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Rigidity and automorphisms of groups
constructed using Jones’ technology

Christian De Nicola Larsen

ABSTRACT. Jones’ technology, developed by Vaughan Jones during his explo-
ration of the connections between conformal field theory and subfactors, is a
powerful mechanism for generating actions of groups coming from categories,
notably Richard Thompson’s groups F , T , and V .

We give a structure theorem for the isomorphisms between a class of split
extensions of Thompson’s group V arising from Jones’ technology, generalising
results of Brothier. Using this structure theorem, we classify a family of un-
restricted, twisted, permutational wreath products up to isomorphism. We also
decompose their automorphism groups in the untwisted case. This complements
results of Brothier for the corresponding restricted wreath products, and extends
classical results.

These unrestricted wreath products arise from applying Jones’ technology to
contravariant functors. In contrast, the current literature focuses on groups con-
structed using covariant functors, appearing in work of Brothier, Tanushevski,
and Witzel-Zaremsky. Our point of view unifies these constructions, and high-
lights the duality between them.
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1. Introduction
In this article, we extend the study of groups constructed using a framework

due to Jones [42], initiated by Brothier [16, 18, 20]. This framework is called
Jones’ technology, discovered by Jones while studying the connections between
conformal field theories and subfactor theory (see [15] for a wonderful survey).
It is a powerful method of generating actions of groups coming from categories,
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such as Richard Thompson’s groups [10, 29] and, more generally, forest-skein
groups [17, 19].

The input to Jones’ technology is a functor Φ : C → D, and the output is a
functor Φ̂ : Ĉ → D, where Ĉ is a groupoid obtained from including inverses to
the morphisms of C (the Gabriel-Zisman localisation of C [33]). Restricting Φ̂ to
the automorphism groups of Ĉ yields group actions on objects of D. The idea is to
choose the category C such that these automorphism groups are interesting, while
functors Φ : C→ D are easy to construct.

The most studied example is when C is the category F of binary forests, objects
being natural numbers, and a morphism m→ n being a binary forest with m roots
and n leaves. Composition is given by connecting roots and leaves of forests. The
automorphism group of an object n ∈ N in F̂ is the Higman-Thompson group F2,n,
first defined by Brown [28]. In particular, F2,1 is equal to Thompson’s group F ,
but F2,n

∼= F2,1 for all n ∈ N since F̂ is connected.
Jones found a functor Φ : F → CT into the category of Conway tangles that

assigns a knot or link to each element of Thompson’s group F , and showed that
every knot and link arises in this way [42]. This sparked a connection between
Thompson’s groups, braid groups, and knot theory (see [2,41,44] for an overview).
Jones also defined the oriented subgroup F⃗ ≤ F , and showed that every oriented
link arises from an element of F⃗ , up to distant unions with unknots [42]. Aiello
then showed how to obtain every oriented link exactly [1]. Golan and Sapir [37,38]
demonstrated that the group F⃗ is the first example of an infinite index maximal
subgroup of F that is not a stabiliser of a point in the unit interval [52, 53], among
having many other remarkable properties. Many interesting maximal subgroups of
Thompson-related groups have since been discovered [4, 6, 11, 35, 36], along with
other interesting subgroups related to Jones’ technology [3–5, 43, 49].

A trick to find many functors Φ : F → D is to exploit the monoidal structure
⊗ on F, given by horizontal concatenation of forests. If D is a monoidal category,
a monoidal functor F → D is specified by an object a ∈ D and a morphism
α : a → a ⊗ a (covariant), or a morphism ω : a ⊗ a → a (contravariant). Thus,
such morphisms produce actions F ↷ K(α), K(ω) on objects K(α), K(ω) of D.
We call these Jones actions.

Taking (D,⊗) to be the category of Hilbert spaces (morphisms being isome-
tries) equipped with the direct sum yields a rich class of unitary representations
of F called Pythagorean representations [21, 25–27]. These provide a wealth of
irreducible, pairwise non-isomorphic representations of F . They also witness the
first known examples of representations of F that are not the induction of finite-
dimensional representations. Replacing the direct sum ⊕ with the usual tensor
product ⊗ of Hilbert spaces, one obtains unitary representations of F that can
be extended to the larger Thompson’s groups F ⊆ T ⊆ V , and offer concise
proofs [22] of existing results: Thompson’s group V does not have Kazdhan’s
property (T) [47, 50, 55], and T has the Haagerup property [31].
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In this article, we are interested in monoidal functors F → (Grp,×), the cate-
gory of groups equipped with the direct product ×. Many of our results concern
groups constructed using contravariant monoidal functors F→ Grp, and highlight
the duality to the covariant case studied by Brothier in [16, 18, 20]. A covariant
monoidal functor F → Grp is specified by a group morphism α : Γ → Γ × Γ.
Jones’ technology then outputs a functor F̂ → Grp, and thus an action of Thomp-
son’s group F on a group K(α). Extending this action to the larger Thompson’s
group V , the semidirect product G(α) := K(α)⋊ V produces a family of groups
(G(α))α:Γ→Γ2 that has been been studied independently by Brothier [16, 18, 20],
Tanushevski [57], and Witzel-Zaremsky [59, 61].

If α : Γ → Γ2, g 7→ (β(g), e) for some β ∈ Aut(Γ), the group G(α) is
isomorphic to a restricted twisted wreath product Γ ≀ V = ⊕Q2Γ ⋊ V [18, 20],
where Thompson’s group V acts classically on the dyadic rationals Q2 contained
in the half-open unit interval [0, 1) [10,29]. It was shown in [20] that G(α) has the
Haagerup property when Γ does, providing the first examples of finitely presented
wreath products having the Haagerup property for a non-trivial reason, since V is
non-amenable and Q2 is infinite. The action π : V ↷ ⊕Q2Γ is twisted using the
automorphism β ∈ Aut(Γ) as follows:

π(v)(a)(x) = βlog2(v
′(v−1x))(a(v−1x)), v ∈ V, a ∈ ⊕Q2Γ, x ∈ Q2. (1.1)

Here we interpret an element of Richard Thompson’s group V as a piecewise linear
bijection of the unit interval, letting v′(x) be the slope of v at x ∈ Q2 [29]. The
slope of an element v ∈ V at any dyadic rational is a power of 2, ensuring an
integer power of β in (1.1).

In [18], it was shown that these wreath products G(α) built from group auto-
morphisms β ∈ Aut(Γ) exhibit a remarkable rigidity property. If β and β̃ are
automorphisms of groups Γ and Γ̃, and G, G̃ are the wreath products built us-
ing β and β̃ respectively, then we have that G ∼= G̃ if and only if there exists an
isomorphism γ : Γ→ Γ̃ and an element h̃ ∈ Γ̃ such that

β̃ = ad(h̃) ◦ γβγ−1,

where ad(h̃) is the inner automorphism Γ̃ corresponding to h̃. I.e.,G is isomorphic
to G̃ if and only if β and β̃ are outer-conjugate.

This rigidity follows from the striking result that any isomorphism θ : G → G̃

is spatial, meaning that θ restricts to an isomorphism κ : ⊕Q2Γ → ⊕Q2Γ̃, and κ
preserves support of elements of ⊕Q2Γ, up to a bijection of Q2. More precisely,
there is an isomorphism κ : ⊕Q2Γ → ⊕Q2Γ̃ and a bijection φ : Q2 → Q2

satisfying θ(a) = κ(a) and supp(κ(a)) = φ(supp(a)) for all a ∈ ⊕Q2Γ. This
result also led to a complete description of the automorphism group of G(α) in the
untwisted case β = id.

In [16], isomorphisms between groups G(α) constructed using two automor-
phisms of a group Γ were observed to be spatial, up to a multiple by a centre-valued
group morphism. Here α : Γ → Γ2, g 7→ (α0(g), α1(g)), with α0, α1 ∈ Aut(Γ).
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In this case, G(α) is a semidirect product LΓ ⋊ V , where LΓ denotes the con-
tinuous maps from the Cantor space C := {0, 1}N to Γ (a discrete group). These
groups appear naturally in field theories where physical space is approximated by
Q2 [23, 24].

1.1. Main results. In this article, we extend the rigidity results for wreath prod-
ucts and split extensions of V by loop groups LΓ obtained by Brothier in [16, 18]:
any isomorphism θ : G(α) → G(α̃) is spatial modulo a centre-valued morphism,
even when α : Γ → Γ2 and α̃ : Γ̃ → Γ̃2 are not specified by automorphisms of Γ
and Γ̃.

Theorem A1. Suppose that α : Γ → Γ2 and α̃ : Γ̃ → Γ̃2 are group morphisms,
and that θ : G(α) → G(α̃) is an isomorphism of groups. Then there exists an
isomorphism κ0 : K(α) → K(α̃), a group morphism ζ : G(α) → Z (G(α̃)), and
a homeomorphism φ of the Cantor space C = {0, 1}N such that θ(a) = κ0(a)·ζ(a)
and

supp(κ0(a)) = φ(supp(a)), for all a ∈ K(α).
Moreover, the map

θ0 : G(α)→ G(α̃), av 7→ κ0(a) · θ(v)
is an isomorphism of groups.

The elements a ∈ K(α) are not always obviously groups of functions on some
set, so another notion of support must be used (Definition 3.2, Remark 3.6). The
support of an element a ∈ K(α) is always a closed subset of the Cantor space
C = {0, 1}N; for the wreath products⊕Q2Γ⋊V of [18], once we identify Q2 with
the finitely supported sequences in C, the usual notion of support for elements of
⊕Q2Γ is recovered.

The proof of Theorem A1 relies on the following observation. We know that
each group morphism α : Γ → Γ2 defines a monoidal functor Φα : F → Grp,
and Jones’ technology outputs a functor Φ̂α : F̂ → Grp. We then observe that the
functor Φ̂α is monoidal as well; there is an isomorphism R(α) : K(α) → K(α)2

of groups such that Φ̂α = ΦR(α). The functor ΦR(α) : F̂ → Grp is defined in the
same way as Φα : F → Grp, but can be obviously extended to F̂ since R(α) is an
isomorphism.

Jones’ technology for covariant monoidal functors F → (Grp,×) can then be
described as assigning each group morphism α : Γ → Γ2 a group isomorphism
R(α) : K(α) → K(α)2, the best approximation to α by an isomorphism. The
functor ΦR(α) : F̂ → Grp then restricts to an action F ↷ K(α), which we extend
to the larger Thompson group V , obtaining the group G(α) := K(α)⋊ V .

Thus, the class of groupsG(α) = K(α)⋊V obtained from group morphisms α :
Γ→ Γ2 is precisely the class of groups K⋊V obtained from group isomorphisms
R : K → K2. This lets us rephrase Theorem A1.

Theorem A2. Suppose that R : K → K2 and R̃ : K̃ → K̃2 are group isomor-
phisms, and that θ : G → G̃ is an isomorphism of groups, where G := K ⋊ V
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and G̃ := K̃ ⋊ V. Then there exists an isomorphism κ0 : K → K̃, a group
morphism ζ : G → ZG̃, and a homeomorphism φ of the Cantor space such that
θ(a) = κ0(a) · ζ(a) and supp(κ0(a)) = φ(supp(a)) for all a ∈ K. Moreover, the
map θ0 : G→ G̃ defined by the formula θ0(av) := κ0(a) · θ(v) is an isomorphism
of groups.

The remainder of the article is an exploration of Jones’ technology applied to
contravariant monoidal functors F→ (Grp,×), which is dual to the covariant case
studied in [16, 18, 20] by Brothier. Rather than a group morphism α : Γ → Γ2,
a contravariant monoidal functor F → (Grp,×) is specified by a group morphism
ω : Γ2 → Γ. We introduce the group K(ω) and an isomorphism R(ω) : K(ω) →
K(ω)2, which can be thought of as the best approximation to ω by an isomorphism.
The isomorphism R(ω) then defines a functor F̂ → Grp, and thus an action of
Thompson’s group V ↷ K(ω), obtaining a group G(ω) := K(ω) ⋊ V. This is
the dual process of constructing an action V ↷ K(α) from a group morphism
α : Γ→ Γ2.

We aim to answer the following: do the groups G(ω) admit a nice descrip-
tion, analogous to the groups G(α) constructed using covariant functors? Do they
have good rigidity properties, and can we characterise their automorphism groups?
Answers to the second and third questions will be provided by applications of The-
orem A2.

Our starting point for the first question will be group morphisms ω : Γ2 →
Γ, (g, h) 7→ β(g), for some automorphism β ∈ Aut(Γ). In Section 4 we show that
G(ω) = K(ω)⋊V is isomorphic to the unrestricted permutational wreath product∏

Q2
Γ⋊ V with action π : V ↷

∏
Q2

Γ given by the formula

π(v)(a)(x) = β− log2(v
′(v−1x))(a(v−1x)), v ∈ V, a ∈

∏
Q2

Γ, x ∈ Q2. (1.2)

Notice the similarity between the formulae (1.1) and (1.2).
Such a group G(ω) = K(ω)⋊V comes from an isomorphism R(ω) : K(ω)→

K(ω)2, so we may apply Theorem A2 to start classifying these wreath products
up to isomorphism, and study their automorphisms. Indeed, in Section 4, we use
Theorem A2 to prove that these unrestricted wreath products have the same classi-
fication as their restricted counterparts.

Theorem B1. Suppose that Γ, Γ̃ are groups and that β, β̃ are automorphisms of Γ
and Γ̃, respectively. This yields group morphisms ω : Γ2 → Γ, (g, h) 7→ β(g), and
ω̃ : Γ̃2 → Γ̃, (g̃, h̃) 7→ β̃(g̃).

We have that G(ω) ∼= G(ω̃) if and only if β̃ = ad(h̃) ◦ γβγ−1 for some h̃ ∈ Γ̃

and some group isomorphism γ : Γ→ Γ̃.

At the end of Section 4 we relax the condition that β ∈ Aut(Γ) to β being an
arbitrary endomorphism of Γ, at the cost of weakening the classification of Theo-
rem B1. We show that if β ∈ End(Γ), and ω : (g, h) 7→ β(g), there exists a group
lim←−Γ and an automorphism lim←−β ∈ Aut(lim←−Γ) satisfying G(ω) ∼= G(lim←−ω),
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where lim←−ω : lim←−Γ2 → lim←−Γ is defined in the same way using the automorphism
lim←−β. Theorem B1 yields the following weaker classification of the groups G(ω)
coming from endomorphisms β ∈ End(Γ).

Theorem B2. Suppose that Γ, Γ̃ are groups, and that β, β̃ are endomorphisms of
Γ and Γ̃, respectively. Consider the group morphisms ω : Γ2 → Γ, (g, h) 7→ β(g),
and ω̃ : Γ̃2 → Γ̃, (g̃, h̃) 7→ β̃(g). Then

G(ω) ∼= G(ω̃) if and only if lim←− β̃ = ad(h̃) ◦ γ ◦ lim←−β ◦ γ
−1 (1.3)

for some h̃ ∈ lim←−Γ and some isomorphism γ : lim←−Γ→ lim←− Γ̃.

Dually, in [18] it was shown that for each group Γ and endomorphism β ∈ Γ,
there exists a group lim−→Γ and an automorphism lim−→β of lim−→Γ such that G(α) ∼=
G(lim−→α), where α : Γ → Γ2, g 7→ (β(g), e), and lim−→α : lim−→Γ → lim−→Γ2 is
defined in the same way using the automorphism lim−→β ∈ Aut

(
lim−→Γ

)
. Moreover,

Brothier shows that if Γ̃ is another group and β̃ ∈ End(Γ̃), then

G(α) ∼= G(α̃) if and only if lim−→ β̃ = ad(h̃) ◦ γ ◦ lim−→β ◦ γ−1 (1.4)

for some h̃ ∈ lim−→ Γ̃ some isomorphism γ : lim−→Γ→ lim−→ Γ̃.
The classifications (1.3) and (1.4) should be thought of as dual. Indeed, if Γ = Z

and β ∈ End(Z) is given by multiplication by a natural number q ≥ 2, then
lim−→Γ ∼= Z[1q ], and lim−→β ∈ Aut

(
Z[1q ]

)
is again given by multiplication by q [18,

Example 4.4]. However, lim←−Γ is the trivial group (Example 4.29). If we instead

consider the dual endomorphism β̂ : S1 → S1, z 7→ zq, then lim←−Γ ∼= Ẑ[1q ],

the Pontryagin dual of Z[1q ], and lim←− β̂ is the automorphism of Ẑ[1q ] obtained by

precomposing characters with lim−→β (Example 4.30). Symbolically, lim←− β̂ = l̂im−→β.

The next point of entry for describing groups G(ω) coming from group mor-
phisms ω : Γ2 → Γ are those in which Γ is abelian, and ω : (g, h) 7→ β0(g) ·β1(h)
for some automorphisms β0, β1 ∈ Γ. A nice description and classification of these
groups G(ω) up to isomorphism is desirable but could be difficult, since the anal-
ogous question for group morphisms α : Γ → Γ2, g 7→ (β0(g), β1(g)) was only
partially answered in [16]. We do not consider these groups in this article, and this
would be a natural direction for future work.

Our final application of Theorem A2 is a decomposition of Aut(G) into an
iterated semidirect product of groups A1, . . . , A6, where G is an unrestricted, un-
twisted wreath product

∏
Q2

Γ⋊ V. Here G ∼= G(ω), where

ω : Γ2 → Γ, (g, h) 7→ g.

Using the notation of Theorem A2, given an automorphism θ ∈ Aut(G), we may
write

θ(a) = κ0(a) · ζ(a), a ∈
∏
Q2

Γ,
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where
supp(κ0(a)) = φ(supp(a))

for all a ∈
∏

Q2
Γ. One can show that φ is uniquely determined, yielding a

map χ1 : Aut(G) → Homeo(C), the homeomorphisms of the Cantor space
C = {0, 1}N. It turns out that χ1 is a split epimorphism onto its image, allowing us
to write Aut(G) = kerχ1 ⋊ A1, where A1 := im(χ1). We then define a split epi-
morphism χ2 : kerχ1 → Aut(Γ), obtaining that Aut(G) = (kerχ2 ⋊ A2)⋊ A1,
where A2 := Aut(Γ). Continuing in this fashion, we arrive at a decomposition of
Aut(G).

Theorem B3. We have the decomposition

Aut(G) = ((((A6 ⋊A5)⋊A4)⋊A3)⋊A2)⋊A1,

where

• A1 is the group of homeomorphisms of the Cantor space which stabilise
Q2 and normalise V ,
• A2 = Aut(Γ),
• A3 = ZΓ,
• A4 =

(
{h ∈

∏
Q2

Γ | h(0) ∈ ZΓ}
)
/ZΓ,

• A6 = Hom(G,ZG).

The group A5 consists of the automorphisms θ ∈ Aut(G) satisfying the following
conditions:

• supp(θ(a)) = supp(a) for all a ∈ K,
• θ restricts to the identity on ⊕Q2Γ and V.

Here it makes sense to say that A1 is contained in the normaliser of V in
Homeo(C), since V acts faithfully on the Cantor space C = {0, 1}N via prefix re-
placement. This restricts to the action of V on the dyadic rationals Q2 = {0, 1}(N).
Furthermore, ZΓ is viewed as the group of constant maps Q2 → ZΓ for the quo-
tient appearing in A4. Finally, for each a ∈ K, we have that

supp(a) = {x ∈ Q2 | a(x) ̸= eΓ},

where the closure is taken in the Cantor space C with respect to the Tychonoff
topology.

The group A5 appearing in Theorem B3 is mysterious. In Remark 5.10 we note
that for each θ ∈ A5, there exists a group morphism η :

∏
Q2

Γ →
∏

Q2
ZΓ such

that
θ(a) = a · η(a) for all a ∈ K.

It follows that if either Γ is a perfect group or ZΓ is trivial it must be that A5 =
{idG}, yielding a more complete description of Aut(G). It is unknown however if
the group A5 can be non-trivial in the simplest case.

Question 1.1. If Γ = Z2, does there exist a non-trivial element of A5?
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In this case we can identify the group
∏

Q2
Γ with the group P(Q2) of all sub-

sets of Q2 equipped with symmetric difference ∆. The action V ↷ P(Q2) is the
pointwise action vX = {v(x) | x ∈ X} for all v ∈ V and X ⊆ Q2. This lets us
rephrase Question 1.1:

Question 1.2. Is there a bijection κ : P(Q2)→ P(Q2) satisfying the following?
• κ(X∆Y ) = κ(X)∆κ(Y ),
• κ(vX) = vκ(X),
• κ(X) = X ,
• κ(Z) = Z,

for all X,Y ⊆ Q2, v ∈ V and finite subsets Z ⊆ Q2. Here the closure X is taken
in C = {0, 1}N.

