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Periods modulo 𝒑 of integer sequences
associated with division polynomials

of genus 𝟐 curves
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Takashi Taniguchi and Yukihiro Uchida

Abstract. We study an integer sequence associated with Cantor’s division
polynomials of a genus 2 curve having an integral point. We show that the
reduction modulo 𝑝 of such a sequence is periodic for all but finitely many
primes 𝑝, and describe the relation between the period of the reductionmod-
ulo 𝑝 of the sequence and the order of the integral point on the reduction
modulo 𝑝 in the Jacobian variety explicitly. This generalizes Ward’s results
on elliptic divisibility sequences associated with division polynomials of el-
liptic curves.
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1. Introduction
An integer sequence {𝑎𝑛}𝑛∈ℤ is called a divisibility sequence if 𝑎𝑚 ∣ 𝑎𝑛 when-

ever 𝑚 ∣ 𝑛. An elliptic divisibility sequence is a divisibility sequence 𝑾 ∶=
{𝑊𝑛}𝑛∈ℤ satisfying

𝑊𝑛+𝑚𝑊𝑛−𝑚 =𝑊𝑛+1𝑊𝑛−1𝑊2
𝑚 −𝑊𝑚+1𝑊𝑚−1𝑊2

𝑛

for all integers 𝑚, 𝑛 ∈ ℤ. Elliptic divisibility sequences were introduced by
Ward [17]. Ward proved that for an arbitrary “non-degenerate” elliptic divis-
ibility sequence 𝑾, there exist an elliptic curve 𝐸 defined over ℚ and 𝑃 =
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(𝑥𝑃, 𝑦𝑃) ∈ 𝐸(ℚ) such that 𝜓𝑛(𝑥𝑃, 𝑦𝑃) = 𝑊𝑛, where 𝜓𝑛(𝑋,𝑌) ∈ ℚ[𝑋,𝑌] is the
𝑛-th division polynomial of 𝐸. Using them, he also proved that the reduction
modulo𝑝 of the sequence𝑾 is periodic for all but finitelymany primes𝑝. More
precisely, he proved the following: let Per𝑝(𝑾) be the period of the reduction
modulo 𝑝 of the sequence𝑾. Let ord𝑝(𝑃) be the order of the point 𝑃 ∈ 𝐸(𝔽𝑝),
where 𝑃 is the reduction of 𝑃 modulo 𝑝. Then ord𝑝(𝑃) divides Per𝑝(𝑾), and
Per𝑝(𝑾) divides (𝑝 − 1) ord𝑝(𝑃), i.e.

ord𝑝(𝑃) ∣ Per𝑝(𝑾) ∣ (𝑝 − 1) ord𝑝(𝑃)
(see [17, Theorem 10.1]).
The aim of this paper is to generalize these results to genus 2 curves with

integral points. In order to state our results, let us introduce some notation.
Let 𝐶 be a hyperelliptic curve of genus 2 over ℚ defined by

𝑌2 = 𝐹(𝑋) ∶= 𝑋5 + 𝑎4𝑋4 + 𝑎3𝑋3 + 𝑎2𝑋2 + 𝑎1𝑋 + 𝑎0,
where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ ℤ. Let disc(𝐹) ∈ ℤ be the discriminant of 𝐹(𝑋), and
Jac(𝐶) be the Jacobian variety of 𝐶. For an integer 𝑛 ≥ 0, let 𝜓𝑛(𝑋) ∈ ℤ[𝑋] be
the division polynomial of 𝐶 defined by Cantor [4]. Let 𝑃 = (𝑥𝑃, 𝑦𝑃) (𝑥𝑃, 𝑦𝑃 ∈
ℤ) be an integral point on 𝐶∖{∞}. We put

𝐷𝑃 ∶= [𝑃] − [∞] ∈ Jac(𝐶)(ℚ) and 𝑐𝑛 ∶= 𝜓𝑛(𝑥𝑃) ∈ ℤ.
The main results of this paper are as follows.

Theorem 1.1. Let 𝒄 ∶= {𝑐𝑛}𝑛∈ℤ ∶= {𝜓𝑛(𝑥𝑃)}𝑛∈ℤ be the integer sequence associ-
ated with the division polynomials of a hyperelliptic curve 𝐶 and its integral point
𝑃 on 𝐶∖{∞} defined as above. Assume that 𝑐3𝑐4𝑐5𝑐6𝑐7(𝑐34 − 𝑐33𝑐5) ≠ 0. Let 𝑝 be
an odd prime which divides neither disc(𝐹) nor 𝑐3𝑐4𝑐5𝑐6𝑐7(𝑐34 − 𝑐33𝑐5). Then the
following assertions hold.

(1) The reduction modulo 𝑝 of the sequence 𝒄 is periodic.
(2) Let Per𝑝(𝒄) be the period of the reduction modulo 𝑝 of the sequence 𝒄. Let

𝐷𝑃 ∈ Jac(𝐶)(𝔽𝑝) be the reduction modulo 𝑝 of 𝐷𝑃, and ord𝑝(𝐷𝑃) be the
order of the point 𝐷𝑃 ∈ Jac(𝐶)(𝔽𝑝). Then ord𝑝(𝐷𝑃) divides Per𝑝(𝒄), and
Per𝑝(𝒄) divides (𝑝 − 1) ord𝑝(𝐷𝑃), i.e.

ord𝑝(𝐷𝑃) ∣ Per𝑝(𝒄) ∣ (𝑝 − 1) ord𝑝(𝐷𝑃).

Since |Jac(𝐶)(𝔽𝑝)| ≤ (1 +
√
𝑝)4 by the Hasse–Weil bound (see [10, Theorem

19.1, (b) and (c)]), we obtain the following upper bound of Per𝑝(𝒄).
Corollary 1.2. The period Per𝑝(𝒄) of the reduction modulo 𝑝 of the sequence 𝒄 is
bounded above by (𝑝 − 1)(1 +

√
𝑝)4.

Theorem 1.1 (2) means that the ratio Per𝑝(𝒄)∕ ord𝑝(𝐷𝑃) is an integer and a
divisor of 𝑝 − 1. The method in this paper in fact allows us to give an explicit
description of this ratio, which is an analogue of Ward’s result for elliptic divis-
ibility sequences [17, Theorem 10.1]. As a precise version of Theorem 1.1 (2),
we prove the following.
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Theorem 1.3. Under the assumptions in Theorem 1.1, let 𝑟 ∶= ord𝑝(𝐷𝑃) be
the order of 𝐷𝑃 ∈ Jac(𝐶)(𝔽𝑝), and 𝛼𝑝, 𝛽𝑝 ∈ 𝔽𝑝 be elements satisfying 𝛼𝑝 ≡
𝑐𝑟+3∕(𝑐3𝑐𝑟+2) (mod 𝑝) and 𝛽𝑝 ≡ (𝑐23𝑐

3
𝑟+2)∕𝑐

2
𝑟+3 (mod 𝑝), where we know that

𝑐𝑟+2, 𝑐𝑟+3 ≢ 0 (mod 𝑝) (see Claim 3.4). Let 𝑑 be the least positive integer such
that 𝛼𝑑𝑝 ≡ 𝛽𝑑2𝑝 ≡ 1 (mod 𝑝). Then we have

Per𝑝(𝒄) = 𝑑 ord𝑝(𝐷𝑃).

For a given sequence 𝒄, the behavior of 𝑑 = ord𝑝(𝐷𝑃)∕ Per𝑝(𝒄) as a divisor
of 𝑝 − 1, in varying 𝑝, does not seem to have an obvious pattern. It might thus
be interesting to seek the behavior from, e.g., a statistical point of view (see
Remark B.3).

Remark 1.4. The order 𝑟 = ord𝑝(𝐷𝑃) can be calculated as the least positive
integer 𝑟 such that 𝑐𝑟−1 ≡ 𝑐𝑟 ≡ 𝑐𝑟+1 ≡ 0 (mod 𝑝) (see Theorem 2.1 (2)).

Remark 1.5. The condition 𝑐3𝑐4𝑐5𝑐6𝑐7(𝑐34 − 𝑐33𝑐5) ≠ 0 in Theorem 1.1 seems
technical. We need to assume it in order to prove properties of the reduction
modulo 𝑝 of the sequence 𝒄 by induction (see the proof of Theorem 3.1). In
fact, under a weaker assumption, we can prove the periodicity of the reduc-
tion modulo 𝑝 of the sequence 𝒄 by the pigeonhole principle. We demonstrate
it in Proposition 4.1. Meanwhile, the upper bound of Per𝑝(𝒄) obtained by the
pigeonhole principle is 𝑝11, which is (much) larger than the upper bound ob-
tained in Corollary 1.2.

