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Bijections between sets of invariant ideals,
via the ladder technique

Matthew Gillespie, S. Kaliszewski, John Quigg
and Dana P. Williams

Abstract. We present a new method of establishing a bijective correspon-
dence — in fact, a lattice isomorphism — between action- and coaction-
invariant ideals of 𝐶∗-algebras and their crossed products by a fixed locally
compact group. It is known that such a correspondence exists whenever the
group is amenable; our results hold for any locally compact group under a
natural form of coaction invariance.
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1. Introduction
One of the most fundamental things to know about a 𝐶∗-algebra is its ideal

structure. If the 𝐶∗-algebra arises as the crossed product 𝐴 ⋊𝛼 𝐺 of an action
(𝐴,𝐺, 𝛼), it is natural to compare the ideal structures of 𝐴 and 𝐴 ⋊𝛼 𝐺. This is
most easily done when we restrict attention to ideals that are related in some
way to the action of 𝐺. More precisely, we focus on ideals 𝐼 of 𝐴 that are 𝛼-
invariant. Then the crossed product is (isomorphic to) an ideal 𝐼⋊𝛼𝐺 of𝐴⋊𝛼𝐺,
and the obvious question is which ideals of𝐴⋊𝛼𝐺 arise in this way. It turns out
that they are precisely those ideals that are invariant under the dual coaction
�̂�, and there is a bijection between the two sets of invariant ideals. When 𝐺 is
amenable this is an old result of Gootman and Lazar ([3]), and in this paper
we prove it in complete generality (Theorem 3.2 (a)). Dually, starting with a
coaction (𝐴, 𝛿) of𝐺, the 𝛿-invariant ideals of𝐴 correspond to �̂�-invariant ideals
of the crossed product𝐴⋊𝛿𝐺. Again, Gootman–Lazar proved this for amenable
𝐺, and in this paper we prove it in general (Theorem 3.2 (b)). Nilsen ([9]) has a
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related pair of results, but their relationship to ours is complicated because she
used a different notion of coaction invariance than we do.
Perhapsmore important, though, is ourmethod of proof—we introducewhat

we call the “ladder technique”, which leads to quick proofs of the aforemen-
tioned bijections, using only crossed-product duality and the Rieffel correspon-
dence between ideals of Morita equivalent 𝐶∗-algebras. We expect the ladder
technique to be useful in other situations; for example three of us are currently
working on an application to ideals of Fell bundles over groupoids.
We begin in Section 2 with a detailed overview of the crossed-product du-

ality theorems we need, the essential definitions and facts regarding invariant
ideals, and an identification of the associated Rieffel correspondences. Then in
Section 3 we prove our main theorem, which actually comprises four versions:
starting with actions we can consider either full or reduced crossed products,
and dually we can start with either maximal or normal coactions. Finally, in
Section 4 we close with a brief discussion comparing our results to those of
Gootman–Lazar and Nilsen. And we point out that one of our theorems was
proved, using somewhat more technical methods (unrelated to the ladder tech-
nique), in a recent paper two of us wrote with Tron Omland.

2. Preliminaries
Below we will recall suitable versions of the Imai–Takai and Katayama dual-

ity theorems for crossed products. But to prepare for this we start with some
background on actions and coactions. Further details about action crossed
products can be found in [13]. Our main references for coactions and their
crossed products are [2, Appendix A], [1], [11], [8], [6], and [9].
Throughout, 𝐺 is a locally compact group and 𝐴 is a 𝐶∗-algebra. We write

𝐿2 for 𝐿2(𝐺), 𝜆 and 𝜌 for the left and right regular representations of 𝐺 on 𝐿2,
respectively, 𝒦 for the compact operators 𝒦(𝐿2), and 𝑀 (sometimes) for the
representation of 𝐶0(𝐺) on 𝐿2 by multiplication operators. We write 𝑤𝐺 for the
unitary element of𝑀(𝐶0(𝐺)⊗ 𝐶∗(𝐺)) = 𝐶𝛽𝑏 (𝐺,𝑀(𝐶∗(𝐺))) given by the norm-
bounded strictly continuous function𝑤𝐺(𝑠) = 𝑠 for 𝑠 ∈ 𝐺, where the 𝛽 signifies
that we are using the strict topology on𝑀(𝐶∗(𝐺)).
We use (𝐴, 𝛼) to denote an action 𝛼 of 𝐺 on 𝐴. A coaction (𝐴, 𝛿) of 𝐺 on 𝐴 is