Theorems A1, A2, B1, B2, and B3 all concern semidirect products in which
Thompson’s group V acts. We do not consider the cases when the smaller Thomp-
son’s groups F and T are acting, but it would be interesting to see the extent to
which our results hold in these cases.

1.2. Other results on wreath products. Recall that if Γ and B are groups, the
restricted standard wreath product of Γ by B is the semidirect product ⊕BΓ ⋊ B,
where B ↷ B by left multiplication, and B ↷ ⊕BΓ by translation. The corre-
sponding unrestricted wreath product is defined using the direct product instead of
direct sum. We call Γ the bottom group, ⊕BΓ the base group, and B the acting
group. In [48], Neumann asks the question: “when can two standard wreath prod-
ucts be isomorphic?” Neumann found a precise answer, that two standard wreath
products, restricted or unrestricted, are isomorphic if and only if their bottom and
acting groups are pairwise isomorphic.

In [18], Brothier proved that every isomorphism between two twisted permu-
tational restricted wreath products G = ⊕Q2Γ ⋊ V , G̃ = ⊕Q2Γ̃ ⋊ V is spatial,
i.e. preserves supports of elements of the base groups up to a homeomorphism
of the Cantor space C = {0, 1}N which stabilises the dyadic rationals Q2. Thus,
the image of a coordinate subgroup Γx ≤ ⊕Q2Γ (the subgroup of maps Q2 → Γ

supported at x ∈ Q2) is again a coordinate subgroup in ⊕Q2Γ̃. This establishes
an isomorphism Γ ∼= Γ̃, and with some work, a relation satisfied by the automor-
phisms of Γ and Γ̃ used to twist the actions V ↷ ⊕Q2Γ, ⊕Q2Γ̃.

This is comparable to the approach of Neumann, who analysed images of co-
ordinate subgroups in standard wreath products ⊕BΓ ⋊ B under isomorphisms.
These isomorphisms are not necessarily spatial, so the image of a coordinate sub-
group is not always a coordinate subgroup. Unhindered by this, from an isomor-
phism

θ : ⊕BΓ⋊B → ⊕
B̃
Γ̃⋊ B̃

between two restricted standard wreath products, Neumann obtains an isomor-
phism Γ → Γ̃ as follows. Fix b ∈ B and let g ∈ Γ, interpreted as an element
of the coordinate subgroup of ⊕BΓ at b. Take the product of all of the non-trivial
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values of the map B̃ → Γ̃ obtained from θ(g) with respect to a fixed order. This
defines an isomorphism Γ → Γ̃. It is striking that one doesn’t need to take such
products for the restricted permutational wreath products considered by Brothier
in [18], due to the rigid structure of the isomorphisms between them.

To conclude that an isomorphism between unrestricted standard wreath prod-
ucts descends to an isomorphism of the bottom groups, Neumann takes a dif-
ferent approach, using the fact that in an unrestricted standard wreath product
G =

∏
B Γ ⋊ B, any two complements of the base group

∏
B Γ are conjugate.

This is no longer the case in general for the permutational wreath products that
we consider (Remark 5.11). However, by Theorem A2, one can extract a spatial
isomorphism from any isomorphism θ :

∏
Q2

Γ ⋊ V →
∏

Q2
Γ̃ ⋊ V between

two unrestricted, twisted and permutational wreath products coming from Jones’
technology. This lets us mimic the approach for restricted wreath products, con-
sidering images of coordinate subgroups to establish that Γ ∼= Γ̃ and obtain the
classification of Theorem B1.

We emphasise that Neumann’s results apply to standard (untwisted) wreath prod-
ucts constructed using arbitrary base and acting groups, while in [18] and the
present article, we leave our acting group fixed (Thompson’s group V ). Our wreath
products are not standard (i.e. permutational), since we use the action V ↷ Q2,
and we may twist the action of V on the base group by an automorphism of the
bottom group.

In [39], Houghton decomposes the automorphism group Aut(W ) of an unre-
stricted standard wreath product

∏
B Γ ⋊ B, with B ↷ B via left multiplication,

with an eye towards the diagonal subgroup D ≤
∏
B Γ. More precisely, Houghton

gives the decomposition

Aut(W ) = ((AD,B ⋊Aut(Γ)) · I)⋊Aut(B), (1.5)

where AD,B denotes the automorphisms of W which fix the diagonal subgroup
D ≤

∏
B Γ andB pointwise, and I denotes the inner automorphisms ofW induced

by elements of
∏
B Γ. In [46], Mohammadi Hassanabadi shows that a similar

decomposition can be done for wreath productsW =
∏
B/H Γ⋊B, whereH ≤ B,

for a certain subgroup of B(W ) ≤ Aut(W ) (see Remark 5.11).
When one takes B := V and H := Stab(x) for some x ∈ Q2, the group W

becomes the untwisted wreath productG =
∏

Q2
Γ⋊V of Theorem B3. While the

decomposition of (1.5) focuses on the diagonal subgroup of
∏

Q2
Γ, the decompo-

sition of Aut(G) in Theorem B3 uses the fact that automorphisms of G act nicely
on the subgroup ⊕Q2Γ ≤ G, which comes from Theorem A2. In particular, one
can use Theorem B3 to give an alternative description of B(G) than [46] (Remark
5.11).

In [18], Brothier completely describes the automorphism group of the restricted
wreath product G0 := ⊕Q2Γ⋊ V by identifying four subgroups

Ã1, Ã2, Ã3, Ã4 ≤ Aut(G0)
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that generate Aut(G0), whose elements are referred to as elementary automor-
phisms. Brothier then constructs a group Q = (Ã4 × Ã3) ⋊ (Ã2 × Ã1) and an
epimorphism Ξ : Q → Aut(G0) with a small kernel, so that every automorphism
ofG0 can be expressed as a product of elementary automorphisms in an essentially
unique way.

In Remark 5.12, we mention that Aut(G0) can be decomposed in a similar way
to Theorem B3 as an iterated semidirect product

Aut(G0) = ((C ⋊ Ã3)⋊ Ã2)⋊ Ã1,

where C is a large subgroup of Ã4. Thanks to the fact that automorphisms of
G0 are spatial, originally proved in [18] and recovered by Theorem A2, every
automorphism of G0 can be extended to an automorphism of G =

∏
Q2

Γ ⋊ V .
This results in an embedding ι : Aut(G0) ↪→ Aut(G) that maps Ã1 to A1, Ã2 to
A2, and embeds C into A4. The image of Ã3 under ι is not always contained in
A3, since elements of A3 often do not restrict to automorphisms of G0.

Since Ãi can be identified with Ai via the embedding ι for i = 1, 2, and the for-
mulae for automorphisms in A3 and A4 closely resemble those of automorphisms
in Ã3 and Ã4 respectively, we may regard the groups A1, . . . , A4 as consisting of
elementary automorphisms of G. We also consider the elements of A6 as elemen-
tary due to their simple formulae. Question 1.2 then asks if there are any “exotic”
automorphisms of G.

1.3. Covariant vs. contravariant functors. Applying Jones’ technology to group
morphisms α : Γ → Γ2 and ω : Γ2 → Γ yields two classes of groups G(α) =
K(α) ⋊ V and G(ω) = K(ω) ⋊ V . These classes are the same; they are both
the class of groups K ⋊ V obtained from group isomorphisms R : K → K ×K.
However, the novelty of Jones’ technology is to construct interesting examples of
these groups K ⋊ V easily. This is done by choosing group morphisms α and ω
that are easy to write down, e.g. using an automorphism β of a group Γ. In these
situations, the kinds of groups G(α) and G(ω) one gets from Jones’ technology
are dual.

This is illustrated by fixing α : g 7→ (g, e) and ω : (g, h) 7→ g. The group G(α)
is a restricted wreath product ⊕Q2Γ ⋊ V [18, 20], while G(ω) is the correspond-
ing unrestricted wreath product

∏
Q2

Γ ⋊ V (Corollary 4.16). The group G(ω) is
always uncountable, thus never finitely generated, however G(α) is of type Fn if
Γ is, for all n ≥ 1. Here F1 means finitely generated and F2 means finitely pre-
sented, the other Fn being stronger, higher-dimensional analogues [34, Chapter 7].
These good finiteness properties of G(α) follow from the work of Cornulier for
n ≤ 2 [30, Theorem 1.1], and Bartholdi-Cornulier-Kochloukova [7, Proposition
4, Corollary 2] for n > 2. They can also be obtained by adapting [19] a differ-
ent approach of Tanushevski [56], outlined by Witzel-Zaremsky [59, Section 6].
This all fails for standard restricted wreath products Γ ≀B, which are never finitely
presented as soon as B is infinite, by a result of Baumslag [8].
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In general, K(α) is a direct limit of powers of Γ, while K(ω) is an inverse limit
of powers of Γ. If Γ is finite, K(α) is discrete, while K(ω) is profinite. Thus,
one can think of G(α) as a discrete object, and G(ω) as a locally compact object.
There are also many examples of dense embeddings G(α) ↪→ G(ω), analogous
to the embedding of a restricted wreath product into an unrestricted one (Remark
4.6).

A nice feature of Theorem A2 is that it applies to both constructions of groups
G(α) and G(ω), extending the settings in which we can establish rigidity proper-
ties, and study automorphism groups.

1.4. Plan of the article. Section 2 introduces the necessary background for Thomp-
son’s groups and Jones’ technology. In Section 3 we analyse the structure of iso-
morphisms between semidirect products K⋊V coming from group isomorphisms
R : K → K2, the main result being Theorem 3.20. We conclude Section 3 by
constructing obvious isomorphisms between these groups.

In Subsection 4.1 we define the groups G(ω) = K(ω)⋊ V coming from group
morphisms ω : Γ2 → Γ, show that this construction is functorial, and give suf-
ficient conditions for isomorphism, extending the results of Subsection 3.2. In
Subsection 4.2, we show that for certain morphisms ω, the group G(ω) is an un-
restricted twisted wreath product, and classify these wreath products up to iso-
morphism using Theorem 3.20. Section 4 concludes with an extension of this
classification to a larger class of morphisms ω in Subsection 4.4. Section 5 fea-
tures a decomposition of the automorphism groups of these wreath products that
are untwisted.
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2. Preliminaries
Jones’ technology takes a functor Φ : C → D, and produces a functor Φ̂ :

Ĉ → D. Here Ĉ is a groupoid formed by formally inverting the morphisms in
C, called the localisation of C. The functor Φ̂ then restricts to representations of
the automorphism groups at the objects of Ĉ. Ideally, these automorphism groups
are interesting (e.g. Thompson’s groups), and functors that produce interesting
representations are easy to construct.

The main points we want to illustrate are:
• if C = F, the category of binary forests, and D is a monoidal category, a

monoidal functor C → D is encoded by a morphism α : a → a ⊗ a or
ω : a⊗ a→ a in D.
• In this context, Jones’ technology outputs the best approximation to such a

morphism by an isomorphism R : K
∼−→ K ⊗K in D.
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• The result is a representation of Thompson’s group F in D, which has a
straightforward description in terms of the isomorphism R. If D is sym-
metric monoidal, this representation can be extended to Thompson’s group
V .

2.1. Localisation.

Definition 2.1. A localisation of a category C is a groupoid Ĉ and a functor Q :

C → Ĉ, such that precomposition with Q establishes a bijection between functors
Ĉ→ D, and functors C→ D that send morphisms of C to isomorphisms.

A localisation (Ĉ, Q) of a category C always exists, and is unique up to isomor-
phism by the universal property of Definition 2.1. The following construction is
due to Gabriel and Zisman [33]. The objects of Ĉ are the objects of C, and the
morphisms of Ĉ are equivalence classes of zigzags, which are diagrams in C that
look something like

f1−→ f2←− f3−→ f4−→ f5←− .
Equivalence of zigzags is specified by the following relations:

• any instance of
f−→ g−→may be replaced with

gf−→, and
g←− f←− with

gf←−, for all
composable morphisms f and g in C,

• f←− f−→ and
f−→ f←− may be removed for all morphisms f of C,

• identity morphisms pointing left or right may be removed.
Composition is given by concatenation. The required functor Q : C → Ĉ is the
identity on objects, and maps a morphism f of C to the equivalence class of the

zigzag
f−→. The inverse of a morphism in Ĉ is obtained by reversing the order and

direction of the arrows. In particular, for each morphism f in C, the equivalence

class of the zigzag
f←− is a formal inverse to f .

Example 2.2. If M is the free monoid on an alphabet X , regarded as a category
with one object, then M̂ is the free group on X .

Example 2.3. If C is already a groupoid, then Ĉ ∼= C, since (C, idC) is a localisa-
tion for C.

Remark 2.4. The localisation of a category C with respect to a subcategory W is
constructed similarly; only morphisms from W point to the left. As a result, the
localisation may not be a groupoid.

2.2. Calculus of fractions. Example 2.2 shows that a morphism in Ĉ can be arbi-
trarily long. There are conditions where each morphism of Ĉ can be reduced to the

form
f−→ g←−, thought of as a fraction g−1f . We state the definitions and results that

we need and defer to [32, 33] for detailed proofs.

Definition 2.5. A category C has a left calculus of fractions if
(F1) For all morphisms f, g with common source, there are morphisms p and q

such that pf = qg.
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(F2) If f, g, h are morphisms with gf = hf, there is a morphism k such that
kg = kh.

Fix a category C having a left calculus of fractions. A cospan in C is a diagram

of the form
f−→ g←−.

Lemma 2.6. Define a relation∼ on the cospans in C given by
f−→ g←−∼ h−→ k←− if and

only if there are morphisms p and q such that pf = qh and pg = qk. Then ∼ is an
equivalence relation.

We are now ready to give a construction of Ĉ in terms of equivalence classes of
cospans (fractions), rather than arbitrary zigzags. We will not distinguish between
a cospan and its equivalence class in our notation.

Proposition 2.7. There is a category Frac (C), the fraction groupoid of C, in which
• the objects of Frac (C) are the objects of C.
• The morphisms of Frac (C) are equivalence classes of cospans in C, with

respect to the equivalence relation ∼.

• The source of a morphism
f−→ g←− ∈ Frac (C) is the source of f , and the

target is the source of g.

• Given morphisms
f−→ g←− and h−→ k←− of Frac (C) with the source of g equal to

the source of h, the composition (
h−→ k←−)( f−→ g←−) =

pf−→ qk←−, where p and q
are any morphisms such that pg = qk.

• The identity at an object c of Frac (C) is idc−→ idc←−.

Proposition 2.8. The category Frac (C) along with the identity-on-objects functor

C→ Frac (C), mapping a morphism f of C to
f−→ id←−, is a localisation of C.

Notation 2.9. For each morphism f ∈ C, we denote the fraction
f−→ id←− ∈ Frac (C)

by f , and the fraction id−→ f←− ∈ Frac (C) by f−1. To avoid ambiguity, we will
specify whether we are viewing f and f−1 as elements of C or Frac (C). Using
this notation, we have the equality

f−→ g←− = g−1f

for all morphisms
f−→ g←− ∈ Frac (C).

Remark 2.10. The canonical isomorphism Frac (C) ∼= Ĉ between the fraction
groupoid Frac (C) and the Gabriel-Zisman localisation Ĉ maps a fraction g−1f in

Frac (C) to the zigzag
g−→ f←− in Ĉ. Thus, conditions (F1) and (F2) of Definition 2.5

provide conditions for the reduction of each zigzag in Ĉ to a fraction.

Remark 2.11. Reversing the arrows in Definition 2.5 yields the notion of a cal-
culus of right fractions. If D is a category with a calculus of right fractions, the
opposite category Dop has a calculus of left fractions. The category Frac (D) :=
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Frac
(
Dop)op is then a localisation of D. The morphisms of Frac (D) are equiva-

lence classes of cospans in Dop, i.e. spans in D. The equivalence class of a span
f←− g−→ can be thought of as a right fraction gf−1.

Example 2.12. Suppose that M is a commutative and cancellative monoid. Then
M has a calculus of left fractions, and the group Frac (M) is the Grothendieck
group of M . In particular, when M = (N∪ {0},+), we have Frac (M) ∼= (Z,+),
and if M = (Z \ {0},×), then Frac (M) ∼= (Q \ {0},×).

Example 2.13. Consider the monoid M = (N ∪ {0},×). Then M has a calculus
of left fractions, though the group Frac (M) is trivial. Given a fraction n−1m ∈
Frac (M),

n−1m = 00−1n−1m00−1 = 0 (n0)−1 (m0)0−1 = 00−100−1,

which is the identity element of Frac (M). In particular, the localisation functor
M → Frac (M) is not faithful.

Lemma 2.14. The localisation functor Q : C → Frac (C) is faithful as soon as C
is left cancellative, i.e. fg = fh implies that g = h for all compatible morphisms
f, g, h in C.

2.3. Thompson groupoids. We now introduce the categories F of binary forests
and SF of symmetric forests, and see how their localisations contain Richard Thomp-
son’s groups F and V .

The objects of the category F are the natural numbers, and the morphisms are
rooted, ordered, and planar binary forests. The source and target of a forest are its
number of roots and leaves respectively. For example, the forest

is a morphism 3→ 6 in F. We compose forests by stacking them vertically, so that
gf is the forest obtained by attaching the ith leaf of f to the ith root of g. E.g. if

t =

and

f = ,

then

=ft = .

A binary tree is a binary forest with one root. Let T be the set of all binary trees, and
for each t ∈ T, write Leaf(t) for the set of leaves of t and define ℓ(t) := |Leaf(t)|
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(the number of leaves of t). We identify each leaf l ∈ Leaf(t) with the geodesic
path from the root of t to l, written as a word in 0 and 1, from left to right. A 0
means a left turn, and a 1 means a right turn. For example, if

t = ,

then Leaf(t) = {00, 010, 011, 10, 11}. We order Leaf(t) using the lexographical
ordering, letting lit the ith leaf of t. Sometimes we will identify Leaf(t) with the
set {1, . . . , ℓ(t)} equipped with the usual linear order. Letting {0, 1}∗ denote the
monoid of finite words in 0 and 1, with ϵ denoting the empty word, the set of leaves
of the tree | with one root and one leaf is {ϵ} by convention.

Every binary forest f is essentially a list (f1, . . . , fn) of binary trees, where n is
the number of roots of f . We call fi the ith tree of f for all 1 ≤ i ≤ n. The support
of a forest is the set of indices i for which fi is not the trivial tree |.

Introducing permutations to F yields the category SF. The objects of SF are
again the natural numbers, and the morphisms are generated by the morphisms
of F along with all permutations σ ∈ Sn with n ≥ 1, subject to some relations.
A permutation σ ∈ Sn is regarded as a morphism n → n, and is represented
diagrammatically as n arrows joining two copies of {1, . . . , n}. For example, the
diagram of the permutation (123) ∈ S3 is

1

2

2

3

3

1

.

To keep our diagrams neat, we omit arrow heads and labels, instead writing

(123) = .

Composition in SF is again vertical stacking and isotopy, subject to the relations:
• permutations are composed in the usual way, and the identity of Sn is the

identity at the object n ∈ SF,
• if f : m → n is a forest and σ ∈ Sm, then fσ = S(f, σ)σ(f), where
σ(f) is the binary forest satisfying σ(f)i := fσ(i), and S(f, σ) ∈ Sn is
the permutation on n letters obtained by replacing the ith line segment of
σ with ℓ(σ(f)i) parallel line segments.

The second kind of relation above specifies that a tree can slide down a line segment
attached to its root, e.g. if

f = ,
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and σ = (123) ∈ S3, then

fσ = = = S(f, σ)σ(f).

These relations for the category SF are those of a Brin-Zappa-Szép product of
the category of binary forests F and the permutation groupoid ⊔nSn (see [13, 14,
58, 59] for more on this). Note that there is an identity-on-objects embedding
F ↪→ SF mapping a forest f ∈ F to the symmetric forest σf , where σ is an identity
permutation. This embedding identifies F with the subcategory of SF given by
morphisms whose diagrams are planar.

We will now examine the fraction groupoids of F and SF. For each n ≥ 0, let tn
be the regular tree with 2n leaves. Given forests f, g ∈ F, we may find forests p, q
such that pf = qg, by completing each tree of f and g into a regular tree tn. Thus,
the category F satisfies condition (F1) of Definition 2.5, and a similar argument
shows that the category SF also satisfies condition (F1).

It is visually apparent that the category F also satisfies the condition (F2), and
it quickly follows that the category SF does as well. Thus, F and SF both admit a
calculus of left fractions, yielding the fraction groupoids Frac (F) and Frac (SF).
By Lemma 2.14, the localisation functors F → Frac (F) and SF → Frac (SF) are
faithful. These functors fit into a commutative diagram of embeddings

F SF

Frac (F) Frac (SF)

.