Although Theorem 1.1 and Theorem 1.3 are analogous to Ward’s results for
elliptic divisibility sequences, the proofs are quite different. Ward’s proof does
not seem applicable to our case. Our proofs of Theorem 1.1 and Theorem 1.3
are similar to the proofs for elliptic divisibility sequences given by Shipsey and
Swart [13]. They used recurrence relations to prove Ward’s results. For genus
2 curves, Cantor proved that 𝒄 satisfies a bilinear recurrence relation of Somos
8 type [4, p.143], where a recurrence relation is said to be of Somos 𝑘 type if it
is of the form

𝑐𝑛𝑐𝑛+𝑘 =
⌊𝑘∕2⌋∑

𝑖=1
𝛼𝑖𝑐𝑛+𝑖𝑐𝑛+𝑘−𝑖.

However, the recurrence relation of Somos 8 type alone does not seem to imply
Theorem 1.1 and Theorem 1.3.
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In this paper, we shall first show that 𝒄 satisfies the following recurrence
relations for all integers𝑚 and 𝑛 (see Theorem 2.5):

𝑐4𝑐𝑛+𝑚𝑐𝑛−𝑚 = 𝑐𝑚+1𝑐𝑚−1𝑐𝑛+3𝑐𝑛−3
+ (𝑐4𝑐2𝑚 − 𝑐23𝑐𝑚+1𝑐𝑚−1)𝑐𝑛+2𝑐𝑛−2
+ (𝑐23𝑐𝑚+2𝑐𝑚−2 − 𝑐𝑚+3𝑐𝑚−3)𝑐𝑛+1𝑐𝑛−1
− 𝑐4𝑐𝑚+2𝑐𝑚−2𝑐2𝑛,

𝑐3𝑐5𝑐𝑛+𝑚+1𝑐𝑛−𝑚 = 𝑐3𝑐𝑚+2𝑐𝑚−1𝑐𝑛+4𝑐𝑛−3
+ (𝑐5𝑐𝑚+1𝑐𝑚 − 𝑐3𝑐4𝑐𝑚+2𝑐𝑚−1)𝑐𝑛+3𝑐𝑛−2
+ (𝑐3𝑐4𝑐𝑚+3𝑐𝑚−2 − 𝑐3𝑐𝑚+4𝑐𝑚−3)𝑐𝑛+2𝑐𝑛−1
− 𝑐5𝑐𝑚+3𝑐𝑚−2𝑐𝑛+1𝑐𝑛.

In fact, these recurrence relations are satisfied by Cantor’s division polynomials
{𝜓𝑛(𝑋)}𝑛∈ℤ, which may be of independent interest. Specializing to 𝑚 = 4 and
5, we obtain bilinear recurrence relations of Somos 8, 9, 10 and 11 type satisfied
by 𝒄 (see Corollary 2.6), which includes Cantor’s recurrence relationmentioned
above. Using these as key ingredients, we prove Theorem 1.1 and Theorem 1.3
by inductive arguments.
Note that some other sequences satisfying relations of Somos type have ap-

peared in the literature. As examples of recent results, Hone [8] proved that
certain Hankel determinants corresponding to a genus 2 curve satisfy a rela-
tion of Somos 8 type. Doliwa [6] proved some bilinear relations for multipole
orthogonal polynomials via their determinantal expressions.
Independently of our work, Ustinov [16, Theorem 1] recently proved that

the reduction modulo an arbitrary integer of a sequence satisfying a relation
of Somos type are eventually periodic if the sequence has finite rank. Here, a
sequence {𝑠𝑛}𝑛∈ℤ has finite rank if the matrices

𝑀(0)
𝑠 = (𝑠𝑚+𝑛𝑠𝑚−𝑛)𝑚,𝑛∈ℤ, 𝑀(1)

𝑠 = (𝑠𝑚+𝑛+1𝑠𝑚−𝑛)𝑚,𝑛∈ℤ
have finite rank. This result is proved by several recurrence relations of Somos
type and the pigeonhole principle similarly to Proposition 4.1. Ustinov’s theo-
rem can be applied to the case a modulus is not prime. On the other hand, the
upper bound of the period, although it is not given explicitly in [16], is larger
than our bound as discussed in Remark 1.5.
The outline of this paper is as follows. In Section 2, we recall Cantor’s divi-

sion polynomials of a genus 2 curve and their basic properties. Cantor’s divi-
sion polynomials are described by the hyperelliptic sigma function. A classical
formula of theta functions proved by Caspary and Frobenius shows that the se-
quence 𝒄 satisfies some recurrence relations. In Section 3, using the recurrence
relation obtained in Section 2, we prove the periodicity of the reductionmodulo
𝑝 of the sequence 𝒄. In Section 4, we prove Theorem 1.1 and Theorem 1.3. In
Appendix A, we prove a formula relating Cantor’s division polynomials and hy-
perelliptic sigma functions. In Appendix B, we give a numerical example. For
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the integer sequence introduced by Cantor (OEIS A058231), we give numerical
results on the period of the reductionmodulo 𝑝 of the sequence 𝒄 and the order
of a point on the reduction modulo 𝑝 of the Jacobian variety.

2. Cantor’s division polynomials
In this section, we prove some properties of Cantor’s division polynomials

used in the proof of Theorem 1.1.
Let 𝐾 be a field of characteristic different from 2. Let 𝐶 be a hyperelliptic

curve of genus 2 defined by
𝑌2 = 𝐹(𝑋) ∶= 𝑋5 + 𝑎4𝑋4 + 𝑎3𝑋3 + 𝑎2𝑋2 + 𝑎1𝑋 + 𝑎0,

where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝐾. Let Jac(𝐶) be the Jacobian variety of 𝐶. Let∞ ∈ 𝐶
be the point at infinity of 𝐶. We embed 𝐶 into Jac(𝐶) by 𝑃 ↦ 𝐷𝑃 ∶= [𝑃] − [∞].
The image of 𝐶 is written as Θ, which is called the theta divisor on Jac(𝐶).
For an integer 𝑛 ≥ 0, let 𝜓𝑛(𝑋) ∈ 𝐾[𝑋] be the division polynomials of 𝐶

defined by Cantor; see [4] for details. We extend the division polynomials for
𝑛 < 0 by 𝜓𝑛(𝑋) ∶= −𝜓−𝑛(𝑋). For −1 ≤ 𝑛 ≤ 3, they are given by

𝜓−1(𝑋) = 𝜓0(𝑋) = 𝜓1(𝑋) = 0, 𝜓2(𝑋) = 1, 𝜓3(𝑋) = 4𝐹(𝑋).

Theorem 2.1. Let 𝑃 = (𝑥𝑃, 𝑦𝑃) ∈ 𝐶(𝐾) be a 𝐾-rational point with 𝑦𝑃 ≠ 0, and
𝑛 ≥ 3. The following assertions hold.

(1) 𝑛𝐷𝑃 ∈ Θ if and only if 𝜓𝑛(𝑥𝑃) = 0.
(2) 𝑛𝐷𝑃 = 0 if and only if 𝜓𝑛−1(𝑥𝑃) = 𝜓𝑛(𝑥𝑃) = 𝜓𝑛+1(𝑥𝑃) = 0.

Proof. See [4, pp. 140–141]. □

Lemma 2.2. Let 𝑃 = (𝑥𝑃, 𝑦𝑃) ∈ 𝐶(𝐾) be a point with 𝑦𝑃 ≠ 0. For every integer
𝑛 ∈ ℤ, at least one of

𝜓𝑛(𝑥𝑃), 𝜓𝑛+1(𝑥𝑃), 𝜓𝑛+2(𝑥𝑃), 𝜓𝑛+3(𝑥𝑃)
is not zero.