an injective nondegenerate homomorphism 𝛿 ∶ 𝐴 → 𝑀(𝐴⊗𝐶∗(𝐺)) satisfying:
(a) span 𝛿(𝐴)(1⊗𝐶∗(𝐺)) = 𝐴⊗ 𝐶∗(𝐺)
(b) (𝛿 ⊗ id)◦𝛿 = (id⊗𝛿𝐺)◦𝛿,

where ⊗ always denotes the minimal 𝐶∗-tensor product and 𝛿𝐺 ∶ 𝐶∗(𝐺) →
𝑀(𝐶∗(𝐺) ⊗ 𝐶∗(𝐺)) is the usual comultiplication of 𝐶∗(𝐺), i.e., the integrated
form of the strictly continuous unitary homomorphism 𝑠 ↦ 𝑠 ⊗ 𝑠. Here, and
similarly throughout the paper (unlike the convention used in [2]),
𝛿(𝐴)(1⊗𝐶∗(𝐺)) represents the set of products {𝛿(𝑎)(1⊗𝑧) ∣ 𝑎 ∈ 𝐴, 𝑧 ∈ 𝐶∗(𝐺)}.
(Also note that by definition, our coactions are nondegenerate in the sense of
[2, Definition 2.10].) The (full) crossed product of an action (𝐴, 𝛼) is 𝐴 ⋊𝛼 𝐺,
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which comes with a universal covariant representation (𝑖𝐴, 𝑖𝐺) and a dual coac-
tion �̂�. The reduced crossed product of (𝐴, 𝛼) is 𝐴⋊𝛼,𝑟 𝐺. The crossed product
of a coaction (𝐴, 𝛿) is 𝐴 ⋊𝛿 𝐺, which comes with a universal covariant repre-
sentation (𝑗𝐴, 𝑗𝐺) and a dual action �̂�.
For any action (𝐴, 𝛼), the canonical surjection Φ𝛼 ∶ 𝐴 ⋊𝛼 𝐺 ⋊�̂� 𝐺 → 𝐴 ⊗𝒦

is determined by

(a) Φ𝛼◦𝑗𝐴⋊𝛼𝐺◦𝑖𝐴 = (id⊗𝑀)◦𝛼−1
(b) Φ𝛼◦𝑗𝐴⋊𝛼𝐺◦𝑖𝐺 = 1⊗ 𝜆
(c) Φ𝛼◦𝑗𝐺 = 1⊗𝑀.

In item (a), “𝛼−1” refers to the map that sends 𝑎 ∈ 𝐴 to the element of𝑀(𝐴⊗
𝐶0(𝐺)) determined by the function 𝑠 ↦ 𝛼𝑠−1(𝑎) (see [11]). For a coaction (𝐴, 𝛿),
the canonical surjection Φ𝛿 ∶ 𝐴⋊𝛿 𝐺 ⋊�̂� 𝐺 → 𝐴⊗𝒦 is determined by

(a) Φ𝛿◦𝑖𝐴⋊𝛿𝐺◦𝑗𝐴 = (id⊗𝜆)◦𝛿
(b) Φ𝛿◦𝑖𝐴⋊𝛿𝐺◦𝑗𝐺 = 1⊗𝑀
(c) Φ𝛿◦𝑖𝐺 = 1⊗ 𝜌.
An equivariant homomorphism 𝜙 ∶ (𝐴, 𝛿) → (𝐵, 𝜖) between coactions is a

possibly degenerate homomorphism 𝜙mapping 𝐴 into 𝐵 (not𝑀(𝐵)) such that
the diagram

𝐴 �̃�(𝐴⊗ 𝐶∗(𝐺))

𝐵 �̃�(𝐵 ⊗ 𝐶∗(𝐺))

𝛿

𝜙 𝜙⊗id

𝜖

commutes (see [6, Definition 3.2]). Immediately following [6, Corollary 3.13]
it is noted that “a routine adaptation of the usual arguments” (i.e., carefully
applying the definitions) shows that every 𝛿 − 𝜖 equivariant homomorphism
𝜙 ∶ 𝐴 → 𝐵 gives rise to a �̂� − �̂� equivariant homomorphism

𝜙 ⋊ 𝐺 = (𝑗𝐵◦𝜙) × 𝑗𝐺 ∶ 𝐴⋊𝛿 𝐺 → 𝐵 ⋊𝜖 𝐺.