The embedding Frac (F) ↪→ Frac (SF) is the identity on objects, and maps a frac-
tion g−1f ∈ Frac (F) to the fraction (σg)−1(σf) ∈ Frac (SF), where σ is an
identity permutation.

The morphisms of Frac (F) and Frac (SF) admit a powerful diagrammatic cal-
culus. Each fraction (σf)−1(τg) in Frac (SF) may be interpreted as the diagram
of σf placed upside down on top of the diagram of τg. For example, if

τg =

and

σf = ,
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then (σf)−1(τg) becomes

= .

Composition of morphisms in Frac (SF) represented this way can be performed by
vertical stacking and isotopy, the relations of SF, and the relations

=
(2.1)

and

= . (2.2)

The relations (2.1) and (2.2) assert that ( )−1 = . For example, if

σt = ,

then

(σt)−1 = ,
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as evidenced by the computations

(σt)−1(σt) = = = ,

,

which is trivial by the relation (2.2), and

σt(σt)−1 = = = .

The embedding Frac (F) ↪→ Frac (SF) identifies Frac (F) with the subcategory of
planar diagrams in Frac (SF). These pictures of the morphisms in Frac (SF) are
called strand diagrams [10]. Braided versions of these diagrams were used by Brin
in [14] to represent elements of the braided Thompson group BV .

Strand diagrams with one vertex at the top and bottom, i.e. morphisms 1 → 1
in Frac (SF), form a group which is well-known to be isomorphic to Thomp-
son’s group V [10, 14]. We take this to be our definition of Thompson’s group
V . Thompson’s group F consists of the planar diagrams in V .

Definition 2.15. Define V := Frac (SF) (1, 1) and F := Frac (F) (1, 1).

Each element v ∈ V can be written as a fraction (τs)−1(σt) for some trees t, s
with a common number of leaves n, and σ, τ ∈ Sn, however we can write v =
s−1τ−1σt, so that every element of V is specified by two trees and a permutation.
Restricting the embedding Frac (F) ↪→ Frac (SF) identifies F with the subgroup
of V consisting of fractions s−1σt, where σ is the identity permutation.



386 CHRISTIAN DE NICOLA LARSEN

2.4. Jones’ technology. The category SF has a monoidal structure ⊗ given by
addition of natural numbers, and horizontal concatenation of symmetric forests.
For example,

⊗ = .

The monoidal structure of SF restricts to a monoidal structure on F. These lift
to monoidal structures on the groupoids Frac (F) and Frac (SF) via the formula
g−1f⊗k−1h := (g⊗k)−1(f⊗g), for all suitable symmetric forests f, g, h, k ∈ SF.
In terms of strand diagrams, the tensor product⊗ is again horizontal concatenation
of diagrams.

Every planar forest in F can be written as a composition of elementary forests

fk,n := |⊗(k−1) ⊗ ⊗ |⊗(n−k),

for example

= = f5,5f4,4f1,3f1,2.

Thus, the morphisms of Frac (F) are generated by with respect to the operations
of composition, ⊗, and (−)−1. Since every permutation σ of a finite set can be
written as a product of transpositions, the morphisms of Frac (SF) are generated
by and the transposition σ ∈ S2 as a monoidal groupoid. Thus, if (D,⊗) is a
monoidal category, then

• any morphism of the form α : a→ a⊗a yields a covariant monoidal func-
tor Φα : F→ D, defined by Φα(n) := a⊗n for all n ∈ N and Φα( ) := α.
Similarly, a morphism ω : a⊗a→ a ∈ D defines a contravariant monoidal
functor Φω : F→ D defined by Φω( ) := ω.
• If R : K → K ⊗ K is an isomorphism in D, ΦR can be extended to

a functor πR : Frac (F) → D by setting πR(f−1) := ΦR(f)
−1 for all

forests f .
• If D is symmetric monoidal, we may extend Φα,Φω to functors SF → D,

and extend ΦR to a functor πR : Frac (SF)→ D. This is done by mapping
the transposition σ ∈ S2 to the canonical isomorphisms a⊗a ∼−→ a⊗a for
Φα and Φω, and K ⊗K ∼−→ K ⊗K for πR, using the symmetric structure
of D. Sometimes we will denote πR by ΦR.
• Thus, if D has a symmetric structure and σ ∈ Sn, Φα(σ) : a⊗n → a⊗n

is given by the action Sn ↷ a⊗n, and Φω(σ) = Φα(σ)
−1. Since πR :

Frac (SF)→ D is covariant, πR(σ) : K⊗n → K⊗n is given by the action
Sn ↷ K⊗n.
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Example 2.16. If (D,⊗) = (Set,×), the category of sets along with the cartesian
product, α : X → X × X is a map of sets, and σ ∈ Sn, then Φα(σ) : Xn →
Xn, (xi) 7→ (xσ−1i).

Remark 2.17. Given a morphism α : a → a ⊗ a in a monoidal category D,
the functor Φα : F → D has a nice visual description in terms of a well-known
graphical calculus for monoidal categories [54]. Representing the morphism α
diagrammatically as a trivalent vertex

αα = ,

the functor Φα : F→ D is given by replacing every instance of a caret with the
trivalent vertex corresponding to α. For example,

α

α

α

,

which denotes the map ((α⊗ ida) ◦ α) ⊗ α ⊗ ida. The functor Φω corresponding
to a morphism ω : a⊗ a→ a in D can be visualised similarly.

If R : K → K ⊗ K is an isomorphism in D, we can represent R−1 diagram-
matically as a 180 degree rotation of the trivalent vertex corresponding to R:

RR−1 = ,

so that

R

R−1R =

R

= , (2.3)

and

R

R−1R =

R

= . (2.4)
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Extending ΦR to a functor πR : Frac (F) → D and then restricting this functor to
the group F := Frac (F) (1, 1) yields a representation of F in D, for example

R

R

R

R

: K → K.

If D is symmetric monoidal, we can extend this representation to the group V .
For many choices of D, Jones’ technology mechanically assigns each morphism

α : a → a ⊗ a or ω : a ⊗ a → a in D an isomorphism R : K → K ⊗ K via
a colimit/limit construction, respectively (Remark 2.22). I.e., any trivalent vertex
α or ω is replaced by a trivalent vertex satisfying relations (2.3) and (2.4), in a
canonical way, obtaining representations of Thompson’s groups from easy data.

Example 2.18. Let D := Set, ⊗ := ⊔, and C := {0, 1}N, the Cantor space of
infinite sequences in 0 and 1. Consider the bijection R : C→ C ⊔ C defined by the
formula

x1x2x3 · · · 7→ (x1, x2x3 · · ·).

This yields a monoidal functor Φ : Frac (SF) → Set defined by Φ( ) := R
which affords the following visual description. We view C as the boundary ∂t∞
of the rooted infinite regular binary tree t∞. Thus, an element of C is viewed as
an upwards path in t∞ consisting of left turns and right turns, where we use the
convention that a left turn corresponds to 0 and a right turn corresponds to 1. For
example,

101010 · · · = .

...
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The bijection R is then given by deleting a caret at the bottom of diagrams in C

...

R
= (1, 010 · · ·) ∈ C ⊔ C,

...
...

with R−1 given by placing a caret at the bottom of a diagram in C ⊔ C and joining
the path to the root. Since Φ is a monoidal functor, given a tree t ∈ T, we have that
Φ(t) is given by removing a copy of t at the bottom of diagrams in C. If σ ∈ Sn is
a permutation, then Φ(σ) : C⊔n → C⊔n is given by permuting copies of C.

Definition 2.19. Let D be a monoidal category, and suppose that α : a→ a⊗ a is
a morphism in D. The Jones isomorphism of α consists of an object K (α) ∈ D,
a morphism ι(α) : a → K (α) , and an isomorphism R (α) : K (α) → K (α) ⊗
K (α) making the diagram

K(α) K(α)⊗K(α)

a a⊗ a

R(α)

α

ι(α) ι(α)⊗ι(α)

commute, while being universal with respect to this property: if R̃ : K̃ → K̃ ⊗ K̃
is an isomorphism and j : a→ K̃ are such that the diagram

K̃ K̃ ⊗ K̃

a a⊗ a

R̃

α

j j⊗j

commutes, then there is a unique morphism ψ : K(α)→ K̃ making the diagram

K̃ K̃ ⊗ K̃

K(α) K(α)⊗K(α)

a a⊗ a

ι(α) ι(α)⊗ι(α)

α

R(α)

ψ ψ⊗ψ

R̃

j j⊗j
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commute. Let π(α) : Frac (F) → D be the monoidal functor defined by π(α)( )
:= R(α), extending π(α) to a functor Frac (SF)→ D if D is symmetric monoidal.

The Jones isomorphism of a morphism ω : a ⊗ a → a in D consists of an
object K (ω) ∈ D, a morphism p (ω) : K (ω) → a, and an isomorphism R (ω) :

K (ω)
∼−→ K (ω)⊗K (ω) making the diagram

K(ω) K(ω)⊗K(ω)

a a⊗ a

R(ω)

p(ω) p(ω)⊗p(ω)

ω

commute in a universal way: if R̃ : K̃ → K̃⊗K̃ and q : K̃ → amake the diagram

K̃ K̃ ⊗ K̃

a a⊗ a

q q⊗q

R̃

ω

commute, then there is a unique morphism ψ : K̃ → K(ω) making the diagram

K̃ K̃ ⊗ K̃

K(ω) K(ω)⊗K(ω)

a a⊗ a

p(ω) p(ω)⊗p(ω)

R(ω)

ω

R̃

ψ ψ⊗ψ

q q⊗q

commute.
Denote by π(ω) the monoidal functor Frac (F) → D defined by π(ω)( ) :=

R (ω), again extending to a functor Frac (SF) → D if D is symmetric monoidal.
We omit the dependence on morphisms in the notation for Jones isomorphisms, for
example writing K,R, p, π instead of K(ω), R(ω), p(ω), π(ω), when possible.

Remark 2.20. Let D be a monoidal category, and M be the category whose objects
are morphisms in D of the form α : a → a ⊗ a or ω : a ⊗ a → a, and whose
morphisms are commutative diagrams such as

a a⊗ a

ã ã⊗ ã

α

ω̃

ψ ψ⊗ψ . (2.5)

The diagram (2.5) is a morphism α → ω̃ in M, and the remaining morphisms in
M are obtained via changing the directions of the horizontal arrows in (2.5). Let
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I be the full subcategory of M whose objects are the isomorphisms of the form
K

∼−→ K ⊗K. We may then rephrase the universal properties of Definition 2.19
as follows: given an object α : a → a ⊗ a in M, a Jones isomorphism of α if it
exists is an initial object of the category α/I, whose objects are morphisms α→ R
for some isomorphism R ∈ I, and whose morphisms are the relevant commutative
triangles. Thus, a Jones isomorphism is defined up to unique isomorphism in α/I.
Similarly, if ω : a⊗ a→ a ∈ M, a Jones isomorphism of ω is a terminal object in
the category I/ω (now the objects are morphisms R→ ω for R an object of I).

This describes Jones isomorphisms as Kan extensions of their underlying
monoidal functors F→ D, along the localisation functor F→ Frac (F).

Example 2.21. Let D := Set and ⊗ := ⊔, the disjoint union of sets. Consider
a singleton set {•}, the unique map ω : {•} ⊔ {•} → {•}, and let α : {•} →
{•} ⊔ {•}, • 7→ (0, •). Then the bijection R : C → C ⊔ C of Example 2.18
along with the unique map C → {•} is the Jones isomorphism for ω. Restricting
R to Q2 := {0, 1}(N), the finitely supported elements of C, recovers the Jones
isomorphism of α (the required map {•} → Q2 maps • 7→ 00 · · ·).

Remark 2.22. When a monoidal category D has enough colimits and limits (and
under a couple of technical assumptions), Jones isomorphisms for morphisms α :
a→ a⊗a and ω : a⊗a→ a in D (i.e. monoidal functors F→ D) are certain direct
limits and inverse limits in D over the directed set T of binary trees, respectively.
This is true for all of the cases we are interested in, including Example 2.21. These
are special cases of colimit/limit constructions for arbitrary functors Φ : C → D,
that lead to actions of Frac (C) when C is a category with a calculus of fractions.
See [43] for the colimit construction and [24] for the limit construction when D is
a concrete category. As such, the group K(ω) (Definition 4.1) assigned to a group
morphism ω : Γ× Γ→ Γ is secretly an inverse limit over the set of trees T.

2.5. Thompson’s groups. Recall the bijection R : C → C ⊔ C of Example 2.18,
and the resulting functor Φ : Frac (SF) → Set defined by Φ( ) := R. We then
obtain an action V ↷ C by restricting Φ to V (Definition 2.15).

Lemma 2.23. Suppose that v = s−1σt ∈ V, 1 ≤ i ≤ ℓ(t), and x ∈ C. Then

Φ(v)(litx) = lσ(i)s x.

I.e., V acts on C via prefix replacement.

Proof. This follows from the visual description of the functor Φ given in 2.21. We
have that

Φ(t)(litx) = (i, x) ∈ C⊔ℓ(t)

since Φ(t)(litx) is given by removing a copy of t from the bottom of the diagram
corresponding to litx. Thus,

Φ(σt)(litx) = (σ(i), x),

and so
Φ(s−1σt)(lit) = lσ(i)s x,
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since Φ(s)−1 is given by placing a copy of s at the bottom of diagrams in C⊔ℓ(s).
□

An immediate consequence of Lemma 2.23 is that the action V ↷ C is faithful.
If v = s−1σt ∈ V acts trivially on C, then for all 1 ≤ i ≤ ℓ(t) we have that

Φ(v)(lit00 · · ·) = lσ(i)s 00 · · · = lit00 · · · ,

and so

lit = lσ(i)s . (2.6)

This implies that Leaf(t) = Leaf(s), and so t = s. But then (2.6) implies that
σ = id, so v = eV .

We only needed the fact that Φ(v) acts trivially on Q2 := {0, 1}(N), so we also
get that the action V ↷ Q2 is faithful.

Definition 2.24. Given a word u ∈ {0, 1}∗, define

Cu := {u · x | x ∈ C}.

Such a subset of C is called a standard dyadic interval (sdi). The Cu, u ∈ {0, 1}∗
are clopen subsets of C forming a basis for the product topology on C after equip-
ping {0, 1} with the discrete topology. A standard dyadic partition, or sdp, is a
finite partition of C into standard dyadic intervals. Given an sdi I = Cu, we denote
by I0 and I1 the first and second halves of I, i.e.

I0 := Cu0, I1 := Cu1,

so that I = I0 ⊔ I1.
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Every tree t ∈ T yields an sdp {Cl}l∈Leaf(t) of C, and so the formula of Lemma
2.23 completely specifies the map Φ(v) for each v ∈ V. Indeed, Φ(v) is a home-
omorphism of C for each v ∈ V, and since the action V ↷ C is faithful, we may
view V as a subgroup of Homeo(C), the group of homeomorphisms of C. As such,
we write v(x) instead of Φ(v)(x) for all v ∈ V and x ∈ C.

Definition 2.25. Suppose that v = s−1σt ∈ V and that x ∈ C, and write x = lity

for some unique 1 ≤ i ≤ ℓ(t) and y ∈ C. Then v(x) = l
σ(i)
s y, and we define the

slope of v at x, denoted by v′(x) to be

v′(x) :=
2|l

i
t|

2|l
σ(i)
s |

.

Remark 2.26. Consider the binary expansion map S : C → [0, 1] defined by the
formula

S(x) =
∞∑
k=1

xk
2k
, x ∈ C.

Given an sdi I = Cu, a measure of the length of I is the quantity

S(u11 · · ·)− S(u00 · · ·) = 2−|u|.

Thus, the slope of an element v ∈ V at x ∈ C is the ratio of the lengths of the sdis
Cl and Cσ−1(l), where l ∈ Leaf(s), v(x) ∈ Cl, and x ∈ Cσ−1(l).

The map S restricts to a bijection between the elements of C with infinitely
many zeros and the unit interval [0, 1) ⊆ R. If v ∈ V and x ∈ C has infinitely
many zeros, so does v(x), so the map S establishes an isomorphism between V and
a subgroup of the piecewise linear right-continuous bijections of the unit interval
[0, 1), which is essentially the definition of V given in [29]. For example, the
element

∈ V
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corresponds to the bijection

1

11
2

1
4

1
2

3
4

0

of [0, 1), with black dots emphasising that a point is on the graph, and white dot
emphasising that a point is not on the graph. Note that the tree at the bottom of the
diagram of the element of V corresponds to the domain (horizontal axis), and the
tree on the top corresponds to the range (vertical axis).

The slope v′(x) with v ∈ V and x ∈ C \ {11 · · ·} is then equal to the right-slope
of the graph of v at S(x), and v′(11 · · ·) is the limit of the slope of the graph of v
at x ∈ [0, 1) as x→ 1.

Given x ∈ C, one can use the definition of slopes to show that the map V →
2Z, v 7→ v′(x) satisfies the chain rule, and we will use this fact freely.

Definition 2.27. Viewing Thompson’s group V as a subgroup of Homeo(C), and
identifying the dyadic rationals Q2 with the finitely supported sequences in C,
define

NH(C)(V ) := {φ ∈ Homeo(C) | adφ(v) := φvφ−1 ∈ V }
and

StabN (Q2) := {φ ∈ NH(C)(V ) | φ(Q2) = Q2}.
The following proposition is crucial for our main results, and follows from a

theorem of Rubin [51], the details of which can be found in [12, Section 3].

Proposition 2.28. The map

NH(C)(V )→ Aut(V ), φ 7→ adφ : v 7→ φvφ−1

is an isomorphism of groups.

We will also need the following facts about elements of NH(C)(V ) and StabN (Q2),
both of which are proved in [18, Section 1].

Lemma 2.29. Suppose that φ ∈ NH(C)(V ) and that I is an sdi. Then φ(I) is a
finite union of sdis.

Proposition 2.30. Let v ∈ V, x ∈ C with v(x) = x, and suppose that φ ∈
StabN (Q2). Then (adφ(v))

′(φ(x)) = v′(x).
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Remark 2.31. The formula of Proposition 2.30 follows immediately from the
chain rule in the case that φ ∈ V . This formula no longer holds in general when
φ /∈ StabN (Q2) [18, Remark 2.6], but can be generalised to accommodate any
homeomorphism φ ∈ NH(C)(V ) [16, Proposition 1.2].

3. Groups constructed from a Jones action
In this section we study the properties of groups G = K ⋊ V coming from

groups K with an isomorphism R : K → K × K, focusing on isomorphisms
between such groups G.

Notation 3.1. If R : K → K × K is an isomorphism of groups, let π(R) :
Frac (SF) → Grp be the resulting functor defined by π(R)( ) := R. Restricting
π(R) to Thompson’s group V yields an action V ↷ K, and thus a semidirect
productG(R) := K⋊V . We will often drop the dependence onR in our notations,
writing G instead of G(R) and π instead of π(R) if the context allows.

When considering two group isomorphisms R : K → K2 and R̃ : K̃ → K̃2,

we will often write G̃ and π̃ instead of G(R̃) and π(R̃).

Definition 3.2. Suppose that Γ is a group, and thatα : Γ→ Γ2, g 7→ (α0(g), α1(g))
is a group morphism. For each word u = u0u1 · · ·um ∈ {0, 1}∗, define αu :=
αum ◦ · · · ◦ αu0 (notice the reversal of the letters of u). We use the convention that
αϵ := idΓ.

For each g ∈ Γ, we define

suppα(g) := {x = x0x1 · · · ∈ C | αx0···xm(g) ̸= eΓ for all m ≥ 0},

writing supp(g) instead when the context is clear.

Fix a group isomorphism R : K → K2. We regard each a ∈ K as a map
{0, 1}∗ → K by defining a(u) := Ru(a) for all u ∈ {0, 1}∗. In particular,
a(ϵ) = a. The infinite regular binary tree t∞ has vertex set {0, 1}∗, so the elements
a ∈ K may be visualised as decorations of t∞ as follows:

a(ϵ)

a(0) a(1)

a(00) a(01) a(10) a(11)

...
...

a = .
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The isomorphism R : K → K2 is then given by deleting a caret at the bottom
the diagram of an element of K. I.e., for each a ∈ K, the diagram of R(a) =
(R0(a), R1(a)) is

a(0) a(1)

a(00) a(01) a(10) a(11)

...
...

.