Proof. Since 𝜓−𝑛(𝑋) = −𝜓𝑛(𝑋), 𝜓2(𝑋) = 1 ≠ 0, and 𝜓−2(𝑋) = −1 ≠ 0, we
may assume 𝑛 ≥ 3. By [4, Lemma 3.29], at least one of 𝑓𝑛, 𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3 is
not zero, where 𝑓𝑟 is a rational function on 𝐶 defined in [4, Section 3, Section
8]. We have 𝜓𝑟(𝑋) = (2𝑌)(𝑟2−𝑟−2)∕2𝑓𝑟; see [4, p.133, (8.7)]. Since 𝑦𝑃 ≠ 0, at least
one of 𝜓𝑛(𝑥𝑃), 𝜓𝑛+1(𝑥𝑃), 𝜓𝑛+2(𝑥𝑃), 𝜓𝑛+3(𝑥𝑃) is not zero. □

In the rest of this section, let 𝐾 be a subfield of ℂ. Cantor’s division poly-
nomials 𝜓𝑛(𝑋) can be expressed by using the hyperelliptic sigma function. Let
𝜎∶ ℂ2 → ℂ be the hyperelliptic sigma function associated with 𝐶. (For recent
developments on the theory of sigma functions, see [3] and references therein.
We adopt the notation used in [11, 12].) We define

𝜎2(𝑢) ∶=
𝜕𝜎(𝑢)
𝜕𝑢2

,

where 𝑢 = (𝑢1, 𝑢2) ∈ ℂ2.
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The following theorem essentially follows from the description of Cantor’s
division polynomials in [12, Appendix A] (see also [9, p. 518]), but there are
sign errors in the literature. For the convenience of the readers, we correct a
proof in Appendix A.

Theorem 2.3. Let 𝑃 = (𝑥𝑃, 𝑦𝑃) ∈ 𝐶(ℂ) be a point and let 𝑢 ∈ ℂ2 be the point
corresponding to 𝑃 (for the definition of 𝑢, see Lemma A.2). Then we have

2𝑦𝑃𝜓𝑛(𝑥𝑃) = (−1)𝑛 𝜎(𝑛𝑢)
𝜎2(𝑢)𝑛2

.

The following argument is almost the same as that in [15, Section 6].

Proposition 2.4. Let 𝑑 ≥ 6 be an even integer and 𝑢(1), 𝑢(2),… , 𝑢(𝑑) ∈ ℂ2. Then
we have

pf
(
𝜎(𝑢(𝑖) + 𝑢(𝑗))𝜎(𝑢(𝑖) − 𝑢(𝑗))

)
1≤𝑖,𝑗≤𝑑 = 0, (2.1)

where pf 𝐴 is the Pfaffian of 𝐴.

Proof. See [15, Corollary 6.2] or [1, p. 473, Ex. v]. The proposition follows from
similar formulas for theta functions proved by Caspary [5] and Frobenius [7].

□

Let 𝑃 = (𝑥𝑃, 𝑦𝑃) ∈ 𝐶(ℂ) be a point and we put 𝑐𝑛 ∶= 𝜓𝑛(𝑥𝑃).

Theorem 2.5. For all integers𝑚 and 𝑛, we have

𝑐4𝑐𝑛+𝑚𝑐𝑛−𝑚 = 𝑐𝑚+1𝑐𝑚−1𝑐𝑛+3𝑐𝑛−3
+ (𝑐4𝑐2𝑚 − 𝑐23𝑐𝑚+1𝑐𝑚−1)𝑐𝑛+2𝑐𝑛−2
+ (𝑐23𝑐𝑚+2𝑐𝑚−2 − 𝑐𝑚+3𝑐𝑚−3)𝑐𝑛+1𝑐𝑛−1
− 𝑐4𝑐𝑚+2𝑐𝑚−2𝑐2𝑛,

(2.2)

𝑐3𝑐5𝑐𝑛+𝑚+1𝑐𝑛−𝑚 = 𝑐3𝑐𝑚+2𝑐𝑚−1𝑐𝑛+4𝑐𝑛−3
+ (𝑐5𝑐𝑚+1𝑐𝑚 − 𝑐3𝑐4𝑐𝑚+2𝑐𝑚−1)𝑐𝑛+3𝑐𝑛−2
+ (𝑐3𝑐4𝑐𝑚+3𝑐𝑚−2 − 𝑐3𝑐𝑚+4𝑐𝑚−3)𝑐𝑛+2𝑐𝑛−1
− 𝑐5𝑐𝑚+3𝑐𝑚−2𝑐𝑛+1𝑐𝑛.

(2.3)

Proof. Setting 𝑑 = 6, 𝑢(1) = 𝑛𝑢, 𝑢(2) = 𝑚𝑢, 𝑢(3) = 3𝑢, 𝑢(4) = 2𝑢, 𝑢(5) = 𝑢 and
𝑢(6) = 0 in (2.1), we obtain (2.2) by Theorem 2.3 and Proposition 2.4. Similarly,
setting 𝑢(1) = (𝑛 + 1∕2)𝑢, 𝑢(2) = (𝑚 + 1∕2)𝑢, 𝑢(3) = 7𝑢∕2, 𝑢(4) = 5𝑢∕2, 𝑢(5) =
3𝑢∕2 and 𝑢(6) = 𝑢∕2 in (2.1), we obtain (2.3) by Theorem 2.3 and Proposition
2.4. Note that we used 𝑐0 = 𝑐1 = 0 and 𝑐2 = 1. □

By letting 𝑚 = 4 and 5 in each of the above, we obtain bilinear recurrence
relations of Somos 8, 9, 10 and 11 type satisfied by 𝒄.
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Corollary 2.6.

𝑐4𝑐𝑛+4𝑐𝑛−4 = 𝑐3𝑐5𝑐𝑛+3𝑐𝑛−3 + (𝑐34 − 𝑐33𝑐5)𝑐𝑛+2𝑐𝑛−2
+ 𝑐23𝑐6𝑐𝑛+1𝑐𝑛−1 − 𝑐4𝑐6𝑐2𝑛,

(2.4)

𝑐3𝑐5𝑐𝑛+5𝑐𝑛−4 = 𝑐23𝑐6𝑐𝑛+4𝑐𝑛−3 + 𝑐4(𝑐25 − 𝑐23𝑐6)𝑐𝑛+3𝑐𝑛−2
+ 𝑐3𝑐4𝑐7𝑐𝑛+2𝑐𝑛−1 − 𝑐5𝑐7𝑐𝑛+1𝑐𝑛,

(2.5)

𝑐4𝑐𝑛+5𝑐𝑛−5 = 𝑐4𝑐6𝑐𝑛+3𝑐𝑛−3 + 𝑐4(𝑐25 − 𝑐23𝑐6)𝑐𝑛+2𝑐𝑛−2
+ (𝑐33𝑐7 − 𝑐8)𝑐𝑛+1𝑐𝑛−1 − 𝑐3𝑐4𝑐7𝑐2𝑛,

(2.6)

𝑐3𝑐5𝑐𝑛+6𝑐𝑛−5 = 𝑐3𝑐4𝑐7𝑐𝑛+4𝑐𝑛−3 + (𝑐25𝑐6 − 𝑐3𝑐24𝑐7)𝑐𝑛+3𝑐𝑛−2
+ 𝑐3(𝑐3𝑐4𝑐8 − 𝑐9)𝑐𝑛+2𝑐𝑛−1 − 𝑐3𝑐5𝑐8𝑐𝑛+1𝑐𝑛.

(2.7)

Note that the Somos 8 type relation (2.4) was proved by Cantor [4, p. 143].

3. Periodicity of the values of Cantor’s division polynomials
In this section, we prove the periodicity of the reduction modulo 𝑝 of the

values of Cantor’s division polynomials. As in Section 1, let 𝐶 be a hyperelliptic
curve of genus 2 over ℚ defined by

𝑌2 = 𝐹(𝑋) ∶= 𝑋5 + 𝑎4𝑋4 + 𝑎3𝑋3 + 𝑎2𝑋2 + 𝑎1𝑋 + 𝑎0,
where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ ℤ. For an integer 𝑛 ≥ 0, let 𝜓𝑛(𝑋) ∈ ℤ[𝑋] be the
division polynomial of 𝐶 defined by Cantor. Let 𝑃 = (𝑥𝑃, 𝑦𝑃) (𝑥𝑃, 𝑦𝑃 ∈ ℤ) be
an integral point on 𝐶∖{∞}. We put

𝐷𝑃 ∶= [𝑃] − [∞] ∈ Jac(𝐶)(ℚ) and 𝑐𝑛 ∶= 𝜓𝑛(𝑥𝑃) ∈ ℤ.

