New York Journal of Mathematics
New York J. Math. 31 (2025) 1271-1315.

Carleson embeddings and pointwise
multipliers between Hardy-Orlicz
and Bergman-Orlicz spaces of
the upper half-plane

Jean-Marcel Tanoh Dje and Benoit F. Sehba

ABSTRACT. In this article, we give a general characterization of Carleson
measures involving concave or convex growth functions. We use these char-
acterizations to establish continuous injections and pointwise multipliers be-
tween Hardy-Orlicz spaces and Bergman-Orlicz spaces.
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1. Introduction.
Let D be the unit disc of C. For « > —1,and 0 < p < oo, the Bergman space
AP (D) consists of all holomorphic functions f on D such that

1fllpe := / |f@)IP( = |z[)*dv(2) < co. (1.1
D

Here, dv(z) is the normalized area measure on D.

When a — —1, the corresponding space A” (D) is the Hardy space HP(D)
that consists of all holomorphic functions f on D such that

21
15 == A1y 1= sup [ Ifreirde < o (1.2)
0

0<r<1
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One of the most studied questions on holomorphic function spaces and their
operators is the notion of Carleson measures for these spaces. In the unit disc,
this is about characterizing all positive measures u on D such that for some
constant C > 0, and for any f € Ag(ID), a> -1,

f F@)19du(z) < ClIf s (13)
D

This problem was first solved by L. Carleson in [3, 4] for Hardy spaces in the case
p = q. Extension of this result for p < g was obtained by P. Duren in [14]. The
case with loss p > g was solved by 1. V. Videnskii in [37]. The corresponding
results for Bergman spaces of the unit disc and the unit ball were obtained by
W. Hastings and D. Luecking, J. A. Cima and W. Wogen in [8, 16, 20, 21, 22, 23].
For other contributions, we refer the reader to the following [17, 26, 36].

Our interest in this paper is about the inequality (1.3) in the case where the
power functions ¢4 and ¢ are replaced by some continuous increasing and onto
functions on [0, o0), @, and @, respectively. In the unit ball of C", this problem

. )
was solved in the case where t — 20

is nondecreasing for Hardy and Bergman

1
spaces in the following and the references therein [5, 6, 30]. The case where

t - 22—(3 is nonincreasing was handled in [29] for the Bergman-Orlicz spaces.
1

In this paper, our setting is the upper half-plane C, and we still consider
the problem (1.3) for the growth functions ®; and ®,. In [12], we considered
@,(1)
NG
decreasing. We present here a more general result which encompasses the case

S D,(t . .
where ®, and @, are concave, still with ¢ ;—(I) non-decreasing. This case was

this question for the case where ®; and @, are convex and, t — is non-

missing in [12]. We note that even in the case of power functions, the study of
Carleson measures for Bergman spaces of the upper half-plane with exponent
in (0, 1] seems to have never been considered before. In [12], the method used
required boundedness of the Hardy- Littlewood maximal function on the Orlicz
space but this does not hold when the associated growth function is concave.
Our work still uses the boundedness of the maximal function but through a
modified approach that allows us to include the case where the growth func-
tions are concave. For the proofs, we are still combining techniques from ana-
lytic function spaces and methods from dyadic harmonic analysis.

2. Statement of main results.

We start by recalling some known notions in the literature. In this paper,
a continuous and nondecreasing function ® from R, onto itself is called a
growth function. Observe that if ® is a growth function, then ®(0) = 0 and
lim;_ o ®(t) = +o0. If () > 0 for all ¢t > 0 then ® is a homeomorphism of
R, onto R,.
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Let p > 0 be a real and ® a growth function. We say that @ is of upper-type
(resp. lower-type) p > 0 if there exists a constant C, > 0 such that forall t > 1
(resp. 0 <t <1),

D(st) < CptPd(s), Vs> 0. (2.1)

We denote by 7% P (resp. .Z},) the set of all growth functions of upper-type p > 1

(resp. lower-type 0 < p < 1) such that the function ¢ — 20 is non decreasing

t
(resp. non-increasing) on R} = R, \{0}. We put % := Up21 UP (resp. £ :=

Uo< p<1 Zp)-
Any element belonging to . U % is a homeomorphism of R, onto R, ..

We say that two growth functions ®, and ®, are equivalent, if there exists a
constant ¢ > 0 such that

c7l®,(c7t) < D,(1) < e®y(ct), Vi > 0. (2.2)
We will assume in the sequel that any growth function belonging to % (resp.
%) belongs to €*(R.,) and is convex (resp. concave). Moreover,
(¢
D'(t) ~ —E ), Vit>0,
(see for example [2, 11, 12, 13, 31]).

Let I be an interval of non-zero length. The Carleson square associated with
I, Q; is the subset of C, defined by

Q:={x+iyeC, :xeland0<y < |I|}. (2.3)

Definition 2.1. Let s > 0 be a real, ® a growth function and u a positive Borel
measure on C,. We say that uisa (s, ®)—Carleson measure if there is a constant
C > 0 such that for any interval I of nonzero length

am)

« When ®(t) = t, these measures are known as s—Carleson measures and
if moreover, s = 1, we obtain the classical Carleson measures.

« When s = 1, we say that u is a ®—Carleson measure. If moreover,
®(t) =t, uis called a Carleson measure.

« When s = 2 + a, with @ > —1, we say that u is a (a, ®)—Carleson
measure.

mQp) < (2.4)

Let o > —1 be areal and ® a growth function.

« The Hardy—Orlicz space on C,, H®(C,) is the space of analytic func-
tions F on C, that satisfy

|F(x +iy)|

Il 1=SUpinf{A>o : f@(—)dxﬁl§<oo.
y>0 R A
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« The Bergman—Orlicz space on C,, AY(C, ) is the space of analytic func-
tions F on C, that satisfy

F(x+i
||F||Z‘;‘ :=inf {/1 >0: / @(M) dV(x +iy) < 1} < 0o,
a C+
where dV(x + iy) := y*dxdy.
If ® is convex and ®(t) > 0 for all t > 0, then

(H*@CILIE)  and (AT, LI

are Banach spaces (see [12, 34, 35]). The spaces H®(C, ) and AZ(C, ) generalize

respectively the Hardy space HP(C, ) and the Bergman space A2(C, ) for 0 <
p < co.

Let ® be a growth function. We say that & satisfies the A,—condition (or
® € A,) if there exists a constant K > 1 such that

®(2t) < KD(t), Yt > 0. (2.5)

It is obvious that any growth function ® € .2 U % satisfies the A,—condition.
Let ® be a convex growth function. The complementary function of @ is the
function ¥ defined by
P(s) = sup{st — d(¢t)}, Vs > 0.
t>0
Let @ be a convex growth function. We say that ® satisfies V,—condition (or
® € V,) if ® and its complementary function both satisfy the A,—condition.

Let ® € ¥(R,) be a growth function. The lower and the upper indices of ®
are respectively defined by
t®' (1)

t®' (1)
:=inf d by = .
% =10 20 an ° =50

In [12], Theorem 2.2 asserts the following.

Theorem 2.2. Let ®,, P, be two growth functions in %, and u a positive Borel

D,(1) is

measure on C,. Assume that ®, satisfies the V,—condition and that t —

@, (¢
non-decreasing. Then the following assertions are equivalent. 1
() uisa <1>zofI>1‘1—Carleson measure.
(ii) There exists a constant C; > 0 such that forallz = x + iy € C,,
(1) »?
o, (@7 (- ) — = |duw) < c1. (2.6)
c Y/ |w—z|?
+
(iii) There exists a constant C, > 0 such that for all0 £ F € H*'(C,),
|F(2)]
[ @i | < @)

+ H®1
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This theorem is quite restrictive as one can easily see. First, it is requiring
both ®; and &, to be in the class %. Second, it is requiring @, to satisfy the
V,—condition. This last requirement is due to the need to have that the Hardy-
Littlewood maximal function is bounded on L*1(R). In summary, the above
theorem does not provide any characterization when ®; does not satisfy the
V,—condition nor when any of the growth functions is in the class .Z. This is
the main motivation for this paper.

Our first main result is the following which extend [12, Theorem 2.2] to
Hardy-Orlicz spaces defined with concave growth functions.

Theorem 2.3. Let ®,,®, € £ U % and u a positive Borel measure on C,.
If the function t — Z—Eg is non-decreasing on R = (0, c0), then the following
assertions are equivalent.

(1) misa @, ocbl_l—Carleson measure.

(ii) There exist some constants p € {1;aq,} and C; > 0 such that for all

z=x+iyeC,,

_ 1 yZ/P
fc+ ®, (cbl 1 <;> m) du(w) < C;. (2.8)

(iii) There exists a constant C, > 0 such that for all0 £ F € H*'(C,),

F
/ o,| (Z)xl du(z) < Cs. (2.9)
C+ ||F| H(Dl
(iv) There exists a constant C5 > 0 such that for all F € H®(C,),
Sup Ba(A)u (zec, : IF@)| > AIF|“3) < Cs. (2.10)
>0

As a consequence, we have the following.