Similarly, for each n ≥ 1,we identify the elements ofKn with diagrams consisting
of n decorations of t∞ corresponding to elements ofK arranged next to each other.
If t ∈ T is a tree, since R = π( ) and π is a monoidal functor, we have that
π(t) : K → Kℓ(t) is given by removing a copy of t from the bottom of a diagram
in K. For example, if

t = ,

then

a(1)

a(00) a(01) a(10) a(11)

...
...

a ∈ K

...

∈ K3.
π(t)

In general, if a ∈ K, t is a tree and l1, . . . , ln are the leaves of t, we will have that

π(t)(a) = (a(l1), . . . , a(ln)).
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If σ ∈ Sn for some n ∈ N, then π(σ) permutes the positions of elements of tuples
(ai) ∈ Kn, so that π(σ)(ai) = (aσ−1(i)). This results in a formula for the action
V ↷ K.

Lemma 3.3. Suppose that v = s−1σt ∈ V, and that a ∈ K. Then

π(v)(a)(lisu) = a(l
σ−1(i)
t u), u ∈ {0, 1}∗, 1 ≤ i ≤ ℓ(t).

Let Φ : Frac (SF) → Set be the functor of Example 2.18, where we recall that
the action V ↷ C is obtained by restricting Φ to V . If a1, . . . , an ∈ K, we define

supp(a1, . . . , an) :=

n⊔
i=1

supp(ai).

Lemma 3.4. Suppose that v : m → n is a morphism of Frac (SF) , and that
a ∈ Km. Then

supp(π(v)(a)) = Φ(v)(supp(a)).

Proof. The fact that

supp(π(t)(a)) = Φ(t)(supp(a)) for all t ∈ T, a ∈ K
and

supp(π(σ)(a1, . . . , an)) = Φ(σ)(supp(a1, . . . , an)), σ ∈ Sn, a1, . . . , an ∈ K
follows from the visual description of the functor Φ given in Example 2.18, and the
visual description of π given above. Since the functors Φ and π are monoidal and
every forest f : m → n in F can be written as a tensor product of trees, we have
that

supp(π(f)(a)) = Φ(f)(supp(a)), a ∈ Km, (3.1)
and

supp(π(f)−1(a)) = Φ(f)−1(supp(a)), a ∈ Kℓ(f). (3.2)
The proof is completed by combining (3.1) and (3.2) with the fact that every mor-
phism of Frac (SF) can be written in the form f−1σg with f, g forests and σ a
permutation. □

Lemma 3.5. For all a, b ∈ K and v ∈ V we have the following:
(1) a = eK if and only if supp(a) = ∅,
(2) supp(a) = supp(a−1),
(3) supp(ada(b)) = supp(b),
(4) supp(ab) ⊆ supp(a) ∪ supp(b),
(5) If supp(a) and supp(b) are disjoint, then ab = ba,
(6) supp(π(v)(a)) = v(supp(a)).

Proof. If a ∈ K is non-trivial, then Ri(a) ̸= eΓ for some i ∈ {0, 1}, since R
is an isomorphism. But then Rij(a) = Rj ◦ Ri(a) ̸= eΓ for some j ∈ {0, 1}.
Continuing this process indefinitely produces an element x = x1x2 · · · ∈ C with
the property that Ru(a) ̸= eK for all finite truncations u = x1 · · ·xm of x, and so
x ∈ supp(a). Of course if a = eK then supp(a) = ∅, so we have proven (1).
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(2) through (4) follow immediately from Definition 3.2. If a, b ∈ K, then
supp([a, b]) ⊆ supp(a) ∩ supp(b) from (2), (3) and (4), so (5) then follows
immediately from (1). (6) is a special case of Lemma 3.4. □

Remark 3.6. Jones’ technology provides many examples of semidirect products
K ⋊ V arising from group isomorphisms from a group K to its direct square K2.
In [16, 18], each group morphism of the form α : Γ → Γ2, g 7→ (α0(g), α1(g))
is assigned a group K(α) and an action ρ : V ↷ K(α). The elements of K(α)

are equivalence classes [t, g] of pairs (t, g) with t ∈ T a binary tree, and g ∈ Γℓ(t)

a tuple of ℓ(t) elements of Γ. Such a pair (t, g) can be interpreted as a diagram
consisting of the elements of the tuple g decorating the leaves of t, for example

g1 g2 g3

,

where each gi ∈ Γ. The equivalence relation on the pairs (t, g) with t a binary tree
and g ∈ Γℓ(t) is generated by (t, g) ∼ (t′, g′), where t′ is a tree obtained by placing
a caret on top of t, say on the kth leaf, and g′ is obtained by bifurcating the kth entry
of g into the pair (α0(gk), α1(gk)). We may thus interpret elements [t, g] ∈ K(α)
as equivalence classes of diagrams, for example having the equality

g1 g2 g3

=

α0(g1) α1(g1) g2 g3

as elements of K(α), where the gi are elements of Γ. If [t, g], [s, h] ∈ K(α), then
the product [t, g] · [s, h] = [t, gh] is given by multiplying g and h pointwise, after
ensuring that t = s using the equivalence relation ∼.

We then obtain a group isomorphism R(α) : K(α) → K(α)2 given by remov-
ing a caret at the bottom of diagrams in K(α). For example, R(α) maps

g1 g2 g3 g1 g2 g3

∈ K(α)2.

The group morphism R(α) along with the inclusion Γ → K(α), g 7→ [ | , g] can
be shown to yield a Jones isomorphism for α (Definition 2.19).

We obtain a functor π(α) : Frac (SF) → Grp defined by π(α)( ) := R(α),
which restricts to an action V ↷ K(α). This is precisely the action ρ : V ↷
K(α) defined in [16, 18]. We denote the resulting semidirect product by G(α) :=
K(α)⋊V. It was shown in [18] that the groupsG(α) are precisely those considered
by Tanushevski in [57], in which the lattice of normal subgroup s of K(α)⋊ F ⊆
G(α) was described. These groups G(α) are also examples of cloning systems,
introduced by Witzel-Zaremsky in [59] (see also [61]), implying that they have
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good finiteness properties. The focus of [16, 18] and the present article is on the
structure of isomorphisms between these groups.

If α0 ∈ Aut(Γ) and α1(g) = eΓ, the resulting group G(α) is isomorphic to
a restricted twisted permutational wreath product ⊕Q2Γ ⋊ V [18]. In [18], every
isomorphism between two of these wreath products was shown to be spatial, i.e.
support-preserving up to a homeomorphism φ of the Cantor space C, leading to a
complete classification of these wreath products up to isomorphism in terms of the
input data (Γ, α0).

If α0, α1 ∈ Aut(Γ), then G(α) is a semidirect product LΓ ⋊ V , where LΓ
denotes the set of continuous maps C → Γ, the latter equipped with the discrete
topology [16]. The action V ↷ LΓ is induced by the action V ↷ C, and is twisted
using the automorphisms α0, α1. The isomorphisms θ : G → G̃ between these
semidirect products G = LΓ ⋊ V , G̃ = LΓ̃ ⋊ V are also spatial, up to a multiple
of a group morphism ζ : G→ ZG̃ [16].

In Theorem 3.20, we extend these results and show that any isomorphism θ :

G → G̃ between any groups G = K ⋊ V , G̃ = K̃ ⋊ V coming from iso-
morphisms K ∼−→ K2, K̃ ∼−→ K̃2 is spatial, up to a multiple of a group mor-
phism ζ : G → ZG̃, using the notion of support in Definition 3.2. This is in-
deed a generalisation; the class of groups G(α) coming from group morphisms
α : Γ → Γ2, g 7→ (α0(g), α1(g)) with α0 ∈ Aut(Γ) and α1 ∈ Aut(Γ) or
α1 : g 7→ eΓ does not recover the full class of groups G(R) = K ⋊ V , with
R : K

∼−→ K2. For such α, the group K(α) is never finitely generated, however
there exist isomorphisms R̃ : K̃ → K̃2 with K̃ finitely generated [9, 40, 45]. An
isomorphism G(α) ∼= K̃ ⋊ V would restrict to an isomorphism K(α) ∼= K̃ by
Theorem 3.15, a contradiction.

In [16, Section 1.2.2], Brothier introduced a notion of support for elements a ∈
K(α) (α can be arbitrary) which we will denote here by s̃upp(a). Given a tree
t ∈ T and a tuple g = (gl)l∈Leaf(t), we may define a map κt : C → Γ mapping lx
to gl for each leaf l ∈ Leaf(t) and x ∈ C. Denote by supp(κt(g)) the support of
the map κt : C→ Γ. For each a = [t, g] ∈ K(α),

s̃upp(a) :=
⋂
s,h

supp(κs(h)),

where the intersection runs over all pairs (s, h) with s a tree and h : Leaf(s)→ Γ
a map such that a = [s, h]. One may then wonder if s̃upp(a) has anything to do
with Definition 3.2. Indeed, one can verify that s̃upp(a) = suppR(α)(a).

Definition 3.7. Let I be the set of all finite unions of sdis. For each I ∈ I and
subgroup H ≤ K, we let

HI := {a ∈ H : | supp(a) ⊆ I}

and

HR := {a ∈ H : R0(a) = R1(a) = a}.
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We refer to elements of KR as R-invariant. We also let

FixV (I) := {v ∈ V | v(x) = x for all x ∈ I}

and

StabV (I) := {v ∈ V | v(I) = I}.

Lemma 3.8. Let a ∈ K and u ∈ {0, 1}∗. If t is a tree with u ∈ Leaf(t), define
an element au,t ∈ Kℓ(t) by au,t(u) := a, and au,t(l) = eK for all l ∈ Leaf(t) not
equal to u. Then the element

π(t)−1(au,t) ∈ K

is independent of the choice of t, and is an element of KI .

Proof. Suppose that t is a tree having u as a leaf. The fact that supp(π(t)−1(au,t)) ⊆
I follows immediately from Lemma 3.4. Let f := fk,ℓ(t) be an elementary forest
with k ̸= i, where lit = u. Thus, u is a leaf of ft, and

π(ft)π(t)−1(au,t) = π(f)(au,t).

Since π(f)(au,t)(u) = a and π(f)(au,t)(l) = eK for all leaves l of ft not equal to
u, so we have that

π(f)(au,t) = aft,

yielding that π(ft)−1(aft) = π(t)−1(au,t). Thus, for every forest f with ℓ(t) roots
not supported at the leaf u of t, we have that π(ft)−1(aft) = π(t)−1(au,t).

We finish with the observation that for each u ∈ {0, 1}∗, there is a smallest tree
tu among trees t having u as a leaf. More precisely, if t is a tree having u as a leaf,
then there is a forest f not supported at the leaf u of tu such that t = ftu. □

Lemma 3.8 allows us to make the following definition.

Definition 3.9. Suppose that I = Cu is an sdi, and that a ∈ K. Using the notation
of Lemma 3.8, we define

aI := π(t)−1(au,t)

where t is any tree having u as a leaf. Furthermore, define

a(u) := Ru(a)I .
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Example 3.10. Suppose that a ∈ K, and let I := C01. The diagram of aI is

eΓ

eΓ a(ϵ) eΓ eΓ

...
...

,

and the diagram of a(01) is

eΓ

eΓ a(01) eΓ eΓ

...
...

.

Here we have left some vertices unlabelled for convenience.

Lemma 3.11. Suppose that I = Cu and J = Cm are sdis, and that v ∈ V satisfies
v(ux) = mx for all x ∈ C. Then v(aI) = aJ .

Proof. The hypothesis v(ux) = mx for all x ∈ C is equivalent to the fact that
there exist trees t, s ∈ T and a permutation σ such that u = lit, m = l

σ(i)
s , and

v = s−1σt. Thus, using the notation of Lemma 3.8,

π(v)(aI) = π(s−1σt)(π(t−1)(au,t))

= π(s−1σ)(au,t)

= π(s−1)(as)

= aJ .

□
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Lemma 3.12. If I is an sdi, then aI = R0(a)I0 ·R1(a)I1 .

Proof. Let t be a tree having u as a leaf, and let i ∈ {1, . . . , ℓ(t)} be such that
u = lit. Let f := fi,ℓ(t). Using the notation of Lemma 3.8, we have that

aI = π(t)−1(au,t)

= π(ft)−1π(f)(au,t)

= π(ft)−1(R0(a)u0,ft ·R1(a)u1,ft)

= R0(a)I0 ·R1(a)I1 .

□

Lemma 3.13. If a ∈ K and t ∈ T is a tree, then

a =
∏

l∈Leaf(t)

a(l), (3.3)

and the product can be taken in any order. In particular, if (Ij)nj=1 is an sdp, then
the element a ∈ K can be written uniquely as a product of elements a1, . . . , an ∈
K with supp(aj) ⊆ Ij for all 1 ≤ j ≤ n.
Proof. We start by noting that the product in (3.3) is well-defined and invariant un-
der permuting terms since the a(l) have disjoint supports. Let a ∈ K, and suppose
that u ∈ {0, 1}∗. Then

a(u0) · a(u1) := Ru0(a)Cu0 ·Ru1(a)Cu1

= R0 (Ru(a))Cu0
·R1 (Ru(a))Cu1

= Ru(a)Cu

=: a(u),

where the second last line follows from Lemma 3.12.
Clearly a =

∏
l∈Leaf(t) a

(l) if t = | is the trivial tree with one leaf. Suppose
that (3.3) holds for all trees t with n leaves. If t is a tree with n + 1 leaves, then
t = fk,ns for some tree s with n leaves, and 1 ≤ k ≤ n. Letting f := fk,n we have
that ∏

l∈Leaf(t)

a(l) =
∏

l∈Leaf(fs)

a(l)

=

 ∏
l∈Leaf(s)\{lks}

a(l)

 · a(lks ·0) · a(lks ·1)
=

∏
l∈Leaf(s)

a(l)

= a.

Thus, (3.3) holds for every a ∈ K and t ∈ T by induction.
The remainder of the lemma follows from Lemma 3.5, and the fact that if a ∈

K, t ∈ T, and l ∈ Leaf(t), then supp(a(l)) ⊆ Cl. □
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Corollary 3.14. If u ∈ {0, 1}∗ and a ∈ KI , where I := Cu, then a = a(u).

3.1. Isomorphism structure. In this subsection we fix two group isomorphisms
R : K → K2, R̃ : K̃ → K̃2 and study the structure of isomorphisms between the
resulting semidirect products G = K ⋊ V, G̃ = K̃ ⋊ V. The following theorem
has essentially the same proof as [19, Theorem 4.1], which concerns isomorphisms
between certain restricted permutational wreath products Γ ≀ V. We reproduce the
proof using our terminology.

Theorem 3.15. Every isomorphism θ : G→ G̃ restricts to an isomorphism K →
K̃. In particular, the normal subgroup K ◁ G is characteristic.

Proof. For each subset S ⊆ G, let NC(S) denote the normal closure of S in G.
If a normal subgroup L ◁ G can be written as a product L = L0 × L1, with
NC(L0) = L = NC(L1), we say that L has the decomposability property, using
a similar definition for normal subgroups L̃ ◁ G̃. The approach is to show that
K ◁ G is the largest normal subgroup of G having the decomposable property.

Firstly, K has the decomposability property since K = K0 × K1 via the iso-
morphism K ∼= K × K, and K0 and K1 are conjugate in G via the element
v(12) := ( )−1 ◦ (12) ◦ ∈ V.

Suppose then that L = L0 × L1 ◁ G has the decomposability property, and
assume that L ⊊ K, in search of a contradiction. Let q : G ↠ G/K = V, av 7→
v be the canonical projection, and note that q(L) ◁ V, since L ◁ G and q is
surjective. Since L ⊊ K, there is a non-trivial v ∈ V such that av ∈ L for some
a ∈ K, and so q(av) is a non-trivial element of q(L). Since V is simple, it must be
the case that q(L) = V.

Let p : L↠ V be the restriction of q to L, and note that p(L0), p(L1) ◁ V. For
i ∈ {0, 1}, if Li were contained in K, then so would its normal closure, implying
that L ⊆ K, contradicting our assumption. Thus, both L0 and L1 are not contained
in K, yielding that p(L0) = p(L1) = V.

But then if v, w ∈ V, we can write v = p(l0) and w = p(l1) for some l0 ∈
L0, l1 ∈ L1, from which we obtain vw = wv. We conclude that V is abelian,
obtaining our desired contradiction. Thus, L ⊆ K.

The fact that θ(K) = K̃ follows from the fact that θ(K) and K̃ are both the
largest normal subgroup of G̃ having the decomposability property.

Taking K̃ = K yields that K ◁ G is characteristic. □

Lemma 3.16. Suppose that θ : G→ G̃ is an isomorphism. Then there is a unique
triple (κ, c, φ), with κ : K → K̃ an isomorphism, c : V → K̃ a map, and
φ ∈ NC(V ), such that

θ(av) = κ(a) · cv · adφ(v) for all av ∈ G
and

cvw = cv · π(adφ(v))(cw) for all v, w ∈ V.
Proof. For each v ∈ V , we can write θ(v) uniquely as a product θ(v) = cv · ϕv
with cv ∈ K and ϕv ∈ V . The map ϕ : v 7→ ϕv then defines an automorphism of



404 CHRISTIAN DE NICOLA LARSEN

V , so by Proposition 2.28, there is a unique φ ∈ NC(V ) satisfying ϕ = adφ : v 7→
φvφ−1. Furthermore,

θ(vw) = θ(v)θ(w) = cvwϕvw

= cvϕvcwϕw

= cvπ(ϕv)(cw)ϕvϕw.

Letting κ be the restriction of θ to K, by Theorem 3.15, we have proved the exis-
tence of the required tuple (κ, c, φ). Uniqueness is clear. □

Lemma 3.17. The centre ZG of G is equal to (ZK)R, the group of elements of
ZK that are R-invariant, and similarly ZG̃ = (ZK̃)R̃.

Proof. Suppose that g = av ∈ ZG. Then for each w ∈ V we have that

gwg−1 = w,

and so
avwv−1a−1 = a · π(vwv−1)(a−1) · vwv−1 = w,

and so vwv−1 = w. This implies that v ∈ ZV, and since V is a simple non-abelian
group we get that v = e.

Thus, g = a ∈ ZK, so it remains to show that a is R-invariant. Let u be a
non-empty word in 0 and 1 and let v ∈ V be such that v(0x) = ux for all x ∈ C,
so that by Lemma 3.3 we have that

π(v)(a)(0) = a(u).

But since a ∈ ZG we have that π(v)(a) = a, and thus a(u) = a(0). Notice then
that a(0) is R-invariant, since

a(0) = R−1(a(00), a(01))

= R−1(a(0), a(0)).

We finish by noting that

a = a(ϵ)

= R−1(a(0), a(1))

= R−1(a(00), a(01))

= a(0).

Conversely, if a ∈ (ZK)R, then π(v)(a) = a for all v ∈ V by Lemma 3.3.
Since a commutes with every b ∈ K, we have that a ∈ ZG. □

Lemma 3.18. Let θ : G→ G̃, av 7→ κ(a)cvadφ(v) be an isomorphism, and I ∈ I
be a finite union of sdis. Then

θ(KI) ⊆ K̃φ(I) · ZG̃.
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Proof. We start with the case in which I is an sdi. The case I = C is clear. Suppose
then that I ⊊ C. Let J ⊆ φ(C \ I) be an sdi, and suppose that a ∈ KI , b̃ ∈ K̃J .

Write b̃ = b̃0 · b̃1 where each supp(̃bi) ⊆ Ji, and let d be the element of K
satisfying [θ(a), b̃0] = θ(d). We then have that supp(d) ⊆ I and supp(θ(d)) ⊆
J0. Since φ(I) and J are disjoint, we may consider an element v ∈ FixV (φ(I))
interchanging J0 and J1. Letting ϕ := adφ, we have that ϕ−1v ∈ FixV (I), and so
π(ϕ−1v)(d) = d. Thus,

θ(d) = θ(π(ϕ−1v)(d))

= ad(cϕ−1v)(π̃(v)(θ(d))),

yielding that
supp(θ(d)) = v(supp(θ(d)).

Since supp(θ(d)) ⊆ J0 and v(supp(θ(d)) ⊆ J1, we obtain that supp(θ(d)) = ∅,
allowing us to conclude that [θ(a), b̃0] = e. An identical argument shows that
[θ(a), b̃1] = e, and we immediately obtain that [θ(a), b̃] = e.

Since φ(I)c is a finite union of sdis, each b̃ ∈ K̃φ(Ic) can be written as a finite
product b̃1 · · · b̃m with each b̃i supported in an sdi J i ⊆ φ(Ic), and so [θ(a), b̃] =
eΓ.

This shows that θ(a)(u) ∈ ZK̃ for all words u ∈ {0, 1}∗ corresponding to an
sdi contained in φ(Ic). Let J, J ′ be sdis contained in φ(I)c with corresponding
words u and u′, and let v ∈ FixV (φ(I)) with v(J) = J ′. Then

θ(a) = θ(π(ϕ−1v)(a))

= ad(cϕ−1v) (π̃(v)(θ(a))) .

