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Fredholm alternative for a general class
of nonlocal operators
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Abstract. We develop a Fredholm alternative for a fractional elliptic oper-
ator ℒ of mixed order built on the notion of fractional gradient. This oper-
ator constitutes the nonlocal extension of the classical second order elliptic
operators with measurable coefficients treated by Neil Trudinger in [Tru73].
We build ℒ by weighing the order 𝑠 of the fractional gradient over a mea-
sure (which can be either continuous, or discrete, or of mixed type). The
coefficients of ℒ may also depend on 𝑠, giving this operator a possibly non-
homogeneous structure with variable exponent. These coefficients can also
be either unbounded, or discontinuous, or both. A suitable functional ana-
lytic framework is introduced and investigated and our main results strongly
rely on some custom analysis of appropriate functional spaces.
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1. Introduction
A classical problem in many areas of mathematics is determining whether a

given equation possesses a solution and, if so, whether the solution is unique. In
some cases, physical constraints introduce restrictions, known as “resonances”,
in which specific parameter configurations either prevent solutions from exist-
ing or lead to their high multiplicity.
The case of finite-dimensional linear equations is perhaps the simplest to

analyze, yet it already illustrates the potential effects of resonances caused by
parameter choices. For example, consider a matrix𝐴, a scalar 𝜆, and a vector 𝑏.
Elementary linear algebra examines the number of solutions 𝑥 for the vector
equation

𝐴𝑥 = 𝜆𝑥 + 𝑏.

Two complementary scenarios arise:
∙ 𝜆 is an eigenvalue of𝐴 (resonance): The equation is solvable only if 𝑏 is
orthogonal to the null space of (𝐴 − 𝜆𝐼)∗, where 𝐼 is the identity matrix
and the superscript ∗ denotes the conjugate transpose (or transpose in
the real case). When this compatibility condition holds, the equation
has infinitely many solutions.

∙ 𝜆 is not an eigenvalue of𝐴 (non resonance): Thematrix𝐴−𝜆𝐼 is invert-
ible, and the equation has a unique solution, given by 𝑥 = (𝐴−𝜆𝐼)−1𝑏.

This simple example illustrates the interplay between resonances, compati-
bility conditions and solution structure, serving as a finite dimensional model
to understand more complex scenarios.
TheFredholmAlternative extends these ideas to infinite-dimensional spaces,

addressing linear equations involving compact operators and providing a di-
chotomy analogous to the finite-dimensional case. As such, the Fredholm Al-
ternative has become a cornerstone of both abstract functional analysis and
applied fields such as quantum mechanics, fluid dynamics and linear partial
differential equations.
In the context of elliptic partial differential equations, a thorough description

of this dichotomywas introduced byNeil Trudinger in [Tru73]. This framework
allowed for very general linear equations, including lower-order terms andwith
only minimal regularity requirements on the coefficients involved.
In this article, we extend the Fredholm Alternative to nonlocal operators

of fractional type. Relying on the notion of fractional gradient, we develop a
framework for inhomogeneous equations and address cases involving superpo-
sition of operators of different fractional orders, including infinite sums. This
extension is particularly relevant for applications, as these operatorsmodel phe-
nomena such as biological species in which individuals exhibit diffusive pat-
terns characterized by different Lévy exponents. In this regard, the distribution
of the measure weighing operators of different orders describes the proportion
of a biological population adopting a certain dispersal strategy (e.g., for breed-
ing or foraging purposes). Moreover, this approach offers a “unified” treatment
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of both classical and nonlocal cases, with the former emerging as a specific in-
stance of the broader theory.
The following paragraphs outline the classical setting, introduce the formal-

ism required for nonlocal operators, and present our main results.

1.1. The operator under consideration. In [Tru73], Neil Trudinger devel-
oped a Fredholm alternative for an elliptic operator 𝒯 of the form

𝒯𝑢 ∶= − 𝜕
𝜕𝑥𝑖

(
𝑎𝑖𝑗(𝑥)𝑢𝑥𝑗 + 𝑎𝑖(𝑥)𝑢

)
+ 𝑏𝑖(𝑥)𝑢𝑥𝑖 + 𝑎(𝑥)𝑢, (1.1)

whose coefficients are measurable functions on a bounded domain Ω ⊂ ℝ𝑛

(according to custom, here above and in the rest of the paper, the repeated index
summation convention is employed). The goal of this work is to extend this
theory to a more general operator ℒ of nonlocal nature.
To this end, we recall that the fractional gradient operator of order 𝑠 ∈ (0, 1)

can be defined as

𝐷𝑠𝑢(𝑥) ∶= 𝑐𝑠,𝑛
ˆ
ℝ𝑛

(𝑢(𝑦) − 𝑢(𝑥))
|𝑥 − 𝑦|𝑛+𝑠+1

(𝑦 − 𝑥) 𝑑𝑥, (1.2)

where 𝑐𝑠,𝑛 is a normalizing constant vanishing as 𝑠 approaches 1 (see Section 2.1
below). We will denote the 𝑖𝑡ℎ component of the vector 𝐷𝑠𝑢 by 𝐷𝑠

𝑖 𝑢.
According to [Sil20, Section 1], the first appearance of the fractional gradient

dates back to the papers [Hor59,Hor77]. The operator in (1.2) has been treated
in the recent literature (see e.g. [SSS15, SS15, SSVS17, SSS18, SS18,CS19, Sil20,
BCM20,BCM21]), though a complete understanding of its rather complex be-
havior is still under development, and plays an important role in the definition
of nonlocal counterparts of classical elliptic operators.
To be consistent with the classical case, it is customary (see e.g. [Sil20]) to ex-

tend the setting in (1.2) to the case 𝑠 = 1, by taking𝐷1𝑢 as the classical gradient
of 𝑢, here denoted by 𝐷𝑢. This choice will be formally justified in Proposi-
tion 2.6 below. In general, we refer the reader to Section 2.1 for a self-contained
introduction to the operator in (1.2).
Now, let 𝜇(𝑠) be a nonnegative measure on [0, 1], whose support is bounded

away from 0. We formally define the operator ℒ as follows:

ℒ𝑢 ∶=
ˆ
(0,1]

(
− 𝐷𝑠

𝑖

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢 + 𝑎𝑖(𝑠, 𝑥)𝑢
)
+ 𝑏𝑖(𝑠, 𝑥)𝐷𝑠

𝑖 𝑢
)
𝑑𝜇(𝑠) + 𝑎(𝑥)𝑢.

(1.3)
We stress that if 𝜇(𝑠) is a Dirac delta at 𝑠 = 1, than the operators 𝒯 and ℒ
coincide. Furthermore, 𝜇(𝑠) can be either continuous, or discrete, or of mixed
type, givingℒ the nature of a fractional differential operator ofmixed order (see
Section 1.5 for some practical examples).
We remark that the study of operators of mixed order is important both from

the theoretical perspective and in view of concrete applications: indeed, on the
one side, these operators often pose challenging theoretical questions due to
their lack of scale invariance, and, on the other side, they appear naturally in
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biological models, since animals of different species, and also different individ-
uals of the same species, in many instances exhibit different diffusive patterns
of fractional type with different Lévy exponents, see e.g. [DV21]. The operator
considered in (1.3) is however structurally different than several instances al-
ready studied in the literature that dealt with general Lévymeasures, since here
we aim at capturing the salient features encoded specifically by a “divergence-
type” design arising from spatial inhomogeneity (but, due to the complicated
structure of the equation under consideration, the development of the theory
cannot simply rely on variations of the classical second order theory of elliptic
operators in divergence form).
From the technical standpoint, one of the main issues is the construction of

a variational framework for our Fredholm alternative. Since the fractional gra-
dient appears inℒ, we are led to consider suitable Bessel-type spaces𝐻𝑠,𝑝

0 (ℝ𝑛),
endowed with the norm

‖𝑢‖𝐻𝑠,𝑝
0 (ℝ𝑛) ∶=

(
‖𝑢‖𝑝𝐿𝑝(ℝ𝑛) + ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

) 1
𝑝 .

These spaces have been extensively treated in the literature (see e.g. [SS15,CS19,
BCM20]), nevertheless some particular features emerge regardingℒwhichwill
require some bespoke arguments.
Indeed, first of all, ℒ weighs the fractional parameter 𝑠 over a possibly con-

tinuous measure, making it difficult, for a given 𝑠 ∈ (0, 1], to make 𝐷𝑠 appear
explicitly in our operator (notice that, in the generality that we consider, it can
well be that 𝜇{𝑠} = 0).
In addition, ℒ depends on coefficients that are functions of 𝑠 and 𝑥. In par-

ticular, none of these coefficients are required to be bounded and it is always
possible for them to be either discontinuous, or unbounded, or both, and the
operator ℒmay not have a specific order of differentiation.
Also, Fredholm alternatives in their simplest formulations are often set in

Hilbert spaces: however, in our case, asking forℒ to bewell-defined in𝐻𝑠,2
0 (ℝ𝑛)

would force us to impose stronger regularity assumptions on the matrix [𝑎𝑖𝑗],
as we will show in Section 4. To avoid this additional restriction, a suitable
functional analytic frameworkwill be presented and investigated: in particular,
a thorough analysis of the operator ℒ will hinge on some bespoke analysis of
appropriate functional spaces.

1.2. Notations. In this article we make use of the following notations.
∙ For any Ω ⊆ ℝ𝑛, 𝒟(Ω) refers to the set of 𝐶∞ functions with compact
support inΩ. Also, as customary, the Schwartz space 𝒮(ℝ𝑛) denotes the
space of all smooth functions whose derivatives are rapidly decreasing.

∙ The symbols𝜔𝑛 and 𝑆𝑛 refer, respectively, to the volume and the surface
of the unit ball inℝ𝑛. Moreover, 𝐵𝑅 denotes the open ball of radius 𝑅 >
0 centered at the origin.

∙ Given an open and bounded set Ω ⊂ ℝ𝑛, we suppose that ℎ ∶ Ω →
[0,+∞) is a measurable function, such that ℎ−1 ∈ 𝐿𝑡(Ω) for some 𝑡 ∈
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[1, +∞]. Then, we refer to 𝐿2(ℎ,Ω) as the Hilbert space induced by the
inner product

⟨𝑢, 𝑣⟩𝐿2(ℎ,Ω) ∶=
ˆ
Ω
ℎ(𝑥)𝑢(𝑥)𝑣(𝑥) 𝑑𝑥.

In particular, we refer toRemark 4.1 to show that this space is not empty.
∙ Given a Banach space 𝑉, we denote1 its dual space by 𝑉′. For any 𝑃 ∈
𝑉′, 𝑄 ∈ 𝑉′ and 𝑥 ∈ 𝑉, the notation ⟨𝑃, 𝑥⟩ denotes the application of 𝑃
to 𝑥, while the equality 𝑃 = 𝑄 in 𝑉′ means

⟨𝑃, 𝑥⟩ = ⟨𝑄, 𝑥⟩

for all 𝑥 ∈ 𝑉.
Consistentlywith this setting, and as usual in the literature, the space

of tempered distributions 𝒮′(ℝ𝑛) consists of the dual of the Schwartz
space 𝒮(ℝ𝑛).

∙ Given 𝑢 ∈ 𝒮′(ℝ𝑛), we denote by either 𝑢 orℱ(𝑢) the Fourier transform
of 𝑢, intended in a distributional sense2.

∙ Regarding the operator ℒ, we denote by 𝒜 = [𝑎𝑖𝑗] the coefficients ma-
trix and by 𝒜𝑆 = [𝑎𝑖𝑗𝑆 ] its symmetric part. The matrix ℬ = [𝑏𝑖𝑗] is the
inverse of 𝒜. Also, ℒ∗ is the formal dual of ℒ, namely

ℒ∗𝑢 ∶=
ˆ
(0,1]

(
− 𝐷𝑠

𝑖

(
𝑎𝑗𝑖(𝑠, 𝑥)𝐷𝑠

𝑗𝑢 + 𝑏𝑖(𝑠, 𝑥)𝑢
)
+ 𝑎𝑖(𝑠, 𝑥)𝐷𝑠

𝑖 𝑢
)
𝑑𝜇(𝑠) + 𝑎(𝑥)𝑢.

1.3. Hypotheses on ℒ. This paragraph collects the assumptions we make on
the operatorℒ defined in (1.3). These hypotheses aremeant to hold throughout
the whole article.
We ask 𝜇 to be a 𝜎-finite and nonnegative measure on [0, 1], whose support

is bounded away from 0.
In addition, we require 𝒜, 𝑎𝑖(𝑠, 𝑥) and 𝑏𝑖(𝑠, 𝑥) to be measurable functions

in [0, 1] × ℝ𝑛.
Then, we ask 𝒜 to be positive definite for every 𝑠 ∈ (0, 1]. In addition, we

require that there exist 𝜆 , Λ ∶ ℝ𝑛 → [0,+∞) such that, for any 𝑥, 𝜉 ∈ ℝ𝑛

and 𝑠 ∈ (0, 1],
𝜆(𝑥)|𝜉|2 ⩽ 𝜉𝑇𝒜(𝑠, 𝑥) 𝜉 ⩽ Λ(𝑥)|𝜉|2. (1.4)

The quantities 𝜆 and Λ can be seen as ellipticity bounds on𝒜 (and on𝒜𝑆). We
stress that these elliptic bounds are not necessarily uniform; in fact, we only

1For typographical convenience, on some occasions the dual space will be denoted by (𝑉)′
instead of simply 𝑉′: this occurs for instance for spaces such as𝐻𝑠,𝑝(ℝ𝑛) or𝐻𝑠,𝑝

0 (Ω), whose dual
space will be denoted, respectivly, by (𝐻𝑠,𝑝(ℝ𝑛))′ and

(
𝐻𝑠,𝑝
0 (Ω)

)′
.

2The reason for which we have two notations to denote the same object is merely for typo-
graphical convenience. For instance, in the setting of the forthcoming Lemma 2.12, the notation
𝑢 reads better than ℱ(𝑢), while ℱ(𝐼𝛼𝑢) is clearer than 𝐼𝛼𝑢
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assume that there exist 𝑅 > 0, 𝐶 > 0, 𝛿 > 0 and 𝑝 < 𝑛 such that

{
Λ ∈ 𝐿1(𝐵𝑅) and Λ(𝑥) ⩽ 𝐶|𝑥|𝑝 for any 𝑥 ∈ ℝ𝑛 ⧵ 𝐵𝑅,
𝜆−1 ∈ 𝐿1+𝛿loc (ℝ

𝑛).
(1.5)

Roughly speaking, the role of 𝐵𝑅 in (1.5) is to prescribe Λ to be integrable in a
neighborhood of the origin and grow atmost like |𝑥|𝑝 at infinity. The structural
parameter 𝑅 does not play a major role in this paper (in particular, we do not
need to take it sufficiently large with respect to the size of Ω).
Then, we suppose that there exists a constant 𝒦𝒜 > 0 satisfying, for any 𝑥,

𝜉, 𝜓 ∈ ℝ𝑛 and 𝑠 ∈ (0, 1],
||||𝜉
𝑇𝒜(𝑠, 𝑥)𝜓||||

2
⩽ 𝒦𝒜(𝜉𝑇𝒜(𝑠, 𝑥)𝜉)(𝜓𝑇𝒜(𝑠, 𝑥)𝜓). (1.6)

We remark that condition (1.6) is fairly general (see e.g. Lemma D.1 for suffi-
cients conditions to satisfy (1.6)).
Concerning ℬ(𝑠, 𝑥), 𝑎𝑖(𝑠, 𝑥) and 𝑏𝑖(𝑠, 𝑥), we assume that there exist ℬ(𝑥) =

[𝑏𝑖𝑗(𝑥)], 𝑎𝑖(𝑥) and 𝑏𝑖(𝑥) such that, for any 𝑖, 𝑗 = 1, … , 𝑛, any 𝑠 ∈ (0, 1] and
any 𝑥 ∈ ℝ𝑛,

|𝑏𝑖𝑗(𝑠, 𝑥)| ⩽ 𝑏𝑖𝑗(𝑥), |𝑎𝑖(𝑠, 𝑥)| ⩽ 𝑎𝑖(𝑥) and |𝑏𝑖(𝑠, 𝑥)| ⩽ 𝑏𝑖(𝑥). (1.7)

1.4. Main results. To copewith the functional analytic difficultiesmentioned
in Section 1.1, we set the following Hilbert spaces (see Section 4 for a formal
introduction).
Let Ω be a bounded domain of ℝ𝑛. For any 𝑔 ∈ 𝐿1(Ω, [0, +∞)), we define

the following scalar product in𝒟(Ω) (see Lemma 4.3)

⟨𝑢, 𝑣⟩𝐻0(𝒜,𝑔,Ω) ∶=
ˆ
ℝ𝑛

ˆ
(0,1]

𝑎𝑖𝑗𝑆 (𝑠, 𝑥)𝐷
𝑠
𝑖 𝑢(𝑥)𝐷

𝑠
𝑗𝑣(𝑥) 𝑑𝜇(𝑠) 𝑑𝑥

+
ˆ
Ω
𝑔(𝑥)𝑢(𝑥)𝑣(𝑥) 𝑑𝑥.

We denote by ‖ ⋅ ‖𝐻0(𝒜,𝑔,Ω) the norm induced by this scalar product.

Definition 1.1. Let Ω be a bounded domain of ℝ𝑛 and 𝑔 ∶ Ω → [0,+∞) be a
measurable function. We define

𝐻0(𝒜, 𝑔,Ω) ∶= 𝒟(Ω)
‖⋅‖𝐻0(𝒜,𝑔,Ω)

. (1.8)

To ease the notation, when 𝑔 = 0, we denote the Hilbert space in (1.8)
as𝐻0(𝒜,Ω).
A fundamental role will be played by the notion of compact boundedness:

Definition 1.2. We say that a nonnegative measurable function 𝑓 is compactly
bounded on𝐻0(𝒜, 𝑔,Ω) if, for any 𝜀 > 0, there exists𝐾𝜀 ⩾ 0 such that, for any𝜙 ∈
𝒟(Ω),

‖𝜙‖2𝐿2(𝑓,Ω) ⩽ 𝜀‖𝜙‖2𝐻0(𝒜,𝑔,Ω) + 𝐾𝜀‖𝜙‖2𝐿1(Ω). (1.9)
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Remark 1.3. The notion of compact boundedness plays a relevant role in our
framework, since it allows us to retrieve a compact embedding for the space
𝐻0(𝒜,Ω) (see Theorem 5.3) which in turn is necessary in order to apply the
Fredholm alternative. This assumption is also quite general (see e.g. Theo-
rems A.1 and A.2 for sufficient conditions in 𝐿𝑝-class guaranteeing compact
boundedness).

With Definition 1.2 in hand, we set

𝑓(𝑥) ∶= 𝑏𝑖𝑗(𝑥)
(
𝑎𝑖(𝑥)𝑎𝑗(𝑥) + 𝑏𝑖(𝑥)𝑏𝑗(𝑥)

)
+ |𝑎(𝑥)| (1.10)

and we ask 𝑓 to be compactly bounded in 𝐻0(𝒜,Ω). We also observe that, 𝒜
being positive definite, so it is ℬ, and therefore 𝑓 is nonnegative.
In this work we establish the Fredholm alternative in a weak framework

for ℒ, i.e. we deal with the following bilinear form, defined on 𝐻0(𝒜,Ω) ×
𝐻0(𝒜,Ω),
(ℒ𝑢, 𝑣 )

∶=
ˆ
ℝ𝑛
(
ˆ
(0,1]

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢𝐷
𝑠
𝑖 𝑣 + 𝑎𝑖(𝑠, 𝑥)𝑢𝐷𝑠

𝑖 𝑣 + 𝑏𝑖(𝑠, 𝑥)𝑣𝐷𝑠
𝑖 𝑢
)
𝑑𝜇(𝑠)) 𝑑𝑥

+
ˆ
Ω
𝑎(𝑥)𝑢𝑣 𝑑𝑥.

(1.11)

The fact that (1.11) constitutes a meaningful variational formulation of the op-
erator ℒ in (1.3) is justified in Theorem 6.1. In particular, we will show in Sec-
tion 6 that this bilinear form is continuous and weakly coercive in𝐻0(𝒜,Ω).
Then, for any 𝑢, 𝑣 ∈ 𝐻0(𝒜,Ω) and 𝜎 ∈ ℝ, we set

(ℐ(𝑓)𝑢, 𝑣) ∶= ⟨𝑢, 𝑣⟩𝐿2(𝑓,Ω), ℒ𝜎(𝑓) ∶= ℒ + 𝜎ℐ(𝑓)
and ℒ∗

𝜎(𝑓) ∶= ℒ∗ + 𝜎ℐ(𝑓).
(1.12)

We aim at solving the following eigenvalue problem: given 𝜎 ∈ ℝ and 𝑇 ∈(
𝐻0(𝒜,Ω)

)′
, we wish to find a function 𝑢 ∈ 𝐻0(𝒜,Ω) such that

ℒ𝜎(𝑓)𝑢 = 𝑇 in
(
𝐻0(𝒜,Ω)

)′
. (1.13)

To this end, we establish the following result:

Theorem 1.4. Let 𝑓 be as defined in (1.10) and suppose that it is compactly
bounded on𝐻0(𝒜,Ω).
Then, there exists a countable isolated set Σ of eigenvalues of ℒ.
In particular, if 𝜎 ∉ Σ, then problem (1.13) admits a unique solution 𝑢. If

instead 𝜎 ∈ Σ, then either it admits no solutions or it admits infinitely many
solutions.

Theorem 1.4 is an immediate consequence of the more detailed result stated
below.
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Theorem 1.5. Let 𝑓 be as defined in (1.10) and suppose that it is compactly
bounded on𝐻0(𝒜,Ω).
Then, there exist 𝜎0 ∈ ℝ and a countable isolated set of real numbers Σ ⊂

(−∞, 𝜎0) such that, for any 𝜎 ∉ Σ, we have that ℒ𝜎(𝑓) is a bijective mapping
from𝐻0(𝒜,Ω) to

(
𝐻0(𝒜,Ω)

)′
.

If instead 𝜎 ∈ Σ, then the kernels of ℒ𝜎(𝑓) and ℒ∗
𝜎(𝑓) coincide and are of

positive, finite dimension.
In particular, problem (1.13) admits a solution 𝑢 ∈ 𝐻0(𝒜,Ω) if and only if, for

any 𝑢∗ ∈ 𝐻0(𝒜,Ω) which is a solution of

ℒ∗
𝜎(𝑓)𝑢 = 0 in

(
𝐻0(𝒜,Ω)

)′
,

it holds that ⟨𝑇, 𝑢∗⟩ = 0.

We recall that, consistently with the setting introduced on page 512, the no-
tation ⟨𝑇, 𝑢∗⟩ denotes the application of 𝑇 ∈

(
𝐻0(𝒜,Ω)

)′
to 𝑢∗ ∈ 𝐻0(𝒜,Ω).

Also, in our framework, the value 𝜎0 mentioned in Theorem 1.5 plays the role
of a coercivity constant for the operator ℒ𝜎(𝑓) (as it will be specified in Propo-
sition 6.3).

Remark 1.6. We remark that, if 𝜇({1}) > 0, then Theorem 1.4 and Theorem 1.5
hold true even relaxing condition (1.5): in particular, if 𝜇({1}) > 0, our results
remain valid even when 𝛿 = 0 in (1.5). This is a useful observation, since it
allows us to retrieve also the classical result for 𝒯 in [Tru73], which only asks
for 𝜆−1 ∈ 𝐿1(Ω). A formal proof for this statement is provided at the end of
Section 6.

The rest of this article is organized as follows. We complete this introduction
by providing some concrete examples of the operatorℒ to which Theorems 1.4
and 1.5 apply.
Then in Section 2, we provide a self-contained introduction to the fractional

gradient 𝐷𝑠 (highlighting its connection with the Riesz potential).
Section 3 is devoted to some pivotal embeddings and inequalities for the

Bessel-type space 𝐻𝑠,𝑝
0 (Ω). The main focus here is on controlling explicitly the

dependence on the fractional parameter 𝑠.
In Sections 4 and 5, we present the function space 𝐻0(𝒜, 𝑔,Ω) and the con-

cept of boundedness in this space. Finally, Section 6 is devoted to the proofs of
Theorem 1.5 and the statement in Remark 1.6.
This paper also contains four appendices. Appendix A contains sufficient

conditions in𝐿𝑝-class to guarantee compact boundedness on𝐻0(𝒜, 𝑔,Ω), while
in Appendix B we provide an example of function that is bounded but not com-
pactly bounded on 𝐻0(𝒜,Ω). Appendix C is devoted to calculate some inte-
grals and is used in the computation of the Fourier Transform of the fractional
gradient carried out in Proposition 2.15. Finally, Appendix D contains some
technical results regarding the matrix 𝒜 and is extensively used in Section 6.
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1.5. Examples and applications. This section presents some paradigmatic
examples for the operator ℒ that we consider in this work.

