚 (
1 + 𝑅𝑦∕𝜌(𝑥0)

)𝑚 (
|𝑥1 − 𝑥0|

𝑟0
)

𝛿

⋅ [
1

𝑅𝑛−2𝑦

∫
𝐵(𝑦,𝑅𝑦)

𝑉(𝑧)

|𝑧 − 𝑦|𝑛−1
𝑑𝑧 +

1

𝑅𝑛−1𝑦

] .

Furthermore,

||||𝑅𝑗(𝑦, 𝑥1) − 𝑅𝑗(𝑦, 𝑥0)
||||

=

||||||||
−
1

2𝜋
∫
ℝ

(−𝑖𝜏)−1∕2
[
∇𝑦Γ(𝑦, 𝑥1, 𝜏) − ∇𝑦Γ(𝑦, 𝑥0, 𝜏)

]
𝑑𝜏

||||||||

≤
𝐶𝑚

(
1 + 𝑅𝑦∕𝜌(𝑥0)

)𝑚 (
|𝑥1 − 𝑥0|

𝑟0
)

𝛿

[
1

𝑅𝑛−1𝑦

∫
𝐵(𝑦,𝑅𝑦)

𝑉(𝑧)

|𝑧 − 𝑦|𝑛−1
𝑑𝑧 +

1

𝑅𝑛𝑦
] .

Note that

{
𝑦 ∈ ℝ𝑛 ∶ |𝑦 − 𝑥0| > 2−𝜅0𝜌(𝑥0)

}

=

∞⋃

𝑘=−𝜅0+1

{
𝑦 ∈ ℝ𝑛 ∶ 2𝑘−1𝜌(𝑥0) < |𝑦 − 𝑥0| ≤ 2𝑘𝜌(𝑥0)

}
,
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and for each 𝑘 ≥ 𝜅0+1, it follows from theHardy–Littlewood–Sobolev inequal-
ity to obtain

|||||||||

∫
2𝑘−1𝜌(𝑥0)<|𝑦−𝑥0|≤2

𝑘𝜌(𝑥0)

[
𝑅𝑗(𝑦, 𝑥1) − 𝑅𝑗(𝑦, 𝑥0)

]
𝜑(𝑦) 𝑑𝑦

|||||||||

≤
𝐶𝑚

(1 + 2𝑘)
𝑚
(
|𝑥1 − 𝑥0|

𝑟0
)

𝛿

{𝑀𝜑(𝑥0) +
1

(2𝑘𝜌(𝑥0))
𝑛−1

⋅ ∫
2𝑘−1𝜌(𝑥0)<|𝑦−𝑥0|≤2

𝑘𝜌(𝑥0)

(∫
ℝ𝑛

𝑉(𝑧)𝟣𝐵(𝑦,𝑅𝑦)(𝑧)

|𝑧 − 𝑦|𝑛−1
𝑑𝑧) |𝜑(𝑦)|𝑑𝑦}

≤
𝐶𝑚

(1 + 2𝑘)
𝑚
(
|𝑥1 − 𝑥0|

𝑟0
)

𝛿

{𝑀𝜑(𝑥0) +
1

(2𝑘𝜌(𝑥0))
𝑛−1

⋅( ∫
2𝑘−1𝜌(𝑥0)<|𝑦−𝑥0|≤2

𝑘𝜌(𝑥0)

|||||||||

∫
𝐵(𝑦,𝑅𝑦)

𝑉(𝑧)

|𝑧 − 𝑦|𝑛−1
𝑑𝑧

|||||||||

𝑝1

𝑑𝑦)

1∕𝑝1

⋅ (∫
|𝑦−𝑥0|≤2

𝑘𝜌(𝑥0)

|𝜑(𝑦)|𝑝
′
1𝑑𝑦)

1∕𝑝′
1⎫

⎬

⎭

≤
𝐶𝑚

(1 + 2𝑘)
𝑚
(
|𝑥1 − 𝑥0|

𝑟0
)

𝛿

𝑀𝜑(𝑥0)

+
𝐶𝑚

(1 + 2𝑘)
𝑚
(
|𝑥1 − 𝑥0|

𝑟0
)

𝛿
1

(2𝑘𝜌(𝑥0))
𝑛−1

⋅ (∫
2𝑘−2𝜌(𝑥0)<|𝑦−𝑥0|≤2

𝑘+1𝜌(𝑥0)

𝑉(𝑧)𝑞1𝑑𝑧)

1∕𝑞1

⋅
[
𝑀
(
|𝜑|𝑝

′
1

)
(𝑥0)

]1∕𝑝′
1 (
2𝑘𝜌(𝑥0)

)𝑛∕𝑝′
1 .

Moreover, the reverse Hölder inequality possessed by 𝑉 ∈ 𝑅𝐻𝑞1
deduces

(∫
2𝑘−2𝜌(𝑥0)<|𝑦−𝑥0|≤2

𝑘+1𝜌(𝑥0)

𝑉(𝑧)𝑞1𝑑𝑧)

1∕𝑞1

≤𝐶
(
2𝑘𝜌(𝑥0)

)𝑛∕𝑞1−2 1

(2𝑘𝜌(𝑥0))
𝑛−2

∫
𝐵(𝑥0,2

𝑘+1𝜌(𝑥0))

𝑉𝑑𝑦.
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Moreover, by using the doubling property (1.1) in [18], we have

(∫
2𝑘−1𝜌(𝑥0)<|𝑦−𝑥0|≤2

𝑘𝜌(𝑥0)

𝑉(𝑦)𝑞1𝑑𝑦)

1∕𝑞1

≤

⎧

⎨

⎩

(
2𝑘𝜌(𝑥0)

)𝑛∕𝑞1−2
, if 𝑘 < 0;

(
2𝑘𝜌(𝑥0)

)𝑛∕𝑞1−2
𝐶𝑘
0
, if 𝑘 ≥ 0,

(4.7)

where 𝐶0 > 1 is the doubling constant in (1.1) in [18]. Without loss of general-
ity, assume that 𝐶0 > 2 and take𝑚 = 2 ⋅ log

2
𝐶0 such that for any 𝑘 ≥ 0,

𝐶𝑚

(1 + 2𝑘)
𝑚
𝐶𝑘
0
≤

𝐶

2𝑘 log2 𝐶0
,

where 𝐶 is a positive constant independent of 𝑘 ≥ 0.
Therefore, for any given 𝜑 ∈ 𝐶∞𝑐 (ℝ

𝑛) and 𝑥0 ∈ ℝ𝑛,
|||||||||

∫
|𝑦−𝑥0|>2

−𝜅0𝜌(𝑥0)

[
𝑅𝑗(𝑦, 𝑥1) − 𝑅𝑗(𝑦, 𝑥0)