Evaluating the above at the word u′, since θ(a)(u′) ∈ ZK̃, we have that

θ(a)(u′) = π̃(v)(θ(a))(u′) = θ(a)(u).

We can now let c̃ := θ(a)(u), where u ∈ {0, 1}∗ is any word corresponding to an
sdi contained in φ(Ic). If u is such a word, then

c̃ = θ(a)(u)

= R̃−1(θ(a)(u0), θ(a)(u1))

= R̃−1(c̃, c̃),

showing that c̃ is R-invariant. We thus have c̃ ∈ ZG̃, obtaining the decomposition

θ(a) =
(
θ(a) · c̃−1

)
· c̃ ∈ K̃φ(I) · ZG̃.

Thus, θ(KI) ⊆ K̃φ(I) · ZG̃.
If I is a finite union of sdis, we can write I =

⊔n
j=1 I

j , with the Ij sdis, so that
KI = KI1 × · · · ×KIn . But then if a ∈ KI , we can write

θ(a) = ã1 · b̃1 · · · ãn · b̃n = ã1 · · · ãn · b̃1 · · · b̃n

with each ãj ∈ Kφ(Ij) and b̃j ∈ ZG̃, so that θ(a) ∈ K̃φ(I) · ZG̃. □
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Lemma 3.19. Suppose that θ : G → G̃ is an isomorphism, and ζ : G → ZG̃ is a
group morphism. Then the map θ · ζ : G→ G̃, g 7→ θ(g) · ζ(g) is an isomorphism
of groups.

Moreover,

ZG ⊆ G′ ⊆ ker ζ,

where G′ denotes the derived subgroup [G,G] of G.

Proof. The proof is essentially the same as that of [16, Proposition 2.7]. Multi-
plicativity of θ · ζ is clear. We have that

ker(θ · ζ) = {av ∈ G : θ(av) = ζ(av)−1}
= {a ∈ ZG : θ(a) = ζ(a)−1},

which follows from the fact that θ is an isomorphism and ZG ⊆ K. Therefore, if
we can show that ZG ⊆ ker ζ, we may conclude that θ · ζ is injective.

The inclusion G′ ⊆ ker ζ follows from the fact that ZG̃ is abelian. Let a ∈ ZG,
and I ⊊ C be an sdi. Let v ∈ V and J be an sdi disjoint from I, such that
v(J0) = J and v(J1) = I, so that v(J) = I ⊔ J. Then

[v, aJ ] = π(v)(aJ) · a−1
J

= π(v)(a
(0)
J · a

(1)
J ) · a−1

J

= R0(a)J ·R1(a)I · a−1
J

= aJ · aI · a−1
J

= aI .

Thus, aI ∈ G′.Writing a = aC0 ·aC1 ,we obtain that a ∈ G′. Thus, θ ·ζ is injective.
Surjectivity of θ · ζ follows from the fact that the image of the element θ−1(g̃) ·

θ−1 ◦ ζ ◦ θ−1(g̃−1) ∈ G under θ · ζ is g̃, for each g̃ ∈ G̃. Here one needs that
ZG ⊆ ker ζ. □

Theorem 3.20. If θ : G → G̃ is an isomorphism, then there is a unique tuple
(κ0, ζ, c, φ) with κ0 : K → K̃ an isomorphism, ζ : G → ZG̃ a group morphism,
c : V → K̃ a map, and φ ∈ NC(V ) a homeomorphism, satisfying the following
properties:

(1) θ(av) = κ0(a) · ζ(av) · cv · adφ(v) for all av ∈ G.
(2) cvw = cv · π̃(adφ(v))(cw) for all v, w ∈ V.
(3) supp(κ0(a)) = φ(supp(a)) for all a ∈ K.

Proof. Let θ : G → G̃ be an isomorphism. Using the notation of Lemma 3.16,
write θ(av) = κ(a)cvadφ(v) for all av ∈ G.

For each I ∈ I properly contained in C, the subgroups K̃φ(I), ZG̃ ≤ K̃ intersect
trivially and commute, so by Lemma 3.18, there are unique group morphisms κI :
KI → K̃φ(I) and ζI : KI → ZG̃ satisfying κ(a) = κI(a) · ζI(a) for all a ∈ KI .
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If u is a non-empty word in 0 and 1, then for each a ∈ KCu , we have that

κ(a) = κCu(a) · ζCu(a) = κ(a(u0))κ(a(u1))

= κCu0(a(u0)) · κCu1(a(u1)) · ζCu0(a(u0)) · ζCu1(a(u1)).

Here we have written κ(a) as an element of K̃φ(I) ·ZG̃ in two different ways, and
so

ζCu(a) = ζCu(a(u)) = ζCu(a(u0)) · ζCu(a(u1)).

This implies that for each tree t ∈ T with |Leaf(t)|≥ 2, we have that the map

ζt(a) :=
∏

l∈Leaf(t)

ζCl(a(l)), a ∈ K

is independent of the choice of t, and we denote the map ζt by ζC.
Claim 1: If I ∈ I is properly contained in C, then for all a ∈ KI we have that

ζI(a) = ζC(a).
If I ⊊ C is a finite union of sdis, we can find sdis I1, . . . , In and a non-trivial tree

t such that I =
⊔n
j=1 I

j , and Ij = Cuj for some leaf uj of t, for each 1 ≤ j ≤ n.
Then for all a ∈ KI

ζt(a) =
∏

u′∈Leaf(t)

ζCu′ (a(u
′))

=
n∏
j=1

ζCuj (a(u
j))

=
n∏
j=1

ζI
j
(a(u

j))

= ζI(a),

where the second line follows from the fact that a is supported in I, and the final
line can be seen from writing a =

∏n
i=1 a

(uj) and writing θ(a) as an element of
K̃φ(I) × ZG̃ in two different ways:

θ(a) = κI(a) · ζI(a)

=

n∏
j=1

κI
j
(a(u

j)) ·
n∏
j=1

ζI
j
(a(u

j)).

Claim 2: For all a ∈ K and v ∈ V we have that ζC(π(v)(a)) = ζC(a).
Let a ∈ K, v ∈ V. Then

κ
(
π(v)

(
a(0)

))
= ad(cv)π̃(φvφ

−1)
(
κI0

(
a(0)

)
· ζI0

(
a(0)

))
= ad(cv)π̃(φvφ

−1)
(
κI0

(
a(0)

)
· ζI0

(
a(0)

))
= κv(I0)

(
π(v)

(
a(0)

))
· ζv(I0)

(
π(v)

(
a(0)

))
,
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and so ζI0
(
a(0)

)
= ζv(I0)

(
π(v)

(
a(0)

))
. From Claim 1, we have that ζI0

(
a(0)

)
=

ζC
(
a(0)

)
and ζv(I0)

(
π(v)

(
a(0)

))
= ζC

(
π(v)

(
a(0)

))
, yielding ζC

(
a(0)

)
= ζC

(
π(v)

(
a(0)

))
.

An identical argument shows that ζC
(
a(1)

)
= ζC

(
π(v)

(
a(1)

))
, immediately ob-

taining the desired equality ζC(a) = ζC(π(v)(a)).

Claim 2 allows us to extend ζC to a morphism ζ : G → ZG̃ via the formula
ζ(av) := ζC(a), av ∈ G. Since ζ is valued in ZG̃, the map ζ† : G → ZG̃, g 7→
ζ(g)−1 is also a group morphism, and by Lemma 3.19, the map θ0 := θ · ζ† is an
isomorphism. Denote by κ0 : K → K̃ the restriction of θ0 to K.

Claim 3: We have that supp(κ0(a)) = φ(supp(a)) for all a ∈ K.
We start by proving the inclusion supp(κ0(a)) ⊆ φ(supp(a)). The case in

which supp(a) = C is clear. Suppose then that a ∈ K with supp(a) ⊊ C.
If x /∈ supp(a), then we may consider an sdi I ̸= C such that x ∈ I ⊆ C \
supp(a). But then a ∈ KC\I , so θ(a) = κC\I(a) · ζ(a) by Claim 1, yielding
κ0(a) = κC\I(a). Thus, φ(x) /∈ supp(κ0(a)). This establishes the inclusion
supp(κ0(a)) ⊆ φ(supp(a)) for all a ∈ K. The reverse inclusion is obtained by
applying the same considerations to θ−1, obtaining for all ã ∈ K̃ that

supp((κ0)−1(ã)) ⊆ φ−1(supp(ã)).

In particular, we have that

supp(a) ⊆ φ−1(supp(κ0(a)))

for all a ∈ K.
So far, we have found a tuple (κ0, ζ, c, φ) satisfying properties (1) through (3).

Uniqueness of c and φ follows from Lemma 3.16. If κ′ : K ∼−→ K̃, ζ ′ : G → G̃
satisfy κ = κ′ · ζ ′ with supp(κ′)(a) = φ(supp(a)) for all a ∈ K, then if a is an
element of K with support strictly contained in C we have that

κ(a) = κ0(a) · ζ(a) = κ′(a) · ζ ′(a).

Since supp(κ0(a)) = supp(κ′(a)) ⊊ C, we obtain that ζ(a) = ζ ′(a), and thus
κ0(a) = κ′(a). One then obtains that ζ(a) = ζ ′(a) and κ0(a) = κ′(a) for all
a ∈ K via decomposing a = a(0) · a(1), noting that supp(a(i)) ⊆ Ci. Thus,
κ0 = κ′, and ζ = ζ ′ since ζ(v) = ζ ′(v) = e for all v ∈ V. □

3.2. Obvious isomorphisms. In this subsection we will see some sufficient con-
ditions for two semidirect products G = K ⋊ V, G̃ = K̃ ⋊ V to be isomorphic,
where G and G̃ are obtained from isomorphisms K ∼−→ K2 and K̃ ∼−→ K̃2 respec-
tively.

Remark 3.21. Retaining the notation of Remark 3.6, in [16, Proposition 2.4],
Brothier gives some sufficient conditions for groups G(α) = K(α) ⋊ V with α0,
α1 ∈ Aut(Γ) to be isomorphic, in terms of the automorphisms α0, α1. One such
sufficient condition is that if α̃ : Γ→ Γ2, g 7→ (α1(g), α0(g)), thenG(α) ∼= G(α̃).

Apart from operating within a larger class of groups (Remark 3.6), we are more
focused on determining the isomorphism class of a group G(R) = K ⋊ V in
terms of the isomorphism R : K

∼−→ K2. For groups G(α) with α : Γ → Γ2
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and α0, α1 ∈ Aut(Γ), we are concerned with how the isomorphism class of G(α)
varies with the “large-scale” isomorphismR(α), rather than the “small-scale” mor-
phism α. Interestingly, changes to α such as swapping α0 and α1 can be detected
at the level of the isomorphism R(α), so Proposition 3.27 extends [16, Proposition
2.4]. We will not prove this here, since the same principle applies to groups G(ω)
with ω : Γ2 → Γ (Definition 4.1), and is easily adapted to the groups G(α). More
precisely, Proposition 4.12 follows from Proposition 3.27.

Lemma 3.22. Let R : K → K2 and R̃ : K̃ → K̃2 be group isomorphisms, and
let κ : K → K̃ be a group morphism such that the diagram

K K ×K

K̃ K̃ × K̃

R

κ κ×κ

R̃

commutes. Then κ is equivariant with respect to the actions V ↷ K, K̃, and thus
extends to a group morphism θ : G → G̃, av 7→ κ(a) · v. If κ is an isomorphism,
so is θ.

Proof. We have that κRi = R̃iκ, i ∈ {0, 1}, which implies that κRu = R̃uκ for
all u ∈ {0, 1}∗. Thus, if t ∈ T is a tree, then for all a ∈ K,

π̃(t) ◦ κ(a) = (R̃l ◦ κ(a))l∈Leaf(t)
= (κ ◦Rl(a))l∈Leaf(t)
= κℓ(t) ◦ π(t)(a).

Hence, we have that π̃(t) ◦ κ = κℓ(t) ◦ π(t) for all trees t ∈ T, which quickly
implies that π̃(v) ◦ κ = κ ◦ π(v) for all v ∈ V. The fact that θ is an isomorphism
if κ is an isomorphism follows immediately from the formula of θ. □

Lemma 3.23. We have that G(R ◦ ad(b)) ∼= G(R) for all b ∈ K.

Proof. Let R̃ := R ◦ ad(b), and π̃ := π(R̃). For each word u = u0u1 · · ·un ∈
{0, 1}∗, define bRu := Run(b) ·Run−1un(b) · · ·Ru(b).

Claim: For all trees t ∈ T we have that π̃(t) = ad (bt) ◦ π(t), where bt :=
(bRu )u∈Leaf(t).

It is quickly verified that the claim is true when t = . Suppose that t ∈
T satisfies the claim, and let f be an elementary forest, with the caret in the ith

position. Then

π̃(ft) = π̃(f)π̃(t)

= π̃(f)ad(bt)π(t)

=
(

idi−1 × π̃( )× idℓ(t)−i
)
◦ ad(bt)π(t)

= ad(d) ◦ π(ft)
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where d ∈ Kℓ(t), with for all 1 ≤ j ≤ ℓ(t)

dj =


bRuj j < i,

bR0 ·R0(b
R
ui) j = i,

bR1 ·R1(b
R
ui) j = i+ 1,

bRuj−1
j > i.

Thus, d = bft, proving the claim.
This claim implies the identity π̃(f) = ad(bf )π(f) for all forests f, where

bf := (bfi)
n
i=1 after writing f as a tensor product of trees f1, . . . , fn.

Let v = s−1σt ∈ V. Then for all a ∈ K,

π̃(v)(a) = π̃(s)−1π̃(σ)π̃(t)(a)

= π(s)−1ad(b−1
s )π(σ)ad(bt)π(t)(a)

= π(s)−1
(
b−1
s · π(σ)(bt) · π(σt)(a) · π(σ)(bt)−1 · bs

)
= ad

(
π(s)−1(b−1

s · π(σ)(bt))
)
◦ π(v)(a). (3.4)

The value of π(s)−1(b−1
s · π(σ)(bt)) does not depend on the representative t, σ, s

of v, and so we may define

cv :=
(
π(s)−1(b−1

s · π(σ)(bt))
)−1

= π(s)−1(π(σ)(b−1
t ) · bs).

From (3.4), we have that π(v) = ad(cv)π̃(v) for all v ∈ V, and a direct com-
putation shows that for all v, w ∈ V we have that cvw = π(v)(cw) · cv. Thus,
from (3.4), we have that c : V → K is a cocycle in the sense that the identity
cvw = cvπ̃(v)(cw) holds for all v, w ∈ V.

Therefore, the map θ : G(R) → G(R̃), av 7→ a · cv · v is a group morphism,
and is easily shown to have the map av 7→ a · c−1

v · v as an inverse. □

Lemma 3.24. Suppose that f : n → n ⊗ n = 2n is a morphism in Frac (SF) ,
so that π(f) : Kn → Kn ×Kn is an isomorphism. Then there is an embedding
G(π(f)) ↪→ G(R).

Proof. For each morphism t : 1 → n ∈ Frac (SF) , define a map θ = θ(f, t) :
G(π(f))→ G(R) defined by the formula

θ(av) := π(t−1)(a) · t−1Ψ(v)t, av ∈ G(π(f)),

where Ψ : Frac (SF) → Frac (SF) is the functor defined by mapping 1 7→ n and
7→ f. A quick computation shows that θ is a group morphism, and the injectivity

of θ follows from the fact that the functor Ψ is faithful. □

Remark 3.25. The embedding θ(f, t) in the proof of Lemma 3.24 is an isomor-
phism if and only if the functor Ψ : Frac (SF) → Frac (SF) , 1 7→ n, 7→ f
restricts to an isomorphism V → Vn := Frac (SF) (n, n). There are cases in which
the functor Ψ restricted to V is not a surjection onto Vp.
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If

f = ∈ Frac (SF) (1, 2),

then for all v ∈ V, as noted by Zaremsky [60], one can show that Ψ(v) ∈ V maps
elements of the Cantor space with prefix 11 to an element of the Cantor space with
11 as a subword. Thus, not every element of V is of the form Ψ(v) with v ∈ V , so
the embedding θ : G(π(f)) ↪→ G(R) may be proper.

Corollary 3.26. Consider the isomorphism R̃ : K → K2, a 7→ (R1(a), R0(a)).

Then G(R̃) ∼= G(R).

Proof. Let f := σ ∈ Frac (SF) , where σ is the transposition of S2. Then the
embedding θ : G(π(f)) = G(R̃) ↪→ G(R) defined in the proof of Lemma 3.24
is surjective, since the functor Ψ : Frac (SF) → Frac (SF) mapping 1 7→ 1 and
7→ f satisfies Ψ ◦Ψ = id. □

Lemmas 3.22, 3.23, and Corollary 3.26 yield the following.

Proposition 3.27. Suppose that R : K → K2 and R̃ : K̃ → K̃2 are group
isomorphisms. If there is an isomorphism κ : K

∼−→ K̃, a permutation σ ∈ S2 and
an element b̃ ∈ K̃ such that

R̃σ(i) = κRiκ
−1 ◦ ad(̃b) for i = 0 and i = 1,

then G ∼= G̃.

4. Contravariant Jones’ technology
We will now assign a group isomorphismR(ω) : K(ω)→ K(ω)2 to each group

morphism ω : Γ2 → Γ, which is the best approximation to ω by an isomorphism
(Definition 2.19). Thus, a group morphism ω : Γ2 → Γ will produce a group
G(ω) := K(ω)⋊ V .

In Subsection 4.1, we verify that R(ω) : K(ω)2 → K(ω)2 satisfies the required
universal property, show that the construction of G(ω) is functorial, and construct
obvious isomorphisms between these groups. Next, in Subsection 4.2, we restrict
our focus to group morphisms of the form ω : Γ2 → Γ, (g, h) 7→ α(g) with α ∈
Aut(Γ) and show that these groups G(ω) are unrestricted twisted permutational
wreath products. We then classify these wreath products up to isomorphism in
Subsection 4.3. We finish with Subsection 4.4, showing that every group G(ω)
coming from a group morphism of the form ω : Γ2 → Γ, (g, h) 7→ α(g) with
α ∈ End(Γ) is isomorphic to one of these wreath products, resulting in a weaker
classification of the groups in this broader class.
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4.1. Functoriality and obvious isomorphisms. Fix a group Γ and a group mor-
phism ω : Γ2 → Γ.

Definition 4.1. Define K(ω) to be the subgroup of
∏

{0,1}∗ Γ consisting of the
maps a : {0, 1}∗ → Γ satisfying the following condition:

a(u) = ω(a(u0), a(u1)) for all u ∈ {0, 1}∗.

As noted in Section 3, the set {0, 1}∗ is in bijection with the vertices of the
infinite binary tree t∞, so the elements of K(ω) can be thought of as decorations
of t∞. We identify each a ∈ K(ω) with the diagram

a(ϵ)

a(0) a(1)

a(00) a(01) a(10) a(11)

...
...

.

We obtain a map R(ω) : K(ω) → K(ω)2 given by deleting a caret at the bottom
of diagrams of elements of K(ω). Visually, if a ∈ K, then R(ω)(a) has diagram

a(0) a(1)

a(00) a(01) a(10) a(11)

...
...

,

which we interpret as an element of K(ω)2. The inverse of R(ω) is given by
placing a caret at the bottom of a pair (a, a′) ∈ K(ω)2, and decorating the bottom
of this caret with the element ω(a(0), a′(0)) ∈ Γ.

Lemma 4.2. The isomorphism R(ω) : K(ω) → K(ω)2 along with the map
K(ω) → Γ given by evaluation at ϵ ∈ {0, 1}∗ forms the Jones isomorphism for
ω : Γ→ Γ2 (Definition 2.19).
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Proof. Suppose that R̃ : K̃
∼−→ K̃2 is an isomorphism of groups, and that p : K̃ →

Γ is group morphism making the diagram

K̃ K̃2

Γ Γ2

p

R̃

p×p

ω

commute. Define a map ψ : K̃ → K(ω) sending each ã ∈ K to the map ψ(ã) :
{0, 1}∗ → Γ, u 7→ p ◦ R̃u(ã). It is quick to check that ψ is the unique group
morphism making the required diagram commute. □

If ω : Γ2 → Γ is already an isomorphism, Lemma 4.2 ensures that K(ω) is
canonically isomorphic to Γ. Following the notation of Definition 2.19 and Section
3, we denote by π(ω) : Frac (SF)→ Grp the functor defined by π(ω)( ) := R(ω)
and define G(ω) := K(ω)⋊ V. By definition, we have that G(ω) = G(R(ω)).

