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Signed clasp numbers of knots and
four-genus bounds

Charles Livingston

Abstract. There exist knots that have positive and negative 4-dimensional
clasp numbers zero but have four-genus, and hence clasp number, arbitrarily
large. Such examples were first constructed by Allison Miller, answering a
question of Juhász–Zemke. Further examples are constructed here, comple-
menting those of Miller in that they are of infinite order in the concordance
group, rather than being two-torsion. More precisely, for each knot 𝐾 con-
sidered here, the four-genus satisfies lim𝑛→∞ 𝑔4(𝑛𝐾) = ∞. An added feature
of the examples here is their simplicity; all are two-bridge knots and include
the two-bridge knot 𝐵(25, 2), the first algebraically slice knot that was proved
to be non-slice by Casson and Gordon in 1973.

1. Introduction
Let 𝑞 = 𝑝2, where𝑝 is an odd prime integer. We consider the two-bridge knot

𝐵(𝑞, 2), abbreviated 𝐵𝑞, which can also be described as the 𝑘–twisted positive
Whitehead double of the unknot, 𝐷+(𝑈, 𝑘), where 𝑘 = (𝑞 − 1)∕4. Figure 1
is an illustration of 𝐵𝑞 in which the 𝑘 in the box denotes 𝑘 full right-handed
twists. If 𝑘 = 1 in the diagram, the resulting knot is the figure eight. We prove
the following theorem, which holds in the smooth and topological locally-flat
categories.

Theorem 1.1. If 𝑝 ≥ 5 is prime and 𝑞 = 𝑝2, then there exists a real number
𝑐𝑝 > 0 such that the four-genus satisfies 𝑔4(𝑛𝐵𝑞) ≥ 𝑐𝑝𝑛 for all 𝑛 > 0.

Finding this result was motivated by a question of Juhász–Zemke [7] con-
cerning signed 4-dimensional claspnumbers. Let 𝑐(𝐾)denote the 4-dimensional
clasp number : this is the minimum value of 𝑚 for which 𝐾 bounds a smooth
immersed disk in 𝐵4 with 𝑚 double points. Let 𝑐+(𝐾) denote the minimum
value of 𝑚 for which 𝐾 bounds a smooth disk in 𝐵4 with 𝑚 positive double
points, and define 𝑐−(𝐾) similarly, minimizing negative double points. In [7] it
was asked whether 𝑐(𝐾) − (𝑐+(𝐾) + 𝑐−(𝐾)) can be arbitrarily large.
Miller [10] provided the first examples answering the Juhász–Zemke ques-

tion positively. It follows fromTheorem 1.1 that the knots 𝐵𝑞 are also examples.
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𝑘

Figure 1. The knot 𝐵𝑞, where 𝑘 = (𝑞−1)∕4 denotes full right-
handed twists.

From the diagram, it is clear that 𝐵𝑞, and hence 𝑛𝐵𝑞, can be unknotted using
only positive, or only negative, crossing changes. Hence, 𝑐±(𝑛𝐵𝑞) = 0. If 𝑛𝐵𝑞
bounds a disk in 𝐵4 with 𝑎 double points, then those double points could be re-
solved to form an embedded surface of genus 𝑎; it follows that 𝑐(𝑛𝐵𝑞) ≥ 𝑔4(𝑛𝐵𝑞)
and thus Theorem 1.1 implies 𝑐(𝑛𝐵𝑞) ≥ 𝑐𝑝𝑛.
The examples of this paper are complementary to Miller’s. The examples

of [10] are all amphichiral knots and thus satisfy 𝑐+(2𝐾) = 𝑐−(2𝐾) = 𝑐(2𝐾) = 0;
stated differently, the knots are of order two in the knot concordance group. In
contrast, the fact that 𝑐(𝑛𝐵𝑞) > 0 for all 𝑛 > 0 implies that 𝐵𝑞 is of infinite order
in the concordance group.

Remarks.
∙ The key ingredients of the proof of Theorem 1.1 come from the work of
Casson and Gordon [1] and Gilmer [4]. The knot 𝐵25 appears in [1] as
the first example of an algebraically slice knot that is not slice: that is,
𝑔4(𝐵25) > 0. A theorem of Jiang [6] demonstrates the linear indepen-
dence of the set {𝐵𝑝2}𝑝≥5 in concordance, thus implying that 𝑔4(𝑛𝐵𝑝2) >
0 for all 𝑝 ≥ 5 and all 𝑛 ≥ 1. It is a theorem from [3] that permits Jiang’s
result to be improved to give a linearly increasing genus bound.

