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Hyperbolic L-space knots and their
upsilon invariants

Masakazu Teragaito

Abstract. For a knot in the 3–sphere, the Upsilon invariant is a piecewise
linear function defined on the interval [0, 2]. It is known that for an L–space
knot, the Upsilon invariant is determined only by the Alexander polynomial.
We exhibit infinitely many pairs of hyperbolic L–space knots such that two
knots of each pair have distinct Alexander polynomials, so they are not con-
cordant, but share the same Upsilon invariant. Conversely, we examine the
restorability of the Alexander polynomial of an L–space knot from the Up-
silon invariant through the Legendre–Fenchel transformation.
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1. Introduction
For a knot 𝐾 in the 3–sphere 𝑆3, Ozsváth, Stipsicz and Szabó [30] defined

the Upsilon invariant Υ𝐾(𝑡), which is a piecewise linear real-valued function
defined on the interval [0, 2]. This invariant is additive under connected sum of
knots, and the sign changes for themirror image of a knot. Also, it gives a lower
bound for the genus, the concordance genus and the four genus. Although it is
originally defined through some modified knot Floer complex, Livingston [23]
later gives an alternative interpretation on the full knot Floer complex CFK∞.
As the most important feature, the Upsilon invariant is a concordance in-

variant, so it is not apparently strong enough to distinguish knots, although it
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has been used to establish various powerful results about independent elements
in the knot concordance group [11, 16, 30, 37]. For a smoothly slice knot, the
Upsilon invariant is the zero function. It depends only on the signature for an
alternating knot or a quasi-alternating knot [30]. Also, it is determined by the
𝜏–invariant for concordance genus one knots [11].
In this paper, we concentrate onL–space knots, which are recognized to form

an important class of knots in recent research. A knot is called an L–space
knot if it admits a positive surgery yielding an L–space. Positive torus knots are
typical examples of L–space knots. Note that any non-trivial L–space knot is
prime [19] and non-slice [27]. For an L–space knot, the Upsilon invariant is
determined only by the Alexander polynomial [30, Theorem 6.2].
There is another interesting route to lead to the Upsilon invariant of an L–

space knot. TheAlexander polynomial gives the formal semigroup [36], in turn,
the gap function [6]. These notions have the same information as theAlexander
polynomial. Then the Upsilon invariant is obtained as the Legendre–Fenchel
transform of the gap function [5].
In general, the gap function for an L–space knot is not convex, so the further

Legendre–Fenchel transformation on the Upsilon invariant does not return the
original gap function. Thus there is a possibility that distinct gap functions,
equivalentlyAlexander polynomials, correspond to the sameUpsilon invariant.
In other words, it is expected to exist non-concordant L–space knots with the
same Upsilon invariant. Among torus knots, there is no duplication of Upsilon
invariant. Our main result shows that this is possible among hyperbolic L–
space knots.

Theorem 1.1. There exist infinitely many pairs of hyperbolic L–space knots 𝐾1
and 𝐾2 such that they have distinct Alexander polynomials but share the same
non-zero Upsilon invariant.

We remark that the Alexander polynomial is a concordance invariant for L–
space knots [19]. Thus two hyperbolic L–space knots in our pair are not con-
cordant. In the literature, there are plenty of examples of non-concordant knots
sharing the same Upsilon invariant [1, 11, 17, 37, 38, 39, 41]. However, these
are not L–space knots.
Since the Upsilon invariant is determined only by the Alexander polynomial

for an L–space knot, any pair of L–space knots sharing the same Alexander
polynomial have the same Upsilon invariant. For example, the hyperbolic L–
space knot t09847 in the SnapPy census has the same Alexander polynomial
as the (2, 7)–cable of 𝑇(2, 5), which is an L–space knot. There are infinitely
many such pairs consisting of a hyperbolic L–space knot and an iterated torus
L–space knot (found in [3]).
However, we checked Dunfield’s list of 632 hyperbolic L–space knots ([2, 3]),

and confirmed that there is no duplication among their Alexander polynomials
and that there is no one sharing the sameAlexander polynomial as a torus knot.
This leads us to pose a question.
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Question 1.2. (1) Do there exist hyperbolic L–space knots which have the
sameAlexander polynomial? Do there exist hyperbolic L–space knotswhich
are concordant?

(2) Does there exist a hyperbolic L–space knot which is concordant to a torus
knot?

In general, it is rare that the Alexander polynomial of an L–space knot is
restorable from the Upsilon invariant. The reason is the fact that the gap func-
tion, which has the same information as the Alexander polynomial, is not con-
vex, and the Upsilon invariant depends only on the convex hull of the gap func-
tion. In fact, our knots in Theorem 1.1 are designed so that they have distinct
Alexander polynomials, but their gap functions share the same convex hull, so
the same Upsilon invariant.
On the other hand, the gap function may be restorable from its convex hull.

This means that the Alexander polynomial may also be restorable from the Up-
silon invariant through the Legendre–Fenchel transformation. We can give
infinitely many such gap functions, equivalently Alexander polynomials, but
there lies a hard question, called a geography question, whether such gap func-
tion can be realized by an L-space knot or not.
In this paper, we can give only two hyperbolic L–space knots whose Alexan-

der polynomials are restorable from the Upsilon invariants.

Theorem 1.3. Let 𝐾 be the hyperbolic L–space knot t09847 or v2871 in the
SnapPy census. Then the Alexander polynomial ∆𝐾(𝑡) of 𝐾 is restorable from the
Upsilon invariant Υ𝐾(𝑡). That is, the equation Υ𝐾(𝑡) = Υ𝐾′(𝑡) implies ∆𝐾(𝑡) =
∆𝐾′(𝑡) (up to units) for any other L–space knot 𝐾′.

In Section 2, we give a pair of knots𝐾1 and𝐾2, which yields an infinite family
of pairs of L–space knots. In Section 3, we calculate their Alexander polynomi-
als and the formal semigroups, which are sufficient to prove that the knots are
hyperbolic. Section 4 gives the gap functions and their convex hulls, and con-
firm that they correspond to the same Upsilon invariant. Section 5 shows that
the knots admit L–space surgery through the Montesinos trick, which com-
pletes the proof of Theorem 1.1. In the last section, we investigate the restora-
bility of Alexander polynomial from the Upsilon invariant, and prove Theorem
1.3.

2. The pairs of hyperbolic L-space knots
For any integer integer 𝑛 ≥ 1, the surgery diagrams illustrated in Figure 1

define our knots 𝐾1 and 𝐾2, where the surgery coefficient on 𝐶1 is −1∕𝑛 and
that on𝐶2 is−1∕2. The images of𝐾 after these surgeries in (1) and (2) of Figure
1 give𝐾1 and𝐾2, respectively. (The linkwith orientations is placed in a strongly
invertible position, and the axis is depicted there for later use.)
Hence, our knots are the closures of 4–braids

(𝜎2𝜎1𝜎3𝜎2)(𝜎1𝜎2𝜎3)4𝑛𝜎−12 (𝜎2𝜎3)6 and (𝜎2𝜎1𝜎3𝜎2)(𝜎1𝜎2𝜎3)4𝑛𝜎−13 (𝜎2𝜎3)6,
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(1) (2)

Figure 1. The knots 𝐾1 and 𝐾2 are the images of 𝐾 after per-
forming (−1∕𝑛)–surgery on 𝐶1 and (−1∕2)–surgery on 𝐶2.

where 𝜎𝑖 is the standard generator of the 4–strand braid group. When 𝑛 = 1,
𝐾1 is m240, and 𝐾2 is t10496 in the SnapPy census [8].
Theorem 1.1 immediately follows from the next.

Theorem 2.1. For each integer 𝑛 ≥ 1, the knots 𝐾1 and 𝐾2 defined above satisfy
the following.

(1) They are hyperbolic.
(2) (16𝑛 + 21)–surgery on 𝐾1 and (16𝑛 + 20)–surgery on 𝐾2 yield L–spaces.
(3) Their Alexander polynomials are distinct.
(4) They share the same Upsilon invariant.