Theorem 3.1. Let 𝑝 be an odd prime which is not a divisor of the discriminant
of 𝐹(𝑋). We also assume that 𝑝 is not a divisor of 𝑐3𝑐4𝑐5𝑐6𝑐7(𝑐34 − 𝑐33𝑐5). Let 𝐷𝑃 ∈
Jac(𝐶)(𝔽𝑝) be the reduction modulo 𝑝 of 𝐷𝑃, and 𝑟 ∶= ord𝑝(𝐷𝑃) be the order of
𝐷𝑃. Then we have the following:

(1) We have 𝑐𝑟+2, 𝑐𝑟+3 ≢ 0 (mod 𝑝).
(2) Let 𝛼𝑝, 𝛽𝑝 ∈ 𝔽𝑝 be elements satisfying

𝛼𝑝 ≡ 𝑐𝑟+3∕(𝑐3𝑐𝑟+2) (mod 𝑝), 𝛽𝑝 ≡ (𝑐23𝑐
3
𝑟+2)∕𝑐

2
𝑟+3 (mod 𝑝).

Then, we have the following relations for all integers 𝑛 and 𝑘:

𝑐𝑘𝑟+𝑛 ≡ 𝛼𝑘𝑛𝑝 𝛽𝑘2𝑝 𝑐𝑛 (mod 𝑝). (3.1)

(3) We have 𝛼𝑟𝑝 = 𝛽2𝑝 in 𝔽𝑝.

Note that the conditions in Theorem 3.1 are satisfied for all but finitely many
𝑝.
The proof of Theorem 3.1 is divided into several steps. In principle, the

strategy of our proof is similar to the proof for elliptic divisibility sequences
by Shipsey and Swart [13, Theorem 2]. However, our proof is more involved
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than theirs. We need to analyze the reduction modulo 𝑝 of the sequence using
recurrence relations of Somos 8, 9, 10, 11 type together.
In order to simplify the notation, we omit “(mod𝑝)” in the rest of this section.

All the congruences are taken modulo 𝑝.
Claim 3.2. 𝑦𝑃 ≢ 0.
Proof. Since 𝑐3 = 𝜓3(𝑥𝑃) = 4𝐹(𝑥𝑃) and 𝑐3 ≢ 0, we have 𝐹(𝑥𝑃) ≢ 0. This
implies 𝑦𝑃 ≢ 0. □

Claim 3.3. The order 𝑟 = ord𝑝(𝐷𝑃) satisfies 𝑟 ≥ 9.

Proof. Note that 𝐷𝑃 ≠ 0 ∈ Jac(𝐶)(𝔽𝑝) since 𝑥𝑃, 𝑦𝑃 ∈ ℤ. Since 𝑦𝑃 ≢ 0, we have
𝑟 ≥ 3. By Theorem 2.1 (2) with 𝑛 = 𝑟, we have 𝑐𝑟−1 ≡ 𝑐𝑟 ≡ 𝑐𝑟+1 ≡ 0. Since
𝑐3𝑐4𝑐5𝑐6𝑐7 ≢ 0 by our assumption, we have 𝑟 ≥ 9. □

Claim 3.4. 𝑐𝑟+2, 𝑐𝑟+3 ≢ 0.
Proof. Since 𝑐𝑟−1 ≡ 𝑐𝑟 ≡ 𝑐𝑟+1 ≡ 0, by Lemma 2.2, we have 𝑐𝑟+2 ≢ 0. By our
assumption, 𝑐3 ≢ 0. By Theorem 2.1 (1) with 𝑛 = 3, we have 3𝐷𝑃 ∉ Θ. Since
𝑟𝐷𝑃 = 0, we have (𝑟 + 3)𝐷𝑃 ∉ Θ. Therefore, again by Theorem 2.1 (1) with
𝑛 = 𝑟 + 3, we have 𝑐𝑟+3 ≢ 0. □

This finishes the proof of the first assertion, and it allows us to define𝛼𝑝, 𝛽𝑝 ∈
𝔽×𝑝 as above. We continue the proof of Theorem 3.1. As the base case of the
induction, we first prove (3.1) for 𝑘 = 1 and −3 ≤ 𝑛 ≤ 7:
Claim 3.5. For integers 𝑛 satisfying −3 ≤ 𝑛 ≤ 7, we have

𝑐𝑟+𝑛 ≡ 𝛼𝑛𝑝𝛽𝑝𝑐𝑛. (3.2)

Proof. Since 𝑐𝑟−1 ≡ 𝑐𝑟 ≡ 𝑐𝑟+1 ≡ 0, (3.2) holds for 𝑛 = −1, 0, 1. Meanwhile,
(3.2) holds for 𝑛 = 2, 3 by the definitions of 𝛼𝑝 and 𝛽𝑝.
Setting 𝑛 = 𝑟 + 3 in (2.4), we obtain

0 ≡ 𝑐23𝑐6𝑐𝑟+4𝑐𝑟+2 − 𝑐4𝑐6𝑐2𝑟+3
since 𝑐𝑟−1 ≡ 𝑐𝑟 ≡ 𝑐𝑟+1 ≡ 0. By the assumption of Theorem3.1, wehave 𝑐3𝑐6 ≢ 0.
Since (3.2) holds for 𝑛 = 2, 3 and 𝑐2 = 1, we obtain

𝑐𝑟+4 ≡
𝑐4𝑐2𝑟+3
𝑐23𝑐𝑟+2

≡
𝑐4(𝛼3𝑝𝛽𝑝𝑐3)2

𝑐23 ⋅ 𝛼
2
𝑝𝛽𝑝𝑐2

≡ 𝛼4𝑝𝛽𝑝𝑐4.

Hence, (3.2) holds for 𝑛 = 4.
Setting 𝑛 = 𝑟 + 3 in (2.5), we obtain

0 ≡ 𝑐3𝑐4𝑐7𝑐𝑟+5𝑐𝑟+2 − 𝑐5𝑐7𝑐𝑟+4𝑐𝑟+3.
By assumption, we have 𝑐3𝑐4𝑐7 ≢ 0. Since (3.2) holds for 𝑛 = 2, 3, 4 and 𝑐2 = 1,
we obtain

𝑐𝑟+5 ≡
𝑐5𝑐𝑟+4𝑐𝑟+3
𝑐3𝑐4𝑐𝑟+2

≡
𝑐5 ⋅ 𝛼4𝑝𝛽𝑝𝑐4 ⋅ 𝛼3𝑝𝛽𝑝𝑐3

𝑐3𝑐4 ⋅ 𝛼2𝑝𝛽𝑝𝑐2
≡ 𝛼5𝑝𝛽𝑝𝑐5.
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Hence, (3.2) holds for 𝑛 = 5.
Setting 𝑛 = 𝑟 + 4 in (2.4), we obtain

0 ≡ (𝑐34 − 𝑐33𝑐5)𝑐𝑟+6𝑐𝑟+2 + 𝑐23𝑐6𝑐𝑟+5𝑐𝑟+3 − 𝑐4𝑐6𝑐2𝑟+4.

By the assumption of Theorem 3.1, we have 𝑐34 − 𝑐
3
3𝑐5 ≢ 0. Since (3.2) holds for

𝑛 = 2, 3, 4, 5 and 𝑐2 = 1, we obtain

𝑐𝑟+6 ≡
−𝑐23𝑐6𝑐𝑟+5𝑐𝑟+3 + 𝑐4𝑐6𝑐2𝑟+4

(𝑐34 − 𝑐33𝑐5)𝑐𝑟+2
≡
−𝛼8𝑝𝛽2𝑝𝑐33𝑐5𝑐6 + 𝛼8𝑝𝛽2𝑝𝑐34𝑐6

(𝑐34 − 𝑐33𝑐5)𝛼
2
𝑝𝛽𝑝𝑐2

≡ 𝛼6𝑝𝛽𝑝𝑐6.

Hence, (3.2) holds for 𝑛 = 6.
Setting 𝑛 = 𝑟 + 2 in (2.4), we obtain

𝑐4𝑐𝑟+6𝑐𝑟−2 ≡ −𝑐4𝑐6𝑐2𝑟+2.

By the assumption of Theorem 3.1, we have 𝑐4𝑐6 ≢ 0. Since 𝑐−2 = −𝑐2 = −1
and (3.2) holds for 𝑛 = 2, 6, we obtain

𝑐𝑟−2 ≡ −
𝑐6𝑐2𝑟+2
𝑐𝑟+6

≡ −
𝛼4𝑝𝛽2𝑝𝑐22𝑐6
𝛼6𝑝𝛽𝑝𝑐6

≡ 𝛼−2𝑝 𝛽𝑝𝑐−2.

