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Galois extensions and Hopf-Galois
structures

Timothy Kohl and Robert Underwood

ABSTRACT. LetK beafield and let N be a finitely generated group with finite
automorphism group F. As shown by Haggenmiiller and Pareigis, there is a
bijection
O : Gal(K,F) - Form(K[N])

from the collection of F-Galois extensions of K to the collection of forms of
the Hopf algebra K[N]. In the case that K is a finite field extension of Q and H
is the Hopf algebra of a Hopf-Galois structure on a Galois extension E /K, we
construct the preimage of H under ®. We give criteria to determine the Hopf
algebra isomorphism classes of the Hopf algebras attached to the Hopf-Galois
structures on E /K. Examples are included throughout the paper.

CONTENTS
1. Introduction 238
2. Galois extensions 239
3. Galois extensions and forms of K[N] 243
4. Connection to Hopf-Galois theory 246
5. The Hopf algebra isomorphism problem 252
References 257

1. Introduction

Hopf-Galois theory, specifically, the study of Hopf-Galois structures on Ga-
lois extensions of number fields, was introduced by C. Greither and B. Pareigis
in 1987 as a way to generalize classical Galois theory [7]. In subsequent years,
Hopf-Galois structures have been studied extensively by numerous authors. In
this paper we consider Hopf-Galois theory in the broader context of the Galois
extensions of S. U. Chase, D. K. Harrison, and A. Rosenberg [5]. A fundamental
result is the bijection

O : Gal(K,F) » Form(K[N])
of R. Haggenmiiller and B. Pareigis [9, Theorem 5], which gives a 1-1 corre-
spondence between F-Galois extensions of K and forms of the K-Hopf algebra
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K[N], where N is a finitely generated group with finite automorphism group
F = Aut(N). For an F-Galois extension A of K, the map © is given explicitly as
the fixed ring

©(A) = (AINDF,

where F acts on A through the Galois action and on N as automorphisms. The
fixed ring (A[N])F" is an A-form of K[N] and so belongs to Form(K[N]). The
map O has been used to classify all of the Hopf algebra forms of the group ring
Hopf algebra K[N] in the cases when N = Z, C3, Cy, or Cy [9, Theorem 6].

There is a natural connection between ® and Hopf-Galois theory. Let K be
a finite field extension of Q. Let E /K be a Galois extension of fields with group
G and let (H, -) be a Hopf-Galois structure of type N on E/K. Using (Morita-
theoretic) Galois descent [2, (2.12)], the K-Hopf algebra H is given as the fixed
ring (E[N])°, where G acts on E as the Galois group and on N as automor-
phisms given by conjugation. Now, H is an E-form of K[N] and the K-Hopf
algebra isomorphism class of H is an element of Form(K[N]). Thus, there ex-
ists an F-Galois extension B of K, F = Aut(N), for which

O(B) = (B[NDF = H.

A main goal of this paper is to give an explicit description of the preimage B
(see Section 4).

Using the preimage, in Section 5 we give criteria for determining the Hopf al-
gebra isomorphism classes of the Hopf algebras attached to Hopf-Galois struc-
tures. Essentially, let (H, -) and (H’, ") be Hopf Galois structures on E /K of type
N and suppose that ©(A) = H and ©(A") = H’ for some F-Galois extensions
A, A", with F = Aut(N). Then H = H’ as Hopf algebras if and only if A =~ A’
as F-Galois extensions of K. In this manner, we extend [13, Theorem 2.2].

We apply our results to work of S. Taylor and P. J. Truman [15]. In that pa-
per, the authors consider the case where E /K is a quaternionic extension and
the Hopf-Galois structures are of type D,, the dihedral group of order 8. An
extensive discussion of this case is also given in [4, Chapter 9, Section 9.2.3].

As shown in [15, Lemma 2.5], there are 6 distinct Hopf-Galois structures on
E/K of type D4, which yield 6 pairwise non-isomorphic K-Hopf algebras. We
compute all 6 preimages under © of these Hopf algebras; the preimages are
necessarily pairwise non-isomorphic as F-Galois extensions of K; here, F =
Aut(D,) = D,. We find that 3 of these non-isomorphic F-Galois extensions are
isomorphic as K-algebras.

The authors are indebted to the referee whose thoughtful comments and sug-
gestions have improved this paper.

2. Galois extensions

Let R be a commutative ring with unity.
The notion of a Galois extension of R is due to M. Auslander and O. Goldman
[1]. Let A be a commutative R-algebra and let Endz(A) denote the R-algebra
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of R-linear maps ¢ : A — A. Let Autz(A) denote the group of R-algebra auto-
morphisms of A and let F be a finite subgroup of Autgz(A). The fixed ring of A
under Fis A ={x € A| f(x) = x,Vf € F}.

Let D(A, F) denote the collection of sums Zg cr 0¢8> ag € A. On D(A,F)
endow an R-module structure as follows: for r € R, deF a,g, deF b.g €

D(A,F), r(deF a,g) = deF ra,g, and

(D) a8) + (D beg) = D (ag + by)g.

geF geF geF

Define a multiplication on D(A, F) as follows:

(D a@)( D) byh) = Y agg(by)gh,

g€eF heF g,heF

where gh is the group product in F. The resulting R-algebra D(A, F) is the
crossed product algebra of A by F.
Let

i D(A, F) — Endg(A)
be the map defined as j(deF agg)(t) = dep a,g(t), for ay,t € A. Then jisa
homomorphism of R-algebras.

The question of whether j is an isomorphism of R-algebras is a key part of
the definition of a Galois extension.

Definition 2.1. Let R be a commutative ring with unity and let A be a commu-
tative R-algebra. Let F be a finite subgroup of Autgz(A) with R = AF. Then A is
an F-Galois extension of R if

(a) Aisafinitely generated, projective R-module,
(b) themap j : D(A,F) — Endg(A) is an isomorphism of R-algebras.

Remark 2.2. There are a number of other ways to define an F-Galois extension
of R that are equivalent to Definition 2.1, see [5, Definition 1.4, Theorem 1.3].
For instance, from [5, Theorem 1.3], A is an F-Galois extension of R if F is a
finite subgroup of Autgz(A), R = AF, and A is a separable R-algebra in which the
action of F on A is strongly distinct, that is, for distinct elements f, g in F, and
any idempotent e of A, there exists an element x € A for which f(x)e # g(x)e.

The notion of F-Galois extension generalizes the usual definition of a Galois
extension of fields.