Corollary 2.4. Letx > —1 and ®,,®, € £ U % such thatt — zz—(t; is non-

NG
decreasing on R%. The Hardy-Orlicz space H®1(C ) embeds continuously into

the Bergman-Orlicz space A:Z(CJr) if and only if there exists a constant C > 0
such that forall t > 0,

o(1) < @ (Cr*e), (2.11)

Our second main result generalizes [12, Theorem 2.4].

Theorem 2.5. Letax > —1, ®,,D, € £ U % and u a positive Borel measure
on C,. If the function t — (1)

. . (1)
assertions are equlvalent.

is non-decreasing on R, then the following

() wisa(a, (I)zod)l_l)—Carleson measure.
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(ii) There exist some constants p € {1;aq,} and C; > 0 such that for all
z=x+iyeC,,

~1 1 y(4+20‘)/p
/‘; @, | @] <y2+0‘) PTrEmyE du(w) < C;. (2.12)

(iii) There exists a constant C, > 0 such that forall0 # F € ASI(CJ,),

f o,| FOL 4 <, (2.13)
C

||F e
AN

+

(iv) There exists a constant C > 0 such that forall F € A:l (C,),

sup (D (12 € €. ¢ PG> AP} < C. (2.14)
>0 a

The following embedding result follows from the above.

@,(1)
B, (t
decreasing on R’;. The Bergman-Orlicz space A?l (C,) embeds continuously into

the Bergman-Orlicz space AEZ(CJr) if and only if there exists a constant C > 0
such that forall t > 0,

Corollary 2.6. Lett,3 > —1 and ®,, D, € £ U % such thatt — is non-

—1742 —1
OTH(E2T) < PH(CHHF). (2.15)

One of the applications of Carleson embeddings is the characterization of
pointwise multipliers between different analytic function spaces. To state these
applications of the previous results, we introduce some further definitions.

Let p,q > 0 and let ® be a growth function. We say that ® belongs to %
(resp. £,) if the following assertions are satisfied
(a) ® € w9 (resp. ® € .Z)).
(b) there exists a constant C; > 0 such that for all s, ¢ > 0,

D(st) < C;D(s)D(1). (2.16)
(c) there exists a constant C, > 0 such that for all 5,¢t > 1
s d(s)
@ (;) <C—” (2.17)
resp.
S sP
V<o, —/—. .
q:(t)_czq)(t) (2.18)

We put % := Uq21 U4 (resp. L 1= U0<ps1 Z).
Letw : R} — R} be a function. An analytic function F on C, is said to be
in HY(C,)if

||F||H;3° i= sup M

P m@) = (219)
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If w is continuous, then (Hg (C,), |||z ) is a Banach space.

Let X and Y be two analytic function spaces which are metric spaces, with
respective metrics dy and dy. An analytic function g is said to be a multiplier
from X to Y, if there exists a constant C > 0 such that for any f € X,

dy(fg,0) < Cdx(f,0). (2.20)
We denote by M(X, Y) the set of multipliers from X to Y.

The following is a characterization of pointwise multipliers from a Hardy-
Orlicz space to a Bergman-Orlicz space. It is an extension of [12, Theorem 2.7].

L20)

Theorem2.7. Let ®, € LU and ®, € LUU such that the functiont — o0
1

is non-decreasing on RY. Let a« > —1 and put

q)—l (t;r“ )

2
w(t) =
1 /(1
o' (7)
The following assertions are satisfied.
(1) IfO < Clq)l < b':Dl < aq)z < bq)z < 00, ﬂ’len

, Vi>0.

MH?(C,), AG*(C)) = HE(C,),
(i) Ifw ~ 1, then
M(H®(C,), A*(C,)) = H¥(C,).
(ii) If w is decreasing and lim;_,, w(t) = 0, then
M(H®(C,), AZ*(C,)) = {0}.

The following is a characterization of pointwise multipliers between two
Bergman-Orlicz spaces. It is an extension of [12, Theorem 2.8].

D,(1)
@, (1)

Theorem 2.8. Let ®, € LU% and ®, € LU such that the functiont —
is non-decreasing on R. Let a, 3 > —1 and put

@' (52)

2
w(t) = ——
o ()
t2+a
The following assertions are satisfied.
(1) IfO < aq>1 < bq;l < aq)z < bq)z < oo then

, Vi>0.

M (A€ AF(CL)) = HI(C).
(ii) Ifw ~ 1, then
M (A€ AF(C,)) = H=(C,).
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(iii) If w is decreasing and lim,_,q w(t) = 0, then
M (A€, AF(C)) = {0}

The paper is organized as follows. In Section 3, we provide some further
definitions and useful results on growth functions, Hardy-Orlicz and Bergman-
Orliz spaces. Indeed, there is currently no comprehensive reference in the lit-
erature for these spaces. For this reason, we establish several essential related
results in our study. In Section 4, we provide characterizations of Carleson mea-
sures, including a general result that encompasses assertions (ii) of Theorem 2.3
and Theorem 2.5. Our main results are presented in Section 5.

3. Some definitions and useful properties
We present in this section some useful results needed in our presentation.

3.1. Some properties of growth functions. In this subsection, we present
results on growth functions that are necessary for our study.

We recall the following useful results (see [12, 31]).

Lemma 3.1. Let ® € ¢'(R,) a growth function. The following assertions are
satisfied.

() foe LU then0 < ag < bg < .
(i) ® € Z ifand only if 1 < ap < by < 0. Moreover, ® € % NV, if and
onlyifl < ap < by < 0.
(1)

(iii) If0 < ag < bg < oo then the function t — — is increasing on R’} while

tao
o) | ;
© s decreasing on R}

the function t — e

The following relation between growth functions in % and growth functions
¢ will be used below (see [32, Proposition 2.1]).

Lemma 3.2. Let ® be a growth function and q > 0. If ® is a one-to-one growth
function then ® € %% ifand only if ™' € % .

The following provides equivalent characterizations of elements in V,.

Lemma 3.3 (Lemma 3.1, [12]). Let ® € % . The following assertions are equiv-
alent.

(i) eV,
(ii) There exists a constant C; > 0 such that forall t > 0,
t
) D(t
f 2 gs < ¢, 20, (3.1)
o S t

(iii) There exists a constant C, > 1 such that forall t > 0,
1
d(t) < — . 2
() < 55 P(CD) (3.2)

Let us make the following observation.
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Lemma 3.4. Let ® € €1 (R,,) be a growth function such that 0 < ag < bgp < co.
For s > 0, consider ® the function defined by

O, (t) = D (1%, Vit > 0.
Then sag < ap < by < sbe.

Proof. Fort > 0, we have

: E(@4(1) B’ (1)
Dy(t)) = st*1O (¢S = :
(@) =57 () > = 2= = s X s
It follows that
£ (@)
SGQSWSSb¢,Vt>O.

We then deduce the following useful facts.

Corollary 3.5. Lets > 1 and ® € €(R,) be a growth function such that 0 <
ap < by < . Fort > 0, put

(1) = @ (15/90).

The following assertions are satisfied.

(1) Ifs=1thend;, € %.
(i) Ifs>1then®, € Z NV,.

Proof. Following Lemma 3.4, we have that

s s

— Xap <ap. <by <byXxX—.

g do = do, = Do, = Do X o
Hence, we deduce from Lemma 3.1 that if s = 1 (resp. s > 1) then &3 € %
since 1 < ag < by < oo (resp. &, € % NV, since 1 < ap_ < by, < 00). O

It follows from Corollary 3.5 that, for any growth function of both lower and
upper type, it is possible to construct an auxiliary growth function that is convex
and satisfies the V,—condition. The advantage of such an auxiliary function
is that it allows certain results established for convex growth functions to be
extended to concave growth functions.

Let us prove the following estimates of the upper and lower indices of the
composition of two growth functions.

Proposition 3.6. Let ®,,®, € ¢1(R,) be two growth functions such that 0 <
ap, < by, < 0 and 0 < ag, < by, < co. Then ®;0®, € ¢ (R,) growth
function and

Ay, Ao, < Ap,00, < b 0w, < o, Do,
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Proof. Fort > 0, we have
t@p¢ga)_®wM%@xmxt%0)
Dody(t) Dy (D,y(D) D,(1)

(@,00,) (£) = @ (@,(1)) PL(H) =

It follows that
t (D10®,) (t)

<bg bs., Vt>O0.
Dod,(t) T

aq)l aq)Z <
U

The following result shows that the inversion operation preserves the order
between the lower and upper indices.

Proposition 3.7. Let ® € €*(R,) a growth function. The following assertions
are equivalent.

(i) 0<ap < by < oo.

(ii) 0 < ag-1 < bg-1 < 0.
Moreover, ag-1 = 1/bgy and be-1 =1/ag.