Proof. This follows from Lemmas 3.6, 5.1, 5.2, Theorems 3.1, 3.2, and Corol-
lary 4.3. (To see that the Alexander polynomials of 𝐾1 and 𝐾2 are distinct, it
may be easier to compare their formal semigroups. From Propositions 3.3 and
3.4, we have that 4𝑛 + 7 ∈ 𝒮𝐾1 , but 4𝑛 + 7 ∉ 𝒮𝐾2 .) □

Each diagram in Figure 1 has a single negative crossing, but it can be can-
celled obviously with some positive crossing. Hence both knots are represented
as the closures of positive braids, which implies that they are fibered [32]. Then
it is straightforward to calculate their genera 𝑔(𝐾𝑖), and we see that 𝑔(𝐾1) =
𝑔(𝐾2) = 6𝑛 + 6.
Also, if once we know that 𝐾𝑖 is an L–space knot, then 𝑟–surgery on 𝐾𝑖 gives

an L–space if and only if 𝑟 ≥ 2𝑔(𝐾𝑖) − 1 = 12𝑛 + 11 by [14, 29]. Our choices
of surgery coefficients in Theorem 2.1(2) come from the manageability in the
process of the Montesinos trick in Section 5.

3. Alexander polynomials
We calculate the Alexander polynomials of 𝐾1 and 𝐾2. Since 𝐾1 and 𝐾2 are

obtained from 𝐾 by performing some surgeries on 𝐶1 and 𝐶2, we mimic the
technique of [3].
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Theorem 3.1. The Alexander polynomial of 𝐾1 is given as

∆𝐾1(𝑡) =
𝑛∑

𝑖=0
(𝑡8𝑛+12+4𝑖 − 𝑡8𝑛+11+4𝑖) + (𝑡8𝑛+9 − 𝑡8𝑛+8) +

𝑛∑

𝑖=0
(𝑡4𝑛+6+4𝑖 − 𝑡4𝑛+4+4𝑖)

+ (𝑡4𝑛+3 − 𝑡4𝑛+1) +
𝑛−1∑

𝑖=0
(𝑡4+4𝑖 − 𝑡1+4𝑖) + 1.

Proof. Let 𝐿 = 𝐾 ∪ 𝐶1 ∪ 𝐶2 be the oriented link illustrated in Figure 1(1). Its
multivariable Alexander polynomial is

∆𝐿(𝑥, 𝑦, 𝑧) = 𝑥6𝑦3𝑧2 + 𝑥5𝑦2𝑧 − 𝑥3𝑦3𝑧2 + 𝑥3𝑦2𝑧2 − 𝑥3𝑦2𝑧

− 𝑥2𝑦2𝑧2 + 𝑥4𝑦 + 𝑥3𝑦𝑧 − 𝑥3𝑦 + 𝑥3 − 𝑥𝑦𝑧 − 1,

where the variables 𝑥, 𝑦, 𝑧 correspond to the (oriented) meridians of 𝐾, 𝐶1, 𝐶2,
respectively. (We used [8, 18] for the calculation.)
Perform (−1∕𝑛)–surgery on 𝐶1 and (−1∕2)–surgery on 𝐶2. Let 𝐶𝑛1 and 𝐶

𝑛
2 be

the images of 𝐶1 and 𝐶2, respectively, after these surgeries. Then the link 𝐾 ∪
𝐶1∪𝐶2 changes to𝐾1∪𝐶𝑛1 ∪𝐶

𝑛
2 . These two links have homeomorphic exteriors,

and the homeomorphism induces the isomorphism on their homology groups
which relates the Alexander polynomials of two links [12, 25].
Let 𝜇𝐾 , 𝜇𝐶1 and 𝜇𝐶2 be the homology classes of meridians of 𝐾, 𝐶1, 𝐶2, re-

spectively. We assume that each meridian has linking number one with the
corresponding component. Furthermore, let 𝜆𝐾 , 𝜆𝐶1 and 𝜆𝐶2 be the homology
classes of their oriented longitudes. We see that 𝜆𝐶1 = 4𝜇𝐾 and 𝜆𝐶2 = 3𝜇𝐾 .
Let 𝜇𝐾1 , 𝜇𝐶𝑛1 and 𝜇𝐶𝑛2 be the homology classes of meridians of 𝐾1, 𝐶

𝑛
1 and 𝐶

𝑛
2 .

Then we have that 𝜇𝐾1 = 𝜇𝐾 , 𝜇𝐶𝑛1 = −𝜇𝐶1 + 𝑛𝜆𝐶1 , 𝜇𝐶𝑛2 = −𝜇𝐶2 + 2𝜆𝐶2 . Hence

𝜇𝐾 = 𝜇𝐾1 , 𝜇𝐶1 = −𝜇𝐶𝑛1 + 4𝑛𝜇𝐾1 , 𝜇𝐶2 = −𝜇𝐶𝑛2 + 6𝜇𝐾1 .

Thus we have the relation between the Alexander polynomials as

∆𝐾1∪𝐶𝑛1∪𝐶𝑛2 (𝑥, 𝑦, 𝑧) = ∆𝐿(𝑥, 𝑥4𝑛𝑦−1, 𝑥6𝑧−1). (3.1)

Since lk(𝐾1, 𝐶𝑛2 ) = lk(𝐾,𝐶2) = 3 and lk(𝐶𝑛1 , 𝐶
𝑛
2 ) = lk(𝐶1, 𝐶2) = 0, the Torres

condition [35] gives

∆𝐾1∪𝐶𝑛1∪𝐶𝑛2 (𝑥, 𝑦, 1) = (𝑥3𝑦0 − 1)∆𝐾1∪𝐶𝑛1 (𝑥, 𝑦)

= (𝑥3 − 1)∆𝐾1∪𝐶𝑛1 (𝑥, 𝑦).

Furthermore, since lk(𝐾1, 𝐶𝑛1 ) = lk(𝐾,𝐶1) = 4,

∆𝐾1∪𝐶𝑛1 (𝑥, 1) =
𝑥4 − 1
𝑥 − 1 ∆𝐾1(𝑥).

Thus

∆𝐾1(𝑥) =
𝑥 − 1
𝑥4 − 1

∆𝐾1∪𝐶𝑛1 (𝑥, 1) =
𝑥 − 1

(𝑥4 − 1)(𝑥3 − 1)
∆𝐾1∪𝐶𝑛1∪𝐶𝑛2 (𝑥, 1, 1).
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Then the relation (3.1) gives

∆𝐾1(𝑡) =
𝑡 − 1

(𝑡4 − 1)(𝑡3 − 1)
∆𝐿(𝑡, 𝑡4𝑛, 𝑡6)

= 𝑡 − 1
(𝑡4 − 1)(𝑡3 − 1)

(𝑡12𝑛+18 − 𝑡12𝑛+15 + 𝑡8𝑛+15 − 𝑡8𝑛+14 + 𝑡8𝑛+11 − 𝑡8𝑛+9

+ 𝑡4𝑛+9 − 𝑡4𝑛+7 + 𝑡4𝑛+4 − 𝑡4𝑛+3 + 𝑡3 − 1)

= 1
𝑡3 + 𝑡2 + 𝑡 + 1

⋅ 1
𝑡3 − 1

(𝑡12𝑛+15(𝑡3 − 1) + 𝑡8𝑛+9(𝑡6 − 1) − 𝑡8𝑛+11(𝑡3 − 1)

+ 𝑡4𝑛+3(𝑡6 − 1) − 𝑡4𝑛+4(𝑡3 − 1) + (𝑡3 − 1))

= 1
𝑡3 + 𝑡2 + 𝑡 + 1

(𝑡12𝑛+15 − 𝑡8𝑛+11 − 𝑡4𝑛+4 + 1 + (𝑡8𝑛+9 + 𝑡4𝑛+3)(𝑡3 + 1)).

We put

𝐴1 =
𝑛∑

𝑖=0
(𝑡8𝑛+12+4𝑖 − 𝑡8𝑛+11+4𝑖),

𝐴2 = 𝑡8𝑛+9 − 𝑡8𝑛+8,

𝐴3 =
𝑛∑

𝑖=0
(𝑡4𝑛+6+4𝑖 − 𝑡4𝑛+4+4𝑖),

𝐴4 = 𝑡4𝑛+3 − 𝑡4𝑛+1,

𝐴5 =
𝑛−1∑

𝑖=0
(𝑡4+4𝑖 − 𝑡1+4𝑖).

