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Power integral bases in a family
of octic fields

István Gaál

Abstract. Several recent results prove the monogenity of some polynomi-
als. In these cases the root of the polynomial generates a power integral ba-
sis in the number field generated by the root. A straightforward question is
whether such a number field admits other generators of power integral bases?
We have investigated this problem in some previous papers and here we ex-
tend this research to a family of octic polynomials, following a recent result
of L. Jones [11].
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1. Introduction
A number field 𝐾 of degree 𝑛 with ring of integers ℤ𝐾 is called monogenic

(cf. [2]) if there exists 𝜉 ∈ ℤ𝐾 such that (1, 𝜉,… , 𝜉𝑛−1) is an integral basis,
called a power integral basis. We call 𝜉 the generator of this power integral
basis. 𝛼, 𝛽 ∈ ℤ𝐾 are called equivalent, if 𝛼 + 𝛽 ∈ ℤ or 𝛼 − 𝛽 ∈ ℤ. Obviously,
𝛼 generates a power integral basis in 𝐾 if and only if any 𝛽, equivalent to 𝛼,
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does. As it is known, any algebraic number field admits up to equivalence only
finitely many generators of power integral bases.
A monic irreducible polynomial 𝑓(𝑥) ∈ ℤ[𝑥] is called monogenic, if a root

𝜉 of 𝑓(𝑥) generates a power integral basis in 𝐾 = ℚ(𝜉). If 𝑓(𝑥) is monogenic,
then 𝐾 is monogenic, but the converse is not true.
For 𝛼 ∈ ℤ𝐾 (generating 𝐾 over ℚ) we call the module index

𝐼(𝛼) = (ℤ𝐾 ∶ ℤ[𝛼])
the index of 𝛼. 𝛼 generates a power integral basis in 𝐾 if and only if 𝐼(𝛼) =
1. If 𝛼(𝑖) (1 ≤ 𝑖 ≤ 𝑛) are the conjugates of 𝛼 in 𝐾 of degree 𝑛 with absolute
discriminant 𝐷𝐾 , then

𝐼(𝛼) = 1
√
|𝐷𝐾|

∏

1≤𝑖<𝑗≤𝑛
|𝛼(𝑖) − 𝛼(𝑗)|.

For more details concerning monogenity and power integral bases cf. [2].
In some recent papers we investigated number fields generated by a root of

a monogenic polynomial and made calculations to figure out, whether these
fields admit any additional generators of power integral bases. We refer to [3]
for some sextic trinomials, [4] for pure sextic fields, [5] for pure octic fields, [6]
for certain quartic trinomials and [7] for some quartic polynomials with given
Galois groups.
L. Jones [10] (see also [11]) gave conditions for the monogenity of certain

even octic polynomials of type 𝑥8 + 𝑎𝑥6 + 𝑏𝑥4 + 𝑎𝑥2 + 1. In the present paper
we extend our calculations to this type of polynomials. Among others we prove
the existence of a non-trivial generator of power integral basis.
The octic field, generated by a root of the above polynomial is a quadratic

extension of a quartic field. It is an interesting point of our arguments, that
this octic field can also be considered as a quartic extension of a quadratic field,
which makes it much easier to deal with.
All tools used in our calculations are optimized to this special case, in order

to make our calculations more efficient.

2. The octic polynomial
Let

𝑓(𝑥) = 𝑥8 + 𝑎𝑥6 + 𝑏𝑥4 + 𝑎𝑥2 + 1 (1)
with 𝑎, 𝑏 ∈ ℤ. Set𝑊1 = 𝑏 + 2 − 2𝑎,𝑊2 = 𝑏 + 2 + 2𝑎,𝑊3 = 𝑎2 − 4𝑏 + 8. L.
Jones [11] proved:

Theorem 2.1. If𝑊1𝑊2𝑊3 is square free and

(𝑎 mod 4, 𝑏 mod 4) ∈ {(1, 3), (3, 1), (3, 3)} (2)
then the polynomial 𝑓(𝑥) in (1) is monogenic.

Assume 𝑓(𝑥) is monogenic, not necessarily satisfying (2). We wonder how
many generators of power integral bases the number field 𝐾 has, generated by
a root 𝛼 of 𝑓(𝑥).
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Set
𝑔(𝑥) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑎𝑥 + 1. (3)

Obviously, 𝛽 = 𝛼2 is a root of 𝑔(𝑥). Therefore, the octic number field 𝐾 = ℚ(𝛼)
is a quadratic extension of the quartic field 𝐿 = ℚ(𝛽):

ℚ
4
⊂ 𝐿 = ℚ(𝛽)

2
⊂ 𝐾 = ℚ(𝛼).