∙ The proof of Theorem 1.1 provides a specific value of 𝑐𝑝 that is close
to, but always less than, 1∕2. For instance, we find 𝑐5 = 1∕4 and 𝑐7 =
5∕14. Finding a genus one knot 𝐾 for which 𝑐+(𝐾) = 𝑐−(𝐾) = 0 and
𝑔4(𝑛𝐾) ≥ 𝑛∕2 for all 𝑛 ≥ 1 appears to be especially challenging.

∙ The standard Seifert surface 𝐹𝑞 for 𝐵𝑞 contains simple closed curves
of framing 𝑞−1

4
and −1 that are unknotted in 𝑆3. Using these curves we

can construct an unknotted essential curve𝛼 on the Seifert surface𝐺 for
𝐵𝑞 #

𝑞−1
4
𝐵𝑞 =

𝑞+3
4
𝐵𝑞 of Seifert framing 0. Surgery can be performed on

𝐺 along𝛼 to produce a surface in𝐵4 bounded by 𝑞+3
4
𝐵𝑞 of genus one less

than the genus of 𝐺; that is, it is of genus 𝑞−1
4
. Thus, 𝑔4(

𝑞+3
4
𝐵𝑞) ≤

𝑞−1
4
.

It follows that 𝑔4(𝑛𝐵𝑞) is asymptotically bounded above by
(𝑞−1
𝑞+3

)
𝑛,
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∙ The invariants studied here are all knot concordance invariants. From
a modern perspective, it would be interesting to prove the analog of
Theorem 1.1 for a family of topologically slice knots.

Acknowledgements. I appreciate helpful feedback from Pat Gilmer and Allison
Miller. Comments from referees led to significant improvements.

2. Casson–Gordon invariants and four-genus bounds
For a knot 𝐾, let𝑀2(𝐾) denote its 2–fold branched cover and let

𝜒 ∶ 𝐻1(𝑀2(𝐾)) → ℂ∗

be a character taking values in the group of units generated by 𝑒2𝜋𝑖∕𝑞, where 𝑞 is
a prime power. (Such characters are naturally identified with homomorphisms
𝜒 ∶ 𝐻1(𝑀2(𝐾)) → ℤ𝑞.) In [1], Casson and Gordon defined two rational-valued
invariants, 𝜎(𝐾, 𝜒) and 𝜎1𝜏(𝐾, 𝜒). The first is more readily computable in the
case that 𝑀2(𝐾) is a lens space; the second provides an obstruction to a knot
being slice. They are related by the following result, an immediate consequence
of [1, Theorem 3].

Theorem 2.1. If𝑀2(𝐾) is a lens space and 𝜒 ∶ 𝐻1(𝑀2(𝐾)) → ℤ𝑞 is a nontrivial
character, then

||||𝜎(𝐾, 𝜒) − 𝜎1𝜏(𝐾, 𝜒)
|||| ≤ 1.

2.1. Computing 𝝈(𝑩𝒒, 𝝌 𝒓) for 𝒓 ≠ 𝟎 𝐦𝐨𝐝 𝒑. We have the following result.

Theorem 2.2. Let 𝑞 = 𝑝2, where 𝑝 is an odd prime. Let 𝜒 denote a character
that takes value 𝑒2𝜋𝑖∕𝑝 on some generator of𝐻1(𝑀2(𝐵𝑞)) ≅ ℤ𝑞. Then

{𝜎(𝐵𝑞, 𝜒𝑟)}0<𝑟<𝑝 = {4𝑟2 − 2𝑝𝑟 + 1}0<𝑟<𝑝.