Proof. Show that i) implies ii). We have

’ 1
) ()= ——, Vt>0.
@ O= 5w
It follows that
td'(t
0<aq,$bq,<oo:>0<aq>S?§))qun<00,Vt>0
1D (d71(1))
=0<ag < <bgy<o0,Vt>0
10
:>i< { <i,‘v’t>0

by = O=H(H)P' (P71(1)) T ao

!
t (1) (¢
:ig—( )()gi,Vt>0.
be o-1(¢) ao
‘We deduce on the one hand that

1 1

— < ag1 < bg £ —. 3.3

bq,_aq’l_q’l_aq) (3.3)
Reasoning as above, we obtain that (ii) implies (i) and we deduce on the other
hand that

L gy <bp< (3.4)
o-1 Ap-1
From (3.3) and (3.4) we conclude that ag-1 = 1/bg and bg1 = 1/ag. O

Let us prove the following equivalent properties. The relevance of this result
is discussed below.

Proposition 3.8. Let ®,,®, € £ U % . The following assertions are equivalent.
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(i) The functiont — zz—g; is non-decreasing on R7.

1

B,0®71(t)

(ii) The functiont — + is non-decreasing on R

(iii) The function <I>20<1>1_1 belongs to % ba, /da,
Proof. The equivalence between (i) and (ii) is obvious. That (iii) implies (ii) is
also immediate.

Let us now show that (ii) implies (iii).

o7H() D,(1)
1 2
~aoy and ¢t — s

deduce thatforalls >0andt >1
;' (st) < /90 DT (s)

Since the functions t —

are non-increasing on R*, we

and
®, (191 971(s5)) < 120/ @, (@71(s))
It follows that
@, (@71(s0)) < th2/ ", (O7X(s)).
U

In Proposition 3.8, we show that the nondecreasing nature of the function

Dy(t) . . . .
2(? is a necessary and sufficient condition for the function @206131_1 to

be convex. This property will play an important role when extending certain

results known for convex growth functions to the case of concave growth func-
tions.

In relation with the above result, we first prove the following proposition.

Proposition 3.9. Let ® be a growth function such that ®(t) > 0 forall t > 0.
Consider Q the function defined by

1
1 b
°(;)
The following assertions are satisfied.

(i) @ € %9 (resp. ) if and only ifQ e %9 (resp. Zp).
(i) e % NV, ifand onlyif Q € % N V,.

Q@) = Vi>0 and Q0)=0.

Proof. i) Suppose that ® € % 9. For 0 < t; < t,, we have

®(t,) < @(t,) N ®(1/t) < @ (1/t1)
ST 5 1/t, — 1/4
Sl 1 11
Le(1/t) ~ L P(1/t,)
N ﬁ(tl) ﬁ(tz)

< :
fh 1)
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Since @ is of upper type q then so is the function Q. Indeed, for all s > 0 and
t>1,

® (l> =0 (t X l) < Cytid (l> => 1 < L = Q(st) < thqﬁ(s).
S st st C tqcb(l) q)(l)
q st s
The converse is obtained in a similar way. We conclude that ® € %1 if and
onlyif Q € %1. _
Reasoning in the same way, we also show that ® € .}, ifand only if Q € .Z,.
(ii) We suppose that ® € % N V,. For t > 0, we have

® (1) <1o (9> -2 1 _oen (i) < Q)
t 2C \t o (E ) o (1) C
t t
according to the Lemma 3.3. We deduce that Q € % n V,.
The converse is obtained similarly. O

The following follows from the above, and it is useful for our characterization
of Carleson measures.
Lemma 3.10. Let &, D, € £ U % and put
1

@200 ()

D,(1)
@,(1)

Q;(t) = ,Vt>0 and Q3(0)=0.

If the function t — is non-decreasing on R then Q,e%.

Proof. The proof follows from Proposition 3.8 and Proposition 3.9. O

We have the following useful property of the classes Z and % defined in
the previous section. It is needed for the proof of our results on the pointwise
multipliers between the analytic function spaces considered in this paper.

Lemma 3.11. Let ® € .2 U %. There exists a constant C > 0 such that
D(s
@ (5) <28 virso (3.5)
t (1)
Proof. The inequality (3.5) is true for ® € U (see [13, Lemma 4.3]).
For 0 < p <1, suppose that & € .,%p. For s,t > 0, we have

@ (;) < C,D(s5)® (%)

since the inequality (2.16) is satisfied.
If 0 < t < 1 then we have

() = @

--»|>—A|P—*
IA
a
[\
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thanks to (2.18). It follows that

1 1
ol-)<C—. 3.6
<t) = 29(r) (3.6)
Ift > 1, then we have

o(2)=o(Lx1) <, (1) o

since @ is of lower type p. It follows that

1 c, 1
q)(?) < m%, (3.7
since from (2.18), we have also
() = @ (5) <,
1 ®(1)
From (3.6) and (3.7), we deduce that
1 1
*(4) 530
Therefore,
() s 29
t D(1)
O

In this part, we have mainly constructed and verified the properties of two
auxiliary functions: the function ®, from Corollary 3.5 and the function Q;,
from Lemma 3.10. These results deserve some comments before moving for-
ward. In Corollary 3.5, starting from a growth function ® € ¢*(R,) such
that 0 < ap < by < o0, we succeed in constructing @, an auxiliary convex
growth function satisfying the V,—condition, which enables us to extend sev-
eral known results for convex growth functions (see Subsections 3.2 and 3.3)
to concave growth functions. In Lemma 3.10, we construct another auxiliary

.= o . Dy(t) . .
function Q;, which is convex whenever the function ¢t — q)z—() isnon-decreasing

1 t
on [R"jr. This will be useful for the characterization of Carleson measures in Sec-

tion 4. Finally, in Lemma 3.11, the inequality (3.5) will play a crucial role in the
study of pointwise multipliers in Section 5.

3.2. Some properties of Orlicz spaces. Let(X, )., u) be a measure space and
® a growth function. The Orlicz space on X, L®(X, du) is the set of all equiv-
alent classes (in the usual sense) of measurable functions f : X — C which

satisfy
111 2= int {A >0 fq»('f;x)')dmx) < 1% < oo.
K X

If ® is convex then (L®(X, du), ||.||lngx) is a Banach space (see [7, 19, 28]). The
"

space L® generalizes the Lebesgue space LP for 0 < p < 0.
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Let @ be a growth function. Let f € L®(X, du) and put
Ifllg 2= [ @USGIDuCo
X

If ® € €*(R,) is a growth function such that 0 < ag < by < oo, then we have
the following inequalities

”fHLff hS max§<||f| ILI%X>% ; <||f| fo>b®}

and
1/aq) 1/bq)
11 < max (10e) (15 0) -

We will simply denote L*(R) = L*(R, dx), where dx is the Lebesgue measure
on R.
Let ® be a convex growth function. We have the following inclusion

dt
L2(R L1<IR, )
®)c 1+ ¢2

Let « > —1 and E be a measurable set of C,. We denote

|E|, := dea(x+iy).

E

Let I be an interval and Q; its associated Carleson square. It is easy to see

that

1
1Qrly = 1+—oc|I|2+a' (3.8)

Fix 8 € {0;1/3}. An interval §—dyadic is any interval I of R of the form
27710, 1) + k + (=1)/B),

where k, j € Z. We denote by Df the set of f—dyadic intervals I such that
1) =27 Put D =, @f.
We have the following properties (see for example [9, 33]):
- forallI,J € DF, we have I nJ € {§;1;J},
- foreachfixed j € Z,ifI € Df then there exists a unique J € Df_l such
thatI C J,
- for each fixed j € Z,ifI € Df then there exists I, I, € Df 4+ such that
I=LuLand;nI, =0.
We refer to [18, 27] for the following.

Lemma 3.12. Let I be an interval. There exist § € {0,1/3}andJ € DF such that
I cJand|J| <6|I.



CARLESON EMBEDDINGS AND POINTWISE MULTIPLIERS 1285

Let ¢ > —1 and f a measurable function on R (resp. C,). The Hardy-
Littlewood maximal function and its upper half-plane analogue for a function
of f are respectively defined by

Mo () 2= sup 11 f IfOldt, ¥ x € R,
e I
and .
My, (1)@ i=sup T8 [ f@lave@ vz ec,,
ICR |QI|oc Q;

where the supremum is taken over all intervals of R. Similarly, for § € {0;1/3},
we define their dyadic versions Mﬁi( f) and ]V[f,’ﬁ( f) as above but with the

supremum taken this time on the intervals in the dyadic grid Df. We have

Mu(f)<6 > MEF) (3.9)
Be{0;1/3}
and
My (f) <6 3 M. (3.10)
pefon/z ©

We have the following control of the level sets of the above maximal func-
tions. It is needed in the characterization of Carleson measures and to prove
boundedness of the above maximal functions.