Hence, (3.2) holds for 𝑛 = −2.
Setting 𝑛 = 𝑟 + 2 in (2.5), we obtain

𝑐3𝑐5𝑐𝑟+7𝑐𝑟−2 ≡ −𝑐5𝑐7𝑐𝑟+3𝑐𝑟+2.
By the assumption of Theorem 3.1, we have 𝑐3𝑐5 ≢ 0. Since 𝑐−2 = −𝑐2 and (3.2)
holds for 𝑛 = −2, 2, 3,

𝑐𝑟+7 ≡ −
𝑐7𝑐𝑟+3𝑐𝑟+2
𝑐3𝑐𝑟−2

≡ −
𝛼5𝑝𝛽2𝑝𝑐2𝑐3𝑐7
𝛼−2𝑝 𝛽𝑝𝑐3𝑐−2

≡ 𝛼7𝑝𝛽𝑝𝑐7.

Hence, (3.2) holds for 𝑛 = 7.
Setting 𝑛 = 𝑟 + 1 in (2.5), we obtain

𝑐3𝑐5𝑐𝑟+6𝑐𝑟−3 ≡ 𝑐23𝑐6𝑐𝑟+5𝑐𝑟−2.
By assumption, we have 𝑐3𝑐5𝑐6 ≢ 0. Since 𝑐−3 = −𝑐3 and (3.2) holds for 𝑛 =
−2, 5, 6, we obtain

𝑐𝑟−3 ≡
𝑐3𝑐6𝑐𝑟+5𝑐𝑟−2
𝑐5𝑐𝑟+6

≡
𝛼3𝑝𝛽2𝑝𝑐−2𝑐3𝑐5𝑐6
𝛼6𝑝𝛽𝑝𝑐5𝑐6

≡ 𝛼−3𝑝 𝛽𝑝𝑐−3.

Hence, (3.2) holds for 𝑛 = −3.
Summarizing the above, we see that (3.2) holds for −3 ≤ 𝑛 ≤ 7. □

Next, we shall prove (3.1) for 𝑘 = 1 and for all 𝑛 by induction:

Claim 3.6. For all integers 𝑛 ∈ ℤ, we have
𝑐𝑟+𝑛 ≡ 𝛼𝑛𝑝𝛽𝑝𝑐𝑛. (3.3)
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Proof. Suppose that (3.3) holds for 𝑚 ≤ 𝑛 ≤ 𝑚 + 10 for some 𝑚 ≥ −3. We
shall prove that the assertion holds for 𝑛 = 𝑚+ 11. By Lemma 2.2, at least one
of 𝑐𝑚, 𝑐𝑚+1, 𝑐𝑚+2 or 𝑐𝑚+3 is not congruent to 0 modulo 𝑝. So it is enough to
consider the following four cases:

∙ 𝑐𝑚 ≢ 0
∙ 𝑐𝑚+1 ≢ 0
∙ 𝑐𝑚+2 ≢ 0
∙ 𝑐𝑚+3 ≢ 0

We first consider the case 𝑐𝑚 ≢ 0. From (2.7) for 𝑛 = 𝑚 + 5, we have

𝑐3𝑐5𝑐𝑚+11𝑐𝑚 =
3∑

𝑖=0
𝑆𝑖𝑐𝑚+6+𝑖𝑐𝑚+5−𝑖, (3.4)

where

𝑆0 ∶= −𝑐3𝑐5𝑐8, 𝑆1 ∶= 𝑐3(𝑐3𝑐4𝑐8 − 𝑐9), 𝑆2 ∶= 𝑐25𝑐6 − 𝑐3𝑐24𝑐7, 𝑆3 ∶= 𝑐3𝑐4𝑐7.
Similarly, from (2.7) for 𝑛 = 𝑟 +𝑚 + 5, we have

𝑐3𝑐5𝑐𝑟+𝑚+11𝑐𝑟+𝑚 =
3∑

𝑖=0
𝑆𝑖𝑐𝑟+𝑚+6+𝑖𝑐𝑟+𝑚+5−𝑖 (3.5)

where 𝑆0, 𝑆1, 𝑆2, 𝑆3 are the same constants as above.
By (3.4), since 𝑐3𝑐5𝑐𝑚 ≢ 0, we have

𝑐𝑚+11 ≡
1

𝑐3𝑐5𝑐𝑚

3∑

𝑖=0
𝑆𝑖𝑐𝑚+6+𝑖𝑐𝑚+5−𝑖.

On the other hand, by the induction hypothesis, we have 𝑐𝑟+𝑛 ≡ 𝛼𝑛𝑝𝛽𝑝𝑐𝑛 for
𝑚 ≤ 𝑛 ≤ 𝑚 + 10. Hence, by (3.5), we obtain

𝑐𝑟+𝑚+11 ≡
1

𝑐3𝑐5𝑐𝑟+𝑚

3∑

𝑖=0
𝑆𝑖𝑐𝑟+𝑚+6+𝑖𝑐𝑟+𝑚+5−𝑖

≡ 1
𝛼𝑚𝑝 𝛽𝑝𝑐3𝑐5𝑐𝑚

3∑

𝑖=0
𝑆𝑖 ⋅ 𝛼𝑚+6+𝑖𝑝 𝛽𝑝𝑐𝑚+6+𝑖 ⋅ 𝛼𝑚+5−𝑖𝑝 𝛽𝑝𝑐𝑚+5−𝑖

≡ 1
𝛼𝑚𝑝 𝛽𝑝𝑐3𝑐5𝑐𝑚

3∑

𝑖=0
𝑆𝑖𝛼2𝑚+11𝑝 𝛽2𝑝 ⋅ 𝑐𝑚+6+𝑖𝑐𝑚+5−𝑖

≡
𝛼𝑚+11𝑝 𝛽𝑝
𝑐3𝑐5𝑐𝑚

3∑

𝑖=0
𝑆𝑖𝑐𝑚+6+𝑖𝑐𝑚+5−𝑖.

Comparing two equations, we have

𝑐𝑟+𝑚+11 ≡ 𝛼𝑚+11𝑝 𝛽𝑝𝑐𝑚+11 (mod 𝑝),

and thus (3.3) is true for 𝑛 = 𝑚 + 11.
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The other cases are proved in a similar manner. Note that when 𝑐𝑚+1 ≢ 0,
𝑐𝑚+2 ≢ 0, 𝑐𝑚+3 ≢ 0, we shall use (2.6), (2.5), (2.4), respectively. By induction,
(3.3) holds for all 𝑛 ≥ −3.
The assertion for 𝑛 ≤ −4 is proved by similar arguments. Let 𝑚 ≤ −4 and

assume that the assertion holds for every 𝑛 > 𝑚. By Lemma 2.2, at least one of
𝑐𝑚+8, 𝑐𝑚+9, 𝑐𝑚+10 or 𝑐𝑚+11 is not congruent to 0 modulo 𝑝. So it is enough to
consider the following four cases:

∙ 𝑐𝑚+8 ≢ 0
∙ 𝑐𝑚+9 ≢ 0
∙ 𝑐𝑚+10 ≢ 0
∙ 𝑐𝑚+11 ≢ 0

When 𝑐𝑚+11 ≢ 0, we obtain

𝑐𝑚 = 1
𝑐3𝑐5𝑐𝑚+11

3∑

𝑖=0
𝑆𝑖𝑐𝑚+6+𝑖𝑐𝑚+5−𝑖

from (2.7) for 𝑛 = 𝑚+5. Thus, we prove the assertion for 𝑐𝑚 from the assertions
for 𝑐𝑛 for 𝑛 > 𝑚. Similarly, when 𝑐𝑚+10 ≢ 0, 𝑐𝑚+9 ≢ 0, 𝑐𝑚+8 ≢ 0, we shall use
(2.6), (2.5), (2.4), respectively. □

Next, we shall prove part (3) of Theorem 3.1.

Claim 3.7. 𝛼𝑟𝑝 = 𝛽2𝑝 ∈ 𝔽𝑝.

Proof. Setting 𝑛 = 2 and 𝑛 = −𝑟 − 2 in (3.2), we have
𝑐𝑟+2 ≡ 𝛼2𝑝𝛽𝑝𝑐2, 𝑐−2 ≡ 𝛼−𝑟−2𝑝 𝛽𝑝𝑐−𝑟−2.

