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Gauss circle problem over smooth integers

Ankush Goswami

Abstract. For a positive integer 𝑛, let 𝑟2(𝑛) be the number of representa-
tions of 𝑛 as sums of two squares (of integers), where the convention is that
different signs and different orders of the summands yield distinct represen-
tations. A famous result of Gauss shows that 𝑅(𝑥) ∶=

∑
𝑛≤𝑥 𝑟2(𝑛) ∼ 𝜋𝑥.

Let 𝑃(𝑛) denote the largest prime factor of 𝑛 and let 𝑆(𝑥, 𝑦) ∶= {𝑛 ≤ 𝑥 ∶
𝑃(𝑛) ≤ 𝑦}. In this paper, we study the asymptotic behavior of 𝑅(𝑥, 𝑦) ∶=∑

𝑛∈𝑆(𝑥,𝑦) 𝑟2(𝑛) for various ranges of 2 ≤ 𝑦 ≤ 𝑥. For 𝑦 in a certain large range,
we show that 𝑅(𝑥, 𝑦) ∼ 𝜌(𝛼) ⋅ 𝜋𝑥 where 𝜌(𝛼) is the Dickman function and
𝛼 = log𝑥∕ log 𝑦. We also obtain the asymptotic behavior of the partial sum
of a generalized representation function following a method of Selberg.
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1. Introduction
For a positive integer 𝑛, we denote by 𝑟2(𝑛) the number of representations of

𝑛 as sums of two squares (of integers), where representations that differ only
in the order of the summands or in the signs of the numbers being squared
are counted as different. The following result of Fermat characterizes primes 𝑝
which are sums of two squares:

Theorem 1.1 (Fermat). An odd prime 𝑝 is a sum of two squares if and only if
𝑝 ≡ 1 (mod 4).

Theorem 1.1 can be used to completely characterize the composite numbers
that are sums of two squares.
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Theorem 1.2 (Two Squares Theorem). A positive integer n is the sum of two
squares if and only if each prime factor 𝑝 of 𝑛 such that 𝑝 ≡ 3 (mod 4) occurs to
an even power in the prime factorization of 𝑛.

Going beyond this result, Gauss [8, §182] by use of quadratic forms and Ja-
cobi [11] by use of elliptic functions, proved the following stronger result:

Theorem 1.3 (Gauss, Jacobi). Denote the number of divisors of 𝑛 by 𝑑(𝑛), and
write 𝑑𝑎(𝑛) for the number of those divisors with 𝑑 ≡ 𝑎 (mod 4). Let 𝑛 = 2𝑓𝑛1𝑛2,
where 𝑛1 =

∏
𝑝≡1 (mod 4) 𝑝

𝑟, 𝑛2 =
∏

𝑞≡3 (mod 4) 𝑞
𝑠; then 𝑟2(𝑛) = 0 if any of the

exponents 𝑠 is odd. If all 𝑠 are even, then 𝑟2(𝑛) = 4 ⋅ 𝑑(𝑛1) = 4(𝑑1(𝑛) − 𝑑3(𝑛)).

In about 1800 C.E., Gauss attempted to estimate the following sum:

𝑅(𝑥) ∶=
∑′

𝑛≤𝑥
𝑟2(𝑛), 𝑥 > 0, (1.1)

which counts the number of integral points inside a circle of radius
√
𝑥. Here ′

means thatwhen 𝑥 is an integer, 1
2
𝑟2(𝑥) is counted. Then observing that𝜋(

√
𝑥−

√
2)2 < 𝑅(𝑥) < 𝜋(

√
𝑥 +

√
2)2, he showed that

Theorem 1.4 (Gauss). We have

𝑅(𝑥) = 𝜋𝑥 + 𝑂(
√
𝑥).

No further improvements in the error term in Theorem 1.4 were made un-
til 1906 when W. Sierpiński showed that the error in Theorem 1.4 is 𝑂(𝑥1∕3).
In fact, Landau [12], [13] simplified Sierpiński’s approach but in doing so, ob-
tained the weaker result that the error is 𝑂(𝑥1∕3+𝜖), 𝜖 > 0.
Subsequent attempts to further improve the error term have rested upon the

following identity involving the ordinary Bessel function 𝐽𝜈(𝑧):

∑′

𝑛≤𝑥
𝑟2(𝑛) = 𝜋𝑥 +

∞∑

𝑛=1
𝑟2(𝑛)

(𝑥
𝑛

)1∕2
𝐽1(2𝜋

√
𝑛𝑥) (1.2)

where

𝐽𝜈(𝑧) ∶=
∞∑

𝑛=1

(−1)𝑛

𝑛!Γ(𝜈 + 𝑛 + 1)

(𝑧
2

)𝜈+2𝑛
, 0 < |𝑧| <∞, 𝜈 ∈ ℂ.

It turns out that an improvement in the error term in the asymptotic estimate
in (1.2) amounts to studying the behavior of certain trigonometric sums. Find-
ing the correct order of magnitude of this error term is the famous Gauss circle
problem (see [3]).
Let 𝑃(𝑛) be the largest prime factor of 𝑛 and define 𝑆(𝑥, 𝑦) ∶= {𝑛 ≤ 𝑥 ∶

𝑃(𝑛) ≤ 𝑦}. In this paper, among other things, we study the asymptotic behavior
of

𝑅(𝑥, 𝑦) ∶=
∑

𝑛∈𝑆(𝑥,𝑦)
𝑟2(𝑛) (1.3)
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for various ranges of 2 ≤ 𝑦 ≤ 𝑥. In particular, we show that for a fixed 𝛼 =
log𝑥∕ log 𝑦 > 1, we have

lim
𝑥→∞

𝑅(𝑥, 𝑥1∕𝛼)
𝑥 = 𝜋 ⋅ 𝜌(𝛼) (1.4)

where 𝜌(𝛼) is the Dickman function satisfying the delay-differential equation

𝜌′(𝛼) = −
𝜌(𝛼 − 1)

𝛼 , 𝛼 > 1.

