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Abstract. Given two orientable, cusped hyperbolic 3-manifolds contain-
ing certain thrice-punctured spheres, Adams gave a diagrammatic definition
for a third such manifold, their belted sum. Generalizing Adams’ definition
slightly, this work considers belted sum decompositions of fully augmented
links (or FALs) in which all summands involved are also FALs. To do so, we
provide explicit classifications of thrice-punctured spheres in FAL comple-
ments, making them easily recognizable. These classifications are used to
characterize belted sum prime FALs geometrically, combinatorially and di-
agrammatically. Finally we prove that, in the context of belted sums, every
FAL canonically decomposes into FALs which are either prime or two-fold
covers of the Whitehead link.
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1. Introduction
Within the context of orientable hyperbolic three-manifolds, Colin Adams

in [1] uses embedded thrice-punctured spheres to form a sum of two cusped,
orientable, hyperbolic three-manifolds as follows. First, slice along thrice-
punctured spheres in each, resulting in manifolds whose boundaries contain
two thrice-punctured spheres. Then glue the manifolds together along the
boundary thrice-punctured spheres. Adams proves that the result is again hy-
perbolic and that volumes add under this operation (see [1, Theorem 4.5]). We
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refer to the resulting manifold as a punctured sphere sum of the two original
manifolds. A belted sum is a particular type of this operation (see [1, Corollary
5.2]), which Adams defines diagrammatically as in Figure 1. We extend this di-
agrammatic definition and allow belted sums to add a single crossing between
the two strands (see Section 4 for details).

S T S T

M1 M2 M1 #b M2

Figure 1. Forming the belted sum of𝑀1 and𝑀2

This paper studies the reverse of the belted sum operation on a particular
class of hyperbolic links called fully augmented links, or FALs. Hyperbolic
FALs are constructed from certain link diagrams by augmenting each twist re-
gion with an unknot by placing a trivial knot around each twist region and
removing all full twists (see Figure 2, and Section 2 for more detail). FALs were
introduced byAgol andThurston in the appendix of [15], where they used FALs
to improve Lackenby’s upper bound on volumes of hyperbolic alternating link
complements. The geometry of an FAL complement can be described by gluing
a right-angled ideal polyhedron to its reflection using products of reflections in
its faces (see Section 2 or Purcell’s paper [19]). Since their introduction, the
geometry of FAL complements has proven useful in a variety of contexts. Most
Dehnfillings of the augmenting unknot components of an FAL yield hyperbolic
links whose geometry can be related to that of the FAL. For example, FALs have
been used to produce links that admit no exceptional surgeries, to bound the
genera of surfaces in highly twisted link complements, to create diagrammatic
bounds on volumes of sufficiently twisted links, and to bound crosscap num-
bers of alternating links (see [11], [5], [10], and [13], respectively). Thus FALs
are a convenient and useful class of hyperbolic links to study.
In this work we focus on decomposing a given FAL complement into the

belted sum of two simpler FALs, where the term “simpler" will develop to have
meaning in topological, combinatorial, and geometric contexts. An FALwhich
cannot be so decomposed is called 𝑏-prime and, since several properties ofman-
ifolds are well-behaved under belted sums, a better understanding of 𝑏-prime
FALs will shed light on FALs in general. We now highlight two potential appli-
cations.
First, since volumes are additive under belted sums, understanding volumes

of 𝑏-prime FALs can be applied to the study of FAL volumes in general. Vol-
umes of FALs, in turn, are of interest since they are related to (conjectured)
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minimal volume 𝑛-cusped hyperbolic manifolds. Yoshida has shown that an
FAL complement is the minimal volume orientable 4-cusped hyperbolic man-
ifold (the fully twisted Borromean rings of Figure 20). Moreover, Agol [3] has
conjectured that coverings of theWhitehead link complement areminimal vol-
ume for links with at least 11 components. Purcell proves (see [19, Proposition
3.6]) that 2(𝑐−1)𝑣8 is a sharp lower bound for the volume of anFALwith 𝑐 cross-
ing circles, where 𝑣8 is the volume of a regular ideal octahedron, and there are
octahedral FALs that satisfy Agol’s conjectured minimal volume. These obser-
vations indicate that knowledge of FAL volumes, combined with the tractable
geometry of FALs, could result in further applications.
Arithmetic invariants and, in particular, invariant trace fields, behave nicely

under belted sum operations, providing a second application for 𝑏-prime FALs.
Indeed, Section 5.6 ofMaclachlan andReid (see [16, Theorem5.6.1]) shows that
the invariant trace field of𝑀1#𝑏𝑀2 is the compositum of the fields of the sum-
mands𝑀𝑖. Moreover, several authors have used the tractable geometry of FALs
to study questions of arithmeticity and commensurability. Meyer-Millichap-
Trapp computed invariant trace fields of minimally twisted chain links with
an even number of components, and determined which such links are arith-
metic and which are commensurable (see [18]). In addition, Rochy Flint ([9])
developed techniques for calculating invariant trace fields of FALs. Thus the ex-
plicit geometry of 𝑏-prime FALs combined with the belted sum operation can
provide insight into invariant trace fields, arithmeticity, and commensurability
questions for FALs.
It behooves us, then, to analyze belted sumdecompositions of FALs. Thefirst

step in this analysis is to classify embedded, totally geodesic thrice-punctured
spheres in FAL complements. Every FAL complement admits an orientation-
reversing involution whose fixed point set is an embedded, totally geodesic re-
flection surface. We will see, in Lemma 4.7, that thrice-punctured sphere com-
ponents of a reflection surface are never part of a belted sum decomposition.
For this reason we focus on thrice-punctured spheres not contained in the re-
flection surface. Section 3 develops the necessary tools to classify such non-
reflection thrice-punctured spheres, showing there are three types. The classi-
fication is given in Theorem 3.11, stated below. The three types of spheres are
illustrated in Figures 15 and 17 (see also Definitions 3.7 and 3.10).

Theorem 3.11. Let 𝑆 be a non-reflection thrice-punctured sphere in an FAL com-
plement 𝑀 = 𝕊3 ⧵ 𝒜. If 𝒜 is not the fully twisted Borromean rings, then 𝑆 is
orthogonal to the reflection surface in𝑀 and is either a crossing, longitudinal or
singly-separated disk.

The three types of non-reflection thrice-punctured spheres–crossing disks,
longitudinal disks, singly-separated disks–are classified by their punctures and
how they intersect the reflection surface. Thus their geometry, and how it re-
lates to the overall geometry of the FAL complement, is made quite explicit (see
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Propositions 3.6 and 3.9). Moreover, they are easy to recognize using the tools
developed in Section 2.
Section 4 determines which thrice-punctured spheres of Theorem 3.11 can

be used in a belted sum decomposition. Section 5 applies results of Section 4 to
give several characterizations of 𝑏-prime FALs. The background information
of Section 2 is required to describe two of the characterizations given, so we
focus on the third. There is a procedure to construct an FAL from a link dia-
gram and FAL complements are (essentially) 𝑏-prime if and only if the diagram
has only trivial flype orbits. The result is Theorem 5.4, stated below (technical
definitions are postponed until Section 5).

Theorem 5.4. Let𝐷 be a twist-reduced, non-split, prime link diagramwith more
than two twist regions, and let𝒜 be a full augmentation of𝐷. The fully augmented
link𝒜 is 𝑏-prime if and only if it induces only trivial flype orbits.

Webrieflymention, without detail, two other characterizations of 𝑏-primality,
and refer the reader to Section 5 for precise statements. Theorem 5.2 is a com-
binatorial analogue of Theorem 5.4, and is stated in terms of perfect matchings
on cubic planar graphs associated with FALs. Corollary 5.3 provides a geomet-
ric characterization of 𝑏-prime FALs stated in terms of the absence of certain
thrice-punctured spheres. The combinatorial characterization provides an ef-
ficient method for tabulating 𝑏-prime FALs by number of crossing circles. All
three characterizations of 𝑏-primality provide concrete approaches to the geo-
metric and arithmetic questions described above.
An immediate application of the geometric characterization of Corollary 5.3

is the definition of a canonical belted sum decomposition in Section 6. Of the
three types of non-reflection thrice-punctured spheres (crossing, longitudinal,
and singly-separated disks), the canonical decomposition is obtained by decom-
posing only along crossing disks (see Definition 6.2). The result, stated here in
Theorem 6.3, is that the summands of the canonical decomposition are either
𝑏-prime or 2-fold covers of the Whitehead link.

Theorem 6.3. Let 𝒜 be an FAL with at least three crossing circles and let𝑀 =
𝕊3⧵𝒜 be its complement. Each summand in the canonical belted sumdecomposi-
tion of𝑀 is either a𝑏-primeFAL complement or the complement of theBorromean
rings with at least one flat crossing circle.

The paper is organized as follows. Section 2 reviews the definition of FALs,
and the tools associated with them necessary for our study. Section 3 charac-
terizes thrice-punctured spheres in FAL complements, and Section 4 classifies
which can be used in belted sumdecompositions. Section 5 gives the three char-
acterizations of 𝑏-primality in FAL complements, and Section 6 introduces the
canonical belted sum decomposition of an FAL.
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2. Fully augmented links
Augmenting a link 𝐿 consists of placing a trivial component around a twist

region in a diagram of 𝐿. Adams, in [2], showed that augmenting an alternating
hyperbolic link 𝐿 results in another hyperbolic link. A fully augmented link
𝒜𝐿 (or FAL) is the result of augmenting every twist region and removing all
full twists (see Figure 2(𝑐)). Purcell relaxed the restriction that a diagram be
alternating to show that an FAL created from any prime, twist reduced diagram
with at least two twist regions is hyperbolic (see [20, Theorem 6.1]). In this
paper we assume all FALs are hyperbolic. In addition, properties of a link and
its complement will be referred to interchangeably, the meaning being clear
from context.

(𝑎) Link diagram of 𝐿 (𝑏) Augmented (𝑐) Fully augmented 𝒜𝐿

Figure 2. Fully augmenting a link

This section reviews both geometric and combinatorial approaches toward
studying FAL complements. The primary geometric tool will be a circle pack-
ing, unique up toMöbius transformation, which is the “footprint", if youwill, of
a right-angled ideal polyhedron in hyperbolic space. The original FAL comple-
ment is made up of two such polyhedra. There are two graphs naturally associ-
ated with the circle packing–the nerve and its dual–which provide convenient
combinatorial descriptions of FALs. Geometric and combinatorial tools will be
used extensively throughout this paper, and we proceed with a more thorough
description of them.
Let 𝒜𝐿 be the fully augmented link arising from 𝐿 as described above. The

additional trivial components are crossing circles, and the components that re-
main from the original link 𝐿 will be called knot circles. A crossing circle with
a half-twist is called twisted, while those without are flat. An FAL in which all
crossing circles are flat will be called a flat FAL. Each crossing circle bounds
a disk, called a crossing disk, which is punctured twice by knot circles. Cross-
ing circles can bound more than one crossing disk, and when this occurs it al-
ways results in a possible belted sumdecomposition (see Theorem 4.8). Inwhat
follows we assume a specific crossing disk is chosen for each crossing circle.
Moreover, the complement𝑀 = 𝑆3 ⧵𝒜𝐿 admits reflective symmetry across the
projection plane, followed by a Dehn twist on twisted crossing circles. Purcell
shows that the fixed point set of this reflection is an embedded, totally geodesic
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surface 𝑅 ⊂ 𝑀, called the reflection surface (see [19, Lemma 2.1]). If there is
more than one reflection surface in an FAL complement we assume a specific
choice of reflection surface has been made, just as a crossing disk is chosen for
each crossing circle.
The complement 𝑀 = 𝑆3 ⧵ 𝒜𝐿 of every fully augmented link 𝒜𝐿 admits a

standard cell decomposition 𝒞. The standard cell decomposition is most easily
seen in a flat FAL, so we begin with this case. There are two kinds of 2-cells
in 𝒞: the regions of the projection plane (e.g. 𝑈 and 𝑉 in Figure 3(𝑎)) and
the crossing disks (so 𝒞 depends on our initial choice of crossing disks). We
refer to the projection plane 2-cells as reflection 2-cells since reflection across
the plane of projection is a symmetry of the link 𝒜𝐿. The 2-cells from crossing
disks are crossing 2-cells. The projection plane cuts through the middle of each
crossing disk, and the curves of intersection are the 1-cells of the standard cell
decomposition (see the vertical and horizontal line segments of Figure 3(𝑎)).
Crossing disks are cut into two triangles by the 1-cells, one above and one below
the plane of projection (e.g. 𝐴,𝐴′ in Figure 3(𝑎)) .
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(𝑎) Standard cell (𝑏) Sliced 2-cells (𝑐) Circle packing
decomposition in 𝜕𝐵+ for 𝑃+