Proposition 3.13. Let § € {0;1/3}, a > —1,0 < y < oo and ® a growth
function. Put
@,(t) := ("), Vt > 0.
If @, is convex then the following assertions are satisfied
(i) forall0 # f € L*(R) and for 2 > 0,

N

1\ 1
xeR:|m2 | —L— X)) >3 £ —.
" (IIfI l;::) ®(1)
(ii) forall0 # f € L®(C,,dV,) and for 1 > 0
1y 7
|/ 1
1zeC, : w2 @ >4 £ —.
NS ()
Jla
Proof. i) Let 0 # f € L®(R) and put
| 117

()"
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‘We have

1y
)l )l
/chng(xm ’ L«py (IIfI’“x) ’ qu)<||f|’“X) =

L® L®

We deduce that g € L*(R) and ||g||lL’f;; <L

For A > 0, we can therefore find {I;};cy a family of pairwise disjoint §—dyadic

intervals such that

{x ER : M2 ()(x) > /11/7} =z,
JEN

and

< L / g)Idy, V j € N.
|Ij| 1

J

For j € N, we have

1 1

(1) = @, (11/7) < @, (mf Ig(y)ldy) < 7 / @, (IsDdy,

J1JI; JJI;

thanks to Jensen’s inequality. We deduce that
1
1 < 505 [ e, ¥ €.
J q)(/l) s Y

It follows that

{x e R : 2 @) > 217 = X i
J

1
<Y o /I ®,(150))dy

1
q)(/l) UjIj

In the same way, we prove the inequality of the point (ii).

@, (1g(y)Ddy <

1
o)’

O

Since it is possible to construct from any growth function, a convex growth
function that is both of lower and upper type (see Corollary 3.5), the inequalities

established in Proposition 3.13 also hold for concave growth functions.

We then have the following boundedness of the above maximal functions

between different Orlicz spaces.

Theorem 3.14. Let « > —1 and ®,,P, € %. The following assertions are

equivalent.
(i) There exists a constant C; > 0 such that forall t > 0,

f’ D,(s) @, (1)
0

ds<C .
52 Ly

(3.11)
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(ii) There exists a constant C, > 0 such that for all f € L*1(R),

1M (DN ey < CAlF IS (3.12)
(iii) There exists a constant C5 > 0 such that for all f € L®1(C,,dV,),
My, (OI%s; < CllfIT (3.13)
Va Va

Proof. i) < ii) This equivalence follows from the [10, Lemma 3.15].
(i) = (iii) The proof of this implication is identical to that of the [12, Proposition
3.12].

Let us show that (iii) implies (i). Assume that inequality (3.11) is not satis-
fied. We can find a sequence of positive reals (¢, )x>; such that

179 k k
D, (s 2P, (2%t
f 22 )dS Z 1( k)
0 S tk

,Vk>1. (3.14)

For k > 1, put
fk = zktk)(QIk ,
where Q;, is the Carleson square associated with the interval I given as follows:

1

k-1 - k —

1 a+2 1 a+2
Lo={xer: Y (2] <x<d(2—
120\ 2/ 21(27t)) 20\ 2 P1(27))

From (3.8), we have

1
|QIk|oc - 1+a

It follows that f}, € L*(C,,dV,). Indeed

f OIS (DNAVa(2) = f 01 (21)dVa(2) = B4 (21| Qs | =
C Q

+

e = =
2kd, (2kt))

1
? < 00.
Tk
Following Lemma 3.12, there exists a dyadic interval J, € DF such that I, C J
and |[Ji| < 6|Ii|. Let z € Qp, . We have

1 XQ, (2)
|Qlk |oc |QJk |oc

where Q;,_is the Carleson square associated with J,. We deduce that

(@) < 67 “MP (fi)(2), ¥z € C,.

It follows that for 4 > 0,

1
3 Fe@ldv(z) < 224
{zeC, : |fk@>4}

1@ = o [ Ftute, @V <7 [ @ava)
Qr Q

{z € Cy 1 MY (6 fi)(z) > /%.

(3.15)
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Put
f(@) =6 f1(2), VZ € Uy Q, and f(z)=0,Vz€EC,\ U Q.
k=1

Since the I) are pairwise disjoint, the same is true for the Q;, . So we have

f @DV 5 Y [ @f@Ddva
C

+ k=1YC,

- 3 [ @, @@
Q

< o©0.

We deduce that f € L®1(C,,dV,).
Since the inequalities (3.14) and (3.15) are satisfied, we have

f ®, (My, ()(2) dVal(2) 2 f Pz € Ty : MY (67 f)(2) > 2| _dA
c 0 @

2 f (1>’2(/1)<1 f |fk(Z)|dVa(Z))d/1
A Jwec, : 1f@)i>n

0
| fr(@)]
> | 1@ ( / ‘W)cu) dV,(2)
c, 0

/12
Zktk
@,(A)
2 201Qy, la [fo fu d/l]
> 2k,
We also deduce that My _(f) & L?2(C,,dV,,). O

We can derive the following (see also [15]).

Corollary 3.15. Leta > —1and ® € % . The following assertions are equivalent.
() ® eV,
(ii) My : L®(R) — L®(R) is bounded.
(iil) My, : L*(C,,dV,) — L®(C,,dV,,) is bounded.

The above results on the maximal functions My, and My, and the estab-
lished results will be used in the proof of our main results in the last section.

3.3. Some properties of Hardy-Orlicz and Bergman-Orlicz spaceson C,.
Several properties of Hardy-Orlicz and Bergman-Orlicz spaces are needed in
our presentation. We give and prove them in this section.
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Let @ be a growth function and F € H®(C,). Put

||F || e :=sup./<l>(|F(x+iy)|)dx.
>0 JR

Let ® € ¢1(R,) a growth function such that 0 < agp < by < c0. We have the
following inequalities

Il < ma (i) s (e
and

1/a 1/b
I < max (1 lne) " (1F ) 7]

Let Q be an opensetof Cand F : Q — ] — 00, + 0] a function. We say that
F is subharmonic if the following assertions are satisfied:

(i) F is upper semicontinuous on Q
F(zy) > lim F(z), Vz, € Q,
z—2z,

(i) for all z, € Q, there exists r(z,) > 0 such that D(z,,r(zy)) = {z € Q :
|z — zy| < r(zy)}is contained in Q and such that for all r < r(z;)

F(zy) < — / / F(x + iy)dxdy. (3.16)
nr |x+iy—zq|<r

We have the following pointwise estimate of elements of Hardy-Orlicz spaces.

Proposition 3.16. Let ® be a growth function such that ®(t) > 0 forallt > 0. If
® is convex or belongs to . then for F € H®(C,.), we have

2
|F(x +iy)| < @7t (ﬂ—y) ||F||Z‘;f, Vx+iy€eC,. (3.17)

Proof. Fort > 0, put
®,(t) = @ (11/°),

where p = 1if @ is convex and p = aq if @ € £. By construction, @, is a
convex growth function. Let 0 # F € H®(C,), and z, = x, + iy, € C, and

Yo . .
r= ?0. Since |F|? is subharmonic on C,, we have

1
|F(zp)|P < —Zf |F(u + iv)|Pdudv,
r D(zo)
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where D(z,, r) is the disk centered at z; and of radius r. By Jensen’s inequality,
it follows that

|F(zp)l [F(u + iv)| w)|
(I)( F lux = 71-;»2 F lux dudv
IF e 2z \ e
pr <|F(u tulv)l)dudv
= ar D(zo.7) IIF|
2" |F(u+lv)| 1 o
2/ f — dudv < —2/ dv.
7'[1" |F||ux nr? J,

F(z
d IF(z,) si,‘v’r<y0.
||F|lux r

The following will be used in Proposition 3.18 below, which extends to Hardy-
Orlicz spaces, some known and useful characterizations of Hardy spaces.

‘We deduce that

O

Lemma 3.17. Let ® be a growth function such that ®(t) > 0 forallt > 0. If D is
convex or belongs to %, then for F € H®(C..) and for § > 0, we have

S(F+iP)]) < f :
X

WCP(IF(HL@)I)dt, Vz=x+iy € C,. (3.18)

Proof. Fort > 0, put

D,(t) = @ (11/°),
where p = 1 if ® is convexand p = a4 if ® € Z.
Let0# F € H®(C,)and 8 > 0. For z € C, put

Ug(z) = |F(z +ip)|°.
By construction, Ug is continuous on C_+ := C, UR and subharmonicon C,..
Forz =x+1iy EC_+,wehave
[Ug(2)| = [F(x +i(y + B)I?

< (qa—l( e +6)) p||“”“)p
<o ()]

according to Proposition 3.16. We deduce that Up is bounded on C_+ It follows
that

F(z +iB)° < & f
(x

WlF(f'{'lﬁ)lpdt, VZ=x+ly S C+’
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thanks to [24, Corollary 10.15]. Since @, is convex, by Jensen’s inequality we
deduce that

(I)(lF(Z + lﬁ)l) S %f OC_S)—Z-I_yz(D(lF(t + lﬁ)l)dt, Vz=x+ ly (S C+.
R
O

We have the following equivalent definition of Hardy-Orlicz spaces.