Thus, we see from (1.4) that when 𝑦 = 𝑥

𝑅(𝑥) = 𝑅(𝑥, 𝑥) ∼ 𝜋𝑥

since 𝜌(1) = 1 (see Section 3), thus generalizing Theorem 1.4 as far as the main
term is concerned since the error obtained in the asymptotic estimate as a result
of the generalization is weaker than Theorem 1.4. However, our results are
uniform in 𝑦 and 𝛼 (see Section 2), and thus they are interesting.
Our analysis of𝑅(𝑥, 𝑦)will involve a careful study of a related function, which

we now describe. For a positive integer 𝑛, the core of 𝑛 (also called the radical of
𝑛) is the largest square-free factor of 𝑛. Let 𝜈(𝑛) denote the number of distinct
prime factors of 𝑛. Define the setA ∶= {𝑛 ∈ ℕ ∶ 𝑝|𝑛 ⇒ 𝑝 ≡ 1 (mod 4)} and let
𝜅(𝑛) be the characteristic function on A. Then from Theorem 1.3, we see that
4 ⋅ 𝜅(𝑛)2𝜈(𝑛) counts the number of representations of the core of the odd-part of
𝑛 as sums of two squares.
We study the asymptotic behavior of the following partial sums:

�̃�(𝑥) ∶=
∑

𝑛≤𝑥
𝜅(𝑛)2𝜈(𝑛), 𝑥 > 0 (1.5)

and
�̃�(𝑥, 𝑦) ∶=

∑

𝑛∈𝑆(𝑥,𝑦)
𝜅(𝑛)2𝜈(𝑛), 2 ≤ 𝑦 ≤ 𝑥. (1.6)

There is a close connection of �̃�(𝑥)with 𝑅(𝑥). The motivation to consider �̃�(𝑥)
comes from a problem concerning the generalized divisor function, 𝑑𝑧(𝑛), which
are coefficients in the Dirichlet series expansion of 𝜁(𝑠)𝑧 (𝑧 ∈ ℂ) where 𝜁(𝑠) is
the Riemann zeta function. In [17], Selberg studied the asymptotic behavior
of the partial sum of 𝑑𝑧(𝑛). This yields the asymptotic behavior of

∑
𝑛≤𝑥 𝑧

𝜈(𝑛),
which, in turn, leads to an understanding of the distribution of numbers with
a prescribed number of (distinct) prime factors. In passing, we note that since
𝑑𝑧(𝑝) = 𝑧 = 𝑧𝜈(𝑝), the two functions 𝑑𝑧(𝑛) and 𝑧𝜈(𝑛) are ‘nearby’. Similarly,
we see that 𝜅(𝑝)2𝜈(𝑝) = 𝑟2(𝑝)∕4 for 𝑝 ≠ 2 and thus 𝜅(𝑛)2𝜈(𝑛) and 𝑟2(𝑛)∕4 are
‘nearby’. Thus, the asymptotic behavior of 𝑅(𝑥, 𝑦) can be derived from �̃�(𝑥, 𝑦)
by elementary reasoning.
Another reason for considering the function 𝜅(𝑛)2𝜈(𝑛) instead of 𝑟2(𝑛) is the

fact that the former allows us to conveniently estimate the partial sum over
smooth integers.
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We shall use the Buchstab-de Bruijn iteration technique to establish the as-
ymptotic behavior of �̃�(𝑥, 𝑦) uniformly in the range exp((log𝑥)2∕3+𝜖) ≤ 𝑦 ≤ 𝑥
(𝜖 > 0). In particular, our analysis of the function �̃�(𝑥, 𝑦) shows that

lim
𝑥→∞

�̃�(𝑥, 𝑥1∕𝛼)
𝑥 =

𝜌(𝛼)
𝜋 , 𝛼 = log𝑥∕ log 𝑦.

Inmany applications (see [9]), estimates of sums such as �̃�(𝑥, 𝑦) are very useful.
For example, it is well-known that the partial sum of the Möbius function has
no asymptotic formula, but has very beautiful and subtle asymptotic behavior
when the sum is taken over smooth integers [1].
Next, for 𝑧 ∈ ℂ, let 𝑞𝑧(𝑛) denote the coefficients in the following Dirichlet

series expansion:

(𝜁(𝑠)𝛽(𝑠))𝑧−1 ∶=
∞∑

𝑛=1

𝑞𝑧(𝑛)
𝑛𝑠 , Re(𝑠) > 1. (1.7)

When 𝑧 = 2 above, we see that 𝑞2(𝑛) = 𝑟2(𝑛)∕4. Thus, we call 𝑟𝑧(𝑛) ∶=
4𝑧−1𝑞𝑧(𝑛) the generalized sums of two squares function. Here 𝛽(𝑠) is the Dirich-
let beta function (see Section 3 for definition and properties). Using a method
of Selberg, we shall find the asymptotic behavior of

𝑅𝑧(𝑥) ∶=
∑

𝑛≤𝑥
𝑟𝑧(𝑛), |𝑧| < 𝐵, 𝐵 > 0. (1.8)

2. Main results
The first two main results below yield asymptotic estimates for �̃�(𝑥, 𝑦) and

𝑅(𝑥, 𝑦), respectively, for 𝑦 large.