Unfortunately, there exist no feasible algorithms for solving index form equa-
tions, that is, for determining generators of power integral bases, only for a re-
stricted class of number fields. Apart from low degree fields, like cubic and
quartic fields, there exist such algorithms only for some higher degree fields
with special structure. These are, e.g. sextic fields with a quadratic subfield
and octic fields with a quadratic subfield (cf. [2]). Above we have an octic field
with a quartic subfield, but using the reciprocal structure of 𝑓(𝑥) and 𝑔(𝑥) we
can help this problem.
If

𝛽4 + 𝑎𝛽3 + 𝑏𝛽2 + 𝑎𝛽 + 1 = 0,
then

𝛽2 + 𝑎𝛽 + 𝑏 + 𝑎
𝛽
+ 1
𝛽2

= 0,

hence
(𝛽2 + 1

𝛽2
) + 𝑎 (𝛽 + 1

𝛽
) + 𝑏 = 0,

(𝛽 + 1
𝛽
)
2
+ 𝑎 (𝛽 + 1

𝛽
) + 𝑏 − 2 = 0.

This yields, that

𝛿 = 𝛽 + 1
𝛽

(4)

satisfies the quadratic equation

𝛿2 + 𝑎𝛿 + (𝑏 − 2) = 0. (5)

Consequently, the number field𝑀 = ℚ(𝛿) is a quadratic subfield of 𝐾:

ℚ
2
⊂ 𝑀 = ℚ(𝛿)

4
⊂ 𝐾 = ℚ(𝛼).

By (4) we have
𝛽2 − 𝛿𝛽 + 1 = 0,

therefore
𝛼4 − 𝛿𝛼2 + 1 = 0.

This means that
ℎ(𝑥) = 𝑥4 − 𝛿𝑥2 + 1 (6)

is the relative defining polynomial of 𝛼 over 𝑀, and this is what we need for
our procedure.
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Note that in some previous papers (cf. [9]) we have developed an algorithm
for the complete resolution of index form equations in octic fields with a qua-
dratic subfield. This takes quite a long CPU time, since one has to solve a unit
equation in the octic field. Also, it can take long to calculate the fundamental
units of that field, which is a necessary input data for the calculations.
Therefore, if we would like to have an overall picture about the generators of

power integral bases of our octic fields, wehave to restrict ourselves to the calcu-
lation of the so called "small solutions", that means we calculate all generators
of power integral bases having coefficients, say ≤ 10200 in absolute value in a
given integral basis. Since the generators of power integral bases usually have
very small coefficients, such an algorithm determines all generators of power
integral bases with a very high probability. Moreover, it certainly indicates, if
a number field, generated by a root of a monogenic polynomial, has also other
generators of power integral bases, in addition to the root of the polynomial.
As we shall see in the following, a crucial point in this algorithm is the reso-

lution of a relative quartic Thue equation over the quadratic subfield. The fast
algorithm [1] for determining "small" solutions of quartic relative Thue equa-
tions over quadratic fields is only efficient if the quadratic subfield is complex.
Therefore in our calculations we assume

𝑎2 − 4𝑏 + 8 < 0, (7)

which guarantees by (5), that𝑀 is a complex quadratic subfield.
On the other hand, we shall not restrict ourselves to those monogenic poly-

nomials 𝑓(𝑥), satisfying all conditions of Theorem 2.1. We shall run the pa-
rameters 𝑎, 𝑏 in certain regions and consider all irreducible polynomials 𝑓(𝑥)
that are monogenic. The only condition we keep is that𝑊3 = 𝑎2 − 4𝑏 + 8 is
square-free, in order to fix the basis element of𝑀 and to make our arguments
simpler. Note, that we made calculations also for non-squarefree𝑊3, and had
completely the same experiences, including also the non-trivial generator of
power integral bases (cf. Theorem 10.1).

3. Integral basis
We have𝑀 = ℚ(𝛿), with

𝛿 =
−𝑎 +

√
𝑎2 − 4𝑏 + 8
2 . (8)

According to the above arguments, we assume𝑊3 = 𝑎2−4𝑏+8 < 0 is square-
free. To keep usual notation we set𝑚 =𝑊3. This number can only be square-
free if 𝑎 ≡ ±1 (mod 4), whence 𝑚 ≡ 1 (mod 4), therefore the integral basis
of the complex quadratic field𝑀 = ℚ(

√
𝑚) is (1, 𝜔), where

𝜔 =
1 +

√
𝑚

2 .

We shall make calculations for monogenic polynomials 𝑓(𝑥). In this case a
root 𝛼 of 𝑓(𝑥) generates a power integral basis in 𝐾 = ℚ(𝛼).
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We shall use the following statements of [8] which are certainly well known:

Theorem 3.1.
A. If 𝐾 is monogenic, then 𝐾 is also relative monogenic over the subfield𝑀.
B. All generators of power integral bases of 𝐾 are of the form

𝛾 = 𝑋0 + 𝜀𝛾0,

where 𝑋0 ∈ ℤ𝑀 , 𝜀 is a unit in𝑀 and 𝛾0 generates a relative power integral basis
of 𝐾 over𝑀.