Example 1.7. If we take𝜇 ∶= 𝛿(1), then the operatorℒ in (1.3) boils down to the
operator 𝒯 in (1.1), that has been taken into account by Trudinger in [Tru73].

Example 1.8. Furthermore, we can take 𝑁 > 0, 𝑠𝑘 ∈ (0, 1] for any 𝑘 = 1,… ,𝑁,
with 𝑠𝑁 = 1, and 𝜍 ∈ [0, +∞) and set 𝒜 ∶= 𝐼, 𝑎𝑖 = 𝑏𝑖 = 𝑎 = 0 and

𝜇(𝑠) ∶=
𝑁−1∑

𝑘=1
𝛿(𝑠𝑘) + 𝜍𝛿(𝑠𝑁).

In this way,

ℒ𝑢 =
𝑁−1∑

𝑘=1
(−∆)𝑠𝑘𝑢 + 𝜍𝒯𝑢.

We stress that when 𝜍 ≠ 0, this operator gathers both fractional and classi-
cal contributions. This is an interesting property from the theoretical point of
view, since it allows the treatment of structurally different operators via a uni-
fied method, and also in terms of concrete applications (e.g., in the Lévy flight
foraging hypothesis it is customary to compare individuals performing Gauss-
ian and Lévy dispersal strategies, in epidemic managements one may have to
consider the coexistence of local and global lockdowns, etc.).

Example 1.9. We can also consider more general operators, taking into account
a measure 𝜇 given by an infinite sum of Dirac deltas and letting𝒜(𝑠, 𝑥) = 𝒜(𝑠)
and 𝑎𝑖 = 𝑏𝑖 = 𝑎 = 0. For this purpose, we consider a sequence (𝑐𝑘) of nonneg-
ative real numbers such that

+∞∑

𝑘=1
𝑐𝑘 < +∞

and we define

𝜇(𝑠) ∶=
+∞∑

𝑘=2
𝑐𝑘 𝛿 (1 −

1
𝑘
) .

Then, we obtain the non-homogeneous operator

ℒ𝑢 = −
+∞∑

𝑘=2
𝑐𝑘 𝑎𝑖𝑗 (1 −

1
𝑘
)𝐷

1− 1
𝑘

𝑖 𝐷
1− 1

𝑘
𝑗 𝑢 .

Example 1.10. While the previous examples deal with a discrete measure, it is
also possible to consider a continuous contribution. For this, let 𝜙 ∈ 𝐿1(0, 1) be
positive and vanishing in a right neighbourhood of 0 and suppose that

𝑑𝜇(𝑠) = 𝜙(𝑠) 𝑑𝑠.

Then,

ℒ𝑢 =
ˆ 1

0

[
−𝐷𝑠

𝑖

(
𝑎𝑖𝑗𝐷𝑠

𝑗𝑢 + 𝑎𝑖𝑢
)
+ 𝑏𝑖𝐷𝑠

𝑖 𝑢
]
𝜙(𝑠) 𝑑𝑠 + 𝑎𝑢.
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We point out that, when 𝑎𝑖 = 𝑏𝑖 = 𝑎 = 0, the function 𝑓 defined in (1.10)
is null and thus it is compactly bounded in 𝐻0(𝒜,Ω). When it is not the case,
instead, in order to apply Theorems 1.4 and 1.5, we must check the compact
boundedness of 𝑓 in𝐻0(𝒜,Ω) (sufficient conditions are provided in Theorems
A.1 and A.2).

2. A glance at the fractional gradient
This section provides a self-contained introduction to the fractional gradient

and its connection with the Riesz potential.
The results shown in this section are already present, at least in some form,

in the literature, but we provide here a simple and self-contained introduction
to the basics of the fractional gradient and we extend the known results to the
level of generality needed for our goals.

2.1. The fractional gradient. Let 𝑛 denote the space dimension. For any 𝑠 ∈
[−1, 1), we set

𝑐𝑠,𝑛 ∶=
2𝑠𝜋−

𝑛
2 Γ(𝑛+𝑠+1

2
)

Γ( 1−𝑠
2
)

, (2.1)

where Γ is the Euler Gamma function. Since in this work the dimension 𝑛 is
given once and for all, from now on, we will refer to this constant simply as 𝑐𝑠.
We point out that the range 𝑠 ∈ [−1, 1) for the definition of 𝑐𝑠 is needed

when discussing the fractional Fundamental Theorem of Calculus in (2.12) and
Corollary 2.9.
We mention here that the following results hold true for 𝑐𝑠 (see [BCM21,

Lemma 2.4]):
sup

𝑠∈[−1,1)

𝑐𝑠
(1 − 𝑠)

< +∞ (2.2)

and
lim
𝑠↗1

𝑐𝑠
(1 − 𝑠)

= 1
𝜔𝑛
. (2.3)

In line with [CS19,Sil20], we define the fractional gradient as follows.

Definition 2.1. Let 𝑠 ∈ (0, 1] and 𝑢 ∈ 𝒟(ℝ𝑛). We define the fractional gradient
of 𝑢 as

𝐷𝑠𝑢(𝑥) ∶=
⎧

⎨
⎩

𝑐𝑠 lim𝜀↘0

ˆ
ℝ𝑛⧵𝐵𝜀

𝑧𝑢(𝑥 + 𝑧)
|𝑧|𝑛+𝑠+1

𝑑𝑧 if 𝑠 ∈ (0, 1),

𝐷𝑢(𝑥) if 𝑠 = 1.
(2.4)

In Lemma 2.4 here below, we show that for any 𝑢 ∈ 𝒟(ℝ𝑛) with compact
support, 𝐷𝑠𝑢 is defined pointwise for any 𝑠 ∈ (0, 1). Moreover, to justify this
definition for 𝑠 = 1, we will show in Proposition 2.6 below that the fractional
gradient 𝐷𝑠𝑢 converges to the classical gradient 𝐷𝑢, as 𝑠 ↗ 1.
In line with [BCM21, Definition 2.2], we now extend the definition in (2.4)

to a broader class of functions.
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Definition 2.2. Let 𝑠 ∈ (0, 1] and 𝑝 ∈ [1, +∞). Let 𝑢 ∈ 𝐿𝑝(ℝ𝑛) be such that
there exists a sequence (𝑢𝑘) ⊂ 𝒟(ℝ𝑛) converging to 𝑢 in 𝐿𝑝(ℝ𝑛) as 𝑘 → +∞ and
for which (𝐷𝑠𝑢𝑘) is a Cauchy sequence in 𝐿𝑝(ℝ𝑛, ℝ𝑛). Then, we define𝐷𝑠𝑢 as the
limit in 𝐿𝑝(ℝ𝑛, ℝ𝑛) of 𝐷𝑠𝑢𝑘 as 𝑘 → +∞.
Remark 2.3. Definition 2.2 depends neither on the sequence (𝑢𝑘) nor on the ex-
ponent 𝑝 (see [BCM21, Lemma 2.3]). Also, for any 𝑢 ∈ 𝒟(ℝ𝑛), Definitions 2.1
and 2.2 coincide.
By odd symmetry, we note that for any 𝜀 > 0,ˆ

ℝ𝑛⧵𝐵𝜀

𝑧
|𝑧|𝑛+𝑠+1

𝑑𝑧 = 0. (2.5)

Hence, applying the change of variable 𝑦 ∶= 𝑧 + 𝑥, we obtain an equivalent
definition of the fractional gradient when 𝑠 ∈ (0, 1), that is:

𝐷𝑠𝑢(𝑥) = 𝑐𝑠 lim𝜀↘0

ˆ
ℝ𝑛⧵𝐵𝜀

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧

= 𝑐𝑠 lim𝜀↘0

ˆ
ℝ𝑛⧵𝐵𝜀(𝑥)

(𝑦 − 𝑥)(𝑢(𝑦) − 𝑢(𝑥))
|𝑥 − 𝑦|𝑛+𝑠+1

𝑑𝑦.

Lemma 2.4. Let 𝑠 ∈ (0, 1) and 𝑢 ∈ 𝒟(ℝ𝑛). Let 𝑅 > 0 be such that 𝐵𝑅 contains
the support of 𝑢.
Then, for any 𝑥0 ∈ ℝ𝑁 , 𝑥 ∈ 𝐵1(𝑥0) and 𝑅 ⩾ |𝑥0| + 𝑅 + 1, we have that

𝐷𝑠𝑢(𝑥) = 𝑐𝑠
ˆ
𝐵𝑅

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧

= 𝑐𝑠
ˆ
𝐵𝑅(𝑥)

(𝑦 − 𝑥)(𝑢(𝑦) − 𝑢(𝑥))
|𝑥 − 𝑦|𝑛+𝑠+1

𝑑𝑦.
(2.6)

Proof. We use the short notation 𝑅0 ∶= |𝑥0| + 𝑅 + 1. Let now 𝑅 ⩾ 𝑅0. We
notice that, for every 𝑥 ∈ 𝐵1(𝑥0) and 𝑧 ∈ ℝ𝑛 ⧵ 𝐵𝑅,

|𝑥 + 𝑧| ⩾ |𝑧| − |𝑥 − 𝑥0| − |𝑥0| > 𝑅 − 1 − |𝑥0| ⩾ 𝑅0 − 1 − |𝑥0| = 𝑅
and accordingly 𝑢(𝑥 + 𝑧) = 0.
Therefore, recalling also (2.5), we find that, for any 𝜀 > 0,ˆ

ℝ𝑛⧵𝐵𝜀

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧 =
ˆ
ℝ𝑛⧵𝐵𝜀

𝑧𝑢(𝑥 + 𝑧)
|𝑧|𝑛+𝑠+1

𝑑𝑧

=
ˆ
𝐵𝑅0⧵𝐵𝜀

𝑧𝑢(𝑥 + 𝑧)
|𝑧|𝑛+𝑠+1

𝑑𝑧 =
ˆ
𝐵𝑅0⧵𝐵𝜀

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧.

Consequently,

𝐷𝑠𝑢(𝑥) = 𝑐𝑠 lim𝜀↘0

ˆ
ℝ𝑛⧵𝐵𝜀

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧

= 𝑐𝑠 lim𝜀↘0

ˆ
𝐵𝑅0⧵𝐵𝜀

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧.
(2.7)
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Nowwe denote by 𝐿𝑢 the Lipschitz constant of 𝑢 and by 𝟙𝐴 the characteristic
function of a set 𝐴 ⊂ ℝ𝑛. Then, we set

𝑔(𝑧) ∶=
𝐿𝑢𝟙{|𝑧|⩽1}
|𝑧|𝑛−(1−𝑠)

+
2‖𝑢‖𝐿∞(ℝ𝑛)𝟙{|𝑧|>1}

|𝑧|𝑛+𝑠

and 𝑓𝜀(𝑧) ∶=
𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))

|𝑧|𝑛+𝑠+1
𝟙{|𝑧|>𝜀}.

Since 𝑔 ∈ 𝐿1(ℝ𝑛) and |𝑓𝜀| ⩽ 𝑔 for any 𝜀 > 0, we can apply the Dominated
Convergence Theorem to obtain that

lim
𝜀↘0

ˆ
𝐵𝑅0⧵𝐵𝜀

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧 = lim
𝜀↘0

ˆ
𝐵𝑅0

𝑓𝜀(𝑧) 𝑑𝑧

=
ˆ
𝐵𝑅0

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧,

which, together with (2.7), establishes the first line in (2.6). Moreover, by the
change of variables 𝑧 = 𝑦 − 𝑥, we obtain the second line in (2.6). □

With the aid of Lemma 2.4, we now prove the following continuity result for
the fractional gradient:

Corollary 2.5. Let 𝑠 ∈ (0, 1] and 𝑢 ∈ 𝒟(ℝ𝑛). Then, for any 𝑥0 ∈ ℝ𝑛,

lim
𝑥→𝑥0

𝐷𝑠𝑢(𝑥) = 𝐷𝑠𝑢(𝑥0).

Proof. If 𝑠 = 1 the result is trivial. Thus, from now on, we suppose that 𝑠 ∈
(0, 1).
Let 𝑥0 ∈ ℝ𝑛 and 𝑅 > 0 be such that 𝐵𝑅 contains the support of 𝑢. Thus, by

Lemma 2.4, for all 𝑅 ⩾ |𝑥0| + 𝑅 + 1 and for all 𝑥 ∈ 𝐵1(𝑥0) we have that

𝐷𝑠𝑢(𝑥) = 𝑐𝑠
ˆ
𝐵𝑅

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧 for any 𝑥 ∈ (𝑥0 − 1, 𝑥0 + 1).

Now we define

𝑓(𝑧) ∶=
‖𝐷𝑢‖𝐿∞(ℝ𝑛)

|𝑧|𝑛−(1−𝑠)
and we note that 𝑓 ∈ 𝐿1(𝐵𝑅).
Moreover, for any 𝑧 ∈ 𝐵𝑅,

|||||||
𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))

|𝑧|𝑛+𝑠+1
|||||||
⩽ 1
|𝑧|𝑛+𝑠

|||||||||

ˆ 1

0
𝐷𝑢(𝑥 + 𝑡𝑧) ⋅ 𝑧 𝑑𝑡

|||||||||

⩽
‖𝐷𝑢‖𝐿∞(ℝ𝑛)

|𝑧|𝑛+𝑠−1
= 𝑓(𝑧).

As a consequence, we can apply the Dominated Convergence Theorem and
exploit the continuity of 𝑢 to obtain that

lim
𝑥→𝑥0

ˆ
𝐵𝑅

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧 =
ˆ
𝐵𝑅

𝑧(𝑢(𝑥0 + 𝑧) − 𝑢(𝑥0))
|𝑧|𝑛+𝑠+1

𝑑𝑧,
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which gives the desired result. □

We are now ready to provide a justification to the definition given in (2.4)
for 𝑠 = 1. The following proposition, indeed, shows that the fractional gradient
converges pointwise to the classical gradient as 𝑠 ↗ 1.

Proposition 2.6. Let 𝑢 ∈ 𝒟(ℝ𝑛). Then, for any 𝑥 ∈ ℝ𝑛,

lim
𝑠↗1

𝐷𝑠𝑢(𝑥) = 𝐷𝑢(𝑥).

Proof. Let 𝑥 ∈ ℝ𝑛. In order to establish the claim of Proposition 2.6, we prove
that, for any 𝑖 = 1, … , 𝑛,

lim
𝑠↗1

𝐷𝑠
𝑖 𝑢(𝑥) = 𝐷𝑖𝑢(𝑥). (2.8)

For this, we suppose that the support of 𝑢 is contained in some ball 𝐵𝑅 and
set 𝑅𝑥 ∶= |𝑥| + 𝑅 + 1. In this way, by Lemma 2.4, we have that

𝐷𝑠
𝑖 𝑢(𝑥) = 𝑐𝑠

ˆ
𝐵𝑅𝑥

𝑧𝑖(𝑢(𝑥 + 𝑧) − 𝑢(𝑥))
|𝑧|𝑛+𝑠+1

𝑑𝑧.

Thus,

𝐷𝑠
𝑖 𝑢(𝑥) = 𝑐𝑠

ˆ
𝐵𝑅𝑥

𝑧𝑖(𝐷𝑘𝑢(𝑥)𝑧𝑘 + 𝑂(|𝑧|2))
|𝑧|𝑛+𝑠+1

𝑑𝑧 = 𝐴𝑠(𝑥) + 𝐵𝑠(𝑥),

where

𝐴𝑠(𝑥) ∶= 𝑐𝑠𝐷𝑘𝑢(𝑥)
ˆ
𝐵𝑅𝑥

𝑧𝑖𝑧𝑘
|𝑧|𝑛+𝑠+1

𝑑𝑧

and 𝐵𝑠(𝑥) ∶= 𝑐𝑠
ˆ
𝐵𝑅𝑥

𝑧𝑖𝑂(|𝑧|2)
|𝑧|𝑛+𝑠+1

𝑑𝑧.

We observe that ˆ
𝐵𝑅𝑥

𝑧𝑖𝑧𝑘
|𝑧|𝑛+𝑠+1

𝑑𝑧 = 0,

whenever 𝑘 ≠ 𝑖, and therefore

𝐴𝑠(𝑥) = 𝑐𝑠𝐷𝑖𝑢(𝑥)
ˆ
𝐵𝑅𝑥

𝑧2𝑖
|𝑧|𝑛+𝑠+1

𝑑𝑧

=
𝑐𝑠
𝑛 𝐷𝑖𝑢(𝑥)

ˆ
𝐵𝑅𝑥

𝑑𝑧
|𝑧|𝑛−(1−𝑠)

=
𝑐𝑠

(1 − 𝑠)
𝑅1−𝑠𝑥 𝑆𝑛−1

𝑛 𝐷𝑖𝑢(𝑥).

Using (2.3) and the relation 𝜔𝑛 = 𝑆𝑛−1∕𝑛, we thereby obtain that

lim
𝑠↗1

𝐴𝑠(𝑥) = 𝐷𝑖𝑢(𝑥).
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Accordingly, to complete the proof of (2.8), it remains to check that

lim
𝑠↗1

𝐵𝑠(𝑥) = 0. (2.9)

For this, we notice that

|𝐵𝑠(𝑥)| ⩽ 𝑐𝑠
ˆ
𝐵𝑅𝑥

𝑂(|𝑧|2)
|𝑧|𝑛+𝑠

𝑑𝑧 =
𝑐𝑠𝑂(𝑅2−𝑠𝑥 )
2 − 𝑠 ,

which vanishes as 𝑠 ↗ 1 (thanks to (2.3)), thus establishing (2.9) and complet-
ing the proof of (2.8), as desired. □

We mention that, as 𝑠 ↗ 1, the convergence of the fractional gradient to
the classical gradient does not hold only pointwise. For example, for any 𝑝 ∈
(1, +∞) and 𝑢 ∈ 𝑊1,𝑝(ℝ𝑛), we have that (see [BCM21, Theorem 3.2])

𝐷𝑠𝑢 → 𝐷𝑢 in 𝐿𝑝(ℝ𝑛) as 𝑠 ↗ 1.

Now we study the decay rate at infinity of the fractional gradient operator
that, under suitable integrability assumptions on 𝑢, can be shown to be poly-
nomial:

Proposition 2.7. Let 𝑠 ∈ (0, 1), 𝑢 ∈ 𝒟(ℝ𝑛) and let 𝑅 > 0 be such that 𝐵𝑅
contains the support of 𝑢. Then, for any 𝑥 ∈ ℝ𝑛 ⧵ 𝐵2𝑅,

|𝐷𝑠𝑢(𝑥)| ⩽
2𝑛+𝑠𝑐𝑠‖𝑢‖𝐿1(𝐵𝑅)

|𝑥|𝑛+𝑠
.

Proof. Let 𝑥 ∈ ℝ𝑛 ⧵ 𝐵2𝑅. For any 𝑦 ∈ 𝐵𝑅, we have that

|𝑥 − 𝑦| ⩾ |𝑥| − |𝑦| ⩾ |𝑥| − |𝑥|
2 = |𝑥|

2 .

As a consequence, making use of Lemma 2.4, we find that

|𝐷𝑠𝑢(𝑥)| ⩽ 𝑐𝑠
ˆ
ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|
|𝑥 − 𝑦|𝑛+𝑠

𝑑𝑦 = 𝑐𝑠
ˆ
ℝ𝑛

|𝑢(𝑦)|
|𝑥 − 𝑦|𝑛+𝑠

𝑑𝑦

= 𝑐𝑠
ˆ
𝐵𝑅

|𝑢(𝑦)|
|𝑥 − 𝑦|𝑛+𝑠

𝑑𝑦 ⩽
2𝑛+𝑠𝑐𝑠
|𝑥|𝑛+𝑠

‖𝑢‖𝐿1(𝐵𝑅),

as desired. □

Regarding the regularity properties of the fractional gradient, we recall that,
for any 𝑠 ∈ (0, 1) and 𝑢 ∈ 𝒟(ℝ𝑛), one has that (see [BCM20, Lemma 3.1])

𝐷𝑠𝑢 ∈ 𝐿𝑝(ℝ𝑛) for all 𝑝 ∈ [1, +∞]. (2.10)

In particular, the next lemma ensures that the 𝐿∞ norm of the fractional
gradient can be bounded in terms of the 𝐿∞ norm of the classical gradient, uni-
formly with respect to 𝑠 ∈ (0, 1].
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Lemma 2.8. Let𝑢 ∈ 𝒟(ℝ𝑛) and let𝑅 > 1∕3 be such that𝐵𝑅 contains the support
of 𝑢.
Then, there exists a positive constant 𝐶, depending only on 𝑛 and 𝑅, such that

sup
𝑠∈(0,1]

‖𝐷𝑠𝑢‖𝐿∞(ℝ𝑛) ⩽ 𝐶‖𝐷𝑢‖𝐿∞(ℝ𝑛).

Proof. We notice that, if 𝑠 = 1, we can take 𝐶 = 1 to obtain the desired esti-
mate. Hence, from now on, we suppose that 𝑠 ∈ (0, 1).
We observe that, since 𝑢 ∈ 𝒟(ℝ𝑛), we can choose 𝑥0 ∈ 𝐵𝑅 satisfying 𝑢(𝑥0) =

0. Furthermore, applying the Fundamental Theorem of Calculus, we obtain
that, for any 𝑥 ∈ ℝ𝑛,

|𝑢(𝑥)| = |𝑢(𝑥) − 𝑢(𝑥0)| =
|||||||||

ˆ 1

0
𝐷𝑢(𝑡𝑥 + (1 − 𝑡)𝑥0) ⋅ (𝑥 − 𝑥0) 𝑑𝑡

|||||||||
⩽ 2𝑅‖𝐷𝑢‖𝐿∞(𝐵𝑅).

As a consequence,
‖𝑢‖𝐿∞(𝐵𝑅) ⩽ 2𝑅‖𝐷𝑢‖𝐿∞(𝐵𝑅).

From this and Proposition 2.7, we have that, for any 𝑥 ∈ ℝ𝑛 ⧵ 𝐵2𝑅,

|𝐷𝑠𝑢(𝑥)| ⩽
2𝑛+𝑠𝑐𝑠‖𝑢‖𝐿1(𝐵𝑅)

|𝑥|𝑛+𝑠
⩽
2𝑛+𝑠𝑐𝑠|𝐵𝑅|‖𝑢‖𝐿∞(𝐵𝑅)

|𝑥|𝑛+𝑠

⩽
𝑐𝑠|𝐵𝑅|‖𝑢‖𝐿∞(𝐵𝑅)

𝑅𝑛+𝑠 ⩽
2𝑐𝑠|𝐵𝑅|
𝑅𝑛+𝑠−1

‖𝐷𝑢‖𝐿∞(𝐵𝑅).
(2.11)

Furthermore, by Lemma 2.4, we have that, for any 𝑥 ∈ 𝐵2𝑅,

|𝐷𝑠𝑢(𝑥)| ⩽ 𝑐𝑠
ˆ
𝐵3𝑅(𝑥)

|𝑢(𝑦) − 𝑢(𝑥)|
|𝑥 − 𝑦|𝑛+𝑠

𝑑𝑦

⩽ 𝑐𝑠‖𝐷𝑢‖𝐿∞(𝐵𝑅)
ˆ
𝐵3𝑅

𝑑𝑧
|𝑧|𝑛−(1−𝑠)

=
𝑐𝑠𝑆𝑛(3𝑅)1−𝑠

(1 − 𝑠)
‖𝐷𝑢‖𝐿∞(𝐵𝑅).

This and (2.11) entail that

‖𝐷𝑠𝑢‖𝐿∞(ℝ𝑁) ⩽ (
2𝑐𝑠|𝐵𝑅|
𝑅𝑛+𝑠−1

+
𝑐𝑠𝑆𝑛(3𝑅)1−𝑠

(1 − 𝑠)
) ‖𝐷𝑢‖𝐿∞(𝐵𝑅).

In light of (2.2) and (2.3), we obtain that the constant appearing in the above
estimate depends only on 𝑛 and 𝑅, but is independent of 𝑠 ∈ (0, 1), as desired.

□

There exists a fractional Fundamental TheoremofCalculus, valid for any𝑢 ∈
𝒟(ℝ𝑛), stating that, for any 𝑥, 𝑦 ∈ ℝ𝑛,

𝑢(𝑦) − 𝑢(𝑥) = 𝑐−𝑠
ˆ
ℝ𝑛
(

(𝑧 − 𝑥)
|𝑧 − 𝑥|𝑛+1−𝑠

−
(𝑧 − 𝑦)

|𝑧 − 𝑦|𝑛+1−𝑠
) ⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧. (2.12)
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While we refer to [CS19, Theorem 3.12] for a detailed proof of (2.12), we show
here a useful consequence.

Corollary 2.9. Let 𝑠 ∈ (0, 1). Then, for any 𝑢 ∈ 𝒟(ℝ𝑛) and any 𝑥 ∈ ℝ𝑛,

𝑢(𝑥) = 𝑐−𝑠
ˆ
ℝ𝑛

(𝑥 − 𝑧)
|𝑥 − 𝑧|𝑛−𝑠+1

⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧.

