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A quantum harmonic analysis approach to
the Berger-Coburn theorem

Vishwa Dewage andMishko Mitkovski

Abstract. We use quantum harmonic analysis for densely defined opera-
tors to provide a simplified proof of the Berger-Coburn theorem for bounded-
ness of Toeplitz operators. In addition, we revisit compactness and Schatten-
class membership of densely defined Toeplitz operators.
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1. Introduction
Werner’s quantum harmonic analysis (QHA) [20] has now been established

as an effective tool in several fields of mathematics, including time-frequency
analysis, mathematical physics, and operator theory [1, 10, 8, 11, 14, 15, 17, 19].
As noted in [11], QHA is particularly well-suited to studying Toeplitz operators
on the Bargmann-Fock space. In this article, we use QHAmethods to provide a
simple and concise proof of the Berger-Coburn boundedness theorem [2], along
with proofs of several subsequent results by Bauer, Coburn, and Isralowitz [3].
The Bargmann-Fock space ℱ2(ℂ𝑛) is the closed subspace of 𝐿2(ℂ𝑛, 𝑑𝜆) con-

sisting of all entire functions that are square integrablewith respect to theGauss-
ian measure 𝑑𝜆, 𝑑𝜆(𝑧) = 𝑒−𝜋|𝑧|2𝑑𝑚(𝑧) (𝑑𝑚 denotes the Lebesgue measure on
ℂ𝑛 ≃ ℝ2𝑛). The orthogonal projection 𝑃 ∶ 𝐿2(ℂ, 𝑑𝜆)→ ℱ2(ℂ𝑛) is given by

𝑃𝑓(𝑧) = ∫
ℂ𝑛
𝑓(𝑤)𝑒𝜋𝑧�̄� 𝑑𝜆(𝑤).
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Given a function 𝑎 ∶ ℂ𝑛 → ℂ, a Toeplitz operator 𝑇𝑎 ∶ ℱ2(ℂ𝑛)→ ℱ2(ℂ𝑛)with
symbol 𝑎 is formally defined by

𝑇𝑎𝑓(𝑧) = 𝑃(𝑎𝑓)(𝑧) ∀ 𝑧 ∈ ℂ𝑛.

𝑇𝑎 is bounded if its symbol 𝑎 is a bounded function. However, it is well-known
that there exist bounded Toeplitz operators with unbounded symbols. Berger
and Coburn [2] tried to characterize unbounded symbols which give rise to
bounded Toeplitz operators in terms of "the heat flow" of their symbol (also
known as the 𝑡-Berezin transform) given by

𝐵𝑡(𝑎) ∶= 𝑎 ∗ 𝜑𝑡, 𝑡 > 0.

More precisely, they proved the following now well-known result.

Theorem 1.1 (Berger-Coburn). Let 𝑎 ∈ 𝒜2
𝜆 ∶= {𝑎 ∶ ℂ𝑛 → ℂ ∣ 𝑎(⋅ − 𝑧) ∈

𝐿2(ℂ𝑛, 𝑑𝜆) ∀𝑧 ∈ ℂ𝑛}. If𝑇𝑎 is a bounded operator then𝐵𝑡(𝑎) is a bounded function
for all 𝑡 > 1∕2, and

‖𝐵𝑡(𝑎)‖∞ ≤ 𝐶1(𝑡) ‖𝑇𝑎‖

for some constant 𝐶1(𝑡) > 0. On the other hand, if 𝐵𝑡(𝑎) is a bounded function
for some 0 < 𝑡 < 1∕2, then 𝑇𝑎 is a bounded operator and

‖𝑇𝑎‖ ≤ 𝐶2(𝑡) ‖𝐵𝑡(𝑎)‖∞

for some constant 𝐶2(𝑡) > 0.

Berger and Coburn were hopeful that the only absent value of 𝑡 in the theo-
remabovewould yield the desired characterization of boundedness in the form:
𝑇𝑎 is bounded if and only of 𝐵1∕2(𝑎) = 𝑎 ∗ 𝜑1∕2 is bounded. This still remains
an open question. However, the necessity and sufficiency of this conditionwere
established for special classes of Toeplitz operators in [5, 6, 7] and [21] It was
shown later by Bauer, Coburn, and Isralowitz [3] that this same heat trans-
form can be used to almost characterize compactness, as well as the Schatten-
class membership of densely defined Toeplitz operators. In both papers [2, 3],
the more challenging part of the proofs relied heavily on certain results about
pseudo-differential operators. While these results are fairly standard, their ap-
plication felt somewhat artificial. In a recent paper, Fulsche and Bauer [4] pre-
sented a direct proof of one of the Berger-Coburn inequalities, entirely bypass-
ing the need for pseudo-differential operators.
Themain goal of this note is to provide a simple, concise proofs of the results

in [2, 3] using methods from quantum harmonic analysis. Our proofs com-
pletely avoid pseudo-differential operators and are extremely simple and short,
showing the elementary nature of these estimates. In addition, we answer one
of the questions raised in [3] by providing a quantitative analog of Theorem 1.1
for Schatten-class operators.
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2. Preliminaries
It is well-known that the Bargmann-Fock spaceℱ2(ℂ𝑛) is a reproducing ker-

nel Hilbert space with reproducing kernel𝐾𝑧(𝑤) = 𝑒𝜋�̄�𝑤 and normalized repro-
ducing kernel

𝑘𝑧(𝑤) =
𝐾𝑧(𝑤)
‖𝐾𝑧‖

= 𝑒𝜋�̄�𝑤−
𝜋
2
|𝑧|2 ,

where �̄�𝑤 = �̄�1𝑤1 +⋯ + 𝑧𝑛𝑤𝑛. The monomials

𝑒m(𝑧) =
√

𝜋m
m! 𝑧

m, m ∈ ℕ𝑛0

form an orthonormal basis for ℱ2(ℂ𝑛).