If
(1, 𝛼, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7)

is an integral basis of 𝐾, then by the first part of the theorem

(1, 𝛼, 𝛼2, 𝛼3)

is a relative integral basis of 𝐾 over𝑀, that is any 𝛾 ∈ ℤ𝐾 can be written in the
form

𝛾 = 𝐶 + 𝑋𝛼 + 𝑌𝛼2 + 𝑍𝛼3, (9)

where

𝐶 = 𝑐1 + 𝜔𝑐2, 𝑋 = 𝑥1 + 𝜔𝑥2, 𝑌 = 𝑦1 + 𝜔𝑦2, 𝑍 = 𝑧1 + 𝜔𝑧2 ∈ ℤ𝑀

with 𝑐1, 𝑐2, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2 ∈ ℤ.

4. A quartic relative Thue equations
A consequence of [9] is the following

Lemma 4.1. Let 𝑥4 + 𝑎1𝑥3 + 𝑎2𝑥2 + 𝑎3𝑥 + 𝑎4 ∈ ℤ𝑀[𝑥] be the relative defining
polynomial of 𝛼 over𝑀. Let

𝐹(𝑢, 𝑣) = 𝑢3 − 𝑎2𝑢2𝑣 + (𝑎1𝑎3 − 4𝑎4)𝑢𝑣2 + (4𝑎2𝑎4 − 𝑎23 − 𝑎21𝑎4)𝑣
3,

𝑄1(𝑥, 𝑦, 𝑧) = 𝑥2 − 𝑥𝑦𝑎1 + 𝑦2𝑎2 + 𝑥𝑧(𝑎21 − 2𝑎2) + 𝑦𝑧(𝑎3 − 𝑎1𝑎2)
+𝑧2(−𝑎1𝑎3 + 𝑎22 + 𝑎4) = 𝑢,

𝑄2(𝑥, 𝑦, 𝑧) = 𝑦2 − 𝑥𝑧 − 𝑎1𝑦𝑧 + 𝑧2𝑎2 = 𝑣.

If 𝛾0, represented in the form (9) generates a relative power integral basis of𝐾 over
𝑀 (that is the relative index of 𝐼𝐾∕𝑀(𝛾0) = (𝑍𝐾 ∶ ℤ𝑀[𝛾0]) is equal to 1), then there
exist𝑈,𝑉 ∈ ℤ𝑀 such that

𝑁𝑀∕ℚ(𝐹(𝑈,𝑉)) = ±1, (10)
𝑄1(𝑋,𝑌, 𝑍) = 𝑈, (11)
𝑄2(𝑋,𝑌, 𝑍) = 𝑉. (12)
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In our case by (6) we have 𝑎1 = 0, 𝑎2 = −𝛿, 𝑎3 = 0, 𝑎4 = 1, hence

𝐹(𝑢, 𝑣) = (𝑢 − 2𝑣)(𝑢 + 2𝑣)(𝑢 + 𝛿𝑣).

If 𝛾0 generates a relative power integral basis of 𝐾 over𝑀, then in view of the
above Lemma, together with the 𝑋,𝑌, 𝑍 ∈ ℤ𝑀 appearing in its representation
(9) there exist 𝑈,𝑉 ∈ ℤ𝑀 with

𝑁𝑀∕ℚ(𝐹(𝑈,𝑉)) = ±1.

If 𝐹(𝑈,𝑉) is a unit in 𝑀, then 𝑈 − 2𝑉,𝑈 + 2𝑉,𝑈 + 𝛿𝑉 are also units in 𝑀.
Therefore

𝑈 − 2𝑉 = 𝜀1, 𝑈 + 2𝑉 = 𝜀2
and

4𝑉 = 𝜀2 − 𝜀1.
In a complex quadratic field each unit is of absolute value 1, and 𝑉 ∈ ℤ𝑀 is of
absolute value 0 or ≥ 1. Since the right side is of absolute value ≤ 2, the above
equation implies 𝑉 = 0. As a consequence, 𝑈 is a unit in𝑀. Then we have

𝑄1(𝑋,𝑌, 𝑍) = 𝜀, 𝑄2(𝑋,𝑌, 𝑍) = 0

with a unit 𝜀 ∈ 𝑀. Following the arguments of [9] we construct

𝑄0(𝑋,𝑌, 𝑍) = 𝑈𝑄2(𝑋,𝑌, 𝑍) − 𝑉𝑄1(𝑋,𝑌, 𝑍) = 0,

whence
𝑄2(𝑋,𝑌, 𝑍) = 𝑌2 − 𝑋𝑍 − 𝛿𝑍2 = 0.