]
𝜑(𝑦) 𝑑𝑦

|||||||||

≤

∞∑

𝑘=−𝜅0+1

𝐶

max{1, 2𝑘 log2 𝐶0}
(

|𝑥1 − 𝑥0|

2−(𝜅0+1)𝜌(𝑥0)
)

𝛿
[
𝑀
(
|𝜑|𝑝

′
1

)
(𝑥0)

]1∕𝑝′
1

+

∞∑

𝑘=−𝜅0+1

𝐶

1 + 2𝑘
(

|𝑥1 − 𝑥0|

2−(𝜅0+1)𝜌(𝑥0)
)

𝛿

𝑀𝜑(𝑥0)

≤𝐶
𝜅0

(
2−(𝜅0+1)𝜌(𝑥0)

)𝛿
{
[
𝑀
(
|𝜑|𝑝

′
1

)
(𝑥0)

]1∕𝑝′
1

+𝑀𝜑(𝑥0)} |𝑥1 − 𝑥0|
𝛿 → 0

as 𝑥1 → 𝑥0.

That is, (4.6) holds and 𝑇1(𝜑) is continuous on arbitrary given 𝑥0.
This, combined with the result in Step I, deduces that 𝑇1(𝜑) ∈ 𝐶0(ℝ

𝑛), as
desired.
Therefore, we complete the proof of Theorem 1.2. □

As a consequence, wehave the following representation based onTheorem1.2.

Lemma 4.1. Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2. For every continuous linear
functional 𝓁 on theCMOℒ(ℝ

𝑛) space, there exists a uniquely finite Borel measure
𝜇0 whose Riesz transforms 𝑅𝑗(𝑑𝜇0)(𝑥) = ∫ 𝑅𝑗(𝑥, 𝑦) 𝑑𝜇0(𝑦) associated to ℒ for
𝑗 = 1, 2, … , 𝑛 are all finite Borel measures, such that the functional 𝓁 can be
realized by

𝓁(𝑔) = ∫
ℝ𝑛

𝑔(𝑥) 𝑑𝜇0(𝑥),

which is initially defined on the dense subspace 𝐶0(ℝ𝑛), and has a unique exten-
sion to CMOℒ(ℝ

𝑛).
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Proof. Given 𝓁 ∈ (CMOℒ)
∗, then there exists a constant 𝑐 > 0 such that

|𝓁(𝑔)| ≤ 𝑐‖𝑔‖BMOℒ
for all 𝑔 ∈ CMOℒ.

Notice that CMOℒ(ℝ
𝑛) is the closure of 𝐶0(ℝ𝑛) in the BMOℒ(ℝ

𝑛) norm and
the space 𝐶0(ℝ𝑛) is equipped with the supremum norm, clearly for each 𝓁 ∈

(CMOℒ(ℝ
𝑛))∗,

|𝓁(𝑔)| ≤ 𝑐‖𝑔‖BMOℒ
≤ 2𝑐‖𝑔‖𝐿∞ for all 𝑔 ∈ 𝐶0(ℝ

𝑛).

That is, 𝓁 is also a bounded linear functional on 𝐶0(ℝ𝑛). Hence it follows from
the Riesz representation theorem (see [16, Section 6.19] for instance) that there
exists a uniquely regular (complex-valued) Borel measure 𝜇0 whose total vari-
ation |𝜇0|(ℝ𝑛) < ∞, such that

𝓁(𝑔) = ∫
ℝ𝑛

𝑔(𝑥) 𝑑𝜇0(𝑥) =∶ 𝜇0(𝑔) for all 𝑔 ∈ 𝐶0(ℝ
𝑛). (4.8)

In turn, since 𝐶0(ℝ𝑛) is dense in CMOℒ(ℝ
𝑛), the linear functional 𝜇0 given by

(4.8) initially defined on 𝐶0(ℝ𝑛) has a unique extension to CMOℒ(ℝ
𝑛). Thus

every 𝓁 ∈ (CMOℒ(ℝ
𝑛))∗ can be realized by a uniquely finite Borel measure 𝜇0.

In the sequel we fix such 𝓁 and 𝜇0.
Moreover, it follows from combining (4.8) and 𝓁 ∈ (CMOℒ(ℝ

𝑛))∗ that

|𝜇0(𝑔)| = |𝓁(𝑔)| ≤ 𝑐‖𝑔‖BMOℒ
for all 𝑔 ∈ 𝐶0(ℝ

𝑛). (4.9)

We aim to characterize properties of the measure 𝜇0 from the perspective of
Riesz transforms, motivated by the analogous result for the Laplacian operator
in place of ℒ.
To this end, note that the linear operator 𝑅∗

𝑗
∶ 𝐶0(ℝ

𝑛) → CMOℒ(ℝ
𝑛) is

bounded by Theorem 1.2, and 𝐶0(ℝ𝑛) and CMOℒ(ℝ
𝑛) are both Banach spaces,

so the operator 𝑅𝑗, as the adjoint of 𝑅∗𝑗 , satisfies

𝑅𝑗
(
(CMOℒ)

∗)
⊆ (𝐶0)

∗.

Alternatively, the above inclusion can be deduced by recalling that 𝑅𝑗 ∶ 𝐻1
ℒ
=

(CMOℒ)
∗
→ 𝐿1 is bounded (see [10] for instance). Hence 𝑅𝑗(𝓁) is a bounded

linear functional on 𝐶0 by means of

⟨𝑅𝑗(𝓁), 𝑔⟩ = ⟨𝓁, 𝑅∗
𝑗
(𝑔)⟩ = 𝓁(𝑅∗

𝑗
(𝑔)) for all 𝑔 ∈ 𝐶0(ℝ

𝑛). (4.10)

This, combined with 𝑅∗
𝑗
(𝐶∞𝑐 ) ⊆ 𝐶0 (i.e., (4.1) in the proof of Theorem 1.2) and

the representation (4.8), implies that

𝓁(𝑅∗
𝑗
(𝜙)) = 𝜇0(𝑅

∗
𝑗
(𝜙)) = ⟨𝑅𝑗(𝜇0), 𝜙⟩ for all 𝜙 ∈ 𝐶∞𝑐 (ℝ

𝑛).

That is,

∫
ℝ𝑛

𝑅∗
𝑗
(𝜙)(𝑥) 𝑑𝜇0(𝑥) = ∫

ℝ𝑛

[∫
ℝ𝑛

𝑅𝑗(𝑥, 𝑦) 𝑑𝜇0(𝑦)] 𝜙(𝑥) (4.11)

for all 𝜙 ∈ 𝐶∞𝑐 (ℝ
𝑛).
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On the other hand, since 𝑅𝑗(𝓁) is a bounded linear functional on 𝐶0(ℝ𝑛), by
the Riesz representation theorem again, there exists a finite Borel measure 𝜇𝑗
such that

⟨𝑅𝑗(𝓁), 𝑔⟩ = ∫
ℝ𝑛

𝑔(𝑥) 𝑑𝜇𝑗(𝑥) for all 𝑔 ∈ 𝐶0(ℝ
𝑛).