Theorem 2.1. Let 𝜖 > 0 and exp((log𝑥)2∕3+𝜖) ≤ 𝑦 ≤ 𝑥. Then there exists a
𝑐1 > 0 such that

�̃�(𝑥, 𝑦) =
𝑥 ⋅ 𝜌(𝛼)

𝜋 + 𝑂 (
𝑥𝜌(𝛼) log(𝛼 + 1)

log 𝑦
) + 𝑂

(
𝛼2 log𝛼 𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

)

uniformly for 𝛼 and 𝑦. In particular, for any fixed 𝛼 > 1, we have

lim
𝑥→∞

�̃�(𝑥, 𝑥1∕𝛼)
𝑥 =

𝜌(𝛼)
𝜋 .

Theorem 2.2. Let 𝜖 > 0 and exp((log𝑥)2∕3+𝜖) ≤ 𝑦 ≤ 𝑥. Then there exists a
𝑐1 > 0 such that

𝑅(𝑥, 𝑦) = 𝜌(𝛼)⋅𝜋⋅𝑥+𝑂 (
𝑥𝜌(𝛼) log2(𝛼 + 1)

log 𝑦
)+𝑂

(
𝛼2 log𝛼 𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

)

uniformly in 𝛼 and 𝑦. In particular, for any fixed 𝛼 > 1

lim
𝑥→∞

𝑅(𝑥, 𝑥1∕𝛼)
𝑥 = 𝜋 ⋅ 𝜌(𝛼).
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Our thirdmain result below yields an asymptotic estimate for the partial sum
of the generalized sums of two squares function.

Theorem 2.3. Let 𝐵 > 0. Then uniformly for |𝑧| < 𝐵, we have

𝑅𝑧(𝑥) ∶=
∑

𝑛≤𝑥
𝑟𝑧(𝑛) =

𝜋𝑧−1

Γ(𝑧 − 1)
⋅ 𝑥(log𝑥)𝑧−2 + 𝑂

(
𝑥(log𝑥)Re(𝑧)−3

)

where 𝑟𝑧(𝑛) ∶= 4𝑧−1𝑞𝑧(𝑛) and 𝑞𝑧(𝑛) is defined as in (1.7).

3. Notations and preliminaries
Throughout 𝑝 will denote a prime, 𝑥 will denote a non-integral positive real

number and 2 ≤ 𝑦 ≤ 𝑥. For a positive integer 𝑛, we denote by 𝜈(𝑛) the number
of distinct prime factors of 𝑛. Let 𝛾(𝑛) denote the core of 𝑛, which is the square-
free part of 𝑛. Let𝑃(𝑛) denote the largest prime factor of 𝑛. We put𝑃(1) = 1. An
arithmetical function 𝑓 ∶ ℤ → ℂ is calledmultiplicative if 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛)
when (𝑚, 𝑛) = 1. If 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) for all 𝑚, 𝑛 ≥ 1, we call 𝑓 totally or
completely multiplicative. The Dirichlet convolution for two arithmetical func-
tions 𝑓 and 𝑔 is defined as follows:

(𝑓 ∗ 𝑔)(𝑛) ∶=
∑

𝑑|𝑛
𝑓(𝑑)𝑔(𝑛∕𝑑) =

∑

𝑑|𝑛
𝑓(𝑛∕𝑑)𝑔(𝑑).

For two real or complex valued functions 𝑓 and 𝑔, the Landau notation 𝑓 =
𝑂(𝑔)means that |𝑓(𝑥)| ≤ 𝑀|𝑔(𝑥)|, 𝑥 → ∞ for some𝑀 > 0. Equivalently, the
Vinogradov notation 𝑓 ≪ 𝑔 means that 𝑓 = 𝑂(𝑔). If the constant𝑀 depends
on some additional parameter, say, 𝜅, wewrite 𝑓 ≪𝜅 𝑔 or 𝑓 = 𝑂𝜅(𝑔). We denote
by 𝛼 ∶= log𝑥∕ log 𝑦 and use ⌊𝑥⌋ to denote the greatest integer ≤ 𝑥.
Let 𝜑(𝑛) denote Euler totient function, which counts the number of positive

integers up to 𝑛 and coprime to 𝑛. For a complex number 𝑠 = 𝜎 + 𝑖𝑡 (𝜎 =
Re(𝑠), 𝑡 = Im(𝑠)), we define the Riemann zeta function 𝜁(𝑠) and the Dirichlet
beta function 𝛽(𝑠) as follows:

𝜁(𝑠) ∶=
∞∑

𝑛=1

1
𝑛𝑠 , 𝜎 > 1, 𝛽(𝑠) ∶=

∞∑

𝑛=0

𝜒−4(𝑛)
𝑛𝑠 , 𝜎 > 0

where 𝜒−4(⋅) denotes the Kronecker symbol defined as follows:

𝜒−4(𝑛) ∶= (−4𝑛 ) ∶=
⎧

⎨
⎩

1, if 𝑛 ≡ 1 (mod 4)
−1, if 𝑛 ≡ 3 (mod 4)
0, otherwise.