Figure 3. From cell decomposition to circle packing

There are no 0-cells in the standard cell decomposition as all 1-cells have end-
points on 𝒜𝐿, which will become ideal points. The two 3-cells 𝐵3± correspond
to the regions of𝑀 above and below the projection plane.
Slicing along the reflection 2-cells separates𝑀 into two pieces which are re-

flections of each other, and crossing disks contribute a triangle in each half.
Further slicing along the crossing disks yields the two three balls 𝐵3±, and the
boundary of 𝐵+ (viewed from “inside" 𝐵+) is pictured in Figure 3(𝑏). Shrink-
ing the arcs of the original link to vertices gives a cell decomposition on the
boundary of 𝐵+. This cell decomposition can be checkerboard colored so that
the unshaded faces correspond to reflection 2-cells, while shaded faces are all
triangular and come from crossing disks.
To transition from topology to geometry, consider the boundary two-sphere

of 𝐵+ to be the one-point compactification of the plane which is also the bound-
ary of the upper half space model ℍ3 of hyperbolic space. Then an application



BELTED SUM DECOMPOSITIONS OF FULLY AUGMENTED LINKS 7

of Andreev’s Theorem (see [4]) implies the unshaded faces of the cell decompo-
sition can be isotoped to form a circle packing. Note that, in this circle packing,
two circles are tangent if the corresponding regions in the plane share a knot cir-
cle or are both punctured by the same crossing circle. For example, the circles
corresponding to regions𝑈 and𝑊 are tangent at the vertex 𝑞 corresponding to
the crossing circle bounding 𝐴 (see Figure 3(𝑐)).
This circle packing determines a right-angled ideal polyhedron 𝑃+, provid-

ing the geometric structure on 𝐵+, which can be described as the intersection
of half-spaces in ℍ3 associated with 2-cells of 𝜕𝐵+. Each reflection 2-cell 𝑈 is
bounded by a circle of the circle packing which, in turn, is the boundary of a
plane 𝒫𝑈 ⊂ ℍ3. Let𝐻𝑈 denote the half-space ofℍ3 ⧵𝒫𝑈 whose boundary does
not contain𝑈. In Figure 3(𝑐), for example,𝐻𝑈 is the half-space above𝒫𝑈 while
𝐻𝑉 is the half-space below 𝒫𝑉 . Each crossing 2-cell 𝐴 of 𝜕𝐵+ is represented by
a shaded interstice in the circle packing. The three vertices of 𝜕𝐴 determine a
unique circle in the plane which bounds a hyperbolic plane 𝒫𝐴. Let𝐻𝐴 denote
the half-space of ℍ3 ⧵ 𝒫𝐴 whose boundary does not contain 𝐴. The intersec-
tion of these half-spaces, taken over all 2-cells of 𝐵+, forms 𝑃+. Letting 𝑃− be
the corresponding polyhedron for 𝐵−, we refer to the polyhedra 𝑃± as standard
polyhedra for the FAL 𝒜𝐿.
Since the 3-cells 𝐵3± are reflections of each other across the projection plane,

the polyhedra 𝑃± are reflections of each other in ℍ3 across an unshaded face.
Letting 𝑃− be the reflection of 𝑃+ across an unshaded face 𝐺, the polyhedron
ℱ = 𝑃+ ∪ 𝑃− ⊂ ℍ3 is a fundamental domain for𝑀. Figure 4(𝑎) illustrates the
fundamental domain ℱ for the complement of the Borromean rings in Figure
3(𝑎) after transforming the vertex 𝑝 to infinity.
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(𝑎) Borromean Rings (𝑏) Once twisted (𝑐) Fully twisted
Borromean Rings Borromean Rings

Figure 4. Gluing patterns viewed from infinity in ℍ3

The gluing maps on the faces of ℱ are quite explicit. To describe the glu-
ings between unshaded faces we refer to faces, edges and vertices of ℱ that
are reflections of each other as corresponding faces, edges or vertices, respec-
tively. If 𝐹 and 𝐹′ are corresponding unshaded faces, then they are glued by
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identifying corresponding edges and vertices. This is realized by the isometry
𝑟𝐺◦𝑟𝐹 ∶ 𝐹 → 𝐹′, where 𝑟𝐹 and 𝑟𝐺 represent reflections across the respective
faces (recall that 𝐺 is the shared face of 𝑃±). Indeed, reflection in 𝐹 fixes 𝐹
point-wise while reflection in 𝐺 identifies corresponding components of 𝐹 and
𝐹′.
For a flat FAL, each shaded triangle on𝑃+will be glued to an adjacent shaded

triangle by the parabolic isometry that fixes their shared point (for example,
the point 𝑞 between the triangles labeled 𝐴 in Figure 3). Similarly for shaded
triangles on 𝑃−.
The universal cover �̃� of𝑀 is tessellated by the images ofℱ under the group

generated by the gluing maps just described. The fundamental domainℱ is an
example of what we’ll call a standard domain for𝑀, since it was formed using
its standard cell decomposition. A standard domain for 𝑀 is the union of 𝑃+
with any copy of 𝑃− sharing an unshaded face.
To see how twisted crossing circles change the above description, note that

a twisted crossing circle can be obtained from a flat one by slicing along the
crossing disk and regluing with a half-twist. This glues the top and bottom of
one crossing disk to the bottom and top of the other. Carrying the projection
plane along in the process yields the reflection 2-cells which form a reflection
surface for the twisted disk. The reflection is the homeomorphism defined by
reflecting in the plane of projection followed by full twists inside each twisted
crossing circle.
FALs that differ by half-twists will be called half-twist partners. Note that the

polyhedra 𝑃± are the same for the half-twist partners, but shaded triangles in
opposite polyhedra are identified. Figure 4(𝑎), for example, illustrates a fun-
damental domain for the Borromean rings in which the vertex 𝑝 of Figure 3(𝑐)
is placed at infinity in the upper half-space model. Figure 4 parts (𝑏) and (𝑐)
illustrate the gluing patterns for the Borromean rings’ half-twist partners.
The standard polyhedra 𝑃± give a nice geometric description of𝑀 and, fol-

lowing [19], we describe combinatorial descriptions that also arise from the cir-
cle packing. The nerve of a circle packing is the planar graph obtained by plac-
ing a vertex at the center of each circle and an edge through points of tangency.
Since the shaded regions are triangular, the nerve of an FAL circle packing is
always a triangulation of 𝕊2. Figure 5 illustrates a FAL with reflection 2-cells
labeled, the circle packing for 𝑃+, and its corresponding nerve.
The nerve Γ can be painted, as described in [19], to record which shaded

triangles are glued or, equivalently, which ideal vertices correspond to cross-
ing circle cusps. Glued shaded triangles must share an ideal vertex that cor-
responds to a crossing circle cusp, so simply paint edges in the nerve through
these shared vertices as in Figure 5(𝑐). Painting the nerve in this way results in
a triangulation of 𝕊2 in which one edge of each triangle is painted.
Conversely, given a triangulation of𝕊2 forwhich each triangle has one painted

edge, one can construct a unique flat FAL from it. Each painted edge is replaced
with a crossing circle that punctures the plane near its vertices. Knot circles lie
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Figure 5. Painted nerve of an FAL

in the plane and connect midpoints of non-painted edges through the crossing
circles just constructed. The result is a flat FAL. Of course, arbitrarily twisting
the crossing circles leads to other FALs that give rise to the same painted nerve.

G *

Figure 6. Painted crushtacean Γ∗

The planar dual Γ∗ of the nerve Γ provides a second combinatorial structure
for studying FALs. Following Chesebro, DeBlois andWilton, we call the planar
dual Γ∗ the crushtacean (see [8] and Figure 6). Vertices of Γ∗ correspond to
shaded triangles in the circle packing and edges to points of tangency between
them.
Since the nerve Γ is a triangulation of 𝕊2, the crushtacean Γ∗ is a trivalent

planar graph. A painting on Γ determines one on the crushtacean simply by
painting edges that are dual to painted edges of Γ. Note that each vertex of
Γ∗ has one painted edge since the same is true of each face of Γ, so a painted
crushtacean is simply a perfectmatching on a trivalent planar graph. Moreover,
vertices sharing a painted edge correspond to shaded triangles in 𝑃+ that are
glued together.
A painted nerve and crushtacean, then, correspond to each FAL. Conversely,

Purcell shows in [19, Lemma 2.4] how to create an FAL from a painted nerve
Γ. Although [19, Lemma 2.4] is stated in terms of painted nerves, the proof’s
construction resorts to crushtaceans. Given the painted crushtacean Γ∗, simply
replace each painted edge with a crossing circle that links it once and smooth
the adjacent unpainted edges as in Figure 7 (which is Figure 5 of [19]). The FAL
resulting from this process determines the same polyhedra with appropriate
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gluing pattern. Of course, one alters this process appropriately to accommodate
half-twists partners with the same painted crushtacean Γ∗.

Figure 7. Creating a FAL from a painted crushtacean

Features of the circle packing and crushtacean will be useful in characteriz-
ing thrice-punctured spheres and belted sums of FAL complements. We intro-
duce two that will be particularly useful.
A shaded triangular interstice in the circle packing corresponds to a shaded

triangular face of a standard polyhedron, say 𝑃+. The shaded face is an ideal
triangle which is orthogonal to the unshaded faces of 𝑃+ that it intersects, and
which projects to half a crossing disk in the FAL complement. Another way to
describe this is that three mutually tangent circles that bound an interstice cor-
respond to an ideal triangular face of 𝑃+ that projects to (a portion of) a crossing
disk. More generally, we now observe that three mutually tangent circles in the
circle packing correspond to an ideal triangle in 𝑃± that intersects unshaded
faces orthogonally. Later, Proposition 3.6 will demonstrate that these always
project to thrice-punctured spheres in the FAL complement.
Let𝐶1, 𝐶2, 𝐶3 be threemutually tangent circles in the circle packing, let𝑝, 𝑞, 𝑟

denote their points of tangency, and let 𝐶∗ the circle determined by 𝑝, 𝑞, 𝑟. We
first show that the hyperbolic plane bounded by𝐶∗ is orthogonal to those deter-
mined by the 𝐶𝑖. Apply a Möbius transformation to the four circles that takes
𝑝 to infinity and use the same labels to refer to the transformed figures. Then
𝐶1 and 𝐶2 are parallel lines and 𝐶3 is a circle tangent to each at 𝑞, 𝑟, so that seg-
ment 𝑞𝑟 is a diameter of 𝐶3. The transformed 𝐶∗, then, is the line ⃖⃖ ⃗𝑞𝑟, which is
orthogonal to the 𝐶𝑖 and the original 𝐶∗ is orthogonal to the original 𝐶𝑖. Thus
𝐶∗ bounds a plane 𝒫 ⊂ ℍ3 and 𝒫 ∩ 𝑃± is an ideal triangle orthogonal to un-
shaded faces of 𝑃±. If the 𝐶𝑖 bound a shaded triangular interstice in the circle
packing, then 𝒫 ∩ 𝑃± is a shaded face of 𝑃±, and we say the 𝐶𝑖 form a standard
triple of mutually tangent circles. Otherwise, the circles 𝐶1, 𝐶2, 𝐶3 are a non-
standard triple of mutually tangent circles (see Figure 8 parts (𝑎) and (𝑏) for
two views).
Non-standard triples admit a convenient combinatorial description as well.

The three points of tangency in any set of three mutually tangent circles corre-
spond to three edges 𝑒1, 𝑒2, 𝑒3 in the crushtacean Γ∗ which form a 3-edge cut. If
the set is a non-standard triple, then the three edges are not adjacent, and nei-
ther component of Γ∗⧵{𝑒1, 𝑒2, 𝑒3} is a single vertex. A non-trivial 3-edge cut of Γ∗
will be one in which neither component of Γ∗ ⧵ {𝑒1, 𝑒2, 𝑒3} is a single vertex (see
Figure 8(𝑐)). Thus every non-standard triple in the circle packing corresponds
to a non-trivial 3-edge cut of the crushtacean, and observe that the converse is
also true.
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Two upcoming results are easily stated in terms of non-trivial 3-edge cuts.
First, Corollary 3.8 shows that non-trivial 3-edge cuts in Γ∗ correspond to one
class of thrice-punctured spheres in FAL complements. Moreover, Theorem 5.2
shows that an FAL complement is belted sum prime if and only if every non-
trivial 3-edge cut of the crushtacean is fully painted (i.e. all edges in the cut are
painted).