Proof. We take 𝑅1 > 0 such that 𝐵𝑅1 contains the support of 𝑢. Then, for
any 𝑅 > 2𝑅1 we define

𝐴𝑅(𝑥) ∶=
ˆ
𝐵𝑅

|𝐷𝑠𝑢(𝑧)|
|𝑧 − 𝑥|𝑛−𝑠

𝑑𝑧

and 𝐸𝑅(𝑥) ∶=
ˆ
ℝ𝑛⧵𝐵𝑅

|𝐷𝑠𝑢(𝑧)|
|𝑧 − 𝑥|𝑛−𝑠

𝑑𝑧.

We claim that
lim

𝑅→+∞
lim

|𝑥|→+∞
𝐴𝑅(𝑥) = 0 (2.13)

and
lim

𝑅→+∞
lim

|𝑥|→+∞
𝐸𝑅(𝑥) = 0. (2.14)

To prove (2.13), we notice that for any 𝑅 > 0, 𝑧 ∈ 𝐵𝑅 and 𝑥 ∈ ℝ𝑛 ⧵ 𝐵𝑅+1,
|𝐷𝑠𝑢(𝑧)|
|𝑧 − 𝑥|𝑛−𝑠

⩽ |𝐷𝑠𝑢(𝑧)|.

As a consequence, since 𝐷𝑠𝑢 ∈ 𝐿1(ℝ𝑛) by (2.10), we can apply the Dominated
Convergence Theorem and conclude that

lim
|𝑥|→+∞

𝐴𝑅(𝑥) ⩽
ˆ
𝐵𝑅

lim
|𝑥|→+∞

( 1
|𝑧 − 𝑥|𝑛−𝑠

) |𝐷𝑠𝑢(𝑧)| 𝑑𝑧 = 0.

Taking the limit as 𝑅 → +∞, we establish (2.13).
Now we prove (2.14). For the sake of clarity, we use the notation 𝐵𝑐𝑟(𝑝) ∶=

ℝ𝑛 ⧵ 𝐵𝑟(𝑝) for every 𝑟 > 0 and 𝑝 ∈ ℝ𝑁 . Then, for any 𝑅 > 2𝑅1 and 𝑥 ∈ ℝ𝑛,
using Proposition 2.7, we conclude that

𝐸𝑅(𝑥) ⩽ 2𝑛+𝑠𝑐𝑠‖𝑢‖𝐿1(ℝ𝑛)

ˆ
𝐵𝑐𝑅

𝑑𝑧
|𝑧 − 𝑥|𝑛−𝑠|𝑧|𝑛+𝑠

⩽ 2𝑛+𝑠𝑐𝑠‖𝑢‖𝐿1(ℝ𝑛) (
1

𝑅𝑛+𝑠

ˆ
𝐵𝑐𝑅∩𝐵1(𝑥)

𝑑𝑧
|𝑧 − 𝑥|𝑛−𝑠

+
ˆ
𝐵𝑐𝑅∩𝐵

𝑐
1(𝑥)

𝑑𝑧
|𝑧|𝑛+𝑠

)

⩽ 2𝑛+𝑠𝑐𝑠‖𝑢‖𝐿1(ℝ𝑛) (
1

𝑅𝑛+𝑠

ˆ
𝐵1(𝑥)

𝑑𝑧
|𝑧 − 𝑥|𝑛−𝑠

+
ˆ
𝐵𝑐𝑅

𝑑𝑧
|𝑧|𝑛+𝑠

)

=
2𝑛+𝑠𝑐𝑠𝑆𝑛‖𝑢‖𝐿1(ℝ𝑛)

𝑠 ( 1
𝑅𝑛+𝑠 +

1
𝑅𝑠 ) .

Since this estimate does not depend on 𝑥, letting 𝑅 → +∞ we obtain (2.14), as
desired.
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Now we point out that
||||||||

ˆ
ℝ𝑛

(𝑧 − 𝑥)
|𝑧 − 𝑥|𝑛+1−𝑠

⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧
||||||||
⩽ 𝐴𝑅(𝑥) + 𝐸𝑅(𝑥)

and therefore, from (2.13) and (2.14), we see that

lim
|𝑥|→+∞

||||||||

ˆ
ℝ𝑛

(𝑧 − 𝑥)
|𝑧 − 𝑥|𝑛+1−𝑠

⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧
||||||||

= lim
𝑅→+∞

lim
|𝑥|→+∞

||||||||

ˆ
ℝ𝑛

(𝑧 − 𝑥)
|𝑧 − 𝑥|𝑛+1−𝑠

⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧
||||||||

⩽ lim
𝑅→+∞

lim
|𝑥|→+∞

(
𝐴𝑅(𝑥) + 𝐸𝑅(𝑥)

)
= 0.

As a result, taking the limit as |𝑥| → +∞ in (2.12), we obtain that

𝑢(𝑦) = lim
|𝑥|→+∞

(
𝑢(𝑦) − 𝑢(𝑥)

)

= lim
|𝑥|→+∞

𝑐−𝑠
ˆ
ℝ𝑛
(

(𝑧 − 𝑥)
|𝑧 − 𝑥|𝑛+1−𝑠

−
(𝑧 − 𝑦)

|𝑧 − 𝑦|𝑛+1−𝑠
) ⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧

= 𝑐−𝑠
ˆ
ℝ𝑛

(𝑦 − 𝑧)
|𝑧 − 𝑦|𝑛+1−𝑠

⋅ 𝐷𝑠𝑢(𝑧) 𝑑𝑧,

as desired. □

The next proposition deals with the differentiability properties of the frac-
tional gradient. For any multi-index 𝛼 = (𝛼1, … , 𝛼𝑛) ∈ ℕ𝑛, we set |𝛼| ∶=∑𝑛

𝑖=1 𝛼𝑖 and

𝜕𝛼𝑢 ∶= 𝜕|𝛼|𝑢
𝜕𝑥𝛼11 ⋯𝜕𝑥𝛼𝑛𝑛

.

Proposition 2.10. Let 𝑠 ∈ (0, 1] and 𝑢 ∈ 𝒟(ℝ𝑛). Then, we have that 𝐷𝑠𝑢 ∈
𝐶∞(ℝ𝑛, ℝ𝑛) and, for any 𝛼 ∈ ℕ𝑛,

𝜕𝛼 (𝐷𝑠𝑢) = 𝐷𝑠 (𝜕𝛼𝑢) . (2.15)

Proof. If 𝑠 = 1, then Proposition 2.10 is obviously true, thus we suppose from
now on that 𝑠 ∈ (0, 1). We point out that the continuity of 𝐷𝑠𝑢 follows from
Corollary 2.5. Throughout the proof, for the sake of clarity, we denote the par-
tial derivative with respect to 𝑥𝑖 by either

𝜕𝑢
𝜕𝑥𝑖

or 𝑢𝑥𝑖 .
Also, since 𝑢 ∈ 𝒟(ℝ𝑛), we have that

𝐷𝑠𝑢(𝑥) =
𝑐𝑠
2

ˆ
ℝ𝑛

𝑧(𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧))
|𝑧|𝑛+𝑠+1

𝑑𝑧.

We claim that, for any 𝑥 ∈ ℝ𝑛,

𝜕𝐷𝑠𝑢
𝜕𝑥1

(𝑥) = 𝐷𝑠𝑢𝑥1(𝑥). (2.16)
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With the aim of proving (2.16), we set

𝑓(𝑧) ∶=
2‖𝐷𝑢‖𝐿∞(ℝ𝑛)

|𝑧|𝑛+𝑠

and we observe that 𝑓 ∈ 𝐿1(ℝ𝑛 ⧵ 𝐵1).
Moreover, for any 𝑥 ∈ ℝ𝑛, 𝑧 ∈ ℝ𝑛 ⧵ 𝐵1 and |ℎ| ⩽ 1,

||||||||||

𝑧
[
(𝑢(𝑥 + ℎ𝑒1 + 𝑧) − 𝑢(𝑥 + ℎ𝑒1 − 𝑧)) − (𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧))

]

ℎ|𝑧|𝑛+𝑠+1

||||||||||

⩽ 1
|ℎ| |𝑧|𝑛+𝑠

|||||||||

ˆ ℎ

0
𝑢𝑥1(𝑥 + 𝑧 + 𝑡𝑒1) 𝑑𝑡 −

ˆ ℎ

0
𝑢𝑥1(𝑥 − 𝑧 + 𝑡𝑒1) 𝑑𝑡

|||||||||

⩽
2‖𝐷𝑢‖𝐿∞(ℝ𝑛)

|ℎ| |𝑧|𝑛+𝑠
= 𝑓(𝑧).

As a consequence, we can apply the Dominated Convergence Theorem to find
that

lim
ℎ→0

ˆ
ℝ𝑛⧵𝐵1

𝑧
[
(𝑢(𝑥 + ℎ𝑒1 + 𝑧) − 𝑢(𝑥 + ℎ𝑒1 − 𝑧)) − (𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧))

]

ℎ|𝑧|𝑛+𝑠+1
𝑑𝑧

=
ˆ
ℝ𝑛⧵𝐵1

𝑧
(
𝑢𝑥1(𝑥 + 𝑧) − 𝑢𝑥1(𝑥 − 𝑧)

)

|𝑧|𝑛+𝑠+1
𝑑𝑧.

(2.17)

Now, for any 𝑥 ∈ ℝ𝑛, 𝑧 ∈ 𝐵1 and |ℎ| ⩽ 1,
|||||||||

(
𝑢(𝑥 + ℎ𝑒1 + 𝑧) − 𝑢(𝑥 + ℎ𝑒1 − 𝑧)

)
−
(
𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)

)

ℎ
−
(
𝑢𝑥1 (𝑥 + 𝑧) − 𝑢𝑥1 (𝑥 − 𝑧)

)|||||||||

=
|||||||||
(
1
ℎ

ˆ ℎ

0
𝑢𝑥1 (𝑥 + 𝑧 + 𝜏𝑒1) − 𝑢𝑥1 (𝑥 − 𝑧 + 𝜏𝑒1) 𝑑𝜏) −

(
𝑢𝑥1 (𝑥 + 𝑧) − 𝑢𝑥1 (𝑥 − 𝑧)

)|||||||||

= 1
|ℎ|

|||||||||

ˆ ℎ

0

( [
𝑢𝑥1 (𝑥 + 𝑧 + 𝜏𝑒1) − 𝑢𝑥1 (𝑥 − 𝑧 + 𝜏𝑒1)

]
−
(
𝑢𝑥1 (𝑥 + 𝑧) − 𝑢𝑥1 (𝑥 − 𝑧)

))
𝑑𝜏
|||||||||

= 1
|ℎ|

|||||||||

ˆ ℎ

0
(
ˆ 𝜏

0

𝜕2𝑢
𝜕𝑥21

(𝑥 + 𝑧 + 𝑡𝑒1) −
𝜕2𝑢
𝜕𝑥21

(𝑥 − 𝑧 + 𝑡𝑒1) 𝑑𝑡) 𝑑𝜏
|||||||||

⩽ |𝑧| |ℎ| sup
|𝛼|=3
𝑥∈ℝ𝑛

|||𝜕𝛼𝑢(𝑥)||| .

As a consequence,

lim
ℎ→0

||||||||||

ˆ
𝐵1

𝑧
[
(𝑢(𝑥 + ℎ𝑒1 + 𝑧) − 𝑢(𝑥 + ℎ𝑒1 − 𝑧)) − (𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧))

]

ℎ|𝑧|𝑛+𝑠+1
𝑑𝑧

−
ˆ
𝐵1

𝑧
(
𝑢𝑥1(𝑥 + 𝑧) − 𝑢𝑥1(𝑥 − 𝑧)

)

|𝑧|𝑛+𝑠+1
𝑑𝑧
|||||||||

⩽ lim
ℎ→0

ˆ
𝐵1
|𝑧|1−𝑛−𝑠 |ℎ| sup

|𝛼|=3
𝑥∈ℝ𝑛

|||𝜕𝛼𝑢(𝑥)||| 𝑑𝑧 = 0.
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Combining this information with (2.17) we establish (2.16), as desired.
Now, since 𝑢 ∈ 𝒟(ℝ𝑛), for any 𝛼 ∈ ℕ𝑛 we have that 𝜕𝛼𝑢 ∈ 𝒟(ℝ𝑛) too.

Consequently, we can apply the same argument as above to each derivatives
of 𝑢 in order to obtain (2.15). □

For further reference, we also recall the following “integration by parts” for-
mula for the fractional gradient (see [BCM21, Lemma 2.2]):

Lemma 2.11. Let 𝑠 ∈ (0, 1] and 𝑝 ∈ (1, +∞). Let 𝑣 ∶ ℝ𝑛 → ℝ𝑛 be such
that 𝑣𝑖 ∈ 𝒟(ℝ𝑛) for any 𝑖 = 1, … , 𝑛.
Then, for any 𝜙 ∈ 𝒟(ℝ𝑛),

𝑛∑

𝑖=1

ˆ
ℝ𝑛
𝐷𝑠
𝑖 𝑣𝑖 𝜙 𝑑𝑥 = −

ˆ
ℝ𝑛
𝑣 ⋅ 𝐷𝑠𝜙 𝑑𝑥.

2.2. TheRiesz Potential. This section aims at showing some relations occur-
ring between the fractional gradient and the Riesz potential operator. After
a brief introduction on this operator, Proposition 2.15 below will provide an
explicit form of the Fourier transform of the fractional gradient. Then, Theo-
rem 2.16 will constitute the main theorem of this section and it will be used
to study embedding properties of the functional spaces under consideration in
this paper (see the forthcoming Proposition 3.11). For a complete discussion
on this topic, we refer the reader to [Ste70,Hed72,Gra14].
The Riesz potential of order 𝛼 ∈ (0, 1) is formally defined as

𝐼𝛼𝑢(𝑥) ∶= 𝐾𝛼 ∗ 𝑢(𝑥) =
1
𝛾𝛼,𝑛

ˆ
ℝ𝑛

𝑢(𝑦)
|𝑥 − 𝑦|𝑛−𝛼

𝑑𝑦, (2.18)

where 𝐾𝛼 is defined by

𝐾𝛼(𝑥) =
1
𝛾𝛼,𝑛

|𝑥|−𝑛+𝛼 with 𝛾𝛼,𝑛 =
2𝛼𝜋

𝑛
2 Γ(𝛼

2
)

Γ(𝑛−𝛼
2
)
. (2.19)

Since the space dimension 𝑛 constitues a fixed parameter in this work, we will
refer to 𝛾𝛼,𝑛 simply as 𝛾𝛼. We stress that, for any 𝑠 ∈ (0, 1), the relation be-
tween 𝛾𝑠 and 𝑐𝑠 is the following

𝑐𝑠 =
𝑛 + 𝑠 − 1
𝛾1−𝑠

. (2.20)

It is known (see e.g. [Ste70, I, Theorem 1]) that if

𝑝 ∈
(
1, 𝑛𝛼

)
and 𝑞 ∶=

𝑛𝑝
𝑛 − 𝛼𝑝 ,

then, for some 𝐶 > 0, it holds that

‖𝐼𝛼𝑢‖𝐿𝑞(ℝ𝑛) ⩽ 𝐶‖𝑢‖𝐿𝑝(ℝ𝑛). (2.21)

Now we proceed by computing the Fourier transform of the Riesz potential.
To this end, we establish the following preliminary result:
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Lemma 2.12. Let 𝛼 ∈ (0, 1) and 𝑢 ∈ 𝒮(ℝ𝑛). Then,

ℱ(𝐼𝛼𝑢)(𝜉) = |2𝜋𝜉|−𝛼 𝑢(𝜉),

where the Fourier transform is intended in the sense of distribution.

Proof. We claim that
𝐾𝛼 ∈ 𝒮′(ℝ𝑛). (2.22)

To this end, for every 𝜙 ∈ 𝒮(ℝ𝑛), we define

⟨𝐾𝛼, 𝜙⟩ ∶=
ˆ
ℝ𝑛

𝜙(𝑥)
𝛾𝛼|𝑥|𝑛−𝛼

𝑑𝑥.

In this way,𝐾𝛼 is identifiedwith a linear functional from 𝒮(ℝ𝑛) toℝ. Moreover,

⟨𝛾𝛼 𝐾𝛼, 𝜙⟩ =
ˆ
ℝ𝑛

𝜙(𝑥)
|𝑥|𝑛−𝛼

𝑑𝑥 =
ˆ
{|𝑥|<1}

𝜙(𝑥)
|𝑥|𝑛−𝛼

𝑑𝑥 +
ˆ
{|𝑥|>1}

𝜙(𝑥)
|𝑥|𝑛−𝛼

𝑑𝑥

⩽ ‖𝜙‖𝐿∞(ℝ𝑛)

ˆ
{|𝑥|<1}

𝑑𝑥
|𝑥|𝑛−𝛼

+ ‖𝑥 𝜙‖𝐿∞(ℝ𝑛)

ˆ
{|𝑥|>1}

𝑑𝑥
|𝑥|𝑛+1−𝛼

,

for some 𝐶 > 0, which proves (2.22).
As a consequence of (2.22), since 𝑢 ∈ 𝒮(ℝ𝑛), we can write that

ℱ(𝐼𝛼𝑢)(𝜉) = ℱ(𝐾𝛼 ∗ 𝑢)(𝜉) = 𝐾𝛼(𝜉)𝑢(𝜉). (2.23)

Now, for all 𝑧 ∈ ℂ with Re𝑧 > −𝑛, we define the function

𝑢𝑧(𝑥) ∶=
𝜋

𝑧+𝑛
2 |𝑥|𝑧

Γ( 𝑧+𝑛
2
)
.

We observe that, since 𝑢𝑧 ∈ 𝐿1loc(ℝ
𝑛), we can compute its Fourier transform,

which is given by (see [Gra14, Theorem 2.4.6.])

𝑢𝑧(𝜉) = 𝑢−𝑛−𝑧(𝜉). (2.24)

Thus, taking 𝑧 ∶= −𝑛 + 𝛼,

𝑢−𝑛+𝛼(𝑥) =
𝜋

𝛼
2 |𝑥|−𝑛+𝛼

Γ(𝛼
2
)

and, by (2.24),

ℱ
⎛
⎜
⎝

𝜋
𝛼
2 |𝑥|−𝑛+𝛼

Γ(𝛼
2
)

⎞
⎟
⎠
= 𝑢−𝑛+𝛼(𝜉) = 𝑢−𝛼(𝜉) =

𝜋
𝑛−𝛼
2 |𝜉|−𝛼

Γ(𝑛−𝛼
2
)
.

As a result, recalling the definitions of 𝐾𝛼 and 𝛾𝛼 in (2.19), we obtain that

𝐾𝛼(𝜉) = ℱ ( 1𝛾𝛼
|𝑥|−𝑛+𝛼) (𝜉) = |2𝜋𝜉|−𝛼.

Together with (2.23), this entails the desired result. □
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Remark 2.13. We stress that, if 𝑢 ∈ 𝒮(ℝ𝑛), then ℱ(𝐼𝛼𝑢) ∈ 𝐿𝑝(ℝ𝑛) for all 𝑝 ∈
[1, 𝑛∕𝛼). Indeed, in light of Lemma 2.12,

‖ℱ(𝐼𝛼𝑢)‖
𝑝
𝐿𝑝(ℝ𝑛) ⩽ 𝐶 (

ˆ
𝐵1
|𝜉|−𝛼𝑝|𝑢(𝜉)|𝑝 𝑑𝜉 +

ˆ
ℝ𝑛⧵𝐵1

|𝜉|−𝛼𝑝|𝑢(𝜉)|𝑝 𝑑𝜉)

⩽ 𝐶 (
ˆ
𝐵1
|𝜉|−𝛼𝑝 𝑑𝜉 +

ˆ
ℝ𝑛⧵𝐵1

|𝜉|−(𝑛+𝛼𝑝) 𝑑𝜉) ⩽ 𝐶,

up to renaming 𝐶 > 0 line after line.

With the aid of Lemma 2.12 and a density argument, we now show the fol-
lowing:

Proposition 2.14. Let 𝛼 ∈ (0, 1) and 𝑢 ∈ 𝐿𝑝(ℝ𝑛) for some 𝑝 ∈ (1, 𝑛∕𝛼). Then,
ℱ(𝐼𝛼𝑢)(𝜉) = |2𝜋𝜉|−𝛼𝑢(𝜉),

where the Fourier transform is intended in the sense of distribution.

Proof. To start with, we claim that
𝐼𝛼𝑢 ∈ 𝒮′(ℝ𝑛). (2.25)

To this end, for any 𝜙 ∈ 𝒮(ℝ𝑛), we define

⟨𝐼𝛼𝑢, 𝜙⟩ =
ˆ
ℝ𝑛
𝐼𝛼𝑢(𝑥) 𝜙(𝑥) 𝑑𝑥.

As a result, 𝐼𝛼𝑢 is identified with a linear functional from 𝒮(ℝ𝑛) toℝ. Further-
more, we set

𝑞 ∶=
𝑛𝑝

𝑛 − 𝛼𝑝 ,

and we use the Hölder inequality and (2.21) to see thatˆ
ℝ𝑛
𝐼𝛼𝑢(𝑥) 𝜙(𝑥) 𝑑𝑥 ⩽ ‖𝐼𝛼𝑢‖𝐿𝑞(ℝ𝑛)‖𝜙‖

𝐿
𝑞
𝑞−1 (ℝ𝑛)

⩽ 𝐶‖𝑢‖𝐿𝑝(ℝ𝑛)‖𝜙‖
𝐿

𝑞
𝑞−1 (ℝ𝑛)

< +∞,

which completes the proof of (2.25).
Now, by density, we take a sequence (𝑢𝑘)𝑘 ⊂ 𝒟(ℝ𝑛) that converges to 𝑢

in 𝐿𝑝(ℝ𝑛) as 𝑘 → +∞. Thanks to Lemma 2.12, we know that, for any 𝑘 ∈ ℕ,
in the sense of distribution,

ℱ(𝐼𝛼𝑢𝑘)(𝜉) = |2𝜋𝜉|−𝛼𝑢𝑘(𝜉). (2.26)
We point out that

ℱ(𝐼𝛼𝑢) = lim
𝑘→+∞

ℱ(𝐼𝛼𝑢𝑘). (2.27)

Indeed, by the Hölder inequality and (2.21), for all 𝜙 ∈ 𝒮(ℝ𝑛),
||||||||

ˆ
ℝ𝑛
𝐼𝛼(𝑢𝑘 − 𝑢)(𝑥) 𝜙(𝑥) 𝑑𝑥

||||||||
⩽ ‖𝜙‖

𝐿
𝑞
𝑞−1 (ℝ𝑛)

‖𝐼𝛼(𝑢𝑘 − 𝑢)‖𝐿𝑞(ℝ𝑛)

⩽ 𝐶‖𝜙‖
𝐿

𝑞
𝑞−1 (ℝ𝑛)

‖𝑢𝑘 − 𝑢‖𝐿𝑝(ℝ𝑛),
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which gives that
lim
𝑘→+∞

𝐼𝛼𝑢𝑘 = 𝐼𝛼𝑢.

This implies (2.27), as desired.
Moreover, we have that, in the sense of distribution,

lim
𝑘→+∞

𝑢𝑘 = 𝑢. (2.28)

To check this, we notice that, for all 𝜙 ∈ 𝒮(ℝ𝑛),
||||||||

ˆ
ℝ𝑛

(
𝑢𝑘(𝜉) − 𝑢(𝜉)

)
𝜙(𝜉) 𝑑𝜉

||||||||
=

||||||||

ˆ
ℝ𝑛

(
𝑢𝑘(𝜉) − 𝑢(𝜉)

)
𝜙(𝜉) 𝑑𝜉

||||||||
⩽ ‖𝑢𝑘 − 𝑢‖𝐿𝑝(ℝ𝑛)‖𝜙‖

𝐿
𝑝
𝑝−1 (ℝ𝑛)

,

from which (2.28) follows.
Gathering together (2.26), (2.27) and (2.28), we conclude that, in the sense

of distribution,

ℱ(𝐼𝛼𝑢) = lim
𝑘→+∞

ℱ(𝐼𝛼𝑢𝑘) = lim
𝑘→+∞

|2𝜋𝜉|−𝛼𝑢𝑘(𝜉) = |2𝜋𝜉|−𝛼𝑢(𝜉),

which is the desired result. □

We now compute the Fourier transform of the fractional gradient.

Proposition 2.15. Let 𝑠 ∈ (0, 1) and 𝑢 ∈ 𝒟(ℝ𝑛). Then,

ℱ(𝐷𝑠𝑢)(𝜉) = 𝑖(2𝜋)𝑠𝜉|𝜉|𝑠−1𝑢(𝜉).