2.1. Heat kernel. The heat kernel

𝜑𝑡(𝑧) =
1
𝑡𝑛 𝑒

− 𝜋|𝑧|2

𝑡 , 𝑡 > 0,

plays a crucial role in our proofs. It is well-known that it is an approximate
identity, i.e., for 𝑎 ∈ 𝐿𝑝(ℂ𝑛), 𝑝 ∈ [1,∞)we have 𝜑𝑡 ∗ 𝑎 → 𝑎 in 𝐿𝑝 and similarly
for 𝑎 uniformly continuous, we have 𝜑𝑡 ∗ 𝑎 → 𝑎 uniformly.

2.2. Quantumharmonic analysis (QHA). Here, we recall some basic QHA
concepts and properties that we will use in our proofs. The proofs of these
properties can be found in [11, 16, 18, 20]. We denote by 𝔏(ℱ2) the algebra of
all bounded operators on the Fock space. For 1 ≤ 𝑝 <∞, let 𝒮𝑝(ℱ2) denote the
space of all Schatten-𝑝 class operators on ℱ2(ℂ𝑛).
The QHA translation of an operator 𝑆 ∈ 𝔏(ℱ2) by 𝑧 ∈ ℂ𝑛 is defined by

𝐿𝑧(𝑆) =𝑊𝑧𝑆𝑊∗
𝑧 , 𝑆 ∈ 𝔏(ℱ2),

where
𝑊𝑧𝑓(𝑤) = 𝑘𝑧(𝑤)𝑓(𝑤 − 𝑧); 𝑤 ∈ ℂ𝑛, 𝑓 ∈ ℱ2(ℂ𝑛),

are the Weyl unitary operators acting on ℱ2(ℂ𝑛). For 𝑆 ∈ 𝔏(ℱ2), the map
𝑧 → 𝐿𝑧(𝑆) is continuous with respect to the strong operator topology (SOT).We
say an operator 𝑆 ∈ 𝔏(ℱ2) is uniformly continuous if themap 𝑧 ↦ 𝐿𝑧(𝑆), ℂ𝑛 →
𝔏(ℱ2) is continuous. We denote the set of all bounded uniformly continuous
operators by 𝐶𝑏,𝑢(ℱ2(ℂ𝑛)2). It is a 𝐶∗-subalgebra of 𝔏(ℱ2) containing all com-
pact operators.
The convolution of a function 𝜓 ∶ ℂ𝑛 → ℂ and an operator 𝑆 ∈ 𝔏(ℱ2) is

defined formally by

𝑆 ∗ 𝜓 ∶= 𝜓 ∗ 𝑆 ∶= ∫ 𝐿𝑧(𝑆) 𝜓(𝑧) 𝑑𝑚(𝑧).

Here, and everywhere below, the operator-valued integrals are defined in the
weak (Pettis) sense, i.e., as unique operators satisfying

⟨
∫ 𝐿𝑧(𝑆) 𝜓(𝑧) 𝑑𝑚(𝑧)𝑓, 𝑔

⟩
= ∫ ⟨𝐿𝑧(𝑆)𝑓, 𝑔⟩𝜓(𝑧) 𝑑𝑚(𝑧),
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for every 𝑓, 𝑔 ∈ ℱ2(ℂ𝑛).
In the following cases, the convolution 𝜓 ∗ 𝑆 is a well-defined bounded op-

erator, and in addition satisfies the QHA Young’s inequalities: For 1 ≤ 𝑝 ≤ ∞
we have,

(i) If 𝜓 ∈ 𝐿1(ℂ𝑛, 𝑑𝑚) and 𝑆 ∈ 𝒮𝑝(ℱ2) then 𝜓 ∗ 𝑆 ∈ 𝒮𝑝(ℱ2) and
‖𝜓 ∗ 𝑆‖𝑝 ≤ ‖𝜓‖1‖𝑆‖𝑝.

(ii) If 𝜓 ∈ 𝐿𝑝(ℂ𝑛, 𝑑𝑚) and 𝑆 ∈ 𝒮1(ℱ2) then 𝜓 ∗ 𝑆 ∈ 𝒮𝑝(ℱ2) and
‖𝜓 ∗ 𝑆‖𝑝 ≤ ‖𝜓‖1‖𝑆‖𝑝.

(iii) In addition, 𝜓 ∗ 𝑆 ∈ 𝐶𝑏,𝑢(ℱ2(ℂ𝑛)2) in both of the above cases.
We also have the following basic properties ofQHA translations and convolu-

tions for the above cases where the convolution is well-defined. Let 𝜓, 𝜓1, 𝜓2 ∶
ℂ𝑛 → ℂ and 𝑆 ∈ 𝔏(ℱ2) s.t. the following convolutions are defined. Then the
translation commutes with convolution and the convolution is associative:

