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Permutable subgroups of linear groups

M. Trombetti and B.A.F. Wehrfritz

Abstract. A subgroup𝐻 of a group 𝐺 is said to be permutable in 𝐺 if𝐻𝐾 =
𝐾𝐻 for every 𝐾 ≤ 𝐺. This type of subgroups often plays a major role in the
context of subnormality, in the study of the subgroup lattice of groups, and in
many questions concerning finite and infinite groups. The aimof this paper is
to study the general properties of permutable subgroups within the universe
of linear groups with respect to three major topics: subnormality conditions,
analogs of the Maier–Schmid theorem, and transitivity of permutability. In
particular, the behaviour of Zariski closed permutable subgroups is studied
in these respects and our main results show for example that the Zariski clo-
sure of a permutable subgroup of a linear group is always permutable and
subnormal, and that the theorem of Maier–Schmid always hold for Zariski
closed subgroups of a linear group.

Contents

1. Introduction 1324
2. Subnormality of permutable subgroups 1326
3. Extensions of the Maier–Schmid theorem 1332
4. Linear 𝑃𝑇-groups 1336
References 1343

1. Introduction
Historically, the first criteria for the subnormality of a subgroup of a group arose
in the attempt to study the implications for the normal structure of a group 𝐺
possessing a permutable subgroup, that is, a subgroup 𝑋 such that 𝑋𝑌 = 𝑌𝑋
for every 𝑌 ≤ 𝐺. In fact, Ore [20] proved that a permutable subgroup is nor-
mal provided that it is also a maximal subgroup, and that a permutable sub-
group of a finite group is always subnormal, so no finite simple group can have
proper non-trivial permutable subgroups. Some years later, Stonehewer [25]
proved that when we leave the class of finite groups, permutable subgroups
(although not always subnormal) still satisfy some weaker form of subnormal-
ity, and in fact they are ascendant (that is, there is an ascendant series of sub-
groups connecting them to the whole group)— see also Example 2.16, which is
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a linear group with non-subnormal permutable subgroups. Note that there ex-
ist infinite simple groups with non-trivial proper ascendant subgroups, so this
property alone is not sufficient to exclude the existence of proper non-trivial
permutable subgroups in arbitrary simple groups. However, Stonehewer also
proved that core-free permutable subgroups have in general a good behaviour.
In fact, every core-free permutable subgroup𝑋 of a group𝐺 is a subdirect prod-
uct of finite nilpotent groups (this implies that a perfect permutable subgroup
is always normal), and every finitely generated subgroup of 𝑋𝐺 is actually a
subdirect product of finite nilpotent groups. As a consequence of the latter fact
and the fact that locally (residually soluble) groups have a normal series with
abelian factors, we have that no simple group can have a proper non-trivial per-
mutable subgroup, which is a pretty nice simplicity criterion.
The previous results can be strengthened in the finite case and were inspired

by a well-known theorem of Maier–Schmid [17] stating that a core-free per-
mutable subgroup of a finite group is always contained in some term of the up-
per central series of the group. Again, an analog of the Maier–Schmid theorem
is not true even in the universe of linear groups (see Example 2.4), but many
analogs have been proved in some restricted environments. For example, it has
been proved in [8] that core-free permutable subgroups of nilpotent-by-finite
groups are always contained in some finite term of the upper central series. A
similar statement holds in case the group is a homomorphic image of a peri-
odic linear group (see [7], Theorem 7) or is a finitely generated linear group
(see [7], Theorem 8). Other results of this type are quoted and proved in the
papers [7] and [8]. We explicitly note that in any reasonably well-behaved uni-
verse of groups in which a complete analog of the Maier–Schmid holds, every
permutable subgroup is subnormal.

In Section 2, we investigate subnormality criteria for permutable subgroups.
In particular, we prove the following results:

∙ Permutable subgroups of nilpotent-by-Černikov groups are always sub-
normal; see Corollary 2.3).

∙ A subgroup of a homomorphic image of a periodic linear group is sub-
normal provided that it permutes with its conjugates (see Theorem 2.5).
A similar result holds for finitely generated soluble-by-finite linear
groups (see Theorem 2.10 and subsequent corollaries).

∙ A permutable subgroup of a soluble-by-periodic linear group is subnor-
mal provided that either the characteristic of the field is positive or the
unipotent radical is trivial (see Theorem 2.15).

Examples 2.4 and 2.16 show that some of the previous statements cannot be
much improved.

One of the auxiliary results we prove in Section 2 states that a Černikov per-
mutable subgroup is always subnormal. This generalizes the well-known fact
that finite permutable subgroups are subnormal, and should be seen in relation
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to other results of this type, such as the fact that locally cyclic permutable sub-
groups are subnormal (see [8]). Now, linear groups can be endowed with the
Zariski topology, and although this topology does not make them topological
groups, it has a strong influence on their structure. So in order to deal with
the topological normal structure of a linear group, understanding permutabil-
ity properties of closed subgroups is relevant. This is essentially addressed in
Section 3. The main result of the section (and probably of the paper) is the
following one:

∙ The Zariski closure 𝑌 of any permutable subgroup 𝑋 of a linear group
𝐺 is permutable and subnormal (see Theorem 3.1). Moreover, 𝑌𝐺∕𝑌𝐺
is always contained in a finite term of the upper central series of 𝐺∕𝑌𝐺
(see Theorem 3.4).

In the same section we also prove that a linear group whose subgroups are
permutable must be nilpotent (see Theorem 3.8). In fact, one of the main ar-
eas of investigations concerns the existence of many permutable (or somewhat
permutable) subgroups. For example, in finite groups we have already men-
tioned that permutability implies subnormality, but what if also subnormality
implies permutability? It has been shown by Zacher [30] that soluble finite
groups in which permutability is a transitive relation are precisely those solu-
ble finite groups in which permutable subgroups coincide with the subnormal
ones. This result does not hold anymore for arbitrary soluble groups (even lin-
ear ones), but we show in Section 4 that it is true in case of homomorphic im-
ages of periodic linear groups (see Theorem 4.1). Besides this result, we also
prove the following relevant theorem:

∙ The connected component of a soluble linear group whose cyclic sub-
groups are permutable is abelian (see Lemma 4.3). As a consequence,
in a soluble-by-finite linear group permutability is transitive if and only
if subnormality coincides with permutability (see Theorem 4.4).

In the final part of Section 4, we study soluble (linear) groups whose cyclic sub-
normal subgroups are permutable (see Lemma 4.9 and Theorem 4.10) and ho-
momorphic images of periodic linear groups in which cyclic subnormal sub-
groups permute with the Sylow subgroups (see Theorem 4.12).

Our notation is mostly standard and can be found in [27]. The𝑚-th term of
the upper central series of a group 𝐺 we denote by 𝜁𝑚(𝐺), and the hypercentre
of 𝐺 (that is, the last term of the upper central series of 𝐺) we denote by 𝜁(𝐺).
For recent results concerning permutable subgroups and their generalizations,
we refer the reader to the monographs [2], [3] and [23].

2. Subnormality of permutable subgroups
Let𝐺 be a group. If𝑋 and𝑌 are subgroups of𝐺, then the condition𝑋𝑌 = 𝑌𝑋

is equivalent to the fact that𝑋𝑌 is a subgroup of𝐺. This circumstance is usually
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referred to in different ways, such as: 𝑋 permuteswith𝑌 (or, correspondingly,𝑌
permuteswith𝑋); the subgroups𝑋 and𝑌 permute with each other; the product
𝑋𝑌 of 𝑋 and 𝑌 is a subgroup. A subgroup of 𝐺 is said to be permutable in 𝐺 if
it permutes with every subgroup of 𝐺.
Aswe have alreadymentioned in the introduction, any permutable subgroup

of an arbitrary group is ascendant (see [25], Theorem A), while permutable
subgroups of finitely generated groups are subnormal (see [25], Theorem B). In
particular, permutable maximal subgroups of arbitrary groups are normal, and
hence every permutable subgroup is normalized by the elements of prime order.
The latter fact can be easily employed to prove that every permutable finite
subgroup is subnormal, and our first lemma generalizes this result to Černikov
subgroups.

Lemma 2.1. Let 𝐺 be a group and let 𝑋 be a Černikov permutable subgroup of
𝐺. Then 𝑋 is subnormal in 𝐺.

Proof. Set 𝑋 = 𝐹𝐷, where 𝐷 is the finite residual of 𝑋 and 𝐹 is a finite sub-
group of 𝐺. We use induction on the order of 𝐹. If 𝐹 = {1}, then the ascendant
subgroup 𝑋 is contained in the periodic divisible abelian radical of 𝐺 (see for
example [21], Lemma 4.46), and consequently 𝑋 is subnormal in 𝐺 (of defect
at most 2). Assume now that 𝐹 ≠ {1}. If𝑀 is the (characteristic) subgroup gen-
erated by all the elements of prime order of 𝐺, then 𝐹 ∩ 𝑀 ≠ {1}, so 𝑋𝑀∕𝑀 is
subnormal in 𝐺∕𝑀 by induction. On the other hand, 𝑋 is normalized by every
element of prime order of 𝐺, so 𝑋 is normal in 𝑋𝑀 and hence subnormal in
𝐺. □

Corollary 2.2. Let the group 𝐺 = 𝑋𝑁 be the product of a permutable subgroup
𝑋 and a normal subgroup𝑁. If 𝐺∕𝐶𝐺(𝑁) is Černikov, then 𝑋 is subnormal in 𝐺.

Proof. Clearly, 𝐶𝑋(𝑁) is normal in 𝐺, and 𝑋∕𝐶𝑋(𝑁) is a Černikov permutable
subgroup of 𝐺∕𝐶𝑋(𝑁), so it follows from Lemma 2.1 that 𝑋 is subnormal in 𝐺.