In particular, using 𝑅∗
𝑗
(𝐶∞𝑐 ) ⊆ 𝐶0 again,

∫
ℝ𝑛

𝜙(𝑥) 𝑑𝜇𝑗(𝑥) = ⟨𝑅𝑗(𝓁), 𝜙⟩ = 𝓁(𝑅∗
𝑗
(𝜙)) = ∫

ℝ𝑛

𝑅∗
𝑗
(𝜙)(𝑥) 𝑑𝜇0(𝑥)

for all 𝜙 ∈ 𝐶∞𝑐 (ℝ
𝑛). This, together with (4.11), deduces that

∫
ℝ𝑛

𝜙(𝑥) [∫
ℝ𝑛

𝑅𝑗(𝑥, 𝑦) 𝑑𝜇0(𝑦)] 𝑑𝑥 = ∫
ℝ𝑛

𝜙(𝑥) 𝑑𝜇𝑗(𝑥)

for all 𝜙 ∈ 𝐶∞𝑐 (ℝ
𝑛).

Then a standard argument by contradiction shows that

𝑅𝑗(𝑑𝜇0)(𝑥) 𝑑𝑥 = 𝑑𝜇𝑗(𝑥), i.e., 𝜇𝑗 = 𝑅𝑗(𝑑𝜇0). (4.12)

Therefore, for any given 𝓁 ∈ (CMOℒ)
∗, it can be realized by a uniquely finite

Borel measure 𝜇0, whose Riesz transforms 𝑅𝑗(𝜇0) for 𝑗 = 1, 2, … , 𝑛 are all finite
Borel measures. The proof is complete. □

Remark 4.2. (Riesz transforms and subharmonicity)
(i). When 𝑉 ≡ 0, then CMOℒ(ℝ

𝑛) = CMO−∆(ℝ
𝑛) = CMO(ℝ𝑛) is known by (ii)

of Theorem 2.1 (sinceCMO(ℝ𝑛) is the closure of𝐶∞𝑐 (ℝ𝑛) in the BMO(ℝ𝑛) norm).
In this case, Lemma 4.1 says that every continuous linear functional onCMO can
be realized by a finite measure 𝜇0 whose classical Riesz transforms 𝑅0𝑗 (𝑑𝜇0) for
𝑗 = 1,… , 𝑛 are all finite measures.
Hence, it follows from the F. and M. Riesz theorem (see Corollary 1 in [20, p.

221] for instance) that there exists a function 𝑓 ∈ 𝐻1(ℝ𝑛) such that 𝑑𝜇0(𝑥) =
𝑓(𝑥)𝑑𝑥, where𝐻1(ℝ𝑛) is the classical Hardy space.
That is, we obtain (CMO(ℝ𝑛))∗ ⊆ 𝐻1(ℝ𝑛), as a straightforward consequence

of Lemma 4.1 by taking 𝑉 ≡ 0. Note that the reverse inclusion

𝐻1(ℝ𝑛) ⊆ (CMO(ℝ𝑛))∗

is trivial by combining (𝐻1(ℝ𝑛))∗ = BMO(ℝ𝑛) and CMO(ℝ𝑛) ⫋ BMO(ℝ𝑛).
Hence Lemma 4.1 implies the classical well-known result (see [5, Proposition 3.5]
for instance)

(CMO(ℝ𝑛))∗ = 𝐻1(ℝ𝑛).

Notably, we remind that a crucial ingredient to show the F. and M. Riesz theo-
rem is the subharmonicity of |𝐹|𝑝 for 𝑝 ≥ (𝑛 − 1)∕𝑛, where

𝐹(𝑥, 𝑡)

=
(
𝑒−𝑡

√
−∆(𝑑𝜇0)(𝑥), 𝑒

−𝑡
√
−∆

(
𝑅0
1
(𝑑𝜇0)

)
(𝑥), … , 𝑒−𝑡

√
−∆

(
𝑅0𝑛(𝑑𝜇0)

)
(𝑥)

)
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for (𝑥, 𝑡) ∈ ℝ𝑛+1
+ , and the subharmonicity follows from the fact that 𝐹(𝑥, 𝑡) satis-

fies the generalized Cauchy-Riemann equations; see §3 in Chapter VII of [20] or
§4 in Chapter III of [21] for details.

(ii). Let 𝜇0 be the finite measure in Lemma 4.1 and 𝜇𝑗 = 𝑅𝑗(𝑑𝜇0) for 𝑗 =

1,… , 𝑛. Let

𝑢𝑗(𝑥, 𝑡) ∶= 𝑒−𝑡
√
ℒ(𝑑𝜇𝑗)(𝑥) = ∫

ℝ𝑛

𝒫𝑡(𝑥, 𝑦) 𝑑𝜇𝑗(𝑦), 𝑖 = 0, 1, … , 𝑛,

be the Poisson-Stieltjes integral of the finite Borel measure 𝜇𝑗 . By using estimates

for the Poisson kernels associated to the semigroup 𝑒−𝑡
√
ℒ given in [19, Lemma2.6],

it’s clear that each 𝑢𝑗 is continuous inℝ𝑛+1
+ and

sup
𝑡>0

∫
ℝ𝑛

|𝑢𝑗(𝑥, 𝑡)| 𝑑𝑥 ≤ 𝐶 |𝜇𝑗|(ℝ
𝑛) < ∞.

Obviously, 𝑢𝑗 is an 𝕃−harmonic function associated to the operator 𝕃 = −𝜕𝑡𝑡+ℒ

in the sense of

∫
ℝ𝑛+1
+

∇𝑢𝑗 ⋅ ∇𝜓 𝑑𝑌 + ∫
ℝ𝑛+1
+

𝑉𝑢𝑗 𝜓 𝑑𝑌 = 0, ∀𝜓 ∈ 𝐶1
0
(ℝ𝑛+1

+ ),

where ∇ = (∇𝑥, 𝜕𝑡), and the capital letter 𝑌 = (𝑦, 𝑡) denotes a point inℝ𝑛+1
+ .