Since π(ω) : Frac (SF) → Grp is monoidal, for each t ∈ T and a ∈ K, the
isomorphism of groups π(ω)(t) : K(ω)→ K(ω)ℓ(t) is given by deleting a copy of
t at the bottom of each diagram inK(ω). As a result letting l1, . . . , ln be the leaves
of t, we have that

π(ω)(t)(a) = (a1, . . . , an),

where for each 1 ≤ i ≤ n,

ai(u) = a(liu) for all u ∈ {0, 1}∗.

We immediately obtain a formula for the action V ↷ K(ω).

Lemma 4.3. Suppose that a ∈ K(ω), v = s−1σt ∈ V, and 1 ≤ i ≤ ℓ(t). Let lit
and lσ

−1(i)
s be the ith leaf of t and the σ−1(i)th leaf of s, respectively. Then

π(v)(a)(lisu) = a(l
σ−1(i)
t u), u ∈ {0, 1}∗.

Lemma 4.4. Suppose that ω̃ : Γ̃2 → Γ̃ is a group morphism and that β : Γ → Γ̃
is a group morphism making the diagram

Γ2 Γ

Γ̃2 Γ̃

ω

ω̃

β2 β

commute. Then the map κ : K → K̃ defined by the formula

κ(a)(u) := β(a(u)), u ∈ {0, 1}∗

is an equivariant group morphism, and thus extends to a group morphism θ : G→
G̃, av 7→ κ(a)v.
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Proof. By Lemma 4.2, there is a unique group morphism K(ω)→ K(ω̃) making
the diagram

Γ Γ2

K(ω) K(ω)2

K(ω̃) K(ω̃)2

Γ̃ Γ̃2

β

ω

β×β

R(ω)

R(ω̃)

ω̃

commute. Here the maps K(ω) → Γ and K(ω̃) → Γ̃ are the evaluation maps at
ϵ ∈ {0, 1}∗, and the maps K(ω)2 → Γ2, K(ω̃)2 → Γ̃2 are the squares of these
maps.

The group morphism K(ω) → K(ω̃) corresponding to the dashed line in the
above diagram is exactly κ. This map is precisely κ : K(ω)→ K(ω̃). By Lemma
3.22, κ is equivariant with respect to the actions V ↷ K, K̃, and thus extends to a
group morphism G→ G̃ which acts as the identity on V . □

Corollary 4.5. If Γ̃ is a group and β : Γ → Γ̃ is a group isomorphism, then
G(ω) ∼= G(ω̃), where ω̃ := β−1ω(β × β).

Remark 4.6. Suppose that we have a commutative diagram of groups

D =

Γ Γ2

Γ̃ Γ̃2

α

ψ ψ×ψ

ω̃

(4.1)

Retaining the notation of Remark 3.6, let π, π̃ : Frac (SF) → Grp be the functors
obtained from the isomorphisms R(α) : K(α) → K(α)2 and R(ω̃) : K(ω̃) →
K(ω̃)2 respectively. For each [t, g] ∈ K(α), we may consider the element

K(D)([t, g]) := π̃(t)−1(a1, . . . , aℓ(t)) ∈ K(ω̃),

where the ai ∈ K(ω̃) are defined by the formula

ai(u) := ψ(αu(gi)), u ∈ {0, 1}∗, 1 ≤ i ≤ ℓ(t).

One can check that the assignment K(D) : K(α)→ K(ω̃), [t, g] 7→ K(D)([t, g])
is a well-defined group morphism that is equivariant with respect to the actions
V ↷ K(α),K(ω̃). Thus, we may extend K(D) to a group morphism G(D) :
G(α)→ G(ω̃).



RIGIDITY AND AUTOMORPHISMS OF JONES’ TECHNOLOGY GROUPS 415

Similarly, a diagram

D =

Γ Γ2

Γ̃ Γ̃2

ψ

ω

ψ×ψ

α̃

(4.2)

induces a group morphism G(D) : G(ω)→ G(α̃) via the assigment

K(ω)→ K(α̃), a 7→ [ |, ψ(a(ϵ))],

where we note that [
t, ψℓ(t) (al)l∈Leaf(t)

]
= [ |, ψ(a(ϵ))]

for all t ∈ T.
In Lemma 4.4, we saw that a commutative diagram

D =

Γ Γ2

Γ̃ Γ̃2

ψ

ω

ψ×ψ

ω̃

(4.3)

yields a map G(ω) → G(ω̃), which we denote by G(D). Finally, it was observed
in [57] that a commutative diagram

D =

Γ Γ2

Γ̃ Γ̃2

ψ

α

ψ×ψ

α̃

(4.4)

yields a map G(D) : G(α)→ G(α̃) defined by the formula

G(D)[t, g] = [t, ψℓ(t)(g)].

Consider now the category M whose objects are either morphisms of the form
α : Γ → Γ2 or ω : Γ2 → Γ in Grp, and whose morphisms are commutative
squares such as (4.1) through (4.4). Tanushevski proves that the map of categories
G : M → Grp restricts to a functor on the subcategory of M given by diagrams
D such as (4.4); similar computations verify that G is indeed a functor on all of
M. I.e., the assignment α : Γ → Γ2 7→ G(α) of Tanushevski and Brothier along
with the map ω : Γ2 → Γ 7→ G(ω) assemble into a functor M → Grp, with
G(R) ∼= G(R−1) ∼= K ⋊ V when R : K → K2 is a group isomorphism.

If β is an automorphism of a group Γ, and α : Γ → Γ2, g 7→ (β(g), e),
ω : Γ2 → Γ, (g, h) 7→ β−1(g), then the diagram (4.1) commutes after letting
ω̃ = ω and taking ψ = idΓ. By applying the functor G, we obtain an embedding
G(α) ↪→ G(ω), which identifies G(α) with the restricted twisted permutational
wreath product ⊕Q2Γ ⋊ V after identifying G(ω) with the corresponding unre-
stricted wreath product (Corollary 4.16).
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If instead α(g) = (g, β(g)) and ω(g, h) = g for all g, h ∈ Γ, the functor
G yields an embedding G(α) ↪→ G(ω). In [16], Brothier showed that G(α) is
isomorphic to a semidirect product LΓ ⋊ V , where LΓ are the continuous maps
C → Γ, the latter equipped with the discrete topology. The action V ↷ LΓ is
given by translation, and twisting by the automorphism β. However, Corollary 4.16
identifies G(ω) with an untwisted wreath product

∏
Q2

Γ ⋊ V , so this embedding
is somewhat surprising. This embedding “untwists” the action V ↷ LΓ, at the
cost of the image of a map of LΓ in

∏
Q2

Γ no longer being continuous in general.

Lemma 4.7. Suppose that h ∈ Γ and that there is a map b : {0, 1}∗ → Γ satisfying
the formula

b(u) = h · ω(b(u0), b(u1)), for all u ∈ {0, 1}∗. (4.5)

Then G(ω) ∼= G(ad(h) ◦ ω).

Proof. Let ω̃ := ad(h) ◦ ω. Consider the group isomorphism θ : K → K̃ given
by the formula

θ(a)(u) = ad(b(u))(a(u)), a ∈ K, u ∈ {0, 1}∗.

Here the condition (4.5) ensures that θ takes values in K̃. Define maps d0, d1 :
{0, 1}∗ → Γ given by the formulae

di(u) := b(u) · b(iu)−1, u ∈ {0, 1}∗, i ∈ {0, 1}.

Then d0, d1 ∈ K̃, and a quick computation shows that

θRiθ
−1 = ad(di)R̃i, i ∈ {0, 1}.

Letting R′ := (θ× θ) ◦R ◦ θ−1, we then have that R′ = ad(d0, d1) ◦ R̃, and so by
Proposition 3.27 it follows that G(R) ∼= G(R′) ∼= G(R̃). □

If ω : Γ2 → Γ is surjective, we can recursively build a map b : {0, 1}∗ → Γ sat-
isfying condition (4.5) of Lemma 4.7, satisfying b(ϵ) := eΓ and ω(b(u0), b(u1)) =
h−1 · b(u) for all u ∈ {0, 1}∗.

Corollary 4.8. If ω : Γ2 → Γ is surjective, then G(ad(h) ◦ ω) ∼= G(ω) for all
h ∈ Γ.

Lemma 4.9. There is a subgroup Γω ≤ Γ such that ω : Γ × Γ → Γ restricts to a
surjective group morphism ωres : Γω × Γω → Γω, and G(ω) ∼= G(ωres).

Proof. For each g ∈ Γ, write ω0(g) := ω(g, e) and ω1(g) := ω(e, g), obtaining
endomorphisms ω0, ω1 ∈ End(Γ) such that ω(g, h) = ω0(g) · ω1(h) for all g, h ∈
Γ. If u = u1 · · ·un ∈ {0, 1}∗, define ωu := ωu1 ◦ · · · ◦ ωun . Notice that the order
of the letters of u is preserved, unlike in Definition 3.2. For each tree t ∈ T, define
a group morphism ωt : Γ

ℓ(t) → Γ defined by the formula

ωt(g) :=
∏

l∈Leaf(t)

ωl(gl), g : Leaf(t)→ Γ,
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noting that the order in which the product is taken is immaterial, since the images
of ω0 and ω1 commute. We note that if Φ : F→ Grp is the contravariant monoidal
functor defined by Φ( ) := ω, then ωt = Φ(t) for all trees t.

Let Γω :=
⋂
t∈T im(ωt). The fact that ω(g, h) ∈ Γω when g, h ∈ Γω follows

immediately from the equality of maps

ω ◦ (ωt × ωs) = ωf : Γℓ(t)+ℓ(s) → Γ,

where f := (t ⊗ s) ◦ . By the definition of K(ω) (Definition 4.1), we have that
a(u) ∈ Γω for all a ∈ K(ω) and u ∈ {0, 1}∗. Thus, K(ω) = K(ωres), where ωres

is the restriction of ω to Γω × Γω, and so G(ω) = G(ωres). □

Remark 4.10. Lemma 4.9 says that by passing to a subgroup of Γ, we may assume
that ω is surjective. This is dual to a result of Tanushevski (Proposition 3.2 of
[57]). Recalling the notation of Remark 3.6, Tanushevski proves that for each
group morphism α : Γ→ Γ× Γ, there is a normal subgroup N ◁ Γ such that the
map

α : Γ/N → Γ/N × Γ/N, gN 7→ (α0(g)N,α1(g)N)

is well-defined, injective, and satisfies G(α) ∼= G(α). I.e., by passing to a quotient
of Γ, we can assume that α is injective.

Lemma 4.11. Let ω̃ : Γ2 → Γ be defined by the formula ω̃(g, h) := ω(h, g) for
all g, h ∈ Γ. Then G(ω̃) ∼= G(ω).

Proof. Let κ : K(ω) → K(ω̃) be the isomorphism of groups defined by the
formula

κ(a)(u) := a(¬ u) for all u ∈ {0, 1}∗,
where ¬ 0 := 1, ¬ 1 := 0, and ¬ u is the word in {0, 1}∗ given by applying ¬ to
each digit of u. It is quickly checked that

R̃σ(i) = κRiκ
−1 for i = 0, 1.

Thus, G ∼= G̃ by Proposition 3.27. □

Corollaries 4.5, 4.8 and Lemmas 4.7, 4.9, 4.11 yield the following.

Proposition 4.12. Suppose that ω̃ : Γ̃2 → Γ̃ is a group morphism satisfying

ω̃ (g̃1, g̃2) = β ◦ ad(g) ◦ ω ◦ (β × β)−1
(
g̃σ(1), g̃σ(2)

)
for all g̃1, g̃2 ∈ Γ̃,

for some σ ∈ S2, g ∈ Γω and an isomorphism β : Γ→ Γ̃. Then G ∼= G̃.

4.2. Wreath products. In this subsection we will demonstrate that certain choices
of group morphisms ω : Γ2 → Γ yield a description of G(ω) as an unrestricted
twisted permutational wreath product Γ ≀ V.

Fix a group Γ, an automorphism α ∈ Aut(Γ), and define a group morphism
ω : Γ2 → Γ mapping (g, h) 7→ α(g).
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Proposition 4.13. The map κ :
∏

Q2
Γ → K(ω) sending a map f : Q2 → Γ to

the map {0, 1}∗ → Γ, u 7→ α−|u|(f(u00 · · ·)), is an isomorphism of groups.
Thus, we may view an element a ∈ K(ω) as a map Q2 → Γ, writing a(x) ∈ Γ

for the image of x ∈ Q2 under κ−1(a).

Proof. It is quick to verify that the map κ :
∏

Q2
Γ →

∏
{0,1}∗ Γ is a group mor-

phism taking values in K(ω). The inverse of κ maps an element a ∈ K(ω) to the
map κ−1(a) : Q2 → Γ, given by the formula

κ−1(a)(x) = α|u|(a(u)), x ∈ Q2, u ∈ {0, 1}∗ with x = u00 · · · .
If x ∈ Q2 and u, u′ are two words in {0, 1}∗ satisfying x = u00 · · · = u′00 · · ·,
then without loss u′ = u0n for some n ≥ 0, so

α|u′|(a(u′)) = α|u|+n(α−n(a(u)))

= α|u|(a(u)).

Thus, our formula for κ−1(a) indeed defines a map Q2 → Γ. □

Remark 4.14. The isomorphism κ :
∏

Q2
Γ

∼−→ K(ω) in Proposition 4.13 might
not be the most obvious one. Instead, we could take an element a ∈ K(ω), and
assign it the map f : Q2 → Γ defined by the formula f(x) = a(ux), where ux is
the longest prefix of x not ending in 0 (u00··· = ϵ by convention). From f we can
recover a : {0, 1}∗ → Γ via the formula

a(u) = α−n(f(u00 · · ·)), u ∈ {0, 1}∗,
where u = ux0

n, and x = u00 · · ·.
We favour the isomorphism of Proposition 4.13 due to the convenient formula

for the action V ↷
∏

Q2
Γ, induced by the Jones action V ↷ K(ω) and the

isomorphism κ given in Proposition 4.15.

Proposition 4.15. Let v ∈ V and a ∈ K(ω). Viewing the elements of K(ω) as
maps Q2 → Γ, for all x ∈ Q2 we have that

π(v)(a)(x) = α− log2(v
′(v−1x))(a(v−1x)).

Proof. Let κ be the isomorphism
∏

Q2
Γ → K(ω) of Proposition 4.13, and write

v = s−1σt, where t and s are trees with ℓ(t) = ℓ(s), and σ ∈ Sℓ(t). Suppose that
f : Q2 → Γ is a map, and that x ∈ Q2. Let lis be the ith leaf of s which is also a
prefix of x, so that x = lisu00 · · · for some u ∈ {0, 1}∗. Then(

κ−1 ◦ π(v) ◦ κ(f)
)
(x) = α|lisu|(π(v) ◦ κ(f)(lisu))

= α|lisu|
(
α−|lσ

−1(i)
t u|

(
f(l

σ−1(i)
t u00 · · ·

))
= α−N (f(v−1x)),

where the first line follows from the formula for κ−1 in the proof of Proposition
4.13, the second from Lemma 4.3, and N := |lσ

−1(i)
t |−|lis|. By Definition 2.25, we

indeed have that N = log2(v
′(v−1x)), so we are done. □
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Corollary 4.16. Consider the action ρ : V ↷
∏

Q2
Γ given by the formula

ρ(v)(a)(x) = α− log2(v
′(v−1x))(a(v−1x)), a : Q2 → Γ, v ∈ V, x ∈ Q2.

Then G(ω) is isomorphic to the unrestricted twisted permutational wreath product∏
Q2

Γ⋊ρ V .

We will now reconcile the notion of support of an element a ∈ K(ω) given by
R(ω), and the set of non-zero values of a ∈ K(ω), viewed as a map Q2 → Γ.
Recall from Definition 3.2 that for each a ∈ K(ω), we have that

supp(a) = suppR(ω)(a)

:= {x = x0x1 · · · ∈ C | R(ω)x0···xm(a) ̸= eΓ for all m ≥ 0}.

Lemma 4.17. Let a ∈ K(ω). Then the set

{x ∈ Q2 | a(x) ̸= eΓ}

is dense in supp(a).

Proof. Let S := {x ∈ Q2 | a(x) ̸= eΓ}. Suppose that x ∈ S, and let u ∈ {0, 1}∗
be a prefix of x such that x = u00 · · · . Then

Ru(a)(ϵ) = a(u) = α−|u|(a(u00 · · ·))

which yields that Ru(a) ̸= eK . Hence, Rx0x1···xm(a) ̸= eΓ for sufficiently large
m, and so x ∈ supp(a).

Conversely, suppose that x ∈ supp(a). Then for all m ≥ 0 we have that
Rx0···xm(a) ̸= eK , and thus there is a word um ∈ {0, 1}∗ such that

Rx0···xm(a)(um) = a(x0 · · ·xmum) ̸= eΓ. (4.6)

Letting ym := x0 · · ·xmum00 · · · for all m ≥ 0, the sequence (ym)m≥0 is con-
tained in S by (4.6). Finally, for each m ≥ 0, the first m digits of ym and x agree,
so ym → x in C. □

4.3. Classification of wreath products. In this subsection, we give a necessary
and sufficient condition for two wreath products considered in the previous subsec-
tion to be isomorphic.

Definition 4.18. If Γ is a group and α ∈ End(Γ), denote by G(α) = K(α) ⋊ V
the group G(ω) coming from the group morphism ω : Γ2 → Γ, (g, h) 7→ α(g).
Thus, if α ∈ Aut(Γ), we identify G(α) with the wreath product of Corollary
4.16. We will stick to our convention of writing G, G̃ instead of G(α), G(α̃),
given endomorphisms α and α̃ of groups Γ and Γ̃.

If α is an endomorphism of a group Γ, we denote by Γα the fixed points of α.
Moreover, if g ∈ Γ and x ∈ Q2, denote by gx the map Q2 → Γ supported at x and
equal to g. I.e., gx(x) = g and gx(y) = eΓ for all y ̸= x.

Throughout the rest of the subsection, Γ and Γ̃ will be groups, and α, α̃ will be
automorphisms of Γ and Γ̃, respectively.
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Lemma 4.19. The centre Z(G(α)) consists of the constant maps Q2 → Γ taking
values in ZΓ ∩ Γα.

Proof. Suppose that a ∈ Z(G(α)). By Lemma 3.17, we have that Ru(a) = a for
all u ∈ {0, 1}∗. But then a(u) = Ru(a)(ϵ) = a(ϵ) for all u ∈ {0, 1}∗, and so a is
constant when viewed as a map {0, 1}∗ → Γ. Moreover, a : {0, 1}∗ → Γ is valued
in ZΓ ∩ Γα since a ∈ ZK, and α(a(u0)) = a(u) for all u ∈ {0, 1}∗, and so the
formula

a(x) = α|u|(a(u)) x ∈ Q2, u ∈ {0, 1}∗, x = u00 · · ·
from the proof of Proposition 4.13 allows us to conclude that a : Q2 → Γ is
constant and valued in ZΓ ∩ Γα.

Conversely, if a : Q2 → Γ is constant and valued in ZΓ ∩ Γα, then a ∈ ZK
and π(v)(a) = a for all v ∈ V, implying that a ∈ ZG. □

Proposition 4.20. Suppose that Γ is not the trivial group, and let θ : G → G̃ be
an isomorphism. Using the notation of Theorem 3.20, write

θ(av) = κ0(a) · ζ(a) · cv · adφ(v), av ∈ G.
Then φ ∈ StabN (Q2) (Definition 2.27), and there is a unique family of isomor-
phisms (κx : Γ→ Γ̃)x∈Q2 such that

κ(gx) = κx(g)φ(x) mod ZG̃ for all g ∈ Γ, x ∈ Q2.

Moreover, the map κ1 : K → K̃ defined by the formula

κ1(a)(φ(x)) := κx(a(x))

induces an isomorphism θ1 : G→ G̃, av 7→ κ1(a) · cv · adφ(v).

Proof. We start by showing that φ ∈ StabN (Q2). Let x ∈ Q2 and g be a non-
trivial element of Γ. By Lemma 4.17, we have that supp(gx) = {x}, so Theorem
3.20 implies that supp(κ0(gx)) = {φ(x)}. Again by Lemma 4.17, the set

{y ∈ Q2 |κ0(gx)(y) ̸= eΓ}
is non-empty and contained in {φ(x)}, and so φ(x) ∈ Q2. A similar argument
applied to θ−1 shows that φ−1(x) ∈ Q2.