Proof. We let 𝑅 > 0 such that the support of 𝑢 is contained in 𝐵𝑅.
Also, we point out that

𝐷𝑠𝑢(𝑥) =
𝑐𝑠
2

ˆ
ℝ𝑛

[𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)]𝑧
|𝑧|𝑛+𝑠+1

𝑑𝑧.

Thus, for all 𝑖 ∈ {1, … , 𝑛}, we have that

ℱ(𝐷𝑠
𝑖 𝑢)(𝜉) =

𝑐𝑠
2

ˆ
ℝ𝑛
(
ˆ
ℝ𝑛

[𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)]𝑧𝑖
|𝑧|𝑛+𝑠+1

𝑑𝑧) 𝑒2𝜋𝑖𝜉⋅𝑥 𝑑𝑥. (2.29)

We claim that

the function [𝑢(𝑥+𝑧)−𝑢(𝑥−𝑧)]𝑧𝑖
|𝑧|𝑛+𝑠+1

𝑒2𝜋𝑖𝜉⋅𝑥 belongs to 𝐿1(ℝ2𝑛). (2.30)

To check this, we observe that, when 𝑧 ∈ 𝐵1,
|||||||
[𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)]𝑧𝑖

|𝑧|𝑛+𝑠+1
𝑒2𝜋𝑖𝜉⋅𝑥

|||||||
⩽
|𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)|

|𝑧|𝑛+𝑠

= 1
|𝑧|𝑛+𝑠

|||||||||

ˆ 1

−1
∇𝑢(𝑥 + 𝑡𝑧) ⋅ 𝑧 𝑑𝑡

|||||||||
⩽ 1
|𝑧|𝑛+𝑠−1

sup
𝑡∈(−1,1)

|∇𝑢(𝑥 + 𝑡𝑧)|

⩽
𝟙𝐵𝑅+1(𝑥)‖∇𝑢‖𝐿∞(ℝ𝑛)

|𝑧|𝑛+𝑠−1
=∶ 𝑓1(𝑥, 𝑧).
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Moreover, when 𝑧 ∈ ℝ𝑛 ⧵ 𝐵1,

|||||||
[𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)]𝑧𝑖

|𝑧|𝑛+𝑠+1
𝑒2𝜋𝑖𝜉⋅𝑥

|||||||
⩽
|𝑢(𝑥 + 𝑧)| + |𝑢(𝑥 − 𝑧)|

|𝑧|𝑛+𝑠

⩽
𝟙𝐵𝑅(𝑥 + 𝑧) + 𝟙𝐵𝑅(𝑥 − 𝑧)

|𝑧|𝑛+𝑠
‖𝑢‖𝐿∞(ℝ𝑛) =∶ 𝑓2(𝑥, 𝑧).

From these observations, we deduce that
|||||||
[𝑢(𝑥 + 𝑧) − 𝑢(𝑥 − 𝑧)]𝑧𝑖

|𝑧|𝑛+𝑠+1
𝑒2𝜋𝑖𝜉⋅𝑥

|||||||
⩽ 𝑓1(𝑥, 𝑧)𝟙𝐵1(𝑧) + 𝑓2(𝑥, 𝑧)𝟙ℝ𝑛⧵𝐵1(𝑧),

which belongs to 𝐿1(ℝ2𝑛), thus proving (2.30).
In light of (2.30), we can exploit the Fubini-Tonelli Theorem and obtain from

(2.10) and (2.29) that

ℱ
(
𝐷𝑠
𝑖 𝑢
)
(𝜉) = 𝑐𝑠𝑖 (

ˆ
ℝ𝑛

(
𝑒𝑖2𝜋𝑧⋅𝜉 − 𝑒−𝑖2𝜋𝑧⋅𝜉

)

2𝑖
𝑧𝑖

|𝑧|𝑛+𝑠+1
𝑑𝑧) 𝑢(𝜉)

= 𝑐𝑠𝑖 (
ˆ
ℝ𝑛
sin(2𝜋𝑧 ⋅ 𝜉)

𝑧𝑖
|𝑧|𝑛+𝑠+1

𝑑𝑧) 𝑢(𝜉)

= 𝑐𝑠𝑖(2𝜋)𝑠 (
ˆ
ℝ𝑛
sin(𝜁 ⋅ 𝜉)

𝜁𝑖
|𝜁|𝑛+𝑠+1

𝑑𝜁) 𝑢(𝜉).

Then by (2.1) and by Proposition C.3, we see that

ℱ
(
𝐷𝑠
𝑖 𝑢
)
(𝜉) = 𝑐𝑠𝑖(2𝜋)𝑠2−𝑠𝜋

𝑛
2

Γ( 1−𝑠
2
)

Γ(𝑛+𝑠+1
2

)
𝜉𝑖|𝜉|𝑠−1𝑢(𝜉)

= 𝑖(2𝜋)𝑠𝜉𝑖|𝜉|𝑠−1𝑢(𝜉). □

With the work done so far, we can now relate the fractional gradient with the
Riesz potential via the following result.

Theorem 2.16. Let 𝑠 ∈ (0, 1) and 𝑢 ∈ 𝒟(ℝ𝑛). Then, for any 𝑠 ∈ (𝑠, 1],

𝐷𝑠𝑢 = 𝐼𝑠−𝑠𝐷𝑠𝑢.

Proof. We point out that 𝐷𝜎𝑢 ∈ 𝒮′(ℝ𝑛), thanks to (2.10), for all 𝜎 ∈ (0, 1].
Moreover, by (2.22)we have that𝐾𝑠−𝑠 ∈ 𝒮′(ℝ𝑛), and therefore 𝐼𝑠−𝑠𝐷𝑠𝑢 = 𝐾𝑠−𝑠 ∗
𝐷𝑠𝑢 ∈ 𝒮′(ℝ𝑛).
Also, by Propositions 2.14 and 2.15,

ℱ(𝐼𝑠−𝑠𝐷𝑠𝑢)(𝜉) = |2𝜋𝜉|𝑠−𝑠𝐷𝑠𝑢(𝜉) = 𝑖(2𝜋)𝑠𝜉|𝜉|𝑠−1𝑢(𝜉) = ℱ(𝐷𝑠𝑢)(𝜉),

from which the desired result follows. □
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3. The space𝑯𝒔,𝒑
𝟎 (𝛀): embeddings and inequalities

In this section, we present the function spaces that naturally arisewhen deal-
ing with fractional gradients and partial differential equations. A detailed ac-
count on these function spaces can be found in [SS15,CS19,BCM20,BCM21].
In line with [SS15,CS19,BCM21], we define the following spaces.

Definition 3.1. Let 𝑠 ∈ (0, 1] and 𝑝 ∈ [1, +∞). We define the norm

‖𝜙‖𝐻𝑠,𝑝(ℝ𝑛) ∶=
(
‖𝜙‖𝑝𝐿𝑝(ℝ𝑛) + ‖𝐷𝑠𝜙‖𝑝𝐿𝑝(ℝ𝑛)

) 1
𝑝 (3.1)

and the space

𝐻𝑠,𝑝(ℝ𝑛) ∶= 𝒟(ℝ𝑛)
‖⋅‖𝐻𝑠,𝑝(ℝ𝑛)

.

It is worth observing that the definition above is well posed, since if 𝑢 ∈
𝒟(ℝ𝑛), then 𝑢, 𝐷𝑠𝜙 ∈ 𝐿𝑝(ℝ𝑛).

Remark 3.2. We stress that, for any function 𝑢 ∈ 𝐻𝑠,𝑝(ℝ𝑛) with 𝑠 ∈ (0, 1] and
𝑝 ∈ [1, +∞), we have that 𝐷𝑠𝑢 is well-defined according to Definition 2.2.

Furthermore, in a bounded domain Ω ⊂ ℝ𝑛 we have the following setting
(see [BCM21, Section 2.3]):

Definition 3.3. Let Ω ⊂ ℝ𝑛 be a bounded domain. Let 𝑠 ∈ (0, 1) and 𝑝 ∈
[1, +∞). We define

𝐻𝑠,𝑝
0 (Ω) ∶= 𝒟(Ω)

‖⋅‖𝐻𝑠,𝑝(ℝ𝑛)
.

We remark that𝐻𝑠,𝑝
0 (Ω) is a subspace of𝐻𝑠,𝑝(ℝ𝑛).

Proposition 3.4. Let 𝑠 ∈ (0, 1] and 𝑝 ∈ (1, +∞). Also, let Ω be a bounded
domain inℝ𝑛.
Then, the spaces𝐻𝑠,𝑝(ℝ𝑛) and𝐻𝑠,𝑝

0 (Ω) are reflexive.

Proof. We point out that 𝐻1,𝑝(ℝ𝑛) is reflexive, thanks to [Bre11, Proposition
8.1].
Hence, we now focus on the case 𝑠 ∈ (0, 1). To this end, we notice that the

product space 𝐿𝑝(ℝ𝑛)×𝐿𝑝(ℝ𝑛, ℝ𝑛) is reflexive. Also, we define the operator𝑇 ∶
𝐻𝑠,𝑝(ℝ𝑛) → 𝐿𝑝(ℝ𝑛) × 𝐿𝑝(ℝ𝑛, ℝ𝑛) as 𝑇𝑢 ∶= (𝑢, 𝐷𝑠𝑢) and observe that 𝑇 is an
isometry from𝐻𝑠,𝑝(ℝ𝑛) to 𝐿𝑝(ℝ𝑛)×𝐿𝑝(ℝ𝑛, ℝ𝑛). As a consequence, 𝑇(𝐻𝑠,𝑝(ℝ𝑛))
is a closed subspace of 𝐿𝑝(ℝ𝑛) × 𝐿𝑝(ℝ𝑛, ℝ𝑛) and therefore𝐻𝑠,𝑝(ℝ𝑛) is reflexive
(see e.g. [Lax02, Theorem 15 on page 82]).
Since𝐻𝑠,𝑝

0 (Ω) is a closed subspace of𝐻𝑠,𝑝(ℝ𝑛), it is reflexive as well. □

Remark 3.5. In [SS15, Theorem 1.7], it was established, for any 𝑠 ∈ (0, 1) and
𝑝 ∈ (1, +∞), the identification of the spaces 𝐻𝑠,𝑝(ℝ𝑛) with the classical Bessel
spaces (see [SS15, Definition 2.1] for a formal definition of Bessel spaces). We
refer the interested reader to [SS15, Theorem2.2] for a detailed characterization
of these spaces.
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Now, we present an embedding result for the spaces𝐻𝑠,𝑝(ℝ𝑛) and𝐻𝑠,𝑝
0 (Ω).

Theorem 3.6. Let 𝑠 ∈ (0, 1), 𝑝 ∈ (1, +∞) andΩ be a bounded domain ofℝ𝑛.
Let also

⎧

⎨
⎩

𝑞 ∈ [1, 𝑝∗𝑠 ] if 𝑠𝑝 < 𝑛,
𝑞 ∈ [1, +∞) if 𝑠𝑝 = 𝑛,
𝑞 ∈ [1, +∞] if 𝑠𝑝 > 𝑛,

(3.2)

where 𝑝∗𝑠 ∶= 𝑛𝑝∕(𝑛 − 𝑠𝑝) is the so-called critical exponent.
Then,

𝐻𝑠,𝑝
0 (Ω) continuously embeds into 𝐿𝑞(Ω). (3.3)

Furthermore, if 𝑞 satisfies

⎧

⎨
⎩

𝑞 ∈ [1, 𝑝∗𝑠 ) if 𝑠𝑝 < 𝑛,
𝑞 ∈ [1, +∞) if 𝑠𝑝 = 𝑛,
𝑞 ∈ [1, +∞] if 𝑠𝑝 > 𝑛,

(3.4)

then, for any sequence (𝑢𝑘) ⊂ 𝐻𝑠,𝑝
0 (Ω) such that 𝑢𝑘 ⇀ 𝑢 in𝐻𝑠,𝑝(ℝ𝑛) as 𝑘 → +∞,

for some 𝑢 ∈ 𝐻𝑠,𝑝(ℝ𝑛), we have that 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω) and

𝑢𝑘 → 𝑢 in 𝐿𝑞(ℝ𝑛) as 𝑘 → +∞. (3.5)

Proof. When 𝑠𝑝 < 𝑛, the claim in (3.3) is immediate from [SS15, Theorem1.8].
When 𝑠𝑝 = 𝑛, the claim in (3.3) comes from [SS15, Theorem 1.10]. When 𝑠𝑝 >
𝑛, (3.3) plainly follows from [SS15, Theorem 2.2, (e)].
The second part of Theorem3.6 is a straightforward consequence of [BCM21,

Theorem 2.8]. □

Corollary 3.7. Let 𝑠 ∈ (0, 1) and 𝑝 ∈ (1, +∞). Let Ω be a bounded domain
ofℝ𝑛 and 𝑞 satisfy (3.4). Then, the embedding of𝐻𝑠,𝑝

0 (Ω) into 𝐿𝑞(Ω) is compact.

Proof. By Proposition 3.4, we know that 𝐻𝑠,𝑝
0 (Ω) is reflexive. Also, by Theo-

rem 3.6, we have that the embeddings of𝐻𝑠,𝑝
0 (Ω) into 𝐿𝑞(Ω) are continuous if 𝑞

satisfies (3.4). Then, by the theory of compact operators, we obtain that the
embeddings are compact if they map sequences converging in the weak topol-
ogy to sequences that converge in the strong sense (i.e., in the norm topology);
namely if for any (𝑢𝑘) ⊂ 𝐻𝑠,𝑝

0 (Ω) and 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω) such that 𝑢𝑘 ⇀ 𝑢 in𝐻𝑠,𝑝

0 (ℝ𝑛)
as 𝑘 → +∞, we have that

lim
𝑘→+∞

‖𝑢𝑘 − 𝑢‖𝐿𝑞(Ω) = 0. (3.6)

Aiming at proving (3.6), we observe that, since𝐻𝑠,𝑝
0 (Ω) ⊂ 𝐻𝑠,𝑝(ℝ𝑛), the reverse

inclusion for the dual spaces is valid, i.e. (𝐻𝑠,𝑝(ℝ𝑛))∗ ⊂
(
𝐻𝑠,𝑝
0 (Ω)

)∗
. Accord-

ingly, any sequence (𝑢𝑘) weakly converging to 𝑢 in 𝐻
𝑠,𝑝
0 (Ω), weakly converges

to 𝑢 in𝐻𝑠,𝑝(ℝ𝑛). Then, we are in the position of using the second statement in
Theorem 3.6 and therefore (3.6) is a consequence of (3.5). □
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We stress that, if 𝑠𝑝 < 𝑛, Corollary 3.7 constitutes a fractional counterpart of
the classical Sobolev embedding.
Now, let 𝑠 ∈ (0, 1), 𝑝 ∈ (1, +∞) and Ω be a bounded domain in ℝ𝑛. Accord-

ing to [BCM21, Theorem 2.9], we know that there exists a positive constant 𝐶,
depending only on 𝑛 and Ω, such that, for any 𝑢 ∈ 𝐻𝑠,𝑝

0 (Ω),

‖𝑢‖𝐿𝑝(Ω) ⩽
𝐶
𝑠 ‖𝐷

𝑠𝑢‖𝐿𝑝(ℝ𝑛). (3.7)

Our aim is now to extend this result to the case 𝑝 = 1, which seems not to be
covered in the available literature.

Proposition 3.8. Let 𝑠 ∈ (0, 1) andΩ be a bounded domain ofℝ𝑛. Let 𝜌 > 0 be
such thatΩ ⊂ [−𝜌, 𝜌]𝑛.
Then, there exists 𝐶 > 0, depending only on 𝑛, such that, for any 𝑢 ∈ 𝐻𝑠,1

0 (Ω),

‖𝑢‖𝐿1(Ω) ⩽
𝐶 𝜌𝑠

𝑠 ‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛).

Proof. Let us set

𝑐 ∶= sup
𝑠∈(−1,1)

𝑐𝑠,

which is finite, thanks to (2.2), and

𝑅 ∶=
⎛
⎜
⎜
⎝

2
𝑛+1
𝑛 (

𝑐2𝑆𝑛−1
𝑛 )

1
𝑛

+ 1
⎞
⎟
⎟
⎠

𝜌, (3.8)

so that Ω ⊂ 𝐵𝑅.
We establish the desired result for 𝑢 ∈ 𝒟(Ω), then we will apply a density

argument to complete the proof of the claim in its full generality.
Weobserve that, since𝑢 ∈ 𝒟(Ω), we infer fromCorollary 2.9 that, for any𝑥 ∈

ℝ𝑛,

|𝑢(𝑥)| ⩽ 𝑐−𝑠
ˆ
ℝ𝑛

|𝐷𝑠𝑢(𝑦)|
|𝑥 − 𝑦|𝑛−𝑠

𝑑𝑦.

As a result,

‖𝑢‖𝐿1(Ω) ⩽ 𝐴 + 𝐵, (3.9)

where

𝐴 ∶= 𝑐−𝑠
ˆ
𝐵2𝑅

(
ˆ
Ω

𝑑𝑥
|𝑥 − 𝑦|𝑛−𝑠

) |𝐷𝑠𝑢(𝑦)| 𝑑𝑦

and 𝐵 ∶= 𝑐−𝑠
ˆ
ℝ𝑛⧵𝐵2𝑅

(
ˆ
Ω

𝑑𝑥
|𝑥 − 𝑦|𝑛−𝑠

) |𝐷𝑠𝑢(𝑦)| 𝑑𝑦.
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We first estimate𝐴. To this end, we change variable 𝑧 ∶= 𝑥−𝑦 and obtain that

𝐴 ⩽ 𝑐 (
ˆ
𝐵2𝑅

|𝐷𝑠𝑢(𝑦)| 𝑑𝑦) (
ˆ
𝐵3𝑅

𝑑𝑧
|𝑧|𝑛−𝑠

)

⩽
3𝑐 𝑆𝑛−1 𝑅𝑠

𝑠 ‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛) ⩽
𝐶 𝜌𝑠

𝑠 ‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛),

(3.10)

for some 𝐶 > 0 depending only on 𝑛.
Now we estimate 𝐵. For this, we observe that if 𝑦 ∈ ℝ𝑛 ⧵ 𝐵2𝑅 and 𝑥 ∈ Ω,

then
1

|𝑥 − 𝑦|𝑛−𝑠
⩽ 2𝑛−𝑠

|𝑦|𝑛−𝑠
.

Thus, by Proposition 2.7 and the definition of 𝑅 in (3.8), we obtain that

𝐵 ⩽ 𝑐−𝑠2𝑛−𝑠|Ω|
ˆ
ℝ𝑛⧵𝐵2𝑅

|𝐷𝑠𝑢(𝑦)|
|𝑦|𝑛−𝑠

𝑑𝑦 ⩽ 𝑐222𝑛𝜌𝑛 (
ˆ
ℝ𝑛⧵𝐵2𝑅

𝑑𝑦
|𝑦|2𝑛

) ‖𝑢‖𝐿1(Ω)

=
𝑐2𝑆𝑛−12𝑛𝜌𝑛

𝑛 𝑅𝑛 ‖𝑢‖𝐿1(Ω) ⩽
1
2‖𝑢‖𝐿1(Ω).

From this, (3.9) and (3.10), we conclude that

‖𝑢‖𝐿1(Ω) ⩽
𝐶 𝜌𝑠

𝑠 ‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛) +
1
2‖𝑢‖𝐿1(Ω),

which proves the thesis for 𝑢 ∈ 𝒟(Ω).
Nowwe take 𝑢 ∈ 𝐻𝑠,1

0 (Ω). Then by definition, there exists a sequence (𝜙𝑘) ⊂
𝒟(Ω) converging to 𝑢 in𝐻𝑠,1(ℝ𝑛) as 𝑘 → +∞. Hence, for all 𝑘 ∈ ℕ,

‖𝜙𝑘‖𝐿1(Ω) ⩽
𝐶 𝜌𝑠

𝑠 ‖𝐷𝑠𝜙𝑘‖𝐿1(ℝ𝑛).

Passing to the limit in 𝑘 concludes the proof. □

We observe that Proposition 3.8 in the case 𝑠 = 1 reduces to the classical
Poincaré inequality. Also, relying on (3.7) and Proposition 3.8, we obtain the
following properties for the space𝐻𝑠,𝑝

0 (Ω).

Corollary 3.9. Let 𝑠 ∈ (0, 1], 𝑝 ∈ [1, +∞) andΩ be a bounded domain ofℝ𝑛.
Then, there exists a positive constant 𝐶, depending only on 𝑛, 𝑠, 𝑝 and Ω, and

independent of 𝑢, such that, for any 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω),

‖𝑢‖𝐻𝑠,𝑝(ℝ𝑛) ⩽ 𝐶‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛). (3.11)

Moreover, if 𝑠 ∈ (0, 1), the constant 𝐶 can be made independent of 𝑝 and takes
the form

𝐶 = (𝐶𝑠 + 1) ,

with 𝐶 > 0 depending only on 𝑛 andΩ.
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Proof. When 𝑠 = 1, (3.11) is an straightforward consequence of the Poincaré
inequality.
When 𝑠 ∈ (0, 1), we exploit either Proposition 3.8 if 𝑝 = 1 or (3.7) if 𝑝 ∈

(1, +∞), obtaining that

‖𝑢‖𝐻𝑠,𝑝(ℝ𝑛) =
(
‖𝑢‖𝑝𝐿𝑝(Ω) + ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

) 1
𝑝

⩽ ((
𝐶
𝑠 )

𝑝
+ 1)

1
𝑝

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽ (𝐶𝑠 + 1) ‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛),

for some 𝐶 > 0 depending only on 𝑛 and Ω. □

Proposition 3.10. Let 𝑝 ∈ [1, +∞) andΩ be a bounded domain ofℝ𝑛.
Then, there exists 𝐶 > 0, depending only on 𝑛, 𝑝 and Ω, such that, for all 𝑠 ∈

(0, 1] and 𝑅 > 0 with
𝑠2𝑅𝑠 > 𝐶, (3.12)

we have that, for any 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω),

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽ 2‖𝐷𝑠𝑢‖𝐿𝑝(𝐵𝑅).

Proof. By density, it is enough to prove the inequality for 𝑢 ∈ 𝒟(Ω).
When 𝑠 = 1 the thesis plainly follows taking 𝐶 ∶= sup𝑥∈Ω |𝑥|.
When 𝑠 ∈ (0, 1), we take

𝐶 ∶= max {1 + 2 sup
𝑥∈Ω

|𝑥|, 2𝑝 𝐶
2𝑝 − 1} , (3.13)

for a suitable 𝐶 that will be specified later on (depending only on 𝑛, 𝑝 and Ω).
With this choice, if 𝑅 > 0 satisfies (3.12), we have that Ω ⊂ 𝐵𝑅∕2, and there-

fore we can exploit Proposition 2.7 to deduce that

‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛⧵𝐵𝑅)
⩽ 2(𝑛+𝑠)𝑝𝑐𝑝𝑠 ‖𝑢‖

𝑝
𝐿1(Ω)

ˆ
ℝ𝑛⧵𝐵𝑅

𝑑𝑥
|𝑥|(𝑛+𝑠)𝑝

=
2(𝑛+𝑠)𝑝 𝑐𝑝𝑠 𝑆𝑛−1‖𝑢‖

𝑝
𝐿1(Ω)

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝

⩽
2(𝑛+𝑠)𝑝 𝑐𝑝𝑠 𝑆𝑛−1|Ω|𝑝−1‖𝑢‖

𝑝
𝐿𝑝(Ω)

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝
.

Now we use either (3.7) if 𝑝 ∈ (1, +∞) or Proposition 3.8 if 𝑝 = 1 and we see
that

‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛⧵𝐵𝑅)
⩽

𝐶‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

𝑠 (𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝
,

for some 𝐶 > 0 depending only on 𝑛, 𝑝 and Ω.
We notice that, in light of the definition of 𝐶 in (3.13) and the condition

in (3.12), we have that 𝑅 > 1, and consequently the map [0, +∞) ∋ 𝜏 ↦
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𝜏𝑅𝜏 is increasing. Thus, since 𝑛(𝑝 − 1) + 𝑠𝑝 ⩾ 𝑠, we have that (𝑛(𝑝 − 1) +
𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝 ⩾ 𝑠𝑅𝑠. Accordingly,

‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛⧵𝐵𝑅)
⩽
𝐶‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

𝑠2𝑅𝑠
⩽ (1 − 1

2𝑝 ) ‖𝐷
𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛).

As a result,

‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛) = ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(𝐵𝑅) + ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛⧵𝐵𝑅)

⩽ ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(𝐵𝑅) + (1 − 1
2𝑝 ) ‖𝐷

𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛),

which gives the desired result. □

Now let 0 < 𝑠 < 𝑠0 < 1 and Ω be a bounded domain of ℝ𝑛. Then, in
light [BCM21, Proposition 4.1], there exists a constant 𝐶 > 0, depending only
on 𝑛, 𝑠0, 𝑠 and Ω, such that, for every 𝑠 ∈ [𝑠0, 1), 𝑝 ∈ (1, +∞) and 𝑢 ∈ 𝐻𝑠,𝑝

0 (Ω),
we have that

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽ 𝐶‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛). (3.14)
In the following proposition, we provide a new proof of (3.14), and in fact we
extend the result to the case 𝑝 = 1, which seemed not to be covered in the
available literature. Moreover, we show that the dependence of 𝐶 on 𝑠0 can be
dropped, which seems to be also new.