Moreover, we now give an extension of Lemma 2.6 in [8] that the index 𝑝 ≥ 1

therein can be extended to 𝑝 > 0: for any 𝐵(𝑌, 4𝑟) ⊆ ℝ𝑛+1
+ ,

sup
(𝑥,𝑡)∈𝐵(𝑌,𝑟∕2)

|𝑢𝑗(𝑥, 𝑡)|
𝑝 ≤

𝑐𝑝

|𝐵(𝑌, 𝑟)|
∫
𝐵(𝑌,𝑟)

|𝑢𝑗(𝑥, 𝑡)|
𝑝𝑑𝑥 𝑑𝑡 for 𝑝 > 0. (4.13)

To this end, we claim that
(F) for each 𝑗 = 0, 1, … , 𝑛, |𝑢𝑗(𝑥, 𝑡)|2 is a non-negative sub-harmonic func-

tion inℝ𝑛+1
+ .

LetRe 𝑧 and 𝑧 be the real part and the complex conjugate of 𝑧 ∈ ℂ, respectively.
Let ⟨𝐳,𝐰⟩ =

∑𝑛+1

𝑗=1
𝑧𝑗 𝑤𝑗 for 𝐳 = (𝑧1, … , 𝑧𝑛+1), 𝐰 = (𝑤1, … , 𝑤𝑛+1) ∈ ℂ𝑛+1.

For any given 𝑌 ∈ ℝ𝑛+1
+ and 𝐵 = 𝐵(𝑌, 4𝑟) ⊆ ℝ𝑛+1

+ , let 𝜑 ≥ 0 be a Lipschitz
function satisfying supp𝜑 ⊆ 𝐵, we have

∬
𝐵

⟨∇𝑥,𝑡 |𝑢𝑗|
2, ∇𝑥,𝑡 𝜑⟩ 𝑑𝑥𝑑𝑡

=2∬
𝐵

⟨Re
(
𝑢𝑗 ∇𝑥,𝑡 𝑢𝑗

)
, ∇𝑥,𝑡 𝜑⟩ 𝑑𝑥 𝑑𝑡

=2Re ∬
𝐵

⟨∇𝑥,𝑡 𝑢𝑗, ∇𝑥,𝑡

(
𝑢𝑗𝜑

)
⟩ 𝑑𝑥 𝑑𝑡 − 2Re ∬

𝐵

⟨∇𝑥,𝑡 𝑢𝑗, 𝜑∇𝑥,𝑡 𝑢𝑗⟩ 𝑑𝑥 𝑑𝑡

= − 2Re ∬
𝐵

(
∆𝑥,𝑡 𝑢𝑗

)
𝑢𝑗 𝜑 𝑑𝑥 𝑑𝑡 − 2∬

𝐵

|∇𝑥,𝑡𝑢𝑗|
2𝜑 𝑑𝑥 𝑑𝑡
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= − 2∬
𝐵

𝑉|𝑢𝑗|
2𝜑 𝑑𝑥 𝑑𝑡 − 2∬

𝐵

|∇𝑥,𝑡𝑢𝑗|
2𝜑 𝑑𝑥 𝑑𝑡

≤0.

Hence |𝑢𝑗(𝑥, 𝑡)|2 is weakly subharmonic, and so the claim (F) holds by Prob-
lem 2.8 in [12, p. 29]. This allows us to apply Theorem 5.4 in [2] to see for every
𝑝 > 0,

sup
(𝑥,𝑡)∈𝐵(𝑌,𝑟∕2)

|𝑢𝑗(𝑥, 𝑡)|
2 ≤ 𝑐𝑝 (

1

|𝐵(𝑌, 𝑟)|
∫
𝐵(𝑌,𝑟)

|𝑢𝑗(𝑥, 𝑡)|
2𝑝𝑑𝑥 𝑑𝑡)

1∕𝑝

,

where 𝑐𝑝 < ∞ is a positive constant depending on 𝑝. As a consequence, (4.13) fol-
lows readily. Indeed, one may verify that the function 𝑢𝑗 in (4.13) can be replaced
by any 𝕃−harmonic function in the ball 𝐵(𝑌, 4𝑟).
Furthermore, let

𝐹ℒ(𝑥, 𝑡) =
(
𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), … , 𝑢𝑛(𝑥, 𝑡)

)

and |𝐹ℒ(𝑥, 𝑡)|2 =
∑𝑛

𝑗=0
|𝑢𝑗(𝑥, 𝑡)|

2. The argument above shows that |𝐹ℒ(𝑥, 𝑡)|2 is
a non-negative sub-harmonic function inℝ𝑛+1

+ and

sup
(𝑥,𝑡)∈𝐵(𝑌,𝑟∕2)

|𝐹ℒ(𝑥, 𝑡)|
𝑝 ≤

𝑐𝑝

|𝐵(𝑌, 𝑟)|
∫
𝐵(𝑌,𝑟)

|𝐹ℒ(𝑥, 𝑡)|
𝑝𝑑𝑥 𝑑𝑡 for 𝑝 > 0.

It’s natural to ask whether or not we can establish the subharmonicity of |𝐹ℒ|𝑝
for some 𝑝 ≤ 1, by noticing the generalized Cauchy–Riemann equations are now
no longer satisfied. Furthermore, it’s interesting to consider the possibility of es-
tablishing an analogous version of the F. and M. Riesz theorem associated to ℒ
such that the finite measure 𝜇0 in Lemma 4.1must be absolutely continuous with
Radon-Nikodym derivative in𝐻1

ℒ
(ℝ𝑛), that is, there exists 𝑓 ∈ 𝐻1

ℒ
(ℝ𝑛) such that

𝑑𝜇0(𝑥) = 𝑓(𝑥) 𝑑𝑥.

5. An approximation to the identity and 𝐂𝐌𝐎ℒ(ℝ
𝒏): proof of

Theorem 1.3
In the end, we turn to consider an approximation to the identity arising from

the semigroups associated to ℒ.
Actually, this is not a trivial fact, since the standard approximation to the

identity can notmatchCMOℒ(ℝ
𝑛)well due to the potential𝑉. Even for a radial

bump function 𝜙 satisfying

supp 𝜙 ⊆ 𝐵(0, 1), 0 ≤ 𝜙 ≤ 1 and ∫ 𝜙(𝑥) 𝑑𝑥 = 1,

the convolution 𝐴𝑡𝑓 = 𝑡−𝑛𝜙(⋅∕𝑡) ∗ 𝑓 for 𝑓 ∈ CMOℒ(ℝ
𝑛) satisfies 𝛾1(𝐴𝑡(𝑓)) =

𝛾2(𝐴𝑡(𝑓)) = 𝛾3(𝐴𝑡(𝑓)) = 𝛾4(𝐴𝑡(𝑓)) = 0, while the remaining 𝛾5(𝐴𝑡(𝑓)) = 0

needs furthermore conditions on 𝑓 such as compact support; see [19, Lemma
4.1]. This means that the usual average of a CMOℒ function may not fall into
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CMOℒ, which is quite different from the standard identity approximation in
the classical CMO space and the CMO−∆+1 space (see [6]).
However, we will see that the limit behavior of the Poisson integral of 𝑓 ∈

CMOℒ also possesses nice approximate properties, i.e., Theorem 1.3. The argu-
ment is also workable for the heat semigroups.
To show Theorem 1.3, we introduce the following auxiliary result first.