Proposition 3.18. Let ® be a growth function such that ®(t) > 0forallt > 0 and
F an analytic function on C. If ® is convex or belongs to .Z, then the following
assertions are equivalent.

(i) F € H®(C,).
(ii) The functiony — |[F(. +iy)|l s lwx is non-increasing on R? and

Hm [|F(+ e <

Moreover,
|IF||i = hm IF(+ iy)|[.

Proof. The implication (ii) = (i) is immediate.

Let us now show that (i) implies (ii). Suppose that F # 0 is non-identically zero
because there is nothing to show when F = 0. Let 0 < y; < y,. According to
Lemma 3.17 and Fubbini’s theorem, we have

L= f CD(M) dx
R \NIFC+ iyl
_ f (|F(x+l(y2—y1>+iy1>|) i
IFC. + iyl
- 1) |F(t +iy;)|
dtd
/ f <x-f>2+< — )’ <||F<+zy1)||““‘> -
|F(t + iy, -y
= dx|d
quD(IIF( +1y1)||l“X)< (x—t)2+(y2 y1)? x) t

=fq,(M)dt§1.
k \IFC+ipDIE

We deduce that ||F(. + ly2)||l“x <||IF(.+ ly1)||l“x Therefore,

sup [|F(. + iy)||i%* = 11mIIF( + iyl
y>0
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Let ® be a growth function. The Hardy space on D, H®(D) is the set of ana-
lytic function G on D which satisfy

2 i
. 1 |G(rei®)|
lux . .
||G||H¢(D) = Os;:gl inf i/l >0: o fo d)(—/l do <1} < 0.

Let @ be a growth function. If ® is convex or belongs to .#, then for some
p €1{1;aq},
H®(D) C HP(D). (3.19)
The proof of the following result is identical to that of [10, Theorem 3.11].
Therefore, the proof will be omitted.

Theorem 3.19. Let ® be a growth function such that ®(t) > 0 forallt > 0. If ®
is convex or belongs to ., then for F € H®(C,.), the function G defined by
l-w

),Vwe[D),

is in H®(D). Moreover,
! !
1G] oy < I1F I

H®(D) H®(C,)
Denote by B the function beta defined by
®© ym-1
B(m,n) = ———du, Vm,n > 0.
o (L +uymtn

The following two results can be found for example, in [1].

Lemma 3.20. Lety > 0 and a € R. The integral

dx
L) = | ———,
«0) fR lx + iy|“

converges if and only if o > 1. In this case,

1) =B (5. 557 )y

2 2
Lemma 3.21. Leta, 5 € Randt > 0. The integral
(e ] ya
I(t) = / —dy, (3.20)
o (E+y)F
converges if and only ifa > —1 and 8 > a + 1. In this case,
I(t) =B+ a,f —a — 1)t~ A+a+l, (3.21)

The Nevanlinna’s class on C,, .4(C, ) is the set of holomorphic functions F
on C, such that

supf log(1+ |F(x +iy)|)dx < 0.
y>0 JR
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For 0 # F € .#(C,), there exists a unique function f measurable on R such
that log | f| € L ([R a ) and

> 1442
lin(l)F(x +iy) = f(x),
y—)

for almost all x € R, (see [25]).
We have the following embedding relations between the Nevanlinna class
and Hardy-Orlicz spaces.

Proposition 3.22. Let ® € €(R,) be a growth function such that 0 < ap <
by < 0. The following assertions are satisfied.

(i) If0 < ap < by < 1, then H®(C,) C A (C,).

(i) If1 < ag < bg < o0, then H*(C,) ¢ A (C,).
Proof. (i) For 0 # F € H®(C,), put

Fy = Focqri<ty and Fp = Fxqp>1-
For z € C,, we have
1
log(1 + |F1(2)]) < |F1(2)| < |F1(2)|P < oD X ®(|F1(2)|)
and

log(1+|Fy(2)]) = ~— log(L+IF2(@))% < 2 |F,@)]% < 2 L x@(|F,(2)])
g 2 = g 2 S 2 = g o(1) 2 )
. . ®(t) ONE .

since the function t — — (resp. t — tb_<1>) is non-decreasing (resp. non-

increasing) on R}. Using the sub-additivity of the logarithmic function on
(1, ), we deduce that

log(1 + [F(2)]) S log(1 + |F1(2)| + |F2(2)]) S (2(|F1(2)]) + S(|F2(2)]) -
It follows that F € .4(C,). Indeed, for y > 0, we have

flog(l + |F(x +iy)Ddx < f<D(|F1(x+iy)|)dx+f<I)(|F2(x+iy)|)dx
R R R

< sup/cb(|F(x+iy)|)dx< 0.
y>0 JR

(ii) Let « € Rsuch that1/ag < a < 1. For z € C,, put

1
F.(z)=
«(2) (z+1i)
By construction, F, is an analytic function on C, and
1
F,(2)) = ——— <1, Vz=x+iyeC,.
|Fo(2)] PRSI yeC,

‘We deduce that

1 1
log(1 + |F, > -
og(1+ |F2)) 2 5T

Tty Vz=x+iyeC,
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and
1

[x +i(1 4 )2’

since |F,| < 1 and the function ¢t — % is non-decreasing on R’ . It follows

that F, € H®(C,) and F, ¢ .4 (C,). Indeed, for y > 0, we have

(I)(lFa(Z)l)SCD(l) Vz:x+iyEC+,

1 —1 1 ~1
fcbuFa(x +ipax s B(3 L) ey <B(3, 59070 < hoo
and

1 dx
log (1 + |Fy(x + iy))dx > _f_— .
'/R ¢ 2 Jp Ix+i(1 4y
according to Lemma 3.20. 0

The above embedding of the Hardy-Orlicz spaces H®(C, ) into the Nevan-
linna’s class will allow us to apply properties of elements in the Nevanlinna’s
class to functions in H®(C,).

Let f be a measurable function on R. The Poisson integral Uy of f is the
function defined by

N S Yy .
Up(x +1iy) 1= ﬂL—(x—t)2+y2f(t)dt’ Vx+iyeC,,

when it makesds[ense.
Iffel! ([R, 1+_t2) then Uy is a harmonic function on C, and

lim U (x + iy) = /(x)

for almost all x € R (see [24]).
The following result gives a representation of functions in Hardy-Orlicz spaces
in terms of the Poisson integral.

Lemma 3.23 (Lemma 4.1, [10]). Let ® be a convex growth function such that
d(t) > Oforallt > 0and 0 # F an analytic function on C,. The following
assertions are equivalent.

(i) F € H®(C,).

(ii) Thereexists a unique function f € L® (R) such thatlog | f| € L ([R, %)

and
F(x+iy)=Us(x +1iy), Vx +iy € C,.
Moreover,
IFIls = tim I+ I = 17155

We next show the existence of a radial limit for functions in a Hardy-Orlicz
space.
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Theorem 3.24. Let ® be a growth function such that ®(t) > 0forallt > 0. If D is
convex or belongs to &, then for 0 2 F € H®(C.,), there exists a unique function

f € L% (R) such that log| f| € L' (R, =

1+t2

f(x) =1lim F(x + iy),
y—0

foralmost all x € R, f(t) # 0 foralmostallt € R,

; 1 y ;
10g |F(x +iy)| < E \/[R; mlog |f(t)|dt, Vx+iyeC,

and

Il = Hm[JF(+ e = IFII (3.22)
Proof. Let 0 # F € H®(C,). There exists a unique measurable function f on
R such that log | f| € L! (R, d ) and

1+t2

lim F(x + iy) = f(x),
y—0

for almost all x € R, according to point (i) of Proposition 3.22 and Lemma 3.23.
Suppose that there exists A a measurable subset of R with Lebesgue measure
|A| > 0, and

f(x)=0,VxeEA.

‘We have

veo = [ o FOI 5 < [ Hoglr@ll

14127~
dt
1+£2

We deduce that log | f| & L! ([R,
almost all t € R. For w € D, put

G(w):F(i;z).