Then a direct calculation shows

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐴1 = 𝑡12𝑛+15 − 𝑡8𝑛+11,

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐴2 = 𝑡8𝑛+12 − 𝑡8𝑛+8,

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐴3 = (𝑡8𝑛+9 − 𝑡4𝑛+5) + (𝑡8𝑛+8 − 𝑡4𝑛+4),

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐴4 = (𝑡4𝑛+6 − 𝑡4𝑛+2) + (𝑡4𝑛+5 − 𝑡4𝑛+1),

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐴5 = (𝑡4𝑛+3 − 𝑡3) + (𝑡4𝑛+2 − 𝑡2) + (𝑡4𝑛+1 − 𝑡).

Thus

(𝑡3 + 𝑡2 + 𝑡 + 1)(𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 + 1) = 𝑡12𝑛+15 − 𝑡8𝑛+11 − 𝑡4𝑛+4 + 1

+ 𝑡8𝑛+12 + 𝑡8𝑛+9 + 𝑡4𝑛+6 + 𝑡4𝑛+3.

We have the conclusion ∆𝐾1(𝑡) = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 + 1 as desired. □
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Theorem 3.2. The Alexander polynomial of 𝐾2 is given as

∆𝐾2(𝑡) =
𝑛∑

𝑖=0
(𝑡8𝑛+12+4𝑖 − 𝑡8𝑛+11+4𝑖) + (𝑡8𝑛+9 − 𝑡8𝑛+8) +

2𝑛−1∑

𝑖=0
(𝑡4𝑛+8+2𝑖 − 𝑡4𝑛+7+2𝑖)

+ (𝑡4𝑛+6 − 𝑡4𝑛+4) + (𝑡4𝑛+3 − 𝑡4𝑛+1) +
𝑛−1∑

𝑖=0
(𝑡4+4𝑖 − 𝑡1+4𝑖) + 1.

Proof. The argument is very similar to the proof of Theorem 3.1, so we omit
the details.
Let 𝐿 = 𝐾 ∪ 𝐶1 ∪ 𝐶2 be the oriented link illustrated in Figure 1(2). Its multi-

variable Alexander polynomial is
∆𝐿(𝑥, 𝑦, 𝑧) = 𝑥6𝑦3𝑧2 − 𝑥3𝑦3𝑧2 + 𝑥4𝑦2𝑧 + 𝑥5𝑦𝑧 + 𝑥3𝑦2𝑧2 − 𝑥3𝑦2𝑧

− 𝑥4𝑦𝑧 − 𝑥2𝑦2𝑧2 + 𝑥4𝑦 + 𝑥2𝑦2𝑧 + 𝑥3𝑦𝑧 − 𝑥3𝑦 − 𝑥𝑦2𝑧 − 𝑥2𝑦𝑧 + 𝑥3 − 1.

where 𝑥, 𝑦, 𝑧 correspond to the meridians of 𝐾,𝐶1, 𝐶2, respectively.
Then

∆𝐾2(𝑡) =
𝑡 − 1

(𝑡4 − 1)(𝑡3 − 1)
∆𝐿(𝑡, 𝑡4𝑛, 𝑡6)

= 𝑡 − 1
(𝑡4 − 1)(𝑡3 − 1)

(𝑡12𝑛+18 − 𝑡12𝑛+15 + 𝑡8𝑛+10 + 𝑡4𝑛+11 + 𝑡8𝑛+15

− 𝑡8𝑛+9 − 𝑡4𝑛+10 − 𝑡8𝑛+14 + 𝑡4𝑛+4 + 𝑡8𝑛+8 + 𝑡4𝑛+9 − 𝑡4𝑛+3

− 𝑡8𝑛+7 − 𝑡4𝑛+8 + 𝑡3 − 1)

= 1
𝑡3 + 𝑡2 + 𝑡 + 1

⋅ 1
𝑡3 − 1

((𝑡12𝑛+15 + 𝑡8𝑛+7 + 𝑡4𝑛+8 + 1)(𝑡3 − 1)

+ (𝑡8𝑛+9 − 𝑡4𝑛+4 − 𝑡8𝑛+8 + 𝑡4𝑛+3)(𝑡6 − 1))

= 1
𝑡3 + 𝑡2 + 𝑡 + 1

(𝑡12𝑛+15 + 𝑡8𝑛+7 + 𝑡4𝑛+8 + 1

+ (𝑡8𝑛+9 − 𝑡4𝑛+4 − 𝑡8𝑛+8 + 𝑡4𝑛+3)(𝑡3 + 1)).
Again, we put

𝐵1 =
𝑛∑

𝑖=0
(𝑡8𝑛+12+4𝑖 − 𝑡8𝑛+11+4𝑖),

𝐵2 = 𝑡8𝑛+9 − 𝑡8𝑛+8,

𝐵3 =
2𝑛−1∑

𝑖=0
(𝑡4𝑛+8+2𝑖 − 𝑡4𝑛+7+2𝑖),

𝐵4 = 𝑡4𝑛+6 − 𝑡4𝑛+4,

𝐵5 = 𝑡4𝑛+3 − 𝑡4𝑛+1,

𝐵6 =
𝑛−1∑

𝑖=0
(𝑡4+4𝑖 − 𝑡1+4𝑖).
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A direct calculation shows

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐵1 = 𝑡12𝑛+15 − 𝑡8𝑛+11,

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐵2 = 𝑡8𝑛+12 − 𝑡8𝑛+8,

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐵3 = (𝑡8𝑛+9 − 𝑡4𝑛+9) + (𝑡8𝑛+7 − 𝑡4𝑛+7),

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐵4 = (𝑡4𝑛+9 − 𝑡4𝑛+5) + (𝑡4𝑛+8 − 𝑡4𝑛+4),

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐵5 = (𝑡4𝑛+6 − 𝑡4𝑛+2) + (𝑡4𝑛+5 − 𝑡4𝑛+1),

(𝑡3 + 𝑡2 + 𝑡 + 1)𝐵6 = (𝑡4𝑛+3 − 𝑡3) + (𝑡4𝑛+2 − 𝑡2) + (𝑡4𝑛+1 − 𝑡).

This shows that
(𝑡3 + 𝑡2 + 𝑡 + 1)(𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 + 𝐵5 + 𝐵6 + 1) = 𝑡12𝑛+15 + 𝑡8𝑛+7 + 𝑡4𝑛+8 + 1

+ (𝑡8𝑛+9 − 𝑡4𝑛+4 − 𝑡8𝑛+8 + 𝑡4𝑛+3)(𝑡3 + 1).

Thus ∆𝐾2(𝑡) = 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 + 𝐵5 + 𝐵6 + 1 as desired. □

We recall the notion of formal semigroup for an L–space knot [36]. Let 𝐾 be
an L–space knot in the 3–sphere. Then the Alexander polynomial of 𝐾 has a
form of

∆𝐾(𝑡) = 1 − 𝑡𝑎1 + 𝑡𝑎2 +⋯ − 𝑡𝑎𝑘−1 + 𝑡𝑎𝑘 , (3.2)
where 1 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑘 = 2𝑔(𝐾), and 𝑔(𝐾) is the genus of 𝐾 [27]. We
expand the Alexander function into a formal power series as

∆𝐾(𝑡)
1 − 𝑡 =

∑

𝑠∈𝒮𝐾

𝑡𝑠. (3.3)

(This is called theMilnor torsion in [10].) The set 𝒮𝐾 is a subset of non-negative
integers, called the formal semigroup of𝐾. For example, for a torus knot 𝑇(𝑝, 𝑞)
(1 < 𝑝 < 𝑞), its formal semigroup is known to be the actual semigroup of rank
two,

⟨𝑝, 𝑞⟩ = {𝑎𝑝 + 𝑏𝑞 ∣ 𝑎, 𝑏 ≥ 0}
(see [6, 36]). If an L–space knot is an iterated torus knot, then its formal semi-
group is also a semigroup [36], but in general, the formal semigroup of a hyper-
bolic L–space knot is hardly a semigroup [3, 34].
Let ℤ≥𝑚 = {𝑖 ∈ ℤ ∣ 𝑖 ≥ 𝑚} and ℤ<0 = {𝑖 ∈ ℤ ∣ 𝑖 < 0}.