A coaction (𝐴, 𝛿) is maximal if Φ𝛿 is an isomorphism, and is normal if 𝑗𝐴 ∶
𝐴 → 𝑀(𝐴⋊𝛿 𝐺) is injective. Equivalently, 𝛿 is normal exactly when Φ𝛿 factors
through an isomorphism of 𝐴⋊𝛿 𝐺 ⋊�̂�,𝑟 𝐺 onto 𝐴⊗𝒦.
Every dual coaction (𝐴 ⋊𝛼 𝐺, �̂�) is maximal. Every coaction (𝐴, 𝛿) has a

normalization (𝐴𝑛, 𝛿𝑛), which is unique up to isomorphism, such that 𝐴𝑛 is a
quotient of 𝐴, the coaction 𝛿𝑛 is normal, the quotient map 𝜓𝛿 ∶ 𝐴 → 𝐴𝑛 is
𝛿 − 𝛿𝑛 equivariant, and the homomorphism 𝜓𝛿 ⋊ 𝐺 ∶ 𝐴 ⋊𝛿 𝐺 → 𝐴𝑛 ⋊𝛿𝑛 𝐺 is
an isomorphism. For a dual coaction �̂� on an action crossed product 𝐴 ⋊𝛼 𝐺,
the associated map 𝜓�̂� is the regular representation 𝐴⋊𝛼 𝐺 → 𝐴⋊𝛼,𝑟 𝐺. Thus,
the dual coaction on the reduced crossed product is the normalization �̂�𝑛, and
the double-dual action on 𝐴⋊𝛼,𝑟 𝐺 ⋊�̂�𝑛 𝐺 is ˆ̂𝛼𝑛.
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Theorem 2.1 below is Imai–Takai duality. The original version was stated
in [4] for reduced crossed products, and did not use the word ‘coaction’. Ver-
sion (a) below for full crossed products appears in [11, Theorem 7]. We use [2]
as a convenient reference.

Theorem 2.1 ([2, Theorem A.67]). For any action (𝐴, 𝛼):
(a) (full-crossed-product version) The canonical mapΦ𝛼 is an ̂̂𝛼−(𝛼⊗Ad 𝜌)

equivariant isomorphism of 𝐴⋊𝛼 𝐺 ⋊�̂� 𝐺 onto 𝐴⊗𝒦.
(b) (reduced-crossed-product version)There is an ˆ̂𝛼𝑛−(𝛼⊗Ad 𝜌) equivariant

isomorphismΦ𝛼,𝑟 of𝐴⋊𝛼,𝑟𝐺⋊�̂�𝑛𝐺 onto𝐴⊗𝒦 such thatΦ𝛼 = Φ𝛼,𝑟◦(𝜓�̂�⋊
𝐺).

Theorem 2.2 below is Katayama duality, which is the dual version of The-
orem 2.1. The original version was stated in [5, Theorem 8] for reduced coac-
tions, but we prefer to work with full coactions.

Theorem 2.2 ([2, Theorem A.69]). For any coaction (𝐴, 𝛿):
(a) (maximal coaction version) If 𝛿 is maximal, the canonical surjection Φ𝛿

is a ̂̂𝛿 − 𝜖 equivariant isomorphism of 𝐴⋊𝛿 𝐺 ⋊�̂� 𝐺 onto 𝐴⊗𝒦.

(b) (normal coaction version) If 𝛿 is normal, there is a ̂̂𝛿
𝑛
− 𝜖 equivariant

isomorphism Φ𝛿,𝑟 of 𝐴⋊𝛿 𝐺 ⋊�̂�,𝑟 𝐺 onto 𝐴⊗𝒦 such that Φ𝛿 = Φ𝛿,𝑟◦𝜓 ̂̂𝛿.