Lemma 5.1. Suppose 𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2 and let ℒ = −∆ + 𝑉. There
exists a constant 𝐶 > 0 such that for any given 𝑠 > 0 and 𝑓 ∈ BMOℒ(ℝ

𝑛), we
have 𝑒−𝑠

√
ℒ𝑓 ∈ BMOℒ(ℝ

𝑛), and
‖‖‖‖‖‖
𝑒−𝑠

√
ℒ𝑓

‖‖‖‖‖‖BMOℒ(ℝ
𝑛)

≤ 𝐶‖𝑓‖BMOℒ(ℝ
𝑛). (5.1)

Additionally, if 𝑓 ∈ CMOℒ(ℝ
𝑛), then 𝑒−𝑠

√
ℒ𝑓 belongs to CMOℒ(ℝ

𝑛) as well.

For any given 𝑠 > 0, it’s clear that
||||||
𝑒−𝑠

√
ℒ𝑓(𝑥)

||||||
≤ 𝐶𝑀𝑓(𝑥). However, this,

combined with Theorem 1.1, can not be used to deduce the BMOℒ(ℝ
𝑛) norm

of 𝑒−𝑠
√
ℒ𝑓. To prove Lemma 5.1, we apply the characterization of CMOℒ(ℝ

𝑛)

in terms of tent spaces.

Theorem 5.2. (see [19, Theorem B]) Suppose𝑉 ∈ 𝑅𝐻𝑞 for some 𝑞 ≥ 𝑛∕2. Then
𝑓 ∈ CMOℒ if and only if 𝑓 ∈ 𝐿2(ℝ𝑛, (1 + |𝑥|)−(𝑛+𝛽)𝑑𝑥) for some 𝛽 > 0 and
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓 ∈ 𝑇∞

2,𝐶
, with

‖𝑓‖BMOℒ
≈
‖‖‖‖‖‖
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

‖‖‖‖‖‖𝑇∞
2

.

The space 𝑇∞
2
is the class of functions 𝐹 defined on ℝ𝑛+1

+ for which ℭ(𝐹) ∈
𝐿∞(ℝ𝑛) and the norm ‖𝐹‖𝑇∞

2
= ‖ℭ(𝐹)‖𝐿∞ , where

ℭ(𝐹)(𝑥) = sup
𝑥∈𝐵

(𝑟−𝑛
𝐵
∬

𝐵

|𝐹(𝑦, 𝑡)|2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

.

It’s well known from the Carleson measure that 𝑓 ∈ BMOℒ(ℝ
𝑛) if and only if

𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓 ∈ 𝑇∞

2
. Moreover, we say 𝐹 ∈ 𝑇∞

2,𝐶
if 𝐹 ∈ 𝑇∞

2
and

(i) 𝜂1(𝐹) ∶= lim
𝑎→0

sup
𝐵∶ 𝑟𝐵≤𝑎

(𝑟−𝑛
𝐵
∬

𝐵

|𝐹(𝑦, 𝑡)|2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

= 0,

(ii) 𝜂2(𝐹) ∶= lim
𝑎→+∞

sup
𝐵∶ 𝑟𝐵≥𝑎

(𝑟−𝑛
𝐵
∬

𝐵

|𝐹(𝑦, 𝑡)|2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

= 0,

(iii) 𝜂3(𝐹) ∶= lim
𝑎→+∞

sup
𝐵∶𝐵⊆(𝐵(0,𝑎))

𝑐

(𝑟−𝑛
𝐵
∬

𝐵

|𝐹(𝑦, 𝑡)|2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

= 0,



ENDPOINT BOUNDEDNESS OF SINGULAR INTEGRALS 1373

where 𝐵 is the classical tent of 𝐵. Clearly, one may replace 𝐵 by 𝐵 × (0, 𝑟𝐵), and
by a similar argument, one may also characterize CMOℒ(ℝ

𝑛) in terms of the
heat semigroup ofℒ rather than its Poisson counterpart. That is, the condition
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓 ∈ 𝑇∞

2,𝐶
involved in Theorem 5.2 can be replaced by 𝐹′(𝑦, 𝑡) ∶=

𝑡2ℒ𝑒−𝑡
2ℒ𝑓 ∈ 𝑇∞

2,𝐶
. This observation implies that onemay verify 𝑒−𝑠ℒ𝑓 ∈ CMOℒ

for any fixed 𝑠 > 0 in a similar manner.

Proof of Lemma 5.1. For any fixed 𝑠 > 0, let

𝐹𝑠(𝑦, 𝑡) ∶= 𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑒−𝑠

√
ℒ𝑓(𝑦).

Step I. we claim that 𝐹𝑠 ∈ 𝑇∞
2
, that is, ℭ(𝐹𝑠) ∈ 𝐿∞.

To see it, for any 𝑥 ∈ ℝ𝑛 and for any ball 𝐵 = 𝐵(𝑥𝐵, 𝑟𝐵) containing 𝑥, if
𝑠 ≤ 𝑟𝐵, then

(𝑟−𝑛
𝐵
∫

𝑟𝐵

0

∫
𝐵

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

=(𝑟−𝑛
𝐵
∫

𝑟𝐵

0

∫
𝐵

𝑡|
√
ℒ𝑒−(𝑡+𝑠)

√
ℒ𝑓(𝑦)|2𝑑𝑦𝑑𝑡)

1∕2

≤𝐶 ((2𝑟𝐵)
−𝑛 ∫

2𝑟𝐵

0

∫
2𝐵

|𝜏
√
ℒ𝑒−𝜏

√
ℒ𝑓(𝑦)|2

𝑑𝑦𝑑𝜏

𝜏
)

1∕2

≤𝐶ℭ
(
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

)
(𝑥). (5.2)

Otherwise, 𝑠 ≥ 𝑟𝐵, then for any 𝑦 ∈ 𝐵 and 0 < 𝑡 < 𝑟𝐵,

|𝐹𝑠(𝑦, 𝑡)|

=
||||||
𝑒−𝑠

√
ℒ
(
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

)
(𝑦)

||||||

=

|||||||||

{∫
𝐵(𝑦,𝑠)

+

∞∑

𝑘=1

∫
𝐵(𝑦,2𝑘𝑠)⧵𝐵(𝑦,2𝑘−1𝑠)

}𝐾
𝑒−𝑠

√
ℒ(𝑦, 𝑧)𝑡

√
ℒ𝑒−𝑡

√
ℒ𝑓(𝑧)𝑑𝑧

|||||||||

≤𝐶

∞∑

𝑘=0

1

2𝑘

||||||
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

||||||𝐵(𝑦,2𝑘𝑠)