Define the set A ∶= {𝑛 ∈ ℕ ∶ 𝑝|𝑛 ⇒ 𝑝 ≡ 1 (mod 4)}, and let 𝜅(𝑛) be the
characteristic function on A. In view of Theorem 1.3, we see that the quantity
𝜅(𝑛)2𝜈(𝑛) counts the number of representations of 𝛾(𝑛) as a sum of squares for



GAUSS CIRCLE PROBLEM OVER SMOOTH INTEGERS 275

𝑛 odd. In other words, 𝜅(𝑛)2𝜈(𝑛) = 1
4
𝑟2(𝛾(𝑛)), (𝑛, 2) = 1. We thus define

�̃�(𝑥) =
∑

𝑛≤𝑥
𝜅(𝑛)2𝜈(𝑛) = 1

4
∑

𝑛≤𝑥
(𝑛,2)=1

𝑟2(𝛾(𝑛)). (3.1)

For 𝑥 > 0 and 2 ≤ 𝑦 ≤ 𝑥, we also define the function

�̃�(𝑥, 𝑦) ∶=
∑

𝑛≤𝑥
𝑃(𝑛)≤𝑦

𝜅(𝑛)2𝜈(𝑛). (3.2)

Let 𝑆(𝑥, 𝑦) ∶= {𝑛 ≤ 𝑥 ∶ 𝑃(𝑛) ≤ 𝑦} denote the set of 𝑦-smooth integers up to 𝑥
and Ψ(𝑥, 𝑦) ∶= |𝑆(𝑥, 𝑦)|. Dickman showed that [6]

lim
𝑥→∞

Ψ(𝑥, 𝑥1∕𝛼)
𝑥 = 𝜌(𝛼)

where 𝜌(𝛼) satisfies the integral equation

𝜌(𝛼) =

⎧
⎪

⎨
⎪
⎩

0, 𝛼 < 0
1, 0 ≤ 𝛼 ≤ 1

1 − ∫
𝛼

1

𝜌(𝑢 − 1)
𝑢 𝑑𝑢, 𝛼 > 1.

We define the following function, which we will require later:

ℛ̃(𝑥, 𝑦) ∶= 𝑥 ∫
∞

0
𝜌 (

log𝑥 − log 𝑡
log 𝑦

)𝑑 (
�̃�(𝑡)
𝑡 ) . (3.3)

We have the following classical zero-free region for 𝜁(𝑠) due to de la Vallée
Poussin [5] and estimates for 𝜁(𝑠) (see [14, Chapter 6, Theorem 6.6], [4, Chapter
13, page 86]):

Theorem 3.1. There is an absolute constant 𝑐 > 0 such that 𝜁(𝑠) ≠ 0 for 𝜎 >
1 − 𝑐∕ log(|𝑡| + 1). If 𝜎 > 1 − 𝑐∕(2 log(|𝑡| + 4)) and |𝑡| > 7∕8, then

| log 𝜁(𝑠)|≪ log log(|𝑡| + 4) + 𝑂(1) and 1
𝜁(𝑠)

≪ log(|𝑡| + 4). (3.4)

On the other hand, if 1−𝑐∕(2 log(|𝑡|+4)) < 𝜎 ≤ 2and |𝑡| ≤ 7∕8, then log(𝜁(𝑠)(𝑠−
1))≪ 1 and 1∕𝜁(𝑠)≪ |𝑠 − 1|.

Let 𝜋(𝑥; 𝑞, 𝑎) denote the number of primes 𝑝 ≤ 𝑥 for which 𝑝 ≡ 𝑎 (mod 𝑞).

Also, let li(𝑥) ∶= ∫
𝑥

2

𝑑𝑡
log 𝑡

. Then the Siegel–Walfisz theorem (see [14, Chapter

11, Corollary 11.21]) gives

Theorem 3.2. Given 𝐴 > 0, there is a constant 𝑐1 > 0 such that if 𝑞 ≤ (log𝑥)𝐴
and (𝑎, 𝑞) = 1, then

𝜋(𝑥; 𝑞, 𝑎) =
li(𝑥)
𝜑(𝑞)

+ 𝑂𝐴
(
𝑥 exp(−𝑐1

√
log𝑥)

)
.
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For our applications later, we have 𝑥 ≥ 3 and 𝑞 = 4 in Theorem 3.2. Thus,
the inequality 4 ≤ (log𝑥)𝐴 is satisfied for some 𝐴 ≤ 15, and hence, we can
suppress the dependence of𝐴 from the𝑂-term in Theorem 3.2. We next obtain
an estimate for 𝛽(𝑠), which we will require later.

Lemma 3.3. For 𝛿 > 0, we have

𝛽(𝑠)≪ 𝜁(1 + 𝛿), if 𝜎 ≥ 1 + 𝛿

and if 0 < 𝛿 < 1, we have

𝛽(𝑠)≪

⎧
⎪

⎨
⎪
⎩

4𝛿−1max (
|𝑡|𝛿

𝛿
, |𝑡|

𝛿

1 − 𝛿
, 4𝛿−1), if 1 − 𝛿 < 𝜎 < 2, |𝑡| ≥ 1

|𝑠|
𝜎 , if 0 < 𝜎 < 1 + 𝛿, |𝑡| < 1.

(3.5)

Proof. First, note that

𝛽(𝑠) = 4−𝑠 (𝜁 (𝑠, 14) − 𝜁 (𝑠, 34)) (3.6)

where 𝜁(𝑠, 𝛼) is the Hurwitz zeta function defined by

𝜁(𝑠, 𝛼) ∶=
∞∑

𝑛=0

1
(𝑛 + 𝛼)𝑠

.