Example 2.3. Let R = K be a finite field extension of Q. Let L be a (classical)
Galois extension of K with group G. Then Autg(L) = G, L6 = K, and L is
separable over K. Thus by [5, Theorem 1.3, (a)<(c)], the map

j: D(L,G) — Endg(L)

defined as j(agg)(x) = agg(x), for a;,x € L, g € G, is an isomorphism of
K-algebras. Thus L is a G-Galois extension of K.
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Let A, A’ be F-Galois extensions of R. Then A is isomorphic to A’ as F-Galois
extensions of R if there exists an isomorphism of commutative R-algebras 6 :
A — A’ for which 6(g(x)) = g(6(x)) forallg € F, x € A. We let Gal(R, F)
denote the set of isomorphism classes of F-Galois extensions of R.

Let Map(F, R) denote the R-algebra of maps ¢ : F — R. Then Map(F,R) is
the trivial F-Galois extension of R with action defined as

g(@)(h) = ¢(g™'h)

forg,h € F, ¢ € Map(F,R).
For the remainder of this section, we assume that R = K is a field. In this
case the Galois extensions are completely determined.

Theorem 2.4. Let K be a field, let F be a finite group and let A be an F-Galois
extension of K. Then

A=LXLX--XL

N————
n

where L is a U-Galois field extension of K for some subgroup U of F of indexn. (L
is a Galois extension of K with group U in the usual sense.)

Proof. See [14, Theorem 4.2]. O

Example 2.5. Let K be afield. Let C, denote the cyclic group of order 4. Then a
C4-Galois extension of K is of the form A, where A is a C,-Galois field extension
of K, or
A=LXL,
where L is a C,-Galois field extension of K, or
A=KXKXKXK
(the trivial C4-extension of K).
There is a converse to Theorem 2.4.

Theorem 2.6. Let F be a finite group and suppose that L is a Galois field extension
of K with group U < F, n = [F : U]. Then there exists an F-Galois extension of
K of the form

A=LXLX---XL.

|
n
Proof. Let T = {g,8>,...,8,} be a left transversal for U in F and let A =
L X L x --- X L with minimal orthogonal idempotents ey, e,, ..., e,. Let¢ : F —
—_———
n
Sy, be defined as ¢(g)(i) = j if gg;U = g;U. Define an action of F on A on each
component as

— (o1
g(mei) - (gg(g)(i)ggi)(m)eg(g)(i)’

form € L,1 <i < n. Then A is an F-Galois extension of K. For details see [14,

Theorem 4.2]. O
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Remark 2.7. Theorem 2.4 and Theorem 2.6 appear in a paper of B. Pareigis
as [14, Theorem 4.2]. However, Theorem 2.4 (at least when F is abelian) is
probably due to H. Hasse [11]. Theorem 2.6 was probably also known to Hasse.
Given an F-Galois extension A, Theorem 2.4 shows that A determines a sub-
group U < F and a classical Galois field extension L/K with group U. By Theo-
rem 2.6, the same subgroup U and the field L determine an F-Galois extension
A’. We have A =~ A’ as F-Galois extensions of K, i.e., the F-Galois extension A
arises from the field L by induction from the subgroup U up to the whole group
F. In the case that F is abelian, the element A in the Harrison set T(F, K) is the
image of L under the map T(i,K) : T(U,K) - T(F,K), see [10, Theorem 7].

Example 2.8. Let F = S3, with presentation
Sy ={a,b|a®*=1,b>=1,ba = a®b).
Let U = {1,a, a*} = C;. Let ¢ denote a primitive 3rd root of unity, let K = Q(¢)

and let L = K(w), where w = \3/5 Then L is a Galois field extension of K with
group U; the U-Galois action is given as

1(w)=w, aw)=¢(w, d(w)="~".

Using Theorem 2.6, we compute the corresponding F-Galois extension of K.
Let T = {g;, g,} be a left transversal for U in F. We may take g, = 1, g, = b, so
that the distinct left cosets are {U, bU}.

Let S, denote the group of permutations on the set {1, 2}. There is an action
¢ : F— S,given as

s@)V) =1, ¢@)2=2 ¢ba)Q)=2 ¢ba)2) =1,
for0 <i < 2. Let
A=LXL=Le @ Le,,
and write a typical element of A as
(co + 10 + c;w0)e; + (dg + dyw + dyw?)e,,

Cp,C1,Cy,dy,dq,dy € K. Now, A is an F-Galois extension of K with F-Galois
action given as:

a((cy + 1w + c;0?)e; + (dy + dyw + dyw?)e,)

= a(CO +ciw+ CzC()Z)el + az(do + dla) + dza)z)ez
= (co + 1w+ c8%w?)ey + (dg + di$Pw + dpSw?)es,

b((co + ¢y + cyw?)ey + (dy + dyw + dyw?)e,)

1(cy + 1 + c,w?)e, + 1(dy + dyw + dyw?)e;
(co + 10 + c;0%)e, + (dg + dy + dyw?)e;.
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3. Galois extensions and forms of K[N |

Let K be a field and let B be a finite dimensional, commutative K-algebra.
(Hence, B is faithfully flat over K.) Let C be an object over K in some category.
A B-form of C is a K-object A in the same category for which

BQxA~B®yC

as B-objects in the category. A form of C is a K-object for which there exists a
commutative, finite dimensional K-algebra B with

BQxA=B®yC

as B-objects in the category. The trivial form of C is C. Let Form(B/K,C)
denote the collection of the isomorphism classes of the B-forms of C and let
Form(C) denote the collection of the isomorphism classes of the forms of C.

Let Aut(C) denote the automorphism group functor of C on the category
of finite dimensional commutative K-algebras, defined as follows: for a finite
dimensional commutative K-algebra B, Aut(C)(B) = Aut(B ®x C), which de-
notes the group of automorphisms of BQx C as a B-object. Itis well-known that
Form(B/K,C)is classified by H'(B/K, Aut(C)) [16, Section 17.6, Theorem]. If
B/K is a Galois extension of fields with group G, we may pass to Galois descent
to compute the B-forms of C as H(G, Aut(C)(B)) [16, Section 17.7, Theorem].

Let N be a finitely generated group with finite automorphism group F =
Aut(N) and let K[N] denote the group ring K-Hopf algebra.

Theorem 3.1 (Haggenmiiller and Pareigis). There is a bijection
O : Gal(K,F) » Form(K[N])

defined as follows: Let A be an F-Galois extension of K. Then O(A) is the fixed
ring (A[N])F, where the action of F on N is through the automorphism group F
and the action of F on A is the Galois action. The image ©(A) = (A[N])F is
an A-form of K[N] with isomorphism ¢ : A @k (A[N])F — A[N], defined as
Y(x ® h) = xh, forx € A, h € (A[N])F.