3. Thrice-punctured spheres
This section classifies embedded, totally geodesic, thrice-punctured spheres

in FAL complements. Adams proves that every essential, embedded thrice-
punctured sphere in an orientable hyperbolic 3-manifold is totally geodesic (see
[1]), so assume all thrice-punctured spheres in this work are such. We begin by
specifying two closely related classes of them, non-standard and non-reflection
disks.
Recall that, by convention, an FAL comes with a specific choice of reflection

surface and a choice of crossing disk for each crossing circle relative to it. Such
choices lead to the standard cell decomposition 𝒞 and standard polyhedra 𝑃±
of Section 2. Thrice-punctured spheres in 𝒞 will be called standard disks. The
chosen crossing disks are standard, as are any thrice-punctured sphere compo-
nents of the reflection surface. These are special since they form faces on 𝑃±.
Non-standard disks are thrice-punctured spheres not in 𝒞. The second class of
disks, calledNon-reflection disks, are thrice-punctured spheres that are not part
of the reflection surface of an FAL complement. Thus non-reflection disks are
the non-standard disks together with the chosen crossing disks.
The main result of this section is Theorem 3.11, which combines results of

this section into a classification of non-reflection disks in an FAL complement.
The classification is based on two properties: the intersection of non-reflection
disks with the reflection surface and the slopes of their punctures along com-
ponents of the FAL. We begin by describing possible intersections with the re-
flection surface.
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Both the reflection surface and a non-reflection disk are embedded, totally
geodesic surfaces. If two such surfaces intersect non-trivially, they do so in a
union of pairwise disjoint, simple geodesics on each. Thrice-punctured spheres
have only the six simple geodesics pictured in Figure 9(𝑎). Those labeled 𝑎, 𝑏, 𝑐
arenon-separating geodesics since slicing along one does not separate the sphere.
Slicing along 𝑥, 𝑦 or 𝑧 separates 𝑆, so they are separating geodesics. We shall see
that, if𝒜𝐿 is any FAL other than the fully-twisted Borromean rings, then a non-
reflection disk 𝑆 is always orthogonal to the reflection surface 𝑅. The geodesics
in 𝑆 ∩ 𝑅 help distinguish non-reflection disks. Propositions 3.4, 3.6, and 3.9
will show that, if 𝒜𝐿 has at least three crossing circles, then 𝑆 ∩ 𝑅 will either
consist of all the non-separating geodesics on 𝑆 (termed 𝑛-disks), or exactly one
separating geodesic of 𝑆 (called 𝑠-disks).
Each puncture of 𝑆 induces a slope on a torus neighborhood of one compo-

nent of 𝒜𝐿, which also helps classify non-reflection disks. Recall that a slope
is the isotopy class of an unoriented simple closed curve on a torus. Given a
component 𝐽 of 𝒜𝐿, let 𝑇𝐽 ⊂ 𝕊3 denote the torus boundary of a tubular neigh-
borhood 𝑉(𝐽) of 𝐽. Since 𝐽 is a knot in 𝕊3, there is a natural meridional slope
𝑚 and a longitudinal slope 𝓁 on 𝑇𝐽 , determined by the following properties:
𝑚 links 𝐽 once and intersects 𝓁 once, while 𝓁 is homologous to 𝐽 in 𝑉(𝐽) and
null-homologous in 𝕊3 ⧵ 𝑉(𝐽) (see [6, Theorem 3.1]). We refer to any slope of
the form 𝓁± 𝑛 ⋅𝑚 as a generalized longitude. Geometrically, 𝐽 corresponds to a
cusp of𝑀, and we think of 𝑇𝐽 as the boundary of a neighborhood of this cusp.
If an embedded totally geodesic surface 𝐹 is punctured by 𝐽, we frequently re-
fer to the puncture by the slope 𝐹 ∩ 𝑇𝐽 . For example, a crossing disk of 𝑀
has two meridional knot circle punctures and one longitudinal crossing circle
puncture. Alternatively, consider a component 𝑅1 of the reflection surface. It
has (generalized) longitudinal punctures along knot circles, and two types of
punctures along a crossing circles, depending on whether the crossing circle is
flat or twisted. If a flat crossing circle punctures 𝑅1, it does so in meridian(s)
of the crossing circle. On the other hand, placing a half-twist in a crossing cir-
cle connects the two meridians, forming a single puncture of 𝑅1 consisting of
one longitude plus twomeridians. These observations will be useful in proving
Lemma 4.7. Types of punctures, then, also help classify non-reflection disks.

Themain tool used for studying non-reflection disks will be their pre-images
in a standard domainℱ. We begin by describing the preimages of chosen cross-
ing disks, the simplest non-reflection disks. Let 𝐷 be a crossing disk in an FAL
complement, and consider how geodesics in a standard domainℱ project to the
simple geodesics on 𝐷. Observe that the non-separating geodesics on 𝐷 are the
one-cells of 𝒞 since they join distinct punctures. Thus the edges ofℱ project to
non-separating geodesics on crossing disks. Separating geodesics of𝐷 intersect
non-separating geodesics orthogonally, so altitudes of shaded triangles on 𝜕ℱ
project to form separating geodesics in 𝐷 (here an altitude of an ideal triangle
is the geodesic ray orthogonal to one side and toward the opposite vertex). The
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altitudes labeled �̃� in Figure 9(𝑏), for example, project to the separating geo-
desic 𝑦 of Figure 9(𝑎). The preimage of a crossing disk in ℱ, then, lies in the
boundary of a standard domain and is well understood.
For other non-reflection disks we apply techniques of Knavel and Trapp in

[14], who studied embedded, totally geodesic surfaces in FAL complements by
analyzing their pre-images in a standard domain ℱ. We review some relevant
results from [14], and begin with their definition of a geodesic disk.

Definition 3.1. Let 𝑆 ⊂ 𝑀 be an embedded totally geodesic surface in the FAL
complement𝑀, and let 𝑆 denote its preimage in the universal cover. A geodesic
disk is a connected component of 𝑆 ∩ 𝑃+, or of 𝑆 ∩ 𝑃−.
Further, faces of the polyhedra 𝑃± are standard geodesic disks since they

project to the standard cell decomposition 𝒞. A non-standard geodesic disk is
one that is not a face of 𝑃±.

Since 𝑆 is an embedded totally geodesic surface, its preimage 𝑆 in the uni-
versal cover is a union of disjoint planes in ℍ3. Thus a geodesic disk is the
intersection of a plane 𝒫 in ℍ3 with either 𝑃+ or 𝑃−. The boundary 𝛾 of a geo-
desic disk 𝑆′+ in 𝑃+, say, is a planar polygonal curve given by 𝛾 = 𝒫 ∩ 𝜕𝑃+. For
example, Figure 10(𝑎) depicts a non-reflection disk in𝑀, with some planes of
its preimage 𝑆 in the universal cover found in Figure 10(𝑏). The geodesic disks
𝑆′± are highlighted in Figure 10(𝑐), both quadrilaterals with two ideal and two
material vertices.
The boundary of a non-standard geodesic disk can intersect a shaded triangle

𝑇 of 𝜕𝑃± only along an edge or altitude. To see this, let𝐷 be a crossing disk and
recall that its preimage in 𝜕𝑃± consists of two pairs of shaded triangles (see Fig-
ure 9(𝑏)). Edges of 𝜕𝑃± project to the non-separating, and altitudes of shaded
triangles project to the separating, geodesics of𝐷. Now a non-reflection sphere
𝑆 is an embedded, totally geodesic surface, as are components of 𝒞. Thus 𝑆
must intersect each component of 𝒞 in a collection of disjoint, simple geodesics
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Figure 10. Non-reflection sphere 𝑆, its 𝑆, and geodesic disks

on each surface. In particular, if 𝑆∩𝐷 is non-empty, then it is a collection of dis-
joint separating and non-separating geodesics on each surface. But then 𝒫 ∩ 𝑇
must be an edge or altitude of 𝑇.
With these initial observations in hand, we classify the types of geodesic disks

that result fromnon-reflection disks. Area considerations limit the types of geo-
desic disks that can arise from a non-standard thrice-punctured sphere. Recall
that the area of a hyperbolic polygon with external angles 𝜖𝑖 is

∑𝑛
𝑖=1 𝜖𝑖 − 2𝜋,

with the convention that 𝜖 = 𝜋 for ideal vertices. We begin by demonstrating
the general observation that the area of a geodesic disk in an FAL fundamental
domain is always an integer multiple of 𝜋.

Lemma 3.2. Let 𝑆′ ⊂ 𝑃± be a non-standard geodesic disk for the embedded
totally geodesic surface 𝑆 in an FAL complement. Then

i. Material vertices of 𝛾 = 𝜕𝑆′ are right-angled,
ii. Material vertices can be paired so that their adjacent altitudes share an

ideal vertex, and
iii. The area of 𝑆′ is an integer multiple of 𝜋.

Proof. Let 𝑆′ ⊂ 𝑃± be a non-standard geodesic disk for the embedded totally
geodesic surface 𝑆 ⊂ 𝑀, with boundary curve 𝛾 = 𝑆′ ∩ 𝜕𝑃±.
Every edge of 𝑃± bounds one unshaded face and one shaded triangle. If 𝑞 is

a material vertex of 𝛾, then one edge 𝛾0 ⊂ 𝛾 intersects the interior of a shaded
triangular face 𝑇0 ⊂ 𝜕𝑃± (see Figure 11). As above, the geodesic ray 𝛾0 is an
altitude of 𝑇0 and projects to (half of) a separating geodesic on some crossing
disk 𝐷 ⊂ 𝑀. This is precisely the situation of [14, Lemma 4.2.i.], which shows
that 𝑆′ is orthogonal to both faces of 𝜕𝑃± incident with 𝑞 (labeled 𝑇0 and 𝑅 in
Figure 11). Then 𝑞 is the intersection of three pairwise orthogonal planes in
ℍ3, one of which contains 𝑆′, so the angle of 𝑆′ at 𝑞 is a right angle.
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To see that material vertices come in pairs, let 𝑝 be the ideal “endpoint" of
𝛾0, and let 𝑇1 be the shaded triangle in 𝜕𝑃± that shares 𝑝 with 𝑇0. Now apply
a Móbius transformation to ℱ so that 𝑝 is at infinity. The geodesic disk 𝑆′ is
orthogonal to 𝑇0 and 𝑃± is right-angled, so 𝑆′ is orthogonal to the face 𝑇1 oppo-
site to 𝑇0 at 𝑝. Thus 𝑆′ ∩ 𝑇1 is an altitude of 𝑇1 with one material endpoint 𝑞′,
and there are an even number ofmaterial endpoints on 𝛾. Further, the altitudes
with base material vertices 𝑞, 𝑞′ share the ideal vertex 𝑝 on 𝛾.
Since each ideal vertex of 𝛾 contributes 𝜋 to the area of 𝑆′ and there are an

even number of material vertices, each contributing 𝜋∕2, the area of 𝑆′ is an
integer multiple of 𝜋. □

Lemma 3.2 has the following immediate corollary.

Corollary 3.3. If 𝑆 is an embedded, totally geodesic thrice-punctured sphere in
an FAL complement, then 𝑆 has either two geodesic disks of area 𝜋 or one of area
2𝜋.

Proof. Let 𝑆 is an embedded, totally geodesic thrice-punctured sphere in an
FAL complement. Then 𝑆 has area 2𝜋, so Lemma 3.2 (𝑖𝑖𝑖) implies it either has
two geodesic disks of area 𝜋 or one of area 2𝜋. □

The first proposition shows that there is a unique FAL complement that con-
tains a non-reflection disk with a single area 2𝜋 geodesic disk.

Proposition 3.4. If 𝑆 is a non-standard disk in the FAL complement𝑀 with a
single geodesic disk of area 2𝜋, then𝑀 is the fully twisted Borromean rings com-
plement.

Proof. Suppose that𝑆′ is a non-standard geodesic diskwith area 2𝜋 that projects
to a non-reflection disk 𝑆. Up to a reflection of𝑀 we can suppose 𝑆′ ⊂ 𝑃+. If 𝑞
were a material vertex of 𝜕𝑆′, the unshaded face adjacent to 𝑞 contains an edge
of 𝜕𝑆′ which glues 𝑆′ to another geodesic disk. Since 𝑆′ is the only geodesic
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disk for 𝑆, this implies all of its boundary vertices must be ideal. Thus 𝛾 = 𝜕𝑆′
is an ideal square (see Figure 12(𝑎)).
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Figure 12. Area 2𝜋 geodesic disk

The edges of 𝛾 lie on distinct faces since the plane containing 𝑆′ intersects
a face of 𝜕𝑃+ in at most one geodesic arc. In addition, vertices of 𝑃+ are 4-
valent and checkerboard colored, so the faces of 𝜕𝑃+ on one side of 𝛾 alternate
between shaded triangles and unshaded faces as 𝛾 is traversed. Let 𝐴 and 𝐵
be the shaded triangles of 𝑃+ adjacent to one side of 𝛾, and let 𝑈,𝑉 denote the
unshaded faces adjacent to the same side (see Figure 12(𝑏)). Both 𝑈 and 𝑉
share an edge with the shaded triangle 𝐴, so they share the vertex of 𝐴 not on
𝛾. Similarly, they share the third vertex of 𝐵. Now 𝑈 and 𝑉 share at most one
ideal vertex (since their corresponding circles in the circle packing are tangent
at most once), so the third vertices of shaded triangles 𝐴 and 𝐵 coincide. Thus
one side of 𝛾 consists solely of the four ideal triangles 𝐴,𝑈, 𝐵, 𝑉.
The same argument applies to the other side of 𝛾, making 𝑃± regular ideal

octahedra. Then ℱ is the standard domain for the Borromean rings or its half-
twist partners. Moreover,ℱ can be chosen so that 𝑆′ is on the vertical half plane
that intersects 𝑃+ along a diagonal as in Figure 12(𝑐).
To see that the gluing pattern on ℱ is that of the fully twisted Borromean

rings (see Figure 4(𝑐)), apply a Möbius transformation to ℱ so that the two
vertical edges of 𝑆′ ⊂ 𝑃+ are identified as in Figure 12(𝑎). The vertical shaded
triangles on the left of ℱ are glued to ones on the right by parabolic isometries
that preserve infinity. Since the gluing maps also identify the vertical edges of
𝛾, the faces labeled 𝐵 in Figure 12(𝑐) must be identified, resulting in a twisted
crossing disk. A similar argument shows the gluing pattern on 𝐴 faces results
in a twisted crossing disk as well, finishing the proof. □