(i) 𝐿𝑧(𝜓 ∗ 𝑆) = (𝓁𝑧(𝜓)) ∗ 𝑆 = 𝜓 ∗ (𝐿𝑧(𝑆)).
(ii) 𝜓1 ∗ (𝜓2 ∗ 𝑆) = (𝜓1 ∗ 𝜓2) ∗ 𝑆 = (𝜓2 ∗ 𝜓1) ∗ 𝑆.
The QHA convolution between two operators 𝑆 ∈ 𝔏(ℱ2) and 𝑇 ∈ 𝒮1(ℱ2),

denoted 𝑆 ∗ 𝑇, is defined to be the function on ℂ𝑛 given by

𝑆 ∗ 𝑇(𝑧) ∶= Tr(𝑆𝐿𝑧(𝑈0𝑇𝑈0))
where 𝑈0 is the parity operator on ℱ2(ℂ𝑛) given by

(𝑈0𝑓)(𝑧) = 𝑓(−𝑧), 𝑧 ∈ ℂ𝑛, 𝑓 ∈ ℱ2(ℂ𝑛).
Then 𝑇 ∗ 𝑆 is uniformly continuous and ‖𝑇 ∗ 𝑆‖∞ ≤ ‖𝑇‖1‖𝑆‖.
Furthermore, if 1 ≤ 𝑝 ≤ ∞ and 𝑆 ∈ 𝒮𝑝(ℱ2), then 𝑆 ∗ 𝑇 ∈ 𝐿𝑝(ℂ𝑛, 𝑑𝑚) and

satisfies the following QHA Young’s inequality:

‖𝑆 ∗ 𝑇‖𝑝 ≤ ‖𝑆‖𝑝‖𝑇‖1.
For 𝐴,𝐶 ∈ 𝔏(ℱ2), 𝐵 ∈ 𝒮1(ℱ2), the following identities hold
(i) 𝐴 ∗ 𝐵 = 𝐵 ∗ 𝐴.
(ii) (𝐴 ∗ 𝐵) ∗ 𝐶 = 𝐴 ∗ (𝐵 ∗ 𝐶) if one of 𝐴 and 𝐶 is trace-class.

Also if 𝐴, 𝐵 ∈ 𝒮1(ℱ2) and 𝑎 ∈ 𝐿∞(ℂ𝑛), we have
𝑎 ∗ (𝐴 ∗ 𝐵) = (𝑎 ∗ 𝐴) ∗ 𝐵.

2.3. Toeplitz operators as convolutions. The primary link between QHA
and Toeplitz operators is the observation that Toeplitz operators can be rep-
resented as convolutions, i.e for 𝑎 ∈ 𝐿∞(ℂ𝑛), we have

𝑇𝑎 = 𝑎 ∗ 𝑃0,
where 𝑃0 ∶= 1 ⊗ 1, where 1 denotes the constant function 1. Then from the
basic properties of convolutions, we get: for 𝑎 ∈ 𝐿∞(ℂ𝑛) and 𝜓 ∈ 𝐿1(ℂ𝑛),
𝐿𝑧(𝑇𝑎) = 𝑇𝓁𝑧(𝑎) and 𝜓 ∗ 𝑇𝑎 = 𝑇𝜓∗𝑎.
As convolutions 𝑎 ∗ 𝑃0 are in 𝐶𝑏,𝑢(ℱ2(ℂ𝑛)2), the set of all Toeplitz operators

with bounded symbols, and thus thewhole Toeplitz algebra𝔗(𝐿∞), which is the
𝐶∗-algebra generated by the set of all Toeplitz operators with bounded symbols,
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are both contained in𝐶𝑏,𝑢(ℱ2(ℂ𝑛)2). In [11], Fulsche proved that these two𝐶∗-
algebras coincide.

2.4. Berezin transform as a convolution. The Berezin transform of a func-
tion 𝑎 is defined as

𝐵(𝑎)(𝑧) = ∫ 𝑎(𝑤)| ⟨𝑘𝑧, 𝑘𝑤⟩ |2𝑑𝑚(𝑤).

In other words 𝐵(𝑎)(𝑧) = ⟨𝑇𝑎𝑘𝑧, 𝑘𝑧⟩. The Berezin transform of an operator
𝑆 ∈ 𝔏(ℱ2), is defined as

𝐵(𝑆)(𝑧) = ⟨𝑆𝑘𝑧, 𝑘𝑧⟩ , 𝑧 ∈ ℂ𝑛.
Clearly, 𝐵(𝑇𝑎) = 𝐵(𝑎) when the integral exists for all 𝑧 ∈ ℂ𝑛

It is easy to see that
𝐵(𝑎) = 𝑎 ∗ 𝜑1, and 𝐵(𝑆) = 𝑆 ∗ 𝑃0.

The following proposition is an easy consequence of the fact that the con-
vergence in strong operator topology (SOT) implies the convergence in weak
operator topology (WOT).
Proposition 2.1. Let {𝑆𝑘} be a sequence in 𝔏(ℱ2) s.t. 𝑆𝑘 → 𝑆 ∈ 𝔏(ℱ2) in the
SOT. Then 𝐵(𝑆𝑘)→ 𝐵(𝑆) pointwise.

3. Operator heat semigroup
We now introduce an operator heat semigroup {Φ𝑡}𝑡>0, that behaves analo-

gous to the function heat semigroup {𝜑𝑡}𝑡>0.
We let 𝑈 ∶= 2𝑛𝑈0 where 𝑈0 is the parity operator, and define

Φ𝑡 = 𝜑𝑡 ∗ 𝑈, 𝑡 > 0.
Let 𝒫𝑘(ℂ𝑛) be the space of homogeneous polynomials of order 𝑘, and let 𝑃𝑘 be
the projection onto 𝒫𝑘(ℂ𝑛), given by:

𝑃𝑘 =
∑

|m|=𝑘
𝐸m,

where 𝐸m = 𝑒m ⊗ 𝑒m.
Lemma 3.1. The Berezin transform of𝑈 is given by

𝑈 ∗ 𝑃0 = 𝜑1∕2.
Proof. Now we note that the Berezin transform of 𝑈 is the Gaussian 𝜑1∕2: for
𝑧 ∈ ℂ𝑛,

(𝑈 ∗ 𝑃0)(𝑧) = ⟨𝑈𝑘𝑧, 𝑘𝑧⟩
= 2𝑛𝑒−𝜋|𝑧|2 ⟨𝑈0𝐾𝑧, 𝐾𝑧⟩
= 2𝑛𝑒−𝜋|𝑧|2𝐾𝑧(−𝑧)
= 2𝑛𝑒−2𝜋|𝑧|2

= 𝜑1∕2(𝑧).
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□

Proposition 3.2. For 𝑡 > 0, Φ𝑡 is a radial operator and is given by

Φ𝑡 =
2𝑛

(2𝑡 + 1)𝑛
∞∑

𝑘=0

(2𝑡 − 1
2𝑡 + 1

)𝑘
𝑃𝑘,

where the series converges in the strong operator topology.