Thus, we may write
κ(gx) = κx(g)φ(x) · ζ(gx)

for some non-trivial element κx(g) ∈ Γ̃. However, Lemma 4.19 tells us that
h̃φ(x) /∈ ZG̃ for all non-trivial h̃ ∈ Γ̃, so κx(g) is the unique element of Γ̃ sat-
isfying

κ(gx) = κx(g)φ(x) mod ZG̃.

So far we have shown that φ ∈ StabN (Q2), and that for each non-trivial g ∈ Γ

and x ∈ Q2, there is a unique κx(g) ∈ Γ̃ satisfying κ(gx) = κx(g)φ(x) mod ZG̃.
A similar argument shows that if x ∈ Q2, then the only element h̃ ∈ Γ̃ satisfying
κ(ex) = h̃φ(x) mod ZG̃ is h̃ = ẽ, the identity element of Γ̃. We therefore define
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κx(e) := ẽ. It only remains to show that each map κx : Γ → Γ̃, x ∈ Q2 is an
isomorphism.

Fix x ∈ Q2. The map κx : Γ→ Γ̃ is multiplicative since κ is a group morphism.
We already saw that if g ∈ Γ is not the identity e, then κx(g) ̸= ẽ, so κx is injective.
Next, let g̃ ∈ Γ̃. If g̃ = ẽ, then g̃ = κx(e). If g̃ ̸= ẽ, then applying the same
considerations to θ−1 as we did to θ, we have that θ−1(g̃φ(x)) = gx · a for some
non-trivial g ∈ Γ and a ∈ ZG. But then

κ(gx · a) = κx(g)φ(x) · ã
= g̃φ(x)

for some ã ∈ ZG̃. Hence, κx(g)φ(x) = g̃φ(x), implying that κx(g) = g̃, so κx :

Γ→ Γ̃ is an isomorphism.
Finally, consider the maps κ1 : K → K̃, θ1 : G→ G̃ defined by the formulae

κ1(a)(φ(x)) := κx(a(x))

and
θ1 : G→ G̃, av 7→ κ1(a)cvadφ(v)

for all a ∈ K,x ∈ Q2, and v ∈ V .
Since κ0 and κ1 agree on ⊕Q2Γ, we have that

κ1 ◦ π(v)(a) = ad(cv) ◦ π̃(adφ(v)) ◦ κ1(a) (4.7)

for all a ∈ ⊕Q2Γ. Suppose now that a ∈ K, v ∈ V and x ∈ Q2. Then

κ1 ◦ π(v)(a)(φ(vx)) = κvx (π(v)(a)(vx))

= κvx(α
− log2(v

′(x))(a(x)))

= κ1 ◦ π(v)(a(x)x)(φ(vx)).
A similar computation shows that

ad(cv) ◦ π̃(adφ(v)) ◦ κ1(a)(φ(vx)) = ad(cv) ◦ π̃(adφ(v)) ◦ κ1(a(x)x)(φ(vx)),

and so condition (4.7) holds for all a ∈ K. This allows us to conclude that θ1 is a
group morphism, and the fact that θ1 is an isomorphism follows from the fact that
κ1 : K → K̃ and θ : G→ G̃ are isomorphisms. □

Remark 4.21. The assumption that at least one of the groups Γ, Γ̃ is non-trivial
in Proposition 4.20 is essential. If either Γ or Γ̃ were trivial, we would have G =

G̃ = V , so φ could be any homeomorphism of the Cantor space normalising V .
The bit-flipping homeomorphism, which maps an element x = x0x1 · · · ∈ C to
the element (¬ x0)(¬ x1) · · · ∈ C, where ¬ 0 := 1 and ¬ 1 := 0, normalises V
but doesn’t stabilise Q2. Conjugating an element of V by this homeomorphism
reflects its diagram about the vertical axis.

Remark 4.22. A corollary of Proposition 4.20 is that if G(α) ∼= G(α̃) with α ∈
Aut(Γ) and α̃ ∈ Aut(Γ̃), then Γ ∼= Γ̃. Theorem 4.23 is stronger than this, and
relates the automorphisms α and α̃.
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Theorem 4.23. The groupsG, G̃ are isomorphic if and only if α̃ = ad(h)◦βαβ−1

for some isomorphism β : Γ→ Γ̃ and h ∈ Γ̃.

Proof. The case in which either Γ or Γ̃ are the trivial group is clear, so suppose
that Γ is non-trivial.

If α̃ = ad(h) ◦ βαβ−1 for some h ∈ Γ̃ and β : Γ → Γ̃ an isomorphism, then
G(α) ∼= G(α̃) via Corollaries 4.5 and 4.8.

For the converse, suppose that θ : G→ G̃ is an isomorphism, and write

θ(av) = κ0(a) · ζ(a) · cv · adφ(v), av ∈ G,

using the notation of Theorem 3.20. Let (κx : Γ → Γ̃) be the family of isomor-
phisms from Proposition 4.20, and fix g ∈ Γ, v ∈ V, and x ∈ Q2. Then

θ1(v · gx · v−1) = θ1
([
α− log2(v

′(x)) (g)
]
vx

)
=

[
κvx ◦ α− log2(v

′(x))(g)
]
φ(vx)

.

On the other hand,

θ1(v · gx · v−1) = ad(cv) ◦ π̃(adφ(v))
(
κx(g)φ(x)

)
= ad(cv)

([
α̃− log2((φvφ

−1)′(φ(x)) ◦ κx(g)
]
φ(vx)

)
.

Evaluating the resulting equation[
κvx ◦ α− log2(v

′(x))(g)
]
φ(vx)

= ad(cv)

([
α̃− log2((φvφ

−1)′(φ(x)) ◦ κx(g)
]
φ(vx)

)
after fixing x = 00 · · · ∈ Q2 and choosing v ∈ V satisfying v(x) = x and
v′(x) = 1

2 yields

κ0 ◦ α(g) = ad(cv(φ(x))) ◦ α̃ ◦ κ0(g).
Here we have used Proposition 2.30 to establish that (adφ(v))′(φ(x)) = v′(x) =
1
2 . We have arrived at the desired equality

α̃ = ad(h̃) ◦ βαβ−1,

where h̃ := cv(φ(x))
−1 and β := κ0. □

Lemma 4.24. Using the notation of Theorem 3.20, suppose that

θ : G(α)→ G(α̃), av 7→ κ0(a) · ζ(a) · cv · adφ(v)

is an isomorphism. Then a(x) ∈ ZΓ implies that κ0(a)(φ(x)) ∈ ZΓ̃ for all a ∈ K
and x ∈ Q2.

Recalling the family of isomorphisms (κx : Γ → Γ̃)x∈Q2 and the isomorphism
κ1 : K → K̃ of Proposition 4.20, the map η : K → K, a 7→ κ1(a)−1 · κ0(a) is a
group morphism that is valued in ZK, and satisfies the formula

η ◦ π(v) = ad(cv) ◦ π̃(adφ(v)) ◦ η
for all v ∈ V .
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Proof. Suppose that a ∈ K and x ∈ Q2 satisfy a(x) ∈ ZΓ. Then if g̃ ∈ Γ̃,

[κ0(a), g̃φ(x)] = κ0
([
a, (κ0)−1

(
g̃φ(x)

)])
= κ0 ([a, gx])

for some g ∈ Γ. Since a(x) ∈ ZΓ, we obtain [a, gx] = eK , and so [κ0(a), g̃φ(x)] =

e
K̃
. Evaluating at φ(x) yields that κ0(a)(φ(x)) ∈ ZΓ̃, which proves the first part

of the lemma.
Now letting a ∈ K and x ∈ Q2 be arbitrary, and defining a′ := a(x)−1

x · a, we
have that

κ1(a)−1 · κ0(a) = κ1(a)−1 · κ0(a(x)x) · κ0(a′).

Evaluating the above at φ(x), we obtain that

η(a)(φ(x)) = κ1(a)(φ(x))−1 · κ0(a(x)x)(φ(x)) · κ0(a′)(φ(x))
= κ1(a(x)x)(φ(x))

−1 · κ1(a(x)x)(φ(x)) · κ0(a′)(φ(x))
= κ0(a′)(φ(x)).

Thus, η(a)(φ(x)) ∈ ZΓ̃ by applying the first part of the lemma to the fact that
a′(x) = eΓ. If b is another element of K, we have that

η(ab) = κ1(b)−1η(a)κ0(b) = η(a)η(b).

Thus, η is a group morphism K → ZK. Finally, if v ∈ V, then

η(π(v)(a)) = κ1(π(v)(a))−1 · κ0(π(v)(a))
= ad(cv) ◦ π̃(adφ(v))

(
κ1(a)−1 · κ0(a)

)
= ad(cv) ◦ π̃(adφ(v)) ◦ η(a).

□

4.4. From endomorphism to automorphism. We finish Section 4 by demon-
strating that for each group Γ and endomorphism α : Γ → Γ, there is a group
lim←−Γ and an automorphism lim←−α of lim←−Γ such that G(α) ∼= G(lim←−α). Thus,
G(α) is a wreath product lim←−Γ ≀ V (Corollary 4.16). Using Theorem 4.23, we
obtain a (weaker) classification of these groups G(α) with α ∈ End(Γ).

Let Γ be a group, and α : Γ→ Γ be an endomorphism of Γ.

Definition 4.25. Define lim←−Γ to be the inverse limit of the inverse system of groups

Γ
α←− Γ

α←− Γ
α←− · · · ,

so that

lim←−Γ =

{
(gn) ∈

∏
N

Γ | gn = α(gn+1) for all n ∈ N

}
.

Let lim←−α be the map lim←−Γ→
∏

N Γ defined by the formula[(
lim←−α

)
(g)

]
n
:= α(gn), g ∈ lim←−Γ, n ∈ N.



424 CHRISTIAN DE NICOLA LARSEN

Lemma 4.26. The map lim←−α : lim←−Γ →
∏

N Γ takes values in lim←−Γ, and the
resulting map lim←−α : lim←−Γ → lim←−Γ is a group automorphism. Moreover, the
inverse of lim←−α is the left shift lim←−Γ→ lim←−Γ, (gn) 7→ (gn+1).

Proof. Suppose that g ∈ lim←−Γ, and n ∈ N. Then

α
([(

lim←−α
)
(g)

]
n+1

)
= α2(gn+1)

= α(gn)

=
[(
lim←−α

)
(g)

]
n
,

proving that lim←−α takes values in lim←−Γ.

It is clear that lim←−α ∈ End(lim←−Γ), and the left shift map lim←−Γ→ lim←−Γ, (gn) 7→
(gn+1) is easily verified to be the inverse of lim←−α. □

Lemma 4.27. The group lim←−Γ and the automorphism lim←−α ∈ Aut(lim←−Γ) make
the diagram

lim←−Γ lim←−Γ

Γ Γ

lim←−α

α

(4.8)

commute (all arrows lim←−Γ → Γ denote the projection map (gn) 7→ g0), and are
universal with respect to this property, in the sense that every commutative diagram

Γ̃ Γ̃

Γ Γ

p

α̃

α

p (4.9)

with Γ̃ a group, α̃ ∈ Aut(Γ̃), and p : Γ̃ → Γ a group morphism, factors uniquely
through the diagram (4.8) as illustrated below:

Γ̃ Γ̃

lim←−Γ lim←−Γ

Γ Γ

α̃

ψ

p

ψ

p

lim←−α

α

(4.10)

Proof. Commutativity of the diagram (4.8) is quickly verified. Let Γ̃ be a group,
α̃ ∈ Aut(Γ̃), and p : Γ̃ → Γ be a group morphism making the diagram (4.9)
commute.

If ψ : Γ̃→ lim←−Γ makes (4.10) commute, immediately

ψ ◦ α̃−n(g̃) = lim←−α
−1 ◦ ψ ◦ α̃−(n−1)(g̃) = · · · = lim←−α

−n ◦ ψ(g̃)



RIGIDITY AND AUTOMORPHISMS OF JONES’ TECHNOLOGY GROUPS 425

for all n ∈ N. Evaluating the above at 0 ∈ N, for all n ∈ N we have that

ψ(g̃)n =
[
ψ ◦ α̃−n(g̃)

]
0

=
[
ψ ◦ α̃−1

(
α̃1−n(g̃0)

)]
0

= p ◦ α−1
(
α̃−(n−1)(g̃)

)
= p ◦ α̃−n(g̃).

The above defines the required map ψ : Γ̃→ lim←−Γ. □

Example 4.28. If α ∈ Aut(Γ), then the projection lim←−Γ→ Γ is an isomorphism.

Example 4.29. Suppose that Γ = Z, q ∈ Z, and that α : n 7→ qn. A sequence of
integers in lim←−Γ must be constant and equal to 0, so lim←−Γ is the trivial group.

Example 4.30. Suppose that Γ is the compact multiplicative group S1 of unit-
length complex numbers. Let q be a non-zero integer, and define α : z 7→ zq, so
that lim←−Γ is the compact group consisting of sequences (zn) of points in S1 with

zqn+1 = zn for all n ∈ N. The Pontryagin dual l̂im←−Γ of lim←−Γ can then be identified
with the direct limit lim−→ Γ̂ of the diagram

Γ̂
α̂−→ Γ̂

α̂−→ Γ̂
α̂−→ · · · ,

where Γ̂ is the dual group of Γ, and α̂ : Γ̂ → Γ̂ is the dual morphism of α (pre-
composition of characters with α).

Identifying Γ̂ with Z, the dual map α̂ becomes the multiplication map Z →
Z, n 7→ qn, and the dual automorphism l̂im←−α : lim−→ Γ̂ → lim−→ Γ̂ is given by the
formula

l̂im←−α([n,m]) = [n, qm] for all m,n ∈ N.

However, lim−→ Γ̂ ∼= Z[1q ] via the map [n,m] 7→ m
qn , and under this identification, the

automorphism l̂im←−α ∈ Aut(Z[1q ]) is the multiplication map by q.

Thus, lim←−Γ = Ẑ[1q ] and lim←−α = M̂q, where Mq : Z[1q ]→ Z[1q ], x 7→ qx.

Proposition 4.31. We have that G(α) ∼= G(lim←−α).

Proof. Since the diagram (4.8) of Lemma 4.27 commutes, by Lemma 4.4 we ob-
tain a V -equivariant group morphism θ : K(lim←−α) → K(α), defined by the for-
mula

θ(a)(u) = p(a(u)), a ∈ K(lim←−α), u ∈ {0, 1}
∗,

where p : lim←−Γ→ Γ, (gn) 7→ g0 is the canonical projection.
Suppose that a ∈ K(lim←−α), and that θ(a) = eK(α), so that p(a(u)) = eΓ for

all u ∈ {0, 1}∗. If u ∈ {0, 1}∗ and n ∈ N, since
(
lim←−α

)−1
: (gn) 7→ (gn+1), we

have that

a(u)n = p ◦
(
lim←−α

)−n
(a(u)) = p(a(u0n)) = eΓ.
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Thus, a is the identity element of K(lim←−α), and so θ is injective.
One can quickly verify that for each a ∈ K(α), the map â : {0, 1}∗ → lim←−Γ

given by the formula

â(u)(n) := a(u0n), u ∈ {0, 1}∗, n ∈ N
is an element of K(lim←−α), and satisfies θ(â) = a. Thus, θ : K(lim←−α)→ K(α) is
a V -equivariant isomorphism, yielding that G(lim←−α)

∼= G(α). □

We arrive at the following corollary of Theorem 4.23 and Proposition 4.31.

Corollary 4.32. Suppose that Γ and Γ̃ are groups with endomorphismsα ∈ End(Γ),
and α̃ ∈ End(Γ̃). Then

G(α) ∼= G(α̃) if and only if lim←− α̃ = ad(h̃) ◦ β ◦ lim←−α ◦ β
−1

for some h̃ ∈ lim←− Γ̃ and some isomorphism β : lim←−Γ→ lim←− Γ̃.

5. Automorphisms of untwisted wreath products
In this section, we decompose the automorphism group of an unrestricted, un-

twisted wreath product G =
∏

Q2
Γ⋊ V into an iterated semidirect product

((((A6 ⋊A5)⋊A4)⋊A3)⋊A2)⋊A1

of subgroups Ai ≤ Aut(G) (Theorem 5.9).
Let Γ be a non-trivial group, put K :=

∏
Q2

Γ, and let G := K ⋊ V be the
unrestricted, untwisted permutational wreath product coming from the action V ↷
Q2. Recall that K can be identified with the group K(ω), where ω : Γ2 →
Γ, (g, h) 7→ g (Proposition 4.15). This is equivariant with respect to the actions
V ↷ K,K(ω), so that G ∼= G(ω) (Corollary 4.16). Since we denote the action
V ↷ K(ω) by π, we will do the same for the wreath action V ↷ K.

We also freely use the notations of Theorem 3.20 and Proposition 4.20. In par-
ticular, for each θ ∈ Aut(G), av ∈ G, x ∈ Q2, and g ∈ Γ, we write

• θ(av) = κ0(a) · ζ(a) · cv · adφ(v),
• θ(a) = κ(a) = κ0(a) · ζ(a),
• κ0(a)(gx) = κx(g(x)),
• κ1(a)(φ(x)) = κx(a(x)).

The fact that Theorem 3.20 applies to automorphisms of G can be seen in two
ways: the action V ↷ K(ω) is implemented by an isomorphism R(ω) : K(ω)→
K(ω)2, and the action V ↷ K is implemented by the isomorphism K → K2

given by the bijection Q2 → Q2 ⊔Q2 of Example 2.21.

Lemma 5.1. The map χ1 : Aut(G) → StabN (Q2) mapping an automorphism
θ ∈ Aut(G) to the homeomorphism φ ∈ StabN (Q2) obtained by writing θ(v) =
cv · adφ(v) for all v ∈ V is a split group epimorphism.

Proof. Well-definition of χ1 follows from Theorem 3.20 and Proposition 4.20. A
quick computation shows that χ1 is a group morphism, and a section for χ1 is the
map StabN (Q2)→ Aut(G), φ 7→

(
av 7→ (a ◦ φ−1) · adφ(v)

)
. □
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Thus, defining A1 := StabN (Q2), we have that Aut(G) = kerχ1 ⋊A1.

Lemma 5.2. Suppose that θ ∈ kerχ1, so that θ(av) = κ(a) · cv · v for all av ∈ G.
Letting χ2(θ) := κ00··· ∈ Aut(Γ), the resulting mapping χ2 : kerχ1 → Aut(Γ) is
a split group epimorphism.

Proof. A direct computation shows that χ2 is a group morphism, and a section
for χ2 is the map Aut(Γ) → Aut(G), β 7→

(
av 7→ β(a)v

)
, where for each β ∈

Aut(Γ),
β(a)(x) := β(a(x)), a ∈ K, x ∈ Q2.

□

We thus have a further decomposition kerχ1 = kerχ2 ⋊ A2, where A2 :=
Aut(Γ).

Our next step is to construct a split epimorphism χ3 : kerχ2 → ZΓ.

Lemma 5.3. If θ ∈ kerχ2, then there exists h ∈ K such that κ1 = ad(h).

Proof. If θ ∈ kerχ2, then since κ00··· = idΓ, for all v ∈ V , x ∈ Q2, and g ∈ Γ we
have that

θ1(v · gx · v−1) = θ1(gvx) = ad(cv)κx(g)vx = κvx(g)vx,

yielding that ad(cv(vx)) ◦ κx = κvx. Since the action V ↷ Q2 is transitive and
κ00··· = idΓ, the automorphism κx ∈ Aut(Γ) is inner for all x ∈ Q2. For each
x ∈ Q2, choose vx ∈ V such that vx(00 · · ·) = x, and define h(x) := cvx(x). It is
immediate that κ1 = ad(h). □

Suppose that θ ∈ kerχ2, and that h ∈ K satisfies κ1 = ad(h). Then for all
v ∈ V and x ∈ Q2,

κ1(vav−1)(vx) = ad(h(vx))(a(x)) = ad(cv(vx) · h(x))(a(x)),
implying that for all v ∈ V

cv = h · π(v)(h)−1 = [h, v] mod ZK.

Let d(h) : V → ZK be the unique map satisfying

cv = d(h)v · [h, v], v ∈ V.
A quick computation shows that d(h) satisfies the cocycle identity

d(h)vw = d(h)v · π(v)(dw) for all v, w ∈ V .

We will now extract an element z(h) ∈ ZΓ from the cocycle d(h) : V → ZK.
We will need the following definition and classification of cocycles V →

∏
Q2
ZΓ

given in [18, Proposition 5.7] to do so.

Definition 5.4. If z ∈ ZΓ, let s(z) : V → K be the map defined by the formula

s(z)v(x) := zlog2(v
′(v−1x)), v ∈ V, x ∈ Q2.