The coaction (𝐴⊗𝒦, 𝜖) associated to (𝐴, 𝛿) in Theorem 2.2 is defined by

𝜖 = Ad
(
1⊗ (𝑀 ⊗ id)(𝑤∗

𝐺)
)
◦(id⊗Σ)◦(𝛿 ⊗ id),

where Σ ∶ 𝐶∗(𝐺) ⊗ 𝒦 → 𝒦 ⊗ 𝐶∗(𝐺) is the flip isomorphism determined on
elementary tensors by 𝑎 ⊗ 𝑏 ↦ 𝑏 ⊗ 𝑎. The statement about equivariance in
part (a) is actually missing from [2]; it follows from the analogous result for
normal coactions in [9, Remark 5] and the equivalence of maximal and normal
coactions ([8, Theorem 3.3]).

Given an action (𝐴, 𝛼), we say that a (closed, two-sided) ideal 𝐼 of 𝐴 is 𝛼-
invariant if 𝛼 restricts to an action 𝛼| on 𝐼; that is, if 𝛼𝑔(𝐼) ⊆ 𝐼 for each 𝑔 ∈ 𝐺.
(See [13, Section 3.4] for further discussion.) We write I𝛼(𝐴) for the set of 𝛼-
invariant ideals of 𝐴.
For a coaction (𝐴, 𝛿), an ideal 𝐼 of 𝐴 is 𝛿-invariant if 𝛿 restricts to a coaction

𝛿| on 𝐼. By results in Section 2 of [10], this is equivalent to the condition that
span 𝛿(𝐼)(1⊗𝐶∗(𝐺)) = 𝐼 ⊗ 𝐶∗(𝐺). (2.1)

(See also the discussion preceding Definition 3.17 in [6].) We write I𝛿(𝐴) for
the set of 𝛿-invariant ideals of 𝐴.
Somewhat surprisingly (to us), the fact that crossed products of invariant

ideals are invariant ideals has not been clearly stated or entirely justified else-
where in the literature.

Proposition 2.3. (a) For any action (𝐴, 𝛼), for each 𝐼 ∈ I𝛼(𝐴) the inclusion
map 𝜙 ∶ 𝐼 ↪ 𝐴 is 𝛼| − 𝛼 equivariant, and 𝜙 ⋊ 𝐺 is an isomorphism of
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𝐼 ⋊𝛼| 𝐺 onto an �̂�-invariant ideal 𝐼 ⋊𝛼 𝐺 of𝐴⋊𝛼 𝐺. Moreover, the image
𝐼 ⋊𝛼,𝑟 𝐺 of 𝐼 ⋊𝛼 𝐺 under the regular representation of 𝐴 ⋊𝛼 𝐺 is an �̂�𝑛-
invariant ideal of the reduced crossed product 𝐴⋊𝛼,𝑟 𝐺.

(b) For any coaction (𝐴, 𝛿), for each 𝐼 ∈ I𝛿(𝐴) the inclusion map 𝜙 ∶ 𝐼 ↪ 𝐴
is 𝛿| − 𝛿 equivariant, and 𝜙 ⋊ 𝐺 is an isomorphism of 𝐼 ⋊𝛿| 𝐺 onto a
�̂�-invariant ideal 𝐼 ⋊𝛿 𝐺 of 𝐴⋊𝛿 𝐺.

Proof. (a) Except for invariance, this is a consequence of [13, Proposition 3.19].
For the �̂�-invariance of 𝐼 ⋊𝛼 𝐺, we have

𝐼 ⋊𝛼 𝐺 = 𝜙 ⋊ 𝐺(𝐼 ⋊𝛼| 𝐺) = span 𝑖𝐴(𝜙(𝐼))𝑖𝐺(𝐶∗(𝐺)),

so that

�̂�(𝐼 ⋊𝛼 𝐺) = span �̂�
(
𝑖𝐴(𝜙(𝐼))

)
�̂�
(
𝑖𝐺(𝐶∗(𝐺))

)

= span
(
𝑖𝐴(𝜙(𝐼))⊗ 1

)
(𝑖𝐺 ⊗ id)(𝛿𝐺(𝐶∗(𝐺)))

by definition of �̂�. Thus,

span �̂�(𝐼 ⋊𝛼 𝐺)(1⊗𝐶∗(𝐺))
= span

(
𝑖𝐴(𝜙(𝐼))⊗ 1

)
(𝑖𝐺 ⊗ id)(𝛿𝐺(𝐶∗(𝐺)))(1⊗𝐶∗(𝐺))

= span
(
𝑖𝐴(𝜙(𝐼))⊗ 1

)
(𝑖𝐺 ⊗ id)