Since 𝑐−2 = −𝑐2 = −1 and 𝑐−𝑟−2 = −𝑐𝑟+2, we have 𝛼𝑟𝑝 = 𝛽2𝑝 in 𝔽𝑝. □

Finally, we prove (3.1) for all integers 𝑘 ∈ ℤ.

Claim 3.8. For all integers 𝑛 and 𝑘, we have

𝑐𝑘𝑟+𝑛 ≡ 𝛼𝑘𝑛𝑝 𝛽𝑘2𝑝 𝑐𝑛.

Proof. ByClaim 3.6, the assertion holds for 𝑘 = 1. We shall prove the assertion
by induction on 𝑘. Assume that the assertion holds for some 𝑘. Then we have

𝑐(𝑘+1)𝑟+𝑛 = 𝑐𝑘𝑟+(𝑟+𝑛) ≡ 𝛼𝑘(𝑟+𝑛)𝑝 𝛽𝑘2𝑝 𝑐𝑟+𝑛.

Since 𝛼𝑟𝑝 = 𝛽2𝑝 ∈ 𝔽𝑝 by Claim 3.7, we have

𝛼𝑘(𝑟+𝑛)𝑝 𝛽𝑘2𝑝 𝑐𝑟+𝑛 ≡ (𝛽2𝑝)𝑘𝛼𝑘𝑛𝑝 𝛽𝑘2𝑝 𝑐𝑟+𝑛 ≡ 𝛼𝑘𝑛𝑝 𝛽𝑘2+2𝑘𝑝 𝑐𝑟+𝑛.
By the assertion for 𝑘 = 1, we have 𝑐𝑟+𝑛 ≡ 𝛼𝑛𝑝𝛽𝑝𝑐𝑛. Hence, we have

𝛼𝑘𝑛𝑝 𝛽𝑘2+2𝑘𝑝 𝑐𝑟+𝑛 ≡ 𝛼𝑘𝑛𝑝 𝛽𝑘2+2𝑘𝑝 ⋅ 𝛼𝑛𝑝𝛽𝑝𝑐𝑛 ≡ 𝛼(𝑘+1)𝑛𝑝 𝛽(𝑘+1)
2

𝑝 𝑐𝑟.
The assertion is proved for 𝑘 + 1. By induction, the assertion is proved for all
𝑘 ≥ 1.
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Since we have

𝑐−𝑘𝑟+𝑛 ≡ −𝑐𝑘𝑟−𝑛 ≡ −𝛼𝑘⋅(−𝑛)𝑝 𝛽𝑘2𝑝 𝑐−𝑛 ≡ 𝛼(−𝑘)⋅𝑛𝑝 𝛽(−𝑘)
2

𝑝 𝑐𝑛,
the assertion for 𝑘 < 0 follows. □

The proof of Theorem 3.1 is complete.

4. Proof of the main theorems
We are now ready to prove Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. Let 𝑝 be a prime satisfying the assumption in Theo-
rem 3.1. Substituting 𝑘 = 𝑝 − 1 in Theorem 3.1 (2), we have

𝑐(𝑝−1)𝑟+𝑛 ≡ 𝛼(𝑝−1)𝑛𝑝 𝛽(𝑝−1)
2

𝑝 𝑐𝑛 ≡ 𝑐𝑛 (mod 𝑝)
for all integers 𝑛 ∈ ℤ. Hence, {𝑐𝑛 (mod 𝑝)}𝑛∈ℤ is periodic, and the period
Per𝑝(𝒄) is a divisor of (𝑝 − 1)𝑟 = (𝑝 − 1) ord𝑝(𝐷𝑃).
Next, we shall prove that 𝑟 = ord𝑝(𝐷𝑃) divides 𝑠 ∶= Per𝑝(𝒄). Since 𝑐−1 =

𝑐1 = 𝑐1 = 0 and 𝑐2 = 1, we have 𝑠 ≥ 4. Recall that 𝑦𝑃 ≢ 0 (mod 𝑝). Since 𝑠 is
the period of the reduction modulo 𝑝 of the sequence 𝒄, we have 𝑐𝑠+𝑖 ≡ 𝑐𝑖 ≡ 0
(mod 𝑝) for 𝑖 = −1, 0, 1. Therefore, by Theorem 2.1 (2), we obtain 𝑠𝐷𝑃 = 0 in
Jac(𝐶)(𝔽𝑝). Hence, 𝑟 divides 𝑠. □

Proof of Theorem 1.3. Let 𝑟 ∶= ord𝑝(𝐷𝑃), 𝑠 ∶= Per𝑝(𝒄), and 𝑘 ∶= 𝑠∕𝑟. By
Theorem 1.1 (2), 𝑘 is a positive integer. By Theorem 3.1 (2), we have 𝑐𝑑𝑟+𝑛 ≡ 𝑐𝑛
(mod 𝑝) for all integers 𝑛 ∈ ℤ. Hence, we have 𝑠 = 𝑘𝑟 ∣ 𝑑𝑟, which implies
𝑘 ∣ 𝑑.
Setting 𝑛 = 2, 3 in the relation in Theorem 3.1 (2), we have

𝑐𝑘𝑟+2 ≡ 𝛼2𝑘𝑝 𝛽𝑘
2
𝑝 𝑐2 (mod 𝑝), 𝑐𝑘𝑟+3 ≡ 𝛼3𝑘𝑝 𝛽𝑘

2
𝑝 𝑐3 (mod 𝑝).

Since 𝑠 = 𝑘𝑟 is the period and 𝑐2, 𝑐3 ≢ 0 (mod 𝑝), we have
𝛼𝑘𝑝 ≡ 𝛽𝑘2𝑝 ≡ 1 (mod 𝑝).

Hence, we obtain 𝑑 ∣ 𝑘 since 𝑑 is the least positive integer satisfying such a
condition (see [17, Lemma 10.1]). Therefore, we have 𝑑 = 𝑘, which implies
Per𝑝(𝒄) = 𝑑 ord𝑝(𝐷𝑃). □

As we mentioned in Remark 1.5, we can prove Theorem 1.1 (1) and a half of
Theorem1.1 (2) by using the pigeonhole principle instead of usingTheorem3.1:

Proposition 4.1. Let 𝑝 be an odd prime which divides neither disc(𝐹) nor 𝑐3𝑐4𝑐5.
Then the reductionmodulo𝑝 of the sequence 𝒄 is periodic, andwe have ord𝑝(𝐷𝑃) ∣
Per𝑝(𝒄).
Proof. By Lemma 2.2, there exists no integer𝑚 such that

𝑐𝑚 ≡ 𝑐𝑚+1 ≡ 𝑐𝑚+2 ≡ 𝑐𝑚+3 ≡ 0 (mod 𝑝).
Since 𝑐3𝑐4𝑐5 ≢ 0 (mod 𝑝), by the bilinear recurrence relations of Somos 8, 9,
10 and 11 type in Corollary 2.6, the values 𝑐𝑚+11 (mod 𝑝) and 𝑐𝑚−1 (mod 𝑝)
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are uniquely determined by the values 𝑐𝑚+𝑖 (mod 𝑝) for 0 ≤ 𝑖 ≤ 10. By the
pigeonhole principle, there exist an integer 𝑘 ∈ ℤ and a positive integer 𝑠 ≥ 1
such that 𝑐𝑠+𝑘+𝑖 ≡ 𝑐𝑘+𝑖 (mod 𝑝) for 0 ≤ 𝑖 ≤ 10. Thus, we obtain 𝑐𝑛+𝑠 ≡ 𝑐𝑛
(mod 𝑝) for all 𝑛 ∈ ℤ by induction.
The proof of “ord𝑝(𝐷𝑃) ∣ Per𝑝(𝒄)” is the same as Theorem 1.1 (2). (Note that

the proof of “ord𝑝(𝐷𝑃) ∣ Per𝑝(𝒄)” does not require Theorem 3.1.) □

Remark 4.2. In contrast to Theorem 1.1, in the above proof of Proposition 4.1,
we do not require the assumption that 𝑐6𝑐7(𝑐34 − 𝑐33𝑐5) ≢ 0 (mod 𝑝). How-
ever, the upper bound for the period Per𝑝(𝒄)we can obtain from the pigeonhole
principle is 𝑝11, which is much larger than the upper bound in Corollary 1.2.
In particular, without Theorem 3.1, it seems difficult to prove the divisibility
“Per𝑝(𝒄) ∣ (𝑝 − 1) ord𝑝(𝐷𝑃).”