Ideal square geodesic disks occur for more general embedded, totally geo-
desic surfaces in FAL complements. The point of Proposition 3.4, however, is
that in most cases they are glued to other geodesic disks, giving the resulting
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surfaces too much area to be a thrice-punctured sphere. See [14, Example 5.2]
for examples of surfaces with ideal square geodesic disks in flat, 2-bridge FAL
complements. The proof of Lemma 4.6 contains a more thorough discussion of
thrice-punctured spheres in the fully-twisted Borromean rings complement.
Now consider area𝜋 geodesic disks. An area𝜋 geodesic diskmust have exte-

rior angle sum 3𝜋, and it either hasmaterial vertices or not. Lemma 3.2 showed
that material vertices are right-angled and come in pairs, with an ideal vertex
between them, thus contributing 2𝜋 to the angle sum. The area of a geodesic
diskwithmore than twomaterial vertices, then, is at least 3𝜋 and cannot project
to a thrice-punctured sphere. Thus an area 𝜋 geodesic disk that projects to a
non-standard disk will either be an ideal triangle (with no material vertices),
or a quadrilateral whose boundary contains two material vertices separated by
two ideal vertices. The term material-vertex disk refers to an area 𝜋 geodesic
disk with two material and two ideal vertices (see Figure 10(𝑐) for an example
of material-vertex disks), while a non-standard ideal triangle is an ideal triangle
geodesic disk that is not a face of 𝑃±.
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Figure 13. Area 𝜋 geodesic disks in the circle packing

A non-standard geodesic disk results from intersecting 𝑃± with a plane 𝒫 in
ℍ3, where 𝒫 projects to a non-standard disk in an FAL complement. We de-
scribe area 𝜋 disks in terms of the circle packing for 𝑃± and the boundary circle
for 𝒫 (see Figure 13). The circle packing for 𝑃± must have three mutually tan-
gent circles for a non-standard ideal triangle to exist. Moreover, the interstices
(regions 𝑈 and 𝑣 in Figure 13(𝑎)) between the circles must contain non-trivial
portions of the circle packing, otherwise the ideal triangle 𝒫 ∩ 𝑃± is a face of
𝑃±. Thus non-standard ideal triangles correspond to the non-standard triples
of Section 2. The four circles involved in a material-vertex disk (two at each
ideal point of its boundary) are mutually tangent in the circle packing, forming
a Descartes quadruple. The interstices 𝑈 and 𝑣 of Figure 13(𝑏) may contain
non-trivial portions of the circle packing, while 𝑇 and 𝑇′ are shaded triangular
faces of 𝑃± containing the altitudes in the boundary of the disk.
The above discussion is summarized in the following characterization of area

𝜋 non-standard geodesic disks.



18 P. MORGAN, B. RANSOM, D. SPYROPOULOS, R. TRAPP AND C. ZIEGLER

Lemma 3.5. Let𝑀 be an FAL complement with standard polyhedra 𝑃±, and let
𝑆′ be an area 𝜋 geodesic disk for a non-standard disk 𝑆 ⊂ 𝑀.
Then 𝑆′ is orthogonal to 𝜕𝑃± and is either a non-standard ideal triangle or a

material-vertex disk.

Proof. The preceding discussion restricts area 𝜋 disks to non-standard ideal
triangles or material-vertex disks, so it must be shown that both types are or-
thogonal to the standard cell decomposition. The discussion leading up to the
definition of non-standard triples shows that a non-standard ideal trianglemeets
𝒞 orthogonally. Further, the boundary of amaterial-vertex disk contains two al-
titudes of shaded triangles, and [14, Lemma 4.2.i.] states that any geodesic disk
whose boundary contains an altitude meets 𝒞 orthogonally. □

Area 𝜋 disks can also be recognized in the nerve and crushtacean of an FAL.
Indeed, we have already seen that a non-standard triple corresponds to a non-
trivial 3-edge cut in the crushtacean. A material-vertex disk corresponds to a
𝐾4 subgraph in the nerve, two of whose regions are faces of the triangulation
while the other two regions may contain additional faces in the triangulation.
This corresponds to two 3-edge cuts in the crushtacean that share an edge (the
edge between 𝑈 and 𝑣 in Figure 14(𝑏)).
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Figure 14. Recognizing disks from graphs

The following proposition characterizes non-standard disks whose geodesic
disks are ideal triangles. It is interesting to note that every non-standard ideal
triangle and its reflection glue to formannon-standard disk. In contrast, whether
or notmaterial-vertex disks project to non-standard disks depends on how faces
of standard polyhedra are identified.

Proposition 3.6. Let𝑀 = 𝕊3 ⧵𝒜 be an FAL complement with reflection surface
𝑅 and standard domainℱ = 𝑃+ ∪ 𝑃−.
The surface 𝑆 ⊂ 𝑀 is a non-standard disk disjoint from chosen crossing disks

if and only if it is the projection of a non-standard ideal triangle and its reflection
in 𝑃±.
Moreover, in this case 𝑆 satisfies:

i. 𝑆 intersects 𝑅 orthogonally in its three non-separating geodesics.
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ii. The punctures of 𝑆 are either one crossing-circle longitude and two knot-
circle meridians, or three longitudes on distinct crossing circles.

Proof. Let 𝑀 be an FAL complement and 𝑆 a non-standard disk in 𝑀 that is
disjoint from the crossing disks. Then 𝑆, by definition, is not in the standard
cell decomposition 𝒞 and geodesic disks for 𝑆 must be non-standard as well.
Moreover, since 𝑆 is disjoint from crossing disks, its geodesic disks will be dis-
joint from shaded faces of 𝑃±. By Proposition 3.4 and the definition of material-
vertex disks, area 2𝜋 geodesic disks and material-vertex disks always intersect
shaded faces of𝑃±; therefore, the geodesic disks for 𝑆must be two non-standard
ideal triangles 𝑆±.
Conversely we must show that each non-standard ideal triangle and its re-

flection, denoted 𝑆′±, project to a non-standard disk 𝑆 ⊂ 𝑀. Recall that the
interstices𝑈 and 𝑣 of Figure 13(𝑎) contain additional circles of the circle pack-
ing since, otherwise, 𝑆′± would be standard. Thus the boundary edges of 𝑆′±
are interior to unshaded faces of 𝑃± and the disks 𝑆′± are disjoint from shaded
faces of 𝑃±. Then boundary edges of 𝑆+ are identified with their reflections on
𝑆− when projecting to 𝑀. By Lemma 3.5 the disks 𝑆′± are orthogonal to 𝜕𝑃±,
so they project to an embedded, totally geodesic surface 𝑆 ⊂ 𝑀 which is dis-
joint from chosen crossing disks. Moreover, the surface 𝑆 is two ideal triangles
with edges glued to their reflections, resulting in a thrice-punctured sphere and
proving the first claim of the proposition.
We now verify the stated properties of 𝑆. Note that slicing the projection of

𝑆′+∪𝑆
′
− along one geodesic of 𝜕𝑆′± does not separate it; therefore 𝑆 intersects the

reflection surface along its non-separating geodesics. Moreover, we’ve already
noted that 𝑆′± are orthogonal to 𝜕𝑃±, so 𝑆 is orthogonal to the reflection surface.
We now address the punctures of 𝑆. Since 𝑆 is disjoint from all crossing disks,

and every cusp is intersected by some crossing disk, it will have the samemerid-
ional and longitudinal punctures as a crossing disk. Hence knot circle punc-
tures of 𝑆 will be meridians while crossing circle punctures are longitudinal.
To see that crossing circle punctures of 𝑆must be on distinct cusps note that

exactly one vertex of 𝑃+ projects to each crossing circle cusp of𝑀 (and similarly
for 𝑃−). Thus vertices of 𝑆′± that project to crossing circle cusps correspond to
distinct crossing circles as desired.
It remains to show that 𝑆 has an even number of knot circle punctures. If all

punctures of 𝑆 were meridians of knot circles, then 𝑆 would be a sphere in 𝑆3
punctured three times by a link, which is impossible. Similarly, if 𝑆 had exactly
one knot circle puncture, then the other two punctures would be longitudes of
crossing circles. Gluing the two crossing disks to 𝑆 would result in a sphere in
𝑆3 punctured five times by a link, arriving at the same contradiction. Thus 𝑆
has an even number of knot circle punctures, completing the proof. □

Proposition 3.6 gives a very precise description of non-standard disks which
are disjoint from crossing disks. Notice that, like crossing disks, they intersect
the reflection surface orthogonally in their non-separating geodesics. For this
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reasonwe refer to them as 𝑛-disks, the “𝑛" emphasizing this observation. There
are two kinds of 𝑛-disks though, depending on their punctures, and we make
the following formal definition.

Definition 3.7. Let𝑀 be an FAL complement with chosen reflection surface 𝑅.
An 𝑛-disk is a non-reflection disk 𝑆 ⊂ 𝑀 is one that intersects 𝑅 orthogonally
along its three non-separating geodesics. There are two types of 𝑛-disks:

i. A longitudinal disk is an 𝑛-disk that has three longitudinal punctures
on distinct crossing circles (see Figure 15(𝑎)).

ii. A crossing disk is an 𝑛-disk that has one crossing-circle longitudinal
and two knot-circle meridional punctures (see Figure 15(𝑏)).

Note that Definition 3.7(𝑖𝑖) generalizes the term “crossing disk". In fact, gen-
eralized crossing disks are potential crossing disks for the crossing circle. Gen-
eralized crossing disks will play a crucial role in classifying belted sum decom-
positions of FALs, as well as in defining a canonical one.

S S

(𝑎) Longitudinal disk (𝑏) (Generalized) crossing disk

Figure 15. Two types of 𝑛-disks

The fact that non-standard ideal triangles can be recognized in circle pack-
ings and crushtaceans leads immediately to the following corollary (see Figures
13(𝑎) and 14(𝑎)).

Corollary 3.8. Let𝑀 = 𝕊3 ⧵ 𝒜 be an FAL complement. Non-standard disks in
𝑀 which are disjoint from crossing disks are in one-to-one correspondence both
with non-standard triples in the circle packing and with non-trivial 3-edge cuts of
the crushtacean.
Furthermore, (non-standard) crossing disks correspond to non-trivial 3-edge

cuts with one painted edge while longitudinal disks correspond to those with all
edges painted.

Proof. The follows from simply interpreting Proposition 3.6 in terms of the
circle packing and crushtacean. Do recall that painted edges in the crushtacean
represent vertices of 𝑃± that correspond to crossing circles, so the number of
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painted edges in the 3-edge cut will correspond to the number of crossing circle
punctures on the disk. □

One slices along thrice-punctured spheres when performing belted sum de-
compositions in FAL complements. In a standard domain this corresponds to
slicing along geodesic disks. Therefore, it will be helpful to analyze how non-
standard ideal triangles and their reflections separate standard domains. Figure
16 illustrates a standard domainℱ = 𝑃+∪𝑃− containing the union 𝑆′ of a non-
standard ideal triangle and its reflection. The shaded regions labeled 𝑈 and 𝑉
contain additional circles in the circle packing. We can assume that the vertex
at infinity corresponds to a crossing circle cusp, since either one or all vertices
of 𝑆′ correspond to crossing circle cusps by Proposition 3.6.

VS'U V
S'Uslice

Figure 16. Slicing a standard domain along an 𝑛-disk

Slicingℱ along 𝑆′ yields two components as in Figure 16, and we denote the
two components of ℱ ⧵ 𝑆′ by ℱ1,ℱ2. The faces of the components inherit glu-
ing instructions from those of ℱ, which we now analyze. Unshaded faces of
𝑃± glue to their reflections, and boundary edges of 𝑆′ are identified under these
gluing maps, so an unshaded face of one componentℱ𝑖 glues to another on the
same component. Shaded triangles are paired with adjacent ones to determine
gluings. Shaded triangles which share a vertex on 𝜕𝑆′, then, are the only ones
which can identify faces between components. In the case of a longitudinal
disk, all shaded triangles sharing a vertex of 𝑆′ are paired, providing three iden-
tifications between faces of ℱ1 and ℱ2. On the other hand, if 𝑆′ projects to a
generalized crossing disk, only infinity corresponds to a crossing circle and the
vertical shaded faces ofℱ are the only shaded faces identified between the two
components.
Having characterized non-reflection thrice-punctured spheres with ideal tri-

angle geodesic disks, we turn our attention to material-vertex disks. Material-
vertex disks have two altitudes in their boundaries which share an ideal vertex.
The next proposition shows that a material-vertex disk (together with its reflec-
tion) projects to a non-standard disk if and only if the ideal vertex shared by
these altitudes corresponds to a flat crossing circle. In this case, the remaining
ideal vertex corresponds to a crossing circle as well.

Proposition 3.9. Let𝑀 = 𝕊3 ⧵𝒜 be an FAL complement with standard domain
ℱ = 𝑃+ ∪ 𝑃−.
The surface 𝑆 ⊂ 𝑀 is a non-reflection thrice-punctured sphere that separates

a crossing disk 𝐷 if and only if 𝑆 is the projection of a material-vertex disk and its
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reflection in 𝑃± whose altitude edges project to a separating geodesic on the flat
crossing disk 𝐷.
In this case, 𝑆 intersects the reflection surface orthogonally along one of its sepa-

rating geodesics. Moreover, the punctures of𝑆 are a longitude of one crossing-circle
and two meridians of a different crossing-circle.