□

Corollary 2.3. Let𝐺 be a group having a nilpotent normal subgroup𝑁 such that
𝐺∕𝑁 is Černikov. If 𝑋 is any permutable subgroup of 𝐺, then 𝑋 is subnormal in
𝐺.

Proof. It follows from Corollary 2.2 that 𝑋 is subnormal in 𝑋𝜁1(𝑁). By induc-
tion on the nilpotency class of𝑁, we then have that𝑋𝜁1(𝑁)∕𝜁1(𝑁) is subnormal
in 𝐺∕𝜁1(𝑁), so 𝑋 is subnormal in 𝐺. □

It is possible to replace Černikov groups in the above statements by periodic
groups which are (divisible abelian)-by-finite (the proof being the same), but of
course it is not possible to replace them by arbitrary periodic groups, as shown
by the following example.

Example 2.4. There exist periodic and torsion-free metabelian groups having a
non-subnormal permutable subgroup.
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Proof. Let 𝑝 be an odd prime, and let 𝑛 be a positive integer with 𝑛 ≥ 2. Define
a semidirect product 𝐺𝑝,𝑛 = ⟨𝑎𝑝,𝑛⟩⋉ ⟨𝑏𝑝,𝑛⟩, where 𝑎𝑝,𝑛 has order 𝑝𝑛−1, 𝑏𝑝,𝑛 has
order 𝑝𝑛, and 𝐺′

𝑝,𝑛 = ⟨𝑏𝑝𝑝,𝑛⟩. Clearly, ⟨𝑎𝑝,𝑛⟩ is subnormal of defect 𝑛. Also, it is
not difficult to see that ⟨𝑎𝑝,𝑛⟩ is permutable in 𝐺𝑝,𝑛.
Now, let𝐺 be the direct product of the groups𝐺𝑞,𝑞, where 𝑞 ranges on all odd

prime numbers. Then 𝑋 = ⟨𝑎𝑞,𝑞 ∶ 𝑞 a prime⟩ is a permutable subgroup of 𝐺
that is not subnormal. Clearly, 𝐺 is periodic and metabelian.

In order to obtain a torsion-free variation of this example, one can simply
recall that free metabelian groups are torsion-free (recall that free metabelian
groups are triangularizable linear groups of degree 2 and characteristic 0 —
see [27], Lemma 2.10 and Theorem 2.11), so by the first half of the proof it
must contain a non-subnormal permutable subgroup. A more concrete and
easy example is the following one. For each odd prime 𝑝 and positive inte-
ger 𝑛 ≥ 2, we consider the semidirect product 𝑊𝑝,𝑛 = ⟨𝑐𝑛,𝑝⟩ ⋉ 𝐵𝑛,𝑝, where
𝑐𝑛,𝑝 is an element of infinite order, 𝐵𝑛,𝑝 is isomorphic to the direct product of

𝑝𝑛−1 copies of ℤ, and 𝑐𝑛,𝑝 acts on 𝐵𝑛,𝑝 in such a way that 𝑐
𝑝𝑛−1
𝑛,𝑝 ∈ 𝜁1(𝑊𝑝,𝑛) and

𝑊𝑝,𝑛∕⟨𝑐
𝑝𝑛−1
𝑛,𝑝 ⟩ ≃ ℤ ≀ ℤ𝑝𝑛−1 . Now,

𝑊𝑝,𝑛∕⟨𝑐
𝑝𝑛−1
𝑛,𝑝 , 𝐵𝑝

𝑛

𝑝,𝑛⟩ ≃ ℤ𝑝𝑛 ≀ ℤ𝑝𝑛−1

contains a copy 𝐻𝑝,𝑛∕⟨𝑐
𝑝𝑛−1
𝑛,𝑝 , 𝐵𝑝

𝑛

𝑝,𝑛⟩ of 𝐺𝑝,𝑛 (this is the group defined in the first
half of the proof). Thus, if 𝐻 is the direct product of the groups 𝐻𝑞,𝑞, where 𝑞
ranges on all odd prime numbers, then one easily sees that 𝐻 is a torsion-free
metabelian group having a non-subnormal permutable subgroup. □

Now, we turn our attention to linear groups. In this case, we aim to extend
the above-mentioned result of [7] showing that a permutable subgroup of a pe-
riodic linear group is always subnormal. A well-known theorem of Szép [26]
states that if 𝑋 is any conjugate-permutable subgroup of a group 𝐺 (that is, if
𝑋𝑋𝑔 = 𝑋𝑔𝑋 for all 𝑔 ∈ 𝐺), then 𝑋 is subnormal in 𝐺 provided 𝐺 is finite (see
also [16], Theorem7.2.1). In the infinite case, conjugacy-permutable subgroups
aremore difficult to deal with than permutable subgroups, and in fact they have
only been studied by Kurdachenko et al. in [15] and Koppe [14]. In particu-
lar, it is proved in [15] that conjugacy-permutable subgroups 𝑋 of a group 𝐺
are subnormal provided that 𝐺 is either soluble-by-finite reduced minimax or
Černikov, while they are just ascendant when 𝐺 is soluble-by-finite and min-
imax. Moreover, it is proved in [14] that conjugacy-permutable subgroups 𝑋
of arbitrary groups are at least serial (see also [16], Theorem 7.2.7) — here,
serial means that there is a (possibly not ascendant nor descendant) series of
subgroups connecting 𝑋 to 𝐺. Thus, it immediately follows from [11], Theo-
rem 2.14, that if 𝐺 is periodic linear, then 𝑋 is ascendant in 𝐺. Our next theo-
rem shows that in this case 𝑋 is even subnormal, thus generalizing one of the
results of [15].
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In order to prove this result, wefirst recall that if𝐺 is a linear group, then𝑢(𝐺)
denotes the unipotent radical of 𝐺 (that is, the largest unipotent radical normal
subgroup of𝐺), while𝐺0 denotes the connected component of𝐺 containing the
identity. Note that 𝐺0 centralizes every element with finitely many conjugates.

Theorem 2.5. Let 𝐺 be a homomorphic image of a periodic linear group and let
𝑋 be a subgroup of 𝐺 such that 𝑋𝑋𝑔 = 𝑋𝑔𝑋 for all 𝑔 ∈ 𝐺. Then 𝑋 is subnormal
in 𝐺.

Proof. We may assume that 𝐺 itself is linear. Now, it follows from a combi-
nation of [11], Theorem 2.14, and [14] that 𝑋 is ascendant in 𝐺. Let 𝑆 be the
soluble radical of 𝐺, and set 𝑈 = 𝑢(𝐺). By [11], Corollary 2.5, 𝑋 is subnormal
in 𝑋𝑈, while [11], Lemma 3.4, yields that 𝑋𝑆∕𝑆 is subnormal in 𝐺∕𝑆. Since
𝑋𝑆0 is trivially subnormal in 𝑋𝑆, it is enough to prove that 𝑋𝑈 is subnormal in
𝑋𝑆0𝑈. Thus, moving to the quotient 𝐺∕𝑈, we may suppose 𝐺 = 𝑋𝐴, where 𝐴
is a diagonalizable normal subgroup of 𝐺 and hence by [27], 2.6, satisfies the
minimal condition on 𝑝-subgroups for all primes 𝑝. Now, 𝑋∕𝐶𝑋(𝐴) is a finite
(see [27], Lemma 1.12) ascendant subgroup of𝐺∕𝐶𝑋(𝐴), and hence the normal
closure 𝑌∕𝐶𝑋(𝐴) of 𝑋∕𝐶𝑋(𝐴) in 𝐺∕𝐶𝑋(𝐴) is Černikov. Finally, an application
of [16], Theorem 7.3.10, yields that𝑋 is subnormal in𝑌 and so also in𝐺. There-
fore 𝑋 is subnormal in 𝐺. □

Corollary 2.6. Let 𝐺 be a homomorphic image of a periodic linear group and let
𝑋 be a permutable subgroup of 𝐺. Then 𝑋 is subnormal in 𝐺.

Remark 2.7. Corollary 2.6 also follows from [7, Theorem 7 and its proof] and
[11, Theorem 4.3].

Corollary 2.8. Let 𝐺 be a linear group and let 𝑋 be a periodic permutable sub-
group of 𝐺. Then 𝑋 is subnormal in 𝐺.

Proof. Since 𝑋 is ascendant, so 𝑋 is contained in the periodic radical 𝑇 of 𝐺.
Now, it follows from Corollary 2.6 that 𝑋 is subnormal in 𝑇, and hence even in
𝐺. □

In the conjugacy-permutability context, the answer to the following question
seems to be unknown.

Question 2.9. Let 𝐺 be a group and 𝑋 a subgroup of 𝐺 such that 𝑋𝑋𝑔 = 𝑋𝑔𝑋
for all 𝑔 ∈ 𝐺. Is it true that 𝑋 is at least ascendant?

Note that any counterexample to the above question would also result in a
linear counterexample by using free groups. In the context of linear groups, it
would be interesting to know the answer in the soluble case. We now prove
that for finitely generated soluble-by-finite linear groups the answer is positive.
First, we need the following result which extends the aforementioned results
of [15].
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Theorem 2.10. Let 𝐺 be a soluble-by-finite group. If 𝑋 is a polycyclic-by-finite
(resp., soluble minimax) conjugacy-permutable subgroup of 𝐺, then 𝑋 is ascen-
dant.