𝑋0 = 1, 𝑌0 = 0, 𝑍0 = 0 is a non-trivial solution of 𝑄2(𝑋,𝑌, 𝑍) = 0. Using an
argument of L. J. Mordell [12] we parametrize 𝑋,𝑌, 𝑍 with 𝑅, 𝑃, 𝑄 ∈ 𝑀:

𝑋 = 𝑅𝑋0
𝑌 = 𝑅𝑌0 + 𝑃 (13)
𝑍 = 𝑅𝑍0 + 𝑄

Substituting this representation of 𝑋,𝑌, 𝑍 into 𝑄2(𝑋,𝑌, 𝑍) = 0 we obtain

𝑅𝑄 = 𝑃2 − 𝛿𝑄2.

We multiply by 𝑄 the equations in (13) and replace 𝑅𝑄 by 𝑃2 − 𝛿𝑄2, then

𝑘𝑋 = 𝑃2 −𝛿 𝑄2,
𝑘𝑌 = 𝑃𝑄,
𝑘𝑍 = 𝑄2,

(14)

with a 𝑘 ∈ 𝑀. Further, applying the arguments of [9], in (14)we can replace the
parameters 𝑘, 𝑃, 𝑄 ∈ 𝑀 by integer parameters in ℤ𝑀 , and it follows from the
form of the above coefficient matrix of 𝑃2, 𝑃𝑄, 𝑄2 (and the property of 𝛾0 being
a generator of a relative power integral basis) that 𝑘 is a unit in𝑀. Finally, we
substitute the representation (14) into 𝑄1(𝑋,𝑌, 𝑍) = 𝑈 and then we obtain

𝐹(𝑃,𝑄) = 𝑃4 − 𝛿𝑃2𝑄2 + 𝑄4 = 𝜀, (15)
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with a unit 𝜀. This is a quartic relative Thue equation over the quadratic subfield
𝑀. As 𝐹(𝑥, 1) is just the relative defining polynomial of 𝛼 over𝑀, the equation
can be written in the form

𝑁𝐾∕𝑀(𝑃 − 𝛼𝑄) = 𝜀. (16)

5. Solving the quartic relative Thue equation
𝑀 is a complex quadratic field, therefore the conjugate of any 𝜈 ∈ 𝑀 is its

complex conjugate 𝜈. Denote by 𝛼(1), 𝛼(2), 𝛼(3), 𝛼(4) the relative conjugates of
𝛼 ∈ 𝐾 over 𝑀, corresponding to 𝜔 (these are the roots of ℎ(𝑥) in (6)), then
𝛼(1), 𝛼(2), 𝛼(3), 𝛼(4) are the relative conjugates of 𝛼 over 𝑀 corresponding to 𝜔.
Set 𝑃 = 𝑝1 + 𝜔𝑝2, 𝑄 = 𝑞1 + 𝜔𝑞2 with 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ ℤ.
Let 𝑃,𝑄 ∈ ℤ𝑀 be an arbitrary but fixed solution of (16). The unit 𝜀 in (16) is

of absolute value 1, hence using 𝛽 = 𝑃 − 𝛼𝑄 (16) implies

|𝛽(1)𝛽(2)𝛽(3)𝛽(4)| = 1. (17)

Denote by 𝑖0 the conjugate with

|𝛽(𝑖0)| = min
1≤𝑗≤4

|𝛽(𝑗)|.

(We have to perform all calculations for all possible values of 𝑖0.) Then by (17)
we have |𝛽(𝑖0)| ≤ 1, whence

|𝑃| ≤ |𝛽(𝑖0)| + |𝛼||𝑄| ≤ 1 + |𝛼||𝑄|, (18)

where we denote by |𝛼| the size of 𝛼, that is the maximum absolute value of its
conjugates.
Our purpose is to determine 𝑐2, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2 in (9) with absolute value

≤ 𝑆 = 10200. This implies |𝑋| = |𝑥1 + 𝜔𝑥2| ≤ (1 + |𝜔|)𝑆 and similarly |𝑍| ≤
(1 + |𝜔|)𝑆. The representation (14) of 𝑍 implies

|𝑄| ≤
√
|𝑍| ≤

√
(1 + |𝜔|)𝑆.