Proof. Let 𝑆 ⊂ 𝑀 be a non-reflection thrice-punctured sphere that intersects
the crossing disk𝐷 along one of its separating geodesics 𝛾𝐷 . Since the preimage
in 𝑃± of 𝛾𝐷 consists of altitudes of shaded triangles, at least one geodesic disk
has material vertices, call it 𝑆′+. Then 𝑆

′
+ is a material-vertex disk, and must

glue to its reflection 𝑆′− along the rays interior to unshaded faces in 𝑃±. Area
considerations imply these are the only two geodesic disks for 𝑆, so the altitudes
must identify as well. If 𝐷 is a twisted crossing disk, the identification of 𝑆′±
results in a non-orientable surface. Therefore 𝐷 is a flat crossing disk.
Conversely, suppose thematerial vertex disks 𝑆′± are reflections of each other,

and their altitudinal boundary rays project to a separating geodesic on a flat
crossing disk 𝐷. This implies the altitudes of 𝜕𝑆′+ are identified, and the ideal
vertex they share corresponds to the crossing circle 𝐶 which bounds 𝐷 (and
similarly for the altitudes of 𝜕𝑆′−). The punctures of𝑆′± shared by altitudes, then,
project to two distinct meridional punctures of the crossing circle 𝐶. As in the
proof of Lemma 3.2, applying [14, Lemma 4.2.i.] we see that 𝑆′± is orthogonal to
all faces of 𝜕𝑃± that theymeet. Identifying edges, then, results in an embedded,
totally geodesic surface 𝑆 in 𝑀. Moreover, the gluing pattern (altitudes glue
within and other rays glue between geodesic disks) is that of a thrice-punctured
sphere. Note that first gluing altitudes within each 𝑆′± does not connect the
disks. Thus the unshaded boundary rays project to a separating geodesic of 𝑆,
which is its intersection with the reflection surface of𝑀.
It remains to show that the final puncture is a longitude of a crossing circle.

The remaining ideal vertex of 𝑆′+ joins two geodesic rays interior to unshaded
faces. Therefore it and it’s reflection identify to either a meridian of a knot
circle or a longitude of a crossing circle. If it were the meridian of a knot circle,
then 𝑆 would be a sphere in 𝕊3 punctured three times by the link 𝒜 (twice by
𝐶 and once by the knot circle), which is impossible. Therefore, the remaining
puncture is the longitude of a crossing circle. □

The situation of Proposition 3.9 is illustrated both in Figures 10(𝑎) and 17(𝑎)
and, as they appear frequently in the remainder of the paper, we make the fol-
lowing definition.

Definition 3.10. Let 𝑀 be an FAL complement with chosen reflection surface
𝑅. A singly-separated disk, or 𝑠-disk, is a non-reflection disk 𝑆 ⊂ 𝑀 satisfying:

i. 𝑆 intersects 𝑅 orthogonally,
ii. 𝑆 ∩ 𝑅 is one separating geodesic on 𝑆, and
iii. 𝑆 has two meridional punctures along one crossing circle and one lon-

gitudinal puncture along a different crossing circle.
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Figures 13(𝑏) and 14(𝑏) illustrated recognizing material-vertex disks from
the circle packing and crushtacean. The proof of Proposition 3.9 justifies the
edge-paintings of Figure 14(𝑏), showing that the vertices corresponding to
painted edges do correspond to crossing circles. Transferring vertex 𝑝 of Figure
13(𝑏) to infinity via a Möbius transformation yields Figure 17(𝑏), from which
it is easier to see that slicing along geodesic disks for an 𝑠-disk separates 𝑃±
into two pieces. Moreover, the only gluing of faces between the two pieces of
𝑃+ ⧵ 𝑆′+ is along the vertical shaded triangular faces. This is because the re-
flection between 𝑃± preserves the pieces of 𝑃± ⧵ 𝑆′± and unshaded faces glue
to their reflections. Further, shaded triangular faces are identified in adjacent
pairs and, since the shaded faces intersected by 𝑆′± project to a flat crossing disk,
the only pair separated by slicing along 𝑆′± is the vertical triangular faces.

S
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q

(𝑎) Singly-separated disk (𝑏) 𝑝 at infinity

Figure 17. A singly-separated disk with circle-packing view

Combining Propositions 3.4, 3.6, and 3.9 classifies non-reflection thrice-
punctured spheres in FAL complements, proving the following theorem.

Theorem3.11. Let 𝑆 be a non-reflection thrice-punctured sphere in an FAL com-
plement 𝑀 = 𝕊3 ⧵ 𝒜. If 𝒜 is not the fully twisted Borromean rings, then 𝑆 is
orthogonal to the reflection surface in𝑀 and is either a crossing, longitudinal or
singly-separated disk.

4. Separating pairs
Now that we can recognize thrice-punctured spheres in FAL complements,

we consider which spheres can be used to decompose FALs. Adams introduced
a cut-and-pastemethod for constructing a hyperbolicmanifold from two others
containing incompressible, embedded thrice-punctured spheres (see [1, Theo-
rem 4.5]). We review his construction here. Let 𝑆𝑖 ⊂ 𝑀𝑖 be an incompressible,
embedded thrice-punctured sphere in an orientable hyperbolic three manifold
𝑀𝑖, for 𝑖 = 1, 2. Let𝑀′

𝑖 = 𝑀𝑖 ⧵𝑁(𝑆𝑖) be the manifolds𝑀𝑖 with a neighborhood
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of the spheres 𝑆𝑖 removed. Thus the boundary of 𝑀′
𝑖 consists of two thrice-

punctured spheres which we label 𝑆0𝑖 and 𝑆
1
𝑖 . For 𝑗 ∈ {0, 1}, choose homeo-

morphisms 𝜆𝑗 ∶ 𝑆𝑗1 → 𝑆𝑗2 which either both preserve or both reverse orien-
tation. Let 𝑀 be the manifold obtained by identifying the boundaries of 𝑀′

𝑖
using the homeomorphisms 𝜆𝑗. Theorem 4.5 of [1] proves that the manifold𝑀
constructed in this way is hyperbolic, and the volume of 𝑀 is the sum of the
volumes of 𝑀1 and 𝑀2. We define𝑀 to be a punctured sphere sum of 𝑀1 and
𝑀2, and note that different choices of homeomorphisms 𝜆1, 𝜆2 generally result
in distinct punctured sphere sums.
As an application of this process, Adams introduces the notion of a belted

sum of two links in 𝑆3. His definition of a belted sum is diagrammatic, saying
that the link 𝐿 is the belted sum of links 𝐿1, 𝐿2 if they admit diagrams as in
Figure 1. Clearly belted sums are special cases of punctured sphere sums in
which the 𝑆𝑖 look like crossing disks in FALs, containing one longitudinal and
twomeridional punctures. The homeomorphisms that yield the link 𝐿 identify
punctures of the same type (meridional or longitudinal) without introducing
additional crossings.
When considering the process in reverse, a twisted crossing circle can lead to

two distinct belted sum decompositions depending on which side of the cross-
ing disk the additional crossing is placed (see Figure 18).

S T or

S T

TS

Figure 18. Two belted sum decompositions of twisted cross-
ing circles

To eliminate this ambiguity when defining a canonical belted sum decom-
position of an FAL, we extend Adams’ definition of a belted sum to allow for
the addition of a single crossing in the process. In the reverse process, then, a
twisted crossing circle can be replaced by flat crossing circles in both summands
(as in Definition 6.2(2)). We formalize this in the following definition.

Definition 4.1. Let 𝐿1, 𝐿2 be links with diagrams as in the left side of Figure 19.
The link 𝐿 is a belted sum of 𝐿1, 𝐿2 if it has either of the diagrams after the arrow
in Figure 19.
In addition, if𝑀𝑖 = 𝕊3 ⧵ 𝐿𝑖 and𝑀 = 𝕊3 ⧵ 𝐿 we say that𝑀 is the belted sum

of the𝑀𝑖 and let𝑀 = 𝑀1#𝑏𝑀2 denote a belted sum decomposition.
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M1 M2
M1 #b M2
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Figure 19. Extended belted sum definition

In what follows we will use the term belted sum interchangeably to refer
both to a diagrammatic relationship between links as well as a geometric one
between their complements. Note that, using this more general definition, a
belted sum is still a special case of a punctured sphere sum, with slightly more
flexibility than Figure 1 in the choice of gluing homeomorphisms.
We are concerned with the belted sum process in reverse and, in particular,

applying it to fully augmented link complements. The reverse processes are re-
ferred to as punctured sphere decompositions and belted sum decompositions of
a manifold (or link), respectively. One consequence of the close relationship
between diagrammatic and geometric descriptions of FALs, is that every punc-
tured sphere decomposition of an FAL complement can be realized as a belted
sum decomposition (see Corollary 4.9). This justifies focusing on belted sum
decompositions in the last two sections of this paper.
By definition, if𝑀 is a punctured sphere sum of two manifolds then it con-

tains a pair of disjoint thrice-punctured spheres that separate it. To search
for such decompositions, then, we introduce the notion of a separating pair
of thrice-punctured spheres.

Definition 4.2. Let𝑀 be an FAL complement. The pair {𝑆1, 𝑆2} of disjoint, es-
sential, thrice-punctured spheres in 𝑀 is a separating pair if 𝑀 ⧵ (𝑆1 ∪ 𝑆2) is
disconnected.

We also formally define primality in the context of belted sums, and intro-
duce notation.

Definition 4.3. An FAL is 𝑏-prime if its complement is not the belted sum of two
manifolds.

Section 5 will use the absence of separating pairs to provide several charac-
terizations of 𝑏-prime FALs, and Section 6 introduces a canonical belted sum
decomposition of FALs. First, a clear understanding of separating pairs in FAL
complements is required.
The remainder of this section is devoted to determining when two thrice-

punctured spheres in an FAL complement form a separating pair. To do so,
recall our analysis from the previous section. There are several types of thrice-
punctured spheres in FAL complements: standard thrice-punctured spheres,
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the non-standard ones of Proposition 3.4 that exist only in the fully twisted Bor-
romean rings, as well as non-standard crossing disks, longitudinal disks, and
singly-separated disks (see Theorem 3.11). The following lemma will prove a
useful observation.

Lemma 4.4. Let𝒜 be an FAL and let {𝑆1, 𝑆2} be a separating pair in𝑀 = 𝑆3⧵𝒜.
If the component 𝐽 ∈ 𝒜 punctures the pair {𝑆1, 𝑆2}, then 𝐽 punctures the pairmore
than once.

Proof. Suppose that {𝑆1, 𝑆2} is a separating pair and that the component 𝐽 ∈ 𝒜
punctures {𝑆1, 𝑆2} exactly once, say on 𝑆1. Then the cusp of 𝑀 corresponding
to 𝐽 has a neighborhood which is disjoint from 𝑆2, and we let 𝑇𝐽 be the torus
boundary of this cusp neighborhood. The curve 𝑆1 ∩ 𝑇𝐽 is a torus knot on 𝑇𝐽
whose complement on 𝑇𝐽 is an annulus. This annulus is disjoint from 𝑆2 and
connects one side of 𝑆1 to the other, implying that both copies of 𝑆1 are in the
boundary of the same connected component of𝑀⧵(𝑆1 ∪ 𝑆2). Re-identifying the
boundary copies of 𝑆1, then, does not change the connectivity of𝑀 ⧵ (𝑆1 ∪ 𝑆2)
and yields the manifold 𝑀 ⧵ 𝑆2. But a single thrice-punctured sphere cannot
separate an orientable three-manifoldwith torus boundary components, so𝑀⧵
𝑆2 is connected. Since𝑀 ⧵ (𝑆1 ∪ 𝑆2) and𝑀 ⧵𝑆2 have the same connectivity, this
contradicts the fact that {𝑆1, 𝑆2} is a separating pair. Thus a component of 𝒜
that punctures the spheres {𝑆1, 𝑆2}must do so more than once. □

Lemma 4.4will be used to show that longitudinal disks, the thrice-punctured
sphere of Proposition 3.4, and reflection thrice-punctured spheres (except in the
Borromean rings) do not contribute to separating pairs. We begin with the case
of longitudinal disks.

Lemma 4.5. If 𝐶1, 𝐶2 are distinct crossing circles of the FAL 𝒜, then there is at
most one longitudinal disk with punctures 𝐶1, 𝐶2. In particular, a longitudinal
disk is never part of a separating pair.