Proposition 3.3. The formal semigroup of 𝐾1 is given as
𝒮𝐾1 = {0, 4, 8,… , 4𝑛} ∪ {4𝑛 + 3}

∪ {4𝑛 + 6, 4𝑛 + 7, 4𝑛 + 10, 4𝑛 + 11,… , 8𝑛 + 6, 8𝑛 + 7} ∪ {8𝑛 + 9, 8𝑛 + 10}
∪ {8𝑛 + 12, 8𝑛 + 13, 8𝑛 + 14, 8𝑛 + 16, 8𝑛 + 17, 8𝑛 + 18,
… , 12𝑛 + 8, 12𝑛 + 9, 12𝑛 + 10} ∪ℤ≥12𝑛+12.

Proof. We use 𝐴1, 𝐴2,… , 𝐴5 in the proof of Theorem 3.1. For
∆𝐾1
1 − 𝑡 =

𝐴1
1 − 𝑡 +

𝐴2
1 − 𝑡 +

𝐴3
1 − 𝑡 +

𝐴4
1 − 𝑡 +

𝐴5
1 − 𝑡 +

1
1 − 𝑡 ,
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we expand each term as follows;

𝐴1
1 − 𝑡 = −

𝑛∑

𝑖=0
𝑡8𝑛+11+4𝑖,

𝐴2
1 − 𝑡 = −𝑡8𝑛+8,

𝐴3
1 − 𝑡 = −

𝑛∑

𝑖=0
(𝑡4𝑛+5+4𝑖 + 𝑡4𝑛+4+4𝑖),

𝐴4
1 − 𝑡 = −𝑡4𝑛+2 − 𝑡4𝑛+1,

𝐴5
1 − 𝑡 = −

𝑛−1∑

𝑖=0
(𝑡3+4𝑖 + 𝑡2+4𝑖 + 𝑡1+4𝑖),

1
1 − 𝑡 = 1 + 𝑡 + 𝑡2 + 𝑡3 + … .

The conclusion immediately follows from these. □

Proposition 3.4. The formal semigroup of 𝐾2 is given as
𝒮𝐾2 = {0, 4, 8,… , 4𝑛} ∪ {4𝑛 + 3}

∪ {4𝑛 + 6, 4𝑛 + 8, 4𝑛 + 10,… , 8𝑛 + 4} ∪ {8𝑛 + 6, 8𝑛 + 7, 8𝑛 + 9, 8𝑛 + 10}
∪ {8𝑛 + 12, 8𝑛 + 13, 8𝑛 + 14, 8𝑛 + 16, 8𝑛 + 17, 8𝑛 + 18,
… , 12𝑛 + 8, 12𝑛 + 9, 12𝑛 + 10} ∪ℤ≥12𝑛+12.

Proof. The argument is similar to the proof of Proposition 3.3. For𝐵1, 𝐵2,… , 𝐵6
in the proof of Theorem 3.2, we expand

𝐵1
1 − 𝑡 = −

𝑛∑

𝑖=0
𝑡8𝑛+11+4𝑖,

𝐵2
1 − 𝑡 = −𝑡8𝑛+8,

𝐵3
1 − 𝑡 = −

2𝑛−1∑

𝑖=0
𝑡4𝑛+7+2𝑖,

𝐵4
1 − 𝑡 = −𝑡4𝑛+4 − 𝑡4𝑛+5,

𝐵5
1 − 𝑡 = −𝑡4𝑛+1 − 𝑡4𝑛+2,

𝐵6
1 − 𝑡 = −

𝑛−1∑

𝑖=0
(𝑡3+4𝑖 + 𝑡2+4𝑖 + 𝑡1+4𝑖).

Then the conclusion follows from these again. □

Corollary 3.5. For 𝑖 = 1, 2, the formal semigroup of 𝐾𝑖 is not a semigroup.
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Proof. By Propositions 3.3 and 3.4, we see that 4 ∈ 𝒮𝐾𝑖 but 4𝑛+4 ∉ 𝒮𝐾𝑖 . Hence
𝒮𝐾𝑖 is not closed under the addition, so is not a semigroup. □

Lemma 3.6. Both of 𝐾1 and 𝐾2 are hyperbolic.

Proof. By Corollary 3.5, the formal semigroup of 𝐾𝑖 is not a semigroup. Hence
𝐾𝑖 is not a torus knot, because the formal semigroup of a torus knot is a semi-
group.
Assume for a contradiction that 𝐾𝑖 is a satellite knot. Since 𝐾𝑖 is the clo-

sure of a 4–braid, its bridge number is at most four. By [31], it is equal to four.
Moreover, the companion is a 2–bridge knot and the pattern knot has wrap-
ping number two. We know that both of the companion and the pattern knot
are L–space knots and the pattern is braided by [4, 16]. Thus the companion is
a 2–bridge torus knot [27], and 𝐾𝑖 is its 2–cable. By [36], the formal semigroup
of an iterated torus L–space knot is a semigroup, which contradicts Corollary
3.5. We have thus shown that 𝐾𝑖 is hyperbolic. □

4. Upsilon invariants
In this section, we verify that the Upsilon invariants of 𝐾1 and 𝐾2 are the

same. We will not calculate the Upsilon invariants. Instead, we determine the
gap functions defined later. For an L–space knot, the Upsilon invariant is the
Legendre–Fenchel transform of the gap function [5]. Hence if the gap functions
of 𝐾1 and 𝐾2 share the same convex hull, then their Upsilon invariants also
coincide.
First, we quickly review the Legendre–Fenchel transformation.
For a function 𝑓∶ ℝ → ℝ, the Legendre–Fenchel transform 𝑓∗∶ ℝ → ℝ ∪

{∞} is defined as
𝑓∗(𝑡) = sup

𝑥∈ℝ
{𝑡𝑥 − 𝑓(𝑥)}.

The domain of 𝑓∗ is the set {𝑡 ∣ 𝑓∗(𝑡) <∞}.
The Legendre transform is defined only for differentiable convex functions,

but the Legendre–Fenchel transform can be defined even for non-convex func-
tions with non-differentiable points. The transform 𝑓∗ is always a convex func-
tion. Hence, if 𝑓 is not convex, then the double Legendre–Fenchel transform
𝑓∗∗ does not return 𝑓. In this case, 𝑓∗∗ gives the convex hull of the function 𝑓.
Thus we see that 𝑓∗ depends only on the convex hull of 𝑓.
Next, we recall the notion of gap function introduced in [6].
Let 𝐾 be an L–space knot with formal semigroup 𝒮𝐾 . Then 𝒢𝐾 = ℤ − 𝒮𝐾

is called the gap set. In fact, 𝒢𝐾 = ℤ<0 ∪ {𝑎1, 𝑎2,… , 𝑎𝑔}, where 𝑔 = 𝑔(𝐾), and
0 < 𝑎1 < 𝑎2 <⋯ < 𝑎𝑔. The part 𝑎1, 𝑎2,… , 𝑎𝑔 is called the gap sequence. Then
it is easy to restore the Alexander polynomial as

∆𝐾(𝑡) = 1 + (𝑡 − 1)(𝑡𝑎1 + 𝑡𝑎2 +⋯ + 𝑡𝑎𝑔).

From the gap set 𝒢𝐾 , we define the function 𝐼∶ ℤ→ ℤ≥0 by

𝐼(𝑚) = #{𝑖 ∈ 𝒢𝐾 ∣ 𝑖 ≥ 𝑚},
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and let 𝐽(𝑚) = 𝐼(𝑚 + 𝑔). Then we extend 𝐽(𝑚) linearly to obtain a piecewise
linear function on ℝ. That is, for 𝑘 ∈ ℤ, if 𝐽(𝑘) = 𝐽(𝑘 + 1), then 𝐽(𝑥) = 𝐽(𝑘)
on [𝑘, 𝑘 + 1], and if 𝐽(𝑘 + 1) = 𝐽(𝑘) − 1, then 𝐽(𝑘 + 𝑥) = 𝐽(𝑘) − 𝑥 for 0 ≤
𝑥 ≤ 1. Borodzik and Hedden [5] showed that the Upsilon invariant of 𝐾 is
the Legendre–Fenchel transform of the function 2𝐽(−𝑚). We call this function
2𝐽(−𝑚) the gap function of 𝐾.