). Which is absurd. Hence, f(t) # 0, for

Since G € H®(D) c HP(D), with p > 0, there exists a unique function g €
L®(T) such that log |g| € L}(T) and

lin} G(re'®) = g(e®),
r—

for almost all & € R and

, 1 (" 1—r2 , :
log |G(re®)| < — 1 wyldu, YV re® e D.
og|G(re )I_Zﬂ',/_ﬂl—Z;fcos(u—G)+r2 oglg(e™)|du, Yre

Moreover,

r

- 1 (" 172 )
log |g(e®)| = lim —f log |g(e™)|du |, (3.23)
r p—

-1\27 J 1—2rcos(u—0)+r?
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for almost all 6 € R.
Consider ¢, the map defined by

go(co)—l T VweDUT\{ 1},

where T is the complex unit circle. Note that the restriction of ¢ to D (resp.
T\{—1}) is an analytic function on D with values in C, (resp. a homeomor-

phism from T\{—1} onto R).
Forz=x+iy € C, and w = re’* € D such that z = i;—w, using
w
1—r2
1+7r2+2rcosu

y =
and (3.23), we deduce that
£ (0] = |gop~ (2],

for almost all x € R. Therefore,

log |[F(x +iy)| < = f Wlog |f(®)|dt, Vx +iy e C,.
Indeed,
log [F(x + iy)] = log |G(re™)|
1 (7 1-r2

log |g(e™)|d®

S_
2r ) 1 —2rcos(u—0)+r?

1 y -
B —/mlofﬂgﬁo '(1)|dt

f oo t)z 5 log|f(0ldr.

Let us prove (3.22). By Fatou’s lemma, we have

/’ Cf@N)dxslmﬁn{/¢<gziigﬂ>dx
R\ ||IF|) =0 Jr || F||x

F
< supf LiChaol} dx <1.
y>0 Jr Il

We deduce that f € L®(R) and
||f||lux < ||F||lux

Put

(1) =@ (t1/°P), Vi >0,
where p = 1if @ isconvex and p = a4 if ® € .Z.
Using Jensen’s inequality and (3. 24) we deduce that

|F(x +iy)lP < —/
(x -

(3.24)

(3.25)
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Fixy > 0. We have

|F(x + iy)| / 1f y o)\
P\ |5 ) Pl w dt |d
I ( 71 ) A R<x—r>2+y2<||f||l“X> )

L® L®
] y TORY
— — _ dtd
RS R (||f|§'?) “
THOAYA! f y
=[ol2) =] —=——dx]d
fR (IIfII’{é")(” b (L= D 4y x) t
- [ o
R ”fHLL:px
‘We deduce that
IFB < |1 F]1e. (3.26)

He Le
From (3.25) and (3.26) and also from Proposition 3.18, it follows that

l : ; l l
IFlle = Hm [|F(. + s =N

O

We have the following pointwise estimate of functions in a Bergman-Orlicz
space. It will be used in the characterization of pointwise multipliers from
Hardy-Orlicz or Bergman-Orlicz spaces to Bergman-Orlicz spaces.

Lemma 3.25. Let « > —1 and ® a one-to-one growth function. If ® is convex
or belongs to £, then there exists a constant C := C, ¢ > 1 such that for F €
Ag(c+)’

1
IF(x + iy)| < Co (ym) IFI, ¥ x +iy € C.. (3.27)

Proof. Fort > 0, put
D, (1) = @ (11/°),
where p = 1 if ® is convexand p = aq if ® € Z.
Let0 # F € A2(C,). Fixzy = xo + iy, € C, and putr =
subharmonic on C,, we have

1
|F(zg)|° < _zf |F(u + iv)|°dudv.
r D(zo,1)

%. Since |F|° is

For u + iv € D(z,,r), we have

1 1 .
r<v<3irs0< —<2x—,ifa>0
Ve y&
0
and
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We deduce that

1 1 .
0< = < Ca}?, Yu+iv e D(zy,r), (3.28)

0
where C, := max {2“; 2/ 3)0‘}. By Jensen’s inequality, we have

P

o nlmﬁnm|<£_ IFa+iv) |
4C F lux | — 7-[;’2 F lux udv
o IE1] 30 Ca Daon | IFI] e
< T f |F(u —}; iv)| o dudu
4Co my; é%: IFIe

1 F(u+iv
< 2+ocf P | (u lulx )l dV - |24
Yo e, I Yo
We deduce that
ac NP [
el < (22) e e L
0

O

We will need the following result to find equivalent definitions of Carleson
measures.

Proposition 3.26. Let a > —1. Thereexist C := C, > 0and § € {0,1/3} such
that for any analytic function F on C, and forall 0 < y < oo,

IF()|” < Cngf (|IF|")(z), ¥V z € C,. (3.29)

Proof. Let 0 < y < o0 and 0 # F be an analytic function on C,. Fix z, =
Xo+iyo€C,andr = %. From (3.28), we have

1 ay 1 .
0< o < maX{Z“;(2/3) }%, Yu+iv € D(zy,r).

Let I be an interval centered at x; and of length |I| = 2y,. Consider Q; the
Carleson square associated with I. According to Lemma 3.12, there exist § €
{0,1/3}and J € DF such thatI c J and |J| < 6|I|. From Relation (3.8) we have

1 62+O£ 122+0l
= J?te < I|2t+e = 2+a
Qrle = T MPH < Tl = 22
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Since |F|” is subharmonic on C, and D(z, r) is contained in Q; we have

|[F(z))l” £ — f |F(u + iv)|” dudv
D(zg,r)

4  max {2“ (2/3) }f

< —X |F(u + iv)|"v¥*dudv
ﬂyO D(ZO’r)
XQ] F(u + iv)|"v¥dudv < C,M2° (|F|
|QJ|a L, |F(u + iv)["v*dudv < Co M (IF|7) (20),
where C, 1= 2 x T x max {2%;(2/3)"}. O
T (o4

We give below some test functions that will be used in the proof of Theorem
2.5.

Proposition 3.27. Letax > —1 and ® a one-to-one growth function. If ® is convex
or belongs to . then there exists some constants p € {1;a4} and
1 34 2a
).
such that forall z = x + iy € C, the functions F, and G, defined respectively by

C, =B(1+a, 2+oc)B< (3.30)

1 yz/p
F(w) =®! (—) ——  VweC, (3.31)
7y ) (w —2z)*/°
and
1 1 y(4+2a)/p
G,(w)= (Cay2+°‘> o E)(4+2a)/p’ VweC,, (3.32)

are analytic functions belonging respectively to H®(C, ) and A2(C..). Moreover,
Il < 1and |G|/ < 1.

Proof. Fix z = x + iy € C,. By construction F, ad G, are analytic functions
which does not vanish on C,. For w = u + iv € C_, we have

y?
l(w—x)+i(y+v)]2 ~
Putp =1if ®isconvex and p = ag if ® € .Z, and

1 3+2oc>
> .

C, =B(Q+a,2+ )B(
L0)

tP

/@(le(u +iv))du < %
R

Since the function t — is non-decreasing on Rj, we deduce that

1 du
g [(u—x)+i(y +v)|?

and

y du «
| et6.pav.e s f( — x)+l(v+y)|4+2a)vdv.

+
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Following Lemma 3.20, we have

[t aums(12)
R [(w—=x)+i(y +v)|? S \2’2)y+v

and

f du _ (l 3+ Zoc) 1
R 1 =) +io+ )=~ T\2 T2 oy
‘We deduce that

d(|F,(u+iv)))dus1, V>0
R
and

f (G, (@)NAV (@) S 1,
Cy
since

® e 1
/(; Ot opm dv=B(1+a,2+ oc)y2+a,

thanks to Lemma 3.21. Therefore, F, € H®(C, ) with ||FZ||Z§ <landG, €

AZ(C ) with |G| < 1. O

4. Some characterizations of Carleson measures.

In this section, we give among others, a general characterization of a (s, ®)-
Carleson measure. We start with the following elementary result whose proof
is left to the interested reader.

Proposition 4.1. Lets > 0, a > —1 and ®,, P, be two one-to-one growth func-
tions. The following assertions are equivalent.

(1) Vg isa (s, 0@ ")—Carleson measure.
(ii) There exists a constant C > 0 such that forallt > 0

OT(15) < dFI(Cr*H), 4.1)
We have the following example of a (s, ®)—Carleson measure.

Proposition 4.2. Lets > 1and ® € 7% . Put
dxdy

ro(3)
yS

If® € V,, then uis a (s, ®)—Carleson measure. In particular, the converse is true
fors =1

du(x +1iy) = , Vx+iyecC,.

Proof. Put

Q) = ,Vt>0 and Q0)=0.
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According to Proposition 3.9, Q € % N V,.
Let I be an interval of nonzero length and Q; the Carleson square associated
with I. We have

11| s Il &/.,s
M@%/,f(wdd mf Sy iy iy
1]*
Q I C
erPf 80) ¢ srppedD _ s
IR
1S
thanks to Lemma 3.3. In particular, for s = 1, we have

I & p
uon saip e [+ ZPays b

Hence by Lemma 3.3 and Proposition 3.9, ® € % N V,. ]

We have the following equivalent characterizations of Carleson measures.
They will be used in the proof our main results.