Proof. This is essentially the key numeric computation of [1]. The invariant
𝜎(𝐾, 𝜒) is defined in terms of signatures of Hermitian forms and is thus sym-
metric: 𝜎(𝐾, 𝜒𝑟) = 𝜎(𝐾, 𝜒−𝑟) = 𝜎(𝐾, 𝜒𝑝−𝑟). This permits us to restrict atten-
tion to even values of 𝑟: {𝜎(𝐵𝑞, 𝜒2𝑟)}0<𝑟<𝑝∕2. In [1] it is shown that 𝜎(𝐵𝑞, 𝜒2𝑟) =
4𝑟2−2𝑝𝑟 +1 for 0 < 𝑟 < 𝑝∕2. (The result appears on page 196, with the values
𝑚 and 𝑛’ there having the value 𝑝 in our application.) □

2.2. Computing 𝝈𝟏𝝉(𝑩𝒒, 𝝌𝟎). In general, there are few methods available for
computing 𝜎1𝜏(𝐾, 𝜒). However, in the case that 𝐾 is of three-genus one and
is algebraically slice, the invariant is determined by the Levine–Tristram sig-
nature functions of certain knots formed as simple closed curves on a genus
one Seifert surface. This is a consequence of results related to companionship
proved independently by Cooper [2], Gilmer [4], and Litherland [8]. The pa-
per [5] presents a more recent exposition. We isolate the result we need. In this
statement, 𝜎𝐾(𝜔) denotes the Levine–Tristram signature function defined on
the unit circle in ℂ∗.
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Theorem 2.3. Suppose that 𝐾 bounds a genus one Seifert surface 𝐹 and
𝐻1(𝑀2(𝐾)) ≅ ℤ𝑞 with 𝑞 = 𝑝2 for some prime 𝑝. Suppose that 𝛼 is an essen-
tial simple closed curve on 𝐹 for which the 𝑉([𝛼], [𝛼]) = 0, where 𝑉 is the Seifert
form of 𝐹. Then for 𝜒 ∶ 𝐻1(𝑀2(𝐾)) → ℤ𝑝 ⊂ ℂ∗,

𝜎1𝜏(𝐾, 𝜒) = 2𝜎𝛼(𝜁𝑟),

for some 𝑟, where 𝜒(𝑥) = 𝜁 ∈ ℂ∗ for a generator 𝑥 ∈ 𝐻1(𝑀2(𝐾)).

The Levine–Tristram signature function satisfies 𝜎𝐾(1) = 0 for all 𝐾. Thus
we have the following corollary when applied to 𝜒0, which is trivial.

Corollary 2.4. Suppose that𝐾 bounds a genus one Seifert surface𝐹,𝐻1(𝑀2(𝐾)) ≅
ℤ𝑞, and 𝑉(𝛼, 𝛼) = 0 for a simple closed curve 𝛼 representing a nontrivial homol-
ogy class, [𝛼] ∈ 𝐻1(𝐹). Then 𝜎1𝜏(𝐾, 𝜒0) = 0 for all 𝜒.

2.3. Bounds on 𝝈𝟏𝝉(𝑩𝒒, 𝝌 𝒓).

Theorem 2.5. Assume 𝑞 = 𝑝2 where 𝑝 ≥ 5 is an odd prime.
∙ There exists a generator𝜒 of the group of order𝑝 characters on𝐻1(𝑀2(𝐵𝑞))

such that 𝜎1𝜏(𝐵𝑞, 𝜒) ≤
9−𝑝2

4
.

∙ 𝜎1𝜏(𝐵𝑞, 𝜒𝑟) ≤ 0 for all 𝑟.

Proof. We consider the function 𝑓(𝑟) = 4𝑟2 − 2𝑝𝑟 + 1 that appears in The-
orem 2.2 as a real quadratic in the variable 𝑟. Its minimum occurs at 𝑝∕4.
The closest integer point to 𝑝∕4 is either (𝑝 − 1)∕4 or (𝑝 + 1)∕4 depending
on whether 𝑝 ≡ 1 mod 4 or 𝑝 ≡ 3 mod 4. In both cases the value at this
point is (5 − 𝑝2)∕4 < −1. Since 𝜎(𝐵𝑞, 𝜒𝑟) and 𝜎1𝜏(𝐵𝑞, 𝜒𝑟) differ by at most one,
we have the first statement.
For integers 𝑟 with 1 ≤ 𝑟 ≤ 𝑝∕2, the maximum value of the quadratic 𝑓(𝑟)

must be at an endpoint, either 𝑟 = 1 or 𝑟 = (𝑝 − 1)∕2. We compute 𝑓(1) =
(5−2𝑝) and 𝑓((𝑝−1)∕2) = 2−𝑝. The larger of the two is 2−𝑝 < 1. Even upon
adding 1, this is negative. Thus, if 𝜎1𝜏(𝐵𝑞, 𝜒𝑟) were to be positive for some 𝑟, it
would have to be at 𝑟 = 0, where the value was shown to be 0 in Corollary 2.4.