Proposition 3.11. Let 𝑠 ∈ (0, 1) andΩ be a bounded domain ofℝ𝑛.
Then, there exists 𝐶 > 0, depending only on 𝑛, 𝑠 and Ω, such that, for any 𝑠 ∈

[𝑠, 1), 𝑝 ∈ [1, +∞) and 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω),

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽ 𝐶‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛).

Proof. If 𝑠 = 𝑠, the desired result holds true by taking 𝐶 = 1, thus from now
on we suppose that 𝑠 ∈ (𝑠, 1). In this case, we first establish Proposition 3.11
for 𝑢 ∈ 𝒟(Ω) and then we apply a density argument to complete the proof.
We take 𝑅 > 0 such that Ω ⊂ 𝐵𝑅. Also, recalling (2.20), we see that

𝛾𝑠−𝑠 =
𝑛 − (𝑠 − 𝑠)
𝑐1−(𝑠−𝑠)

,

and therefore, in light of (2.2),

𝛾 ∶= sup
𝑠∈(𝑠,1)

𝑛 − (𝑠 − 𝑠)
𝛾𝑠−𝑠(𝑠 − 𝑠)

= sup
𝑠∈(𝑠,1)

𝑐1−(𝑠−𝑠)
𝑠 − 𝑠 < +∞. (3.15)

Now we prove the desired result for 𝑝 = 1. To this end, we define

𝐴𝐼 ∶=
1
𝛾𝑠−𝑠

ˆ
𝐵2𝑅

(
ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

𝑑𝑦) 𝑑𝑥,

𝐴𝐼𝐼 ∶=
1
𝛾𝑠−𝑠

ˆ
𝐵2𝑅

(
ˆ
ℝ𝑛⧵𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

𝑑𝑦) 𝑑𝑥
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and 𝐵 ∶=
ˆ
ℝ𝑛⧵𝐵2𝑅

|𝐷𝑠𝑢(𝑥)| 𝑑𝑥.

We first estimate 𝐴𝐼 : making use of (3.15), we find that

𝐴𝐼 ⩽
1
𝛾𝑠−𝑠

(
ˆ
𝐵6𝑅

𝑑𝑧
|𝑧|𝑛−(𝑠−𝑠)

) ‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛)

=
𝑆𝑛−1(6𝑅)𝑠−𝑠

𝛾𝑠−𝑠(𝑠 − 𝑠)
‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛)

⩽
6𝑆𝑛−1𝛾max{1, 𝑅}

𝑛 − (𝑠 − 𝑠)
‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛)

⩽
𝐶1
𝑠 ‖𝐷

𝑠𝑢‖𝐿1(ℝ𝑛),

(3.16)

for some 𝐶1 > 0, depending only on 𝑛 and Ω.
Now we estimate 𝐴𝐼𝐼 . To this end, we set 𝑐 ∶= sup𝑠∈(−1,1) 𝑐𝑠, which is finite,

thanks to (2.2). As a result, exploiting Propositions 2.7 and 3.8,

𝐴𝐼𝐼 ⩽
2𝑛+𝑠 𝑐
𝛾𝑠−𝑠

[
ˆ
ℝ𝑛⧵𝐵4𝑅

1
|𝑦|𝑛+𝑠

(
ˆ
𝐵2𝑅

𝑑𝑥
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

) 𝑑𝑦] ‖𝑢‖𝐿1(Ω)

⩽
23𝑛+𝑠 𝑐 𝑆𝑛−1𝑅𝑛

𝛾𝑠−𝑠

ˆ
ℝ𝑛⧵𝐵4𝑅

𝑑𝑦
|𝑦|2𝑛+𝑠

‖𝑢‖𝐿1(Ω)

⩽
2𝑛 𝑐 𝑆2𝑛−1
𝛾𝑠−𝑠 𝑅𝑠

‖𝑢‖𝐿1(Ω)

⩽
2𝑛 𝑐 𝛾 𝑆2𝑛−1(𝑠 − 𝑠)
(𝑛 − (𝑠 − 𝑠))𝑅𝑠

‖𝑢‖𝐿1(Ω)

⩽
2𝑛 𝑐 𝛾 𝑆2𝑛−1
𝑠 min{1, 𝑅}

‖𝑢‖𝐿1(Ω)

⩽
𝐶2
𝑠2
‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛),

(3.17)

for some 𝐶2 > 0, depending only on 𝑛 and Ω.
In order to estimate 𝐵, we use Proposition 2.7 and 3.8 to obtain that

𝐵 ⩽ 2𝑛+𝑠𝑐 (
ˆ
ℝ𝑛⧵𝐵2𝑅

𝑑𝑥
|𝑥|𝑛+𝑠

) ‖𝑢‖𝐿1(Ω)

=
𝑆𝑛−12𝑛𝑐
𝑠 𝑅𝑠

‖𝑢‖𝐿1(Ω) ⩽
𝐶3
𝑠2
‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛),

(3.18)

for some 𝐶3 > 0, depending only on 𝑛 and Ω.
Now we recall that, in light of Theorem 2.16, 𝐷𝑠𝑢 = 𝐼𝑠−𝑠𝐷𝑠𝑢, and thus, re-

calling the definition of 𝐼𝑠−𝑠 in (2.18)

‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛) =
ˆ
ℝ𝑛
|𝐷𝑠𝑢(𝑥)| 𝑑𝑥 =

ˆ
ℝ𝑛
|𝐾𝑠−𝑠 ∗ 𝐷𝑠𝑢(𝑥)| 𝑑𝑥
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= 1
𝛾𝑠−𝑠

ˆ
ℝ𝑛

||||||||

ˆ
ℝ𝑛

𝐷𝑠𝑢(𝑦)
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

𝑑𝑦
||||||||
𝑑𝑥.

As a consequence of this and the estimates provided in (3.16), (3.17) and (3.18),
we conclude that

‖𝐷𝑠𝑢‖𝐿1(ℝ𝑛) ⩽ 𝐴𝐼 + 𝐴𝐼𝐼 + 𝐵 ⩽
𝐶4
𝑠 (1 + 1

𝑠 ) ‖𝐷
𝑠𝑢‖𝐿1(ℝ𝑛),

for some 𝐶4 > 0, depending only on 𝑛 and Ω. Hence, the proof of the desired
claim is complete for 𝑝 = 1 and 𝑢 ∈ 𝒟(Ω).
We now establish the desired result for 𝑝 ∈ (1, +∞). For this, we define

𝐴𝐼(𝑝) ∶=
2𝑝

𝛾𝑝𝑠−𝑠

ˆ
𝐵2𝑅

(
ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

𝑑𝑦)
𝑝

𝑑𝑥,

𝐴𝐼𝐼(𝑝) ∶=
2𝑝

𝛾𝑝𝑠−𝑠

ˆ
𝐵2𝑅

(
ˆ
ℝ𝑛⧵𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

𝑑𝑦)
𝑝

𝑑𝑥

and 𝐵(𝑝) ∶=
ˆ
ℝ𝑛⧵𝐵2𝑅

|𝐷𝑠𝑢(𝑥)|𝑝 𝑑𝑥.

We first estimate 𝐴𝐼(𝑝). For this purpose, we observe that, if 𝑥 ∈ 𝐵2𝑅, set-
ting 𝑝′ ∶= 𝑝

𝑝−1
and employing the Hölder inequality,

ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

𝑑𝑦

=
ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|

|𝑥 − 𝑦|
𝑛−(𝑠−𝑠)

𝑝

1

|𝑥 − 𝑦|
𝑛−(𝑠−𝑠)

𝑝′

𝑑𝑦

⩽ (
ˆ
𝐵6𝑅

𝑑𝑧
|𝑧|𝑛−(𝑠−𝑠)

)

1
𝑝′

(
ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑛−(𝑠−𝑠)
𝑑𝑦)

1
𝑝

= (
𝑆𝑛−1(6𝑅)𝑠−𝑠

𝑠 − 𝑠 )

1
𝑝′

(
ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑛−(𝑠−𝑠)
𝑑𝑦)

1
𝑝

⩽
6𝑆𝑛−1max{1, 𝑅}

(𝑠 − 𝑠)
1
𝑝′

(
ˆ
𝐵4𝑅

|𝐷𝑠𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑛−(𝑠−𝑠)
𝑑𝑦)

1
𝑝

.
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Consequently,

𝐴𝐼(𝑝) ⩽
(12𝑆𝑛−1max{1, 𝑅})𝑝

𝛾𝑝𝑠−𝑠(𝑠 − 𝑠)
𝑝
𝑝′

ˆ
𝐵4𝑅

(
ˆ
𝐵𝑅2

𝑑𝑥
|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

) |𝐷𝑠𝑢(𝑦)|𝑝 𝑑𝑦

=
12𝑝+𝑠−𝑠𝑆𝑝+2𝑛−1 max{1, 𝑅}

𝑝 𝑅𝑠−𝑠

𝛾𝑝𝑠−𝑠(𝑠 − 𝑠)
𝑝
𝑝′
+1

‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

=
12𝑝+𝑠−𝑠𝑆𝑝+2𝑛−1 max{1, 𝑅}

𝑝 𝑅𝑠−𝑠
(
𝛾𝑠−𝑠(𝑠 − 𝑠)

)𝑝 ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

⩽
12𝑝+1𝑆𝑝+2𝑛−1 max{1, 𝑅}

𝑝+1 𝛾𝑝
(
𝑛 − (𝑠 − 𝑠)

)𝑝 ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛)

⩽
12𝑝+1𝑆𝑝+2𝑛−1 max{1, 𝑅}

𝑝+1 𝛾𝑝

𝑠𝑝 ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛).

Now we estimate 𝐴𝐼𝐼(𝑝). By Proposition 2.7 and equation (3.7), we see that

𝐴𝐼𝐼(𝑝) ⩽
2𝑝+𝑛+𝑠𝑐
𝛾𝑝𝑠−𝑠

⎡
⎢
⎣

ˆ
𝐵2𝑅

(
ˆ
ℝ𝑛⧵𝐵4𝑅

𝑑𝑦
|𝑦|𝑛+𝑠|𝑥 − 𝑦|𝑛−(𝑠−𝑠)

)
𝑝

𝑑𝑥
⎤
⎥
⎦
‖𝑢‖𝑝𝐿1(Ω)

⩽ 2𝑝+𝑛+𝑠+𝑝(𝑛−𝑠+𝑠)𝑐
𝛾𝑝𝑠−𝑠

(
ˆ
ℝ𝑛⧵𝐵4𝑅

𝑑𝑦
|𝑦|2𝑛+𝑠

)
𝑝

‖𝑢‖𝑝𝐿1(Ω)

⩽
2𝑝+𝑛+𝑠+𝑝(𝑛−𝑠+𝑠)𝑐 𝑆𝑝𝑛−1|Ω|

𝑝−1

(4𝑅)𝑝(𝑛+𝑠)𝛾𝑝𝑠−𝑠
‖𝑢‖𝑝𝐿𝑝(Ω)

⩽
2𝑝+𝑛+𝑠+𝑝(𝑛−𝑠+𝑠)𝑐 𝑆𝑝𝑛−1|Ω|

𝑝−1𝛾𝑝

(4𝑅)𝑝(𝑛+𝑠)𝑠𝑝
‖𝑢‖𝑝𝐿𝑝(Ω)

⩽
𝐶 2𝑝+𝑛+𝑠+𝑝(𝑛−𝑠+𝑠)𝑐 𝑆𝑝𝑛−1|Ω|

𝑝−1𝛾𝑝

(4𝑅)𝑝(𝑛+𝑠)𝑠2𝑝
‖𝐷𝑠𝑢‖𝑝𝐿𝑝(Ω),

where 𝐶 depends only on 𝑛 and Ω.
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Now we estimate 𝐵(𝑝). We will proceed in a similar way as for 𝑝 = 1, using
Proposition 2.7 and equation (3.7). The details go as follows:

𝐵(𝑝) ⩽ (2𝑛+𝑠𝑐)𝑝 (
ˆ
ℝ𝑛⧵𝐵2𝑅

𝑑𝑥
|𝑥|𝑝(𝑛+𝑠)

) ‖𝑢‖𝑝𝐿1(Ω)

=
(2𝑛+𝑠𝑐)𝑝𝑆𝑛−1

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝
‖𝑢‖𝑝𝐿1(Ω)

⩽
(2𝑛+𝑠𝑐)𝑝𝑆𝑛−1 |Ω|𝑝−1

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝
‖𝑢‖𝑝𝐿𝑝(Ω)

⩽
𝐶(2𝑛+𝑠𝑐)𝑝𝑆𝑛−1 |Ω|𝑝−1

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝𝑠𝑝
‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ).

Gathering these estimates and recalling Theorem 2.16, we conclude that

‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ𝑛) ⩽ 𝐴𝐼(𝑝) + 𝐴𝐼𝐼(𝑝) + 𝐵(𝑝)

⩽
⎛
⎜
⎝

12𝑝+1𝑆𝑝+2𝑛−1 max{1, 𝑅}
𝑝+1 𝛾𝑝

𝑠𝑝

+
𝐶 2𝑝+𝑛+𝑠+𝑝(𝑛−𝑠+𝑠)𝑐 𝑆𝑝𝑛−1|Ω|

𝑝−1𝛾𝑝

(4𝑅)𝑝(𝑛+𝑠)𝑠2𝑝

+
𝐶(2𝑛+𝑠𝑐)𝑝𝑆𝑛−1 |Ω|𝑝−1

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝𝑠𝑝
) ‖𝐷𝑠𝑢‖𝑝𝐿𝑝(ℝ).

(3.19)

Now we observe that, for all 𝑎, 𝑏 ⩾ 0, we have that 𝑎𝑝 + 𝑏𝑝 ⩽ (𝑎 + 𝑏)𝑝,
therefore, for every 𝑗 ∈ ℕ and 𝑎1, … , 𝑎𝑗 ⩾ 0, we have that

𝑗∑

𝑖=1
𝑎𝑝𝑖 ⩽

⎛
⎜
⎝

𝑗∑

𝑖=1
𝑎𝑖
⎞
⎟
⎠

𝑝

.

Using this into (3.19), we thereby obtain that
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‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽
⎛
⎜
⎝

12𝑝+1𝑆𝑝+2𝑛−1 max{1, 𝑅}
𝑝+1 𝛾𝑝

𝑠𝑝

+
𝐶 2𝑝+𝑛+𝑠+𝑝(𝑛−𝑠+𝑠)𝑐 𝑆𝑝𝑛−1|Ω|

𝑝−1𝛾𝑝

(4𝑅)𝑝(𝑛+𝑠)𝑠2𝑝

+
𝐶(2𝑛+𝑠𝑐)𝑝𝑆𝑛−1 |Ω|𝑝−1

(𝑛(𝑝 − 1) + 𝑠𝑝)𝑅𝑛(𝑝−1)+𝑠𝑝𝑠𝑝
)

1
𝑝

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ)

⩽
⎛
⎜
⎜
⎝

12
1+ 1

𝑝 𝑆
1+ 2

𝑝
𝑛−1 max{1, 𝑅}

1+ 1
𝑝 𝛾

𝑠

+
𝐶

1
𝑝 2

1+𝑛−𝑠+𝑠+ 𝑛+𝑠
𝑝 𝑐

1
𝑝 𝑆𝑛−1|Ω|

𝑝−1
𝑝 𝛾

(4𝑅)𝑛+𝑠𝑠2

+
𝐶

1
𝑝 2𝑛+𝑠𝑐 𝑆

1
𝑝
𝑛−1 |Ω|

𝑝−1
𝑝

(𝑛(𝑝 − 1) + 𝑠𝑝)
1
𝑝𝑅

𝑛(𝑝−1)+𝑠𝑝
𝑝 𝑠

⎞
⎟
⎟
⎠

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ).

(3.20)

Moreover, we point out that, for all𝑀 ⩾ 0, we have that

min{1,𝑀} ⩽ 𝑀
1
𝑝 ⩽ max{1,𝑀}.

From this and (3.20), we infer that

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽ 𝐶‖𝐷𝑠𝑢‖𝐿𝑝(ℝ),

for some 𝐶 > 0, depending only on 𝑛, 𝑠 and Ω, as desired.
Now we complete the proof Proposition 3.11 by employing a density argu-

ment. More precisely, let 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω) and (𝜙𝑘) ∈ 𝒟(Ω) converging to 𝑢

in 𝑢 ∈ 𝐻𝑠,𝑝
0 (Ω) as 𝑘 → +∞. Then, for all 𝑘 ∈ ℕ,

‖𝐷𝑠𝜙𝑘‖𝐿𝑝(ℝ𝑛) ⩽ 𝐶‖𝐷𝑠𝜙𝑘‖𝐿𝑝(ℝ𝑛). (3.21)

Furthermore, since (𝐷𝑠𝜙𝑘) is a Cauchy sequence in 𝐿𝑝(ℝ𝑛, ℝ𝑛), we see that
(𝐷𝑠𝜙𝑘) is a Cauchy sequence in 𝐿𝑝(ℝ𝑛, ℝ𝑛) too, thanks to (3.21). As a result,
the thesis plainly follows passing to the limit as 𝑘 → +∞ in (3.21). □

In addition to Proposition 3.11, we have the following statement, that takes
into account the 𝐿𝑝-norm of the classical gradient.

Proposition 3.12. Let 𝑠 ∈ (0, 1], 𝑝 ∈ [1, +∞) and Ω be a bounded domain
ofℝ𝑛.
Then, there exists 𝐶 > 0, depending only on 𝑛, 𝑝 and Ω, such that, for all 𝑢 ∈

𝐻1,𝑝
0 (Ω),

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽
𝐶
𝑠 ‖𝐷𝑢‖𝐿𝑝(Ω).
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Proof. If 𝑠 = 1, then the claim is obviously true. If instead 𝑠 ∈ (0, 1), we
recall [BCM21, Proposition 2.7] to conclude that

‖𝐷𝑠𝑢‖𝐿𝑝(ℝ𝑛) ⩽
𝐶
𝑠 ‖𝑢‖𝐻1,𝑝(ℝ𝑛) =

𝐶
𝑠 ‖𝑢‖𝐻1,𝑝(Ω),

for some 𝐶 > 0 depending only on 𝑛 and 𝑝.
This and the Poincaré inequality yield the desired result. □

4. The function spaces 𝑳𝒑(𝒉,𝛀) and𝑯𝟎(𝒜, 𝒈,𝛀).
In this section, we introduce the function spaces related to the operator ℒ

in (1.3).
Let Ω be a bounded domain of ℝ𝑛, 𝑡 ∈ [1, +∞] and ℎ ∶ Ω → [0,+∞] be a

measurable function such that ℎ−1 ∈ 𝐿𝑡(Ω). For any 𝑝 ∈ [1, +∞], we define
the norm

‖𝑢‖𝐿𝑝(ℎ,Ω) =

⎧
⎪

⎨
⎪
⎩

(
ˆ
Ω
ℎ(𝑥)|𝑢(𝑥)|𝑝 𝑑𝑥)

1
𝑝

if 𝑝 ∈ [1, +∞),

ess sup
𝑥∈Ω

|𝑢(𝑥)| if 𝑝 = +∞,

where the ess sup is intended with respect to the measure 𝜈(𝐴) ∶=
´
𝐴 ℎ(𝑥) 𝑑𝑥,

for any set 𝐴 ⊂ Ω.
Thenwewrite𝐿𝑝(ℎ,Ω) for theBanach space of functions satisfying ‖𝑢‖𝐿𝑝(ℎ,Ω)

< +∞.

Remark 4.1. We point out that the space 𝐿𝑝(ℎ,Ω) is not empty. Indeed, for
any 𝑝 ∈ [1, +∞), let

𝐴ℎ ∶=
{
𝑥 ∈ Ω ∶ ℎ−1(𝑥) ⩾ 1

}
and 𝐵ℎ ∶=

{
𝑥 ∈ Ω ∶ ℎ−1(𝑥) < 1

}
.

Then if 𝑢 ∶ Ω → ℝ is a measurable function satisfying

|𝑢(𝑥)| ⩽ 𝐶
⎧

⎨
⎩

ℎ
− 1+𝑡

𝑝 (𝑥) if 𝑥 ∈ 𝐴ℎ,

ℎ
− 1
𝑝 (𝑥) if 𝑥 ∈ 𝐵ℎ,

for some constant 𝐶 > 0, we have that
ˆ
Ω
ℎ(𝑥)|𝑢(𝑥)|𝑝 ⩽ 𝐶 (

ˆ
𝐴ℎ
ℎ−𝑡(𝑥) 𝑑𝑥 +

ˆ
𝐵ℎ
𝑑𝑥) < +∞.

Thus, 𝑢 belongs to 𝐿𝑝(ℎ,Ω).
Moreover, we notice that any measurable function 𝑢 ∶ Ω → ℝ such that

|𝑢(𝑥)| ⩽ 𝐶ℎ−1(𝑥) for all 𝑥 ∈ Ω, for some constant 𝐶 > 0, lies in 𝐿∞(ℎ,Ω).
Furthermore, if ℎ ∈ 𝐿1loc(Ω), then𝒟(Ω) ⊂ 𝐿𝑝(ℎ,Ω) for any 𝑝 ∈ [1, +∞).

In this setting, we have the following result:
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Lemma 4.2. Let Ω be a bounded domain of ℝ𝑛, 𝑡 ∈ [1, +∞] and ℎ−1 ∈ 𝐿𝑡(Ω).
Let also

𝑝 ∈ [𝑡 + 1
𝑡 , +∞) (4.1)

Then, for all measurable functions 𝑢 ∶ Ω → ℝ,

‖𝑢‖
𝐿

𝑝𝑡
𝑡+1 (Ω)

⩽ ‖ℎ−1‖
1
𝑝

𝐿𝑡(Ω)‖𝑢‖𝐿𝑝(ℎ,Ω).

Proof. We set
𝑞 ∶=

𝑝𝑡
𝑡 + 1 (4.2)

and notice that 𝑞 ⩾ 1, thanks to (4.1).
If 𝑡 ∈ [1, +∞), we apply the Hölder inequality with exponents 𝛼 ∶= 𝑡+1

𝑡
and 𝛽 ∶= 𝑡 + 1 and find thatˆ

Ω
|𝑢(𝑥)|𝑞 𝑑𝑥 =

ˆ
Ω
|𝑢(𝑥)|𝑞ℎ

1
𝛼 (𝑥)ℎ−

1
𝛼 (𝑥) 𝑑𝑥

⩽ (
ˆ
Ω
|𝑢(𝑥)|𝑞𝛼ℎ(𝑥) 𝑑𝑥)

1
𝛼

(
ˆ
Ω
ℎ−

𝛽
𝛼 (𝑥) 𝑑𝑥)

1
𝛽

= (
ˆ
Ω
|𝑢(𝑥)|

𝑞(𝑡+1)
𝑡 ℎ(𝑥) 𝑑𝑥)

𝑡
𝑡+1

(
ˆ
Ω

|||ℎ(𝑥)|||
−𝑡 𝑑𝑥)

1
𝑡+1

.

The desired result follows from (4.2).
When 𝑡 = +∞, we have that 𝑞 = 𝑝, and thereforeˆ

Ω
|𝑢(𝑥)|𝑞 𝑑𝑥 =

ˆ
Ω
|𝑢(𝑥)|𝑝 𝑑𝑥 =

ˆ
Ω
ℎ−1(𝑥)ℎ(𝑥)|𝑢(𝑥)|𝑝 𝑑𝑥

⩽ ‖ℎ−1‖𝐿∞(Ω)‖𝑢‖
𝑝
𝐿𝑝(ℎ,Ω),

which completes the proof. □

Nowwe deal with the definition of the space𝐻0(𝒜, 𝑔,Ω). For this, we let 𝛿 >
0 be given by (1.5) and set

𝑝(𝛿) ∶= 1 + 𝛿

1 + 𝛿
2

. (4.3)

We stress that 𝑝(𝛿) ∈ (1, 2).
We recall the assumptions made on 𝒜 and on 𝜇(𝑠) in Section 1.3.