The representation of 𝑋 implies

|𝑃|2 ≤ |𝑋| + |𝛿||𝑄|2 ≤ |𝑋| + |𝛿||𝑍|

whence
|𝑃| ≤

√
(1 + |𝜔|)(1 + |𝛿|)𝑆.

therefore

max(|𝑃|, |𝑄|) ≤ max(|𝑋|, |𝑌|) ≤
√
(1 + |𝜔|)(1 + |𝛿|)𝑆. (19)

We have

|𝑝1| =
|𝜔𝑃 − 𝜔𝑃|
|𝜔 − 𝜔|

≤ 2|𝜔||𝑃|
|𝜔 − 𝜔|

, |𝑝2| =
|𝑃 − 𝑃|
|𝜔 − 𝜔|

≤ 2|𝑃|
|𝜔 − 𝜔|

(20)

and similarly

|𝑞1| ≤
2|𝜔||𝑄|
|𝜔 − 𝜔|

, |𝑞2| ≤
2|𝑄|

|𝜔 − 𝜔|
.
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These imply
𝐴 = max(|𝑝1|, |𝑝2|, |𝑞1|, |𝑞2|) ≤ (21)

≤ 2|𝜔|
|𝜔 − 𝜔|

max(|𝑃|, |𝑄|) ≤ 2|𝜔|
|𝜔 − 𝜔|

√
(1 + |𝜔|)(1 + |𝛿|)𝑆,

that is we have to determine the solutions of (16) until this bound. Note that
for 𝑆 = 10200 this bound is of magnitude 10100.
Further, together with (18) we have

𝐴 ≤ 2|𝜔|
|𝜔 − 𝜔|

max(|𝑃|, |𝑄|) ≤ 𝑐1|𝑄|, (22)

with
𝑐1 =

2|𝜔|
|𝜔 − 𝜔|

(1 + |𝛼|).

If |𝑄| ≥ 10 then for 1 ≤ 𝑗 ≤ 4, 𝑗 ≠ 𝑖0 this yields

|𝛽(𝑗)| ≥ |𝛽(𝑗) − 𝛽(𝑖0)| − |𝛽(𝑖0)| ≥ (23)

≥ |𝛼(𝑗) − 𝛼(𝑖0)||𝑄| − 1 ≥ (|𝛼(𝑗) − 𝛼(𝑖0)| − 0.1)|𝑄|.
In our calculations we have to check all possible 𝑞1, 𝑞2 with |𝑄| < 10 separately.
(17) and (23) imply

|𝛽(𝑖0)| = 1
∏

1≤𝑗≤4
𝑗≠𝑖0

|𝛽(𝑗)|
≥ 1

∏

1≤𝑗≤4
𝑗≠𝑖0

(|𝛼(𝑗) − 𝛼(𝑖0)| − 0.1)
|𝑄|−3 ≤ 𝑐2,𝑖0𝐴

−3, (24)

with

𝑐2,𝑖0 =
𝑐31∏

1≤𝑗≤4
𝑗≠𝑖0

(|𝛼(𝑗) − 𝛼(𝑖0)| − 0.1)

(depending on 𝑖0).

6. Reduction
We apply a reduction procedure to reduce the bound in (22), using inequality

(24), that is
|𝑝1 + 𝜔𝑝2 − 𝛼(𝑖0)𝑞1 − 𝜔𝛼(𝑖0)𝑞2| ≤ 𝑐2𝐴−3. (25)

We follow the arguments of [1]. Let 𝐻 be a large constant to be determined
appropriately (for a practical choice of 𝐻 see later). Consider the lattice gener-
ated by the columns of the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
𝐻 𝐻ℜ(𝜔) 𝐻ℜ(−𝛼(𝑖0)) 𝐻ℜ(−𝛼(𝑖0)𝜔)
0 𝐻ℑ(𝜔) 𝐻ℑ(−𝛼(𝑖0)) 𝐻ℑ(−𝛼(𝑖0)𝜔)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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Lemma 6.1. (cf. [1], or Lemma 5.3 of [2]) Denote by 𝓁1 the first vector of the LLL
reduced basis of this lattice. If 𝐴 ≤ 𝐴0 and𝐻 is large enough to have

|𝓁1| ≥
√
40 ⋅ 𝐴0, (26)

then

𝐴 ≤ (
𝑐2,𝑖0 ⋅𝐻
𝐴0

)
1∕3

. (27)

Note that this procedure must be performed for all possible values of 𝑖0.
We start with the upper bound𝐴0 in (21). For a certain𝐴0 usually𝐴2

0, 10 ⋅𝐴
2
0

or 100 ⋅ 𝐴2
0 is a suitable choice for 𝐻. We have to make 𝐻 so large that (26) is

satisfied. In view of (27) the new bound for 𝐴 will be of magnitude 𝐴1∕3
0 in the

first reduction steps. The following steps of the reduction is not so fast anymore,
but in about 8-10 steps the original bound of magnitude 10100 is reduced to
about 10. A typical sequence is the following:

𝑠𝑡𝑒𝑝 𝐴0 𝐻 𝑛𝑒𝑤 𝐴0
1 10100 10202 9.1198 ⋅ 1033
2 9.1198 ⋅ 1033 8.3172 ⋅ 1069 8.8440 ⋅ 1011
3 8.8440 ⋅ 1011 7.8217 ⋅ 1025 87540.0136
4 87540.0136 7.6632 ⋅ 1011 187.9568
5 187.9568 3.5327 ⋅ 106 24.2479
6 24.2479 58796.3577 12.2522
7 12.2522 15011.6532 9.7587

The reduction process is very fast, it usually only takes a few seconds. For a
constant 𝐻 of magnitude 10200 we have to use multiply precision arithmetic
with about 250 digits.