□

3. The genus bound
The proof of Theorem 1.1 depends on the following special case of a theorem

of Gilmer [3, Theorem 1] that relates values of 𝜎1𝜏(𝐾, 𝜒) to 𝑔4(𝐾).

Theorem 3.1. Let𝐾 be a knot for which𝐻1(𝑀2(𝐾)) ≅ (ℤ𝑞)𝑛, where 𝑞 is a prime
power. If 𝑔4(𝐾) ≤ 𝑛∕2 and the classical signature of 𝐾 satisfies 𝜎(𝐾) = 0, then
there is a subgroupℳ ⊂ (ℤ𝑞)𝑛 ⊂ 𝐻1(𝑀2(𝐾)) of order at least 𝑞(𝑛−2𝑔4(𝐾))∕2 such
that for all 𝜒 ∈ ℳ,

||||𝜎1𝜏(𝐾, 𝜒)
|||| ≤ 4𝑔4(𝐾).
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Wewill refer to the subgroupℳ as ametabolizer. In the statement ofGilmer’s
theorem in [3] there is an additional term 𝜇(𝐾, 𝜒), but prior to the statement of
that theorem he points out that 𝜇(𝐾, 𝜒) = 0 in the case of characters 𝜒 of prime
power order.

3.1. Proof of Theorem 1.1. The continuing assumption is that 𝑞 = 𝑝2 where
𝑝 ≥ 5 is a prime. Here is a restatement of the theorem with the value of 𝑐𝑝
specified.

Theorem 1.1. For every odd prime 𝑝 ≥ 5, let 𝑐𝑝 =
1
2
− 8

𝑝2+7
. Then for 𝑞 = 𝑝2,

𝑔4(𝑛𝐵𝑞) ≥ 𝑐𝑝𝑛.

Proof. We will first assume that 𝑛 is such that 𝑔4(𝑛𝐵𝑞) < 𝑛∕2 and find a value
of 𝑐𝑝 < 1∕2 for which 𝑔4(𝑛𝐵𝑞) ≥ 𝑐𝑝𝑛 for all such 𝑛. Then, in any cases that
𝑔4(𝑛𝐵𝑞) ≥ 𝑛∕2 we will certainly also have that 𝑔4(𝑛𝐵𝑞) ≥ 𝑐𝑝𝑛. We abbreviate
𝑔4(𝑛𝐵𝑞) = 𝑔.
The knot 𝐵𝑞 is a two-bridge knot having two-fold branched cyclic cover the

lens space 𝐿(𝑞, 2); this is used in [1] and described in detail in [11]. In particu-
lar, the first homology of the cover is ℤ𝑞. We have the 𝐻1(𝑀2(𝑛𝐵𝑞)) ≅ (ℤ𝑞)𝑛.
The metabolizerℳ given by Theorem 3.1 has order at least 𝑝(𝑛−2𝑔). Since each
element inℳ has order at most 𝑝2, an independent set of generators ofℳmust
have at least 𝑝(𝑛−2𝑔)∕2 elements. Since the value is an integer, we can take the
ceiling and let 𝑑 = ⌈𝑛−2𝑔

2
⌉.

To simplify the following discussion, we will explicitly identify the set ofℤ𝑞-
valued character on 𝐻1(𝐵𝑞) ≅ ℤ𝑞 with ℤ𝑞, as follows. Let 𝜃 ∈ 𝐻1(𝐵𝑞) be a
generator. Then we identify 𝜒 with 𝜒(𝜃).
Represent a set of generators ofℳ as a set of vectors in (ℤ𝑞)𝑛. Together these

can be used to form the rows of a matrix with at least 𝑑 rows. Row operations
and column interchanges can convert this into a matrix for which the top left
𝑑 × 𝑑 block is an upper triangular matrix with nonzero diagonal entries and
with the further property that rows corresponding to diagonal entries that are
divisible by 𝑝 have all their entries divisible by 𝑝. If the leading entry of a row
is not divisible by 𝑝, then a multiple of that row by some invertible element in
ℤ𝑞 equals 1. If the leading entry is divisible by 𝑝, then some multiple of that
row by an invertible element in ℤ𝑞 has leading entry 𝑝. Thus, for 𝑖 ≤ 𝑑, row 𝑖
can be assumed to be of the form