Proof. It is easy to check that the series on the right converges in the SOT and
defines a bounded operator. The fact that Φ𝑡 is radial follows from the fact that
the Berezin transform of Φ𝑡 is a radial function, i.e.,

Φ𝑡 ∗ 𝑃0 = (𝜑𝑡 ∗ 𝑈) ∗ 𝑃0 = 𝜑𝑡 ∗ (𝑈 ∗ 𝑃0) = 𝜑𝑡 ∗ 𝜑1∕2 = 𝜑𝑡+1∕2.
So to show the equality it is enough to check that their Berezin transforms are
equal. We first observe that for a multi-indexm ∈ ℕ𝑛0 ,

(𝐸m ∗ 𝑃0)(𝑧) = Tr(𝐸m𝐿𝑧(𝑃0)) = ⟨𝑘𝑧, 𝑒m⟩Tr(𝑒m ⊗ 𝑘𝑧) = 𝜋|m| 𝑧
m𝑧m

m! 𝑒−𝜋|𝑧|2 ,

for 𝑧 ∈ ℂ𝑛. Then for 𝑘 ∈ ℕ0,
∑

|m|=𝑘
(𝐸m ∗ 𝑃0)(𝑧) =

𝜋𝑘|𝑧|2𝑘
𝑘! 𝑒−𝜋|𝑧|2

Now by Proposition 2.1,

( 2𝑛
(2𝑡 + 1)𝑛

∞∑

𝑘=0

(2𝑡 − 1
2𝑡 + 1

)𝑘 ∑

|m|=𝑘
𝐸m) ∗ 𝑃0

= 2𝑛
(2𝑡 + 1)𝑛

∞∑

𝑘=0

(2𝑡 − 1
2𝑡 + 1

)𝑘 ∑

|m|=𝑘
(𝐸m ∗ 𝑃0)(𝑧)

= 1
(𝑡 + 1∕2)𝑛

𝑒−
𝜋|𝑧|2

𝑡+1∕2

= 𝜑𝑡+1∕2(𝑧)
= (Φ𝑡 ∗ 𝑃0)(𝑧).

This completes the proof. □

The operator heat equation

∆𝑇𝑡 = 𝜋 𝜕
𝜕𝑡𝑇𝑡, 𝑇0 = 𝑈,

is solved by the operator heat semigroup {Φ𝑡}𝑡>0 (see [9], Proposition 4.2). Even
though strictly speaking {Φ𝑡}𝑡>0 does not form a semigroup, we still refer to
it as such due to the following properties of {Φ𝑡}𝑡>0, which follows from the
semigroup property of {𝜑𝑡}𝑡>0:
Proposition 3.3. The following properties hold

(1) Φ𝑡 = 𝜑𝑡 ∗ Φ = 𝑇𝜑𝑡 for 𝑡 > 1∕2 and Φ1∕2 = 𝑃0.
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(2) 𝜑𝑡 ∗ Φ𝑠 = Φ𝑡+𝑠 for 𝑠, 𝑡 > 0.
(3) Φ𝑠 ∗ Φ𝑡 = 𝜑𝑠+𝑡+1 for 𝑠, 𝑡 > 0.
(4) Φ𝑡 is a radial trace-class operator whose trace-norm is given by

‖Φ𝑡‖1 = {
1, 𝑡 ≥ 1∕2
1

(2𝑡)𝑛
, 𝑡 ∈ (0, 1∕2)

Proof. (1) follows by comparing Berezin transforms computed in the proof of
Lemma 3.2.
Proof of (2): By the associativity of convolutions and the semigroup property of
the heat semigroup, we have that

𝜑𝑡 ∗ Φ𝑠 = 𝜑𝑡 ∗ 𝜑𝑠 ∗ 𝑈 = 𝜑𝑡+𝑠 ∗ 𝑈 = Φ𝑡+𝑠.

Proof of (3): We prove that the Berezin transforms of the two functions coincide.
Note that

(Φ𝑠 ∗ Φ𝑡) ∗ 𝜑1 = (Φ𝑠 ∗ Φ𝑡) ∗ (Φ ∗ Φ)
= (Φ𝑡 ∗ Φ) ∗ (Φ𝑠 ∗ Φ)
= 𝜑𝑡+1∕2 ∗ 𝜑𝑠+1∕2
= 𝜑𝑠+𝑡 ∗ 𝜑1.

Then the result follows by the injectivity of the Berezin transform.
Proof of (4): To compute the trace-norm, note that form ∈ ℕ𝑛0 ,

⟨Φ𝑡𝑒m, 𝑒m⟩ =
2𝑛

(2𝑡 + 1)𝑛
(2𝑡 − 1
2𝑡 + 1

)|m|
⟨𝐸m𝑒m, 𝑒m⟩

= 2𝑛(2𝑡 − 1)|m|
(2𝑡 + 1)𝑛+|m|

.