Details of the proof of Theorem 3.1 can be found in [9, Corollary 4, Theorem
5]. We remark that a key element of the proof of Theorem 3.1 is a result from R.
Haggenmiiller’s dissertation [9, Proposition 3], [8, Proposition 2.14], which to
our knowledge has not appeared in the literature. For the convenience of the
reader, we include a proof here.

Let G(K[F]) denote the grouplike functor of the K-Hopf algebra K[F] from
the category of commutative K-algebras to the category of groups, that is, for
a commutative K-algebra B, G(K[F])(B) consists of the grouplike elements in
the B-Hopf algebra B ®x K[F] = B[F].

Proposition 3.2 (Haggenmiiller). Let B be a finite dimensional, commutative
K-algebra. Then

Aut(Map(F, K))(B) = G(K[F])(B).
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Proof. By [16, Section 6.2, Lemma],
B =B1 XBZ X e XBm,

where each B;, 1 < i < m, is a K-algebra with no non-trivial idempotents. We
have

Aut(Map(F, K))(B) = Aut(Map(F,K))(] [ B)
i=1

m m
= [ [ Aut(Map(F,K))(B;) = [ | Aut(Map(F, B,)).
i=1 i=1
Fix an integer i, 1 < i < m, and let o; € Aut(Map(F, B;)). Then o; is an
isomorphism of B;-algebras that respects the F-action on Map(F, B;). A B;-basis
for Map(F, B;) is X = {eg}ser, With eg(h) = &g, h € F. ‘
For e, € X, 0;(ey) = e), for some e, € X. Thus o; restricts to a 1-1 correspon-
denceg; : X — X, i.e., g; € Perm(X). There is a 1-1 correspondence F — X,
given as g — e,, and thus Perm(X) = Perm(F), as groups. Thus we may view

o; as an element of Perm(F). For g € F, we have
Gileg) = ey & Gi(g) = h.
The F-action on X can be translated to F: forg € F, e, € X,

g(ep) = ey & g(h) = gh.
This F-action on F is actually the action of F on F through the left regular
representation 4 : F — Perm(F), defined as 4,(h) = gh.
Since o; respects the F-action on X, it also respects the F-action on F. For
ge€F,heF,
0:(g(h)) = g(oi(h)).
Thus,
(01045)(h) = (Ag00;)(h),
and so, 0; € Centpeym(p)(A(F)). By [17, Chapter 1, Section 4],
p(F) = CentPerm(F)(/l(F))’
where p @ F — Perm(F), pg(h) = hg™!, is the right regular representation.
Thus o; € p(F).
Certainly, any element of p(F) defines an element of Aut(Map(F, B;)). Thus,
F = p(F) = Aut(Map(F, B;)).
It follows that Aut(Map(F,K))(B) @ F X F X --- X F. Moreover,
—_———

m

GKIFN®B) = GKIFN(] B) = [ GKIFD(B) = F X F x - XF,

i=1 i=1
m

since each B; contains no non-trivial idempotents. The result follows.



GALOIS EXTENSIONS AND HOPF-GALOIS STRUCTURES 245

O

Example 3.3. Recall Example 2.8 in which we constructed an F-Galois exten-
sion
A =Le; @ Le,,
with
F=S;={(a,b|a®=1,b>=1,ba = a’b),
K = Q(¢), ¢ a primitive 3rd root of unity, and L = K(w), where w = \3/5; the
Galois group of L/K isU = {1,a,a?} < F.

Now, with N = C, X C, = {¢,0,7,07}, we have S; = F = Aut(N); the
automorphisms in S; are generated by the premutations in cycle notation: a =
(o,7,07),b = (1,07).

We compute the image of A under the map © : Gal(K,F) - Form(K[N]),
i.e., the fixed ring ®(A) = H = (A[C, X C,])F', which is an A-form of K[C, X C,].
By direct computation,

0(A) = H = (A[C, X C,])F @ Kh;,

where
hy=e¢, hy=0c+r1+0T1,
hy = (we; + we,)o + (Cwey + 2wey)T + ($Pwey + Cwey)ot
hy = (w?e; + w?ey)o + ($Pw?e; + {wey)T + (Cwey + $2w?e,)oT.
Since h; = 2h, + 3, the K-subalgebra K @ Kh, of H is isomorphic to K X K
with idempotents f; = %(3 —hy), fr= i(l + h,) corresponding to the first and

second copies of K, respectively.
Now, f, annihilates hs, h,. Moreover, hg f1 = 16f,, thus h; is a root of the
polynomial x* — 16 over K. Thus H is isomorphic, as an algebra, to a product

O(A)=H = (A[C, X C,])Ff K xK xK(w) =K xK x L.
The Hopf algebra structure of H is given as: A(h;) = h; ® hy,

1 1 1

A(hz) - gh3 ® h.4 + gh4 ® h3 + §h2 ® h.z,
1 1 1

A(h3) = €h4 Q hy+ §h2 ® h; + 5[’13 ® h,,
1 1 1

A(h4) - §h3 ® h-3 + §h2 ® h4 + §h4 ® h.z,

E(h.l) = 1, E(hz) = 3, E(h.g) = E(h.4) =0.
The coinverse map S : H — H isinduced from the coinverse map on A[C, X

C,].
The K-Hopf algebra H is a form of the group ring Hopf algebra K[C, X C,].
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In the next section we consider the inverse map
07! : Form(K[N]) = Gal(K,F)

in the case that the forms are given as Hopf algebras of Hopf-Galois structures
on a (classical) Galois extension of K.

4. Connection to Hopf-Galois theory

For the remainder of this paper, we take K to be a finite field extension of Q.

4.1. Review of Greither-Pareigis theory. Let E/K be a Galois extension with
group G. Let H be a finite dimensional, cocommutative K-Hopf algebra with co-
multiplication A : H - H @y H, counite : H — K and coinverse S : H — H.
Suppose there is a K-linear action - of H on E that satisfies

h-(xp) = Dhay - Dby -y), h-1=eh)l
(h)

forallh € H, x,y € E, where A(h) = Z(h) hay ® h(yy is Sweedler notation.
Suppose also that the K-linear map

j . E®KH - EndK(E),

given as j(x®h)(y) = x(h-y), is an isomorphism of vector spaces over K. Then
H together with this action, denoted as (H, -), provides a Hopf-Galois structure
on E/K. Two Hopf-Galois structures (H,-), (H',-") on E/K are isomorphic if
there is a Hopf algebra isomorphism f : H — H' for which h - x = f(h) -/ x
forall x € E, h € H (see [6, Introduction]).

C. Greither and B. Pareigis [7] have given a complete classification of Hopf-
Galois structures up to isomorphism. Let 1 : G — Perm(G) denote the left
regular representation. A subgroup N < Perm(G) is regular if it is semireg-
ular (i.e., only the identity acts with fixed points) and transitive. A subgroup
N < Perm(G) is normalized by A(G) < Perm(G) if A(G) is contained in the
normalizer of N in Perm(G).