7. Determining 𝑷 and 𝑸
We return to the quartic relative Thue equation (15), that is

𝑃4 − 𝛿𝑃2𝑄2 + 𝑄4 − 𝜀 = 0. (28)

Let 𝐴𝑅 be the reduced bound for 𝐴 obtained in the previous section.
By 𝑚 ≡ 1 (mod 4), |𝑄| < 10 yields |𝑞1 +

1+
√
𝑚

2
𝑞2| < 10 whence |𝑞2| <

20∕
√
|𝑚| and |𝑞1| < 10 + |𝑞2|∕2 < 10 + 10∕

√
|𝑚|.

Set 𝑆1 = 10 + 10∕
√
|𝑚|, 𝑆2 = 20∕

√
|𝑚|. Let 𝐴1 = max(𝐴𝑅, 𝑆1), 𝐴2 =

max(𝐴𝑅, 𝑆2).
We let 𝑞1 run up to |𝑞1| ≤ 𝐴1 and 𝑞2 run up to |𝑞2| ≤ 𝐴2. For each pair

(𝑞1, 𝑞2)we calculate𝑄 = 𝑞1+𝜔𝑞2, substitute it into (28), and for all possible unit
𝜀 ∈ 𝑀 we solve the quartic polynomial equation (28) for the complex number
𝑃. Having the real and complex parts of 𝑃 we can determine 𝑝1, 𝑝2 with 𝑃 =
𝑝1 + 𝜔𝑝2 (similarly as in (20)) and check if these values of 𝑝1, 𝑝2 are integers.
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Having 𝑃 and 𝑄 we can determine 𝑋,𝑌, 𝑍 from (14). Recall that 𝑘 in (14) is
a unit of𝑀. Therefore all generators of relative power integral bases of 𝐾 over
𝑀 are of the form 𝐶 + 𝜀(𝛼𝑋 + 𝛼2𝑌 + 𝛼3𝑍)with arbitrary 𝐶 ∈ ℤ𝑀 and arbitrary
unit 𝜀 ∈ 𝑀.

8. Determining generators of power integral bases of 𝑲
For all possible 𝑋,𝑌, 𝑍 as calculated above, we set 𝛾0 = 𝛼𝑋 + 𝛼2𝑌 + 𝛼3𝑍. In

view of Theorem 3.1 all generators of power integral bases are of the form

𝛾 = 𝑐1 + 𝜔𝑐2 + 𝜀𝛾0, (29)

with 𝑐1, 𝑐2 ∈ ℤ𝑀 , 𝜀 is a unit in 𝑀. In order to determine all non-equivalent
generators of power integral bases of𝑀 we have to determine 𝜀 and 𝑐2 so that
𝐼(𝛾) = 1. For this purpose we shall use the following consequence of Proposi-
tion 1 of [8]. Here we denote by 𝛾(1,𝑗) the conjugates of 𝛾 corresponding to 𝛼(𝑗)

and by 𝛾(2,𝑗) the conjugates of 𝛾 corresponding to 𝛼(𝑗) for 1 ≤ 𝑗 ≤ 4.

Lemma 8.1.

𝐼(𝛾) = 𝐼𝐾∕𝑀(𝛾) ⋅ 𝐽(𝛾)

where

𝐼𝐾∕𝑀(𝛾) =
1

√
|𝑁𝑀∕ℚ(𝐷𝐾∕𝑀)|

2∏

𝑖=1

∏

1≤𝑗1≤𝑗2≤4
|𝛾(𝑖,𝑗1) − 𝛾(𝑖,𝑗2)|

is the relative index of 𝛼 and

𝐽(𝛾) = 1
|𝐷𝑀|2

4∏

𝑗1=1

4∏

𝑗2=1
|𝛾(1,𝑗1) − 𝛾(2,𝑗2)|.

In view of Lemma 4.1 we calculated 𝛾0 to have relative index 1. Any 𝛾 of type
(29) is relative equivalent to 𝛾0, that is their relative indices are equal. Therefore,
we have to determine 𝜀 and 𝑐2 using 𝐽(𝛾) = 1. For all of the few possible units
𝜀 of𝑀, we calculate 𝐽(𝛾). The equation

4∏

𝑗1=1

4∏

𝑗2=1
(𝛾(1,𝑗1) − 𝛾(2,𝑗2)) ± 𝐷2

𝑀 = 0

is a polynomial equation with rational integer coefficients of degree 16. To de-
termine the possible values (if any) of 𝑐2 ∈ ℤ, corresponding to 𝜀, we have to
determine the integer roots in 𝑐2 of this polynomial. Note that𝐷𝑀 = 𝑎2−4𝑏+8.
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9. Results of our calculations
Our routines were written in Maple. We made calculations for several pairs