Proof. Let 𝑁 be an abelian normal subgroup of 𝐺. In order to complete the
proof, it is enough to show that 𝑋 is ascendant in 𝑋𝑁. Thus, without any loss
of generality, we may assume 𝐺 = 𝑋𝑁, 𝑋 ∩𝑁 = {1} ≠ 𝑁 and that 𝐶𝑁(𝑋) = {1}.
If 𝑋 is normal in 𝐺, then we are done. Assume not. Then there is 𝑔 ∈ 𝐺 such
that 𝑋𝑔 ≠ 𝑋.
By Theorem4.4.2 (resp., Theorems 4.6.11 and 4.6.13) of [2], wehave that𝑋𝑔𝑋

is minimax, so the previsoulymentioned theorem of [15] shows that𝑋 is ascen-
dant in 𝑋𝑔𝑋. But

𝑋𝑔𝑋 = 𝑋𝑔𝑋 ∩ 𝑋𝑁 = 𝑋(𝑋𝑔𝑋 ∩ 𝑁),

so 𝐶𝑁(𝑋) ≠ {1}, a contradiction. □

Corollary 2.11. Let 𝐺 be a nilpotent-by-polycyclic-by-finite group. If 𝑋 is any
conjugacy-permutable subgroup of 𝐺, then 𝑋 is ascendant in 𝐺.

Proof. Let𝑁 be a nilpotent normal subgroup of𝐺 such that𝐺∕𝑁 is polycyclic-
by-finite, and let 𝑍 = 𝜁1(𝑁). Then the polycyclic-by-finite group 𝑋∕𝐶𝑋(𝑍) is
ascendant in 𝑋𝑍∕𝐶𝑋(𝑍) by Theorem 2.10, and hence 𝑋 is ascendant in 𝑋𝑍.
Now, a simple induction argument shows that 𝑋 is ascendant in 𝑋𝑁. Finally,
since 𝐺∕𝑁 is polycyclic-by-finite, 𝑋𝑁 is subnormal in 𝐺, and consequently 𝑋
is ascendant in 𝐺. □

Corollary 2.12. Let 𝐺 be a finitely generated soluble-by-finite linear group. If 𝑋
is any conjugacy-permutable subgroup of 𝐺, then 𝑋 is ascendant in 𝐺.

Question 2.13. Let𝐺 be a finitely generated soluble-by-finite linear group and𝑋
a subgroup of 𝐺 such that 𝑋𝑋𝑔 = 𝑋𝑔𝑋 for all 𝑔 ∈ 𝐺. Is it true that 𝑋 is subnor-
mal?

Our next aim is to give some sufficient conditions for a permutable subgroup
of a soluble-by-periodic linear group to be subnormal.

Lemma 2.14. Let 𝐺 be a group, and let 𝑁 be a nilpotent normal subgroup of
finite exponent of 𝐺. If𝐻 is a permutable subgroup of 𝐺, then𝐻 is subnormal in
𝐻𝑁. In particular, if𝐺 is a soluble-by-finite linear group of positive characteristic,
then𝐻 is subnormal in 𝐺.

Proof. Let
{1} = 𝑍0 ≤ 𝑍1 ≤ … ≤ 𝑍𝑛 = 𝑁

be a (finite) central series of𝑁 with factors of prime exponent. If 𝐶 is any cyclic
subgroup of 𝑍1, then either𝐻 is a maximal subgroup of𝐻𝐶, or𝐶 ≤ 𝐻; in either
case,𝐻 is normal in𝐻𝐶. The arbitrariness of 𝐶 shows that𝐻 is normal in𝐻𝑍1.
Similarly, we prove that 𝐻𝑍𝑖 is normal in 𝐻𝑍𝑖+1 for every 𝑖, and hence that 𝐻
is subnormal in𝐻𝑁.
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Finally, suppose 𝐺 is a soluble-by-finite linear group of positive characteris-
tic 𝑝 and degree 𝑛. Then 𝐻 is subnormal in 𝐻 ⋅ 𝑢(𝐺) (of defect at most 𝑛 − 1),
while 𝐻 ⋅ 𝑢(𝐺) is subnormal in 𝐺 by Corollary 2.3 because 𝐺∕𝑢(𝐺) is abelian-
by-finite. □

Theorem 2.15. Let𝒦 be a field, and let 𝐻 be a soluble-by-periodic, permutable
subgroup of the subgroup 𝐺 of GL(𝑛,𝒦). If either char(𝒦) ≠ 0 or 𝑢(𝐺) = {1},
then𝐻 is subnormal in 𝐺.

Proof. Clearly we may assume𝒦 is algebraically closed. Since locally soluble
subgroups of linear groups are soluble, so the soluble radical 𝑆 of 𝐺 is soluble
and contains the soluble radical of the ascendant subgroup 𝐻. Similarly, 𝐺∕𝑆
is linear, and so the periodic radical 𝑇∕𝑆 of 𝐺∕𝑆 contains 𝐻𝑆∕𝑆. Replacing 𝐺
by 𝑇, it is therefore possible to assume that 𝐺 is soluble-by-periodic.
By Lemma 2.14, 𝐻 is subnormal in 𝐻𝑈, where 𝑈 = 𝑢(𝑆0) (this being trivial

whenever 𝑈 = {1}). Moreover, 𝐺∕𝑈 is isomorphic to a linear group over 𝒦
in which the image of 𝑆0 is an abelian 𝑑-group and hence diagonalizable. It
follows from Lemma 1.12 of [27] that 𝐺∕𝐶𝐺(𝑆0∕𝑈) is finite, so 𝐻𝑈∕𝑈 is sub-
normal in 𝐻𝑆0∕𝑈 by Corollary 2.2. Finally, 𝐻𝑆0∕𝑆0 is a subnormal subgroup
of the linear group 𝐺∕𝑆0 by Corollary 2.6. □

Our next example shows that Theorem 2.15 cannot really be improved. Re-
call that Tr(𝑛,𝒦) denotes the set of all triangular matrices of degree 𝑛 over the
field𝒦.

Example 2.16. There is a reduced, torsion-free, metabelian, minimax group 𝐺
with Hirsch number 2 such that 𝐺 has a subgroup 𝐻 that is permutable but not
subnormal in 𝐺. Note also that𝐻∕𝐻𝐺 is infinite cyclic, and that 𝐺 is isomorphic
to a triangular linear group of degree 2 over the rationals. Further,𝐺 is not hyper-
central.

Proof. Let 𝑝 and 𝑞 be primes with either 𝑝 odd and dividing 𝑞 − 1, or 𝑝 = 2
and 4dividing 𝑞−1. Let𝐴 denote the additive group of the ring 𝐽 = ℤ[1∕𝑝, 1∕𝑞],
and consider the automorphism

𝑥 ∶ 𝑎 ∈ 𝐴 ↦ 𝑞𝑎 ∈ 𝐴.

Clearly, 𝑥 has infinite order. Let 𝐺 denote the split extension ⟨𝑥⟩ ⋉ 𝐴 of 𝐴
by ⟨𝑥⟩. Then 𝐺 is a reduced, torsion-free, metabelian, minimax group with
Hirsch number 2. Moreover, 𝐺 is isomorphic to a subgroup of Tr(2, 𝐽). Set
𝐴𝑞 = ℤ[1∕𝑞] ≤ 𝐴, so 𝐴𝑞 is a normal subgroup of 𝐺.
We claim that 𝐻 = ⟨𝑥⟩𝐴𝑞 is permutable but not subnormal in 𝐺. Let 𝜑 be

the natural epimorphism of 𝐺 onto 𝐾 = 𝐺∕𝐴𝑞. Then 𝐾 = ⟨𝑦⟩𝐶, where 𝐶 = 𝐴𝜑

is an additive Prüfer 𝑝-group and 𝑦 = 𝑥𝜑 acts on 𝐶 by 𝑐𝑦 = 𝑞𝑐 for 𝑐 ∈ 𝐶. If
𝑐 ∈ 𝐶 has order 𝑝𝑟 > 𝑞𝑠, then 𝑐𝑦𝑠 = 𝑞𝑠𝑐 ≠ 0, so the action of 𝑦 is faithful. It
follows from Theorem 2.4.11 of [23] that ⟨𝑦⟩ is permutable but not subnormal
in 𝐺, and the claim is proved. Finally, 𝐺 is not hypercentral because it contains
no non-trivial cyclic normal subgroup. □
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3. Extensions of the Maier–Schmid theorem
In this section we deal with Zariski closures of permutable subgroups in lin-

ear groups, andwe prove ourmain results. We start by showing that the Zariski
closure of a permutable subgroup not only inherits the permutability but has
large pieces which are normal in the whole group.

Theorem 3.1. Let 𝑋 be a permutable subgroup of the linear group 𝐺. Then
the Zariski closure 𝑌 of 𝑋 in 𝐺 is permutable and subnormal in 𝐺. Moreover,
𝑌0 ⊴ 𝐺 and 𝑌𝐺∕𝑌𝐺 is nilpotent.