Lemma 4.3. LetΩ be a bounded domain ofℝ𝑛 and 𝑔 ∈ 𝐿1(Ω, [0, +∞)).
Then, the bilinear form
⟨𝑢, 𝑣⟩𝐻0(𝒜,𝑔,Ω)

∶=
ˆ
ℝ𝑛

ˆ
(0,1]

𝑎𝑖𝑗𝑆 (𝑠, 𝑥)𝐷
𝑠
𝑖 𝑢(𝑥)𝐷

𝑠
𝑗𝑣(𝑥) 𝑑𝜇(𝑠) 𝑑𝑥 +

ˆ
Ω
𝑔(𝑥)𝑢(𝑥)𝑣(𝑥) 𝑑𝑥 (4.4)

defines a real scalar product on𝒟(Ω).
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Proof. Let 𝑠0 ∈ (0, 1] denote the minimum of the support of 𝜇 (we stress
that 𝑠0 > 0 since the support of 𝜇 is assumed to be bounded away from 0). Let 𝑅
be the constant given by condition (1.5) and 𝑅1 > 0 be such that Ω ⊂ 𝐵𝑅1∕2.
Let 𝐶 be the constant appearing in Proposition 3.10 and

𝑅2 ∶= 2 sup
𝑠∈[𝑠0,1]

(𝐶
𝑠2
)
1
𝑠
. (4.5)

Let also 𝑅 ∶= max{𝑅, 𝑅1, 𝑅2}.
We first claim that, for any 𝑢 ∈ 𝒟(Ω),

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) < +∞. (4.6)

For this purpose, recalling (1.5) and Proposition 2.7, we estimateˆ
ℝ𝑛⧵𝐵𝑅

ˆ
(0,1]

Λ(𝑥)|𝐷𝑠𝑢(𝑥)|2 𝑑𝜇(𝑠) 𝑑𝑥

⩽ ‖𝜙‖2𝐿1(Ω)

ˆ
ℝ𝑛⧵𝐵𝑅

ˆ
(0,1]

4𝑛+𝑠𝑐2𝑠Λ(𝑥)
|𝑥|2𝑛+2𝑠

𝑑𝜇(𝑠) 𝑑𝑥

⩽ 4𝑛+1 sup
𝑠∈(0,1]

𝑐2𝑠 𝜇([𝑠0, 1])
ˆ
ℝ𝑛⧵𝐵𝑅

Λ(𝑥)
|𝑥|2𝑛

𝑑𝑥

⩽ 𝐶4𝑛+1 sup
𝑠∈(0,1]

𝑐2𝑠 𝜇([𝑠0, 1])
ˆ
ℝ𝑛⧵𝐵𝑅

𝑑𝑥
|𝑥|2𝑛−𝑝

< +∞.

(4.7)

Moreover, we observe that, in light of (1.5),

‖Λ‖𝐿1(𝐵𝑅) =
ˆ
𝐵𝑅

|Λ(𝑥)| 𝑑𝑥 =
ˆ
𝐵𝑅
|Λ(𝑥)| 𝑑𝑥 +

ˆ
𝐵𝑅⧵𝐵𝑅

|Λ(𝑥)| 𝑑𝑥

⩽ ‖Λ‖𝐿1(𝐵𝑅) + 𝐶
ˆ
𝐵𝑅⧵𝐵𝑅

|𝑥|𝑝 𝑑𝑥,

which is a finite quantity.
Accordingly, exploiting Lemma 2.8,ˆ

𝐵𝑅

ˆ
(0,1]

Λ(𝑥)|𝐷𝑠𝑢(𝑥)|2 𝑑𝜇 𝑑𝑥 ⩽ ‖Λ‖𝐿1(𝐵𝑅)
ˆ
[𝑠0,1]

‖𝐷𝑠𝑢‖2
𝐿∞(𝐵𝑅)

𝑑𝜇

⩽ ‖Λ‖𝐿1(𝐵𝑅)𝜇([𝑠0, 1]) sup
𝑠∈[𝑠0,1]

‖𝐷𝑠𝑢‖2𝐿∞(𝐵𝑅)

⩽ 𝐶‖Λ‖𝐿1(𝐵𝑅)𝜇([𝑠0, 1])‖𝐷𝑢‖
2
𝐿∞(Ω) < +∞.

(4.8)

As a consequence, from (1.4), (4.7) and (4.8) we have that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩽
ˆ
ℝ𝑛

ˆ
[0,1]

Λ(𝑥)|𝐷𝑠𝑢(𝑥)|2 𝑑𝜇(𝑠) 𝑑𝑥 +
ˆ
Ω
𝑔(𝑥)|𝑢(𝑥)|2 𝑑𝑥

< +∞,
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which establishes (4.6).
Now we show that the bilinear form defined in (4.4) is a scalar product. It

is clearly linear and symmetric, thus we only need to show that it is positive
definite. To this end, we use condition (1.4) to see that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩾
ˆ
ℝ𝑛

ˆ
[𝑠0,1]

𝜆(𝑥)|𝐷𝑠𝑢(𝑥)|2 𝑑𝜇(𝑠) 𝑑𝑥

⩾
ˆ
[𝑠0,1]

ˆ
𝐵𝑅

𝜆(𝑥)|𝐷𝑠𝑢(𝑥)|2 𝑑𝑥 𝑑𝜇(𝑠).

Moreover, taking 𝑡 ∶= 1 + 𝛿, 𝑝 ∶= 2, Ω ∶= 𝐵𝑅 and ℎ ∶= 𝜆 in Lemma 4.2
(used here with 𝐷𝑠𝑢 in place of 𝑢), we see that

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(𝐵𝑅)

⩽ ‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)‖𝐷
𝑠𝑢‖2𝐿2(𝜆,𝐵𝑅). (4.9)

Accordingly, we obtain that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩾ ‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

ˆ
[𝑠0,1]

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(𝐵𝑅)

𝑑𝜇(𝑠).

Therefore, using Proposition 3.10 (notice that the assumption in (3.12) is satis-
fied thanks to (4.5)), we obtain that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩾
‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

2

ˆ
[𝑠0,1]

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(ℝ𝑛)

𝑑𝜇(𝑠).

This and Propositions 3.11 (used herewith 𝑠 ∶= 𝑠0) and 3.12 (usedwith 𝑠 ∶= 𝑠0)
give that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩾
𝐶𝜇([𝑠0, 1])‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

2 ‖𝐷𝑠0𝑢‖2
𝐿𝑝(𝛿)(ℝ𝑛)

.

Therefore, using Proposition 3.10 (notice that the assumption in (3.12) is satis-
fied thanks to (4.5)), we obtain that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩾ 𝐶𝜇([𝑠0, 1])‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)
‖𝐷𝑠0𝑢‖2

𝐿𝑝(𝛿)(ℝ𝑛)

up to renaming 𝐶 > 0.
This and Corollary 3.9 give that

⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) ⩾ 𝐶‖𝑢‖2
𝐻𝑠0,𝑝(𝛿)(ℝ𝑛)

.

Accordingly, if we have that ⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω) = 0, recalling (3.1) we find that
‖𝑢‖𝐿𝑝(𝛿)(ℝ𝑛) = 0 and consequently 𝑢 vanishes identically. This shows that the
bilinear form in (4.4) is positive definite. □

Wecall𝐻0(𝒜, 𝑔,Ω) theHilbert space associatedwith the scalar product given
in Lemma 4.3 and we point out that𝐻0(𝒜, 𝑔,Ω) is endowed with the norm

‖𝑢‖𝐻0(𝒜,𝑔,Ω) ∶=
√
⟨𝑢, 𝑢⟩𝐻0(𝒜,𝑔,Ω).



546 FRANCESCO DE PAS, SERENA DIPIERRO AND ENRICO VALDINOCI

In particular, taking 𝑔 ≡ 0 in Lemma 4.3 we have that the bilinear formˆ
ℝ𝑛

ˆ
(0,1]

𝑎𝑖𝑗𝑆 (𝑠, 𝑥)𝐷
𝑠
𝑖 𝑢(𝑥)𝐷

𝑠
𝑗𝑣(𝑥) 𝑑𝜇(𝑠) 𝑑𝑥

defines a scalar product on 𝒟(Ω) and we name the associated Hilbert space
𝐻0(𝒜,Ω) and the associated norm by ‖𝑢‖𝐻0(𝒜,Ω).

Remark 4.4. We stress that, if the measure 𝜇 coincides with the Dirac delta
at 𝑠 = 1, the space 𝐻0(𝒜, 𝑔,Ω) coincides with the one defined by Trudinger
in [Tru73].

Now, we provide some embedding results for the space𝐻0(𝒜, 𝑔,Ω).

Proposition 4.5. Let 𝑆0 ∈ (0, 1] denote the maximum of the support of 𝜇.
Then, the space 𝐻0(𝒜, 𝑔,Ω) continuously embeds into 𝐻𝑠,𝑝(𝛿)

0 (Ω) for any 𝑠 ∈
(0, 𝑆0).
Moreover, if 𝜇 ({𝑆0}) > 0, then the embedding holds for any 𝑠 ∈ (0, 𝑆0].

Proof. Let 𝑠0 denote the minimum of the support of 𝜇. Let 𝐶 be the constant
appearing in Proposition 3.10 and take

𝑅 ⩾ sup
𝑠∈[𝑠0,𝑆0]

(𝐶
𝑠2
)
1
𝑠
.

In this way, 𝑅 satisfies the assumption in (3.12) for any 𝑠 in the support of 𝜇,
and therefore Proposition 3.10 can be used in this setting.
Moreover, taking 𝑡 ∶= 1 + 𝛿, 𝑝 ∶= 2, Ω ∶= 𝐵𝑅 and ℎ ∶= 𝜆 in Lemma 4.2

(used here with 𝐷𝑠𝑢 in place of 𝑢), we see that

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(𝐵𝑅)

⩽ ‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)‖𝐷
𝑠𝑢‖2𝐿2(𝜆,𝐵𝑅). (4.10)

Now we let 𝑠 ∈ (0, 𝑆0). We exploit (1.4), (4.10) and Proposition 3.10 to find
that

‖𝑢‖2𝐻0(𝒜,𝑔,Ω) ⩾
ˆ
𝐵𝑅

ˆ
(0,𝑆0]

𝜆(𝑥)|𝐷𝑠𝑢(𝑥)|2 𝑑𝜇(𝑠) 𝑑𝑥

⩾ ‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

ˆ
(0,𝑆0]

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(𝐵𝑅)

𝑑𝜇(𝑠)

⩾
‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

2

ˆ
(0,𝑆0]

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(ℝ𝑛)

𝑑𝜇(𝑠)

⩾
‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

2

ˆ
[𝑠,𝑆0]

‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(ℝ𝑛)

𝑑𝜇(𝑠).

From this and Propositions 3.11 and 3.12, we conclude that

‖𝑢‖2𝐻0(𝒜,𝑔,Ω) ⩾
𝐶𝜇([𝑠0, 𝑆0])‖𝜆−1‖−1𝐿1+𝛿(𝐵𝑅)

2 ‖𝐷𝑠𝑢‖2
𝐿𝑝(𝛿)(ℝ𝑛)

. (4.11)
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Using Corollary 3.9 we thereby conclude that

‖𝑢‖2𝐻0(𝒜,𝑔,Ω) ⩾ 𝐶‖𝑢‖2
𝐻𝑠,𝑝(𝛿)(ℝ𝑛)

,

as desired.
Moreover, if 𝜇 ({𝑆0}) > 0, then in particular (4.11) holds true with 𝑠 ∶= 𝑆0,

and this gives the desired result. □

Proposition 4.6. Let𝑆0 ∈ (0, 1]denote themaximumof the support of𝜇. Let𝑝(𝛿)
be as defined in (4.3).
Then, for any 𝑠 ∈ (0, 𝑆0), setting

𝑝(𝛿)∗ ∶=
𝑛𝑝(𝛿)

𝑛 − 𝑠𝑝(𝛿)
,

we have that
(i) 𝐻0(𝒜, 𝑔,Ω) continuously embeds into 𝐿𝑞(Ω) for any 𝑞 in the range

⎧

⎨
⎩

𝑞 ∈ [1, 𝑝(𝛿)∗] if 𝑠𝑝(𝛿) < 𝑛,
𝑞 ∈ [1, +∞) if 𝑠𝑝(𝛿) = 𝑛,
𝑞 ∈ [1, +∞] if 𝑠𝑝(𝛿) > 𝑛.

(ii) 𝐻0(𝒜, 𝑔,Ω) compactly embeds into 𝐿𝑞(Ω) for any 𝑞 in the range

⎧

⎨
⎩

𝑞 ∈ [1, 𝑝(𝛿)∗) if 𝑠𝑝(𝛿) < 𝑛,
𝑞 ∈ [1, +∞) if 𝑠𝑝(𝛿) = 𝑛,
𝑞 ∈ [1, +∞] if 𝑠𝑝(𝛿) > 𝑛.

Moreover, if 𝜇({𝑆0}) > 0, then the above embeddings hold for any 𝑠 ∈ (0, 𝑆0].

Proof. Proposition 4.5 establishes a continuous embedding of𝐻0(𝒜, 𝑔,Ω) into
𝐻𝑠,𝑝(𝛿)
0 (Ω) for any 𝑠 ∈ (0, 𝑆0) (and also for 𝑆0 if 𝜇({𝑆0}) > 0).
Thus, the thesis follows from Theorem 3.6 if 𝑠 ∈ (0, 1) (notice indeed that

the assumptions in (3.2) and (3.4) are guaranteed to hold in cases (𝑖) and (𝑖𝑖),
respectively) and from the classical Sobolev embeddings if 𝑠 = 1. □

5. Boundedness in𝑯𝟎(𝒜, 𝒈,𝛀)
In this section, we introduce the concepts of boundedness and compactness

in 𝐻0(𝒜, 𝑔,Ω). The compactness result stated in Theorem 5.3 here below pro-
vides crucial information needed to develop the Fredholm alternative for ℒ.
Let 𝑓 be a nonnegative measurable function on Ω. Then, 𝑓 is said to be

bounded in 𝐻0(𝒜, 𝑔,Ω), if there exists a constant 𝐶 > 0 such that, for any 𝜙 ∈
𝒟(Ω), ˆ

Ω
𝑓(𝑥)𝜙2(𝑥) 𝑑𝑥 ⩽ 𝐶‖𝜙‖2𝐻0(𝒜,𝑔,Ω). (5.1)

Corollary 5.1. The following statements are equivalent:
(i) 𝑓 is bounded in𝐻0(𝒜, 𝑔,Ω).
(ii) 𝐻0(𝒜, 𝑔,Ω) continuously embeds into 𝐿2(𝑓,Ω).
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(iii) There exist two positive constants 𝐶1 and 𝐶2 such that

𝐶1‖𝜙‖𝐻0(𝒜,𝑔+𝑓,Ω) ⩽ ‖𝜙‖𝐻0(𝒜,𝑔,Ω) ⩽ 𝐶2‖𝜙‖𝐻0(𝒜,𝑔+𝑓,Ω)

for any 𝜙 ∈ 𝐻0(𝒜, 𝑔,Ω).

Proof. We first show that (i) implies (ii) (the reverse implication is trivial). In
order to do this, we show that

(5.1) is valid for any 𝑢 ∈ 𝐻0(𝒜, 𝑔,Ω). (5.2)

For this, we take 𝑢 ∈ 𝐻0(𝒜, 𝑔,Ω) and, in light of Definition 1.1, we consider
(𝜙𝑘) ∈ 𝒟(Ω) that converges to 𝑢 in 𝐻0(𝒜, 𝑔,Ω) as 𝑘 → +∞. Thus, from (5.1)
we have that, for any 𝑘 ∈ ℕ,ˆ

Ω
𝑓(𝑥)𝜙2𝑘(𝑥) 𝑑𝑥 ⩽ 𝐶‖𝜙𝑘‖2𝐻0(𝒜,𝑔,Ω).

Now, thanks to Proposition 4.6, we have that (𝜙𝑘) converges a.e. in Ω and
therefore, by Fatou’s Lemma,ˆ

Ω
𝑓(𝑥)𝑢2(𝑥) 𝑑𝑥 ⩽ lim

𝑘→+∞

ˆ
Ω
𝑓(𝑥)𝜙2𝑘(𝑥) 𝑑𝑥

⩽ 𝐶 lim
𝑘→+∞

‖𝜙𝑘‖2𝐻0(𝒜,𝑔,Ω) = 𝐶‖𝑢‖2𝐻0(𝒜,𝑔,Ω),

which establishes (5.2).
Wenow show that (ii) implies (iii). Wenotice that, being𝑓 and 𝑔 nonnegative

functions, for any 𝜙 ∈ 𝐻0(𝒜, 𝑔,Ω),

‖𝜙‖𝐻0(𝒜,𝑔,Ω) ⩽ ‖𝜙‖𝐻0(𝒜,𝑔+𝑓,Ω),

Also, we deduce from (ii) that, for any 𝜙 ∈ 𝐻0(𝒜, 𝑔,Ω),

‖𝜙‖2𝐻0(𝒜,𝑔+𝑓,Ω) = ‖𝜙‖2𝐻0(𝒜,𝑔,Ω) +
ˆ
Ω
𝑓(𝑥)|𝜙(𝑥)|2 𝑑𝑥

⩽ ‖𝜙‖2𝐻0(𝒜,𝑔,Ω) + 𝐶‖𝑢𝜙‖2𝐻0(𝒜,𝑔,Ω).

Combining these observations, we obtain that (iii) holds true.
To complete the proof of Corollary 5.1, it remains to establish that (iii) im-

plies (ii). For this, we observe that, for any 𝜙 ∈ 𝐻0(𝒜, 𝑔,Ω),ˆ
Ω
𝑓(𝑥)𝜙2(𝑥) 𝑑𝑥 ⩽ ‖𝜙‖2𝐻0(𝒜,𝑔+𝑓,Ω) ⩽

1
𝐶21
‖𝜙‖2𝐻0(𝒜,𝑔,Ω),

which entails (ii), as desired. □

We now recall the definition of compact boundedness as given in Defini-
tion (1.2) and we point out that this is a stronger property than boundedness,
as the next corollary points out.

Corollary 5.2. Let 𝑓 be compactly bounded on𝐻0(𝒜, 𝑔,Ω). Then, 𝑓 is bounded
in𝐻0(𝒜, 𝑔,Ω).



FREDHOLM ALTERNATIVE FOR NONLOCAL OPERATORS 549

Proof. Taking 𝜀 ∶= 1 in (1.9) and exploiting Proposition 4.6, we obtain that,
for any 𝜙 ∈ 𝒟(Ω)ˆ

Ω
𝑓(𝑥)𝜙2(𝑥) 𝑑𝑥 ⩽ ‖𝜙‖2𝐻0(𝒜,𝑔,Ω) + 𝐾1‖𝜙‖2𝐿1(Ω) ⩽ 𝐶‖𝜙‖2𝐻0(𝒜,𝑔,Ω). □

We stress that the converse does not hold true. We refer the reader to Ap-
pendix B for an example of function 𝑓 that is bounded in 𝐻0(𝒜, 𝑔,Ω) but not
compactly bounded in𝐻0(𝒜, 𝑔,Ω).
Now we present a compactness result.

Theorem 5.3. Let 𝑓 be compactly bounded in𝐻0(𝒜, 𝑔,Ω). Then, the embedding
of𝐻0(𝒜, 𝑔,Ω) into 𝐿2(𝑓,Ω) is compact.

Proof. We first check that
the inequality in (1.9) holds true for every 𝜙 ∈ 𝐻0(𝒜, 𝑔,Ω). (5.3)

To this aim, we let 𝜙 ∈ 𝐻0(𝒜, 𝑔,Ω) and (𝜙𝑘) be a sequence of functions in𝒟(Ω)
such that 𝜙𝑘 converges to 𝜙 in 𝐻0(𝒜, 𝑔,Ω) as 𝑘 → +∞. Thus, for all 𝑘, we
deduce from (1.9) that

‖𝜙𝑘‖2𝐿2(𝑓,Ω) ⩽ 𝜀‖𝜙𝑘‖2𝐻0(𝒜,𝑔,Ω) + 𝐾𝜀‖𝜙𝑘‖2𝐿1(Ω).

Moreover, by Proposition 4.6, we know that𝐻0(𝒜, 𝑔,Ω) compactly embeds into
𝐿1(Ω), and therefore 𝜙𝑘 converges to 𝜙 in 𝐿1(Ω) as 𝑘 → +∞. These considera-
tions and the Fatou’s Lemma give that

‖𝜙‖2𝐿2(𝑓,Ω) ⩽ lim
𝑘→+∞

‖𝜙𝑘‖2𝐿2(𝑓,Ω) ⩽ lim
𝑘→+∞

(
𝜀‖𝜙𝑘‖2𝐻0(𝒜,𝑔,Ω) + 𝐾𝜀‖𝜙𝑘‖2𝐿1(Ω)

)

= 𝜀‖𝜙‖2𝐻0(𝒜,𝑔,Ω) + 𝐾𝜀‖𝜙‖2𝐿1(Ω),

thus establishing (5.3).
Now let (𝑢𝑘) be a sequence of functions in𝐻0(𝒜, 𝑔,Ω) that converges weakly

to some 𝑢 in𝐻0(𝒜, 𝑔,Ω). In light of (5.3), we have that, for all 𝑘 ∈ ℕ,
‖𝑢𝑘 − 𝑢‖2𝐿2(𝑓,Ω) ⩽ 𝜀‖𝑢𝑘 − 𝑢‖2𝐻0(𝒜,𝑔,Ω) + 𝐾𝜀‖𝑢𝑘 − 𝑢‖2𝐿1(Ω)

⩽ 2𝜀
(
‖𝑢𝑘‖2𝐻0(𝒜,𝑔,Ω) + ‖𝑢‖2𝐻0(𝒜,𝑔,Ω)

)
+ 𝐾𝜀‖𝑢𝑘 − 𝑢‖2𝐿1(Ω)

⩽ 𝑀𝜀 + 𝐾𝜀‖𝑢𝑘 − 𝑢‖2𝐿1(Ω), .

for some𝑀 > 0.
This and the compact embedding of𝐻0(𝒜, 𝑔,Ω) into 𝐿1(Ω) entail that

lim
𝑘→+∞

‖𝜙𝑘 − 𝜙‖2𝐿2(𝑓,Ω) ⩽ lim
𝑘→+∞

(
𝑀𝜀 + 𝐾𝜀‖𝜙𝑘 − 𝜙‖2𝐿1(Ω)

)
= 𝑀𝜀.

Letting 𝜀 → 0, we conclude that
lim
𝑘→+∞

‖𝜙𝑘 − 𝜙‖2𝐿2(𝑓,Ω) = 0.

This says that the embedding of 𝐻0(𝒜, 𝑔,Ω) into 𝐿2(𝑓,Ω) is compact. Since
𝐻0(𝒜, 𝑔,Ω) is a Hilbert space and thus reflexive, we obtain the desired result.

□
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6. The Fredholm alternative and proofs of Theorem 1.5 and
Remark 1.6
This section presents the proofs of the main results stated in Theorem 1.5

and Remark 1.6.
Let us recall here that the function 𝑓 defined in (1.10) is assumed to be

compactly bounded in 𝐻0(𝒜,Ω). Also, we recall the notation for the quanti-
ties 𝑎𝑖(𝑥), 𝑏𝑖(𝑥) in (1.7) and the bilinear form (ℒ𝑢, 𝑣) in (1.11).
We present the following observation, that provides a justification to the def-

inition of the operator in (1.11) as the variational formulation of the operatorℒ
in (1.3).

Theorem 6.1. Let Ω be a bounded domain in ℝ𝑛. Suppose that there exists a
constant 𝐶 > 0 such that

𝒜 ∶= sup
𝑠∈(0,1]
𝑥∈ℝ𝑛

|𝒜(𝑠, 𝑥)| ⩽ 𝐶, 𝑎̃ ∶= sup
𝑥∈Ω

𝑖=1,…,𝑛

|𝑎𝑖(𝑥)| ⩽ 𝐶,

and 𝑏̃ ∶= sup
𝑥∈Ω

𝑖=1,…,𝑛

|𝑏𝑖(𝑥)| ⩽ 𝐶.
(6.1)

Also, suppose that 𝑎𝑖𝑗(𝑠, ⋅) ∈ 𝒟(Ω) for all 𝑠 ∈ (0, 1], for all 𝑖, 𝑗 = 1,… , 𝑛.
Moreover let 𝑎𝑖(𝑠, ⋅) ∈ 𝐶∞(Ω) for all 𝑠 ∈ (0, 1], for all 𝑖 = 1, … , 𝑛.
In addition, let 𝑎 ∈ 𝐿1loc(Ω).
Then, for any 𝑢, 𝜙 ∈ 𝒟(Ω),ˆ

Ω
ℒ𝑢(𝑥)𝜙(𝑥) 𝑑𝑥

=
ˆ
Ω
(
ˆ
(0,1]

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢𝐷
𝑠
𝑖 𝜙 + 𝑎𝑖(𝑠, 𝑥)𝑢𝐷𝑠

𝑖 𝜙 + 𝑏𝑖(𝑠, 𝑥)𝜙𝐷𝑠
𝑖 𝑢
)
𝑑𝜇(𝑠)) 𝑑𝑥

+
ˆ
Ω
𝑎(𝑥)𝑢(𝑥)𝜙(𝑥) 𝑑𝑥.

(6.2)

In particular, for any 𝑢 ∈ 𝒟(Ω), the map

𝒟(Ω) ∋ 𝜙 ↦
ˆ
Ω
ℒ𝑢𝜙 𝑑𝑥. (6.3)

defines a distribution, namely is linear and continuous.