(
𝛿𝐺(𝐶∗(𝐺))(1⊗𝐶∗(𝐺))

)

= span
(
𝑖𝐴(𝜙(𝐼))⊗ 1

)
(𝑖𝐺 ⊗ id)

(
𝐶∗(𝐺)⊗𝐶∗(𝐺)

)

= span
(
𝑖𝐴(𝜙(𝐼))⊗ 1

)(
𝑖𝐺(𝐶∗(𝐺))⊗𝐶∗(𝐺)

)

= span
(
𝑖𝐴(𝜙(𝐼))𝑖𝐺(𝐶∗(𝐺))

)
⊗𝐶∗(𝐺)

=
(
𝜙 ⋊ 𝐺(𝐼 ⋊𝛼| 𝐺)

)
⊗𝐶∗(𝐺)

= (𝐼 ⋊𝛼 𝐺)⊗𝐶∗(𝐺),

which shows that 𝐼⋊𝛼𝐺 is �̂�-invariant. Invariance of 𝐼⋊𝛼,𝑟𝐺 now follows from
�̂� − �̂�𝑛 equivariance of the regular representation.

(b) Some of this— apart from invariance of 𝐼⋊𝛿𝐺—is addressed in [10, Propo-
sition 2.1], but with a different convention regarding equivariant maps.
For us, the restriction 𝛿| is a coaction on 𝐼 by definition of invariance, and

the inclusion 𝜙 is trivially 𝛿|− 𝛿 equivariant. The verification that the induced
𝛿|− �̂� equivariant homomorphism 𝜙⋊𝐺 ∶ 𝐼⋊𝛿|𝐺 → 𝐴⋊𝛿𝐺 is injective follows
a standard computation with covariant representations on Hilbert space (see
[10, proof of Proposition 2.1], for example).
To see that 𝐼 ⋊𝛿 𝐺 = 𝜙 ⋊ 𝐺(𝐼 ⋊𝛿| 𝐺) is an ideal of 𝐴 ⋊𝛿 𝐺, first note that

[6, Lemma 3.8] implies

𝐴⋊𝛿 𝐺 = span 𝑗𝐴(𝐴)𝑗𝐺(𝐶0(𝐺)) = span 𝑗𝐺(𝐶0(𝐺))𝑗𝐴(𝐴),
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so that

(𝐼 ⋊𝛿 𝐺)(𝐴⋊𝛿 𝐺) = span 𝑗𝐴(𝐼)𝑗𝐺(𝐶0(𝐺))𝑗𝐴(𝐴)
= span 𝑗𝐴(𝐼)𝑗𝐴(𝐴)𝑗𝐺(𝐶0(𝐺))
= span 𝑗𝐴(𝐼)𝑗𝐺(𝐶0(𝐺))
= 𝐼 ⋊𝛿 𝐺,

and similarly for (𝐴⋊𝛿 𝐺)(𝐼 ⋊𝛿 𝐺).
Finally, to see that 𝐼 ⋊𝛿 𝐺 is �̂�-invariant, for any 𝑠 ∈ 𝐺 we compute:

�̂�𝑠 (𝐼 ⋊𝛿 𝐺) = �̂�𝑠
(
𝜙 ⋊ 𝐺(𝐼 ⋊𝛿| 𝐺)

)

= 𝜙 ⋊ 𝐺
(
𝛿|𝑠(𝐼 ⋊𝛿| 𝐺)

)

= 𝜙 ⋊ 𝐺(𝐼 ⋊𝛿| 𝐺)
= 𝐼 ⋊𝛿 𝐺. □

For our main result, Theorem 3.2, we refer to the Rieffel correspondence (see,
for example, [12, Proposition 3.24]). This is the lattice isomorphism between
the ideals of𝐴 and the ideals of 𝐵 that arises from a 𝐵−𝐴 imprimitivity bimod-
ule 𝑋 by associating each ideal 𝐼 of 𝐴 with the ideal 𝐽 of 𝐵 given by

𝐽 = span 𝐵⟨𝑋 ⋅ 𝐼 , 𝑋⟩.