(𝑎, 𝑏), such that the polynomial𝑓(𝑥) is irreducible, monogenic and𝑚 is square-
free. These pairs seldom satisfied the conditions of Theorem 2.1. Note that we
also made calculations in cases when 𝑚 is not square-free (then 𝑚 = 𝑚0 ⋅ 𝑚2

1
with square-free 𝑚1 and 𝜔 can be either (1 +

√
𝑚1)∕2 or

√
𝑚1) and we had

similar experiences.
The table below summarizes generators of power integral bases of 𝐾, repre-

sented in the form

𝛾 = (𝑐1 + 𝜔𝑐2) + (𝑥1 + 𝜔𝑥2)𝛼 + (𝑦1 + 𝜔𝑦2)𝛼2 + (𝑧1 + 𝜔𝑧2)𝛼3.

We let (𝑎, 𝑏) run in −25 ≤ 𝑎 ≤ 25, 2 ≤ 𝑏 ≤ 25 and took those pairs (𝑎, 𝑏)
for which 𝑓(𝑥) is irreducible, monogenic and 𝑚 is square-free. In these 51 ex-
amples, it took 526 seconds (using an average PC) to calculate all generators of
power integral baseswith coefficients≤ 10200 in absolute value. We list (𝑎, 𝑏,𝑚)
and then the coefficients [𝑐2, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2] of generators of power integral
bases. We omit the trivial [0, 1, 0, 0, 0, 0, 0].

(−9, 23,−3), [0, 4, 1, 0, 0,−1, 0]
(−7, 15,−3), [0, 3, 1, 0, 0,−1, 0]
(−7, 19,−19), [0, 3, 1, 0, 0,−1, 0]
(−7, 23,−35), [0, 3, 1, 0, 0,−1, 0]
(−5, 9,−3), [0, 2, 1, 0, 0,−1, 0], [1,−2, 1, 1,−1, 1,−1], [1, 2,−1, 1,−1,−1, 1]
(−5, 10,−7), [0, 2, 1, 0, 0,−1, 0]
(−5, 11,−11), [0, 2, 1, 0, 0,−1, 0]
(−5, 14,−23), [0, 2, 1, 0, 0,−1, 0]
(−5, 18,−39), [0, 2, 1, 0, 0,−1, 0]
(−5, 19,−43), [0, 2, 1, 0, 0,−1, 0]
(−5, 21,−51), [0, 2, 1, 0, 0,−1, 0]
(−5, 22,−55), [0, 2, 1, 0, 0,−1, 0]
(−5, 23,−59), [0, 2, 1, 0, 0,−1, 0]
(−5, 25,−67), [0, 2, 1, 0, 0,−1, 0]
(−3, 7,−11), [0, 1, 1, 0, 0,−1, 0]
(−3, 15,−43), [0, 1, 1, 0, 0,−1, 0]
(−1, 3,−3), [0, 0, 1, 0, 0,−1, 0], [0, 1,−1, 0, 0, 0, 1], [0, 1, 0, 0, 0,−1, 1],

[0, 1,−1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]
(−1, 6,−15), [0, 0, 1, 0, 0,−1, 0]
(−1, 7,−19), [0, 0, 1, 0, 0,−1, 0]
(−1, 10,−31), [0, 0, 1, 0, 0,−1, 0]
(−1, 11,−35), [0, 0, 1, 0, 0,−1, 0]
(−1, 13,−43), [0, 0, 1, 0, 0,−1, 0]
(−1, 15,−51), [0, 0, 1, 0, 0,−1, 0]
(−1, 17,−59), [0, 0, 1, 0, 0,−1, 0]
(−1, 19,−67), [0, 0, 1, 0, 0,−1, 0]
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(−1, 22,−79), [0, 0, 1, 0, 0,−1, 0]
(1, 3,−3), [0,−1, 1, 0, 0,−1, 0], [0, 0, 0, 1,−1, 0, 1], [0, 0, 1, 0, 0,−1, 1],

[0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1,−1, 0,−1],
[1,−1, 2,−1, 1,−1, 0], [1, 1,−2,−1, 1, 1, 0],
[0, 1,−1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]

(1, 7,−19), [0,−1, 1, 0, 0,−1, 0]
(1, 11,−35), [0,−1, 1, 0, 0,−1, 0]
(1, 15,−51), [0,−1, 1, 0, 0,−1, 0]
(1, 19,−67), [0,−1, 1, 0, 0,−1, 0]
(3, 5,−3), [0,−2, 1, 0, 0,−1, 0], [0, 1,−2, 0, 0, 1,−1], [0,−1,−1, 0, 0, 0,−1],