Thus, we have

‖Φ𝑡‖1 =
∑

m∈ℕ𝑛0

| ⟨Φ𝑡𝑒m, 𝑒m⟩ |

= 2𝑛
(2𝑡 + 1)𝑛

∞∑

𝑘=0

|||||
2𝑡 − 1
2𝑡 + 1

|||||
𝑘( ∑

|m|=𝑘
1
)

= 2𝑛
(2𝑡 + 1)𝑛

∞∑

𝑘=0

|||||
2𝑡 − 1
2𝑡 + 1

|||||
𝑘(𝑘 + 𝑛 − 1

𝑘
)

= 2𝑛
(2𝑡 + 1)𝑛

(
1 − |||||

2𝑡 − 1
2𝑡 + 1

|||||
)−𝑛

.

□
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4. Densely defined operators and quantum harmonic analysis
We now define QHA convolutions for some unbounded functions and some

densely defined operators. Toeplitz operators with unbounded symbols are in-
stances of such convolutions.

4.1. A class of symbols. In [2], the authors point out that the condition𝑎𝐾𝑧 ∈
𝐿2(ℂ𝑛, 𝑑𝜆) for all 𝑧 ∈ ℂ𝑛 is sufficient for the Toeplitz operator 𝑇𝑎 to be densely
defined. It is easy to verify that this is equivalent to the condition 𝓁𝑧(𝑎) ∈
𝐿2(ℂ𝑛, 𝑑𝜆) for all 𝑧 ∈ ℂ𝑛. We denote by 𝒜2

𝜆 the set

𝒜2
𝜆 = {𝑎 ∶ ℂ𝑛 → ℂ ∣ 𝓁𝑧(𝑎) ∈ 𝐿2(ℂ𝑛, 𝑑𝜆) ∀𝑧 ∈ ℂ𝑛}.

Clearly, 𝐿∞(ℂ𝑛) ⊂ 𝒜2
𝜆.

The following proposition discusses the behavior of convolutions of func-
tions in 𝒜2

𝜆 with heat kernels.

Proposition 4.1. Let 𝑎 ∈ 𝒜2
𝜆. Then

(1) The convolutions 𝜑𝑡 ∗ 𝑎 are defined for all 𝑡 > 0 and 𝜑𝑡 ∗ 𝑎 ∈ 𝒜2
𝜆.

(2) 𝜑𝑡 ∗ 𝑎 = 𝑎 ∗ 𝜑𝑡, for all 𝑡 > 0.
(3) For 𝑠, 𝑡 > 0, we have

𝜑𝑠 ∗ (𝜑𝑡 ∗ 𝑎) = (𝜑𝑠 ∗ 𝜑𝑡) ∗ 𝑎 = 𝜑𝑠+𝑡 ∗ 𝑎.

(4) Let 1 ≤ 𝑝 ≤ ∞. If 𝜑𝑡0 ∗ 𝑎 ∈ 𝐿𝑝(ℂ𝑛, 𝑑𝑚) for some 𝑡0 > 0, then 𝜑𝑡 ∗ 𝑎 ∈
𝐿𝑝(ℂ𝑛, 𝑑𝑚) for all 𝑡 > 𝑡0.

Proof. Proof of (1): First, note that 𝜑𝑡𝐾𝑧 ∈ 𝐿1(ℂ𝑛, 𝑑𝑚) for all 𝑧 ∈ ℂ𝑛. This is
true by Hölder’s inequality as 𝐾𝑧 is square integrable with respect to the prob-
ability measure 𝜑𝑡(𝑧)𝑑𝑧 with 𝐿2-norm equal to 𝑒

1
2
𝜋𝑡|𝑧|2 . Then 𝑧 ∈ ℂ𝑛,

‖(𝜑𝑡 ∗ |𝑎|)𝐾𝑧‖𝑝,𝜆 = ( ∫
ℂ𝑛
( ∫

ℂ𝑛
|𝜑𝑡(𝑥)𝑎(𝑤 − 𝑥)𝐾𝑧(𝑤)| 𝑑𝑥)

2
𝑑𝜆(𝑤))

1∕2

≤ ∫
ℂ𝑛
|𝜑𝑡(𝑥)|( ∫

ℂ𝑛
|𝑎(𝑤 − 𝑥)𝐾𝑧(𝑤)|2 𝑑𝜆(𝑤))

1∕2
𝑑𝑥

(by Minkowski inequality)

= ∫
ℂ𝑛
|𝜑𝑡(𝑥)|( ∫

ℂ𝑛
|𝑎(𝑤)𝐾𝑧(𝑤 + 𝑥)|2 𝑑𝜆(𝑤))

1∕2
𝑑𝑥

(by a change of variable)

= ∫
ℂ𝑛
|𝜑𝑡(𝑥)𝐾𝑧(𝑥)|( ∫

ℂ𝑛
|𝑎(𝑤)𝐾𝑧(𝑤)|2 𝑑𝜆(𝑤))

1∕2
𝑑𝑥

(as 𝐾𝑧(𝑤 + 𝑥) = 𝐾𝑧(𝑤)𝐾𝑧(𝑥))
= ‖𝑎𝐾𝑧‖2,𝜆‖𝜑𝑡𝐾𝑧‖1.
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Therefore, (𝜑𝑡 ∗ |𝑎|)𝐾𝑧 and (𝜑𝑡 ∗ 𝑎)𝐾𝑧 are measurable functions that are in
𝐿𝑝(ℂ𝑛, 𝑑𝑚). Thus, 𝜑𝑡 ∗ 𝑎 ∈ 𝒜2

𝜆.
Proof of (2): This follows by a simple change of variable.
Proof of (3): Note that by Tonelli’s theorem,