Proof. Let 𝐶1, 𝐶2 be distinct crossing circles of the FAL 𝒜, and let 𝑝1, 𝑝2 be
the ideal vertices of 𝑃+ projecting to cusps 𝐶1, 𝐶2. Corollary 3.8 implies that,
if a longitudinal disk 𝑆𝓁 has punctures 𝐶1, 𝐶2, then 𝑝1, 𝑝2 are two of the three
points of tangency in a non-standard triple of the circle packing for 𝑃+. Given
vertices 𝑝1, 𝑝2 of 𝑃+, however, there is at most one non-standard triple contain-
ing them. Indeed, if 𝑝1, 𝑝2 are vertices such a set, they both lie on one of the
circles. The other two circles in the set must be those through 𝑝1, 𝑝2, so the
vertices determine one such set. Hence, there is at most one longitudinal disk
with punctures 𝐶1, 𝐶2.
To see that separating pairs do not contain longitudinal disks, let 𝑆𝓁 be a

longitudinal disk. Since 𝑆𝓁 has punctures on distinct crossing circles, Lemma
4.4 implies any thrice-punctured sphere that forms a separating pair with 𝑆𝓁
has the same punctures. The previous paragraph, however, shows there is at
most one such disk, so separating pairs do not contain longitudinal disks. □
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A second consequence of Lemma 4.4 is that the fully twisted Borromean
rings complement does not contain a separating pair. Before proving this, note
that the fully twisted Borromean rings is also the minimally twisted chain of
four components (Figure 20 parts (𝑎) and (𝑏) are isotopic).

(𝑎) Fully Twisted (𝑏) Obvious thrice- (𝑏) Twisted-band
Borromean rings punctured sphere thrice-punctured sphere

Figure 20. The belted sum of 𝐿1 and 𝐿2

Lemma 4.6. The fully twisted Borromean rings contains no separating pairs and
is 𝑏-prime. In particular, the thrice-punctured sphere with a single geodesic disk
of area 2𝜋 is not part of a separating pair.

Proof. The fully twisted Borromean rings is the link depicted in Figure 20 (see
also [23, Figure 6]). Yoshida proves, [23, Lemma 3.13], its complement has
exactly eight thrice-punctured spheres. The spheres are the “obvious" twice-
punctured disks of Figure 20(𝑏), together with those of Figure 20(𝑐) containing
twisted bands. Note that each has boundary slopes along distinct cusps, and
that each set of three distinct cusps contributes exactly two thrice-punctured
spheres–those of Figure 20. Two spheres with the same cusps intersect and do
not form a separating pair. Further, two thrice-punctured spheres that do not
share the same cuspsmust have an isolated boundary slope and cannot separate
by Lemma 4.4. Thus the twisted Borromean rings do not contain a separating
pair. □

We now show that reflection thrice-punctured spheres do not contribute to
separating pairs in an FAL other than the Borromean rings.

Lemma4.7. Let𝒜 be anFALother than the Borromean rings, and let𝑀 = 𝑆3⧵𝒜
be its complement. No separating pair in𝑀 contains a reflection thrice-punctured
sphere. Moreover, two standard thrice-punctured spheres never form a separating
pair for𝑀.

Proof. Wecan assume𝒜 is not the fully twistedBorromean rings, since Lemma
4.6 implies the result in this case. We first argue that a reflection thrice-
punctured sphere cannot form a separating pair with a non-reflection disk. If 𝑆
is a reflection thrice-punctured sphere, the punctures of 𝑆 along knot circles are
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(generalized) longitudes. Additionally, let𝑚,𝓁 denote the meridian and longi-
tude slopes of a crossing circle 𝐶 that punctures 𝑆. If 𝐶 is a flat crossing circle it
punctures 𝑆 in two meridians, and if 𝐶 is twisted it punctures 𝑆 in the 𝓁 + 2𝑚
slope. Theorem 3.11 implies that punctures of a non-reflection disk are either
meridians of knot circles, longitudes of crossing circles, or meridians of cross-
ing circles, all of which intersect the punctures of 𝑆. Thus any non-reflection
disk that shares a puncture with 𝑆 intersects it, and cannot form a separating
pair with 𝑆.
Now assume {𝑆, 𝑇} are both reflection thrice-punctured spheres that form

a separating pair. Since 𝑀 ⧵ (𝑆 ∪ 𝑇) is disconnected, and no proper subset of
the reflection surface separates 𝑀, the reflection surface must be 𝑆 ∪ 𝑇. We
show that the reflection surface equaling 𝑆∪𝑇 implies that𝒜 is the Borromean
rings, whose reflection surface does form a separating pair. Now the nerve
of the circle packing for 𝒜 is a triangulation of 𝕊2, so it has at least four ver-
tices. Vertices of the nerve correspond to unshaded faces so 𝑃+ has at least
four unshaded faces, each of which is an ideal polygon. Since they glue up to
two thrice-punctured spheres, area considerations imply the unshaded faces of
𝑃+ must be four ideal triangles. Therefore, 𝑃+ is a regular ideal octahedron
and the only FALs resulting from gluing two regular ideal octahedra are the
Borromean rings, possibly with twisted crossing circles. Twisting one crossing
circle in the Borromean rings makes one of the reflection surface components
non-orientable, so it cannot be a thrice-punctured sphere, and we’ve already
assumed 𝒜 is not the fully twisted Borromean rings. Thus the only FAL with
two thrice-punctured spheres for a reflection surface is the Borromean rings
themselves.
To finish the proof it remains to show that two standard crossing disks do not

form a separating pair. However, distinct standard crossing disks are punctured
by distinct crossing circle components, and Lemma 4.4 shows they do not form
a separating pair. □

The following theorem characterizes separating pairs in FAL complements,
summarizing the results of this section.

Theorem4.8. Let𝒜 be anFAL other than the Borromean ringswith complement
𝑀 = 𝑆3 ⧵𝒜. Suppose that 𝑆1, 𝑆2 are disjoint thrice-punctured spheres in𝑀.
The pair {𝑆1, 𝑆2} is a separating pair if and only if each is either a crossing disk

or a singly-separated disk, and their longitudinal slopes coincide.

Proof. Suppose {𝑆1, 𝑆2} is a separating pair. Proposition 3.4 and Lemma 4.6
imply that neither 𝑆1 nor 𝑆2 has an area 2𝜋 geodesic disk. Lemmas 4.5 and 4.7
show that neither 𝑆1 nor 𝑆2 are longitudinal disks or reflection thrice-punctured
spheres. After eliminating these possibilities, crossing disks (standard or non-
standard) and singly-separated disks are the only remaining types for 𝑆1 and
𝑆2. Now both crossing and singly-separated disks have a unique longitudinal
slope (which is along a crossing circle). If the longitudinal slopes of 𝑆1 and 𝑆2
are along distinct crossing circle cusps of𝑀, then either 𝑆1 ∩ 𝑆2 ≠ ∅ showing
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{𝑆1, 𝑆2} is not a separating pair or Lemma 4.4 implies {𝑆1, 𝑆2} is not a separating
pair. Thus the longitudinal slopes of 𝑆1 and 𝑆2 must coincide.
Conversely, let 𝑆1 and 𝑆2 be two crossing or singly-separated disks that share

a longitudinal puncture along the same crossing circle 𝐶. One obtains an em-
bedded two sphere 𝕊2 in 𝕊3 from 𝑆1 ∪ 𝑆2 by including the crossing circle 𝐶,
together with the points of𝒜 corresponding to meridional punctures of 𝑆1∪𝑆2.
Since 𝕊2 separates 𝕊3,𝑀 ⧵ (𝑆1 ∪ 𝑆2) is also disconnected, and {𝑆1, 𝑆2} is a sepa-
rating pair. □

As observed earlier, Theorem 4.8 shows that every separating pair in an FAL
complement consists of a shared crossing-circle longitudinal puncture together
with meridional punctures. Thus every punctured sphere decomposition in an
FAL complement can be realized as a belted sum decomposition. We highlight
this as a corollary.

Corollary 4.9. If𝑀 is an FAL complement, then every separating pair {𝑆1, 𝑆2} ⊂
𝑀 yields a belted sum decomposition of𝑀.

Proof. Suppose 𝐿 is an FAL and {𝑆1, 𝑆2} form a separating pair in𝑀 = 𝕊3 ⧵ 𝐿.
We must show that 𝐿 has a diagram as in the right-hand side of Figure 19. By
Theorem 4.8 there are three cases: both 𝑆1, 𝑆2 are generalized crossing disks,
both are singly-separated disks, or there is one of each. Figure 23 illustrates
the situation when both are crossing disks. In fact, this figure applies to all
cases. If an 𝑆𝑖 is singly-separated, its two meridional punctures in Figure 23
are from a crossing circle, whose crossings with knot circles are subsumed in
tangles 𝐴, 𝐵, 𝐶. See Figure 24 for an example of the case when the pair {𝑆1, 𝑆2}
contains one of each type of disk. □

Separating pairs consisting of two crossing disks will play an important roll
in what follows. Corollary 5.3, for example, shows that an FAL is 𝑏-prime if
and only if there are no separating pairs with two crossing disks. Moreover,
such separating pairs are exactly those used to define canonical belted sum de-
compositions of FALs (see Definition 6.2). For these reasons we now prove that
every separating pair consisting of two crossing disks decomposes an FAL into
the belted sum of two FALs.

Lemma 4.10. Let {𝑆1, 𝑆2} be a separating pair consisting of two crossing disks in
the FAL complement 𝑀 = 𝕊3 ⧵ 𝒜, and let 𝑀 = 𝑀1#𝑏𝑀2 denote a belted sum
decomposition they determine. Then both𝑀1 and𝑀2 are FAL complements.

Proof. Let {𝑆1, 𝑆2} be a separating pair consisting of two crossing disks and
𝑀 = 𝑀1#𝑏𝑀2 their corresponding belted sum decomposition. Consider the
case where neither 𝑆𝑖 is standard (the case where one of the 𝑆𝑖 is the standard
crossing disk is similar). Then 𝑆1 and 𝑆2 share a longitudinal puncture along
the same crossing circle 𝐶 of 𝒜.
We begin by slicing a fundamental polyhedron for 𝑀 into two polyhedra

and determining face pairings in the individual pieces. Then we show these
face pairings result in FALs. This is the reverse of Adams proof of [1, Theorem
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4.5], where he glues fundamental polyhedra for the individual manifolds along
faces corresponding to chosen thrice-punctured spheres. The standard polyhe-
dral decomposition for FALs facilitates our process for us and, since 𝑃− is the
reflection of 𝑃+, our description focuses on 𝑃+.
The crossing circle 𝐶 shared by {𝑆1, 𝑆2} corresponds to exactly one ideal ver-

tex of 𝑃+ and we assume, possibly after a Möbius transformation, that it corre-
sponds to infinity (using the upper-half space model forℍ3). Figure 21(𝑎) illus-
trates 𝑃+ with geodesic disks 𝑆′𝑖 for the non-standard crossing disks 𝑆𝑖. When
viewed from above, 𝑃+ is rectangular and the vertical shaded faces (labeled 𝑇′)
project to the standard crossing disk for 𝐶. The geodesic disks 𝑆′𝑖 are ideal tri-
angles parallel to the 𝑇′ since all have longitudinal punctures along 𝐶. The
shaded interstices of Figure 21(𝑎)may or may not contain additional circles of
the circle packing.

p

S1' S2'T' T'
A

B

C
S1' S2'

S1'S2' T'P2
+:

P1
+:

AC

B

(𝑎) Separating pair in 𝑃+ (𝑏) The polyhedra 𝑃+𝑖

Figure 21. belted sum decomposition if both {𝑆1, 𝑆2} are non-
standard crossing disks

Now slice 𝑃+ along the 𝑆′𝑖 to obtain three pieces, then glue the outside pieces
along the shaded triangles 𝑇′. The result is two polyhedra, and let 𝑃+1 denote
the one between the 𝑆′𝑖 while 𝑃

+
2 denotes that formed from the outsides (see

Figure 21(𝑏)). A similar slicing along 𝑃− yields the reflections 𝑃−1 and 𝑃
−
2 . Note

that in the case where 𝑇′ projects to a twisted crossing disk, the polyhedron 𝑃+2
will consist one outside piece from each of 𝑃±.
Now consider the gluing maps on faces of 𝑃±𝑖 . The gluing maps of 𝑃± iden-

tify unshaded faces of 𝑃±𝑖 to each other since the disks 𝑆
′
𝑖 are orthogonal to the

reflection surface. Moreover, since the 𝑆𝑖 are crossing disks, exactly one vertex
of the ideal triangles 𝑆′𝑖 corresponds to a crossing circle. This means the trian-
gular faces 𝑇′ are the only ones of 𝑃± adjacent to 𝑆′𝑖 that are identified on 𝑃±,
and they are glued to form 𝑃±2 . The face pairings on the remaining shaded tri-
angles of 𝜕𝑃± do not connect 𝑃

±
1 to 𝑃

±
2 . Thus all faces of 𝑃

±
𝑖 inherit gluing maps

from 𝑃± except the shaded triangles corresponding to the 𝑆′𝑖 , and those maps
do not connect the 𝑃±1 to 𝑃

±
2 . Pairing the copies of 𝑆

′
𝑖 of 𝑃

+
𝑖 along their shared
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vertex completes the gluing instructions so that unshaded faces glue to their
reflections and shaded faces glue to their mate or its reflection.
Indentifying the 𝑆′𝑖 either way yields a so-called admissible gluing pattern

from [12], and [12, Theorem 3.2 ] guarantees that 𝑃±𝑖 with these face-pairings
yield complete hyperbolic manifolds𝑀𝑖. One can then form the circle packing
and nerve corresponding to these polyhedral decompositions, and apply [19,
Lemma 2.4] to conclude the manifolds are FAL complements. Let 𝑀𝑖 denote
the FAL resulting fromgluing𝑃±𝑖 . The only ambiguity in this process iswhether
the 𝑆′𝑖 project to flat or twisted crossing disks.
Beginning with𝑀1 and𝑀2 and forming the belted sum𝑀1#𝑏𝑀2 along the

disks𝐷𝑖, as in [1], reverses this process on the polyhedral level, thereby yielding
𝑀 by construction.