The chain rule implies that s(z) is a cocycle, in the sense that s(z)vw = s(z)v ·
π(v) (s(z)w) for all v, w ∈ V .
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Proposition 5.5. Suppose that δ : V →
∏

Q2
ZΓ is a cocycle, i.e. satisfies the

identity
δvw = δv · π(v) (δw) , v, w ∈ V.

Then there are unique elements z ∈ ZΓ and f ∈
(∏

Q2
ZΓ

)
/ZΓ such that

δv = s(z)v · f · (π(v)(f))−1 = s(z)v · [f, v]

for all v ∈ V. Here ZΓ is identified with the constant maps in
∏

Q2
ZΓ.

Now consider the unique elements z(h) ∈ ZΓ and f(h) ∈ ZK/ZΓ satisfying

d(h)v = s(z(h))v · [f(h), v] for all v ∈ V .

Lemma 5.6. Suppose that h, h′ ∈ K satisfy κ1 = ad(h) = ad(h′). Then z(h) =
z(h′).

Proof. Writing z, f, z′, f ′ instead of z(h), f(h), z(h′), f(h′) respectively, for all
v ∈ V we have that

cv = s(z)v · [f, v] · [h, v] = s(z′)v · [f ′, v] · [h′, v].

However, since ad(h) = ad(h′), we have that h′ = ha for some a ∈ ZK. This
implies that for all v ∈ V

s(z′)v · [f ′, v] · [h′, v] = s(z′)v · [f ′, v] · [ha, v]
= s(z′)v · [f ′a, v] · [h, v]
= s(z)v · [f, v] · [h, v],

so
s(z′)v · [f ′a, v] = s(z)v · [f, v].

Proposition 5.5 implies that z = z′. □

Lemmas 5.3 and 5.6 allow us to define a map χ3 : kerχ2 → ZΓ that sends an
automorphism θ ∈ kerχ2 to the element z(h) ∈ ZΓ obtained by writing κ1 =
ad(h) with h ∈ K.

Lemma 5.7. The map χ3 : kerχ2 → ZΓ is a split epimorphism.

Proof. A quick computation shows that χ3 is a group morphism, and a section to
χ3 is the map ZΓ→ kerχ2, z 7→ (av 7→ a · s(z)v · v). □

Lemma 5.7 yields the decomposition

kerχ2 = kerχ3 ⋊A3, A3 := ZΓ.

Next, we will define a group morphism χ4 : kerχ3 → K/ZΓ that splits onto its
image. Suppose that θ ∈ kerχ3, and write κ1 = ad(h) for some h ∈ K. Since
z(h) = eΓ, there is a map f : Q2 → ZΓ such that

cv = [hf, v], v ∈ V.
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Thus, for all av ∈ G,

θ1(av) = hah−1 · [hf, v] · v
= (hf) · a · (hf)−1 · [hf, v] · v
= (hf) · av · (hf)−1.

We obtain a group morphism

χ4 : kerχ3 → K/ZΓ

that maps θ ∈ kerχ3 to the element h ∈ K/ZΓ satisfying θ1 = ad(h). Here we
identify ZG ≤ K with ZΓ (Lemma 4.19).

If θ ∈ kerχ3, when we write θ1 = ad(h) with h ∈ K/ZΓ, we have that
h(00 · · ·) ∈ ZΓ since κ00··· = idΓ. Conversely, if h ∈ K/ZΓ satisfies h(00 · · ·) ∈
ZΓ, it is quick to verify that the inner automorphism ad(h) ∈ Aut(G) is an el-
ement of kerχ3. Hence, χ4 is a split epimorphism kerχ3 → A4, where A4 :=
{h ∈ K/ZΓ | h(00 · · ·) ∈ ZΓ}. Therefore, kerχ3 = kerχ4 ⋊A4.

Lemma 5.8. The map χ5 : kerχ4 → Aut(G), θ 7→
(
av 7→ κ0(a) · v

)
is a group

morphism that is split onto its image.

Proof. The fact that χ5 takes values in Aut(G) follows from Lemma 3.19. Sup-
pose that θ1, θ2 ∈ kerχ4, and write

θi(av) = κ0i (a) · ζi(a) · v, i ∈ {1, 2},
using the notation of Theorem 3.20. Then for all av ∈ G we have that

θ1 ◦ θ2(av) = θ1(κ
0
2(a) · ζ2(a) · v)

= κ01 ◦ κ02(a) · κ01(ζ2(a)) · v.
Letting θ := θ1 ◦ θ2 and writing

θ(av) = κ0(a) · ζ(a) · v, av ∈ G,
from Theorem 3.20 we have that κ0 = κ01 ◦ κ02, showing that χ5 is indeed a group
morphism. Moreover, χ5 splits via the inclusion im(χ5) ↪→ ker(χ4). □

Letting A5 := im(χ5), we have that kerχ4 = kerχ5 ⋊A5, where

kerχ5 = {θ ∈ Aut(G) : θ(av) = a · ζ(a) · v for some ζ : G→ ZG}.
A moment’s calculation shows that the map

kerχ5 → Hom(G,ZG), (av 7→ a · ζ(a) · v) 7→ ζ

is an isomorphism of groups (Hom(G,ZG) having pointwise multiplication). Let-
ting A6 := Hom(G,ZG), our work so far leads to the following result.

Theorem 5.9. We have a decomposition

Aut(G) = ((((A6 ⋊A5)⋊A4)⋊A3)⋊A2)⋊A1,

where
• A1 = StabN (Q2),
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• A2 = Aut(Γ),
• A3 = ZΓ,
• A4 = {h ∈ K | h(00 · · ·) ∈ ZΓ}/ZΓ,
• A6 = Hom(G,ZG).

The group A5 consists of the automorphisms θ ∈ Aut(G) satisfying the following
conditions:

• supp(θ(a)) = supp(a) for all a ∈ K,
• θ restricts to the identity on ⊕Q2Γ and V .

Proof. We only need to justify the last part of the theorem. It quickly follows from
the definition A5 := im(χ5) that an automorphism θ ∈ Aut(G) is an element of
A5 if and only if θ(av) = κ0(a)·v for all av ∈ G, and κ1 = idK . By Theorem 3.20,
the condition θ(a) = κ0(a) is equivalent to saying that θ is support-preserving, and
by definition, the condition κ1 = idK is equivalent to saying that θ is the identity
on ⊕Q2Γ. □

Remark 5.10. The most mysterious group in the decomposition of Aut(G) in
Theorem 5.9 is A5, which doesn’t seem to have a description in terms of less
complicated groups. By Lemma 4.24, for each θ ∈ A5 we can write θ(av) =
a · η(a) · v for some V -equivariant group morphism η : K → ZK. So if Γ has
trivial centre or is a perfect group, we have thatA5 = {idG}. It is unknown whether
A5 is non-trivial even when Γ = Z2 (Questions 1.1 and 1.2).

Remark 5.11. It is interesting to compare Theorem 5.9 with Houghton’s descrip-
tion of Aut(W ) [39] for standard unrestricted wreath products W =

∏
B Γ ⋊ B,

whereB is an arbitrary group. HereB ↷ B by left multiplication, andB ↷
∏
B Γ

by translation.
If θ ∈ Aut(W ), then for each b ∈ B we have that

θ(b) = cb · ϕb
for some unique cb ∈

∏
B Γ and ϕb ∈ B. The mapping ϕ : b 7→ ϕb then defines an

automorphism of B, resulting in a group morphism ϕ : Aut(W )→ Aut(B), θ 7→
ϕ(θ). A section for ϕ is obtained by mapping each β ∈ Aut(B) to the automor-
phism θ ∈ Aut(W ) defined by the formula

θ(f · b) = (f ◦ β−1) · β(b), f ∈
∏
B

Γ, b ∈ B. (5.1)

This results in the decomposition

Aut(W ) = kerϕ⋊Aut(B).

LettingG :=
∏

Q2
Γ⋊V , the analogous group morphism χ1 : Aut(G)→ Aut(V )

used in the first step of the proof of Theorem 5.9 is obtained in the same way.
One difference between ϕ and χ1 is that the image of χ1 is not the full automor-

phism group of V . Every automorphism of V is implemented via conjugation by
a unique homeomorphism of the Cantor space (Proposition 2.28). In Proposition
4.20, we saw that the homeomorphism φ ∈ Homeo(C) implementing the automor-
phism χ1(θ) ∈ Aut(V ) must stabilise the dyadic rationals Q2. The bit-flipping
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homeomorphism φ ∈ C (Remark 4.21) normalises V , but does not stabilise Q2, so
im (χ1) is properly contained in Aut(V ).

The group morphism χ1 : Aut(G) → Aut(V ) is split onto its image for a
different reason than ϕ. A section for χ1 is given by mapping eachφ ∈ StabN (Q2)
to the automorphism

av 7→ (a ◦ φ−1) · φvφ−1, a ∈
∏
Q2

Γ, v ∈ V.

This section to χ1 can be described as assigning each automorphism of V in the
image of χ1 a bijection of the base space Q2, which can be used to define an
automorphism of G. The section for ϕ in (5.1) is obtained in a similar but more
straightforward way. So far, we have decompositions

Aut(W ) = kerϕ⋊Aut(B) and Aut(G) = kerχ1 ⋊A1,

where A1 := StabN (Q2). The descriptions of Aut(G) and Aut(W ) now diverge
significantly.

Every automorphism θ ∈ kerϕ satisfies θ(b) = cb · b for some map c : B →∏
B Γ. Houghton then shows that there exists g ∈

∏
B Γ such that

cb = gbg−1 = [g, b] · b, b ∈ B,
so θ can be written as a (not necessarily unique) product θ0 ◦ θ1, where θ0 fixes B
pointwise, and θ1 = ad(g) with g ∈

∏
B Γ. This is not always true for elements

of kerχ1; if z ∈ ZΓ \ {eΓ}, the automorphism θ ∈ A3 defined by the formula
θ(av) := a · s(z)v · v for each av ∈ G (Definition 5.4), does not map V to a
conjugate of V by an element of

∏
Q2

Γ. This is the only obstruction: the elements
θ ∈ Aut(G) which map V to a conjugate of itself by an element of

∏
Q2

Γ are
precisely those satisfying θ3 = idG, viewing θ as a tuple (θi)1≤i≤6 with each
θi ∈ Ai (Theorem 5.9).

Instead, our next steps are to write kerχ1 as a semidirect product kerχ2 ⋊
Aut(Γ), and kerχ2 = kerχ3 ⋊ ZΓ using the split epimorphisms χ2 : kerχ1 →
Aut(Γ), and χ3 : kerχ2 → Aut(Γ) from the proof of Theorem 5.9. Now every
θ ∈ kerχ3 satisfies θ(V ) = aV a−1 for some a ∈

∏
Q2

Γ. Following Houghton,
we can write θ = θ0 ◦θ1, where θ1 is an inner automorphism of G implemented by
an element h ∈

∏
Q2

Γ. This product can be described using a split epimorphism
χ4 : kerχ3 → A4, so it is unique.

The description of Aut(W ) is now reduced to the description of the automor-
phisms of W that fix B pointwise, and the description of Aut(G) is reduced to the
description of kerχ4. Every element of kerχ4 fixes V pointwise, but the converse
is not always true; there can be elements of Aut(G) which fix V pointwise, but are
not in kerχ4 (e.g. any non-trivial element of A2).

After writing each automorphism θ ∈ kerϕ as a product θ0 ◦ θ1 with θ0 fixing
B pointwise, and θ1 an inner automorphism of W implemented by an element of∏
B Γ, Houghton decomposes θ0 uniquely as a product θ00 ◦ θ01. Here θ00 fixes

the diagonal of W along with B pointwise, and θ01 can identified with an element
of Aut(Γ), in essentially the same way as A2 ≤ Aut(G) can be identified with
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Aut(Γ). This completes the description of Aut(W ) given in [39], arriving at the
decomposition

Aut(W ) = ((AD,B ⋊Aut(Γ)) · I)⋊Aut(B), (5.2)

where AD,B denotes the automorphisms of W which fix the diagonal subgroup
D ≤

∏
B Γ and B pointwise, and I denotes the inner automorphisms of W corre-

sponding to elements of
∏
B Γ.

In Theorem 5.9, we finish the description of Aut(G) by decomposing kerχ4 as
a semidirect product kerχ5 ⋊A5, where kerχ5

∼= Hom(G,ZG).
The least understood group appearing in the description of Aut(W ) given by

Houghton is the group AD,B . Houghton’s strategy is to restrict Γ and B to be
finite cyclic groups, so that the group AD,B has an adequate description. For our
description of Aut(G), the analogous group isA5. We know thatA5 is trivial when
ZΓ is trivial or Γ is perfect (Remark 5.10), but we have no idea what A5 is in other
cases (Question 1.1).

In [46], Mohammadi Hassanabadi extends Houghton’s description to wreath
products W =

∏
X Γ ⋊ B, where X = B/H is the set of left cosets of some

subgroup H ≤ B. In [46, Theorem 1.1], a similar description as (5.2) is given for
the subgroup

B(W ) :=

{
θ ∈ Aut(W ) | θ(B) = fBf−1 for some f ∈

∏
X

Γ

}
≤ Aut(W ).

If H = {e}, then W becomes a standard wreath product and we have B(W ) =
Aut(W ).

Since the action V ↷ Q2 is transitive, taking B := V and H := Stab(x) for
some x ∈ Q2, we have that W ∼= G. [46, Theorem 1.1] asserts that the decompo-
sition (5.2) holds for B(G) after replacing Aut(B) with A1, i.e.

B(G) = ((AD,V ⋊Aut(Γ)) · I)⋊A1.

Recalling that
B(G) = (((A6 ⋊A5)⋊A4)⋊A2)⋊A1,

Theorem 5.9 gives an alternative description of B(G) to [46].
We can also use Theorem 5.9 to describe the group AD,V . If θ ∈ AD,V , an

application of Theorem 5.9 and a quick computation shows that θ = θ6 ◦ θ5 ◦
θ2, where each θi ∈ Ai. Since θ5 fixes V pointwise, it must be that θ5(D) =
D. Letting g ∈ Γ, and gQ2 be the constant map Q2 → Γ and equal to g, then
θ5(gQ2) = γ(g)Q2 for some unique γ(g) ∈ Γ. The map γ : Γ → Γ then defines
an automorphism of Γ, and using the notation of the proof of Lemma 5.2, we have
θ2 = γ−1. From Lemma 4.24, we also have γ(g) = g · z(g) for some (unique)
group morphism z : Γ→ ZΓ.

This implies that if ZΓ = eΓ or Γ is perfect, then AD,V = {idG}. Since
B(G) = Aut(G) in this case, Mohammadi Hassanabadi’s characterisation yields

Aut(G) = (Aut(Γ) · I)⋊A1.
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Remark 5.12. In [18], Brothier gave a complete description of the automorphism
group of the restricted untwisted permutational wreath product G0 := ⊕Q2Γ⋊ V .
We now compare Aut(G0) and Aut(G), where G =

∏
Q2

Γ ⋊ V is the corre-
sponding unrestricted wreath product.

Given θ ∈ Aut(G0), as shown in [18] and re-explained by Theorem 3.20, there
exists a family (κx)x∈Q2 of automorphisms of Γ satisfying

θ(a)(φ(x)) = κx(a(x)) for all a ∈ ⊕Q2Γ and x ∈ Q2. (5.3)

The application of Theorem 3.20 here comes from the fact that the group ⊕Q2Γ is
isomorphic to its direct square via the bijection Q2 → Q2 ⊔Q2 of Example 2.21,
and this isomorphism implements the action V ↷ ⊕Q2Γ. Thanks to (5.3), we can
extend θ to all of G using the same formula:

θ(a)(φ(x)) := κx(a(x)) and θ(v) := θ(v) for all a ∈
∏
Q2

Γ, x ∈ Q2 and v ∈ V .

The map θ : G → G is an automorphism of G, and the map ι : Aut(G0) →
Aut(G), θ 7→ θ is an embedding of groups.

To characterise Aut(G0), Brothier in [18] defined four subgroupsE1, . . . , E4 ≤
Aut(G0), whose elements were called elementary, and built a group Q = (E4 ×
E3) ⋊ (E2 × E1) and a surjection Ξ : Q → Aut(G0). Due to the small kernel of
Ξ, this yields an almost unique factorisation of automorphisms of G0 into elemen-
tary automorphisms. This description can be rephrased to be more comparable to
Theorem 5.9. Using a similar approach to the proof of Theorem 5.9, one has the
decomposition

Aut(G0) = ((Ã4 ⋊ Ã3)⋊ Ã2)⋊ Ã1, (5.4)
where

• Ã1 = StabN (Q2) = A1,
• Ã2 = Aut(Γ) = A2,
• Ã3 = ZΓ ∼= A3,
• Ã4 = {h ∈ A4 | h normalises ⊕Q2Γ}.

Recall that A4 consists of the maps h : Q2 → Γ such that h(00 · · ·) ∈ ZΓ, modulo
constant maps Q2 → ZΓ.

The decomposition (5.4) is achieved by pre-composing the inclusion ι : Aut(G0)
→ Aut(G) with the split epimorphisms χ1 : Aut(G) → A1, χ2 : kerχ1 → A2

and χ3 : kerχ2 → A3 from the proof of Theorem 5.9. For i = 1 and i = 2, the
sections that we used for χi factor through ι, giving sections for χi ◦ ι. Equiv-
alently, the automorphisms in A1 and A2 restrict to automorphisms of G0. This
yields decompositions

Aut(G0) = ker(χ1 ◦ ι)⋊ Ã1 and ker(χ1 ◦ ι) = ker(χ2 ◦ ι)⋊ Ã2.

We need to find a different section for χ3 ◦ ι, since an automorphism of G defined
by the formula av 7→ a · s(z)v · v with z ∈ ZΓ (an element of A3) does not restrict
to an automorphism of G0 in general. This is remedied by replacing the cocycle
s(z) : V → K with a cocycle valued in ⊕Q2 Γ.
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Let ν : Q2 → Z be the dyadic valuation, so that ν(x1x2x3 · · ·) := 2−i, where i
is the largest positive integer satisfying xi ̸= 0. Fix z ∈ ZΓ, and define

s0(z)v(x) := ζpv(x), v ∈ V , x ∈ Q2,

where
pv(x) := log2(v

′(v−1(x)))− ν(x) + ν(v−1x), x ∈ Q2.

This yields a map s0(z) : V → K, and it is shown in [18, Proposition 5.2] that
s0(z) is a cocycle valued in ⊕Q2Γ, i.e.

s0(z)v ∈ ⊕Q2Γ and s0(z)vw = s0(z)v · π(v)(s0(z)w) for all v, w ∈ V .

With a little bit of work, one shows that χ3 ◦ ι splits via the embedding ZΓ →
ker(χ2 ◦ ι), z 7→ (av 7→ a · s0(z) · v). This gives us that

ker(χ2 ◦ ι) = ker(χ3 ◦ ι)⋊ Ã3.

If θ ∈ ker(χ3 ◦ ι), then by definition θ ∈ ker(χ3). One can then show that θ =

ad(h) for some h ∈
(∏

Q2
Γ
)
/ZΓ. Moreover, h(00 · · ·) ∈ ZΓ since θ ∈ ker(χ3◦

ι), and of course h must normalise ⊕Q2Γ. This gives the inclusion Ã4 ⊆ {h ∈
A4 | h normalises ⊕Q2Γ}, while the reverse inclusion can be quickly checked. We
have arrived at the decomposition (5.4).

How well does the decomposition of Aut(G0) in (5.4) match up with the decom-
position of Aut(G) in Theorem 5.9 under the embedding ι : Aut(G0) ↪→ Aut(G)?
Let θ ∈ Aut(G0), and via (5.4) write θ = θ4 ◦θ3 ◦θ2 ◦θ1 with each θi ∈ Ãi. Next,
via Theorem 5.9, write ι(θ) = λ6 ◦ λ5 ◦ · · · ◦ λ1, with each λi ∈ Ai. We then have
that λi = ι(θi) when i = 1 or i = 2. Writing θ3 : av 7→ a · s0(z)v · v for a unique
z ∈ ZΓ, we have s0(z)v = s(z)v · [f, v], where f : (

∏
Q2

Γ)/ZΓ is defined by

f(x) := z−ν(x), x ∈ Q2.

Thus, ι(θ3) = ad(f) ◦ (av 7→ a · s(z)v · v), and writing θ4 = ad(h) for a unique
h ∈ Ã4, we obtain that

λ3 : av 7→ a · s(z)v · v and λ4 = ad(hf).

Finally, λ5 = λ6 = idG. I.e., when i ̸= 3, ι(θi) ∈ Aut(G) has one factor in the
decomposition of Theorem 5.9, while ι(θ3) splits into two factors.
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