Lemma4.3. Leta > —1, ® € % and u be a positive Borel measure on C,. Put

°(;)

The following assertions are satisfied

Q@) = and Q0) =

(i) wis a ®—Carleson measure if and only if there exists a constant C; > 0
such that forall f € L* ( , 1?:2) and any 1 > 0,

pzeCy U@ >A}) <CQ(fx €R : My (H(X) > A]),  (4.2)

where U is the Poisson integral of f.
(ii) pisa (a,®)—Carleson measure if and only if there exists a constant C, >
0 such that for f € L® (C,,dV,)and A > 0,

u(fzec, : M2(N@ > 1)) < .0 (|{z ec, : M2 () > /1}|a>. (4.3)

Proof. (i) That u is a ®—Carleson measure implies that (4.2) holds, has already
been proved in [12, Lemma 4.2].

Let us suppose that (4.2) is satisfied and show that u is a ®—Carleson measure.
Let I be an interval of R of non-zero length and Q; the Carleson square associ-

ated with I. Put
1 1
-t
2 1]

f=24x.

and
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By construction, f € L®(R) and ||f ||lLLfI,x < 1. Indeed

chpuf(x)Ddx - f;q) (cp-l (ﬁ))dx -1,

Let xg + iy, € Q7. We have

A< f(xy) = lim iglf Us(xo +iy) < Up(xp + iyo),
y—)

where U is the Poisson integral of f. We deduce that
Q cizeCy : |Us2)| >4},
Since inequality (4.2) is satisfied, we have
QDS u({zeCy U2 > A})
S Q(lfx € R 1 My (H(x) > 43
$8(555) saan.

(ii) Again, that u is a (a0, ®)—Carleson measure implies that (4.3) holds was
proved in [12, Lemma 4.3]. Let us prove the converse. Let I be an interval of
nonzero length and Q; the Carleson square associated with I. Put

1 l4+a
= —CD_I
A 2 <|I|2+a>

and

By construction f € L*(C,,dV,) and ||f ||1L‘;x < 1. Indeed,

/ @AV < fQ @ (01 (152 ) avata =1

By Lemma 3.12, there are 8§ € {0,1/3}and J € Df such thatI c J and |J| <
6/I|. Consider Q; the Carleson square associated with J. Let z € Q;. We have

A< 1o f f@3dVy(w) 3 X0 f F@)dV (@) s MY f(2).
|QI|oc Q; |Q]|0‘ Qs ’
We deduce that

Qlc{zeCJr : M‘?ff(z)>/l}.
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Since the inequality (4.3) is satisfied and by Chebychev’s inequality, we have
@) su(fz eyt MY f(2) > 2f)

<Q (’{z ecC, : M‘%’ff(z) > /l}|a>

()

The following is a generalization of [12, Theorem 4.1].

< ﬁ (|I|2+a) )

Theorem 4.4. Let s > 0 be a real, ®,, , two one-to-one growth functions and u
a positive Borel measure on C,. If ®, € £ U % and P, is convex or belongs .2,
then the following assertions are equivalent.
() wisac(s, CI)Zodbl_l)—Carleson measure.
(ii) There exist some constants p € {1;a¢ }and C := C, g o, > 0such that
forallz=x+iyeC,

1 1 yzs/P d
A=) — <C. .

Proof. Let us show that (ii) implies (i). We assume that the inequality (4.4)
holds.

Let I be an interval of nonzero length and Q; its Carleson square.

Fix zy = x¢ + iy, € C,, and assume that x, is the center of I and |I| = 2.

Let w = u + iv € Q;. We have

lw —Zo|? = |(u — xo) + i(v + o) > < ¥ + (3yp)* = 10y;.
It follows that
yZS/p
1<10/p—2%
oo — Zo|zs/'O

@,(1)
{P®2

2s/p
1 1) 10%°y
-1 -1 0
(DZOCI)l —s S CDZ q)l "y fzs
|I| yo |CU - Z0| /p

1\ w2
< 10°00/P0, @ (_) HW
w— 2,

Yo

Since CI)l_1 is increasing and ¢ —

is non-increasing on R* , we have

Thus

1 1 /e
@ c1>—1<—)<1osb<b I, ol =) —2 |, vweo,.
2094 ) = B st V5 ) | — Zg|25/p @€ Qr
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Since the inequality (4.4) is satisfied, we obtain

B00;! (Ilil) Q) = fQ 007! (ﬁ) du(w)

1 e
< 10%0e:/P f D, @;1<—)°— du(w)
C

. Yo ) lw—2o|/¢

< 10%e:/PC,.

‘We deduce that
10%be./PC 5

RYERY
q)zoq)ll(m)

For the converse, we assume that the inequality (2.4) holds.
Put

u(Qy) <

1 if @, is convex
- { ap, if®, €2
Fix zy = xo + iy, € C, and let j € N. Consider I; the centered interval x, with
1I;| = 2/+1y, and QI_,- its Carleson square. Put

Ej :=Qr\Qr_, Vj=1and Ey = Qp.

FixjeNandletw =u+iv e C,.
If w € E,, then we have

|l —Zo|? = [(u — xo) + i(v + Yo)I* = (U + yo)* = yg > 27%y;.
If w € E; with j > 1 then we have
lw —Zo|* = |(u = Xxo) + i(V + yo)|* = (u — x0)* > 220_1))’3-
We deduce that

2s/p
Yo Vo€E;, ¥Vj>0
lw —Zg|2/F ~ 22(j-Ds/p’ p ¥ =
-1
Fix j € Nandletw € E;. Since the functions ¢ q); /it) and ¢t — quf? are

@,(1)
992

1\ 1 1
oot =) —2 |<o, (07 (=) —0o
21 %1 (y(s)) |w_Z_O|2s/p = 2( 1 (ﬁ)) 22(]—1)s/p>

1 1 1 1
=0, (07 = X X
2( 1 (y(s)) 2(+D)s/p * pjs/e 2—3S/p>

1 1 1
S X X D007 | —|.
2=3sba, /P Hjsaw,/p |Ij|

non-increasing on R%} and ¢ — is non-decreasing on R* , we have
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We deduce that
2s/p
1 y 1 1 1
o,| 011 0_ < X ———X®,00;' | — |, Vw € E;.
VA3 T = 2R | T g bele” gisanle 2 TS

Since the inequality (2.4) holds, it follows that

1 /e
L:=] o, |07 =) —>  |du(w

J

1 1 1
< X X ®,007! du(w
< [ i * g < 07 o

1 1 1
X X Dyod]! <—) #(Qr,)

T 3sbey /P pisae,/p |Ij|s
1 1

< X x Cj.
- 2—3sbq,2/p 2jsaq,2/p 1
‘We deduce that
2s/p
/ 0| 07| — —— |du(w) < —— ,Vj>o.
Ej Yo lo—z|/° 2=3sbe, /P pisae, /P

By construction, the E; are pairwise disjoint and form a partition of C,,.. So we

have
2s/p
1 Yo
L := o, |7 = | ——— |du(w

o0 1 yzs/P
= o, |7 = + du(w
Z/E 71 (yé)lw—ZOIZS/P )

5. Proofs of main results.

This section is devoted to the proofs of our main results. Let us start with the
proof of Theorem 2.3.

Proof of Theorem 2.3. The equivalence (i) < (ii) is given by Theorem 4.4.
The implication (iii) = (iv) is obvious. Let us prove that (i) = (iii) and (iv) =
(i) which is enough to conclude.
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(i) = (iii): Let 0 # F € H®(C,). Following Theorem 3.24, there exists a
unique function f € L? (R) such that log | f| € L ( , i[ﬂ) and

log |[F(x +iy)| < = f e log|f(H)ldt, Vx +iyeC,  (51)

t)z + 2
and ||F||;7o lwe — | f ||l”x. Using Jensen’s inequality in (5.1), we deduce that

. ag, /2 2/a, .
FGx+ )] S (M (1F1%/)(0)) ", Vx+iy € €.
Fix A > 0, and put

2/ Ao,

71\
E; :={xeR : | My ( lux) (x) > A
IIf1
From (3.9), we deduce that
g\ Y
. DA
|E;| < Z xeR | M2 (”f”lux) (%) >
B€{0;1/3}

Put
D, () = D, (tz/%l), Vit >o0.

From Proposition 3.5, we deduce that ®, € % NV,. It follows from Proposition
3.13 that

2/(1(1)1
xeR:| M2 o\ (x) AU 1 vygeq1/3
' s 1217 @1
‘We deduce that
1
E;| < .
EaRkey
Put
0= — ¥i>0 and s0)=0.
®,00] ()

From Lemma 3.10, we deduce that Q; € %. Since u is an <I>20cI>_1—Carleson

3()

measure and ¢ — is non-decreasing on R, by Lemma 4.3, we have

u(fzec, t 1F@I> A1) s k(fz e 10s@1 > A7)
< Qs (|Ea]

< ®,(1)0; <¢ 1(/1)> IE,).
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As
1 1 o a2 %W
O (q:@)) PVTD=Th Cem T oW
‘We deduce that
P’ (1)
,u({z €C, : |F2)| > Af] lL"@f}) @}(A) ,VA>0.
We have

f“’z FOL | 1) - f oy u [z € €, 1 IF@I > A7) dA
e \IIFIE 0

<[ oa 1 E;| |da

Nfo ()(cm)m A|)

- f @) (1) X |E;|dA
0

ag, /2
-J Mﬂﬁ(nfl"{ll“x) o)

ag, /2

|f (0l

qu)a lux

R LI

_ (o |

- 1 lux

R IFI
<1

(iv) = (i): Let I be an interval of nonzero length and Q; its Carleson square.
Fix zy = xy + iy, € C, and we assume that x, is the center of I and |I| = 2y,
Put

1 y/?
—H-1(_ 0
F,(w) = @] (ﬂy()) T VweC,,

where p = 1if® € % and p = a4 if ® € .Z. From Proposition 3.27, we deduce

that F, € H*1(C,) and ”FZOHZ[; <1.