If 𝐴 and 𝐵 are equipped with actions or coactions of 𝐺 and 𝑋 has a suitably
compatible action or coaction (see [2, Definitions 2.5 and 2.10]), then the Ri-
effel correspondence preserves invariance of ideals, and therefore restricts to a
bijection between the appropriately-invariant ideals of𝐴 and those of 𝐵. Again,
since we could not find a precise statement of this fact in the literature, we pro-
vide one here.

Lemma 2.4. Let𝑋 be a 𝐵−𝐴 imprimitivity bimodule, let 𝐼 be an ideal of𝐴, and
let 𝐽 be the ideal of 𝐵 associated to 𝐼 under the Rieffel correspondence.

(a) If (𝐴, 𝛼) and (𝐵, 𝛽) are actions of 𝐺 and there exists a 𝛽 − 𝛼 compatible
action 𝛾 on 𝑋, then 𝐼 is 𝛼-invariant if and only if 𝐽 is 𝛽-invariant.

(b) If (𝐴, 𝛿) and (𝐵, 𝜖) are coactions of 𝐺 and there exists a nondegenerate
𝜖 − 𝛿 compatible coaction 𝜁 on 𝑋, then 𝐼 is 𝛿-invariant if and only if 𝐽 is
𝜖-invariant.

Proof. Part (a) is straightforward, so we only address part (b). Moreover, by
symmetry it suffices to prove only one implication; so suppose 𝐼 is 𝛿-invariant.
Then span (1 ⊗ 𝐶∗(𝐺))𝛿(𝐼) = 𝐼 ⊗ 𝐶∗(𝐺) (after taking adjoints in (2.1)), and
nondegeneracy of 𝜁means that span (1⊗𝐶∗(𝐺))𝜁(𝑋) = 𝑋⊗𝐶∗(𝐺). So, writing
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𝑀 for𝑀(𝐵 ⊗ 𝐶∗(𝐺)), we have:

span (1⊗𝐶∗(𝐺))𝜖(𝐽) = span (1⊗𝐶∗(𝐺))𝜖
(
𝐵⟨𝑋 ⋅ 𝐼, 𝑋⟩

)

= span (1⊗𝐶∗(𝐺))𝐵⟨𝜁(𝑋 ⋅ 𝐼), 𝜁(𝑋)⟩
= span𝑀⟨(1⊗𝐶∗(𝐺))𝜁(𝑋)𝛿(𝐼), (1⊗𝐶∗(𝐺))𝜁(𝑋)⟩
= span𝑀⟨(𝑋 ⊗ 𝐶∗(𝐺))𝛿(𝐼), 𝑋 ⊗ 𝐶∗(𝐺), ⟩
= span𝑀⟨(𝑋 ⊗ 𝐶∗(𝐺))(1⊗𝐶∗(𝐺))𝛿(𝐼), 𝑋 ⊗ 𝐶∗(𝐺)⟩
= span𝑀⟨(𝑋 ⊗ 𝐶∗(𝐺))(𝐼 ⊗ 𝐶∗(𝐺)), 𝑋 ⊗ 𝐶∗(𝐺)⟩
= span 𝐵⟨𝑋 ⋅ 𝐼, 𝑋⟩⊗𝐶∗(𝐺)
= 𝐽 ⊗ 𝐶∗(𝐺).

Thus 𝐽 is 𝜖-invariant. □

The isomorphisms from the duality Theorems 2.1 and 2.2 allow us to make
the𝐴⊗𝒦−𝐴 imprimitivity bimodule𝐴⊗𝐿2 into an𝐴⋊𝐺⋊𝐺−𝐴 imprimitivity
bimodule (for each of the four types of crossed products), and when we do this
we can identify the associated ideals explicitly:

Proposition 2.5. (a) Let (𝐴, 𝛼) be anaction, and let 𝐼 be an𝛼-invariant ideal
of 𝐴. Then the ideal of 𝐴 ⋊𝛼 𝐺 ⋊�̂� 𝐺 associated to 𝐼 by the Rieffel corre-
spondence is 𝐼 ⋊𝛼 𝐺 ⋊�̂� 𝐺. The ideal of 𝐴⋊𝛼,𝑟 𝐺 ⋊�̂�𝑛 𝐺 associated to 𝐼 by
the Rieffel correspondence is 𝐼 ⋊𝛼,𝑟 𝐺 ⋊�̂�𝑛 𝐺.