Theorem 4.1 (Greither and Pareigis). Let E/K be a Galois extension with group
G. There is a 1-1 correspondence between isomorphism classes of Hopf Galois
structures on E /K and regular subgroups of Perm(G) that are normalized by
A(G).

One direction of the correspondence in Theorem 4.1 is given as follows. Let
N be a regular subgroup of Perm(G) normalized by A(G). Then G acts on the
group algebra E[N] through the Galois action on E and conjugation by 1(G) on
N, i.e.,,
g(xn) = g(x)(A(gni(g™"),g €G, x EE, n EN.
We denote the conjugation action of A(g) € A(G) on7n € N by &7. Let H denote
the fixed ring

(EIND® = {x € E[N] | g(x) = x,Vg € G}.



GALOIS EXTENSIONS AND HOPF-GALOIS STRUCTURES 247

Then H is an r-dimensional K-Hopf algebra, r = [E : K], and E/K admits the
Hopf Galois structure (H, -) [2, (6.8) Theorem, pp. 52-54]. The action of H on

E/K is given as
(X rn)-x= 2 16100,

neN neN
see [3, Proposition 1]. By Morita theory [2, (2.13) Lemma], the isomorphism
E ®x H ~ E ®x K[N] = E[N],
X ® h — xh is an isomorphism of E-Hopf algebras. Thus H is an E-form of
K[N].
If N is isomorphic to the abstract group N’, then the Hopf-Galois structure
(H,-)on E/K is of type N'.

4.2. The preimage of a Hopf-Galois structure. If (H,-) is a Hopf-Galois
structure on E /K of type N, then the Hopf algebra H is a Hopf form of K[N].
Thus by Theorem 3.1, with F = Aut(N), there is an F-Galois extension B of K
with

@(B) = (B[N])" = H. )

We have B ®x H =~ B[N] as B-Hopf algebras. Our goal is to give an explicit
description of B.

By Theorem 2.4
B=LXLX:---XL,
—_——
m

where L is a V-Galois field extension of K for some subgroup V of F of index
[F : V] = m. By Remark 2.7, B arises from the pair V, L via Theorem 2.6.

Lemma 4.2. There is an isomorphism of L-Hopf algebras
Proof. Let {hy, h,, ..., h,} be a K-basis for H and let » € N. Then there exist
unique by, by, ..., b, in Bwithn = E:zl b; ® h;. Moreover, since H is an E-form
of K[N], there exist unique x;, x5, ..., X, in E with = Z:zl x; ® h;.

Let E’ be any field extension of K containing both L and E and let C =
E' X E' X --- X E’. Then

m
and Z;l(bi —X))®h; =0inC ®x H. Thusb; = x;,1 <i<r,andso,b; EE,
thusb; € L,for1 <i <r. Thus, L ®¢ H = L[N] as L-Hopf algebras.
O

Since E/K is Galois with group G, we may use Galois descent to describe
H € Form(K[N]). The E-form H of K[N] corresponds to a 1-cocycle (homo-
morphism) ¢ : G — F in

HY(G, Aut(K[N])(E)) = H(G, F).
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By [7, p. 249, Proof of 3.1, a = b] or [2, (6.7) Proposition], ¢(g) is given as
conjugation by elements of A(G), thatis, forg € G,n € N,

o(@)(m) = 1 = A(gnAg™).
The kernel of ¢ is a normal subgroup of G defined as
Gy ={g €G |8y =1,Vn € N}.

The quotient group G /G, is isomorphic to a subgroup U of F = Aut(N).
Let E, = E%. Then E, is Galois extension of K with group U. By Theorem
2.6, there exist an F-Galois extension of K of the form

A:E()XE()X"'XE(),

n

where [F : U] = n.

Theorem 4.3. Let E/K be a Galois extension with group G and let (H,-) be a
Hopf-Galois structure on E /K of type N. Let B be the preimage of H under © as
in(1). Then B = A, that is,

0(A4) = (A[NDF = H.

Proof. By [7, Corollary 3.2], E, is the smallest field extension of K, contained
in E with
Ey, ® H = Ey[N].

Thus H is an E,-form of K[N].
By [16, Section 17.6, Theorem|, Form(E,/K, Map(F, K)) corresponds to

H'(E,/K, Aut(Map(F, K))).
Thus by Proposition 3.2, Form(E,/K, Map(F, K)) corresponds to
H'(E,/K, G(K[F])).
Now, by [9, Theorem 2], H!(E,/K, G(K[F])) can be identified with
HY(E,/K, Aut(K[N])).
Consequently, there is a bijection
0 : Form(E,/K,Map(F,K)) — Form(E,/K,K[N]).

Now, Form(Map(F,K)) = Gal(K, F) by [9, Corollary 4].

Thus Form(E,/K, Map(F, K)), a subset of Form(Map(F, K)), can be viewed
asasubset of Gal(K, F). Hence, the preimage of H € Form(E,/K,K[N])under
O is precisely ®1(H) = B (for this use the proof of [9, Corollary 4]).

It follows that B is an E,-form of Map(F, K) and so,

Ey @k (LXLX---XL)=E,®g Map(F,K) = Map(F, Ey).
—_———

m
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Write L = K[x]/(f(x)) for some minimal polynomial f(x) € K[x]. Then
Ey®g (LXLX---XL)
—_——

m

IR

Eo @ (K[x]/(f(x)) x K[x]/(f(x)) X --- x K[x]/(f(x)))

R

Eo[x]/(f(x)) X Eolx]/(f(x)) X --- X Eo[x]/(f (x)))

m

IR

Map(F, E;)
Ey X Ey X -+ X E.

14

|F|

Thus, all of the zeros of f(x) must lie in E,, hence L C E,. Now by Lemma
4.2,Ey = L and U = V since E; is minimal. Hence ©(A) = H, where A =
onon"'XEo,With[F:U]zn,UgG/Go. ‘:’

n

Example 4.4. Let E/K be a Galois extension with group G. Letp : G —
Perm(G) denote the right regular representation. Then N = p(G) is a regular
subgroup of Perm(G) normalized by A(G); p(G) corresponds to the classical
Hopf-Galois structure on E /K with Hopf algebra K[G] [2, (6.10) Proposition].
Since A(G) commutes with p(G), we have

Go=1g€G|én=nVYn€pG)}=GCG

Thus U = G/G, = 1and E, = E% = K. Let F = Aut(o(G)). Then n =
[F : U] = [F : 1] = |F|. By Theorem 4.3, we have ©(A) = K[p(G)],

where A = K XK X --- X K. Of course, A is the trivial F-Galois extension of
| ——

n

K, Map(F, K).
Ifn=[F : U] =1,then A = E, and A is a F-Galois field extension of K.