𝜑𝑠 ∗ (𝜑𝑡 ∗ |𝑎|) = (𝜑𝑠 ∗ 𝜑𝑡) ∗ |𝑎| = 𝜑𝑠+𝑡 ∗ |𝑎|.
Moreover, by (1) 𝜑𝑠+𝑡 ∗ |𝑎| is finite almost everywhere. Therefore, the result
follows from Fubini’s theorem, by replacing |𝑎| by 𝑎 in the above computation.
Proof of (4): Follows from (3) and Young’s inequality. □

4.2. Convolutions of denselydefinedoperators. Wedenote by𝔇 the linear
subspace

𝔇 ∶= span{𝑘𝑧 ∣ 𝑧 ∈ ℂ𝑛}.
Note that𝔇 is a set satisfying the invariance 𝜋(ℂ𝑛)𝔇 = 𝔇 because for 𝑧, 𝑤 ∈
ℂ𝑛,

𝜋(𝑤)𝑘𝑧 = 𝜋(𝑤)𝜋(𝑧)1 = 𝑒𝑖Im(𝑤𝑧)𝜋(𝑤 + 𝑧)1 = 𝑒𝑖Im(𝑤𝑧)𝑘𝑤+𝑧.
Let 𝜓 ∶ ℂ𝑛 → ℂ be a measurable function and let 𝑆 be a densely defined oper-
ator on𝔇. Assume that for all 𝑓 ∈ 𝔇, there exists 𝐶𝑓 > 0 s.t.

∫
ℂ𝑛
|𝜓(𝑧)|| ⟨𝐿𝑧(𝑆)𝑓, 𝑔⟩ | 𝑑𝑚(𝑧) ≤ 𝐶𝑓‖𝑔‖2, ∀𝑔 ∈ ℱ2(ℂ𝑛).

Then we define 𝜓 ∗ 𝑆 to be the densely defined operator on𝔇 defined weakly
by

𝜓 ∗ 𝑆 = ∫
ℂ𝑛
𝜓(𝑧)𝐿𝑧(𝑆) 𝑑𝑚(𝑧).

Proposition 4.2. Let 𝑎 ∈ 𝒜2
𝜆. Then 𝑎 ∗ Φ is a densely defined operator on 𝔇

and 𝑇𝑎 = 𝑎 ∗ Φ on𝔇.
Proof. It is enough to verify that 𝜓 ∗ 𝑆 is defined on {𝐾𝑧 ∣ 𝑧 ∈ ℂ𝑛}. Note that
for 𝑧 ∈ ℂ𝑛 and 𝑓 ∈ ℱ2(ℂ𝑛),

∫
ℂ𝑛
|𝑎(𝑤) ⟨𝐿𝑤(Φ)𝐾𝑧, 𝑓⟩| 𝑑𝑚(𝑤) = ∫

ℂ𝑛
|𝑎(𝑤) ⟨(𝑘𝑤 ⊗ 𝑘𝑤)𝑘𝑧, 𝑓⟩ | 𝑑𝑚(𝑤)

= ∫
ℂ𝑛
|𝑎(𝑤) ⟨𝐾𝑧, 𝐾𝑤⟩ ⟨𝐾𝑤, 𝑓⟩ | 𝑑𝜆(𝑤)

= ∫
ℂ𝑛
|𝑎(𝑤)𝐾𝑧(𝑤)𝑓(𝑤)| 𝑑𝜆(𝑤)

≤ ‖𝑎𝐾𝑧‖2,𝜆‖𝑓‖2,
where the last line follows by Cauchy-Schwarz inequality. Hence, 𝜓 ∗ Φ is
defined on {𝐾𝑧 ∣ 𝑧 ∈ ℂ𝑛} and by following the same steps as above we have

⟨(𝑎 ∗ Φ)𝐾𝑧, 𝑓⟩ = ∫
ℂ𝑛
𝑎(𝑤)𝐾𝑧(𝑤)𝑓(𝑤) 𝑑𝜆(𝑤) = ⟨𝑇𝑎𝐾𝑧, 𝑓⟩ ,

proving 𝑎 ∗ Φ = 𝑇𝑎. □
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We have the following canonical example that was discussed in [2].

Example 4.3. Let 𝜉 ∈ ℂ ⧵ {0} s.t. Re 𝜉
|𝜉|2

> −1∕2. Consider the natural extension
𝜑𝜉 of the heat kernel defined by

𝜑𝜉(𝑧) =
1
𝜉𝑛
𝑒−

𝜋|𝑧|2

𝜉 , 𝑧 ∈ ℂ𝑛.

Then 𝓁𝑧(𝜑𝜉) ∈ 𝐿2(ℂ𝑛, 𝑑𝜆), for all 𝑧 ∈ ℂ𝑛 and hence the Toeplitz operator 𝑇𝜑𝜉 is
densely defined on𝔇. It is known that 𝑇𝜑𝜉 is bounded if and only if |1 +

1
𝜉
| ≥ 1.

This is because 𝑇𝜑𝜉 is diagonalizable with respect to the monomial basis {𝑒m}with
eigenvalues given by

⟨
𝑇𝜑𝜉𝑒m, 𝑒m

⟩
= 1
𝜉𝑛
(1 + 1∕𝜉)−(|m|+𝑛).

4.3. The convolution of two operators. Let 𝑆 and 𝑇 be two densely defined
operators s.t. 𝑆𝐿𝑧(𝑇) ∈ 𝒮1(ℱ2) for all 𝑧 ∈ ℂ𝑛. Then we define the convolution
𝑆 ∗ 𝑇 ∶ ℂ𝑛 → ℂ by

(𝑆 ∗ 𝑇)(𝑧) = Tr(𝑆𝐿𝑧(𝑇)), 𝑧 ∈ ℂ𝑛.
Notice that the Berezin transform of a densely defined operator 𝑆 on𝔇 can

still be defined by
𝐵(𝑆)(𝑧) = ⟨𝑆𝑘𝑧, 𝑘𝑧⟩ , 𝑧 ∈ ℂ𝑛.