(b) Let (𝐴, 𝛿) be a coaction, and let 𝐼 be a 𝛿-invariant ideal of𝐴. If 𝛿 is maxi-
mal, then the ideal of𝐴⋊𝛿𝐺⋊�̂�𝐺 associated to 𝐼 by the Rieffel correspon-
dence is 𝐼⋊𝛿 𝐺⋊�̂� 𝐺. If 𝛿 is normal, the ideal of𝐴⋊𝛿 𝐺⋊�̂�,𝑟 𝐺 associated
to 𝐼 by the Rieffel correspondence is 𝐼 ⋊𝛿 𝐺 ⋊�̂�,𝑟 𝐺.

Proof. (a) The key observation is that image of 𝐼⋊𝛼𝐺⋊�̂�𝐺 in𝐴⊗𝒦 under the
canonicalmapΦ𝛼 coincides with the image of 𝐼⋊𝛼|𝐺⋊𝛼|𝐺 under the canonical
map Φ𝛼|, and this latter image is precisely 𝐼 ⊗𝒦 by Theorem 2.1 (a). Since the
ideal of 𝐴 ⊗ 𝒦 associated to 𝐼 by the Rieffel correspondence is also precisely
𝐼 ⊗𝒦, it follows that the ideal of 𝐴⋊𝛼 𝐺 ⋊�̂� 𝐺 associated to 𝐼 is

Φ−1
𝛼 (𝐼 ⊗𝒦) = 𝐼 ⋊𝛼 𝐺 ⋊�̂� 𝐺.

The other part of (a), and both parts of (b), are quite similar. □

3. The ladder technique
Our main result, Theorem 3.2 below, rests upon the following basic observa-

tion concerningmaps between sets. We record it only for convenient reference.
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Lemma 3.1. If

𝑊

𝑍

𝑌

𝑋

ℎ

𝑔
𝑣

𝑓
𝑢

is a commutative diagram of sets and maps such that 𝑢 and 𝑣 are bijections, then
𝑓, 𝑔, and ℎ are also bijections.

Recall that for any𝐶∗-algebra𝐴, the setI (𝐴) of all (closed, two-sided) ideals
of 𝐴 is a lattice when ordered by inclusion, with 𝐼 ∧ 𝐽 = 𝐼 ∩ 𝐽 and 𝐼 ∨ 𝐽 = 𝐼 + 𝐽.
For any fixed action 𝛼 or coaction 𝛿 of 𝐺 on 𝐴, the intersection and sum of
two invariant ideals are themselves invariant, so the sets I𝛼(𝐴) and I𝛿(𝐴) of
appropriately invariant ideals of 𝐴 each form a sublattice of I (𝐴).

Theorem 3.2. (a) For any action (𝐴, 𝛼), the assignments 𝐼 ↦ 𝐼 ⋊𝛼 𝐺 and
𝐼 ↦ 𝐼 ⋊𝛼,𝑟 𝐺 define lattice isomorphisms ofI𝛼(𝐴) ontoI�̂�(𝐴⋊𝛼 𝐺) and
I�̂�𝑛(𝐴⋊𝛼,𝑟 𝐺), respectively.

(b) For any maximal or normal coaction (𝐴, 𝛿), the assignment 𝐼 ↦ 𝐼 ⋊𝛿 𝐺
defines a lattice isomorphism ofI𝛿(𝐴) ontoI�̂�(𝐴⋊𝛿 𝐺).

Proof. For the first part of (a), consider the ladder diagram

I𝐺(𝐴⋊𝛼 𝐺 ⋊�̂� 𝐺 ⋊ ̂̂𝛼 𝐺)

I𝐺(𝐴⋊𝛼 𝐺 ⋊�̂� 𝐺)

I𝐺(𝐴⋊𝛼 𝐺)

I𝐺(𝐴)