Example 4.5. Let E/K be a Galois extension with group G where G is a non-
abelian complete group (i.e., G has trivial center and G =~ Aut(G)). For in-
stance, G = S, for n # 2, 6, is a non-abelian complete group.

The subgroup N = A(G) is a regular subgroup of Perm(G) normalized by
itselfand corresponds to the canonical non-classical Hopf-Galois structure with
Hopf algebra H;. In this case G, is trivial since the center of A(G) is trivial, and
so E% = E, = E and G/G, = G = Aut(N) = F. Thus

[F : Ul = |Aut(N)|/[G : Gol = |Aut(N)[/IG] = 1.
By Theorem 4.3, O(E,) = H;.

We can have n = 1 with G non-trivial.
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Example 4.6. In the table below we list every group G of order < 42 in which
there exists a Galois extension of fields E/K with group G with at least one
Hopf-Galois structure H on E/K of type M with n = [F : U] = 1. Conse-
quently, for each case indicated by the table, ©(E,) = H.

G \ M | 1Gol | [G : Gyl
C, C, 2 1
C, %X C, C, 2 2
Sy Ce 3 2
S S 1 6
D, Cy X C,y 1 8
Cy X C, Cq 2 4
Dy Ci, 3 4
Dy C3; X C,4 1 12
Cs X C, Cie 2 8
Cg X C, Cie 2 8
Cs X Cy Cs X C,4 1 20
Cy X CyXS; Cy X S3 1 24
Sy Cy, XAy 1 24
Sy Sy 1 24
C,XCs | Cyx(CyXCy)| 1 42
C; X Cq C; X Cq 1 42

Example 4.7. Let E/K be a Galois extension of fields with quaternion group
Qg = {1, +i, +j, +k}. S. Taylor and P. Truman [15] have enumerated the Hopf-
Galois structures on E /K of each possible type [15, Table 1]. There are 6 Hopf-
Galois structures on E /K of type D,, corresponding to 6 regular subgroups that
are normalized by 1(Qg) = (1(Q), A(j)):

Dy =A@, A(Dp®),  Djz =(A()), ADp(j)), Dy = (Ak), AD)p(k)),

D; o = (p(0), A(D)p(j)),  Djo =(p(j),A(Dp®), Dy, = (p(k), A(k)p()
[15, Lemma 2.5].

We consider the case N = D, ;. Let H;,; denote the K-Hopf algebra at-
tached to the Hopf-Galois structure on E /K that corresponds to D; ;. Let F =
Aut(D; ;). We compute the F-Galois extension A of K for which ©(A) = H;;
and give the explicit Hopf algebra structure of H; ; as the fixed ring (A[D;;])*"

We have

Go=1{g€ Qg |8n=1nYn €D} =1{1,-1}
with _
QS/GO = {171’J’k} = C2 X CZ'
Let E, = E%. Then E,/K is the unique biquadratic subfield of E. There exist
elements a, § in E, satisfying a® € K, 8> € K with E, = K(a, B); Ey/K is Galois
with group C, X C,.
We have F = D,, with presentation

D, ={a,b|a*=b%?=1,ab = ba?).



GALOIS EXTENSIONS AND HOPF-GALOIS STRUCTURES 251

The action of D, on D; ; is given as
a(A(®) = A1), aA(e®) = DA,
b(A(D)) = A(J)p(DHADAG)p) = A(-i),
bA(jp(D) = A(NeDA(NeDA()p@{) = A(je®).
We identify C, x C, with the subgroup U = {1,a?,b,ba?} of F. The Galois
action is given as
al@)=a, bl@)=-a, @) =-H, bp) =4

The set T = {1, ba} is a left transversal for U in F; the left cosets are {U, baU}.
By Theorem 2.6, E, and U determine an F-Galois extension of K,

A= EO X EO = E0e1 (<3) Eoez.

The F-Galois action on A is given as follows: for ¢;,d; € K,0 <i < 3,

a((cg + cyax + ¢y + czaP)e; + (dy + dya + dy8 + dsaf)e,)

(ba®)(cy + cra + ¢ + c;aPB)e, + (b)(dy + dya + do 3 + d3afB)e;
(co — 1 — B + czaP)e; + (do — dya + d,8 — dsaf)e,

b((cy + ciox + 8 + czaf)e; + (dy + dya + dy8 + dsaf)es,)

(b)(cy + 10t + ¢ + czaf)e; + (ba?)(dy + dia + dyB + dsap)e,
(cpg—cra+cyf —czaf)e; + (dy — dia — dy 8 + dsaf)es.

By Theorem 4.3,

O(Ee; ® Egey) = ((Ege; ® Egex)[Di )" = Hy ;.
To find the explicit structure of the K-Hopf algebra H; ;, set r = A(i), s =
A(j)p(@), so that

D =(rs|rt=s>=1rs=sr’) =D,

By direct computation,

(A[D; D" = @K”li,
where

1 1
hy=1, h,= E(r +r3), hy=r% hy= 5(0‘(31 —e)r —ale; —eyrd),

1 1
hs = E(els + e,Sr + eysr? + e,sr3),  hg = 5(5915 + Be,sr — Beysr? — Be,sr?),
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1 2 3
h; = E(ezs + e Sr + e,sre + ey sr’),

1
hg = 5(0(,6’625 + aBeysr — afe,sr? — afe;sri).

The K-algebra structure of (A[D;;])¥ is given as follows. First note that
C = Khy & Kh; is a K-subalgebra of (A[D;;])F, isomorphic to K X K with
idempotents f; = %(1 + h3) and f, = %(1 — h3) corresponding to the first
and second copies of K, respectively. Now, {f,, h4, hg, —hg} is a K-basis for the
quaternion algebra (—a?, 82)k. Since the the idempotent f; annihilates each
element in this basis, we conclude that (A[D; ;])F contains the K-subalgebra
K x (—a?, ?)k. Moreover,

(G (s + 1Oy + 1), 3(as = F)0y = ), 3(hs + F(Bs = 1)

2 (s = (s + £}

is a set of mutually orthogonal idempotents in (A[D;;])f' that are annihilated
by f», thus
(AID;D)f 2K XK XK XK x (—=a?, ).
This description of (A[D; ;])F agrees with Truman and Taylor’s decomposition
found in [15, Lemma 4.7].
The Hopf algebra structure of (A[D;, 2D is given as:

1
A(hy)=h; ®hy, A(hy)=h, ®@h, + ;}M ® hy, A(h3) = h3 ® hs,

1
Ahy) =h, @ hy + hy @ hy, A(hs) = hs @ hs + Ehé ® hg,
1

A(hg) = hs @ hg + hs @ hs,  A(h7) = h; @ hy + 2P

hg ® hg,

A(hg) = h; ® hg + hg ® hy,
eh) =1, e(hy)=1, ehy)=1, e(hy) =0, ehs)=1,
ethe) =0, e(h;) =1, e(hg) =0,
and the coinverse S : (A[D;,])f — (A[D;2])F is induced from that of A[D; ;].