It follows by a simple computation that 𝐵(𝑆) = 𝑆 ∗ Φ.Moreover, if 𝑎 ∈ 𝒜2
𝜆, we

have 𝐵(𝑇𝑎) = 𝑎 ∗ 𝜑1.
The Berezin transform remains injective even on the class of densely defined

operators with domain𝔇. This is a particularly useful property which we will
use below to show that two densely defined operators are equal. The proof of it
is essentially the same as for the bounded case.

Proposition 4.4. [22, Proposition 3.1] Let 𝑆 and 𝑇 be two densely defined oper-
ators on 𝔇. If the Berezin transforms of 𝑆 and 𝑇 coincide, i.e. 𝑆 ∗ Φ = 𝑇 ∗ Φ,
then 𝑆 = 𝑇 on𝔇.

5. Berger-Coburn theorem and related results
In this section, we present our main results, a short proof of the Berger-

Coburn theorem and a quantitative analog for Schatten class membership of
Toeplitz operators. Additionally, we revisit compactness of densely defined
Toeplitz operators.

5.1. The heat-flow of a Toeplitz operator. The operators {Φ𝑡}𝑡>0 were first
introduced by Berger and Coburn [2] with a slightly different parametrization.
Berger and Coburn used it to discuss the heat flow of a Toeplitz operator. We
make the following observation.
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Proposition 5.1. Let 𝑡 > 1
2
and let 𝑎 ∈ 𝒜2

𝜆. If 𝑇𝑎 ∈ 𝔏(ℱ2), then

𝐵𝑡(𝑎) = 𝑇𝑎 ∗ Φ𝑡−1∕2.

Proof. As usual, it is enough to show that the Berezin transforms of two func-
tions coincide. We have

(𝑇𝑎 ∗ Φ𝑡−1∕2) ∗ 𝜑1 = (𝑇𝑎 ∗ Φ𝑡−1∕2) ∗ (Φ1∕2 ∗ Φ1∕2)
= (𝑇𝑎 ∗ Φ1∕2) ∗ (Φ𝑡−1∕2 ∗ Φ1∕2)
= (𝑎 ∗ 𝜑1) ∗ 𝜑𝑡
= 𝑎 ∗ 𝜑𝑡+1
= (𝑎 ∗ 𝜑𝑡) ∗ 𝜑1.

Note that all of the operators appearing above are bounded, so here we only
use the associativity and commutativity of standard operator convolutions, and
Proposition 4.1.

□

Next, we prove the Berger-Coburn theorem. Note that in the second part
of the theorem, in addition to the classical statement, we provide an explicit
formula for the bounded extension of the densely defined Topelitz operator 𝑇𝑎.

Theorem 5.2. Let 𝑎 ∈ 𝒜2
𝜆. If 𝑇𝑎 is a bounded operator then 𝐵𝑡(𝑎) is a bounded

function for all 𝑡 > 1∕2, and

‖𝐵𝑡(𝑎)‖∞ ≤ 1
(2𝑡 − 1)𝑛

‖𝑇𝑎‖ .

On the other hand, if 𝐵𝑡(𝑎) is a bounded function for some 0 < 𝑡 < 1∕2, then 𝑇𝑎
is a bounded operator in𝔗(𝐿∞) and

𝑇𝑎 = 𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡.
In addition,

‖𝑇𝑎‖ ≤
1

(1 − 2𝑡)𝑛
‖𝐵𝑡(𝑎)‖∞ .

Proof. To prove the first claim, note that by Proposition 5.1,

‖𝐵𝑡(𝑇𝑎)‖∞ = ‖‖‖‖𝑇𝑎 ∗ Φ𝑡−1∕2
‖‖‖‖∞ ≤ ‖‖‖‖Φ𝑡−1∕2

‖‖‖‖1 ‖𝑇𝑎‖ =
1

(2𝑡 − 1)𝑛
‖𝑇𝑎‖ .

To prove the second statement, we assume 𝑡 ∈ (0, 1∕2). Then the operator
𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡 is a bounded operator in𝔗(𝐿∞) as 𝐵𝑡(𝑎) ∈ 𝐿∞(ℂ𝑛) andΦ1∕2−𝑡 ∈
𝒮1(ℱ2). Now we prove

𝑇𝑎 = 𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡
on𝔇, i.e. the Toeplitz operator 𝑇𝑎 has the bounded extension 𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡.
Due to Proposition 4.4, one only has to check if the Berezin transforms of the

two operators coincide. Note that

𝑇𝑎 ∗ Φ1∕2 = 𝑎 ∗ 𝜑1.
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On the other hand, by statement (3) in Proposition 4.1,

(𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡) ∗ Φ1∕2 = (𝑎 ∗ 𝜑𝑡) ∗ (Φ1∕2−𝑡 ∗ Φ1∕2) = (𝑎 ∗ 𝜑𝑡) ∗ 𝜑1−𝑡 = 𝜑1 ∗ 𝑎

proving the claim. Then 𝑇𝑎 ∈ 𝔗(𝐿∞) and by the QHA Young’s inequality,

‖𝑇𝑎‖ ≤ ‖𝐵𝑡(𝑎)‖∞
‖‖‖‖Φ1∕2−𝑡

‖‖‖‖1 =
1

(1 − 2𝑡)𝑛
‖𝐵𝑡(𝑎)‖∞ .

□

5.2. Schatten classes. In [3], Bauer, Coburn, and Isralowitz found a suffi-
cient condition for the Schatten class membership of densely defined Toeplitz
operators using the heat flow. Conversely, in [12], Fulsche provides a neces-
sary condition for the same. Here, we prove the following quantitative version
of their collective theorem for Schatten classmembership, answering one of the
questions raised in [3].