Example 4.1. Let𝐾 be the (−2, 3, 7)–pretzel knot. It admits a lens space surgery,
so is an L–space knot. Also, it has genus 5. The Alexander polynomial ∆𝐾(𝑡)
is 1 − 𝑡 + 𝑡3 − 𝑡4 + 𝑡5 − 𝑡6 + 𝑡7 − 𝑡9 + 𝑡10. Then 𝒮𝐾 = {0, 3, 5, 7, 8} ∪ ℤ≥10, and
𝒢𝐾 = ℤ<0 ∪ {1, 2, 4, 6, 9}. Tables 1 and 2 show the values of 𝐼(𝑚) and the gap
function 2𝐽(−𝑚).

𝑚 ≥ 10 9 8 7 6 5 4 3 2 1 0 −1 −2 …
𝐼(𝑚) 0 1 1 1 2 2 3 3 4 5 5 6 7 …

Table 1. 𝐼(𝑚) for the (−2, 3, 7)–pretzel knot.

𝑚 ≤ −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 …
2𝐽(−𝑚) 0 2 2 2 4 4 6 6 8 10 10 12 14 …

Table 2. The gap function 2𝐽(−𝑚) for the (−2, 3, 7)–pretzel
knot.

Figure 2 shows the graph of the gap function 2𝐽(−𝑚) and its convex hull
(broken line). Here, the convex hull 𝑓(𝑥) of the gap function is given by

𝑓(𝑥) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 for 𝑥 ≤ −5,
2
3
(𝑥 + 5) for −5 ≤ 𝑥 ≤ −2,
𝑥 + 4 for −2 ≤ 𝑥 ≤ 2,
4
3
(𝑥 − 5) + 10 for 2 ≤ 𝑥 ≤ 5,
2𝑥 for 5 ≤ 𝑥.

Then the Legendre–Fenchel transformation gives the Upsilon invariant

Υ𝐾(𝑡) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−5𝑡 for 0 ≤ 𝑡 ≤ 2
3
,

−2𝑡 − 2 for 2
3
≤ 𝑡 ≤ 1,

2𝑡 − 6 for 1 ≤ 𝑡 ≤ 4
3
,

5𝑡 − 10 for 4
3
≤ 𝑡 ≤ 2.

In general, the gap function of an L–space knot has a specific property.
∙ The slope of each segment of the graph is 0 or 2.
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Figure 2. The graph of the gap function 2𝐽(−𝑚) for the
(−2, 3, 7)–pretzel knot and its convex hull (broken line).

Although this observation is easy to see, we will use it essentially in Section 6
with further investigation.
Now, we calculate the gap functions of 𝐾1 and 𝐾2.
From Proposition 3.3, the gap set 𝒢𝐾1 is

ℤ<0 ∪ {1, 2, 3, 5, 6, 7,… , 4𝑛 − 3, 4𝑛 − 2, 4𝑛 − 1} ∪ {4𝑛 + 1, 4𝑛 + 2}
∪ {4𝑛 + 4, 4𝑛 + 5, 4𝑛 + 8, 4𝑛 + 9, 4𝑛 + 12, 4𝑛 + 13,… , 8𝑛 + 4, 8𝑛 + 5}
∪ {8𝑛 + 8} ∪ {8𝑛 + 11, 8𝑛 + 15, 8𝑛 + 19,… , 12𝑛 + 7, 12𝑛 + 11}.

Hence the values of 𝐼(𝑚) is given as in Table 3. When 𝑚 is an integer not
in the table, 𝐼(𝑚) takes the same value as the nearest 𝑚′ with 𝑚′ > 𝑚. For
example, 𝐼(𝑚) = 𝐼(12𝑛 + 11) = 1 for𝑚 = 12𝑛 + 10, 12𝑛 + 9, 12𝑛 + 8.

𝑚 ≥ 12𝑛 + 12 12𝑛 + 11 12𝑛 + 7 … 8𝑛 + 11 8𝑛 + 8
𝐼(𝑚) 0 1 2 … 𝑛 + 1 𝑛 + 2

8𝑛 + 5 8𝑛 + 4 8𝑛 + 1 8𝑛 … 4𝑛 + 5 4𝑛 + 4 4𝑛 + 2 4𝑛 + 1
𝑛 + 3 𝑛 + 4 𝑛 + 5 𝑛 + 6 … 3𝑛 + 3 3𝑛 + 4 3𝑛 + 5 3𝑛 + 6

4𝑛 − 1 4𝑛 − 2 4𝑛 − 3 … 3 2 1 −1 −2 …
3𝑛 + 7 3𝑛 + 8 3𝑛 + 9 … 6𝑛 + 4 6𝑛 + 5 6𝑛 + 6 6𝑛 + 7 6𝑛 + 8 …

Table 3. The function 𝐼(𝑚) for 𝐾1.

Let 𝐽(𝑚) = 𝐼(𝑚 + 𝑔) with 𝑔 = 6𝑛 + 6. Then the gap function 2𝐽(−𝑚) takes
the values as in Table 4.
Figure 3 shows the graph of the gap function 2𝐽(−𝑚) of 𝐾1 when 𝑛 = 1.
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𝑚 ≤ −6𝑛 − 6 −6𝑛 − 5 −6𝑛 − 1 … −2𝑛 − 5 −2𝑛 − 2
2𝐽(−𝑚) 0 2 4 … 2𝑛 + 2 2𝑛 + 4

−2𝑛 + 1 −2𝑛 + 2 −2𝑛 + 5 −2𝑛 + 6 … 2𝑛 + 1 2𝑛 + 2 2𝑛 + 4 2𝑛 + 5
2𝑛 + 6 2𝑛 + 8 2𝑛 + 10 2𝑛 + 12 … 6𝑛 + 6 6𝑛 + 8 6𝑛 + 10 6𝑛 + 12

2𝑛 + 7 2𝑛 + 8 2𝑛 + 9 … 6𝑛 + 3 6𝑛 + 4 6𝑛 + 5 6𝑛 + 7 6𝑛 + 8 …
6𝑛 + 14 6𝑛 + 16 6𝑛 + 18 … 12𝑛 + 8 12𝑛 + 10 12𝑛 + 12 12𝑛 + 14 12𝑛 + 16 …

Table 4. The gap function 2𝐽(−𝑚) for 𝐾1.
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Figure 3. The graph of the gap function of 𝐾1 with 𝑛 = 1.

Similarly, the gap set 𝒢𝐾2 is

ℤ<0 ∪ {1, 2, 3, 5, 6, 7,… , 4𝑛 − 3, 4𝑛 − 2, 4𝑛 − 1} ∪ {4𝑛 + 1, 4𝑛 + 2}
∪ {4𝑛 + 4, 4𝑛 + 5} ∪ {4𝑛 + 7, 4𝑛 + 9,… , 8𝑛 + 3, 8𝑛 + 5}
∪ {8𝑛 + 8, 8𝑛 + 11} ∪ {8𝑛 + 15, 8𝑛 + 19,… , 12𝑛 + 7, 12𝑛 + 11}

from Proposition 3.4.
The values of 𝐼(𝑚) and the gap function 2𝐽(−𝑚) are given as in Tables 5 and

6.
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𝑚 ≥ 12𝑛 + 12 12𝑛 + 11 12𝑛 + 7 … 8𝑛 + 15 8𝑛 + 11 8𝑛 + 8
𝐼(𝑚) 0 1 2 … 𝑛 𝑛 + 1 𝑛 + 2

8𝑛 + 5 8𝑛 + 3 8𝑛 + 1 … 4𝑛 + 7 4𝑛 + 5 4𝑛 + 4 4𝑛 + 2 4𝑛 + 1
𝑛 + 3 𝑛 + 4 𝑛 + 5 … 3𝑛 + 2 3𝑛 + 3 3𝑛 + 4 3𝑛 + 5 3𝑛 + 6

4𝑛 − 1 4𝑛 − 2 4𝑛 − 3 … 3 2 1 −1 −2 …
3𝑛 + 7 3𝑛 + 8 3𝑛 + 9 … 6𝑛 + 4 6𝑛 + 5 6𝑛 + 6 6𝑛 + 7 6𝑛 + 8 …

Table 5. The function 𝐼(𝑚) for 𝐾2.