5. The Hopf algebra isomorphism problem

Let E/K be a Galois extension with group G. Various authors have addressed
the following question: what are the K-Hopf algebra isomorphism classes of the
Hopf algebras that arise from the Hopf-Galois structures on E/K? See [6], [12,
Section 4], [13, Theorem 2.2] and [15, Section 3]. We can use Theorem 4.3 to
establish a criterion to compute these isomorphism classes.

Let (Hy, -y) be a Hopf-Galois structure on E /K corresponding to a regular
subgroup N of Perm(G) normalized by A(G). Let Fy = Aut(N), and let

Oy : Gal(K,Fy) » Form(K[N])
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be the Haggenmiiller-Pareigis bijection, defined as ©5(A) = (A[N])f~, where
A is an Fy-Galois extension of K.

The Hopf algebra Hy is a form of K[N], and we have already computed the
preimage A = ©~!(Hy) in Theorem 4.3: Let

Go(N)={g € G |é)=mn,Vn € N},

and put E,(N) = E%®, Then E,(N) is Galois over K with group Uy =
G/Gy(N) < Fy. By Theorem 2.6, Ej(N) and Uy determine an Fy-Galois ex-
tension of K

Ay, = Eg(N) X Eo(N) X -+ X Eo(N),

n
n = [Fy : Uy]. By Theorem 4.3, ©O5(Ay, ) = (Ay, [NV = Hy.
Since E /K is Galois with group G, by Galois descent the E-form Hy of K[N]
corresponds to a 1-cocycle (homomorphism) ¢y : G — Fy in

HY(G,Aut(K[N])(E)) = H(G, Fy).

The homomorphism gy (g) is given as conjugation:  — 8n,forg € G,n € N;
the kernel of gy is Gy(N).

Now, suppose that (Hyy, ) is some other Hopf-Galois structure on the same
E /K, corresponding to a regular subgroup N’ of Perm(G), normalized by A1(G).
If (Hy, -n) and (Hyy, -5v) are not of the same type, i.e., if N 2 N’, then E[N] &
E[N'] as E-Hopf algebras. Thus E Qg Hy % E Qg Hy» as E-Hopf algebras,
and hence Hy 2 Hps as K-Hopf algebras. So the Hopf algebras attached to a
Hopf-Galois structure can only be isomorphic as Hopf algebras if the structures
are of the same type.

So we assume that N and N’ are of the same type, i.e., there is a group iso-
morphism

Y : N - N.
For later use, this isomorphism determines an isomorphism
'(,5 . FN’ - FN’

given as P(f)(1) = P~ )() for f € Fy1, 7 € N.
The isomorphism 3 extends to an isomorphism of E-Hopf algebras

Y : EQr K[N'] - E ®x K[N].
Since Hy is an E-form of K[N'], there exists an isomorphism of E-Hopf alge-
bras
¢ : EQg Hyy — E Qg K[N'],
thus there is an isomorphism
Y’ : EQ®x Hy' — E Qx K[N] = E[N].

So, Hyy is an E-form of K[N], i.e., Hys is an element of Form(K[N]). Conse-
quently, Hy has a preimage under @, that is, there exists an Fy-Galois exten-
sion B of K for which

®N(B) = HN"
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We compute B and its Fy-Galois structure. By descent theory, Hys corre-
sponds to the 1-cocycle d?(¥¢)(d] (P¢"))~" in HY(E/K, Aut(K[N]) (d! are the
standard maps). We want to describe this 1-cocycle as a homomorphism in
HY(G, Aut(K[N])(E)). We have

dY(e")(d, (e )™

(dy)(d) ) (d)(dje )™ ()
(@)((dYe")die ) (d i)

Now, the 1-cocycle (d%¢")(d}¢’)™! corresponds to the homomorphism gy in
HY(G, Aut(K[N'])(E)), and we identify d‘l)z/) = 9 ® id ® id with the map ¥ and
(djp)™ = ™! ® id @ id with the map ¢~'. So, it follows from (2) that the
composition

dons 1 G = Fy, G Fy - Fy,
defined as

Pon (@) = Wl (@)P™Dm), gEG,nEN,
is the 1-cocycle in HY(G, Aut(K[N])(E)) corresponding to Hyy.

The kernel of $oy: is Go(N') and the Galois group of Eo(N') is Uyr =
G/Gy(N"). As a subgroup of Fy, we take the Galois group of E,(N’) to be
D(Uy) < Fy, which acts through 71, i.e., f(x) = $~1(f)(x) for f € P(Up),
x € Ey(N").

By Theorem 2.6, Eo(N’) and $(Uy) determine an Fy-Galois extension of K

Ajwyy = Eo(N') X Eg(N") X -+ X Eg(N"),

n
n=[Fyx : Uy]=[Fyx : $(Uxs)]. By Theorem 4.3,
On(Ayw, ) = (Agw ) IND™ = Hy.
We have proved the following.

Theorem 5.1. Let E /K be a Galois extension with group G. Let (Hy, -n), (Hy» *N7)
be Hopf-Galois structures on E /K corresponding to regular subgroups N, N’ of
Perm(G), respectively, of the same type N. Letp : N’ — N be an isomorphism.
Let Ay, Ay, be the Fx-Galois extensions of K as above. Then

On(Ay,) = (Ay, [N])F¥ = Hy,
®N(A¢(UN,)) = (Alﬁ(UN/)[N])FN = Hp.

An isomorphism criterion can now be given. This criterion extends [13, The-
orem 2.2].

Theorem 5.2. Let E /K be a Galois extension with group G. Let (Hy, -n), (Hnv, *N7)
be Hopf-Galois structures on E /K corresponding to regular subgroups N, N’ of
Perm(G), respectively, of the same type N. Letp : N' — N be an isomorphism.
The following are equivalent:
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(@) Ay, = Ay, as Fn-Galois extensions of K.

(b) Hy = Hyr as K-Hopf algebras.

(c) Thel-cocycle oy : G — Fy is cohomologous to the 1-cocycle on: : G —
Fy.

(d) There exists a A(G)-invariant map N’ — N.