Theorem 5.3. Let 1 ≤ 𝑝 < ∞ and let 𝑎 ∈ 𝒜2
𝜆. If 𝑇𝑎 ∈ 𝒮𝑝(ℱ2) then 𝐵𝑡(𝑎) ∈

𝐿𝑝(ℂ𝑛, 𝑑𝑚) for all 𝑡 > 1∕2, and

‖𝐵𝑡(𝑎)‖𝑝 ≤
1

(2𝑡 − 1)𝑛
‖𝑇𝑎‖𝑝 .

On the other hand, if 𝐵𝑡(𝑎) ∈ 𝐿𝑝(ℂ𝑛, 𝑑𝑚) for some 0 < 𝑡 < 1∕2, then 𝑇𝑎 ∈
𝒮𝑝(ℱ2) and

𝑇𝑎 = 𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡.
In addition,

‖𝑇𝑎‖𝑝 ≤
1

(1 − 2𝑡)𝑛
‖𝐵𝑡(𝑎)‖𝑝 .

Proof. Note that by Proposition 5.1,

‖𝐵𝑡(𝑇𝑎)‖𝑝 =
‖‖‖‖𝑇𝑎 ∗ Φ𝑡−1∕2

‖‖‖‖𝑝 ≤
‖‖‖‖Φ𝑡−1∕2

‖‖‖‖1 ‖𝑇𝑎‖𝑝 =
1

(2𝑡 − 1)𝑛
‖𝑇𝑎‖𝑝 ,

for 𝑡 > 1
2
.

For the other implication, assume 𝐵𝑡(𝑎) ∈ 𝐿𝑝(ℂ𝑛, 𝑑𝑚) for some 𝑡 ∈ (0, 1
2
).

Then, 𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡 ∈ 𝒮𝑝(ℱ2). The equality

𝑇𝑎 = 𝐵𝑡(𝑎) ∗ Φ1∕2−𝑡

is proved as before by comparing the Berezin transforms. Finally, the desired
inequality then follows from the QHA Young’s inequality,

‖𝑇𝑎‖𝑝 =
‖‖‖‖𝐵𝑡(𝑎) ∗ Φ𝑡−1∕2

‖‖‖‖𝑝 ≤ ‖𝐵𝑡(𝑎)‖𝑝
‖‖‖‖Φ𝑡−1∕2

‖‖‖‖1 ≤
1

(1 − 2𝑡)𝑛
‖𝐵𝑡(𝑎)‖𝑝 .

□
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5.3. Compactness. Let𝒞0(ℂ𝑛)denote the algebra of functions onℂ𝑛 that van-
ish at infinity and let𝒦 denote the algebra of all compact operators onℱ2(ℂ𝑛).
It is well-known that if 𝑎 ∈ 𝒞0(ℂ𝑛) then 𝑇𝑎 is compact. Also, if 𝑆 ∈ 𝒦, then
𝐵(𝑆) ∈ 𝒞0(ℂ𝑛). The latter holdsmore generally: if 𝑆 ∈ 𝒦 and 𝑇 ∈ 𝒮1(ℱ2), then
𝑆 ∗ 𝑇 ∈ 𝒞0(ℂ𝑛). Indeed, this is easy to see when 𝑆 is rank-one. The general
case then follows by standard linearity and density arguments. The following
theorem, which characterizes the compactness of densely defined Toeplitz op-
erators, was proved in [3]. Here, we present a straightforward proof that avoids
the use of pseudo-differential operators.

Theorem 5.4. Let 𝑎 ∈ 𝒜2
𝜆. If 𝑇𝑎 ∈ 𝒦 then 𝐵𝑡(𝑎) ∈ 𝒞0(ℂ𝑛) for all 𝑡 > 1

2
. If

𝐵𝑡(𝑎) ∈ 𝒞0(ℂ𝑛) for some 𝑡 ∈ (0, 1
2
), then 𝑇𝑎 is compact.

Proof. Assume 𝑡 > 1
2
. Then, using that 𝑇𝑎 is compact and Φ𝑡−1∕2 is trace class

we obtain
𝐵𝑡(𝑎) = 𝑇𝑎 ∗ Φ𝑡−1∕2 ∈ 𝒞0(ℂ𝑛).

For the other implication, assume 𝐵𝑡(𝑎) ∈ 𝒞0(ℂ𝑛) for some 𝑡 ∈ (0, 1
2
). Let

𝜖 > 0. Then since 𝒞0(ℂ𝑛) = 𝒞0(ℂ𝑛) ∗ 𝜑𝑡, there exists 𝑏 ∈ 𝒞0(ℂ𝑛) s.t.

‖𝐵𝑡(𝑎) − 𝐵𝑡(𝑏)‖∞ < 𝜖.

Therefore,

‖𝑇𝑎 − 𝑇𝑏‖ = ‖𝑇𝑎−𝑏‖
= ‖𝐵𝑡(𝑎 − 𝑏) ∗ Φ1∕2−𝑡‖

≤ 1
(1 − 2𝑡)𝑛

‖𝐵𝑡(𝑎 − 𝑏)‖

≤ 1
(1 − 2𝑡)𝑛

‖𝐵𝑡(𝑎) − 𝐵𝑡(𝑏)‖

< 1
(1 − 2𝑡)𝑛

𝜖.

Also, since 𝑏 ∈ 𝒞0(ℂ𝑛), we have 𝑇𝑏 ∈ 𝒦. Thus, 𝑇𝑎 ∈ 𝒦 = 𝒦. □

Acknowledgments : We thank Robert Fulsche for useful comments and sug-
gestions.
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