≤𝐶

∞∑

𝑘=0

1

2𝑘

||||||
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

||||||𝐵(𝑥,2𝑘+1𝑠)
, (5.3)

then

(𝑟−𝑛
𝐵
∫

𝑟𝐵

0

∫
𝐵

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≲

∞∑

𝑘=0

1

2𝑘
(∫

𝑟𝐵

0

||||||
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

||||||

2

𝐵(𝑥,2𝑘+1𝑠)

𝑑𝑡

𝑡
)

1∕2
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≲

∞∑

𝑘=0

1

2𝑘
(∫

𝑟𝐵

0

1

|𝐵(𝑥, 2𝑘+1𝑠)|
∫
𝐵(𝑥,2𝑘+1𝑠)

||||||
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓(𝑧)

||||||

2 𝑑𝑧𝑑𝑡

𝑡
)

1∕2

≤ℭ
(
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

)
(𝑥). (5.4)

Hence, for any 𝑥 ∈ ℝ𝑛,

ℭ(𝐹𝑠)(𝑥) ≤ 𝐶ℭ
(
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

)
(𝑥)

and the constant 𝐶 > 0 is independent of 𝑥 and 𝑠 > 0.
Due to the characterization of BMOℒ(ℝ

𝑛) via the Carleson measure, we ob-
tain (5.1).
Step II. We continue to verify that 𝜂𝑖(𝐹𝑠) = 0 for 𝑖 = 1, 2, 3, which ensures

𝑒−𝑠
√
ℒ𝑓 ∈ CMOℒ(ℝ

𝑛).
For any given 𝜀 > 0, by 𝜂𝑖(𝑡

√
ℒ𝑒−𝑡

√
ℒ𝑓) = 0 for 𝑖 = 1, 2, 3, there exist two

integers ℐ𝜀 >> 1 and 𝒥𝜀 >> 1 such that

sup
𝐵∶ 𝑟𝐵≤2

−ℐ𝜀

(𝑟−𝑛
𝐵
∫

𝑟𝐵

0

∫
𝐵

|𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓(𝑦)|2

𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

< 𝜀, (5.5a)

sup
𝐵∶ 𝑟𝐵≥2

𝒥𝜀

(𝑟−𝑛
𝐵
∫

𝑟𝐵

0

∫
𝐵

|𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓(𝑦)|2

𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

< 𝜀, (5.5b)

sup
𝐵∶𝐵⊆(𝐵(0,2𝒥𝜀 ))𝑐

(𝑟−𝑛
𝐵
∫

𝑟𝐵

0

∫
𝐵

|𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓(𝑦)|2

𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

< 𝜀. (5.5c)

Let’s consider 𝜂1(𝐹𝑠).
For any ball 𝐵′ = 𝐵(𝑥𝐵′ , 𝑟𝐵′) with 𝑟𝐵′ < 2−ℐ𝜀−1 sufficiently small, if 𝑠 ≤ 𝑟𝐵′ ,

then combine (5.2) and (5.5a) to obtain

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶𝜀.

Otherwise, 𝑟𝐵′ < 𝑠, then apply (5.3) to see

|𝐹𝑠(𝑦, 𝑡)| =
||||||
𝑒−𝑠

√
ℒ∕2

(
𝑡
√
ℒ𝑒−(𝑡+𝑠∕2)

√
ℒ𝑓

)
(𝑦)

||||||

≤ 𝐶

∞∑

𝑘=0

1

2𝑘

||||||
𝑡
√
ℒ𝑒−(𝑡+𝑠∕2)

√
ℒ𝑓

||||||𝐵(𝑥𝐵′ ,2𝑘𝑠)
,

and so

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶

∞∑

𝑘=0

1

2𝑘
(∫

𝑟𝐵

0

1

|𝐵(𝑥𝐵′ , 2
𝑘+1𝑠)|

⋅ ∫
𝐵(𝑥𝐵′ ,2

𝑘+1𝑠)

𝑡

𝑡 + 𝑠∕2
(𝑡 + 𝑠∕2)

||||||

√
ℒ𝑒−(𝑡+𝑠∕2)

√
ℒ𝑓(𝑧)

||||||

2

𝑑𝑧𝑑𝑡)

1∕2
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≤𝐶

√
𝑟𝐵′

𝑠

∞∑

𝑘=0

1

2𝑘

⎛

⎜

⎝

∫

2𝑘+1𝑠

0

1

|𝐵(𝑥𝐵′ , 2
𝑘+1𝑠)|

⋅ ∫
𝐵(𝑥𝐵′ ,2

𝑘+1𝑠)

||||||
𝜏
√
ℒ𝑒−𝜏

√
ℒ𝑓(𝑧)

||||||

2 𝑑𝑧𝑑𝜏

𝜏
)

1∕2

≤𝐶

√
𝑟𝐵′

𝑠

‖‖‖‖‖‖
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

‖‖‖‖‖‖𝑇∞
2

≤𝐶

√
𝑟𝐵′

𝑠
‖𝑓‖BMOℒ(ℝ

𝑛).

Note that 𝑠 > 0 is fixed, thus

sup
𝐵′∶ 𝑟𝐵′≤𝑠𝜀

2

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶‖𝑓‖BMOℒ(ℝ
𝑛)𝜀. (5.6)

Consequently, 𝜂1(𝐹𝑠) = 0 from these two cases.
To continue, we consider 𝜂2(𝐹𝑠). For any ball 𝐵′ = 𝐵(𝑥𝐵′ , 𝑟𝐵′) with 𝑟𝐵′ ≥ 2𝒥𝜀

sufficiently large, if 𝑠 ≤ 𝑟𝐵′ , then combine (5.2) and (5.5b) to obtain

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶𝜀

as well. If 𝑠 > 𝑟𝐵′ , then 𝑠 > 2𝒥𝜀 , and it follows from (5.3), (5.4) and (5.5b) to see

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶

∞∑

𝑘=0

1

2𝑘
𝜀 ≤ 𝐶𝜀.

Thus 𝜂2(𝐹2) = 0.
It remains to consider 𝜂3(𝐹𝑠). For any ball 𝐵′ = 𝐵(𝑥𝐵′ , 𝑟𝐵′) which is far

away from the origin, it suffices to assume that 𝑟𝐵′ < 2𝒥𝜖 due to the argu-
ment of 𝜂2(𝐹𝑠) = 0. Furthermore, assume that 𝐵′ ⊆ (𝐵(0, 2𝒥𝜀+1))𝑐, then 2𝐵′ ⊆
(𝐵(0, 2𝒥𝜀))𝑐. This, combined with (5.2) and (5.5c), implies that

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶𝜀 if 𝑠 ≤ 𝑟𝐵′ .