𝑚 ≤ −6𝑛 − 6 −6𝑛 − 5 −6𝑛 − 1 … −2𝑛 − 9 −2𝑛 − 5 −2𝑛 − 2
2𝐽(−𝑚) 0 2 4 … 2𝑛 2𝑛 + 2 2𝑛 + 4

−2𝑛 + 1 −2𝑛 + 3 −2𝑛 + 5 … 2𝑛 − 1 2𝑛 + 1 2𝑛 + 2 2𝑛 + 4 2𝑛 + 5
2𝑛 + 6 2𝑛 + 8 2𝑛 + 10 … 6𝑛 + 4 6𝑛 + 6 6𝑛 + 8 6𝑛 + 10 6𝑛 + 12

2𝑛 + 7 2𝑛 + 8 2𝑛 + 9 … 6𝑛 + 3 6𝑛 + 4 6𝑛 + 5 6𝑛 + 7 6𝑛 + 8 …
6𝑛 + 14 6𝑛 + 16 6𝑛 + 18 … 12𝑛 + 8 12𝑛 + 10 12𝑛 + 12 12𝑛 + 14 12𝑛 + 16 …

Table 6. The gap function 2𝐽(−𝑚) for 𝐾2.

(a) (b) (c) (d)

(e) (g)(f) (h)

Figure 4. The parts of the graph of a gap function. The broken
lines show the parts of convex hull with slope 𝑠.
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Lemma 4.2. For 𝑖 = 1, 2, the convex hull 𝑓(𝑥) of the gap function 2𝐽(−𝑚) for𝐾𝑖
is given by

𝑓(𝑥) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

0 for 𝑥 ≤ −6𝑛 − 6,
1
2
(𝑥 + 6𝑛 + 6) for −6𝑛 − 6 ≤ 𝑥 ≤ −2𝑛 − 6,

2
3
(𝑥 + 2𝑛 + 6) + 2𝑛 for −2𝑛 − 6 ≤ 𝑥 ≤ −2𝑛,
𝑥 + 4𝑛 + 4 for −2𝑛 ≤ 𝑥 ≤ 2𝑛,
4
3
(𝑥 − 2𝑛) + 6𝑛 + 4 for 2𝑛 ≤ 𝑥 ≤ 2𝑛 + 6,

3
2
(𝑥 − 2𝑛 − 6) + 6𝑛 + 12 for 2𝑛 + 6 ≤ 𝑥 ≤ 6𝑛 + 6,
2𝑥 for 6𝑛 + 6 ≤ 𝑥.

Proof. Consider the gap function of 𝐾1. Let 𝑓 be the convex hull. From Table
4, it is obvious that 𝑓(𝑥) = 0 for 𝑥 ≤ −6𝑛 − 6 and 𝑓(𝑥) = 2𝑥 for 𝑥 ≥ 6𝑛 + 6.
On the interval [−6𝑛−6,−6𝑛−2], the gap function has the branch as shown

in Figure 4(b). It repeats on the intervals [−6𝑛−2,−6𝑛+2],… , [−2𝑛−10,−2𝑛−
6]. Thus 𝑓(𝑥) = 1

2
(𝑥 + 6𝑛 + 6) on [−6𝑛 − 6,−2𝑛 − 6].

On [−2𝑛−6,−2𝑛−3] and [−2𝑛−3,−2𝑛], the branch is of Figure 4(c). Hence
𝑓(𝑥) = 2

3
(𝑥 + 2𝑛 + 6) + 2𝑛 on [−2𝑛 − 6,−2𝑛].

Similarly, the branch of Figure 4(d) repeats on the intervals [−2𝑛, 2𝑛+4], [−2𝑛+
4,−2𝑛 + 6],… , [2𝑛 − 4, 2𝑛]. This gives 𝑓(𝑥) = 𝑥 + 4𝑛 + 4 on [−2𝑛, 2𝑛].
On [2𝑛, 2𝑛+3] and [2𝑛+3, 2𝑛+6], the branch of Figure 4(f) appears. Thus

𝑓(𝑥) = 4
3
(𝑥 − 2𝑛) + 6𝑛 + 4 on [2𝑛, 2𝑛 + 6].

Finally, the branch of Figure 4(g) repeats on [2𝑛+6, 2𝑛+10],… , [6𝑛+2, 6𝑛+
6]. Then 𝑓(𝑥) = 3

2
(𝑥 − 2𝑛 − 6) + 6𝑛 + 12 on [2𝑛 + 6, 6𝑛 + 6]. We have thus

shown that the convex hull 𝑓(𝑥) is given as claimed for 𝐾1.
Next, consider the gap function of𝐾2. For 𝑥 ≤ −2𝑛, the situation is the same

as 𝐾1.
On [−2𝑛,−2𝑛 + 2], the branch of Figure 4(e) appears. This branch repeats

on [−2𝑛+2,−2𝑛+4],… , [2𝑛−2, 2𝑛]. However, the convex hull is the same as
𝐾1.
For the remaining range 𝑥 ≥ 2𝑛, the gap function is the same as one of 𝐾1.

In conclusion, the gap functions of 𝐾1 and 𝐾2 are distinct only on [−2𝑛, 2𝑛],
but their convex hulls coincide there. □

Corollary 4.3. The Upsilon invariants of 𝐾1 and 𝐾2 coincide.

Proof. By Lemmas 5.1 and 5.2, 𝐾1 and 𝐾2 are L–space knots. Hence, their
Upsilon invariants are the Legendre–Fenchel transforms of the gap function
2𝐽(−𝑚). In fact, it depends only on the convex hull of the gap function. By
Lemma 4.2, 𝐾1 and 𝐾2 have the same convex hull for their gap functions. Thus
the conclusion follows. □
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5. The Montesinos trick
In this section, we verify that𝐾1 and𝐾2 admit positive Dehn surgeries yield-

ing L–spaces by using the Montesinos trick [24]. For a surgery diagram on a
strongly invertible link, the Montesinos trick describes the resulting closed 3–
manifold as the double branched cover of another knot or link obtained from
tangle replacements corresponding to the surgery coefficients on some link ob-
tained from the quotient of the original strongly invertible link under the strong
involution (see also [26, 40]).
In Figure 1(1) and (2), each link 𝐾 ∪𝐶1 ∪𝐶2 is placed in a strongly invertible

position, where the dotted line indicates the axis of the involution.

Lemma 5.1. For 𝐾1, (16𝑛 + 21)–surgery yields an L–space.

Proof. Assign the surgery coefficient 3 on 𝐾 in Figure 1(1). After performing
(−1∕𝑛)–surgery on 𝐶1 and (−1∕2)–surgery on 𝐶2, our knot 𝐾1 has surgery co-
efficient 16𝑛 + 21.
First, take the quotient of the surgery diagram of Figure 1(1) under the in-

volution around the axis. The neighborhoods of 𝐾, 𝐶1 and 𝐶2 yield 3–balls as
shown in Figure 5. Since each 3–ball meets the image of the axis in two arcs,
it gives a 2–string tangle, where a rational tangle replacement associated to the
surgery coefficient is performed.

Figure 5. The quotient of the surgery diagram of 𝐾1. The
neighborhoods of 𝐾, 𝐶1 and 𝐶2 yield 3–balls.

The left of Figure 6 shows the knot obtained from the tangle replacements.
In the diagram of Figure 1, we should remark that the component𝐾 has writhe
3. Hence the tangle replacement corresponding to the quotient of 𝐾 is realized
by the 0–tangle (depicted as the dotted circle).
Then Figures 6, 7, and 8 show the deformation of the knot. Finally, we ob-

tain the Montesinos knot 𝑀(−3∕7,−1∕3,−1∕𝑛). Thus the double branched
cover is the Seifert fibered manifold𝑀 = 𝑀(0; −3∕7,−1∕3,−1∕𝑛). We use the
notation of [22]. That is, 𝑀(𝑒0; 𝑟1, 𝑟2, 𝑟3) is obtained by 𝑒0–surgery on the un-
knot with three meridians having (−∕𝑟𝑖)–surgery on the 𝑖-th one. Then −𝑀 =
𝑀(0; 3∕7, 1∕3, 1∕𝑛). By the criterion of [21, 22],𝑀 is an L–space. □
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Figure 6. The deformation for 𝐾1. Each rectangle box con-
tains horizontal right-handed half-twists with indicated num-
ber.

Figure 7. The deformation for 𝐾1 (continued from Figure 6).

Lemma 5.2. For 𝐾2, (16𝑛 + 20)–surgery yields an L–space.