Proof. Let 𝑔 ∈ 𝐺. If 𝑔 has infinite order and 𝑋 ∩ ⟨𝑔⟩ = {1}, then 𝑔 normalizes
𝑋 by [23], Lemma 6.2.3. In this case, set 𝑋𝑔 = 𝑋. If there is some positive
power 𝑔𝑟 (possibly = 1) of 𝑔 lying in 𝑋, then |⟨𝑔⟩𝑋 ∶ 𝑋| ≤ 𝑟 and 𝑔 normalizes
some normal subgroup 𝑋𝑔 of 𝑋 of finite index (≤ 𝑟! for example). The Zariski
closure 𝑌𝑔 of 𝑋𝑔 in 𝐺 is also normalized by 𝑔 and 𝑌 = 𝑋𝑌𝑔, |𝑌 ∶ 𝑌𝑔| is finite,
𝑌0 = (𝑌𝑔)0. Thus, 𝑌0 is normalized by 𝑔, and 𝑌0 is normal in 𝐺. Also, 𝑋𝑌0 is
closed in 𝐺 and hence 𝑌 = 𝑋𝑌0 = 𝑋𝑌𝐺 , because 𝑌0 ≤ 𝑌𝐺 ≤ 𝑌.
If 𝐿 is any subgroup of 𝐺, then𝑋𝐿 = 𝐿𝑋 by permutability and𝑌0𝐿 = 𝐿𝑌0 by

normality. Since 𝑌 = 𝑋𝑌0, so 𝑌 is permutable in 𝐺. Now, 𝑌∕𝑌𝐺 is a finite per-
mutable subgroup of 𝐺∕𝑌𝐺 , and hence Lemma 2.1 yields that 𝑌 is subnormal
in 𝐺. By [25] or [16], Theorem 7.1.10, the group 𝑌∕𝑌𝐺 is nilpotent. But 𝐺∕𝑌𝐺
is linear, so the Fitting subgroup of 𝐺∕𝑌𝐺 is nilpotent and contains 𝑌∕𝑌𝐺 , im-
plying that 𝑌𝐺∕𝑌𝐺 is nilpotent and completing the proof. □

Now, in order to prove the extension of theMaier–Schmid theorem for closed
permutable subgroups of linear groups, we need a couple of auxiliary results.

Lemma3.2. Let𝐻 be afinite subnormal subgroup of a group𝐺. If𝐻𝐺 is Černikov,
then𝐻𝐺 is finite.

Proof. Let 𝐴 be the finite residual of𝐻𝐺 . Now,𝐻 ∩ 𝐴 lies in some finite char-
acteristic subgroup of𝐴, so wemay assume𝐻∩𝐴 = {1}. Since𝐻 is subnormal,
so [𝐻,𝐴] = {1} (see for example [21], Lemma 3.13). Then [𝐻𝐺 , 𝐴] = {1}, so
𝐻𝐺 is central-by-finite, and hence the commutator subgroup 𝐾 of 𝐻𝐺 is finite
by Schur’s theorem. If 𝑚 is the order of 𝐻, then 𝐻 is contained in the finite
𝐺-invariant subgroup {𝑥 ∈ 𝐻𝐺 ∶ 𝑥𝑚 ∈ 𝐾}. Therefore𝐻𝐺 is finite. □

Lemma 3.3. Let 𝒦 be a field. Let 𝑈 be a unipotent normal subgroup of the
subgroup 𝐺 of GL(𝑛,𝒦). Suppose there exists an integer 𝑘 with 𝑊 = [𝑈,𝑘 𝐺]
finite. Then there exists a function 𝜀 = 𝜀(𝑛, |𝑊|) of 𝑛 and |𝑊| only such that
[𝑈,𝜀 𝐺] ≤ 𝑊.

Proof. Since𝑊 is finite, so𝑊 is closed and definable by polynomials in the 𝑛2
variables 𝑋𝑖,𝑗 of total degree at most |𝑊|. Then 𝐺∕𝑊 is isomorphic to some
linear group over𝒦 of degree𝑚, where𝑚 is boundable in terms of 𝑛 and |𝑊|,
cf. the proof of [27], Theorem 6.4. Then [𝑈,𝑚−1 𝐺] ≤ 𝑊 by the main result of
[29] and the lemma follows. □
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Theorem 3.4. Let𝒦 be a field of characteristic 𝑞 ≥ 0,𝐺 a subgroup ofGL(𝑛,𝒦),
and𝑋 a closed permutable subgroup of𝐺. Then𝑋𝐺∕𝑋𝐺 has finite exponent and is
contained in 𝜁𝑘(𝐺∕𝑋𝐺) for some non-negative integer 𝑘. Further, if either 𝑞 = 0,
or 𝑞 > 0 and 𝑋∕𝑋0 contains no element of order 𝑞, then 𝑋𝐺∕𝑋𝐺 is finite, so in
particular [𝑋𝐺 , 𝐺0] ≤ 𝑋𝐺 .

Proof. Replacing𝐺 by𝐺∕𝑋0, wemay assume that𝑋 is finite (𝑋0 is normal in𝐺
by Theorem 3.1). Let 𝜋 = 𝜋(𝑋). A further application of Theorem 3.1 yields
that 𝑋𝐺∕𝑋𝐺 is a nilpotent 𝜋-group. Thus, without loss of generality, we may
assume that𝑋𝐺 = {1}. Now, write𝑋𝐺 = 𝑈×𝐷, where𝑈 is the unipotent radical
of𝑋𝐺 and 𝜋(𝐷)∩𝜋(𝑈) = ∅. Since 𝜋 is finite, then𝐷 is Černikov, so Lemma 3.2
shows that the normal closure of𝑋𝑈∕𝑈 in𝐺∕𝑈 is finite, and hence𝐷 ≃ 𝑋𝐺∕𝑈
is finite; in particular, 𝑋𝐺 has finite exponent because either 𝑈 = {1}, or 𝑞 > 0
and𝑈 is a nilpotent 𝑞-group of finite exponent. Thus, passing to𝐺∕𝑈 (where𝑈
is the Zariski closure of 𝑈 in 𝐺) and 𝐺∕𝐷 reduces us two cases: a) 𝑋𝐺 is finite;
b) 𝑋𝐺 is unipotent. Further, if 𝑞 = 0 or 𝑋 has no element of order 𝑞, then Case
b) does not arise and 𝑋𝐺 is finite.
In both cases we use Theorem 4.2 of [27], stating that for every finitely gener-

ated subgroup𝐻 of𝐺 and for every finite subset 𝑆 of𝐻, there is finite field𝒦𝐻,𝑆
(of characteristic 𝑞 if the latter is positive) and a homomorphism 𝜑𝐻,𝑆 of 𝐻
intoGL(𝑛,𝒦𝐻,𝑆) such that |𝑆𝜑𝐻,𝑆 | = |𝑆| and ℎ𝜑𝐻,𝑆 is unipotent whenever ℎ ∈ 𝐻
is unipotent.

Case a). Let 𝑘 be the order of𝑋𝐺 , and let𝐹 be a finitely generated subgroup of𝐺
such that 𝑋 ≤ 𝐹 and 𝑋𝐹 = 𝑋𝐺 . For each 𝑔 ∈ 𝐹 ⧵𝑋, put 𝑆𝑔 = 𝑋 ∪ {𝑔}. An appli-
cation of the Maier–Schmid Theorem (see [23], Theorem 5.2.3) to 𝐹𝜑𝑋,𝑆𝑔 yields
that [𝑋𝐺 ,𝑘 𝐹] is contained in 𝑋 ⋅ Ker(𝜑𝑋,𝑆𝑔). Moreover, since |𝑆𝑔| = |𝑆

𝜑𝑋,𝑆𝑔
𝑔 |, it

follows that 𝑔 does not belong to 𝑋 ⋅ Ker(𝜑𝑋,𝑆𝑔). Therefore

[𝑋𝐺 ,𝑘 𝐹] ≤
⋂

𝑔∈𝐹⧵𝑋
𝑋 ⋅ Ker(𝜑𝑋,𝑆𝑔) = 𝑋.

The arbitrariness of 𝐹 yields that [𝑋𝐺 ,𝑘 𝐺] ≤ 𝑋, and hence [𝑋𝐺 ,𝑘 𝐺] = {1}
because [𝑋𝐺 ,𝑘 𝐺] ≤ 𝑋𝐺 = {1}. It follows that 𝑋𝐺 ≤ 𝜁𝑘(𝐺) completing the proof
for Case a).

Case b). Let 𝐹 be a finitely generated subgroup of 𝐺 such that 𝑋 ≤ 𝐹. For each
𝑔 ∈ 𝐹⧵𝑋, put 𝑆𝑔 = 𝑋∪{𝑔}. As in the previous paragraph, 𝑔 ∉ 𝑋⋅Ker(𝜑𝑋,𝑆𝑔), and
[𝑋𝐺 ,𝓁 𝐹] ≤ 𝑋 ⋅ Ker(𝜑𝑋,𝑆𝑔) for some 𝓁 possibly depending on 𝑔 and 𝐹. However,
in our case 𝑋𝐺 is unipotent, so also the image of 𝑋𝐹 by 𝜑𝑋,𝑆𝑔 is unipotent, and
hence by Lemma 3.3 we can choose 𝓁 dependent on |𝑋| and 𝑛 but independent
of 𝑔 and 𝐹. Again,

[𝑋𝐺 ,𝓁 𝐹] ≤
⋂

𝑔∈𝐹⧵𝑋
𝑋 ⋅ Ker(𝜑𝑋,𝑆𝑔) = 𝑋,
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and so also [𝑋𝐺 ,𝓁 𝐺] = {1}. Therefore 𝑋𝐺 ≤ 𝜁𝓁(𝐺) and the proof is complete.
□

Corollary 3.5. Let 𝐺 be a connected linear group over a field of characteristic 0.
Then the Zariski closure of any permutable subgroup is normal. In particular, all
closed permutable subgroups of 𝐺 are normal.