Proof. For (c)<(d): Suppose that £ : N’ — N is A(G)-invariant. Then for all
geG,n eN,

8(EM") = §¢n"),
which is equivalent to

oy @EM)) = &lom,, (™).

Note that & = vy for some automorphism v : N — N (just setv = £p~1).
Letn’ = £71(n) for some 7 € N. Then we obtain

E(om,, (QE M)
((ven,, (@@~
(v(ew,, (@Y~ Hv 1)
v(en,, Qv 1),

o, (8)(1)

for all g € G, and so ¢y, is cohomologous to zﬁgHN,.

Conversely, suppose that g5 is cohomologous to 1ﬁ9HN,, i.e., suppose that
there exists a fixed v € Fy for which

¢9HN, g = VE’HN(g)V_1

forall g € G. Then
bou,, @Y~ = vey, (v,
and so,

O""Plen,, () = on, (V) (3)

where v™1% : N’ - N is an isomorphism.
Now, from (3),

') (on,, (€)M = on, (v 1Y)(n")).
forg € G,n’ € N’, and so,

OTIPEn) = SO P)H).

Thus v~ : N’ — N is A(G)-invariant.

For (b)<(c): Use Galois descent.

For (a)&(b): This follows since ®y(Ay,) = Hy and ®N(A¢(UN,)) = Hy,
where Oy is the Haggenmiiller and Pareigis bijection. O
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Example 5.3. We recall the details of Example 4.7: E/K is a Galois extension
of fields with quaternion group Qg = {#1, i, +j, +k}; K(a, ) is the unique
biquadratic subfield of E.

There are 6 Hopf-Galois structures on E/K of type D,, corresponding to 6
regular subgroups that are normalized by 4(Qg): D; 2, D; o, for s € {i, j, k}. Let
Hg,, Hy 5, s € {i, j, k}, be the corresponding K-Hopf algebras. By [15, Section
3], these Hopf algebras are pairwise non-isomorphic as K-Hopf algebras.

We recover this result using our criteria above and compute the 6 preimages
under O of these Hopf algebras. The preimages are necessarily pairwise non-
isomorphic as F-Galois extensions of K, F = Aut(D,) = D,.

In what follows, the subgroup D; ; plays the role of N and the other five
subgroups will in turn play the role of N’. To simplify notation, we set F; ; =
Aut(D; ;). Let

Op,, : Gal(K,F; ;) = Form(K[D, ;1)
be the Haggenmiiller-Pareigis bijection.

By direct computation:

GO(Di,p) = {1’ _1’i1_i}’ GO(Dj,p) = {1’ _1’j’_.j}’
Go(Dyp) = {1,-1,k, —k}.
We have
Eo(D;p) = EOPi) = K(a),  Eo(D;,) = E©Pie) = K(B),
Eo(Dy ) = E%Pre) = K(afp),
with Galois groups
Ui,p = QS/GO(Di,p)’ Uj,p = QS/GO(Dj,p)a Uk,p = QS/GO(Dk,p)a

respectively. Lety; , : D; , — D; ; be an isomorphism, let F; , = Aut(D; ,) and

let 1,[3,-,9 : F;, — F;; be the induced isomorphism. By Theorem 2.6, K(«) and
zf)i,p(Ui,p) determine an F; ;-Galois extension of K

AZﬁi,p(Ui,p) = K(a) X K(ax) X K(a) X K(at).
By Theorem 5.1,
Op,,(Ay,,w,,)) = Ay, w,Pial)* = Hip.

The preimages of H; , and Hy , are computed in a similar manner and we
obtain

Ay w,,) = KB X K(B) x K(B) x K(B)
and
Ay, ) = K(@B) x K(aB) x K(aB) x K(ap),

respectively.
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Clearly, Azﬁi,p(Ui,p)’ Alﬁ;:p W, and Alﬁk,p(Uk,p) are pairwise non-isomorphic as F-
Galois extensions since they are pairwise non-isomorphic as K-algebras. Thus,
H;,, H; , and Hy , are pairwise non-isomorphic as K-Hopf algebras.
Asshownin [15, Lemma 3.5], there isno A(G)-invariant isomorphism D ; —
D, ; fors,t €{i, j,k}, s # t. So by Theorem 5.2, (d)&(b), Hy ; % H;, for s # .
We next consider the preimages of H ;, s € {i, j, k}, under ©p,,- We have

Go(Di 1) = Go(Dj 1) = Go(Dy 2) = {1, -1},
thus
Eo(Dy) = EGP) = Ey(D; ;) = ESPi)

= Eo(Dyp) = E9Ped) = K(a, §),
with Galois groups
Uip=Ujr=Upp =Qs/{1,-1} = C, X Cy,

respectively.

We have already constructed the preimage of H; ; under ©p, , in Example 4.7:
the F; ;-Galois extension of K, Ay, , = K(a, 8) X K(a, ) satisfies @p  (Ay,,) =
Hij. ’ -

As for the preimage of H; ;, let ¢;; : D;; — D;; be an isomorphism, let

F;, = Aut(D;,) and let 1,5]-,,1 : Fj, — F;; be the induced isomorphism. By

Theorem 2.6, K(«, 8) and lﬁj,,l(Uj,,l) determine an F; ;-Galois extension of K,
Alﬁj,z(Uj,z) = K(a, 8) X K(«, ), which satisfies ®Di,/1(A1I)j,A(UM)) =Hj,.

The preimage of Hy ; is computed in a similar manner and is found to be
Al[’k,z(Uk,A) = K(a, f) x K(a, ). )

By Theorem 5.2 (a)&(b), Ay, , % Azi)j,A(Uj,l) E A U S E ,-Galois exten-
sions of K, though they are isomorphic as K-algebras. Theorem 5.2 (a)<(b)
also implies that Hy; ¢ H, ,, for s,t € {i, j, k}.