Proof. Assign the surgery coefficient 2 on 𝐾 in Figure 1(2). After performing
(−1∕𝑛)–surgery on 𝐶1 and (−1∕2)–surgery on 𝐶2, 𝐾2 has surgery coefficient
16𝑛 + 20.
The process is similar to that for 𝐾1. We should remark that the tangle re-

placement to the quotient of 𝐾 is realized by (−1)–tangle as depicted in the
dotted circle in Figure 9 (left), because 𝐾 has writhe 3 in the diagram.
Let 𝓁 be the link as illustrated in the right of Figure 9. We need to verify that

the double branched cover of 𝓁 is an L–space.
For the crossing of𝓁 encircled in Figure 9 (right), we perform two resolutions

as shown in Figure 10. Let 𝓁∞ and 𝓁0 be the resulting knots. It is straightfor-
ward to calculate det𝓁 = 16𝑛 + 20, det𝓁∞ = 9 and det𝓁0 = 16𝑛 + 11 from
the checkerboard colorings on the diagrams of Figures 9, 12 and 13. Thus the
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Figure 8. The deformation for 𝐾1 (continued from Figure 7).
The left bottom is the Montesinos knot𝑀(−3∕7,−1∕3,−1∕𝑛).

Figure 9. The deformation for 𝐾2. Let 𝓁 be the right link.

equation det𝓁 = det𝓁∞+det𝓁0 holds. This implies that if the double branched
covers of 𝓁∞ and 𝓁0 are L–spaces, then so is the double branched cover of 𝓁
([7, 27, 28]).

Figure 10. Two resolutions.
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Claim 5.3. The knot 𝓁∞ is the (−3, 3, 𝑛 − 1)–pretzel knot. Its double branched
cover is an L–space.

Proof. Figures 11 and 12 show that the knot 𝓁∞ is the (−3, 3, 𝑛 − 1)–pretzel
knot.
If 𝑛 = 1, then 𝓁∞ is the connected sum of torus knots 𝑇(2, 3) and 𝑇(2,−3).

The double branched cover is the connected sumof lens spaces𝐿(3, 1)#𝐿(3,−1),
which is an L–space. If 𝑛 = 2, then 𝓁∞ is the 2–bridge knot 𝑆(4∕9), so the dou-
ble cover is a lens space. Hence we assume 𝑛 > 2.
Since 𝓁∞ is the Montesinos knot 𝑀(0; 1∕3,−1∕3,−1∕(𝑛 − 1)), its double

branched cover𝑀 is the Seifert fibered manifold𝑀(0; 1∕3,−1∕3,−1∕(𝑛 − 1)).
Then −𝑀 = 𝑀(−1; 2∕3, 1∕3, 1∕(𝑛 − 1)).
We use the criterion of [22, Theorem 1.1]. It claims that a Seifert fibered

manifold 𝑀(𝑒0; 𝑟1, 𝑟2, 𝑟3) (with 1 ≥ 𝑟1 ≥ 𝑟2 ≥ 𝑟3 ≥ 0) is an L–space if and
only if either 𝑀 or −𝑀 does not carry a positive transverse contact structure.
Moreover, it is proved in [21, Theorem 1.3] (see also [22, p.359]) that such a
Seifert fiberedmanifold𝑀 carries no positive transverse contact structure if and
only if either 𝑒0 ≥ 0, or 𝑒0 = −1 and there are no coprime integers 𝑚 > 𝑎 > 0
such that𝑚𝑟1 < 𝑎 < 𝑚(1 − 𝑟2) and𝑚𝑟3 < 1.
If 𝑛 > 3, then set 𝑟1 = 2∕3, 𝑟2 = 1∕3 and 𝑟3 = 1∕(𝑛 − 1). Then 1 ≥ 𝑟1 ≥ 𝑟2 ≥

𝑟3 ≥ 0. Clearly, there are no integers 𝑚 and 𝑎 such that 𝑚𝑟1 < 𝑎 < 𝑚(1 − 𝑟2).
Hence −𝑀 is an L–space.
Finally, assume 𝑛 = 3. Set 𝑟1 = 2∕3, 𝑟2 = 1∕2 and 𝑟3 = 1∕3. Then 1 ≥ 𝑟1 ≥

𝑟2 ≥ 𝑟3. If 1∕𝑚 > 𝑟3 = 1∕3, then𝑚 < 3. For𝑚 = 2 and 𝑎 = 1, 𝑎∕𝑚 > 𝑟1 = 2∕3
does not hold. Thus there are no coprime integers𝑚 > 𝑎 > 0 as desired, which
implies that −𝑀 is an L–space. □

Figure 11. A deformation of the knot 𝓁∞.

Claim 5.4. The double branched cover of 𝓁0 is an L–space.
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Figure 12. Adeformation of the knot𝓁∞ (continued fromFig-
ure 11). The right is the (−3, 3, 𝑛 − 1)–pretzel knot.

Figure 13. The knot 𝓁0.

Proof. For the crossing encircled in Figure 13, we further perform the resolu-
tions, which yield 𝓁0∞ and 𝓁00. Clearly, 𝓁0∞ = 𝓁∞. Hence det𝓁0∞ = 9.
We can confirm that 𝓁00 is the connected sum of the Hopf link and a Mon-

tesinos knot as shown in Figures 14 and 15. From the diagram of Figure 15, we
see that det𝓁00 = 16𝑛 + 2. Recall that det𝓁0 = 16𝑛 + 11. Hence the equation
det𝓁0 = det𝓁0∞ + det𝓁00 holds.
From Claim 5.3, the double branched cover of 𝓁0∞ is an L–space. It remains

to show that the double branched cover of 𝓁00 is an L–space.
The double branched cover of the Montesinos knot

𝑀 = 𝑀(1∕2,−1∕3, 𝑛∕(2𝑛 + 1))

is the Seifert fibered manifold 𝑀(0; 1∕2,−1∕3, 𝑛∕(2𝑛 + 1)). Since 𝑀 is home-
omorphic to 𝑀(−1; 1∕2, 2∕3, 𝑛∕(2𝑛 + 1)), set 𝑟1 = 2∕3, 𝑟2 = 1∕2 and 𝑟3 =
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Figure 14. The knot 𝓁00 has the Hopf link as its connected
summand.

Figure 15. The knot 𝓁00 is the connected sum of the Hopf link
and the Montesinos knot𝑀(1∕2,−1∕3, 𝑛∕(2𝑛 + 1)).

𝑛∕(2𝑛 + 1). Then 1 ≥ 𝑟1 ≥ 𝑟2 ≥ 𝑟3 ≥ 0. We apply the criterion of [22] again.
If 1∕𝑚 > 𝑟3 = 𝑛∕(2𝑛 + 1) ≥ 1∕3, then 𝑚 < 3. Hence there are no coprime
integers𝑚 > 𝑎 > 0 such that 𝑎∕𝑚 > 𝑟1 = 2∕3. Thus𝑀 is an L–space.
The double branched cover of 𝓁00 is the connected sum of a lens space 𝐿(2, 1)

and𝑀. Since the sum of L–spaces is an L–space [27], we have the conclusion.
□

By Claims 5.3 and 5.4, we obtain that the double branched cover of 𝓁 is an
L–space. □

6. Restorability of Alexander polynomials
In this section, we investigate the restorability of Alexander polynomial of

an L–space knot from the Upsilon invariant.
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As easy examples, we examine two torus knots.

Example 6.1. (1) Let 𝐾 = 𝑇(3, 4). Then ∆𝐾(𝑡) = 1 − 𝑡 + 𝑡3 − 𝑡5 + 𝑡6, so
𝒮𝐾 = {0, 3, 4} ∪ℤ≥6 and 𝒢𝐾 = ℤ<0 ∪ {1, 2, 5}. It is easy to calculate Υ𝐾(𝑡) as

Υ𝐾(𝑡) =

⎧
⎪

⎨
⎪
⎩

−3𝑡 for 0 ≤ 𝑡 ≤ 2
3
,

−2 for 2
3
≤ 𝑡 ≤ 4

3
,

3𝑡 − 6 for 4
3
≤ 𝑡 ≤ 2.