𝑟𝑖 = (0, … , 0, 𝑎𝑖, 𝑎𝑖+1𝑖 , 𝑎𝑖+2𝑖 , … , 𝑎𝑑𝑖 , 𝛼
1
𝑖 , … , 𝛼

𝑛−𝑑
𝑖 ),

where either 𝑎𝑖 = 1 or 𝑎𝑖 = 𝑝 and all entries to the right of 𝑎𝑖 are divisible by 𝑝.
If we form elements 𝑣𝑖 in (ℤ𝑞)𝑛 by multiplying the 𝑟𝑖 that begin with 1 by 𝑝

and leave the other 𝑟𝑖 unchanged, we form a set of 𝑑 elements

𝑣𝑖 = (0, … , 0, 𝑝, 𝑏𝑖+1𝑖 , 𝑏𝑖+2𝑖 , … , 𝑏𝑑𝑖 , 𝛽
1
𝑖 , … , 𝛽

𝑛−𝑑
𝑖 ),

where all 𝑏𝑗𝑖 and all 𝛽
𝑗
𝑖 are divisible by 𝑝. There are 𝑖 − 1 leading 0 entries in 𝑣𝑖.
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One can form a linear combination of these elements to construct an element
𝑣 ∈ ℳ of the form

𝑣 = (𝑝, 𝑝, … , 𝑝, 𝛾1, … , 𝛾𝑛−𝑑),
where the first 𝑑 entries are 𝑝 and the 𝛾𝑖 are divisible by 𝑝.
Theorem 2.5 asserts the existence of an element 𝜒 in the group of order 𝑝

characters on 𝐻1(𝑀2(𝐵𝑞)) with specified properties. The element 𝑝 ∈ ℤ𝑞 ≅
𝐻1(𝑀2(𝐵𝑞)) is a generator, so the character 𝜒 corresponds to 𝑘𝑝 ∈ 𝐻1(𝑀2(𝐵𝑞))
for some 𝑘. Multiplying 𝑣 by 𝑘 we have

𝑘𝑣 = (𝑘𝑝, 𝑘𝑝,… , 𝑘𝑝, 𝛾′1, … , 𝛾
′
𝑛−𝑑) ∈ ℳ,

for some set of 𝛾′𝑗 all divisible by 𝑝. If we express 𝑣 in terms of characters, we
have found that an element

𝑤 = (𝜒, 𝜒,… , 𝜒, 𝜒1, … , 𝜒𝑛−𝑑) ∈ ℳ,
where the first 𝑑 entries are the specified 𝜒. The vector 𝑤 corresponds to a
character 𝜒 ∶ 𝐻1(𝑀2(𝑛𝐵𝑞)) → ℤ𝑝.
Recall that the character 𝜒 from Theorem 2.5 satisfies 𝜎1𝜏(𝐵𝑞, 𝜒) ≤ (9 −

𝑝2)∕4. Applying the fact that 𝜎1𝜏(𝐵𝑞, 𝜒) ≤ 0 for all 𝜒, along with the additivity
of 𝜎1𝜏 (discussed in the subsection below), after taking absolute values we have

𝑑
(𝑝2 − 9

4
)
=
(𝑛 − 2𝑔)(𝑝2 − 9)

8 ≤ ||||𝜎1𝜏(𝑛𝐵𝑞, 𝜒)
|||| ≤ 4𝑔,

where the second inequality comes from Theorem 3.1.
Solving for 𝑔 we find

𝑔 ≥
( 𝑝2 − 9
2𝑝2 + 14

)
𝑛 = (12 −

8
𝑝2 + 7

)𝑛.

□

3.2. Additivity. The form of additivity of Casson–Gordon invariants that we
used above states that given pairs (𝐾1, 𝜒1) and (𝐾2, 𝜒2), where 𝜒𝑖 ∶ 𝐻1(𝑀2(𝐾𝑖))
→ ℤ𝑝, one has