Proof. Let us consider 𝑢 ∈ 𝒟(Ω). Then, by Proposition 2.10, we gather that,
for any 𝑖 = 1, … , 𝑛 and 𝑠 ∈ (0, 1],

𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠
𝑗𝑢 + 𝑎𝑖(𝑠, 𝑥)𝑢 ∈ 𝒟(Ω).

As a consequence, exploiting Lemma 2.11,ˆ
(0,1]

ˆ
Ω

(
𝐷𝑠
𝑖

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢 + 𝑎𝑖(𝑠, 𝑥)𝑢
)
+ 𝑏𝑖(𝑠, 𝑥)𝐷𝑠

𝑖 𝑢
)
𝜙(𝑥) 𝑑𝑥 𝑑𝜇



FREDHOLM ALTERNATIVE FOR NONLOCAL OPERATORS 551

= −
ˆ
(0,1]

ˆ
Ω

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢𝐷
𝑠
𝑖 𝜙 + 𝑎𝑖(𝑠, 𝑥)𝑢𝐷𝑠

𝑖 𝜙 + 𝑏𝑖(𝑠, 𝑥)𝐷𝑠
𝑖 𝑢𝜙

)
𝑑𝑥 𝑑𝜇(𝑠).

Therefore, by (6.1) and Lemma 2.8,ˆ
(0,1]

ˆ
ℝ𝑛

|||||
(
𝐷𝑠
𝑖

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢 + 𝑎𝑖(𝑠, 𝑥)𝑢
)
+ 𝑏𝑖(𝑠, 𝑥)𝐷𝑠

𝑖 𝑢
)
𝜙(𝑥)

||||| 𝑑𝑥 𝑑𝜇(𝑠)

⩽ 𝐶
(
𝒜‖𝐷𝑢‖𝐿∞(Ω)‖𝐷𝜙‖𝐿∞(Ω) + 𝑎̃‖𝑢‖𝐿∞(Ω)‖𝐷𝜙‖𝐿∞(Ω)

+ 𝑏̃‖𝐷𝑢‖𝐿∞(Ω)‖𝜙‖𝐿∞(Ω)
)
,

which is a finite quantity.
Accordingly, we can employ the Fubini-Tonelli Theorem and see thatˆ
ℝ𝑛
𝜙ℒ𝑢 𝑑𝑥

=
ˆ
(0,1]

ˆ
ℝ𝑛

(
− 𝐷𝑠

𝑖

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢 + 𝑎𝑖(𝑠, 𝑥)𝑢
)
+ 𝑏𝑖(𝑠, 𝑥)𝐷𝑠

𝑖 𝑢
)
𝜙(𝑥) 𝑑𝑥 𝑑𝜇(𝑠)

+
ˆ
Ω
𝑎(𝑥)𝑢𝜙 𝑑𝑥

=
ˆ
(0,1]

ˆ
ℝ𝑛
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢𝐷
𝑠
𝑖 𝜙 + 𝑎𝑖(𝑠, 𝑥)𝑢𝐷𝑠

𝑖 𝜙 + 𝑏𝑖(𝑠, 𝑥)𝐷𝑠
𝑖 𝑢𝜙 𝑑𝑥 𝑑𝜇(𝑠)

+
ˆ
Ω
𝑎(𝑥)𝑢𝜙 𝑑𝑥

=
ˆ
Ω
[
ˆ
(0,1]

(
𝑎𝑖𝑗(𝑠, 𝑥)𝐷𝑠

𝑗𝑢𝐷
𝑠
𝑖 𝜙 + 𝑎𝑖(𝑠, 𝑥)𝑢𝐷𝑠

𝑖 𝜙 + 𝑏𝑖(𝑠, 𝑥)𝜙𝐷𝑠
𝑖 𝑢
)
𝑑𝜇(𝑠)

+ 𝑎(𝑥)𝑢𝜙] 𝑑𝑥,

this proving (6.2).
Moreover, the map in (6.3) is clearly linear, and its continuity follows from

(6.2). □

Proposition 6.2. Let 𝐾𝒜 be given by (1.6). Then, for any 𝑢, 𝑣 ∈ 𝐻0(𝒜, 𝑓,Ω),

|(ℒ𝑢, 𝑣)| ⩽
(
3
√
𝐾𝒜 + 1

)
‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω).

Proof. Exploiting (1.6), (1.7) and Lemma D.2 (used here with 𝜉𝑖 ∶= 𝐷𝑠
𝑖 𝑣 and

𝜓𝑖 ∶= 𝑎𝑖, and also with 𝜉𝑖 ∶= 𝐷𝑠
𝑖 𝑢 and 𝜓𝑖 ∶= 𝑎𝑖), we have that

|(ℒ𝑢, 𝑣)|

⩽
√
𝐾𝒜
ˆ
ℝ𝑛

ˆ
(0,1]

(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)
1
2 (𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)

1
2 𝑑𝜇(𝑠) 𝑑𝑥

+
√
𝐾𝒜
ˆ
ℝ𝑛

ˆ
(0,1]

(
|𝑢(𝑥)||𝑓(𝑥)|

1
2 (𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)

1
2
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+ |𝑣(𝑥)||𝑓(𝑥)|
1
2 (𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)

1
2
)
𝑑𝜇(𝑠) 𝑑𝑥

+
ˆ
Ω
𝑓(𝑥)|𝑢(𝑥)𝑣(𝑥)| 𝑑𝑥

= 𝐴 + 𝐵 + 𝐶,

where

𝐴 ∶=
√
𝐾𝒜
ˆ
ℝ𝑛

ˆ
(0,1]

(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)
1
2 (𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)

1
2 𝑑𝜇(𝑠) 𝑑𝑥

+
ˆ
Ω
𝑓|𝑢𝑣| 𝑑𝑥,

𝐵 ∶=
√
𝐾𝒜
ˆ
Ω

ˆ
(0,1]

|𝑢(𝑥)||𝑓(𝑥)|
1
2 (𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)

1
2 𝑑𝜇(𝑠) 𝑑𝑥

and 𝐶 ∶=
√
𝐾𝒜
ˆ
Ω

ˆ
(0,1]

|𝑣||𝑓|
1
2 (𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)

1
2 𝑑𝜇(𝑠) 𝑑𝑥.

We first estimate 𝐴. For this, we observe that, by the Hölder inequality,

ˆ
ℝ𝑛

ˆ
(0,1]

(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)
1
2 (𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)

1
2 𝑑𝜇(𝑠) 𝑑𝑥

⩽ (
ˆ
ℝ𝑛

ˆ
(0,1]

𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢 𝑑𝜇(𝑠) 𝑑𝑥)

1
2

(
ˆ
ℝ𝑛

ˆ
(0,1]

𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣 𝑑𝜇 𝑑𝑥)

1
2

⩽ ‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω)

and

ˆ
Ω
𝑓|𝑢𝑣| 𝑑𝑥 ⩽ (

ˆ
Ω
𝑓|𝑢|2 𝑑𝑥)

1
2

(
ˆ
Ω
𝑓|𝑣|2 𝑑𝑥)

1
2

⩽ ‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω).

As a consequence,

𝐴 ⩽
(√
𝐾𝒜 + 1

)
‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω). (6.4)
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In order to estimate 𝐵, we exploit the Hölder inequality to the integral in Ω
and then the Jensen inequality to the integral in (0, 1] and we have that

𝐵 ⩽
√
𝐾𝒜
ˆ
Ω
(|𝑢||𝑓|

1
2

ˆ
(0,1]

(𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)
1
2 𝑑𝜇(𝑠)) 𝑑𝑥

⩽
√
𝐾𝒜 (

ˆ
Ω
|𝑢|2|𝑓| 𝑑𝑥)

1
2 ⎛
⎜
⎝

ˆ
Ω
(
ˆ
(0,1]

(𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣)
1
2 𝑑𝜇(𝑠))

2

𝑑𝑥
⎞
⎟
⎠

1
2

⩽
√
𝐾𝒜 (

ˆ
Ω
|𝑢|2|𝑓| 𝑑𝑥)

1
2

(
ˆ
Ω

ˆ
(0,1]

𝐷𝑠𝑣𝑇𝒜𝑆𝐷𝑠𝑣 𝑑𝜇(𝑠) 𝑑𝑥)

1
2

⩽
√
𝐾𝒜‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω).

(6.5)

By swapping the role of 𝑢 and 𝑣, we also estimate 𝐶 as

𝐶 ⩽ 𝐾𝒜‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω).

This, (6.4) and (6.5) entail the desired result. □

From Proposition 6.2, we infer that ℒ is a bounded and bilinear form on
𝐻0(𝒜, 𝑓,Ω), whose norm depends on 𝐾𝒜. In order to use the Lax Milgram
Theorem and to develop a Fredholm alternative, we now study its coercivity.

Proposition 6.3. There exists 𝜎0 > 0, depending on 𝜇 and 𝐾𝒜, such that, for
any 𝑢 ∈ 𝐻0(𝒜, 𝑓,Ω),

(ℒ𝑢, 𝑢) ⩾ 1
2‖𝑢‖

2
𝐻0(𝒜,Ω) − 𝜎0

ˆ
Ω
𝑓|𝑢|2.

Proof. We observe that, exploiting Lemma D.2 (with 𝜉𝑖 ∶= 𝐷𝑠
𝑖 𝑢 and 𝜓𝑖 ∶=

(𝑎𝑖 + 𝑏𝑖) 𝑢),

(𝑎𝑖 + 𝑏𝑖) 𝑢 𝐷𝑠
𝑖 𝑢 ⩾ −|(𝑎𝑖 + 𝑏𝑖) 𝑢 𝐷𝑠

𝑖 𝑢| ⩾ −2
√
𝐾𝒜|𝑓|

1
2 |𝑢|(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)

1
2 .

Thus, we have that

(ℒ𝑢, 𝑢) ⩾
ˆ
ℝ𝑛

ˆ
(0,1]

(
𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢 + (𝑎𝑖 + 𝑏𝑖) 𝑢 𝐷𝑠

𝑖 𝑢
)
𝑑𝜇(𝑠) 𝑑𝑥 +

ˆ
Ω
𝑎|𝑢|2 𝑑𝑥

⩾ ‖𝑢‖2𝐻0(𝒜,Ω) − 2
√
𝐾𝒜
ˆ
Ω
(
ˆ
(0,1]

(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)
1
2 𝑑𝜇(𝑠)) |𝑓|

1
2 |𝑢| 𝑑𝑥

−
ˆ
Ω
|𝑓||𝑢|2 𝑑𝑥.

(6.6)

Now we use the Young inequality and we gather that

2
√
𝐾𝒜|𝑓|

1
2 |𝑢|(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)

1
2 ⩽

(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢)
2 +

(
2
√
𝐾𝒜|𝑓|

1
2 |𝑢|

)2

2 .
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Plugging this information into (6.6), we deduce that

(ℒ𝑢, 𝑢) ⩾ ‖𝑢‖2𝐻0(𝒜,Ω) −
1
2

ˆ
Ω

ˆ
(0,1]

(𝐷𝑠𝑢𝑇𝒜𝑆𝐷𝑠𝑢) 𝑑𝜇(𝑠) 𝑑𝑥

−
(
2𝐾𝒜 𝜇((0, 1]) + 1

)ˆ
Ω
|𝑓||𝑢|2 𝑑𝑥

⩾ 1
2‖𝑢‖

2
𝐻0(𝒜,Ω) −

(
2𝐾𝒜 𝜇((0, 1]) + 1

)ˆ
Ω
|𝑓||𝑢|2 𝑑𝑥.

Accordingly, the desired result holds true with 𝜎0 ∶= 2𝐾𝒜 𝜇((0, 1]) + 1. □

With this preliminary work, we have that if 𝜎 is big enough, the LaxMilgram
Theorem applies to the operator ℒ𝜎(𝑓) (defined in (1.12)), as the next proposi-
tion points out.

Proposition 6.4. Let 𝜎0 be given by Proposition 6.3.
Then, for any 𝜎 > 𝜎0, the operator ℒ𝜎(𝑓) is a bijection from𝐻0(𝒜, 𝑓,Ω) to its

dual space.
If in addition 𝑓 is bounded in 𝐻0(𝒜,Ω), then, for any 𝜎 ⩾ 𝜎0, the opera-

tor ℒ𝜎(𝑓) is a bijection from𝐻0(𝒜,Ω) to its dual space.

Proof. We exploit Proposition 6.2 and the Hölder inequality to see that, for
any 𝜎 ⩾ 𝜎0 and any 𝑢, 𝑣 ∈ 𝐻0(𝒜, 𝑓,Ω),

|(ℒ𝜎(𝑓)𝑢, 𝑣)| ⩽ |(ℒ𝑢, 𝑣)| + 𝜎
ˆ
Ω
𝑓|𝑢𝑣| 𝑑𝑥

⩽
(
3
√
𝐾𝒜 + 1 + 𝜎

)
‖𝑢‖𝐻0(𝒜,𝑓,Ω)‖𝑣‖𝐻0(𝒜,𝑓,Ω).

In particular, if 𝑓 is bounded in𝐻0(𝒜,Ω), this gives that

|(ℒ𝜎(𝑓)𝑢, 𝑣)| ⩽ 𝐶
(
3
√
𝐾𝒜 + 1 + 𝜎

)
‖𝑢‖𝐻0(𝒜,Ω)‖𝑣‖𝐻0(𝒜,Ω),

for some 𝐶 > 0 (recall Corollary 5.1).
Additionally, by Proposition 6.3, we find that

(ℒ𝜎(𝑓)𝑢, 𝑢) = (ℒ𝑢, 𝑢) + 𝜎
ˆ
Ω
𝑓|𝑢|2 𝑑𝑥

⩾ 1
2‖𝑢‖

2
𝐻0(𝒜,Ω) + (𝜎 − 𝜎0)

ˆ
Ω
𝑓|𝑢|2 𝑑𝑥.

Now, if 𝜎 > 𝜎0, this implies that

(ℒ𝜎(𝑓)𝑢, 𝑢) ⩾ min {12, 𝜎 − 𝜎0} ‖𝑢‖2𝐻0(𝒜,𝑓,Ω),

and, if 𝑓 is bounded in𝐻0(𝒜,Ω), that

(ℒ𝜎(𝑓)𝑢, 𝑢) ⩾ 𝐶min {12, 𝜎 − 𝜎0} ‖𝑢‖2𝐻0(𝒜,Ω),

fo some 𝐶 > 0 (thanks to Corollary 5.1).
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If instead 𝜎 = 𝜎0, we have that

(ℒ𝜎(𝑓)𝑢, 𝑢) ⩾
1
2‖𝑢‖

2
𝐻0(𝒜,Ω).

In both case, the LaxMilgram Theorem applies and the proof of Proposition 6.4
is complete. □

Proof of Theorem 1.5. In lieu of Theorem 5.3, we can consider the following
Hilbert Triplet

𝐻0(𝒜,Ω) ↪↪ 𝐿2(𝑓,Ω) ↪
(
𝐻0(𝒜,Ω)

)′
,

where↪↪ denotes a compact embedding, while↪ a continuous one.
As a consequence, thanks to Proposition 6.4, we can rely onRiesz-Schauder’s

theory for compact operators (see e.g. [GFZ15, Theorem1.8.10]) to conclude the
proof. □

Proof of Remark 1.6. Let us denote by 𝐻̃0(𝒜, 𝑔,Ω) the completion of 𝒟(Ω)
with respect to the norm

‖𝑢‖𝐻̃0(𝒜,𝑔,Ω) ∶= (
ˆ
Ω

(
𝐷𝑢𝑇(𝑥)𝒜𝑆(1, 𝑥)𝐷𝑢(𝑥) + 𝑔(𝑥)|𝑢(𝑥)|2

)
𝑑𝑥)

1
2

(6.7)

see e.g. [Tru73, Equation (1.9)]. Then, we have that

‖𝑢‖2𝐻0(𝒜,Ω) ⩾ 𝜇({1})
ˆ
ℝ𝑛
𝐷𝑢𝑇𝒜𝑆𝐷𝑢 𝑑𝑥 = 𝜇({1})‖𝑢‖2

𝐻̃0(𝒜,Ω)
. (6.8)

We recall that, since 𝜆−1 ∈ 𝐿1(Ω), the set 𝐻̃0(𝒜,Ω) is compactly embedded
into 𝐿1(Ω) (see the first statement in the proof of Lemma 1.6 in [Tru73]). From
this and (6.8), we conclude that𝐻0(𝒜,Ω) is compactly embedded into 𝐿1(Ω).
In light of this, we have that the proof of Theorem 5.3 carries through if 𝑓

is compactly bounded on𝐻0(𝒜,Ω), this giving that in this case the embedding
of𝐻0(𝒜,Ω) into 𝐿2(𝑓,Ω) is compact.
Accordingly, we retrieve the Hilbert Triplet

𝐻0(𝒜,Ω) ↪↪ 𝐿2(𝑓,Ω) ↪
(
𝐻0(𝒜,Ω)

)′
,

where↪↪ denotes a compact embedding, while↪ a continuous one.
As a consequence, and thanks to Proposition 6.4, we can rely on the Riesz-

Schauder theory for compact operators (see e.g. [GFZ15, Theorem 1.8.10]) to
conclude the proof. □

Appendix A. Sufficient conditions for compact boundedness on
𝑯𝟎(𝒜, 𝒈,𝛀)

In this appendixweprovide examples of functions that are compactly bounded
on𝐻0(𝒜, 𝑔,Ω).
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TheoremA.1. Let 𝑆0 ∈ (0, 1] be themaximum of the support of 𝜇. Let 𝛿 be given
by (1.5).
If 𝑛 ⩾ 2, assume that

𝛿 >
𝑛 − 2𝑆0
2𝑆0

. (A.1)

Then, for any

𝑞 ∈ (
𝑛(1 + 𝛿)

2𝑆0(1 + 𝛿) − 𝑛
,+∞] , (A.2)

it holds that
if 𝑓 ∈ 𝐿𝑞(Ω) with 𝑓−1 ∈ 𝐿1(Ω),
then 𝑓 is compactly bounded on𝐻0(𝒜, 𝑔,Ω).

(A.3)

If 𝑛 = 1, assume that

𝛿(2𝑆0 − 1) > 2(1 − 𝑆0). (A.4)

Then, for any 𝑞 ∈ (1, +∞], it holds that

if 𝑓 ∈ 𝐿𝑞(Ω) with 𝑓−1 ∈ 𝐿1(Ω),
then 𝑓 is compactly bounded on𝐻0(𝒜, 𝑔,Ω).

(A.5)

Proof. We prove TheoremA.1 only for 𝑞 < +∞ since, beingΩ bounded, if 𝑓 ∈
𝐿∞(Ω), then 𝑓 ∈ 𝐿𝑞(Ω) for any 𝑞 ⩾ 1.
We observe that if 𝑛 ⩾ 2, then 𝑛 > 𝑆0𝑝(𝛿), where 𝑝(𝛿) is as in (4.3). There-

fore, in this case, we can define the fractional critical exponent

𝑝(𝛿)∗𝑆0 =
𝑛𝑝(𝛿)

𝑛 − 𝑆0𝑝(𝛿)
=

2𝑛(1 + 𝛿)
(2 + 𝛿)𝑛 − 2𝑆0(1 + 𝛿)

.

Notice that condition (A.1) implies that 𝑝(𝛿)∗𝑆0 > 2. As a consequence, we can
also define the quantity

𝑞 ∶=
𝑝(𝛿)∗𝑆0

𝑝(𝛿)∗𝑆0 − 2
=

2𝑛(1 + 𝛿)
4𝑆0(1 + 𝛿) − 2𝑛

.

Now,we point out that if 𝑞 satisfies (A.2), then 𝑞 ∈ (𝑞, +∞). Also, we observe
that, for any 𝑡 ∈ (2, 𝑝(𝛿)∗𝑆0), the function 𝑡 ↦ 𝑞(𝑡) ∶= 𝑡∕(𝑡 − 2) is strictly
decreasing and takes value in (𝑞, +∞). Accordingly, for any 𝑞 ∈ (𝑞, +∞) there
exists 𝑝 ∈ (2, 𝑝(𝛿)∗𝑆0) such that 𝑞 = 𝑞(𝑝) = 𝑝∕(𝑝 − 2). With this choice, for
any 𝑢 ∈ 𝐿𝑝(Ω) and 𝑓 ∈ 𝐿𝑞(Ω), thanks to the Hölder inequality (used here with
exponents 𝑝∕2 and 𝑞 = 𝑝∕(𝑝 − 2)),

‖𝑢‖2𝐿2(𝑓,Ω) =
ˆ
Ω
𝑓|𝑢|2 𝑑𝑥 ⩽ (

ˆ
Ω
|𝑢|𝑝 𝑑𝑥)

2
𝑝

(
ˆ
Ω
|𝑓|𝑞 𝑑𝑥)

1
𝑞

= ‖𝑢‖2𝐿𝑝(Ω)‖𝑓‖𝐿𝑞(Ω).

(A.6)
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This says, in particular, that

the embedding of 𝐿𝑝(Ω) into 𝐿2(𝑓,Ω) is continuous. (A.7)

Now, thanks to Proposition 4.5, we have that the space𝐻0(𝒜, 𝑔,Ω) continu-
ously embeds into𝐻𝑠,𝑝(𝛿)

0 (Ω) for any 𝑠 ∈ (0, 𝑆0) (and also for 𝑠 = 𝑆0 if 𝜇({𝑆0}) >
0). As a consequence, Theorem 3.6 gives that

𝐻0(𝒜, 𝑔,Ω) compactly embeds into 𝐿𝑝(Ω) for any 𝑝 ∈ [1, 𝑝(𝛿)∗𝑆0).

From this and (A.7), we deduce that

𝐻0(𝒜, 𝑔,Ω) compactly embeds into 𝐿2(𝑓,Ω). (A.8)

We now claim that

𝐿2(𝑓,Ω) continuously embeds into 𝐿1(Ω). (A.9)

For this, we employ Lemma 4.2 (with 𝑡 ∶= 1 and 𝑝 ∶= 2) and we see that

‖𝑢‖𝐿1(Ω) ⩽ ‖𝑓−1‖
1
2
𝐿1(Ω)‖𝑢‖𝐿2(ℎ,Ω),

which establishes (A.9).
From (A.8), (A.9) and the Ehrling Lemma, we obtain (A.3), as desired.
If instead 𝑛 = 1, we observe that condition (A.4) entails that we are in the

case 𝑆0𝑝(𝛿) < 1. Moreover, Proposition 4.5 entails that the space 𝐻0(𝒜, 𝑔,Ω)
continuously embeds into 𝐻𝑠,𝑝(𝛿)

0 (Ω), for any 𝑠 ∈ (0, 𝑆0) (and also for 𝑠 = 𝑆0
if 𝜇({𝑆0}) > 0). Therefore, by Theorem 3.6 we deduce that

𝐻0(𝒜, 𝑔,Ω) compactly embeds into 𝐿𝑝(Ω) for any 𝑝 ∈ [1, +∞). (A.10)

Now, let 𝑓 ∈ 𝐿𝑞(Ω) for some 𝑞 ∈ (1, +∞). We notice that, for any 𝑡 ∈
(2, +∞), the function 𝑡 ↦ 𝑞(𝑡) ∶= 𝑡∕(𝑡−2) is strictly decreasing and takes value
in (1, +∞). With this choice, we have that (A.6) holds true for any 𝑓 ∈ 𝐿𝑞(Ω)
and 𝑢 ∈ 𝐿𝑝(Ω), and therefore 𝐿𝑝(Ω) embeds continuously into 𝐿2(𝑓,Ω). This
and (A.10) give that

𝐻0(𝒜, 𝑔,Ω) compactly embeds into 𝐿2(𝑓,Ω). (A.11)

Moreover, thanks to (A.9), we have that 𝐿2(𝑓,Ω) continuously embeds into
𝐿1(Ω). This, (A.11) and the Ehrling Lemma give (A.5). □

TheoremA.2. Assume that 𝜇({1}) > 0. Let 𝑡 ∈ [1, +∞] and suppose that 𝜆−1 ∈
𝐿𝑡(Ω).
When

1 + 1
𝑡 <

2
𝑛 ,

assume that 𝑓 ∈ 𝐿𝑠(Ω) with
1
𝑡 +

1
𝑠 =

2
𝑛 .

When 𝑡 = +∞ and 𝑛 = 2, assume that 𝑓 belongs to 𝐿log𝐿(Ω).
Then, 𝑓 is compactly bounded on𝐻0(𝒜,Ω).
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Proof. We recall the definition of the norm 𝐻̃0(𝒜,Ω) in (6.7). Moreover, from
(6.8), we know that

‖𝑢‖2𝐻0(𝒜,Ω) ⩾ 𝜇({1})‖𝑢‖2𝐻̃0(𝒜,Ω).