Otherwise, if 𝑠 > 𝑟𝐵′ , then

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤ 𝐶

∞∑

𝑘=0

1

2𝑘
𝐼
1∕2

𝑘
,

where

𝐼𝑘 ∶= ∫

2𝑘+1𝑠

0

1

|𝐵(𝑥𝐵′ , 2
𝑘+1𝑠)|

∫
𝐵(𝑥𝐵′ ,2

𝑘+1𝑠)

||||||
𝜏
√
ℒ𝑒−𝜏

√
ℒ𝑓(𝑧)

||||||

2 𝑑𝑧𝑑𝜏

𝜏
.

Using (5.5b) again, it suffices to consider the case 𝑟𝐵′ < 𝑠 < 2𝒥𝜖 .
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Let 𝑁𝜀 ∈ ℕ+ such that
∑∞

𝑘=𝑁𝜀+1
2−𝑘 < 𝜀, then whenever

𝐵′ ⊆ (𝐵(0, 2𝒥𝜀+𝑁𝜀+1))𝑐,

it’s clear that 𝐵(𝑥𝐵′ , 2𝑘+1𝑠) ⊆ (𝐵(0, 2𝒥𝜀))𝑐 for 0 ≤ 𝑘 ≤ 𝑁𝜀. Hence we use (5.5c)
to see

(𝑟−𝑛
𝐵′
∫

𝑟𝐵′

0

∫
𝐵′

|𝐹𝑠(𝑦, 𝑡)|
2
𝑑𝑦 𝑑𝑡

𝑡
)

1∕2

≤𝐶

𝑁𝜀∑

𝑘=0

1

2𝑘
𝜀 +

∞∑

𝑘=𝑁𝜀+1

1

2𝑘
‖𝑓‖BMOℒ

≤𝐶(‖𝑓‖BMOℒ
+ 1)𝜀.

Hence 𝜂3(𝐹𝑠) = 0. We complete the proof of Lemma 5.1. □

Remark 5.3. Note that the constant 𝐶 in (5.2) and (5.3) is independent of 𝑠 > 0,
hence

sup
𝑠>0

‖‖‖‖‖‖
𝑒−𝑠

√
ℒ𝑓

‖‖‖‖‖‖BMOℒ

≈ sup
𝑠>0

‖‖‖‖‖‖
𝑡
√
ℒ𝑒−𝑡

√
ℒ(𝑒−𝑠

√
ℒ𝑓)

‖‖‖‖‖‖𝑇∞
2

≤ 𝐶
‖‖‖‖‖‖
𝑡
√
ℒ𝑒−𝑡

√
ℒ𝑓

‖‖‖‖‖‖𝑇∞
2

≈ ‖𝑓‖BMOℒ
.

Remark 5.4. It’s natural to continue to study the behavior of the maximal oper-
ator 𝒫∗ defined by

𝒫∗𝑓(𝑥) = sup
𝑠>0

||||||
𝑒−𝑠

√
ℒ𝑓(𝑥)

||||||
,

on CMOℒ(ℝ
𝑛). Recall that it has been shown in [9] that 𝒫∗ is bounded on

BMOℒ(ℝ
𝑛). On one hand, this result cannot be used to deduce our (5.1). On

the other hand, the condition 𝑟𝐵′ ≤ 𝑠𝜀2 in (5.6) indicates that estimating the limit
behaviour 𝜂1(𝒫∗𝑓) is non-trivial.

Based on Lemma 5.1, we continue to finish the remaining argument of The-
orem 1.3.

Proof of Theorem 1.3. For any 𝑓 ∈ CMOℒ(ℝ
𝑛), note that CMOℒ(ℝ

𝑛) is the
closure of𝐶∞𝑐 (ℝ𝑛) inBMOℒ(ℝ

𝑛), hence there exists a sequence {𝑓𝑘}𝑘 in𝐶∞𝑐 (ℝ𝑛)

such that
lim
𝑘→∞

‖𝑓𝑘 − 𝑓‖
BMOℒ(ℝ

𝑛)
= 0,

which, combined with the (uniform) boundedness of 𝑒−𝑡
√
ℒ on BMOℒ(ℝ

𝑛) for
𝑡 > 0, deduces that for any 𝑘 ∈ ℕ+,

‖‖‖‖‖‖
𝑒−𝑡

√
ℒ𝑓 − 𝑓

‖‖‖‖‖‖BMOℒ

≤
‖‖‖‖‖‖
𝑒−𝑡

√
ℒ(𝑓 − 𝑓𝑘)

‖‖‖‖‖‖BMOℒ

+ ‖𝑓𝑘 − 𝑓‖
BMOℒ

+
‖‖‖‖‖‖
𝑒−𝑡

√
ℒ𝑓𝑘 − 𝑓𝑘

‖‖‖‖‖‖BMOℒ

≤𝐶 ‖𝑓𝑘 − 𝑓‖
BMOℒ

+
‖‖‖‖‖‖
𝑒−𝑡

√
ℒ𝑓𝑘 − 𝑓𝑘

‖‖‖‖‖‖BMOℒ

,
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where the positive constant 𝐶 is independent of 𝑡.
Hence, to prove (1.7), it suffices to verify it for 𝑓 ∈ 𝐶∞𝑐 (ℝ

𝑛).
We start by showing that for any 𝑓 ∈ 𝐶∞𝑐 (ℝ

𝑛), lim
𝑡→0

𝑒−𝑡
√
ℒ𝑓(𝑥) = 𝑓(𝑥) uni-

formly for all 𝑥 ∈ ℝ𝑛, which is crucial for our purpose.
Note that by the Kato–Trotter formula, there exists constants 𝐶, 𝑐 > 0 such

that for all 𝑥, 𝑦 ∈ ℝ𝑛 and 𝑡 > 0,

0 ≤ 𝐾𝑒𝑡∆(𝑥, 𝑦) − 𝐾𝑒−𝑡ℒ(𝑥, 𝑦)

≤ 𝐶 (

√
𝑡

√
𝑡 + 𝜌(𝑥)

)

2−
𝑛

𝑞1 1

𝑡
𝑛

2

exp (−
|𝑥 − 𝑦|2

𝑐𝑡
) , (5.7)

where 𝑞1 > 𝑞 ≥ 𝑛∕2 is the index in the proof of Theorem 1.2; see [4, Proposition
7.13]. Let