If 𝜎 ≥ 1+ 𝛿, trivially from the definition of 𝛽(𝑠)we have 𝛽(𝑠)≪ 𝜁(1 + 𝛿).Next,
let 1 − 𝛿 ≤ 𝜎 ≤ 2 and |𝑡| ≥ 1. Then from (3.6), we have

|𝛽(𝑠)| ≤ 4𝛿−1 (|𝜁(𝑠, 1∕4) − (1∕4)𝑠| + |𝜁(𝑠, 3∕4) − (3∕4)𝑠|) + 42(𝛿−1)|1 + 3𝑠|

≤ 4𝛿−1 (|𝜁(𝑠, 1∕4) − (1∕4)𝑠| + |𝜁(𝑠, 3∕4) − (3∕4)𝑠|) + 10 ⋅ 42(𝛿−1). (3.7)

From the proof in [2, Chapter 12, Theorem 12.23 (b)], it can be seen that

|𝜁(𝑠, 𝛼) − 𝛼𝑠|≪ max (
|𝑡|𝛿

𝛿
, |𝑡|

𝛿

1 − 𝛿
), |𝑡| ≥ 1, 0 < 𝛿 < 1 (3.8)

where the implicit constant is absolute. Thus, (3.7) and (3.8) give

|𝛽(𝑠)|≪ 4𝛿−1max (
|𝑡|𝛿

𝛿
, |𝑡|

𝛿

1 − 𝛿
, 4𝛿−1), |𝑡| ≥ 1, 0 < 𝛿 < 1. (3.9)

For 0 < 𝜎 ≤ 2 and |𝑡| < 1, we use Stieltjes integration to estimate 𝛽(𝑠). We have

𝛽(𝑠) = ∫
∞

1−

𝑑(S(𝑥))
𝑥𝑠 , S(𝑥) ∶=

∑

𝑛≤𝑥
𝜒−4(𝑛). (3.10)

Note that 𝜒−4(⋅) is a (non-principal) primitive character of conductor 4, so that
by the Pólya-Vinogradov inequality (see [14, Chapter 9, (9.16)]) we have

S(𝑥) < 8 log 2. (3.11)
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Thus (3.10) and (3.11) lead to

𝛽(𝑠) =
S(𝑥)
𝑥𝑠

|||||||

∞

𝑥=1−
+ 𝑠 ∫

∞

1

S(𝑥)
𝑥𝑠+1

𝑑𝑥 ≪ |𝑠|
𝜎 , 𝜎 > 0.

This completes the proof. □

Next, we show that a slight modification of 𝑟2(𝑛) is multiplicative.

Lemma 3.4. The function 𝑟2(𝑛)∕4 is multiplicative.

Proof. By Theorem 1.3, we have

𝑟2(𝑛)∕4 =
∑

𝑑|𝑛
(−1)(𝑑−1)∕2 = (1 ∗ 𝜒−4)(𝑛) (3.12)

where 1(𝑛) = 1 for all 𝑛 ∈ ℕ. Since 1 and𝜒−4 aremultiplicative, it follows from
(3.12) that 𝑟2(𝑛)∕4 is multiplicative too. □

Lemma 3.5. The function 𝜅(𝑛) is totally multiplicative.

Proof. Consider two integers 𝑚, 𝑛 ≥ 1. Then 𝜅(𝑚𝑛) is either zero or 1. If
𝜅(𝑚𝑛) = 0, then there is a prime 𝑝 such that 𝑝|𝑚𝑛 and either 𝑝 = 2 or 𝑝 ≡
3 (mod 4). Since 𝑝|𝑚𝑛 and 𝑝 is a prime, we have either 𝑝|𝑚 or 𝑝|𝑛. Thus
𝜅(𝑚)𝜅(𝑛) = 0 and so, 𝜅(𝑚𝑛) = 𝜅(𝑚)𝜅(𝑛). Similarly, it can be shown that when
𝜅(𝑚𝑛) = 1, 𝜅(𝑚)𝜅(𝑛) = 1 and so, 𝜅(𝑚𝑛) = 𝜅(𝑚)𝜅(𝑛). This completes the
proof. □

Consider the following Dirichlet series:

𝐷(𝑠) ∶=
∞∑

𝑛=1

𝜅(𝑛)2𝜈(𝑛)

𝑛𝑠 , 𝜎 > 1. (3.13)

Lemma 3.6. We have

𝐷(𝑠) = (1 + 1
2𝑠 )

−1 𝜁(𝑠)𝛽(𝑠)
𝜁(2𝑠)

.

Proof. Since 𝜅(𝑛)2𝜈(𝑛) is multiplicative, 𝐷(𝑠) admits an Euler product repre-
sentation as follows:

𝐷(𝑠) =
∏

𝑝
(1 +

𝜅(𝑝)2𝜈(𝑝)

𝑝𝑠 +
𝜅(𝑝2)2𝜈(𝑝2)

𝑝2𝑠
+⋯)

=
∏

𝑝≡1 (mod 4)
(1 + 2

𝑝𝑠 +
2
𝑝2𝑠

+⋯)

=
∏

𝑝≡1 (mod 4)
(1 + 2

𝑝𝑠 − 1) =
∏

𝑝≡1 (mod 4)
(1 + 1

𝑝𝑠 ) (1 −
1
𝑝𝑠 )

−1

= (1 + 1
2𝑠 )

−1 𝜁(𝑠)𝛽(𝑠)
𝜁(2𝑠)

.

□
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The main reason for studying the sum �̃�(𝑥) instead of 𝑅(𝑥) is described as
follows. Let us put 𝑞2(𝑛) = 𝑟2(𝑛)∕4. Then by Lemma 3.4, we have

∞∑

𝑛=1

𝑞2(𝑛)
𝑛𝑠 = 𝜁(𝑠)𝛽(𝑠). (3.14)

Thus we see from Lemma 3.6 that the Dirichlet series for 𝜅(𝑛)2𝜈(𝑛) differs from
that for 𝑞2(𝑛) in (3.14) by the function ((1 + 2−𝑠)𝜁(2𝑠))−1, which is convergent in
a larger half-plane. More importantly, �̃�(𝑥) can be handled more conveniently
than 𝑅(𝑥) as we shall see soon.
We have the following asymptotic estimate for �̃�(𝑥).