Proof. Let 𝑋 be any permutable subgroup of 𝐺 and let 𝑌 be the Zariski clo-
sure of 𝑋 in 𝐺. Then 𝑌 is permutable in 𝐺 by Theorem 3.1 and so [𝑌𝐺 , 𝐺] =
[𝑌𝐺 , 𝐺0] ≤ 𝑌𝐺 by Theorem 3.4. Therefore 𝑌 is normal in 𝐺. □

An analog of theMaier–Schmid theorem for reduced soluble(-by-finite)min-
imax groups— these groups are linear by Theorem 1.1 and Corollary 1.3 of [28]
— has been obtained in [24]. In this context, core-free permutable subgroups
have been proved to (be finite and to) lie in the hypercentre. We also refer the
reader to [6] for the proof of the same results because the reviewer of [24] for
MathRev points out that the proof of Lemma 1 should be amended, while ex-
ample (i) in Section 5 is not working (our Example 2.16 can be used in place
of the wrong example in Section 5 of [24]). Note that the hypercentre of a re-
duced soluble-by-finiteminimax group coincideswith a finite term of the upper
central series.

Theorem 3.6. A soluble-by-finite reduced minimax group 𝐺 has finite central
height.

Proof. It follows fromTheorem1.1 andCorollary 1.3 of [28] that𝐺 embeds into
GL(𝑛, 𝑅) for some integer 𝑛 and finitely generated subring 𝑅 of the rationalsℚ.
Then 𝐺 has finite central height by Corollary 8.9 of [27]. □

It is apparently unknown if an analogue of the aforementionedMaier–Schmid
result holds for a finitely generated soluble-by-finite minimax group 𝐺. Of
course, in this case every core-free permutable subgroup 𝐻 of 𝐺 must be fi-
nite, and we may even assume that 𝐻𝐺 is finite and abelian. Thus, a positive
answer to this question is achieved in case𝐻 is closed in the profinite topology
of 𝐺.
In this context, we recall a couple of interesting results due toBrewster andLen-

nox [5]: a closed (in the profinite topology) permutable subgroup𝐻 of a soluble
minimax group is subnormal and𝐻𝐺∕𝐻𝐺 is finite.
Finally, wewish to note that a dual of Lemma 2.1 does not hold in the context

of soluble-by-finite reduced minimax groups. The following example, which
illustrates this fact, is due to the referee, to whom we are sincerely grateful.

Example 3.7. There exist soluble-by-finite reduced minimax groups having
polycyclic-by-finite permutable subgroups that are not subnormal.
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Proof. Let 𝑝 be a prime such that 2 is a square modulo 𝑝 (for instance, 𝑝 = 7).
By Hensel’s lemma, 2 is the square of a 𝑝-adic integer 𝑡 = 𝑡0 + 𝑡1𝑝 + 𝑡2𝑝2 + …,
where 0 ≤ 𝑡𝑖 < 𝑝. In particular, 𝑡2 ≡𝑝𝑖 2 for every positive integer 𝑖.
Let 𝐻 be the abelian group generated by an element 𝑥 and a sequence of

elements 𝑦0, 𝑦1, … with relations 𝑦𝑝𝑖+1 = 𝑦𝑖𝑥𝑡𝑖 . Then 𝐻 is torsion-free of rank 2,
the subgroup𝐾 = ⟨𝑥, 𝑦0⟩ is free abelian of rank 2, and𝐻∕𝐾 is a Prüfer 𝑝-group.
Let 𝛼 be the automorphism of 𝐻 mapping 𝑥 to 𝑥𝑦0, 𝑦0 to 𝑥2𝑦0 and more

generally mapping 𝑦𝑖+1 to the unique element 𝑦𝛼𝑖+1 of𝐻 such that

(
𝑦𝛼𝑖+1

)𝑝𝑖+1
= 𝑦𝛼0 (𝑥

𝛼)𝑡0+𝑡1𝑝+…+𝑡𝑖𝑝𝑖 .

Let’s just prove that such an assignment is possible for 𝑖 = 1 and 𝑖 = 2, the
general case being dealt in a similar way. First, we need to solve the equation

𝑦𝑝𝑛11 𝑥𝑝𝑚1 = 𝑦𝑛10 𝑥
𝑛1𝑡0+𝑝𝑚1 = 𝑥2+𝑡0𝑦1+𝑡00

for integers 𝑛1 and𝑚1. Thus,

𝑛1 = 1 + 𝑡0 and 𝑛1𝑡0 + 𝑝𝑚1 = 2 + 𝑡0.

By replacing the former equation into the latter, we obtain 𝑡20+𝑝𝑚1 = 2, which
we know is solvable by the choice of 𝑡. This defines 𝑦𝛼1 .
Next, we move to 𝑦𝛼2 . In this case, we need to solve the equation

𝑦𝑝
2𝑛2

2 𝑥𝑝2𝑚2 = 𝑦𝑛20 𝑥
𝑛2𝑡0+𝑛2𝑡1𝑝+𝑝2𝑚2 = 𝑥2+𝑡0+𝑡1𝑝𝑦1+𝑡0+𝑡1𝑝0 ,

which gives 𝑛2 = 1+𝑡0+𝑡1𝑝 and 𝑛2𝑡0+𝑛2𝑡1𝑝+𝑝2𝑚2 = 2+𝑡0+𝑡1𝑝. Replacing
the former into the latter, we obtain 𝑝2𝑚 = 2 − (𝑡20 + 2𝑡0𝑡1𝑝 + 𝑡21𝑝

2), which is
again true by the choice of 𝑡.
Since ⟨𝑥, 𝑦0⟩ = ⟨𝑥𝑦0, 𝑥2𝑦0⟩, 𝐾𝛼 = 𝐾. Also, we can easily check that 𝛼 acts

on𝐻∕𝐾 as a non-zero 𝑝-adic integer equivalent to 1modulo 𝑝. Let𝐺 = ⟨𝛼⟩⋉𝐻
be the natural semidirect product. Then 𝑋 = ⟨𝛼⟩𝐾 is a permutable subgroup
of 𝐺 (because 𝑋∕𝐾 is a permutable subgroup of 𝐺∕𝐾) which is not subnormal
(because 𝑋∕𝐾 is not subnormal in 𝐺∕𝐾). □

In the remainder of this sectionwedeal brieflywith quasihamiltonian groups.
Recall that a group 𝐺 is quasihamiltonian if all its subgroups are permutable.
The structure of quasihamiltonian groups was completely described by Iwasa-
wa (see [23], Chapter 2 for details). It follows from Iwasawa’s description that
any quasihamiltonian group is hypercentral and even nilpotent if its torsion
subgroup has finite exponent. Although quasihamiltonian groups need not be
nilpotent in general, this is the case within the universe of linear groups.

Theorem 3.8. Let 𝐺 be a linear quasihamiltonian group. Then 𝐺 is nilpotent
and abelian-by-finite.

Proof. Since𝐺 is quasihamiltonian, it is hypercentral. ThenbyTheorems 8.6 ii)
and 8.14 of [27], there is a positive integer 𝑐 with 𝐺∕𝜁𝑐(𝐺) periodic. Further
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𝜁𝑐(𝐺) is closed in 𝐺, so 𝐺∕𝜁𝑐(𝐺) is linear and each of its subgroups is subnor-
mal by Corollary 2.6. But then 𝐺∕𝜁𝑐(𝐺) is nilpotent by [11], Corollary 3.6, and
hence 𝐺 is nilpotent.
In order to show that 𝐺 is abelian-by-finite, we may assume that 𝐺 is con-

nected, so 𝐺 centralizes every finite subgroup with finitely many conjugates.
If 𝐺 is not periodic and not abelian, then the torsion subgroup 𝑇 of 𝐺 is central
and 𝐺∕𝑇 is locally cyclic (see [23], Theorem 2.4.11 and Lemma 2.4.8), so 𝐺 is
abelian and we have a contradiction. If 𝐺 is periodic and non-abelian, then 𝐺
has a central subgroup 𝑍 such that 𝐺∕𝑍 is locally cyclic (see [23], Theorems
2.4.13 and 2.4.14), so we again obtain a contradiction. □

4. Linear 𝑷𝑻-groups
Let 𝐺 be a group. It is proved by Zacher in [30] that if 𝐺 is finite, then 𝐺 is

a 𝑃𝑇-group (that is, the property of being a permutable subgroup is transitive
in 𝐺) if and only if the permutable subgroups of 𝐺 are precisely the subnor-
mal ones. The structure of arbitrary soluble 𝑃𝑇-groups has been described by
Menegazzo in [18] and [19]. In particular, as remarked in Section 3 of [19],
the result of Zacher is still true if the group is soluble, and either periodic or
torsion-free, but is false when it is neither. In this section, we extend Zacher’s
theorem to periodic linear groups and to soluble linear groups.

Theorem 4.1. Let 𝐺 be a homomorphic image of a periodic linear group. Then
permutability is a transitive relation in 𝐺 if and only if it coincides with subnor-
mality.