Appendix A. Proof of Theorem 2.3
In this appendix, we give a proof of Theorem 2.3. This result essentially

follows from the description of Cantor’s division polynomials in [12, Appen-
dix]. However, the sign in the formula in [12, Theorem A 1] is incorrect. In
fact, the sign (−1)(2𝑛−𝑔)(𝑔−1)∕2 in [12, Proposition 8.2 (ii)] should be replaced by
(−1)(𝑛−𝑔−1)(𝑛+𝑔2+2𝑔)∕2 as in [15, Theorem 5.1]. Moreover, the sign (−1)𝑟(𝑟−1)∕2
in [12, p. 738] should be read (−1)(𝑟−𝑔)(𝑟−𝑔+1)∕2. Here we supply necessary ar-
guments to correct the sign errors in the literature.
For details on the hyperelliptic sigma function, we refer the readers to [3] and

references therein. We adopt the definitions in [11, 12]. In an expression for the
Laurent expansion of a function, the symbol (𝑑◦(𝑧1, 𝑧2,… , 𝑧𝑚) ≥ 𝑛) stands for
the terms of total degree at least 𝑛 with respect to the variables 𝑧1, 𝑧2,… , 𝑧𝑚.
We define differential forms

𝜔1 ∶=
𝑑𝑋
2𝑌 , 𝜔2 ∶=

𝑋𝑑𝑋
2𝑌 , 𝜂1 ∶=

(3𝑋3 + 2𝑎1𝑋2 + 𝑎2𝑋)𝑑𝑋
2𝑌 , 𝜂2 ∶=

𝑋2𝑑𝑋
2𝑌 .

Let {𝛼1, 𝛼2, 𝛽1, 𝛽2} be a symplectic basis of𝐻1(𝐶(ℂ),ℤ). We define 2×2matrices
by

𝜔′ ∶=
⎛
⎜
⎝

∫𝛼1 𝜔1 ∫𝛼2 𝜔1
∫𝛼1 𝜔2 ∫𝛼2 𝜔2

⎞
⎟
⎠
, 𝜔′′ ∶=

⎛
⎜
⎝

∫𝛽1 𝜔1 ∫𝛽2 𝜔1
∫𝛽1 𝜔2 ∫𝛽2 𝜔2

⎞
⎟
⎠
,

𝜂′ ∶=
⎛
⎜
⎝

∫𝛼1 𝜂1 ∫𝛼2 𝜂1
∫𝛼1 𝜂2 ∫𝛼2 𝜂2

⎞
⎟
⎠
, 𝜂′′ ∶=

⎛
⎜
⎝

∫𝛽1 𝜂1 ∫𝛽2 𝜂1
∫𝛽1 𝜂2 ∫𝛽2 𝜂2

⎞
⎟
⎠
,

which are called the period matrices.
We define the hyperelliptic sigma function by

𝜎(𝑢) ∶= 𝑐 exp (−12
𝑡𝑢 𝜂′ 𝜔′−1 𝑢)𝜗 [𝛿

′′

𝛿′ ] (𝜔
′−1𝑢, 𝜔′−1𝜔′′),
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where 𝑢 = (𝑢1𝑢2
) ∈ ℂ2, 𝑐 is some constant, 𝛿′, 𝛿′′ are the Riemann constants,

and 𝜗 is the Riemann theta function with characteristics. The constant 𝑐 is
determined so that the following lemma holds. For details, see [11, Lemma 1.2]
and the references cited there.

Lemma A.1. The function 𝜎(𝑢) has the Taylor expansion

𝜎(𝑢) = 𝑢1 +
1
6𝑎2𝑢

3
1 −

1
3𝑢

3
2 + (𝑑◦(𝑢1, 𝑢2) ≥ 5)

at 𝑢 = (00).

We also use the following lemmas.

Lemma A.2. Let 𝑃 = (𝑥𝑃, 𝑦𝑃) ∈ 𝐶(ℂ) and

𝑢 = (𝑢1𝑢2
) =

⎛
⎜
⎝

∫ 𝑃∞ 𝜔1

∫ 𝑃∞ 𝜔2

⎞
⎟
⎠
.

Assume that 𝑢 is in a neighborhood of (00). Then we have

𝑢1 =
1
3𝑢

3
2 + (𝑑◦(𝑢2) ≥ 4), (A.1)

𝜎2(𝑢) = −𝑢22 + (𝑑◦(𝑢2) ≥ 3), (A.2)

𝑥𝑃 =
1
𝑢22

+ (𝑑◦(𝑢2) ≥ −1), (A.3)

𝑦𝑃 = − 1
𝑢52

+ (𝑑◦(𝑢2) ≥ −4). (A.4)

Proof. See [11, Lemmas 1.7, 1.9, and 1.12]. □

Lemma A.3. The polynomial 𝜓𝑛(𝑋) ∈ ℤ[𝑋] is of degree 𝑛2 − 4, and its leading
coefficient is

(𝑛+1
3

)
.

Proof. The lemma follows from [4, Theorem 8.17]. □

Proof of Theorem 2.3. Comparing the definition of 𝜓𝑛(𝑋) and the determi-
nant expression of 𝜎(𝑛𝑢)∕𝜎2(𝑢)𝑛

2 in [12, Theorem A 1], we have

2𝑦𝑃𝜓𝑛(𝑥𝑃) = ± 𝜎(𝑛𝑢)
𝜎2(𝑢)𝑛2

.

To determine the sign, we compare the leading term of the Laurent expansion
of both sides at 𝑢2 = 0. By Lemmas A.2 and A.3, we have

2𝑦𝑃𝜓𝑛(𝑥𝑃) = −2
(𝑛 + 1

3
) 1
𝑢2𝑛2−32

+ (𝑑◦(𝑢2) ≥ −2𝑛2 + 4). (A.5)
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By Lemmas A.1 and A.2, we have

𝜎(𝑛𝑢) = 𝑛𝑢1 +
1
6𝑎2(𝑛𝑢1)

3 − 1
3(𝑛𝑢2)

3 + (𝑑◦(𝑢1, 𝑢2) ≥ 5)

= 1
3𝑛𝑢

3
2 +

1
6𝑎2 (

1
3𝑛𝑢

3
2)

3
− 1
3𝑛

3𝑢32 + (𝑑◦(𝑢2) ≥ 4)

= −2
(𝑛 + 1

3
)
𝑢32 + (𝑑◦(𝑢2) ≥ 4).

By Lemma A.2, we have

𝜎2(𝑢)𝑛
2 = (−1)𝑛2𝑢2𝑛22 + (𝑑◦(𝑢2) ≥ 2𝑛2 + 1).

Since (−1)𝑛2 = (−1)𝑛, we have
𝜎(𝑛𝑢)
𝜎2(𝑢)𝑛2

= 2(−1)𝑛+1
(𝑛 + 1

3
) 1
𝑢2𝑛2−32

+ (𝑑◦(𝑢2) ≥ −2𝑛2 + 4). (A.6)

Therefore, by (A.5) and (A.6), we obtain

2𝑦𝑃𝜓𝑛(𝑥𝑃) = (−1)𝑛 𝜎(𝑛𝑢)
𝜎2(𝑢)𝑛2

. □

Appendix B. Numerical calculation of periods and orders
Here we give an example illustrating Theorem 1.1. We study the integer se-

quence introduced by Cantor (see OEIS A058231)1. It is an integer sequence
{𝑐𝑛}𝑛≥0 satisfying

𝑐0 = 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 36, 𝑐4 = −16,
𝑐5 = 5041728, 𝑐6 = −19631351040, 𝑐7 = −62024429150208,
𝑐8 = −2805793044443561984, 𝑐9 = −1213280369793911777918976

and the recurrence relation of Somos 8 type

−16𝑐𝑛𝑐𝑛+8 − 181502208𝑐𝑛+1𝑐𝑛+7 + 235226865664𝑐𝑛+2𝑐𝑛+6
+ 25442230947840𝑐𝑛+3𝑐𝑛+5 + 314101616640𝑐2𝑛+4 = 0.