S2

S1

M2M1

   belted sum
decomposition

slice
along S2'

S1' S2'

P+

S1' S1' S2'

P1
+

S2'

P2
+

S1'

Figure 22. {𝑆1, 𝑆2} with one standard and one non-standard
crossing disk

The case where the disk 𝑆1 of the pair {𝑆1, 𝑆2} is a standard crossing disk is
similar. The difference is that one only slices 𝑃+ along 𝑆′2 (respectively 𝑃− along
the reflection of 𝑆′2), yielding only two pieceswhich are the𝑃

±
1 and𝑃

±
2 described

(see Figure 22). □

The case just argued, where both 𝑆𝑖 are non-standard crossing disks, can be
illustrated in the crushtacean as well (see Figure 23). The tangles 𝐴, 𝐵, 𝐶 of
Figure 23 correspond to the interstices of the same label in Figure 21.
Thus every separating pair consisting of two crossing disks decomposes an

FAL complement into the belted sum of two simpler FAL complements. We
turn our attention to the questions of 𝑏-primality and canonical decomposi-
tions.

5. On 𝒃-prime FALs
This section provides three characterizations of 𝑏-prime FALs. The Bor-

romean rings and its half-twist partners are a special case, and considered sep-
arately. For FALs with at least three crossing circles, Theorem 5.2 shows that
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Figure 23. FAL belted sum and crushtaceans

an FAL is 𝑏-prime if and only if each non-trivial 3-edge cut in its crushtacean
is fully painted. Interpreting this in terms of crossing disks shows that an FAL
is 𝑏-prime if and only if each crossing circle bounds a unique crossing disk (see
Corollary 5.3). These results follow readily from those of Section 4. After in-
troducing diagrammatic terminology, Theorem 5.4 shows that 𝑏-prime FALs
come from fully augmenting diagrams with trivial flype orbits.
First consider the special case of FALs with two crossing circles–the Bor-

romean rings and its half-twist partners.

Lemma 5.1. The fully twisted Borromean rings complement is 𝑏-prime. The
complement of the Borromean rings with both, or exactly one, flat crossing circle
are 𝑏-composite.
In fact, both are the belted sum of two Whitehead link complements and both

have a separating pair consisting of one crossing and one singly-separated disk.

Proof. We’ve already seen in Lemma 4.6 that the fully twisted Borromean rings
is 𝑏-prime. Moreover, Adams observed (see [1]) that the Borromean rings com-
plement is the belted sum of two copies of the Whitehead link complement.
In our terminology, the singly-separated disk of Figure 24 forms a separating
pair with the top crossing disk. This pair, with the appropriate choice of glu-
ing homeomorphisms, decomposes the Borromean rings into two copies of the
Whitehead link.
Finally, the separating pair of the original Borromean rings is preservedwhen

adding a half-twist to the top crossing disk; therefore, the complement of the
Borromean rings with one twisted crossing circle is 𝑏-composite. As in the case
of the Borromean rings complement, it is the belted sum of twoWhitehead link
complements, with appropriate choice of gluing homeomorphisms. □

We now treat the general case, characterizing 𝑏-prime FALs in terms of their
painted crushtaceans.

Theorem 5.2. Let𝒜 be a fully augmented link with at least three crossing circles,
and let Γ∗ be its crushtacean. Then the complement𝑀 = 𝕊3 ⧵𝒜 is 𝑏-prime if and
only if every 3-edge cut of Γ∗ is fully painted.
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Figure 24. Borromean rings as belted sum of two Whitehead links

Proof. We begin with the observation that every non-trivial 3-edge cut in Γ∗
has either one or three painted edges. To see this, note that trivalent graphs
have an even number of vertices since the sum of the degrees is both 3𝑉 and
2𝐸 (where 𝑉, 𝐸 represent the number of vertices and edges, respectively). A
non-trivial 3-edge cut separates the graph into two components, say Γ1 and Γ2,
and collapsing Γ2 to a single vertex results in a new trivalent graph Γ3. Then
Γ3 has an even number of vertices as well as having one more vertex than Γ1
(the one corresponding to the collapsed Γ2). Hence Γ1 has an odd number of
vertices. Now painted edges with both vertices in Γ1 use up an even number of
vertices, leaving an odd number whose painted edges belong to the 3-edge cut.
To prove that 𝑏-prime implies fully painted non-trivial 3-edge cuts, we show

the contrapositive. If Γ∗ has a once-painted, non-trivial 3-edge cut, then𝑀 has
a non-standard crossing disk by Corollary 3.8. This forms a separating pair with
the standard disk sharing the crossing circle puncture, by Theorem 4.8, and𝑀
is not 𝑏-prime.
Conversely, suppose every 3-edge cut of Γ∗ is fully painted, so that every non-

standard 𝑛-disk is longitudinal. Theorem 4.8, then, implies that every separat-
ing pair must contain a singly-separated disk. We now argue that if𝑀 contains
a singly-separated disk, it contains a non-standard crossing disk, contradicting
the fact that 𝑛-disks in𝑀 are assumed longitudinal.
Let 𝑆 be a singly-separated disk in an FAL complement𝑀, and 𝑆′ one of its

material vertex disks. Proposition 3.9 shows that circle packing near 𝑆′ is as il-
lustrated in Figure 25(𝑎). If both interstices𝑈 and 𝑣 are trivial, this is the circle
packing for an FAL with two crossing circles. Since𝑀 has at least three cross-
ing circles, at least one of the interstices, say 𝑈, has additional circles in the
circle packing. Now 𝑆′ has two neighboring ideal triangles labeled 𝑆′𝑖 in Figure
25(𝑏), and we focus on 𝑆′2. Since 𝑞 is the only vertex of the triangles 𝑇, 𝑇

′ corre-
sponding to a crossing circle, the ideal vertices at the base of 𝑆′2 correspond to
knot circles in𝒜. Proposition 3.6 implies that 𝑆′2 projects to a crossing disk and,
since interstice𝑈 is non-trivial, the disk 𝑆′2 is not a face of 𝑃+. Thus 𝑆

′
2 projects
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Figure 25. Ideal triangular neighbors of material-vertex disks

to a non-standard crossing disk, contradicting the assumption that every 3-edge
cut is fully painted.
If every 3-edge cut of Γ∗ is fully painted then, among non-reflection thrice-

punctured spheres,𝑀 contains only standard crossing disks and is void of singly-
separated disks. Lemma4.7 andTheorem4.8 then imply𝑀 is void of separating
pairs, and𝑀 is 𝑏-prime. □

The correspondence between once-painted, 3-edge cuts of the crushtacean
and non-standard crossing disks immediately leads to the following character-
ization of 𝑏-prime FALs.

Corollary 5.3. Let𝒜 be a fully augmented link with at least three crossing circles.
The complement𝑀 = 𝕊3 ⧵ 𝒜 is 𝑏-prime if and only if every crossing circle of 𝒜
bounds a unique crossing disk.

Proof. Every crossing circle of 𝒜 bounds a standard crossing disk. Corollary
3.8 implies that non-standard crossing disks are in one-to-one correspondence
with once-painted 3-edge cuts of the crushtacean. Thus every crossing circle
of 𝒜 bounds a unique crossing disk (i.e. the standard one) if and only if there
are no once-painted 3-edge cuts of the crushtacean. The result follows from
Theorem 5.2. □

Observe that the criteria of Corollary 5.3 can be rephrased to say that 𝑀 =
𝕊3 ⧵𝒜 contains no non-standard crossing disks.
We now interpret FAL 𝑏-primality in terms of the link diagram that gener-

ated the FAL. The main result is that an FAL 𝒜𝐷 obtained by augmenting a
diagram 𝐷 is 𝑏-prime if and only if it generates only trivial flype orbits. We
review the necessary diagrammatic properties involved before proving the the-
orem, and refer the reader to [7] for further diagrammatic details.
An m-tangle in a regular link diagram 𝐷 is a disk 𝒟 in the projection plane

whose boundary intersects𝐷 in𝑚 points. An𝑚-tangle is trivial if it contains no
crossings of𝐷. A flype changes one diagram of a link 𝐿 into another by rotating
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a 4-tangle 180◦, moving a crossing over the tangle as in Figure 26. Aflype is non-
trivial if neither of the 4-tangles involved are trivial. Flypes were introduced
by Tait during his original efforts to enumerate links in the late 1800’s, when
he conjectured that any two reduced alternating diagrams of a link are related
by a sequence of flypes. This conjecture was finally proven by Menasco and
Thistlethwaite in [17].

R

T T

R

flype

Figure 26. Flype on a link diagram

A flype tangle for a crossing is a 4-tangle that cannot be decomposed into
smaller flype-admitting 4-tangles for that crossing. A flype orbit for a crossing
is a collection of flype tangles for the crossing, and a flype orbit is trivial if it
consists of a single flype tangle. Each crossing generates two flype orbits, and
Calvo shows that at most one of them is non-trivial (see [7, Lemma 4]).
Figure 27 illustrates these definitions. Knot 928 of Rolfsen’s tables has six

twist regions (see Figure 27(𝑎)). The twists with nontrivial flype orbits con-
sist of single crossings, while the 2-crossing twists have only trivial flype orbits.
Parts (𝑏) and (𝑐) of Figure 27 depict flype tangles and orbits for crossings 𝑎 and
𝑏, respectively (the flype orbit for crossing 𝑏 is more easily seen after an isotopy
of the projection sphere). By symmetry, rotating the diagram of Figure 27(𝑐)
about a horizontal axis yields the flype tangles and orbit of crossing 𝑐.

a
b

c

a b

(𝑎) Knot 928 (𝑏) 𝑎 flype orbit (𝑐) 𝑏 flype orbit

Figure 27. A knot and its flype orbits
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Let𝐷 be a reduced alternating diagram for a link 𝐿, and recall that fully aug-
menting 𝐿 from 𝐷 amounts to choosing a crossing circle around each twist in
𝐷. There is a unique choice of crossing circle associated with each twist of 𝐷
containing more than one crossing, and the corresponding flype orbit may or
may not be trivial. Single-crossing twists in 𝐷 admit two choices for crossing
circles, and at most one of the choices corresponds to a non-trivial flype orbit
by [7, Lemma 4]. Given an FAL 𝒜𝐿 arising from 𝐷, the flype orbits induced by
𝒜𝐿 are those determined by the crossing circles.

(𝑎) 𝒜 and its crushtacean (𝑏) 𝒜′ and its crushtacean

Figure 28. 𝑏-composite and 𝑏-prime augmentations of knot 928

For example, the augmentation 𝒜′ of Figure 28(𝑏) is obtained by changing
the choice of crossing circle for every single-crossing twist in Figure 28(𝑎). The
FAL𝒜′ induces all trivial flype orbits to augment𝐷, while𝒜 induces non-trivial
flype orbits for all single-crossing twists. The crushtaceans of Figure 28 illus-
trate the fact that the same diagram can have a 𝑏-prime augmentation as well
as 𝑏-composite ones. Note that every painted edge corresponding to a twisted
crossing circle in Figure 28(𝑎) is contained in at least one non-trivial, once-
painted 3-edge cut; whereas the crushtacean for 𝒜′ contains no non-trivial, 3-
edge cuts.
We now have the terminology needed to give the following diagrammatic

characterization of 𝑏-prime FALs. A technical note in the following theorem:
the assumption that 𝐷 has more than two twist regions prevents 𝒜 from being
the Borromean rings or one of its half-twist partners.

Theorem 5.4. Let𝐷 be a twist-reduced, non-split, prime link diagramwithmore
than two twist regions, and let𝒜 be a full augmentation of𝐷. The fully augmented
link𝒜 is 𝑏-prime if and only if it induces only trivial flype orbits.