Also, by [Tru73, Lemma 1.4], we obtain that, for any 𝜀 > 0 there exists 𝐾𝜀 > 0
such that, for any 𝜙 ∈ 𝒟(Ω),

‖𝜙‖2𝐿2(𝑓,Ω) ⩽ 𝜀‖𝜙‖𝐻̃0(𝒜,Ω) + 𝐾𝜀‖𝜙‖2𝐿1(Ω).

Frome these considerations we deduce the desired result. □

Appendix B. Examples of functions that are bounded but not
compactly bounded on𝑯𝟎(𝒜, 𝒈,𝛀)

In this section, we provide examples of functions that are bounded but not
compactly bounded on𝐻0(𝒜, 𝑔,Ω), thus establishing that the notions of bound-
edness and compact boundedness on𝐻0(𝒜, 𝑔,Ω) do not coincide.

Proposition B.1. Let 𝑛 ⩾ 2, 𝜇 = 𝛿𝑠 for some 𝑠 ∈ (0, 1) and

𝛿 ∶= 𝑛 − 2𝑠
2𝑠 . (B.1)

Then, any constant function𝑓 is bounded on𝐻0(𝒜,Ω) but not compactly bounded
on𝐻0(𝒜,Ω).

Proof. Wepoint out that, according to the specific choice of𝜇, the spaces𝐻𝑠,𝑝(𝛿)
0 (Ω)

and𝐻0(𝒜,Ω) coincide. Moreover, by (4.3) and (B.1), we have that

𝑝(𝛿) =
2 + 𝑛−2𝑠

𝑠

2 + 𝑛−2𝑠
2𝑠

= 2𝑛
𝑛 + 2𝑠 (B.2)

and thus

𝑝(𝛿)∗𝑠 =
𝑛𝑝(𝛿)

𝑛 − 𝑝(𝛿)𝑠
= 2.

Then, by Theorem 3.6 and Proposition 4.5, we obtain that, for any 𝜙 ∈ 𝒟(Ω),
ˆ
Ω
|𝜙|2𝑓 𝑑𝑥 ⩽ 𝐶‖𝜙‖2𝐿2(Ω) ⩽ 𝐶‖𝜙‖2

𝐻𝑠,𝑝(𝛿)
0 (Ω)

⩽ 𝐶‖𝜙‖2𝐻0(𝒜,Ω),

up to changing 𝐶 > 0, namely, that 𝑓 is bounded on𝐻0(𝒜,Ω).
We now show that 𝑓 is not compactly bounded on 𝐻0(𝒜,Ω). To prove this,

we argue towards a contradiction and we suppose that 𝑓 is compactly bounded
on𝐻0(𝒜,Ω).
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For any 𝜙 ∈ 𝒟(Ω), 𝜆 > 0 and 𝛼 ∈ ℝ, we define 𝜙𝜆,𝛼(𝑥) ∶= 𝜆𝛼𝜙(𝜆𝑥) for
all 𝑥 ∈ ℝ𝑛. Hence, changing variable 𝜁 ∶= 𝜆𝑦, we see that

𝐷𝑠𝜙𝜆,𝛼 (
𝑥
𝜆
) =
ˆ
ℝ𝑛

(
𝜙𝜆,𝛼

(𝑥
𝜆

)
− 𝜙𝜆,𝛼(𝑦)

)

|||||
𝑥
𝜆
− 𝑦

|||||
𝑛+𝑠+1 (𝑥

𝜆
− 𝑦) 𝑑𝑦

= 𝜆𝛼
ˆ
ℝ𝑛

(𝜙 (𝑥) − 𝜙(𝜆𝑦))
|||||
𝑥
𝜆
− 𝑦

|||||
𝑛+𝑠+1 (𝑥

𝜆
− 𝑦) 𝑑𝑦

= 𝜆𝛼+𝑠
ˆ
ℝ𝑛

(𝜙 (𝑥) − 𝜙(𝜁))
|||𝑥 − 𝜁|||

𝑛+𝑠+1 (𝑥 − 𝜁) 𝑑𝜁

= 𝜆𝛼+𝑠𝐷𝑠𝜙(𝑥).

(B.3)

Now, we set

𝛼̄ ∶=
𝑛 − 𝑠𝑝(𝛿)
𝑝(𝛿)

= 𝑛
2 . (B.4)

From (B.2) and (B.3) we infer that

‖𝜙𝜆,𝛼̄‖
𝑝(𝛿)
𝐻0(𝒜,Ω) =

ˆ
ℝ𝑛
|𝐷𝑠𝜙𝜆,𝛼̄(𝑥)|𝑝(𝛿) 𝑑𝑥 = 𝜆−𝑛

ˆ
ℝ𝑛

|||||||
𝐷𝑠𝜙𝜆,𝛼̄ (

𝑦
𝜆
)
|||||||

𝑝(𝛿)
𝑑𝑦

= 𝜆𝑝(𝛿)(𝛼̄+𝑠)−𝑛
ˆ
ℝ𝑛

||||𝐷
𝑠𝜙(𝑦)||||

𝑝(𝛿)
𝑑𝑦

=
ˆ
ℝ𝑛

||||𝐷
𝑠𝜙(𝑦)||||

𝑝(𝛿)
𝑑𝑦 = ‖𝜙‖𝑝(𝛿)𝐻0(𝒜,Ω).

(B.5)

Also, by (B.4), we have that

‖𝜙𝜆,𝛼̄‖2𝐿2(𝑓,Ω) = 𝜆2𝛼̄
ˆ
Ω
𝑓(𝑥)|𝜙(𝜆𝑥)|2 𝑑𝑥 = 𝜆2𝛼̄−𝑛‖𝜙‖2𝐿2(𝑓,Ω) = ‖𝜙‖2𝐿2(𝑓,Ω)

and that

‖𝜙𝜆,𝛼̄‖𝐿1(Ω) =
ˆ
Ω

||||𝜙𝜆,𝛼̄(𝑥)
|||| 𝑑𝑥 = 𝜆𝛼̄

ˆ
Ω

|||𝜙(𝜆𝑥)||| 𝑑𝑥

= 𝜆𝛼̄−𝑛‖𝜙‖𝐿1(Ω) = 𝜆−
𝑛
2 ‖𝜙‖𝐿1(Ω).

(B.6)

Now, let 𝜙 ∈ 𝒟(Ω) (not vanishing identically) and set

𝑀 ∶= ‖𝜙‖𝐻0(𝒜,Ω) and 𝐿 ∶= ‖𝜙‖𝐿1(Ω).

Furthermore, for all 𝜆 > 0, we set

𝜙𝜆,𝛼̄ ∶=
𝜙𝜆,𝛼̄

‖𝜙𝜆,𝛼̄‖𝐿2(𝑓,Ω)
.

We observe that, thanks to (B.5) and (B.6),

‖𝜙𝜆,𝛼̄‖𝐿2(𝑓,Ω) = 1, ‖𝜙𝜆,𝛼̄‖𝐻0(𝒜,Ω) = 𝑀

and ‖𝜙𝜆,𝛼̄‖𝐿1(Ω) = 𝜆−
𝑛
2 ‖𝜙‖𝐿1(Ω).
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Now, if 𝑓 is compactly bounded on 𝐻0(𝒜,Ω), given 𝜀0 ∶= 1∕2𝑀2, there ex-
ists 𝐾𝜀0 > 0 such that

1 = ‖𝜙𝜆,𝛼̄‖2𝐿2(𝑓,Ω) ⩽ 𝜀0‖𝜙𝜆,𝛼̄‖2𝐻0(𝒜,Ω) + 𝐾𝜀0‖𝜙𝜆,𝛼̄‖
2
𝐿1(Ω)

= 1
2𝑀2𝑀

2 + 𝐾𝜀0‖𝜙𝜆,𝛼̄‖
2
𝐿1(Ω) =

1
2 + 𝐾𝜀0𝐿𝜆

−𝑛.

From this, sending 𝜆 → +∞, we obtain that 1 ⩽ 1∕2, which gives the desired
contradiction. □

Appendix C. Some integral computations towards the proof of
Proposition 2.15

In this section, weprove some integral results that are used inProposition 2.15
in order to compute the Fourier transform of the fractional gradient.

Lemma C.1. Let 𝑠 ∈ (0, 1) and Γ denote the Euler Gamma function. Then,

ˆ +∞

0

sin(𝑡)
𝑡1+𝑠

𝑑𝑡 =
Γ( 1+𝑠

2
)Γ( 1−𝑠

2
)

2Γ(1 + 𝑠)
.

Proof. For any 𝑡 > 0, the change of variable 𝑧 ∶= 𝑡𝜏 gives that

Γ(1 + 𝑠) =
ˆ +∞

0
𝑧𝑠𝑒−𝑧 𝑑𝑧 = 𝑡𝑠+1

ˆ +∞

0
𝜏𝑠𝑒−𝑡𝜏 𝑑𝜏.

Hence, denoting by 𝐵 the Beta function, we have that
ˆ +∞

0

sin 𝑡
𝑡1+𝑠

𝑑𝑡 = 1
Γ(1 + 𝑠)

ˆ +∞

0

ˆ +∞

0
𝜏𝑠𝑒−𝑡𝜏 sin 𝑡 𝑑𝜏 𝑑𝑡

= 1
Γ(1 + 𝑠)

ˆ +∞

0
𝜏𝑠 (
ˆ +∞

0
𝑒−𝑡𝜏 sin 𝑡 𝑑𝑡) 𝑑𝜏

= 1
Γ(1 + 𝑠)

ˆ +∞

0

𝜏𝑠

𝜏2 + 1
𝑑𝜏

= 1
2Γ(1 + 𝑠)

ˆ +∞

0

𝜁
𝑠−1
2

𝜁 + 1
𝑑𝜁 =

𝐵( 1+𝑠
2
, 1−𝑠

2
)

2Γ(1 + 𝑠)
,

where we have used the Fubini Tonelli Theorem and applied the change of
variable 𝜏 ∶=

√
𝜁.

Now, recalling the property relating the Beta fuction to the Euler Gamma
function

𝐵(𝑧1, 𝑧2) =
Γ(𝑧1)Γ(𝑧2)
Γ(𝑧1 + 𝑧2)

(C.1)

and that Γ(1) = 1, we obtain the desired result. □
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Lemma C.2. Let 𝑛 ⩾ 2. Then,

ˆ
𝜕𝐵1

|𝜔1|1+𝑠 𝑑ℋ𝑛−1
𝜔 = 2𝜋

𝑛−1
2

Γ
( 𝑠+2

2

)

Γ
(𝑛+𝑠+1

2

) .

Proof. For any 𝑥 ∈ ℝ𝑛, we write 𝑥 = (𝑥1, 𝑥′) ∈ ℝ × ℝ𝑛−1. For all 𝑥′ ∈ ℝ𝑛−1

with |𝑥′| ⩽ 1, we define the function 𝜓(𝑥′) =
√
1 − |𝑥′|2. Then,

𝜕𝐵+1 ∶= {𝜔 ∈ 𝜕𝐵1 ∶ 𝜔1 > 0} =
{
(𝜓(𝜔′), 𝜔′) ∈ ℝ × ℝ𝑛−1 ∶ |𝜔′| ⩽ 1

}
.

In addition, since

𝐷𝜓(𝜔′) = −𝜔′
(
1 − |𝜔′|2

)− 1
2 ,

we can write

𝑑ℋ𝑛−1
𝜔 =

√
1 + |𝐷𝜓(𝜔′)|2𝑑𝜔′ =

√

1 + |𝜔′|2
1 − |𝜔′|2

𝑑𝜔′ =
(
1 − |𝜔′|2

)− 1
2 𝑑𝜔′.

Accordingly, using polar coordinates and the change of variable 𝜌 ∶=
√
𝜁,

ˆ
𝜕𝐵1

|𝜔1|1+𝑠 𝑑ℋ𝑛−1
𝜔 = 2

ˆ
𝜕𝐵+1

𝜔1+𝑠1 𝑑ℋ𝑛−1
𝜔

= 2
ˆ
{|𝜔′|⩽1}

(
1 − |𝜔′|2

) 1+𝑠
2
(
1 − |𝜔′|2

)− 1
2 𝑑𝜔′

= 2
ˆ
{|𝜔′|⩽1}

(
1 − |𝜔′|2

) 𝑠
2 𝑑𝜔′

= 2(𝑛 − 1)𝜔𝑛−1
ˆ 1

0

(
1 − 𝜌2

) 𝑠
2 𝜌𝑛−2 𝑑𝜌

= (𝑛 − 1)𝜔𝑛−1
ˆ 1

0
(1 − 𝜁)

𝑠+2
2
−1𝜁

𝑛−1
2
−1 𝑑𝜁

= (𝑛 − 1)𝜔𝑛−1𝐵 (
𝑛 − 1
2 , 𝑠 + 2

2 ) ,

(C.2)

where 𝐵 is the Beta function.
Now, exploiting the equality

𝜔𝑛−1 =
𝜋

𝑛−1
2

Γ
(𝑛−1

2
+ 1

),
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the property of the Gamma function that Γ(𝑧 + 1) = 𝑧Γ(𝑧) and (C.1), we infer
from (C.2) that

ˆ
𝜕𝐵1

|𝜔1|1+𝑠 𝑑ℋ𝑛−1
𝜔 = (𝑛 − 1)𝜋

𝑛−1
2

Γ
(𝑛−1

2

)
Γ
( 𝑠+2

2

)

Γ
(𝑛+1

2

)
Γ
(𝑛+𝑠+1

2

)

= 2𝜋
𝑛−1
2

Γ
( 𝑠+2

2

)

Γ
(𝑛+𝑠+1

2

) . □

Proposition C.3. Let 𝜉 ∈ ℝ𝑛. Then, for all 𝑗 ∈ {1,⋯ , 𝑛},
ˆ
ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = 2−𝑠𝜋
𝑛
2 |𝜉|𝑠−1𝜉𝑗

Γ( 1−𝑠
2
)

Γ(𝑛+𝑠+1
2

)
.

Proof. Let 𝜉 = (𝜉1,⋯ , 𝜉𝑛). Suppose that 𝜉𝑗 = 0 for some 𝑗 ∈ {1, … , 𝑛}. In this
case, we claim that ˆ

ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = 0. (C.3)

For this, we perform the change of variable 𝑡 ∶= (𝑡1, … , 𝑡𝑗−1, −𝑡𝑗, 𝑡𝑗+1, … , 𝑡𝑛)
and we see that ˆ

ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = −
ˆ
ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡,

which entails (C.3).
Suppose now that 𝜉𝑗 ≠ 0 (in which case |𝜉| ≠ 0). In this case, we use the

change of variable 𝜏 ∶= |𝜉|𝑡 to get that

ˆ
ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = |𝜉|𝑠
ˆ
ℝ𝑛

sin( 𝜉
|𝜉|
⋅ 𝜏)𝜏𝑗

|𝜏|𝑛+𝑠+1
𝑑𝜏. (C.4)

Now we consider a rotation matrix ℛ = [ℛ𝑖𝑘] such that ℛ𝑒𝑗 = 𝜉
|𝜉|
. Notice

that ℛ𝑖𝑗 =
𝜉𝑖
|𝜉|
, for all 𝑖 ∈ {1,⋯ , 𝑛}. Hence, changing variable 𝜂 ∶= ℛ−1𝜏,

ˆ
ℝ𝑛

sin( 𝜉
|𝜉|
⋅ 𝜏)𝜏𝑗

|𝜏|𝑛+𝑠+1
𝑑𝜏 =

ˆ
ℝ𝑛

sin(ℛ𝑒𝑗 ⋅ 𝜏)𝜏𝑗
|𝜏|𝑛+𝑠+1

𝑑𝜏

=
ˆ
ℝ𝑛

sin(ℛ𝑒𝑗 ⋅ ℛ𝜂)
(
ℛ𝜂 ⋅ 𝑒𝑗

)

|𝜂|𝑛+𝑠+1
𝑑𝜂

=
ˆ
ℝ𝑛

sin(𝜂𝑗)
(
ℛ𝜂 ⋅ 𝑒𝑗

)

|𝜂|𝑛+𝑠+1
𝑑𝜂 =

𝑛∑

𝑖=1
ℛ𝑗𝑖

ˆ
ℝ𝑛

sin(𝜂𝑗)𝜂𝑖
|𝜂|𝑛+𝑠+1

𝑑𝜂

= ℛ𝑗𝑗

ˆ
ℝ𝑛

sin(𝜂𝑗)𝜂𝑗
|𝜂|𝑛+𝑠+1

𝑑𝜂 =
𝜉𝑗
|𝜉|

ˆ
ℝ𝑛

sin(𝜂𝑗)𝜂𝑗
|𝜂|𝑛+𝑠+1

𝑑𝜂.
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Plugging this information into (C.4), we infer that

ˆ
ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = |𝜉|𝑠−1𝜉𝑗
ˆ
ℝ𝑛

sin(𝑡𝑗)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡. (C.5)

From now on, we consider separately the cases 𝑛 = 1 and 𝑛 > 1.
If 𝑛 = 1, we exploit (C.5) and Lemma C.1 to find that

ˆ
ℝ

sin(𝜉 ⋅ 𝑡)𝑡
|𝑡|𝑛+𝑠+1

𝑑𝑡 = |𝜉|𝑠−1𝜉
ˆ
ℝ

sin(𝑡)𝑡
|𝑡|𝑛+𝑠+1

𝑑𝑡 = 2|𝜉|𝑠−1𝜉
ˆ +∞

0

sin(𝑡)
𝑡𝑛+𝑠 𝑑𝑡

= |𝜉|𝑠−1𝜉
Γ( 1+𝑠

2
)Γ
( 1−𝑠

2

)

Γ(1 + 𝑠)
= |𝜉|𝑠−1𝜉

2−𝑠
√
𝜋Γ

( 1−𝑠
2

)

Γ
( 2+𝑠

2

) ,

where the last equality exploits theLegendre duplication formula for theGamma
function

Γ(𝑧)Γ (𝑧 + 1
2) = 21−2𝑧

√
𝜋Γ(2𝑧) (C.6)

usedhere abovewith 𝑧 ∶= (𝑠+1)∕2. This completes the proof of PropositionC.3
for 𝑛 = 1.
Hence, we now focus on the case 𝑛 > 1. We set

𝜕𝐵+1 =
{
𝜔 ∈ 𝜕𝐵1 ∶ 𝜔𝑗 > 0

}

and, using polar coordinates and the change of variable 𝑟 ∶= 𝜌∕𝜔𝑗, from (C.5)
we obtain that

ˆ
ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = |𝜉|𝑠−1𝜉𝑗
ˆ
𝜕𝐵1

𝜔𝑗
ˆ +∞

0

sin(𝑟𝜔𝑗)
𝑟𝑠+1

𝑑𝑟 𝑑ℋ𝑛−1
𝜔

= 2|𝜉|𝑠−1𝜉𝑗
ˆ
𝜕𝐵+1

𝜔𝑗
ˆ +∞

0

sin(𝑟𝜔𝑗)
𝑟𝑠+1

𝑑𝑟 𝑑ℋ𝑛−1
𝜔

= 2|𝜉|𝑠−1𝜉𝑗 (
ˆ
𝜕𝐵+1

𝜔1+𝑠𝑗 𝑑ℋ𝑛−1
𝜔 ) (

ˆ +∞

0

sin 𝜌
𝜌𝑠+1

𝑑𝜌)

= |𝜉|𝑠−1𝜉𝑗 (
ˆ
𝜕𝐵1

|𝜔1|1+𝑠𝑑ℋ𝑛−1
𝜔 ) (

ˆ +∞

0

sin 𝜌
𝜌𝑠+1

𝑑𝜌) ,

where we also exploited the rotation invariance of the integral in the last equal-
ity.
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From this and Lemma C.1 and C.2, we obtain that

ˆ
ℝ𝑛

sin(𝜉 ⋅ 𝑡)𝑡𝑗
|𝑡|𝑛+𝑠+1

𝑑𝑡 = |𝜉|𝑠−1𝜉𝑗
2𝜋

𝑛−1
2 Γ

( 𝑠+2
2

)

Γ
(𝑛+𝑠+1

2

)
Γ( 1+𝑠

2
)Γ( 1−𝑠

2
)

2Γ(1 + 𝑠)

= 𝜋
𝑛−1
2

2 |𝜉|𝑠−1𝜉𝑗
𝑠Γ( 1+𝑠

2
)Γ
( 𝑠
2

)

Γ(1 + 𝑠)

Γ( 1−𝑠
2
)

Γ
(𝑛+𝑠+1

2

)

= 2−𝑠𝜋
𝑛
2 |𝜉|𝑠−1𝜉𝑗

𝑠Γ(𝑠)
Γ(1 + 𝑠)

Γ( 1−𝑠
2
)

Γ
(𝑛+𝑠+1

2

)

= 2−𝑠𝜋
𝑛
2 |𝜉|𝑠−1𝜉𝑗

Γ( 1−𝑠
2
)

Γ
(𝑛+𝑠+1

2

) .

where we used that Γ(𝑧 + 1) = 𝑧Γ(𝑧) and the Legendre duplication formula
in (C.6) (used here with 𝑧 ∶= 𝑠∕2). This completes the proof of Proposition C.3
for 𝑛 > 1. □

Appendix D. Properties of 𝒜 and technical results about
matrices

In this section, we prove some algebraic results related to the matrix𝒜, that
are mostly used in Section 6 in the study of the operator ℒ.
We introduce the following norm in the vector space ℝ𝑛×𝑛:

‖𝒜‖ ∶= sup
𝑥∈ℝ𝑛

|𝑥|=1

|𝒜𝑥|.

We will say that 𝒜 is bounded if ‖𝒜‖ < +∞.

Lemma D.1. Let𝒜 be a positive definite matrix.
If𝒜 is symmetric, then (1.6) holds true with𝒦𝒜 = 1.
If𝒜 is bounded and strictly elliptic inℝ𝑛 with constant 𝑐 > 0, then (1.6) holds

true with

𝒦𝒜 = (
‖𝒜‖
𝑐 )

2

.

Proof. If 𝒜 positive definite and symmetric, the form

⟨𝜉, 𝜓⟩𝒜 ∶= 𝜉𝑇𝒜𝜓 for any 𝜉, 𝜓 ∈ ℝ𝑛

defines a scalar product in ℝ𝑛. Thus, by the Cauchy-Schwarz inequality, we
obtain that, for any 𝜉, 𝜓 ∈ ℝ𝑛,

||||𝜉
𝑇𝒜𝜓||||

2
= |||⟨𝜉, 𝜓⟩𝒜|||

2 ⩽ ⟨𝜉, 𝜉⟩𝒜⟨𝜓, 𝜓⟩𝒜 =
(
𝜉𝑇𝒜𝜉

) (
𝜓𝑇𝒜𝜓

)
,

which is (1.6) with𝒦𝒜 = 1.
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If 𝒜 is bounded and strictly elliptic in ℝ𝑛, we have that, for any 𝜉, 𝜓 ∈ ℝ𝑛,
||||𝜉
𝑇𝒜𝜓||||

2
= (𝒜𝜓 ⋅ 𝜉)(𝒜𝑇𝜉 ⋅ 𝜓) ⩽ ‖𝒜‖2|𝜉|2|𝜓|2

=
‖𝒜‖2

𝑐2
(
𝑐|𝜉|2

) (
𝑐|𝜓|2

)
⩽ (

‖𝒜‖
𝑐 )

2
(
𝜉𝑇𝒜𝜉

) (
𝜓𝑇𝒜𝜓

)
,

which gives (1.6) in this case. □

Lemma D.2. Let 𝒜 be positive definite matrix satisfying (1.6) and let 𝒜𝑆 be its
symmetric part. Letℬ = [𝑏𝑖𝑗] be the inverse matrix of𝒜.
Then, for any 𝜉, 𝜓 ∈ ℝ𝑛,

|𝜉 ⋅ 𝜓| ⩽
√
𝐾𝒜

(
𝜉𝑇𝒜𝑆𝜉

)(
𝜓𝑇ℬ𝜓

)
.

Proof. For any 𝜉, 𝜓 ∈ ℝ𝑛, exploiting (1.6), we have that

|𝜉 ⋅ 𝜓| = |ℬ𝒜𝜉 ⋅ 𝜓| = |𝒜𝜉 ⋅ ℬ𝑇𝜓| ⩽
√
𝐾𝒜

(
𝒜𝜉 ⋅ 𝜉

)(
𝒜ℬ𝑇𝜓 ⋅ ℬ𝑇𝜓

)

=
√
𝐾𝒜

(
𝒜𝜉 ⋅ 𝜉

)(
ℬ𝑇𝜓 ⋅ 𝜓

)
.

Moreover,
(
𝒜𝜉 ⋅ 𝜉

)(
ℬ𝑇𝜓 ⋅ 𝜓

)
=
(
𝒜𝑆𝜉 ⋅ 𝜉

)(
ℬ𝜓 ⋅ 𝜓

)
=
(
𝒜𝑆𝜉 ⋅ 𝜉

)(
ℬ𝜓 ⋅ 𝜓

)
.

These observations give the desired result. □
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