𝛿 = min {2 −
𝑛

𝑞1
,
1

2
} ,

then combining the Bochner subordination formula

𝑒−𝑡
√
ℒ =

1

2
√
𝜋
∫

∞

0

𝑡
√
𝑠
exp (−

𝑡2

4𝑠
) 𝑒−𝑠ℒ

𝑑𝑠

𝑠
,

we have that whenever 𝑡 < 𝜌(𝑥),

0 ≤𝐾
𝑒−𝑡

√
−∆(𝑥, 𝑦) − 𝐾

𝑒−𝑡
√
ℒ(𝑥, 𝑦)

=
1

2
√
𝜋
∫

∞

0

𝑡
√
𝑠
exp (−

𝑡2

4𝑠
) [𝐾𝑒𝑠∆(𝑥, 𝑦) − 𝐾𝑒−𝑠ℒ(𝑥, 𝑦)]

𝑑𝑠

𝑠

≤𝐶 ∫

∞

0

𝑡
√
𝑠
(

√
𝑠

√
𝑠 + 𝜌(𝑥)

)

𝛿

1
√
𝑠𝑛
exp (−

𝑡2

4𝑠
−
|𝑥 − 𝑦|2

𝑐𝑠
)
𝑑𝑠

𝑠

≤𝐶 (
𝑡

𝜌(𝑥)
)

𝛿

∫

𝑡2+|𝑥−𝑦|2

0

(
𝑡
√
𝑠
)

1−𝛿

1

𝑠
𝑛

2

𝑠
𝑛+1

2

(𝑡2 + |𝑥 − 𝑦|2)
𝑛+1

2

𝑑𝑠

𝑠

+ 𝐶 (
𝑡

𝜌(𝑥)
)

𝛿

∫

∞

𝑡2+|𝑥−𝑦|2

(
𝑡
√
𝑠
)

1−𝛿

1

𝑠
𝑛

2

𝑑𝑠

𝑠

≤𝐶 (
𝑡

𝜌(𝑥)
)

𝛿

𝑡1−𝛿

(𝑡2 + |𝑥 − 𝑦|2)
𝑛+1−𝛿

2

. (5.8)

For 𝑓 ∈ 𝐶∞𝑐 (ℝ
𝑛), it’s clear that 𝑒−𝑡

√
−∆𝑓(𝑥) → 𝑓(𝑥) uniformly for 𝑥 ∈ ℝ𝑛 as

𝑡 → 0. That is, for any 𝜀 > 0, there exists some 𝑡0 > 0 such that for any 𝑡 ≤ 𝑡0,
||||||
𝑒−𝑡

√
−∆𝑓(𝑥) − 𝑓(𝑥)

||||||
< 𝜀, ∀ 𝑥 ∈ ℝ𝑛.
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Meanwhile, suppose supp𝑓 ⊆ 𝐵(0,𝑀1) for some 𝑀1 > 0. Then there exists
𝑀2 > 𝑀1 such that for any 𝑡 ≤ 𝑡0,

||||||
𝑒−𝑡

√
ℒ𝑓(𝑥)

||||||
< 𝜀 for |𝑥| ≥ 𝑀2.

Let
𝜌min = inf

𝑥∈𝐵(0,𝑀2)
𝜌(𝑥),

then 𝜌min > 0 by Lemma 2.2. Without loss of generality, assume that 𝑡0 satisfies

(

√
𝑡0

𝜌min
)

𝛿

< 𝜀.

Then for any 𝑡 ≤ 𝑡0 and 𝑥 ∈ ℝ𝑛, one may combine (5.8) and 𝑓 ∈ 𝐶∞𝑐 (ℝ
𝑛) to see

∙ if |𝑥| < 𝑀2,
||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑓(𝑥)

||||||

≤
||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑒−𝑡

√
−∆𝑓(𝑥)

||||||
+
||||||
𝑒−𝑡

√
−∆𝑓(𝑥) − 𝑓(𝑥)

||||||

≤𝐶𝑀𝑓(𝑥) ⋅ 𝜀 + 𝜀

≲𝜀.

∙ if |𝑥| ≥ 𝑀2,
||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑓(𝑥)

||||||
=
||||||
𝑒−𝑡

√
ℒ𝑓(𝑥)

||||||
≤ 𝜀

Therefore,

||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑓(𝑥)

||||||
≲ 𝜀 for 𝑡 ≤ 𝑡0 and 𝑥 ∈ ℝ𝑛. (5.9)

Hence 𝑒−𝑡
√
ℒ𝑓 → 𝑓 uniformly for all 𝑥 ∈ ℝ𝑛 as 𝑡 → 0.

It remains to prove (1.7) for 𝑓 ∈ 𝐶∞𝑐 (ℝ
𝑛).

For any ball 𝐵 = 𝐵(𝑥𝐵, 𝑟𝐵) and for any 𝑡 < 𝑡0,
∙ if 𝑟𝐵 < 𝜌(𝑥𝐵), then by (5.9),

1

|𝐵|
∫
𝐵

||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑓(𝑥) −

(
𝑒−𝑡

√
ℒ𝑓 − 𝑓

)

𝐵

||||||

2

𝑑𝑥

≲ sup
𝑥∈𝐵

||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑓(𝑥)

||||||

≲𝜀.

∙ if 𝑟𝐵 ≥ 𝜌(𝑥𝐵), similarly, by (5.9) again, we also have

1

|𝐵|
∫
𝐵

||||||
𝑒−𝑡

√
ℒ𝑓(𝑥) − 𝑓(𝑥)

||||||

2

𝑑𝑥 ≲ 𝜀.

Therefore, we complete the proof of Theorem 1.3. □
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Remark 5.5. Similarly, due to (5.7) and the fact that for any 𝑓 ∈ 𝐶∞𝑐 (ℝ
𝑛),

𝑒𝑡∆𝑓(𝑥) → 𝑓(𝑥) uniformly for all 𝑥 ∈ ℝ𝑛 as 𝑡 → 0, the approximation to the
identity arising from the heat semigroup associated toℒalsomatchesCMOℒ(ℝ

𝑛).
That is, for any 𝑓 ∈ CMOℒ(ℝ

𝑛), we have

lim
𝑡→0

𝑒−𝑡ℒ𝑓 = 𝑓 in BMOℒ(ℝ
𝑛).

In particular, if 𝑓 ∈ 𝐶∞𝑐 (ℝ
𝑛), then we also have lim

𝑡→0
𝑒−𝑡ℒ𝑓(𝑥) = 𝑓(𝑥) uniformly

for all 𝑥 ∈ ℝ𝑛.

Remark 5.6. Recall that

lim
𝑡→0

𝑒−𝑡
√
ℒ𝑓 = 𝑓 in 𝐿𝑝(ℝ𝑛)

for 1 ≤ 𝑝 < ∞; see [3]. Our Lemma 5.1 and Theorem 1.3 can be regarded as
certain endpoint results. All of these will be useful in further applications such as
function spaces, density arguments, partial differential equations and so on.
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