Proof. Suppose that permutability is a transitive relation in 𝐺, so in particu-
lar each subnormal subgroup of 𝐺 is permutable. On the other hand, all per-
mutable subgroups of 𝐺 are subnormal by Corollary 2.6, and so permutable
subgroups and subnormal subgroups of 𝐺 coincide.
Assume conversely that the subnormal subgroups of 𝐺 are precisely the per-

mutable ones. If 𝐻 is a permutable subgroup of 𝐾, and 𝐾 is a permutable sub-
group of 𝐺, then Corollary 2.6 yields that 𝐻 is subnormal in 𝐾, and that 𝐾 is
subnormal 𝐺. Thus, 𝐻 is subnormal in 𝐺, and hence 𝐻 is even permutable in
𝐺 by the hypothesis. □

Remark 4.2. In the following, we are mostly dealing with groups in which the
subnormal cyclic subgroups are permutable, that is, with groups 𝐺 in which all
subgroups of the Baer radical 𝐵(𝐺) (i.e. the subgroup generated by all subnor-
mal abelian subgroups) are permutable in𝐺—call𝔅 the previous property. In
particular, if 𝐺 ∈ 𝔅, then 𝐵(𝐺) is quasihamiltonian. The reason for which we
do not frequently make use of the Baer radical is that in the linear case and in
the image of periodic linear case it coincides with the Fitting subgroup.
However, in order to better explain the relevance of the Baer radical, we are

going to make a couple of remarks in the arbitrary case. First, it is easy to see
(some of the arguments can be found in the next results) that every 𝑔 ∈ 𝐺 ∈ 𝔅
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with 𝐵(𝐺) ∩ ⟨𝑔⟩ = {1} normalizes all subgroups of 𝐵(𝐺), and also that 𝐵(𝐺) is
Dedekind if𝐺∕𝐵(𝐺) is not periodic. Also, it follows from Iwasawa’s results that
if 𝐺 ∈ 𝔅, then 𝐵(𝐺) is actually the Fitting subgroup of 𝐺. Moreover, the prop-
erty that all subgroups of the Fitting subgroup be permutable is weaker than
𝔅, Baer groups (groups coinciding with their Baer radical) with trivial Fitting
subgroups providing obvious examples.
Lemma 4.3. Let 𝐺 be a soluble linear group whose subnormal cyclic subgroups
are permutable. Then 𝐺0 is abelian.
Proof. Clearly, we may assume that 𝐺 = 𝐺0 is connected. By Theorem 3.8, we
only need show that 𝐺 is nilpotent.
Let 𝑈 be the unipotent radical of 𝐺. Suppose first that 𝑈 is torsion-free, let

𝐶 be any cyclic subgroup of 𝑈, and 𝑥 ∈ 𝐺. Then 𝐶 is permutable in 𝐺, so
if ⟨𝑥⟩ ∩ 𝐶 = {1}, then 𝐶 is normalized by 𝑥 (see also [23], Lemma 6.2.3). If ⟨𝑥⟩∩
𝐶 ≠ {1}, then ⟨𝑥, 𝐶⟩ is central-by-finite, so ⟨𝑥, 𝐶⟩′ is finite by Schur’s theorem.
But ⟨𝑥, 𝐶⟩′ ≤ 𝑈 and so 𝑥 centralizes 𝐶. In any case, 𝐺 centralizes 𝐶, because 𝐺
is connected. The arbitrariness of 𝐶 yields that 𝐺 is nilpotent.
Suppose now 𝑈 is periodic. If 𝐺∕𝑈 is periodic, then 𝜋(𝑈) ∩ 𝜋(𝐺∕𝑈) = ∅.

Now, every cyclic subgroup of 𝜁1(𝑈) is permutable in 𝐺 and so by Dedekind
Modular Law it is normalized by any 𝜋(𝐺∕𝑈)-element of 𝐺. Thus, every ele-
ment of 𝜁1(𝑈) is normalized by 𝐺, so has finitely many conjugates in 𝐺 and it
is consequently centralized by 𝐺. It follows that 𝜁1(𝑈) ≤ 𝜁1(𝐺). Repeating this
argument yields that 𝑈 ≤ 𝜁𝑛(𝐺) for some positive integer 𝑛. In particular, 𝐺 is
nilpotent.
Assume finally that 𝐺∕𝑈 is not periodic. Since 𝐺∕𝑈 is abelian, so 𝐺 is gen-

erated by the elements that are of infinite order modulo𝑈, and hence an argu-
ment similar to the one in the second paragraph shows that every cyclic sub-
group of 𝑈 is normal in 𝐺. On the other hand, 𝐺 is connected, so 𝑈 is central-
ized by 𝐺. Again, 𝐺 is nilpotent. □

Theorem 4.4. Let𝐺 be a soluble-by-finite linear group. The following conditions
are equivalent:

(1) Every subnormal subgroup of 𝐺 is permutable.
(2) The subnormal subgroups of 𝐺 coincide with the permutable ones.
(3) 𝐺 is a 𝑃𝑇-group.

Proof. Let 𝑆 denote the soluble radical of 𝐺, so here 𝐺∕𝑆 is finite. Suppose (1)
holds for 𝐺. Then (1) holds for 𝑆 and 𝑆0 is abelian by Lemma 4.3. Hence every
permutable subgroup of 𝐺 is subnormal in 𝐺 by Corollary 2.3. Thus (2) holds
for 𝐺. Since subnormality is transitive, if (2) holds for 𝐺, then 𝐺 is a 𝑃𝑇-group.
Finally, normal subgroups are always permutable, so (3) implies (1). □

Remark 4.5. In the statement of Theorem 4.4, we can replace the hypothesis
that 𝐺 is soluble-by-finite by the hypothesis that 𝐺 is soluble-by-Černikov be-
cause every soluble-by-Černikov group is obviously soluble-by-finite, but not
by the hypothesis that 𝐺 is soluble-by-periodic (see Example 2.16).
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Corollary 4.6. Let 𝐺 be a soluble linear 𝑃𝑇-group. Then every subnormal sub-
group of 𝐺 is a 𝑃𝑇-group. Moreover, 𝐺0 is abelian.

The structure of a non-periodic soluble linear 𝑃𝑇-group 𝐺 can be easily de-
duced from Lemma 1.2 and Theorem 2.3 of [19], Theorem 2.2 of [27], and the
fact that the connected component𝐺0 centralizes every finite normal subgroup
of 𝐺. Thus, for example, if the set of all periodic elements of 𝐺 is a subgroup,
then every Prüfer subgroup is central in 𝐺.
It follows from a theorem of Zacher (see [30] and [4], Theorem 1) that a sub-

group of a finite soluble 𝑃𝑇-group is itself a 𝑃𝑇-group. This is not true of soluble
linear groups in general.

Example 4.7. There exist periodic and non-periodic soluble (affine) algebraic
linear 𝑃𝑇-groups having a finite subgroup that is not a 𝑃𝑇-group.

Proof. Let𝒦 be any algebraically closed field of characteristic not 2, and put

𝐷 = {(𝑥 0
0 𝑥−1) ∶ 𝑥 ∈ 𝒦×} .

Consider the closed subgroup 𝐺 = ⟨𝜎⟩ ⋉ 𝐷 of GL(2,𝒦), where

𝜎 = (0 1
1 0) .

Clearly, 𝐷 is divisible abelian, while 𝜎 has order 2 and inverts 𝐷. Since ⟨𝜎⟩𝐺 =
𝐺, the only permutable subgroups of 𝐺 are 𝐺 and the subgroups of 𝐷. Hence
𝐺 is a 𝑃𝑇-group. However, 𝐺 has a subgroup 𝑋 that is isomorphic with the
dihedral group of order 8, and the latter is not a 𝑃𝑇-group. □

Remark 4.8. Further results in this context can be found in [9], where, among
other things, it is shown that a (homomorphic image of a) periodic linear group
is a soluble 𝑃𝑇-group if and only if each subnormal subgroup of a Sylow sub-
group is permutable in the corresponding Sylow normalizer— also a character-
ization of soluble 𝑃𝑇-groups that are homomorphic images of a periodic linear
group is given. Note that these results use Corollary 2.6 and Theorem 4.1.

It is not possible to weaken conditions (1) and (2) in the statement of The-
orem 4.4 by just requiring that the subnormal cyclic/nilpotent subgroups are
permutable (or that the cyclic/nilpotent subnormal subgroups coincide with
the cyclic/nilpotent permutable subgroups), the infinite dihedral group being
a counterexample (a finite example is the dihedral group of order 24); note also
that the permutable subgroups of the infinite dihedral group are subnormal
(see for example Corollary 2.3). Despite these examples, finite groups whose
cyclic subnormal subgroups are permutable have been studied by Robinson
in [22]. In the remainder of the section, we deal with certain types of infinite
groups whose cyclic subnormal subgroups satisfy certain permutability condi-
tions, such as the condition of permuting with the Sylow subgroups. In this
respect, our results extend results in [1] and [22].
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Lemma 4.9. Let 𝐺 be a torsion-free soluble group with all its cyclic subnormal
subgroups permutable in 𝐺. Then 𝐺 is abelian.

Proof. Let 𝐹 be the Fitting subgroup of 𝐺, 𝑢 ∈ 𝐺 ⧵ {1} and 𝑣 ∈ 𝐹 ⧵ {1}. Then
𝑈 = ⟨𝑢⟩ is infinite cyclic, and𝑉 = ⟨𝑣⟩ is permutable in 𝐺 because every finitely
generated subgroup of 𝐹 is subnormal. If 𝑈 ∩ 𝑉 = {1}, then 𝑈 normalizes 𝑉
by [16], Lemma 7.1.7. If 𝑈 ∩ 𝑉 ≠ {1}, then 𝑈𝑉 is central-by-finite and so even
finite-by-abelian by Schur’s theorem; but 𝐺 is torsion-free, and hence 𝑈𝑉 is
abelian. In both cases 𝑉 is normalized by𝑈. The arbitrariness of 𝑉 shows that
either 𝑢 centralizes 𝐹 or inverts 𝐹 (see [23], Theorems 1.5.7 and 1.5.8). Now, 𝐺
is soluble, so 𝐶𝐺(𝐹) ≤ 𝐹, and hence either 𝐺 is abelian, or 𝐺 = ⟨𝑤⟩𝐹, where
𝑤 inverts 𝐹 and |𝐺 ∶ 𝐹| = 2. But 𝑤2 ∈ 𝐶𝐺(𝐹) ≤ 𝐹 is clearly not inverted by 𝑤.
Thus, 𝐺 is abelian. □

Theorem 4.10. Let 𝐺 be a soluble group such that the subset 𝑇 of all its elements
of finite order is a proper subgroup of 𝐺. Assume further that 𝐺∕𝐵 is periodic,
where 𝐵 is the Baer radical of𝐺, and that all cyclic subnormal subgroups of𝐺 are
permutable in 𝐺.