References

[1] AUSLANDER, M.; GOLDMAN, O. The Brauer group of a commutative ring. Trans. Amer.
Math. Soc. 97 no. 3 (1960), 367-409. MR0121392 (22 #12130) Zbl 0100.26304. 239

[2] CHILDS, L. N. Taming wild extensions: Hopf algebras and local Galois module theory.
Mathematical Surveys and Monographs, 80. American Mathematical Society, Providence,
RI, 2000. viii+215 pp. ISBN: 0-8218-2131-8 MR1767499 (2001e:11116) Zbl 0944.11038. 239,
247, 248, 249

[3] CHILDS, L. N. Hopf Galois structures on Kummer extensions of prime power degree. New
York J. Math. 17 (2011), 51-74. MR2781908 (2012¢:12006) Zbl 1233.12003. 247

[4] CHILDS, L. N.; GREITHER, C.; KEATING, K.; KOCH, A.; KOHL, T.; TRUMAN, P. J.; UN-
DERWOOD, R. Hopf algebras and Galois module theory. Mathematical Surveys and Mono-
graphs, 260, American Mathematical Society, Providence, RI, 2021. vii+311 pp. ISBN: 978-1-
4704-6516-2 MR4390798 Zbl 1489.16001. 239

[5] CHASE, S. U.; HARRISON, D. K.; ROSENBERG, A. Galois theory and Galois cohomology of
commutative rings. Mem. Amer. Math. Soc., no. 52, (1965), 15-33. MR0195922 (33 #4118)
Zbl 0143.05902. 238, 240


http://www.ams.org/mathscinet-getitem?mr=0121392
http://www.emis.de/cgi-bin/MATH-item?0100.26304
http://www.ams.org/mathscinet-getitem?mr=1767499
http://www.emis.de/cgi-bin/MATH-item?0944.11038
http://www.ams.org/mathscinet-getitem?mr=2781908
http://www.emis.de/cgi-bin/MATH-item?1233.12003
http://www.ams.org/mathscinet-getitem?mr=4390798
http://www.emis.de/cgi-bin/MATH-item?1489.16001
http://www.ams.org/mathscinet-getitem?mr=0195922
http://www.emis.de/cgi-bin/MATH-item?0143.05902

258

[6]

[7]
(8]

(11]

(12]

(13]

[14

—_

(17]

TIMOTHY KOHL AND ROBERT UNDERWOOD

CRESPO, T.; RIO, A.; VELA, M. Non-isomorphic Hopf-Galois structures with isomorphic
underlying Hopf algebras. J. Algebra 422 (2015), 270-276. MR3272077 Zbl 1319.16025. 246,
252

GREITHER, C.; PAREIGIS, B. Hopf Galois theory for separable field extensions. J. Algebra
106 no. 1 (1987), 239-258. MR0878476 (88i:12006) Zbl 0615.12026. 238, 246, 248
HAGGENMULLER, R. Uber Invarianten separabler Galoiserweiterungen kommutativer
Ringe, Dissertation, Universitdt Miinchen, 1979. 243

HAGGENMULLER, R.; PAREIGIS, B. Hopf algebra forms of the multiplicative group and
other groups. manuscripta math. 55 no. 2 (1986), 121-136. MR0833240 (87e:16026) Zbl
0604.16005. 238, 239, 243, 248

HARRISON, D. K. Abelian extensions of commutative rings. Mem. Amer. Math. Soc., no. 52,
(1965), 1-14. MR0195921 (33 #4117) Zbl 0143.06003. 242

HASSE, H. Die Multiplikationsgruppe der abelschen Korper mit fester Galoisgruppe. Abh.
Math. Sem. Univ. Hamburg 16 nos. 3-4 (1949), 29-40. MR0032597 (11,313d) Zbl1 0039.26801.
242

KocH, A.; KOHL, T.; TRUMAN, P. J.; UNDERWOOD, R. Normality and short exact sequences
of Hopf-Galois structures. Comm. Algebra 47 no. 5 (2019), 2086-2101. MR3977722 Zbl
1430.16034. 252

KocH, A.; KOHL, T.; TRUMAN, P. J.; UNDERWOOD, R. Isomorphism problems for Hopf-
Galois structures on separable field extensions. J. Pure and Appl. Algebra 223 no. 5 (2019),
2230-2245. MR3906546 Zbl 1403.16031. 239, 252, 254

PAREIGIS, B. Forms of Hopf algebras and Galois theory. Topics in algebra, Part 1 (Warsaw,
1988), 75-93, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990. MR1171227 (93f:16038)
Zbl 0724.16019. 241, 242

TAYLOR, S.; TRUMAN, P. J. The Structure of Hopf algebras giving Hopf-Galois structures on
quaternionic extensions. New York J. Math. 25 (2019), 219-237. MR3933762 Zbl 1466.16030.
239, 250, 252, 256, 257

WATERHOUSE, W. Introduction to affine group schemes, Graduate Texts in Mathematics,
66. Springer-Verlag, New York-Berlin, 1979. xi+164 pp. ISBN: 0-387-90421-2 MR0547117
(82e:14003) Zbl 0442.14017. 243, 244, 248

WIELANDT, H. Finite permutation groups. Academic Press, New York, 1964. Zbl 0138.02501.
244

(Timothy Kohl) DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY, 665
COMMONWEALTH AVENUE, BOSTON, MA 02215, USA
tkohl@math.bu.edu

(Robert Underwood) DEPARTMENT OF MATHEMATICS, DEPARTMENT OF COMPUTER SCIENCE,
AUBURN UNIVERSITY AT MONTGOMERY, MONTGOMERY, AL 36124, USA
runderwo@aum. edu

This paper is available via http://nyjm.albany.edu/j/2025/31-11.html.


http://www.ams.org/mathscinet-getitem?mr=3272077
http://www.emis.de/cgi-bin/MATH-item?1319.16025
http://www.ams.org/mathscinet-getitem?mr=0878476
http://www.emis.de/cgi-bin/MATH-item?0615.12026
http://www.ams.org/mathscinet-getitem?mr=0833240
http://www.emis.de/cgi-bin/MATH-item?0604.16005
http://www.emis.de/cgi-bin/MATH-item?0604.16005
http://www.ams.org/mathscinet-getitem?mr=0195921
http://www.emis.de/cgi-bin/MATH-item?0143.06003
http://www.ams.org/mathscinet-getitem?mr=0032597
http://www.emis.de/cgi-bin/MATH-item?0039.26801
http://www.ams.org/mathscinet-getitem?mr=3977722
http://www.emis.de/cgi-bin/MATH-item?1430.16034
http://www.emis.de/cgi-bin/MATH-item?1430.16034
http://www.ams.org/mathscinet-getitem?mr=3906546
http://www.emis.de/cgi-bin/MATH-item?1403.16031
http://www.ams.org/mathscinet-getitem?mr=1171227
http://www.emis.de/cgi-bin/MATH-item?0724.16019
http://www.ams.org/mathscinet-getitem?mr=3933762
http://www.emis.de/cgi-bin/MATH-item?1466.16030
http://www.ams.org/mathscinet-getitem?mr=0547117
http://www.emis.de/cgi-bin/MATH-item?0442.14017
http://www.emis.de/cgi-bin/MATH-item?0138.02501
mailto:tkohl@math.bu.edu
mailto:runderwo@aum.edu
http://nyjm.albany.edu/j/2025/31-11.html

	1. Introduction
	2. Galois extensions
	3. Galois extensions and forms of K[N]
	4. Connection to Hopf-Galois theory
	5. The Hopf algebra isomorphism problem
	References