ℎ

𝑔
𝑣

𝑓
𝑢

(For simplicity here we’re writing I𝐺 for the lattice of appropriately-invariant
ideals in each 𝐶∗-algebra.) The diagonal maps 𝑓, 𝑔, and ℎ (the “rungs” of
the ladder) are defined by Proposition 2.3; so for example 𝑓(𝐼) = 𝐼 ⋊𝛼 𝐺 for
𝐼 ∈ I𝛼(𝐴), and 𝑔(𝐽) = 𝐽 ×�̂� 𝐺 for 𝐽 ∈ I�̂�(𝐴 ⋊𝛼 𝐺). The vertical maps 𝑢
and 𝑣 come from the Rieffel correspondence using the imprimitivity bimodules
implicit in the duality theorems 2.1 and 2.2; since those bimodules have suit-
ably compatible actions and coactions (respectively), 𝑢 and 𝑣 are bijections by
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Lemma 2.4, and theymake the diagram commute by Proposition 2.5. It follows
from Lemma 3.1 that all the maps in the diagram are bijections.
Now 𝑢 and 𝑣 are in fact lattice isomorphisms because they are bijective re-

strictions of lattice isomorphisms. Moreover, it’s routine to check that any order-
preserving bijection of lattices whose inverse is also order-preserving is a lattice
isomorphism. Since here it’s evident by construction that 𝑓 and 𝑔 are order-
preserving, we see that 𝑓−1 = 𝑢−1◦𝑔 is too, and it follows that 𝑓 is a lattice
isomorphism.
The other part of (a), and both parts of (b), are quite similar. □

4. Conclusion
We emphasize that our primary intent in this paper is to introduce the “lad-

der technique”; the bijections in Theorem 3.2, while significant in their own
right, are to some extent intended to serve as illustrative examples of the tech-
nique. Theorem 3.2 itself is not completely new: for example, Gootman and
Lazar proved a version for amenable 𝐺. Their results are clearly immediate
corollaries of Theorem 3.2:

Theorem 4.1 ([3, Theorems 3.4 & 3.7]). Assume that 𝐺 is amenable.

(a) For any action (𝐴, 𝛼) of 𝐺, an ideal 𝐽 of𝐴⋊𝛼 𝐺 is �̂�-invariant if and only
if it is of the form 𝐼 ⋊𝛼 𝐺 for an 𝛼-invariant ideal 𝐼 of 𝐴. Moreover, 𝐼 is
uniquely determined.

(b) For any coaction (𝐴, 𝛿) of 𝐺, an ideal 𝐽 of 𝐴 ⋊𝛿 𝐺 is �̂�-invariant if and
only if it is of the form 𝐼 ⋊𝛿 𝐺 for a 𝛿-invariant ideal 𝐼 of𝐴. Moreover, 𝐼 is
uniquely determined.

The full-crossed-product part of Theorem 3.2 (a) has also appeared in [7, The-
orem 8.2], where it is proved using different techniques (involving Landstad
duality).
Nilsen has proved a pair of related results (for arbitrary locally compact 𝐺)

which are not corollaries of Theorem 3.2; nevertheless, it seems relevant to in-
clude Nilsen’s results here for comparison. One difference is that Nilsen used a
different notion of coaction-invariance for ideals: if (𝐴, 𝛿) is a coaction, we say
an ideal 𝐼 of 𝐴 is weakly invariant if 𝛿 passes to a coaction on the quotient 𝐴∕𝐼.
This is properly weaker than the notion of invariance used in the current paper
(although the two coincide for amenable 𝐺). More importantly, Nilsen’s bijec-
tion was different from ours: she maps an ideal 𝐽 in a coaction crossed-product
𝐴 ⋊𝛿 𝐺 to its restriction 𝑗−1𝐴 (𝐽) ⊆ 𝐴, and similarly for an action and 𝑖−1𝐴 (𝐽).
Thus, for example, given a (non-normal) coaction 𝛿 of 𝐺 on 𝐴, Nilsen makes
the (nonzero) kernel of the canonical homomorphism 𝑗𝐴 ∶ 𝐴 → 𝑀(𝐴 ⋊𝛿 𝐺)
correspond to the zero ideal of 𝐴 ⋊𝛿 𝐺, which is not the way the bijection in
Theorem 3.2 (b) works.
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Theorem 4.2 ([9, Corollaries 3.2 and 3.4]). Let 𝐺 be a locally compact group.

(a) For any coaction (𝐴, 𝛿) of 𝐺, restriction gives a bijection between the �̂�-
invariant ideals of 𝐴⋊𝛿 𝐺 and the weakly 𝛿-invariant ideals of 𝐴.

(b) For any action (𝐴, 𝛼) of 𝐺, restriction gives a bijection between the weakly
�̂�-invariant ideals of 𝐴⋊𝛼 𝐺 and the 𝛼-invariant ideals of 𝐴.
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