Lemma 3.7. Let 𝑥 > 0. Then we have

�̃�(𝑥) = 𝑥
𝜋 + 𝑂

(√
𝑥 log𝑥

)
.

Proof. We have from Lemma 3.6 and (3.14) that

(1 + 1
2𝑠 )

∞∑

𝑛=1

𝜅(𝑛)2𝜈(𝑛)

𝑛𝑠 = (
∞∑

𝑛=1

𝜇(𝑛)
𝑛2𝑠

) (
∞∑

𝑛=1

𝑞2(𝑛)
𝑛𝑠 ) =

∞∑

𝑛=1

𝑓(𝑛)
𝑛𝑠 . (3.15)

where 𝑓(𝑛) ∶=
∑

𝑑2|𝑛 𝜇(𝑑)𝑞2(𝑛∕𝑑
2). Since both sides of (3.15) are Dirichlet

series, which converge for 𝜎 > 1, it follows from the uniqueness of Dirichlet
series [2, Chapter 11, Theorem 11.3] that

∑

𝑛≤𝑥
𝜅(𝑛)2𝜈(𝑛) +

∑

𝑛≤𝑥∕2
𝜅(𝑛)2𝜈(𝑛) =

∑

𝑛≤𝑥
𝑓(𝑛) =

∑

1≤𝑚≤
√
𝑥

𝜇(𝑚)
∑

1≤𝓁≤𝑥∕𝑚2

𝑞2(𝓁).

(3.16)

Using Theorem 1.4 in the right-hand side of (3.16), we get

𝑃(𝑥) ∶= �̃�(𝑥) + �̃�(𝑥∕2) = 1
4

∑

1≤𝑚≤
√
𝑥

𝜇(𝑚) (
𝜋𝑥
𝑚2 + 𝑂 (

√
𝑥
𝑚 )) (3.17)

= 𝜋𝑥
4𝜁(2)

+ 𝑂(
√
𝑥 log𝑥). (3.18)

Let 𝑁 = ⌊ log𝑥
log 2

⌋. Substituting 𝑥 by 𝑥∕2, 𝑥∕22, 𝑥∕23,⋯ , 𝑥∕2𝑁 in (3.17) and then
considering the telescoping sum, we see that

𝑁∑

𝑘=0
(−1)𝑘𝑃(𝑥∕2𝑘) = {

�̃�(𝑥) + �̃�(𝑥∕2𝑁+1), 𝑁 even
�̃�(𝑥) − �̃�(𝑥∕2𝑁+1), 𝑁 odd.

(3.19)

Since �̃�(𝑥∕2𝑁+1) = 𝑂(1), we conclude from (3.17) and (3.19) that

�̃�(𝑥) = 𝜋𝑥
4𝜁(2)

𝑁∑

𝑘=0

(−1)𝑘

2𝑘
+ 𝑂

⎛
⎜
⎝

√
𝑥 log𝑥

𝑁∑

𝑘=0
2−𝑘∕2

⎞
⎟
⎠
. (3.20)
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Noting that
∞∑

𝑘=𝑁+1
2−𝑘 = 𝑂(2−𝑁) = 𝑂 ( 1𝑥), we find from (3.20) that

�̃�(𝑥) = 𝜋𝑥
4𝜁(2)

∞∑

𝑘=0

(−1)𝑘

2𝑘
+ 𝑂

(√
𝑥 log𝑥

)
= 𝑥
𝜋 + 𝑂(

√
𝑥 log𝑥), (3.21)

which completes the proof of the result. □

Remark 3.8. We note here that the error term in Lemma 3.7 can be improved
by using Sierpiński’s result [15] or other results with better error terms for 𝑅(𝑥)
(see [3]). For our purposes, 𝑂(

√
𝑥 log𝑥) suffices since an improved 𝑂-term will

not really improve the subsequent 𝑂-terms in our analysis.

For the purpose of establishing asymptotic estimates for �̃�(𝑥, 𝑦) for various
ranges of 𝑦, we require the following recurrence result:

Lemma 3.9. Let 2 ≤ 𝑦 ≤ 𝑦ℎ ≤ 𝑥 and ℎ ≥ 1. Then there exists a 𝑐1 > 0 such that

�̃�(𝑥, 𝑦) = �̃�(𝑥, 𝑦ℎ) − ∫
𝑦ℎ

𝑦
�̃�
(𝑥
𝑡 , 𝑡

) 𝑑𝑡
log 𝑡

+ 𝑂
(
𝛼𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

)
.

Proof. We have

�̃�(𝑥, 𝑦ℎ) − �̃�(𝑥, 𝑦) =
∑

𝑛≤𝑥
𝑦<𝑃(𝑛)≤𝑦ℎ

𝜅(𝑛)2𝜈(𝑛). (3.22)

Let 𝑃(𝑛) = 𝑝. Then we have
∑

𝑛≤𝑥
𝑦<𝑃(𝑛)≤𝑦ℎ

𝜅(𝑛)2𝜈(𝑛) =
∑

𝑦<𝑝≤𝑦ℎ

∑

𝑝𝑛≤𝑥
𝑃(𝑛)≤𝑝

𝜅(𝑝𝑛)2𝜈(𝑛𝑝) =
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛𝑝).