The Legendre–Fenchel transformation on Υ𝐾(𝑡) gives a function

𝑓(𝑥) =

⎧
⎪

⎨
⎪
⎩

0 for 𝑥 ≤ −3,
2
3
(𝑥 + 3) for −3 ≤ 𝑥 ≤ 0,

4
3
𝑥 + 2 for 0 ≤ 𝑥 ≤ 3,
2𝑥 for 3 ≤ 𝑥.

Of course, this is the convex hull of the gap function of 𝐾. Figure 16 shows the
graphs of gap function of 𝐾 and 𝑓.
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Figure 16. The graphs of the gap functions and their convex
hulls (broken line) of 𝑇(3, 4) (left) and 𝑇(3, 5) (right).

We consider the possibility of another gap function 𝐺 whose convex hull is
𝑓. First, it forces 𝐺(−3) = 0, 𝐺(0) = 2 and 𝐺(3) = 6. Recall that each segment
of the graph of a gap function has slope 0 or 2 as mentioned in Section 4. Hence
𝐺(−2) = 2. Since a gap function is increasing, 𝐺(−1) = 2. Similarly, it is
necessary that 𝐺(1) = 4 and 𝐺(2) = 6. Thus 𝐺 coincides with the gap function
of 𝐾.
This means that if another L–space knot 𝐾′ has the same Upsilon invariant

as 𝐾, then ∆𝐾′(𝑡) = ∆𝐾(𝑡), because a gap function uniquely determines the
Alexander polynomial.
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(2) Let 𝐾 = 𝑇(3, 5). We have ∆𝐾(𝑡) = 1 − 𝑡 + 𝑡3 − 𝑡4 + 𝑡5 − 𝑡7 + 𝑡8, so
𝒮𝐾 = {0, 3, 5, 6} ∪ℤ≥8, and 𝒢𝐾 = ℤ<0 ∪ {1, 2, 4, 7}. Then Υ𝐾(𝑡) is given as

Υ𝐾(𝑡) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−4𝑡 for 0 ≤ 𝑡 ≤ 2
3
,

−𝑡 − 2 for 2
3
≤ 𝑡 ≤ 1,

𝑡 − 4 for 1 ≤ 𝑡 ≤ 4
3
,

4𝑡 − 8 for 4
3
≤ 𝑡 ≤ 2.

Figure 16 shows the graphs of gap function of 𝐾 and the convex hull, which is
the Legendre–Fenchel transform of Υ𝐾(𝑡). As in (1), the convex hull uniquely
restores the gap function.

In general, it is rare that the convex hull uniquely restores a gap function.
In Example 4.1, we determined the gap function and its convex hull of the
(−2, 3, 7)–pretzel knot (see Figure 2). It is possible that another gap function
𝐺 takes the same values on integers except 𝐺(0) = 6, keeping the same convex
hull. This new gap function corresponds to the Alexander polynomial ∆(𝑡) =
1− 𝑡+ 𝑡3− 𝑡5+ 𝑡7− 𝑡9+ 𝑡10. This polynomial satisfies the condition of [20], but
there is no hyperbolic L–space knot in Dunfield’s list whose Alexander polyno-
mial is ∆(𝑡). It seems to be a hard question whether there exists a hyperbolic
L–space knotwith∆(𝑡). Of course, there exists a hyperbolic knotwhoseAlexan-
der polynomial is∆(𝑡) by [13, 33]. Also,∆(𝑡) is the Alexander polynomial of the
(2, 3)–cable of 𝑇(2, 5), which is not an L–space knot [15].
If we put off the realizability of the Alexander polynomial or the gap func-

tion by a hyperbolic L–space knot, then we can easily design many Alexander
polynomials which are restorable from convex hulls.
It is a classical result that any polynomial∆(𝑡) satisfying∆(1) = 1 and∆(𝑡−1)

.
=

∆(𝑡) is realized by a knot in the 3–sphere as its Alexander polynomial. (Here,
.
= shows the equality up to units ±𝑡𝑖 in the Laurent polynomial ring ℤ[𝑡, 𝑡−1].)
Furthermore, we assume that ∆(𝑡) has the form of (3.2). Formally, we define
the formal semigroup 𝒮 by (3.3), and in turn, its gap set and the gap function.

Proposition 6.2. Let𝑚 ≥ 3 be an integer, and let∆(𝑡) = 1−𝑡+𝑡𝑚−𝑡𝑚+1+𝑡𝑚+2−
𝑡2𝑚+1 + 𝑡2𝑚+2. Then its gap function, defined formally, is uniquely determined
from the convex hull.

Again, the polynomial ∆(𝑡) in Proposition 6.2 satisfies the condition of [20],
but it is open whether ∆(𝑡) is realized by a hyperbolic L–space knot or not.
(When𝑚 = 3, ∆(𝑡) is the Alexander polynomial of 𝑇(3, 5).)

Proof. By (3.3), the formal semigroup is 𝒮 = {0, 𝑚} ∪ {𝑚 + 2, 𝑚 + 3,… , 2𝑚} ∪
ℤ2𝑚+2, so the gap set is 𝒢 = ℤ<0∪{1, 2,… , 𝑚−1}∪{𝑚+1, 2𝑚+1}. Set 𝑔 = 𝑚+1.
Then we can calculate the gap function 2𝐽(−𝑚) as in Table 7.
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𝑚 ≤ −𝑚 − 1 −𝑚 0 2 3 … 𝑚 𝑚 + 2 𝑚 + 3 …
2𝐽(−𝑚) 0 2 4 6 8 … 2𝑚 + 2 2𝑚 + 4 2𝑚 + 6 …

Table 7. The gap function 2𝐽(−𝑚).

Let 𝑓 be the convex hull. Then it is given by

𝑓(𝑥) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 for 𝑥 ≤ −𝑚 − 1,
2
𝑚
(𝑥 +𝑚 + 1) for −𝑚 − 1 ≤ 𝑥 ≤ −1,

𝑥 + 3 for −1 ≤ 𝑥 ≤ 1,
2𝑚−2
𝑚

(𝑥 − 1) + 4 for 1 ≤ 𝑥 ≤ 𝑚 + 1,
2𝑥 for𝑚 + 1 ≤ 𝑥.

Since each segment of the graph of any gap function has slope 0 or 2, there is
no other gap function whose convex hull is 𝑓. □

Finally, we prove Theorem1.3. For reader’s convenience, we record the braid
words for the knots t09847 and v2871. Both are the closures of 4–braids, whose
words are almost the same:

(𝜎2𝜎1𝜎3𝜎2)3(𝜎2𝜎21𝜎2)𝜎1 and (𝜎2𝜎1𝜎3𝜎2)3(𝜎2𝜎21𝜎2)𝜎
3
1.

Proof of Theorem 1.3. In the SnapPy census, the hyperbolic knots t09847
and v2871 are known to be L–space knots [9] (see also [3]).
Let 𝐾 be the hyperbolic knot t09847. The Alexander polynomial is ∆𝐾(𝑡) =

1 − 𝑡 + 𝑡4 − 𝑡5 + 𝑡7 − 𝑡9 + 𝑡10 − 𝑡13 + 𝑡14, so the formal semigroup is 𝒮𝐾 =
{0, 4, 7, 8, 10, 11, 12} ∪ℤ≥14.
Figure 17 shows the graph of the gap function and its convex hull (we omit

the details). It consists of branches of types (a), (b), (c), (f), (g) and (h) of Figure
4 from the left. Then there is no other gap function with the same convex hull.
Next, let 𝐾 be the hyperbolic knot v2871. The Alexander polynomial is 1 −

𝑡 + 𝑡4 − 𝑡5 + 𝑡7 − 𝑡8 + 𝑡9 − 𝑡11 + 𝑡12 − 𝑡15 + 𝑡16, so the formal semigroup is
{0, 4, 7, 9, 10, 12, 13, 14} ∪ ℤ≥16 and the gap set is ℤ<0 ∪ {1, 2, 3, 5, 6, 8, 11, 15}.
Figure 18 shows the graph of the gap function and its convex hull. In this case,
the graph consists of branches of types (a), (b), (c), (e), (f), (g) and (h) of Figure
4 from the left. Again, there is no other gap function with the same convex
hull. □
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Figure 17. The graph of the gap function and its convex hull
(broken line) of t09847.
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Figure 18. The graph of the gap function and its convex hull
(broken line) of v2871.
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