[−1, 1, 0, 0,−1, 1, 0], [1, 1, 0, 0, 1, 1, 0],
[0, 0,−2, 0,−1, 1,−1], [0, 0,−2, 0, 1, 1,−1],
[0, 1,−1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]

(3, 6,−7), [0,−2, 1, 0, 0,−1, 0]
(3, 7,−11), [0,−2, 1, 0, 0,−1, 0]
(3, 9,−19), [0,−2, 1, 0, 0,−1, 0]
(3, 14,−39), [0,−2, 1, 0, 0,−1, 0]
(3, 15,−43), [0,−2, 1, 0, 0,−1, 0]
(3, 18,−55), [0,−2, 1, 0, 0,−1, 0]
(3, 21,−67), [0,−2, 1, 0, 0,−1, 0]
(3, 25,−83), [0,−2, 1, 0, 0,−1, 0]
(5, 11,−11), [0,−3, 1, 0, 0,−1, 0]
(5, 19,−43), [0,−3, 1, 0, 0,−1, 0]
(5, 23,−59), [0,−3, 1, 0, 0,−1, 0]
(7, 15,−3), [0,−4, 1, 0, 0,−1, 0],
(7, 17,−11), [0,−4, 1, 0, 0,−1, 0],
(7, 18,−15), [0,−4, 1, 0, 0,−1, 0],
(7, 19,−19), [0,−4, 1, 0, 0,−1, 0],
(7, 22,−31), [0,−4, 1, 0, 0,−1, 0],
(7, 23,−35), [0,−4, 1, 0, 0,−1, 0],
(7, 25,−43), [0,−4, 1, 0, 0,−1, 0],
(9, 23,−3), [0,−5, 1, 0, 0,−1, 0],

10. Another solution
In addition to [0,1,0,0,0,0,0] in all cases considered, there appeared another

solution with [0,𝑘,1,0,0,-1,0] where 𝑘 seems to be related to 𝑎. The above ta-
ble was constructed to indicate this relation clearly. The vector [0,𝑘,1,0,0,-1,0]
yields the element

𝛼(𝑘 + 𝜔) − 𝛼3.

If we try find the corresponding 𝑋,𝑌, 𝑍 in the form (14), we get 𝑋 = 𝑘 + 𝜔 =
𝑃2 − 𝛿𝑄2, 𝑌 = 0 = 𝑃𝑄, 𝑍 = −1 = 𝑄2, which is not possible. But if we consider
the negative of this element, that is

𝛼(−𝑘 − 𝜔) − 𝛼3,
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then we have 𝑋 = −𝑘 − 𝜔 = 𝑃2 − 𝛿𝑄2, 𝑌 = 0 = 𝑃𝑄, 𝑍 = 1 = 𝑄2 which has the
solution 𝑃 = 0, 𝑄 = 1, whence

−𝑘 − 𝜔 = −𝛿.

This implies

𝑘 +
1 +

√
𝑚

2 =
−𝑎 +

√
𝑚

2 ,

implying

𝑘 = −𝑎 + 1
2 .

Indeed, this is shown by the examples. There remained to prove it formally.

Theorem 10.1. If𝑚 = 𝑎2 − 4𝑏 + 8 is square free, then

𝛾 = (𝑎 + 1
2 − 𝜔)𝛼 − 𝛼3 (30)

generates a power integral basis in 𝐾.

Proof. We have

𝑎 + 1
2 − 𝜔 =

𝑎 −
√
𝑚

2 .

Using the notation of Lemma 8.1 we have

𝛾(1,𝑗) =
𝑎 −

√
𝑚

2 ⋅ 𝛼(𝑗) + (𝛼(𝑗))3,

𝛾(2,𝑗) =
𝑎 +

√
𝑚

2 ⋅ 𝛼(𝑗) + (𝛼(𝑗))3,

for 1 ≤ 𝑗 ≤ 4. As we have seen above, the element (30) satisfies 𝐼𝐾∕𝑀(𝛾) = 1 (it
comes from a valid representation of 𝑋,𝑌, 𝑍 by suitable 𝑃,𝑄 in (14)), therefore
we only have to check 𝐽(𝛾) = 1. Using symmetric polynomials (𝛼(𝑗) satisfies
𝑥4 − 𝛿𝑥2 + 1 = 0 and 𝛼(𝑗) satisfies 𝑥4 − 𝛿𝑥2 + 1 = 0) we calculated

4∏

𝑗1=1

4∏

𝑗2=1
|𝛾(1,𝑗1) − 𝛾(2,𝑗2)|,

and, making all possible simplifications, we found that it is equal to 𝑚2. This
calculationwas also performed byMaple, and after several optimizations it took
a negligible time. Note that this calculation of the above degree 16 polynomial
must be made very carefully, otherwise it results unusable formulas. □
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