(3.23)

Observe that the inner sum in the right-hand side of (3.23) can be rewritten as
follows:

∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛𝑝) =
∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝
(𝑛,𝑝)=1

𝜅(𝑛)2𝜈(𝑛𝑝) +
∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝
𝑝|𝑛

𝜅(𝑛)2𝜈(𝑛𝑝)

= 2
∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝
(𝑛,𝑝)=1

𝜅(𝑛)2𝜈(𝑛) + 𝜅(𝑝)
∑

𝑛≤𝑥∕𝑝2
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛𝑝)

= 2

⎧
⎪

⎨
⎪
⎩

∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛) − 𝜅(𝑝)
∑

𝑛≤𝑥∕𝑝2
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛𝑝)

⎫
⎪

⎬
⎪
⎭



280 ANKUSH GOSWAMI

+ 𝜅(𝑝)
∑

𝑛≤𝑥∕𝑝2
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛𝑝)

= 2
∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛) − 𝜅(𝑝)
∑

𝑛≤𝑥∕𝑝2
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛𝑝)

= 2
∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛) + 𝑂 ( 𝑥
𝑝2
) = 2�̃� (𝑥𝑝 , 𝑝) + 𝑂 ( 𝑥

𝑝2
) (3.24)

where the𝑂-term in the penultimate step above follows fromLemma 3.7. Com-
bining (3.23) and (3.24), we get

∑

𝑛≤𝑥
𝑦<𝑃(𝑛)≤𝑦ℎ

𝜅(𝑛)2𝜈(𝑛) = 2
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

�̃� (𝑥𝑝 , 𝑝) + 𝑂
⎛
⎜
⎝
𝑥

∑

𝑦<𝑝≤𝑦ℎ

1
𝑝2
⎞
⎟
⎠

= 2
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

�̃� (𝑥𝑝 , 𝑝) + 𝑂(𝑥𝑦−1). (3.25)

Next, we have

∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

�̃� (𝑥𝑝 , 𝑝) −
1
2 ∫

𝑦ℎ

𝑦
�̃�
(𝑥
𝑡 , 𝑡

) 𝑑𝑡
log 𝑡

=
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛)

− 1
2 ∫

𝑦ℎ

𝑦

⎛
⎜
⎜
⎝

∑

𝑛≤𝑥∕𝑡
𝑃(𝑛)≤𝑡

𝜅(𝑛)2𝜈(𝑛)
⎞
⎟
⎟
⎠

𝑑𝑡
log 𝑡

=
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)<𝑝

𝜅(𝑛)2𝜈(𝑛) − 1
2 ∫

𝑦ℎ

𝑦

⎛
⎜
⎜
⎝

∑

𝑛≤𝑥∕𝑡
𝑃(𝑛)≤𝑡

𝜅(𝑛)2𝜈(𝑛)
⎞
⎟
⎟
⎠

𝑑𝑡
log 𝑡

+
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

∑

𝑛≤𝑥∕𝑝
𝑃(𝑛)=𝑝

𝜅(𝑛)2𝜈(𝑛)

=
∑

𝑛≤𝑥∕𝑦
𝑃(𝑛)≤𝑦ℎ

𝜅(𝑛)2𝜈(𝑛)

⎛
⎜
⎜
⎜
⎝

∑

max (𝑃(𝑛),𝑦)<𝑝≤min (𝑥∕𝑛,𝑦ℎ)
𝑝≡1 (mod 4)

1 − 1
2 ∫

min (𝑥∕𝑛,𝑦ℎ)

max (𝑃(𝑛),𝑦)

𝑑𝑡
log 𝑡

⎞
⎟
⎟
⎟
⎠

+
∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

∑

𝑛≤𝑥∕𝑝2
𝑃(𝑛)≤𝑝

𝜅(𝑛)2𝜈(𝑛)
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=
∑

𝑛≤𝑥∕𝑦
𝑃(𝑛)≤𝑦ℎ

𝜅(𝑛)2𝜈(𝑛)

⎛
⎜
⎜
⎜
⎝

∑

max (𝑃(𝑛),𝑦)<𝑝≤min (𝑥∕𝑛,𝑦ℎ)
𝑝≡1 (mod 4)

1 − 1
2 ∫

min (𝑥∕𝑛,𝑦ℎ)

max (𝑃(𝑛),𝑦)

𝑑𝑡
log 𝑡

⎞
⎟
⎟
⎟
⎠

+ 𝑂(𝑥𝑦−1)
(3.26)

where the 𝑂-term in the last step above follows from Lemma 3.7. We now in-
voke Theorem 3.2 to find that

∑

max (𝑃(𝑛),𝑦)<𝑝≤min (𝑥∕𝑛,𝑦ℎ)
𝑝≡1 (mod 4)

1 − 1
2 ∫

min (𝑥∕𝑛,𝑦ℎ)

max (𝑃(𝑛),𝑦)

𝑑𝑡
log 𝑡

= 𝑂
(𝑥
𝑛 exp(−𝑐1

√
log 𝑦)

)
.