(1) If 𝐺∕𝑇 is not torsion-free abelian of rank 1, then 𝐺 is abelian.
(2) If 𝐺∕𝑇 is torsion-free abelian of rank 1, then 𝑇 is abelian with all its sub-

groups normal in 𝐺. Further, if 𝐺∕𝐶𝐺(𝑇) is finite, then 𝐺∕𝜁1(𝐺) is peri-
odic.

In particular, if 𝑇 has finite exponent, then 𝐺∕𝐶𝐺(𝑇) is finite.

Proof. First, note that 𝐵 is actually the Fitting subgroup of𝐺 (see Remark 4.2).
Clearly, every finitely generated subgroup of 𝐵 is subnormal in 𝐺 and so is per-
mutable in 𝐺. Also, 𝐵 is not contained in 𝑇, otherwise 𝐺 is periodic. If 𝑢 ∈ 𝑇
and 𝑣 ∈ 𝐵 ⧵ 𝑇, then ⟨𝑢, 𝑣⟩ = ⟨𝑢⟩⟨𝑣⟩ and ⟨𝑢⟩ = ⟨𝑢, 𝑣⟩ ∩ 𝑇 is normalized by 𝑣.
Thus, ⟨𝑢⟩ is normalized by ⟨𝐵 ⧵ 𝑇⟩ = 𝐵, so ⟨𝑢, 𝐵⟩ is a Baer group. Since 𝐺 is
soluble, if 𝑇 ≰ 𝐵, then we may choose 𝑢 so that ⟨𝑢, 𝐵⟩∕𝐵 ≠ {1} is subnormal
in 𝐺∕𝐵, and so we obtain the contradiction 𝑢 ∈ ⟨𝑢, 𝐵⟩ ≤ 𝐵. Therefore 𝑇 ≤ 𝐵.
Since 𝐵 is quasihamiltonian and not periodic, so 𝑇 is abelian. Moreover, ei-
ther 𝐵 is abelian, or 𝐵∕𝑇 is torsion-free abelian of rank 1. In the latter case,
𝐺∕𝐶𝐺(𝐵∕𝑇) has index at most 2, so 𝐺∕𝑇 acts trivially or as the inversion on
𝐵∕𝑇; but 𝐺∕𝑇 is torsion-free and 𝐺∕𝐵 is periodic, so 𝐵∕𝑇 is central in 𝐺∕𝑇 and
consequently 𝐺∕𝑇 is abelian by Schur’s theorem.
Let 𝑥 be a non-trivial, non-periodic element of 𝐵, and let 𝑦 be any non-

periodic element of 𝐺 that does not normalize ⟨𝑥⟩. Since ⟨𝑥⟩ is subnormal and
so permutable in 𝐺, 𝑍 = ⟨𝑦⟩ ∩ ⟨𝑥⟩ ≠ {1}. Clearly, 𝑍 is central of finite index in
⟨𝑦⟩⟨𝑥⟩. Consequently, [𝑦, 𝑥] ∈ 𝑇. In particular, every subgroup of𝐵∕𝑇 is normal
in 𝐺∕𝑇. If 𝐵∕𝑇 is not central in 𝐺∕𝑇, then 𝐺∕𝑇 inverts 𝐵∕𝑇, which impossible
being 𝐺∕𝐵 periodic. Thus, 𝐵∕𝑇 ≤ 𝜁1(𝐺∕𝑇) and so 𝐺′𝑇∕𝑇 is periodic by Schur’s
theorem. It follows that 𝐺∕𝑇 is abelian.
Suppose 𝐵∕𝑇 is not torsion-free abelian of rank 1, so 𝐵 is abelian. Let

𝑣 ∈ 𝐵 ⧵ 𝑇. Then there is𝑢 ∈ 𝐺 of infinite order such that ⟨𝑢⟩𝑇 ∩ ⟨𝑣⟩𝑇 = 𝑇. Now,
⟨𝑣⟩ is subnormal in 𝐺, so ⟨𝑣⟩ is permutable, and hence ⟨𝑣⟩ is normalized by 𝑢
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(see [16], Lemma 7.1.7). If 𝑤𝑇 belongs to the isolator of ⟨𝑣⟩𝑇∕𝑇 in 𝐺∕𝑇, then
⟨𝑤𝑢⟩𝑇 ∩ ⟨𝑣⟩𝑇 = 𝑇, so 𝑤𝑢, 𝑢 and hence 𝑤 all normalize ⟨𝑣⟩. Since 𝐺 = ⟨𝐺 ⧵ 𝑇⟩,
so ⟨𝑣⟩ is normal in 𝐺. Consequently, every subgroup of 𝐵 is normal in 𝐺.
Finally, 𝐵 is Dedekind and non-periodic, so 𝐵 is abelian. Since the only non-

trivial power automorphism of𝐵 is the inversion, and𝐺∕𝐵 is periodic, it follows
that no non-periodic element of𝐺 can invert 𝐵 (otherwise they would act as the
inversion on themselves), and hence 𝐶𝐺(𝐵) = 𝐺. But 𝐺 is soluble and hence
𝐵 = 𝐶𝐺(𝐵) = 𝐺 is abelian.

What we have proved shows that 𝐺∕𝑇 is always abelian and that if 𝐺∕𝑇 does
not have rank 1, then 𝐺 is abelian.

Assumefinally that𝐺∕𝑇 is torsion-free abelian of rank 1with𝐺∕𝐶𝐺(𝑇)finite.
Since 𝐺∕𝑇 has rank 1 and 𝑇 ≤ 𝐶𝐺(𝑇), so there exists 𝑔 ∈ 𝐺 ⧵ 𝑇 such that 𝐺 =
⟨𝑔⟩𝐶𝐺(𝑇). Moreover, 𝐶𝐺(𝑇) is abelian because it is locally cyclic over its centre.
Let 𝑠 be a positive integer such that 𝑔𝑠 ∈ 𝐶𝐺(𝑇). Then 𝑔𝑠 ∈ 𝜁1(𝐺). Finally,
the groups 𝑇 and 𝐺∕⟨𝑔𝑠⟩𝑇 and hence 𝐺∕⟨𝑔𝑠⟩ are all periodic. The statement is
proved. □

Corollary 4.11. Let𝐺 be a soluble linear group such that the subset 𝑇 of all its el-
ements of finite order is a proper subgroup of𝐺. If all subnormal cyclic subgroups
of 𝐺 are permutable, then 𝐺 satisfies (1) and (2) of Theorem 4.10.

Proof. This is a consequence of Lemma 4.3 and Theorem 4.10. □

Theorem 4.12. Let𝐺 be a soluble homomorphic image of a periodic linear group
such that every cyclic subnormal subgroup of 𝐺 permutes with every Sylow sub-
group of𝐺. Let𝐹,𝐻 and𝑅 be respectively the Fitting subgroup, theHirsch–Plotkin
radical and the locally nilpotent residual of 𝐺. Then:

(1) 𝑅 ≤ 𝐹 ≤ 𝐶𝐺(𝑅) ≤ 𝐻.
(2) 𝑅 is abelian and the 𝑝′-elements of 𝐺 induce power automorphisms on

the Sylow 𝑝-subgroup 𝐹𝑝 of 𝐹 for every prime 𝑝.
(3) 𝐺 is hypercyclic, so 𝐺 is nilpotent-by-finite, (locally nilpotent)-by-(finite

abelian).
(4) 𝑅 ≤ 𝑂2′(𝐺) = 𝑂2(𝐺), so 2 ∉ 𝜋(𝑅).
Assume further that all cyclic subnormal subgroups of 𝐺 are permutable in 𝐺.

Then:
(5) 𝜋(𝑅) ∩ 𝜋(𝐻∕𝑅) = ∅, so 𝐶𝐺(𝑅) = 𝐻.
(6) 𝐺′ is contained in a metabelian subgroup of𝐻 of finite index. In particu-

lar, 𝐺′′′ = {1}.
(7) 𝐺 induces power automorphisms on 𝑅.

Proof. Let 𝑝 be a prime, and let 𝑁 be any nilpotent normal 𝑝-subgroup of 𝐺.
If𝑄 is any Sylow 𝑞-subgroup of𝐺 for some prime 𝑞 ≠ 𝑝, then ⟨𝑎⟩𝑄 is a subgroup
for every 𝑎 ∈ 𝑁. It follows that ⟨𝑎⟩ is normalized by 𝑄. Hence the 𝑝′-elements
induce power automorphisms in 𝑁.
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If 𝑁 is non-abelian, then all 𝑝′-power automorphisms of 𝑁 are trivial, so
𝐺∕𝐶𝐺(𝑁) is a 𝑝-group. If 𝑁 is abelian, then the power automorphisms are in
the centre of Aut(𝑁). Therefore 𝐺∕𝐶𝐺(𝑁) is locally nilpotent.
Now, 𝐹 has finite index in 𝐻, and the above yields 𝑅 ≤ 𝐶𝐺(𝐹) = 𝜁1(𝐹).