Let w = u + iv € Q;. We have

y2

=21 = 1(u=x0) +i(U+y0)> < ¥§ +@po+0)’ = 10y5 = 75 < ———.
low —Zo|2

_1()
t/

1 1 1
o1 (—) < @1 (—) < /Pl (—)
LA 1 \yo b \7yo

Since the function ¢t — is non-increasing on R* , we have
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We deduce that

2
o (1) < (Z)" op (=) W (Z) L)
P TN00 T Ny ) e —zg2/e T N0) i,

H®1
Taking
1/p
/1 = <E> ®_1 <i>7
T LA
it follows that
|Fzy (@) > A|Fy %5, Vo € Q.
Therefore

Q clzeCy 1 IF,@)I > AlIF, 1% ]

Since inequality (2.10) is satisfied, we have
G
(1)

u@) < p(fzec, : IF, @1 > AR, |4 }) <
As

1 TA\L/P
_1 - _ i
@, 00" <|I|) = ®, ((10) l) < C,d,(A).
We deduce that

O

Proof of Corollary 2.4. The proof of Corollary 2.4 follows from Theorem 2.3
and Proposition 4.1 for (s = 1). O

Proof of Theorem 2.5. The equivalence (i) < (ii) is given by Theorem 4.4.
The implication (iii) = (iv) is obvious. To conclude, it is enough to prove that
(i) = (iii) and (iv) = (i).

(i) = (iii): Let0 # F € Afl(C+). By Proposition 3.26, there exists § €
{0,1/3} such that

6@ s (M2 (61 72) @)™ vz ec,

|F(2)]

1)
At

where G : =

1

2200 ()

Q;(t) = ,Vt>0 and Q30)=0.
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From Lemma 3.10, we deduce that Q; € %. Since t — &0

on R?, it follows from Proposition 3.13 that for 1 > 0, we have

is non-decreasing

P
® (/1))' /1'ot~ CD’(/l)' /1|ot’

Bake < g = B (i) < 0@

where
2/a
E, := {z ecC, : (Mpﬁ (|G|a®1/2) (z)) " /1}.
Since u is an («, qbzo(bl‘l)—Carleson measure, by Lemma 4.3, we deduce that

®,(2)

E) < Qs (|E;]) S ——
u(Ey) < Qs l'“)NCPQ(/U

q> VA>0.

Put
o) = @, (£2/9), Vi 2 0.

From Proposition 3.5, we deduce that &, € % N V,. We have

[ o e oo < [ ol e o™ o

- [ euear
0

00, /()
s[¢ﬂ%@w|m)

- /C @, (M2 (16107) (2)) dVo(2)

+

sf @, (IG1%172) dVo(2) S 1.
C

+

(iv) = (i): Let I be an interval of nonzero length and Q; its Carleson square.
Fix zy = xo + iyy € C, and we assume that x, is the center of I and |I| = 2y,

Put
442
G, (w) = &7 ! y‘(’mw VweC
R VR0 FoR
where p = 1if® € % and p = a4 if ® € .Z, and C, is the constant in (3.30).

From Proposition 3.27, we deduce that G, € A¢1(C+) and ||GZO||l”x <1.

d)l—

For w = u + iv € Q;, we have
2
Yo

|l —Zo|? = |(u—xp) +i(v+y)]* < y§+(2yo +Yo)* = 10)’(2) > =< ——.
107 o —Z|?2
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. . (D) . . .
Since the function ¢ — ;17 is non-increasing on R*, we have

1 1 1
-1 -1 1/pp—1
D] <|I|2+“) < @] (ng) < (C)/Pa] <C y2+"‘>'

a’rzo

‘We deduce that

442
o (-1 )<(&)””q,_1( 1 ) vy <<&>W 16, (@)
1\ |12+ 10 1 Caygﬂx lw — Zo|@+20/e — \ 10 ||GZO|lux

AN
Taking
1/p
()" ()
C‘x 1 |I|2+a
it follows that
|Gz, (@)] > |G, 15, ¥ @ € Q.
Therefore

Q; C {z €C, : |G, (2)| > /1||Gz0||l}i}-

Since inequality (2.14) is satisfied, we have

C
. l 1
uen<u(jzec. :lo,@I> 10, A" f)< P2
As
-1 1 Ca v
©,00] (W) =, (1—()) /1) < C0,(A).
We deduce that
Cs
l’{(QI) < 1 )
-1
q)Zoq)] ( 1|2+ )

O

Proof of Corollary 2.6. The proof of Corollary 2.6 follows from Theorem 2.5
and Proposition 4.1 for (s = 2 + a). O

The following result follows from Lemma 3.25 and Proposition 3.27. There-
fore, the proof will not be written.

Lemma 5.1. Let o, > —1, ®;,9, € £ U %. There are constants C; :=
Cao,0, > 0andC 1= Cy g ¢, 0, > OsuchthatforallF € M (H¢1(C+),A$2(C+))

andG € M (Afjl(a:+),A§2(C+)),

|F(x +iy)| < C;———=, Vx+iy € C, (5.2)



CARLESON EMBEDDINGS AND POINTWISE MULTIPLIERS 1311

-1 1
CDZ (y2+ﬁ )

|G(x +iy)| < C,————~, Vx+iy € C,. (5.3)
-1 1
CDI <y2+a>

Proof of Theorem 2.7. The inclusion of M(H®1(C,), AfZ(CJr)) inHY(C,)fol-
lows from Lemma 5.1. o
Conversely, fix0# G € HY(C,)andletz =x +iy € C,. Since ®, € LU %,
by Lemma 3.11, we have

-1 1 -1 1

CDZ <y2+a> < q)z (q)Z <y2+ct>> _ 1

o' () ) e(ont(5)  yener(5)
L \y L \y L \y

and

D, (w(y)) = @,

We deduce that
G(x+i
: ('(G—”') < 0,00 < Vx+iyec,.
I ||H;j° y2+aq)20q)1—1 (l)
y
Put
dxd
du(x +iy) = —yl, Vx+iyeC,.
y2cI>ZocI)1—1(_)
y

Since (I>ZocI>1‘1 € V,, from Proposition 4.2, we deduce that ¢ is a measure
®,0® ' —Carleson.
Let 0 # F € H®(C,). By Theorem 2.3, we have

|G(x + iy)F(x + iy)| .
L ::f D, — dV (x +1iy)
c, IGlae=1Fl e,
G(x+1i F(x+i
5/% |G(x + iy)| o, |F( ly)l Yedxdy
c, G|z [iglss
F(x+i
sf @, | EXEWN e 11y
F”lux
C+ || H‘I’l
< 1.
We deduce that G € M(H®1(C,,), A2(C,)). O

Proof of Theorem 2.8. The inclusion of M (Af1 (C,), AEZ(CQ) in HX(C,.)fol-
lows from Lemma 5.1. Conversely, fix0 # G € HX(C,)andletz = x +iy €
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C,. Since &, € Zu ?’Z by Lemma 3.11, we have

-1 1 -1 1
® (y”ﬁ) ©2 <q>2 (y”ﬁ )) 1

Dy (w(y)) = b, 1 S . = N
-1 -1 -1
q)l <y2+or ) ¢)2 <q)1 <y2+01 )) y2+ﬁq)2o(bl <y2+a )
‘We deduce that

® |G(x +iy)|
2\ Gl

1
) S @ (w(y)) S , Vx+iyeC,.

-1 1
y2+[)’c1>2ocI)1 (yzw )

Put dxd
du(x +1iy) = x4y N , Vx+iyecC,.
y2¢’2°¢1_1( )

By Proposition 4.2, uis a («, CI>20<I>1_1)—Carleson measure. By Theorem 2.5, we
have

y2+oc

[GCx + F(x +iy)l .
L :=f D, — dVg(x +iy)
c, ||G||H;3<’||F|Aa>1
G(x+1i F(x +1
$/ ¢2<| (x zy)|)q)2 LICRIY P
c. \ lGlus IFIS,

. .
< f o, I+ iy)] du(x +iy)
C

1
e
<1.
We deduce that G € M(Afl(CJr),Ag)Z(CJr)). O
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