𝜎1𝜏(𝐾1 # 𝐾2, 𝜒1 ⊕𝜒2) = 𝜎1𝜏(𝐾1, 𝜒1) + 𝜎1𝜏(𝐾2, 𝜒2).
This is a consequence of results that were proved independently by Gilmer [4,
Proposition (3.2)] and Litherland [8, Theorem 2]. Both sources describe amore
general form of additivity than what we are using. Litherland considered satel-
lite knots of arbitrary winding number; a connected sum of knots is a winding
number one satellite. Gilmer’s presentation is restricted to connected sums, so
we explain the connection between his result and additivity as we use it
A general form of the Casson–Gordon invariant is denoted 𝜏(𝐾, 𝜒) and takes

values in𝑊(ℂ(𝑡), 𝐽)⊗ℚ. In the notation of [3]: 𝐾 ⊂ 𝑆3 is a knot;𝜒 is a character
on𝐻1(𝑀2(𝐾)) taking values inℚ∕ℤ; ℂ(𝑡) is the field of fractions of the polyno-
mial ring ℂ[𝑡]; 𝐽 is the involution of ℂ(𝑡) induced by 𝑡 → 𝑡−1; and𝑊(ℂ(𝑡), 𝐽) is
theWitt group of 𝐽–hermitian inner products on finite dimensionalℂ(𝑡)–vector
spaces. The Witt group is an abelian group, and thus tensoring withℚ is a well
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defined operation yielding a ℚ–vector space. In [3], Proposition 3.2 states the
additivity of 𝜏.
An element of𝑊(ℂ(𝑡), 𝐽) can be represented by a hermitianmatrix𝐴(𝑡)with

entries in ℂ(𝑡). For all but a finite set of 𝜔 ∈ 𝑆1 ⊂ ℂ, the matrix 𝐴(𝜔) is
a well-defined complex hermitian matrix and has a signature 𝜎(𝐴(𝜔)). The
limit lim𝜔→1(𝜎(𝐴(𝜔)) is well-defined. This limit defines a map 𝑊(ℂ(𝑡), 𝐽) →
ℤ, which extends to the tensor product to give a well-defined function 𝜎1 ∶
𝑊(ℂ(𝑡), 𝐽) ⊗ ℚ → ℚ. The Casson–Gordon invariant 𝜎1𝜏 is the composition of
𝜏 and 𝜎1.
The additivity of matrix signatures under connected sums implies the addi-

tivity of 𝜎1. This, along with the additivity of 𝜏 proved by Gilmer yields the
additivity of 𝜎1𝜏 that we use above, except for one technical point. Our char-
acters take value in ℤ𝑝 and in Gilmer’s paper they take value in ℚ∕ℤ. There
is an natural inclusion ℤ𝑝 ⊂ ℚ∕ℤ, and this completes the connection between
Gilmer’s result and additivity as we use it.

4. Observations and questions
(1) The stable clasp number. A function 𝑓 ∶ ℤ≥0 → ℝ≥0 is called subaddi-

tive if 𝑓(𝑎 + 𝑏) ≤ 𝑓(𝑎) + 𝑓(𝑏) for all 𝑎 and 𝑏. For any such function,
lim𝑛→∞ 𝑓(𝑛)∕𝑛 exists. In [9] this is used to define the stable four-genus
of a knot 𝐾: 𝑔𝑠(𝐾) = lim𝑛→∞ 𝑔4(𝑛𝐾)∕𝑛. In the exact same way, one can
define the stable claspnumber of a knot𝐾 to be 𝑐𝑠(𝐾) = lim𝑛→∞ 𝑐(𝑛𝐾)∕𝑛.
For Miller’s examples [10], 𝑐𝑠(𝐾) = 0. We have

𝑞 − 9
2𝑞 − 14 ≤ 𝑐𝑠(𝐵𝑞) ≤

𝑞 − 1
𝑞 + 3.

The right inequality follows from the third remarks at the end of the
introduction. Here are two problems. Determine 𝑐𝑠(𝐵𝑞) exactly. Find
any knot 𝐾 for which 𝑐𝑠(𝐾) ∉ ℚ.

(2) Find topologically slice knots 𝐾𝑛 for which 𝑐(𝐾𝑛) − (𝑐+(𝐾𝑛) + 𝑐−(𝐾𝑛))
goes to infinity as 𝑛 increases. Can such example be found for which
𝑐+(𝐾𝑛) = 0 = 𝑐−(𝐾𝑛) for all 𝑛?

(3) The examples in this paper and those in [10] depended on estimates of
the four-genus. Are there examples of knots 𝐾 for which 𝑐+(𝐾) = 0 =
𝑐−(𝐾) and 𝑐(𝐾) > 𝑔4(𝐾)?
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