It is a non-trivial fact that such an integer sequence {𝑐𝑛}𝑛≥0 exists. In fact,
this sequence consists of values of Cantor’s division polynomials; see also [4].
We set

𝐶∶ 𝑌2 = 𝑋5 − 3𝑋4 − 2𝑋 + 9, 𝑃 = (0, 3).
Let 𝜓𝑛(𝑋) ∈ ℤ[𝑋] be Cantor’s division polynomial for 𝐶. Then we can verify

𝑐𝑛 = 𝜓𝑛(0).
We extend the sequence 𝑐𝑛 to 𝑛 < 0 by 𝑐𝑛 = −𝑐−𝑛 (see OEIS A058231). In
particular, we have 𝑐−1 = 𝑐0 = 𝑐1 = 0.
From Theorem 1.1 and Corollary 1.2, we obtain the following results.

1https://oeis.org/A058231

https://oeis.org/A058231
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Corollary B.1. Let 𝑝 be a prime not in the following list:
2, 3, 5, 7, 29, 41, 47, 379, 509, 853, 8059, 8753, 49711, 140891.

Then the following assertions hold.
(1) The reduction modulo 𝑝 of the sequence 𝒄 = {𝑐𝑛}𝑛∈ℤ is periodic.
(2) Let Per𝑝(𝒄) be the period of the reduction modulo 𝑝 of the sequence 𝒄. Let

ord𝑝(𝐷𝑃) be the order of the point 𝐷𝑃 ∈ Jac(𝐶)(𝔽𝑝). Then we have
ord𝑝(𝐷𝑃) ∣ Per𝑝(𝒄) ∣ (𝑝 − 1) ord𝑝(𝐷𝑃).

(3) We have Per𝑝(𝒄) ≤ (𝑝 − 1)(1 +
√
𝑝)4.

Proof. By Theorem 1.1 and Corollary 1.2, it is enough to determine the set of
excluded primes. The discriminant of𝑋5−3𝑋4−2𝑋+9 is−36040475 = −52×
29×49711. (ByMagma, the conductor of𝐶 is 4613180800 = 27×52×29×49711.)
We calculate

𝑐3 = 22 × 32,
𝑐4 = −24,
𝑐5 = 26 × 32 × 8753,
𝑐6 = −28 × 3 × 5 × 7 × 41 × 47 × 379,
𝑐7 = −213 × 32 × 7 × 853 × 140891,

𝑐34 − 𝑐33𝑐5 = −213 × 7 × 509 × 8059.
□

In the following table, for prime 𝑝 ≤ 400, we give numerical results on the
number of 𝔽𝑝-rational points on the reduction modulo 𝑝 of Jac(𝐶), the order
ord𝑝(𝐷𝑃) of the point 𝐷𝑃 ∈ Jac(𝐶)(𝔽𝑝), the period Per𝑝(𝒄) of the reduction
modulo 𝑝 of the sequence 𝒄, the ratio Per𝑝(𝒄)∕ ord𝑝(𝐷𝑃), and the elements
𝛼𝑝, 𝛽𝑝 ∈ 𝔽𝑝 in Theorem 1.3.
The calculations of |Jac(𝐶)(𝔽𝑝)| and ord𝑝(𝐷𝑃) are done by Magma [2]. The

calculations of Per𝑝(𝒄) are done by Sage [14] using the bilinear recurrence re-
lations of Somos 8, 9, 10 and 11 type satisfied by 𝒄 in Corollary 2.6.

Table 1: Numerical verification of Theorem 1.1 for the case of
Cantor’s sequence (OEIS A058231).

𝑝 |Jac(𝐶)(𝔽𝑝)| ord𝑝(𝐷𝑃) Per𝑝(𝒄) Per𝑝(𝒄)∕ ord𝑝(𝐷𝑃) 𝛼𝑝 𝛽𝑝
2
3 12 2 6 3
5 12
7 28 7 21 3 4 2
11 112 56 280 5 4 9
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13 127 127 762 6 10 7
17 272 136 2176 16 10 4
19 405 135 405 3 7 1
23 692 173 3806 22 12 10
29 2100
31 997 997 997 1 1 1
37 1684 842 3368 4 6 31
41 1693 1693 8465 5 10 37
43 1186 1186 2372 2 42 1
47 2433 2433 55959 23 18 17
53 3284 821 10673 13 16 16
59 3512 439 12731 29 45 19
61 3910 3910 234600 60 26 40
67 5056 632 41712 66 6 2
71 5064 2532 88620 35 10 36
73 5840 730 13140 18 37 57
79 5825 5825 75725 13 18 52
83 7324 3662 150142 41 78 77
89 6762 2254 198352 88 60 75
97 9884 9884 948864 96 90 2
101 9900 275 13750 50 82 10
103 10112 5056 10112 2 102 1
107 12944 3236 343016 106 46 81
109 11349 11349 306423 27 3 45
113 12332 12332 1381184 112 12 41
127 15272 15272 30544 2 126 1
131 18724 9362 243412 26 45 86
137 19104 9552 1299072 136 21 15
139 20687 20687 2854806 138 71 72
149 20696 5174 382876 74 37 64
151 22010 22010 3301500 150 51 2
157 27456 2288 118976 52 29 156
163 26138 26138 4234356 162 137 122
167 30036 7509 1246494 166 19 30
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173 26673 26673 2293878 86 54 62
179 32388 2699 480422 178 60 132
181 35447 35447 638046 18 138 149
191 38384 19192 3646480 190 28 163
193 37210 37210 7144320 192 114 120
197 34920 4365 427770 98 61 22
199 41888 10472 1036728 99 65 180
211 45849 15283 229245 15 134 137
223 49121 49121 5452431 111 9 126
227 56510 28255 6385630 226 33 162
229 54829 54829 6250506 114 3 62
233 53520 4460 1034720 232 212 207
239 56584 7073 1683374 238 202 207
241 66112 33056 793344 24 32 226
251 64724 32362 1618100 50 226 204
257 63176 31588 4043264 128 143 165
263 70608 35304 9249648 262 258 189
269 71024 8878 1189652 134 170 24
271 73020 4868 262872 54 266 188
277 74418 24806 6846456 276 24 115
281 80956 80956 22667680 280 259 267
283 80436 6703 1890246 282 81 272
293 84592 21148 3087608 146 172 267
307 94816 47408 4835616 102 155 51
311 105052 52526 16283060 310 289 124
313 97720 24430 635180 26 255 265
317 108842 108842 34394072 316 126 115
331 102800 25700 1413500 55 172 274
337 116852 29213 2453892 84 196 147
347 125596 31399 10864054 346 38 280
349 113967 5427 314766 58 110 115
353 125906 62953 5539864 88 336 317
359 129600 64800 23198400 358 105 254
367 136161 45387 16611642 366 268 360
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373 146336 4573 283526 62 31 97
379 143613 143613 54285714 378 189 293
383 153214 76607 29263874 382 64 157
389 160166 80083 15536102 194 311 355
397 165192 6883 1362834 198 121 119

Remark B.2. Among the primes 𝑝 ≤ 400, for 𝑝 ≠ 2, 3, 5, 7, 29, 41, 47, 379, we
have

ord𝑝(𝐷𝑃) ∣ Per𝑝(𝒄) ∣ (𝑝 − 1) ord𝑝(𝐷𝑃)
by Theorem 1.1. For the excluded primes, the curve 𝐶 has bad reduction at 𝑝 =
2, 5, 29. For 𝑝 = 7, 41, 47, 379, although we cannot apply Theorem 1.1 because
𝑝 divides 𝑐3𝑐4𝑐5𝑐6𝑐7(𝑐34 − 𝑐33𝑐5), we observe that the above divisibilities hold for
such 𝑝. However, for 𝑝 = 3, we observe that the divisibility ord𝑝(𝐷𝑃) ∣ Per𝑝(𝒄)
holds, but the divisibility Per𝑝(𝒄) ∣ (𝑝 − 1) ord𝑝(𝐷𝑃) does not.

Remark B.3. For primes ≤ 400, we have Per𝑝(𝒄) = ord𝑝(𝐷𝑃) for 𝑝 = 31 only.
We have Per𝑝(𝒄) = (𝑝−1) ord𝑝(𝐷𝑃) for 𝑝 = 17, 23, 61, 67, 89, 97, 107, 113, 137,
139, 151, 163, 167, 179, 191, 193, 227, 233, 239, 263, 277, 281, 283, 311, 317, 347,
359, 367, 379, 383.
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