Proof. The assumptions on the diagram 𝐷 ensure that 𝒜 is a hyperbolic FAL
other than the Borromean rings or its half-twist partners (See [19, Theorem
2.5]). The key observation to prove is that the manifold𝑀 = 𝕊3 ⧵ 𝒜 contains
non-standard crossing disks if and only if 𝒜 induces a non-trivial flype orbit.
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The fact that the changes made in passing from the diagram 𝐷 to the FAL 𝒜
are local allows us to argue diagrammatically. The result then follows from
Corollary 5.3.
Suppose the augmentation𝒜 of𝐷 induces a non-trivial flype orbit for a twist

region 𝜏with the chosen crossing circle𝐶. Let𝒯1,… ,𝒯𝑛, with𝑛 ≥ 2, denote the
flype tangles in the order encountered traversing the orbit for 𝜏. One can choose
pairwise disjoint three-ball neighborhoods 𝔹𝑖 ⊂ 𝕊3 of the 𝒯𝑖 such that ∪𝑛𝑖=1𝔹𝑖
contains all components of𝒜 except for 𝐶 and the strands of 𝐷 connecting the
𝒯𝑖. In addition, choose the𝔹𝑖 so that they are disjoint from the crossing circle𝐶
and its standard crossing disk 𝑆. The crossing circle 𝐶 bounds a disk 𝑆𝑖 disjoint
from∪𝑛𝑖=1𝔹𝑖 that intersects the arcs of𝐷 joining𝒯𝑖 and𝒯𝑖+1. Each 𝑆𝑖 is a thrice-
punctured sphere with a longitudinal puncture along 𝐶 and two meridional
knot circle punctures, so 𝑆𝑖 is a non-standard crossing disk. Moreover, the 𝑆𝑖
are distinct (not isotopic) since the𝔹𝑖 contain components of𝒜which separate
them. Hence if 𝒜 induces a non-trivial flype orbit, 𝑀 contains non-standard
crossing disks and is 𝑏-composite.
Conversely, suppose 𝐶 is a crossing circle of 𝒜 that bounds a non-standard

crossing disk 𝑆′ in𝑀, and let 𝑆 denote the standard crossing disk for𝐶. Let 𝜏 be
the twist region of the diagram𝐷 augmented by𝐶, we wish to show that 𝜏 has a
non-trivial flype orbit. By Theorem 4.8, the pair {𝑆, 𝑆′} is a separating pair. The
non-separating geodesics of {𝑆, 𝑆′} are contained in the projection plane of 𝐷
and form, together with points of their punctures, a simple closed loop 𝛾 in 𝐷.
This is true evenwhen𝐶 is a twisted crossing circle since the half-twist changes
the reflection surface and not the projection plane containing 𝐷.
Let 𝛾 ⊂ 𝐷 be the simple closed curve described in the previous paragraph.

The boundary curves of an appropriately chosen product neighborhood 𝛾 ×
(−𝜖, 𝜖) ⊂ 𝐷, then, form 4-tangles containing non-trivial portions of 𝐷, since
{𝑆, 𝑆′} is a separating pair. These tangles allow for a non-trivial flype, showing
the flype orbit of 𝜏 is non-trivial.
Since𝒜 induces non-trivial flype orbits if and only if𝑀 contains non-standard

crossing disks, the proof is complete by Corollary 5.3. □

We now have three characterizations of 𝑏-prime FALs: one combinatorial,
another geometric, and the third diagrammatic. The next section applies these
results to create canonical belted sum decompositions of FALs in which each
summand is either a 𝑏-prime FAL or the Borromean rings (possibly with one
twisted crossing circle).

6. Canonical FAL decompositions
There are two desirable properties for belted sum decompositions of an FAL

complement: first, summands ought to be 𝑏-prime and, second, summands
should be FALs to maintain the tractable geometry of FALs in the process.
These two properties can nearly be achieved simultaneously. More precisely,
this section introduces a canonical method for decomposing an FAL in which
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every summand is an FAL complement and, if a summand is not 𝑏-prime, then
it is a copy of the Borromean rings with at least one flat crossing circle. If
desired, each summand can be made 𝑏-prime by decomposing each copy of
the Borromean rings into two Whitehead links by Lemma 5.1. The result can
then be recast as follows: there is a canonical belted sum decomposition of an
FAL complement in which each summand is either a 𝑏-prime FAL or a copy
of the Whitehead link. The decomposition is canonical in the sense that the
prescribed choices in the process produce a unique decomposition.
A technical lemma is required before defining the canonical belted sum de-

composition, which is that distinct crossing disks in an FAL complement are
disjoint. This follows from the more general result that 𝑛-disks are disjoint in
an FAL complement.

Lemma 6.1. If𝑀 = 𝕊3 ⧵ 𝒜 is an FAL complement, then distinct 𝑛-disks in𝑀
are disjoint.

Proof. Any two 𝑛-disks 𝑆𝑖 and 𝑆𝑗 are both orthogonal to the reflection surface
𝑅 of 𝑀, and both intersect 𝑅 in their non-separating geodesics (Proposition
3.6). If 𝑆𝑖 ∩ 𝑆𝑗 contains a non-separating geodesic 𝛾, then 𝑆𝑖 = 𝑆𝑗 since they
both are orthogonal to 𝑅 along 𝛾. Moreover, distinct 𝑛-disks cannot intersect
in a geodesic that is separating on one and non-separating on the other, since
separating geodesics on 𝑛-disks are not contained in 𝑅 while non-separating
geodesics are. Thus 𝑆𝑖 ∩ 𝑆𝑗 can only contain a geodesic that is separating on
both. Yoshida, however, has classified intersections of two thrice-punctured
spheres in an orientable hyperbolic three manifolds (see [23, Proposition 3.1]),
showing that they cannot intersect in a geodesic that separates both. Hence
𝑛-disks are pairwise disjoint. □

In particular, Lemma 6.1 shows that crossing disks in an FAL complement𝑀
are disjoint, and we can slice𝑀 along any or all of them simultaneously. Recall
that two crossing disks {𝑆1, 𝑆2} form a separating pair if and only if they share
the same longitudinal crossing circle puncture. Also, the proof of Lemma 4.10
shows that such a pair decomposes 𝑀 into two FAL summands, and the only
ambiguity is whether the corresponding crossing circles in the summands are
twisted or flat. In defining the canonical decomposition, we make the conven-
tion to identify copies of the 𝑆𝑖 within 𝑃+, resulting in flat crossing circles. We
are now prepared to define the canonical belted sum decomposition of an FAL.

Definition 6.2. Let𝒜 be an FAL with complement𝑀 = 𝕊3 ⧵𝒜. The canonical
belted sum decomposition of𝑀 is obtained by the following procedure:

(i) First slice 𝑀 along all crossing disks that belong to a separating pair,
then

(ii) Identify boundary spheres in the resulting components which corre-
spond to separating pairs of𝑀 so as to create flat crossing disks in the
summands.
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Complements of FALs with two crossing circles are their own canonical
belted sum decompositions, since each crossing circle bounds a unique cross-
ing disk. More generally, Corollary 5.3 shows that if𝑀 is already 𝑏-prime then
each crossing circle bounds a unique crossing disk, so a 𝑏-prime FAL is its own
canonical belted sum decomposition.
The canonical belted sum decomposition is well-defined. Indeed, since all

crossing disks are disjoint by Lemma 6.1, the result of Step (1) is a collection
of manifolds with thrice-punctured spheres in their boundaries. Moreover,
boundary spheres are paired along their common longitudinal crossing circle
punctures, uniquely determining which boundary spheres are to be identified.
Finally, the restriction that the crossing circles resulting from these identifica-
tions be flat uniquely determines the summands of the canonical decomposi-
tion. Thus there is a unique canonical decomposition for each given FAL.
We now prove that summands in canonical decompositions are either 𝑏-

prime FALs or copies of the Borromean rings with zero or one twisted crossing
circles. To prove this, we must show that decomposing an FAL complement
along crossing disks can be done simultaneously, that the summands are always
FALs, and that each summand that is not 𝑏-prime is a copy of the Borromean
rings with at most one twisted crossing circle.

Theorem 6.3. Let 𝒜 be an FAL with at least three crossing circles and let𝑀 =
𝕊3 ⧵𝒜 be its complement.
Each summand in the canonical belted sum decomposition of𝑀 is either a 𝑏-

prime FAL complement or the complement of the Borromean rings with at least
one flat crossing circle.

Proof. Let𝑀 = 𝑀1#𝑏 …#𝑏𝑀𝑚 be the canonical belted sum decomposition of
𝑀 and let 𝑆1,… , 𝑆𝑛 denote all crossing disks (both standard and non-standard)
involved in a separating pair of 𝑀. As noted above, the slicing operation 𝑀 ⧵(
∪𝑛𝑖=1𝑆𝑖

)
can be done simultaneously since distinct crossing disks in𝑀 are dis-

joint.
Now suppose 𝐶 bounds the crossing disks 𝑆𝐶1 ,… , 𝑆

𝐶
𝑘 , with 𝑘 ≥ 2. Further,

suppose they are labeled in the order encountered along a meridian of 𝐶, with
𝑆𝐶1 denoting the standard crossing disk. Any two of them form a separating
pair, so the two copies of 𝑆𝐶𝑖 are on distinct components of 𝑀 ⧵

(
∪𝑛𝑖=1𝑆𝑖

)
. In

addition, (at least) one component of 𝑀 ⧵
(
∪𝑛𝑖=1𝑆𝑖

)
has one copy of each con-

secutive 𝑆𝐶𝑖 , 𝑆
𝐶
𝑖+1 in its boundary, and they share a longitudinal puncture along

𝐶.
Let𝑀′

𝑗 denote the component of𝑀 ⧵
(
∪𝑛𝑖=1𝑆𝑖

)
that forms the summand𝑀𝑗

when boundary spheres are identified. The previous paragraph implies the
boundary of𝑀′

𝑗 consists of an even number of thrice-punctured spheres which
are paired according to their longitudinal punctures in the original manifold
𝑀. Preserving longitudinal and meridional punctures while identifying paired
thrice-punctured spheres in 𝑀′

𝑗 yields a FAL 𝑀𝑖 by Lemma 4.10. Our initial
goal is to show that each𝑀𝑗 with at least three crossing circles is 𝑏-prime.
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Our first task is to show that crossing disks of𝑀 contribute a unique crossing
disk for each crossing circle of𝑀𝑗, which we choose to be standard. First note
that if 𝐶 is crossing circle in𝑀 that bounds a unique crossing disk 𝑆𝐶 , then the
belted sum operations in the canonical decomposition of 𝑀 are disjoint from
a neighborhood of 𝐶 ∪ 𝑆𝐶 . Thus 𝐶 bounds the disk 𝑆𝐶 in 𝑀𝑗. Now suppose
that 𝐶 bounds at least one non-standard crossing disk in 𝑀. Then copies of
consecutive crossing disks in 𝑀 along 𝐶 are glued to form a disk 𝑆𝐶 for 𝐶 in
𝑀𝑗. In either case, the crossing disks of𝑀 contribute a unique crossing disk 𝑆𝐶
for each 𝐶 in𝑀𝑗, and we choose these to be the standard disks in𝑀𝑗.
We now argue that the process of canonical decompositions do not create ad-

ditional crossing disks in the summands. Lemma 4.10 implies that each sum-
mand 𝑀𝑗 is an FAL, as each can be formed by consecutive belted sums along
separating pairs of crossing disks. If𝑀𝑗 is 𝑏-composite, then Corollary 5.3 im-
plies there is a crossing circle 𝐶 of 𝑀𝑗 that bounds a non-standard crossing
disk 𝑆. Note that 𝑆 is not part of a belted sum operation needed to build 𝑀,
since only chosen standard crossing disks of𝑀𝑗 are used to reconstruct𝑀. By
Lemma 6.1 applied to the FAL𝑀𝑗, 𝑆 is disjoint from all standard crossing disks
of𝑀𝑗, and so is preserved under the belted sum operations used to reconstruct
𝑀. Thus 𝑆 is a thrice-punctured sphere in𝑀. By Proposition 3.6 applied to𝑀𝑗,
𝑆 is orthogonal to the reflection surface in𝑀𝑗 and has two meridional knot cir-
cle punctures and one longitudinal crossing circle puncture. Since the belted
sum operation on crossing disks preserves both the reflection surface and com-
ponent types, 𝑆 must have these properties in𝑀 as well. The classification of
non-standard disks in FALs implies that 𝑆 is a crossing disk in𝑀 as well. But
then𝑀 contributes two crossing disks to𝑀𝑗, which is a contradiction. There-
fore each summand with at least three crossing circles must be 𝑏-prime.
Now suppose a summand𝑀𝑖 has two crossing circles. At least one crossing

disk 𝐷 in𝑀𝑖 is used in the belted sum reconstruction of𝑀, which implies that
it is the result of slicing along and gluing consecutive crossing disks in𝑀. By
definition, the gluing results in a flat crossing circle, so that 𝐷 must be flat in
𝑀𝑖. Since𝑀𝑖 has two crossing circles, at least one of which is flat, it cannot be
the fully twisted Borromean rings, completing the proof. □

Itmay seemunnatural to ignore singly-separated disks in defining the canon-
ical belted sum decomposition. Indeed, Lemma 6.1 can be generalized to show
that all disks involved in any separating pair are disjoint. One can then slice
along all of them and glue corresponding boundary spheres to construct an
alternative decomposition. The components with a singly-separated disk will
glue to Whitehead links, and the rest to either 𝑏-prime FALs with at least three
crossing circles or the Borromean rings with at least one flat crossing circle.
Further decomposing Borromean rings summands into two Whitehead link
complements in both this decomposition and the canonical one results in the
same decomposition. For simplicity of exposition, we presented the crossing
disk method.
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Neither approach, that of excluding or of including singly-separated disks,
guarantees uniqueness over all belted sum decompositions. The difficulty is
that a non-FAL summand may be produced in the process of decomposing an
FAL. The characterizations of thrice-punctured spheres in Section 3 and of sep-
arating pairs in Section 4 cannot be applied to non-FALs, and it is unclear at this
writing how to proceed. For now, then, we content ourselves with the level of
uniqueness provided in Theorem 6.3.
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