Thus, 𝑅 is abelian and 𝑅 ≤ 𝐹 ≤ 𝐶𝐺(𝑅). But 𝐶𝐺(𝑅) is locally nilpotent, and so
𝐶𝐺(𝑅) ≤ 𝐻. This proves (1) and (2).
The fact that 𝐺 is hypercyclic follows at once from (2), noting that the Sy-

low 𝑝-subgroups of 𝐺 are hypercentral for every prime 𝑝. Then (3) essentially
follows from Theorem 11.21 of [27] (see also [13], Theorem 2.12). Point (4)
follows from the fact that 𝐺∕𝑂2′(𝐺) is a 2-group (recall that 𝐺 is hypercyclic).
Now, suppose all cyclic subnormal subgroups of𝐺 are permutable in𝐺. Since

the Sylow 𝑞-subgroups of 𝐺 are either nilpotent or Černikov for every prime 𝑞,
we see easily that, for any odd prime 𝑞, the Sylow 𝑞-subgroup of 𝐻 is nilpo-
tent and is contained in a finite term of the upper central series of any Sylow
𝑞-subgroup of 𝐺 containing it. In particular, 𝑂2′(𝐻) = 𝑂2′(𝐹).
Let 𝑝 ∈ 𝜋(𝑅) ∩ 𝜋(𝐻∕𝑅), and consider a 𝑝′-element 𝑥 of 𝐺. In particular, 𝑥

induces power automorphisms on the Sylow 𝑝-subgroup𝐻𝑝 of𝐻 by (2). If𝐻𝑝
is non-abelian, then [𝐻𝑝, 𝑥] = {1}. If 𝐻𝑝 is abelian, then the fact that 𝑝 is odd
and that 𝑥 acts trivially on 𝐻𝑝𝑅∕𝑅 shows that 𝑥 acts trivially on 𝐻𝑝. However,
this implies that 𝐺∕𝑂𝑝′(𝐺) is nilpotent, a contradiction. This proves (5).
By (5),𝐻 is a direct product of 𝑅 and a Hall subgroup𝐾 normal in𝐺. Since 𝑅

and 𝐺∕𝐻 are abelian, so 𝐺∕𝐾 is metabelian. Now, 𝐻 has finite index in 𝐺, so
by the permutability of the subnormal cyclic subgroups of 𝐺, there is a normal
subgroup𝑀 of 𝐺 with 𝐺∕𝑀 a finite elementary abelian 2-group such that ev-
ery Prüfer subgroup of 𝐺∕𝑅 is central in 𝑀, so (𝐻 ∩𝑀)∕𝑅 is nilpotent. Thus
𝐻∩𝑀 is nilpotent, quasihamiltonian and hencemetabelian (see [23], Theorem
2.4.22). Therefore𝐻 ∩𝑀 is metabelian. Since 𝐺′ ≤ 𝐻 ∩𝑀, so (6) is proved.
If 𝑋 ≤ 𝑌 are finite subgroups of 𝐺 with (locally) nilpotent residuals 𝑅𝑋 and

𝑅𝑌 , then clearly 𝑅𝑋 ≤ 𝑅𝑌 ≤ 𝑅, 𝑅1 =
⋃

𝑋 𝑅𝑋 is a normal subgroup of 𝐺 modulo
which 𝐺 is locally nilpotent and hence 𝑅1 = 𝑅.
Let 𝑥 ∈ 𝑅 and 𝑔 ∈ 𝐺. We have only to prove that 𝑔 normalizes ⟨𝑥⟩. Set

𝑋 = ⟨𝑥, 𝑔⟩. There exists a finite subgroup 𝑌 of 𝐺 such that 𝑋 ≤ 𝑌 and 𝑥 ∈ 𝑅𝑌 .
By [12], Satz VI.7.15, if𝐶 is a Carter subgroup of𝑌, then𝑌 = 𝐶𝑅𝑌 with𝐶∩𝑅𝑌 =
{1}. Then 𝑔 = 𝑐𝑦 for some 𝑐 ∈ 𝐶 and 𝑦 ∈ 𝑅𝑌 . But ⟨𝑥⟩ is subnormal and hence
permutable, so ⟨𝑐, 𝑥⟩ = ⟨𝑐⟩⟨𝑥⟩ and ⟨𝑥⟩ = 𝑅𝑌 ∩ ⟨𝑐⟩⟨𝑥⟩ is normal in ⟨𝑐, 𝑥⟩. Thus, 𝑐
normalizes ⟨𝑥⟩, 𝑦 centralizes ⟨𝑥⟩ (recall 𝑅 is abelian) and so 𝑔 = 𝑐𝑦 normalizes
⟨𝑥⟩. The proof is complete. □

Remark 4.13. The situation of Theorem 4.12 just for finite soluble groups is
discussed in [22]. Also, the consideration of any finite simple group shows that
we cannot obtain an analogue of the above result in the soluble-by-finite con-
text.

Of course, some of the conditions in Theorem 4.12 are even sufficient, as
shown for example by the following result.
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Theorem 4.14. Let𝐺 be a homomorphic image of a periodic linear group having
a normal subgroup 𝑅 satisfying:

(i) 𝑅 is abelian and 𝐺∕𝑅 is residually (locally nilpotent).
(ii) All elements of 𝐺 induce power automorphisms in 𝑅.
(iii) 𝜋(𝑅) ∩ 𝜋(𝐻∕𝑅) = ∅, where𝐻 is the Hirsch–Plotkin radical of 𝐺.
(iv) Each subnormal cyclic subgroup of𝐻∕𝑅 is permutable in 𝐺∕𝑅.

Then all subnormal cyclic subgroups of 𝐺 are permutable in 𝐺.

Proof. Let ⟨𝑔⟩ be a subnormal𝑝-subgroup for someprime𝑝. It suffices to prove
that ⟨𝑔⟩ permutes with an arbitrary cyclic 𝑞-subgroup ⟨𝑥⟩ of 𝐺, where 𝑞 is any
prime. If 𝑝 ∈ 𝜋(𝑅), then 𝑔 ∈ 𝑅 by (iii), so ⟨𝑔⟩ is normal in 𝐺 by (ii).
Assume 𝑝 ∉ 𝜋(𝑅). If 𝑞 ≠ 𝑝, then [𝑥, 𝑔] ∈ 𝑅. But [𝑥, 𝑔] is a 𝑝-element,

so [𝑥, 𝑔] = 1 since 𝑝 ∉ 𝜋(𝑅). Finally, let 𝑞 = 𝑝. Then 𝑥 and 𝑔 both belong
to some Sylow 𝑝-subgroup 𝑃. By condition (iv), we have ⟨𝑥⟩⟨𝑔⟩𝑅 = ⟨𝑔⟩⟨𝑥⟩𝑅.
Intersecting both sides with 𝑃 and noting that 𝑝 ∉ 𝜋(𝑅), we obtain ⟨𝑥⟩⟨𝑔⟩ =
⟨𝑔⟩⟨𝑥⟩. The statement is proved. □

The following example shows that Theorem 4.12 cannot be much improved.

Example 4.15. There exists a metabelian periodic linear group 𝐺 satisfying the
following properties.

(1) The subnormal subgroups of 𝐺 permute with the Sylow subgroups of 𝐺.
(2) 𝜋(𝑅) ∩ 𝜋(𝐺∕𝑅) ∩

(
ℙ ⧵ {2}

)
≠ ∅, where 𝑅 denotes the locally nilpotent

residual of 𝐺.
Moreover, 𝐺 can be chosen of any characteristic.

Proof. Let𝒦 be an algebraically closed field with char(𝒦) ≠ 3. Set

𝑅 = {diag(𝑎, 𝑏, 𝑎−1𝑏−1) ∶ 𝑎, 𝑏 3-elements of𝒦∗},

so 𝑅 ≤ 𝐷(3,𝒦)∩SL(3,ℱ) is a divisible abelian 3-group of rank 2. Consider two
automorphisms 𝑥 and 𝑦 of 𝑅, where 𝑥 is induced by conjugation of 𝑅 by the
matrix

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

and 𝑦 is the inversion. Let 𝐺 be the split extension of 𝑅 by ⟨𝑥, 𝑦⟩ ≤ R. Then
[𝑥, 𝑦] = 1, 𝐺∕𝑅 is cyclic of order 6, 𝑃 = ⟨𝑥⟩𝑅 is the unique Sylow 3-subgroup
𝑃 of 𝐺, and the Sylow 2-subgroups of 𝐺 are conjugate to ⟨𝑦⟩. Clearly, [𝑅, 𝑦] =
𝑅2 = 𝑅 = [𝑅, 𝑥]. Also, 𝐺 is Černikov, so it is periodic linear. More precisely, by
construction 𝑃 is a subgroup ofGL(3,𝒦), so𝐺 can be embedded intoGL(6,𝒦).
Furthermore, the locally nilpotent residual of 𝐺 is 𝑅 and 𝜋(𝑅) ∩ 𝜋(𝐺∕𝑅) = {3}.
This proves (2).
We need to check that every subnormal subgroup of 𝐺 permutes with every

Sylow subgroup of 𝐺. Let 𝑋 be a subnormal subgroup of 𝐺. If 𝑥′ ∈ (𝑃 ∩𝑋) ⧵ 𝑅,
then 𝑅 = [𝑅, 𝑥] = [𝑅, 𝑥−1] = [𝑅, 𝑥′]. But [𝐺,𝑑 𝑋] ≤ 𝑋 for some 𝑑 ≥ 1, so
𝑅 ≤ 𝑋 and 𝑋 is normal in 𝐺. Suppose 𝑋 contains an involution. Without loss
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of generality, we may assume 𝑦 ∈ 𝑋. Then again 𝑅 ≤ 𝑋 and 𝑋 is normal in 𝐺.
Finally, suppose 𝑋 ≤ 𝑅. Trivially 𝑋𝑃 = 𝑃𝑋. If 𝑦′ is any conjugate of 𝑦, then
𝑦′ ∈ 𝑦𝑅, so 𝑦′ acts as the inversion on 𝑅, and hence ⟨𝑦′⟩𝑋 = 𝑋⟨𝑦′⟩. This proves
(1).
This proves the statement for all characteristic≠ 3. But if we replace 3 by 5 in

the above argument, we obtain an example of characteristic 3, thus completing
the proof of the statement. □
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