(3.27)

Using the estimate (3.27) in (3.26), we obtain

∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

�̃� (𝑥𝑝 , 𝑝) −
1
2 ∫

𝑦ℎ

𝑦
�̃�
(𝑥
𝑡 , 𝑡

) 𝑑𝑡
log 𝑡

= 𝑂
⎛
⎜
⎝
𝑥 exp(−𝑐1

√
log 𝑦)

∑

𝑛≤𝑥∕𝑦

𝜅(𝑛)2𝜈(𝑛)

𝑛
⎞
⎟
⎠
+ 𝑂

(
𝑥𝑦−1

)
. (3.28)

Using Theorem 1.4 or Lemma 3.7, we obtain by Stieltjes integration that

∑

𝑦<𝑝≤𝑦ℎ
𝑝≡1 (mod 4)

�̃� (𝑥𝑝 , 𝑝) −
1
2 ∫

𝑦ℎ

𝑦
�̃�
(𝑥
𝑡 , 𝑡

) 𝑑𝑡
log 𝑡

= 𝑂
(
𝛼𝑥 exp(−𝑐1

√
log 𝑦) log 𝑦

)
+ 𝑂(𝑥𝑦−1). (3.29)

The lemma follows from (3.25), (3.29) and the fact that 𝑂(𝑥𝑦−1) is suppressed
by the first 𝑂-term in (3.29). □

Lemma 3.10. Let 2 ≤ 𝑦 ≤ 𝑦ℎ ≤ 𝑥, ℎ ≥ 1. Then

ℛ̃(𝑥, 𝑦) = ℛ̃(𝑥, 𝑦ℎ) − ∫
𝑦ℎ

𝑦
ℛ̃
(𝑥
𝑢 , 𝑢

) 𝑑𝑢
log𝑢

(3.30)

where ℛ̃(𝑥, 𝑦) is defined in (3.3).

Proof. Using the identity (see [7, pp. 7, Eq. 3.4])

𝑥𝜌 (
log𝑥 − log 𝑡

log 𝑦
) = 𝑥𝜌 (

log𝑥 − log 𝑡
log 𝑦ℎ

) − 𝑥 ∫
𝑦ℎ

𝑦

𝜌 (
log(𝑥∕𝑢) − log 𝑡

log𝑢
)

𝑢
𝑑𝑢
log𝑢

we get the required result. □
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We also need the following useful result in the sequel.

Lemma 3.11. For 𝑥, 𝑦 ≥ 1 we have
∑

𝑛∈𝑆(𝑥,𝑦)

1
𝑛2

= 𝜁(2) + 𝑂 ( 1𝑥) + 𝑂 (1𝑦) . (3.31)

Proof. First, let 𝑦 ≥ 𝑥. Then
∑

𝑛∈𝑆(𝑥,𝑦)

1
𝑛2

=
∑

𝑛≤𝑥

1
𝑛2

= 𝜁(2) + 𝑂 ( 1𝑥) . (3.32)

Next, let 𝑦 < 𝑥. Then
∑

𝑛∈𝑆(𝑥,𝑦)

1
𝑛2

=
∑

𝑛≤𝑥

1
𝑛2

−
∑

𝑦<𝑝≤𝑥

1
𝑝2

∑

𝑛∈𝑆(𝑥∕𝑝,𝑝)

1
𝑛2

= 𝜁(2) + 𝑂 ( 1𝑥) +
∑

𝑦<𝑝≤𝑥

1
𝑝2

⋅ 𝑂(1)

= 𝜁(2) + 𝑂 ( 1𝑥) + 𝑂 (1𝑦) . (3.33)

The lemma now follows from (3.32) and (3.33). □

We conclude this section with the following result required in the proof of
Theorem 2.3.

Lemma 3.12. Let 𝐵 ≥ 2 be an integer and 𝜀 > 0. Then for 𝑥 > 0 and some
0 < 𝛿𝐵 < 1, we have

𝑅𝐵(𝑥) = 𝑥𝑃𝐵(log𝑥) + 𝑂
(
𝑥𝛿𝐵+𝜀

)

where 𝑃𝐵(𝑡) is a polynomial in 𝑡 of degree 𝐵 − 2, and for 𝑧 ∈ ℂ, 𝑅𝑧(𝑥) is defined
as in (1.8).

Proof. We use induction to prove this result. For 𝐵 = 2, this is clearly true
from Theorem 1.4. By induction hypothesis, let us assume that

𝑅𝓁(𝑥) = 𝑥𝑃𝓁(log𝑥) + 𝑂(𝑥𝛿𝓁) (3.34)

for 3 ≤ 𝓁 ≤ 𝐵−1with 0 < 𝛿𝓁 < 1 and 𝑃𝓁(𝑥) is a polynomial in 𝑥 of degree 𝓁−2.
Noting that (𝜁(𝑠)𝛽(𝑠))𝐵−1 = (𝜁(𝑠)𝛽(𝑠)) ⋅ (𝜁(𝑠)𝛽(𝑠))𝐵−2, the Dirichlet hyperbola
method (see [2, Chapter 3, Theorem 3.17]) yields

𝑅𝐵(𝑥) =
∑

𝑛≤𝑎
𝑞2(𝑛)𝑅𝐵−1(𝑥∕𝑛) +

∑

𝑛≤𝑏
𝑞𝐵−1(𝑛)𝑅2(𝑥∕𝑛) − 𝑅2(𝑎)𝑅𝐵−1(𝑏) (3.35)

where 𝑎, 𝑏 are positive reals with 𝑎𝑏 = 𝑥. Next, we estimate the sums in the
right-hand side of (3.35). Using induction hypothesis and (3.34), we obtain

∑

𝑛≤𝑎
𝑞2(𝑛)𝑅𝐵−1(𝑥∕𝑛) =

∑

𝑛≤𝑎
𝑞2(𝑛) (

𝑥𝑃𝐵−1(log𝑥∕𝑛)
𝑛 + 𝑂 (

(𝑥
𝑛

)𝛿𝐵−1+𝜀
)) . (3.36)
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The first sum in the right-hand side of (3.36) can be estimated using Theorem
1.4 and Abel’s summation formula to obtain
∑

𝑛≤𝑎
𝑞2(𝑛)

𝑃𝐵−1(log𝑥∕𝑛)
𝑛

=
𝑃𝐵−1(log𝑥∕𝑎)𝑅2(𝑎)

𝑎 + ∫
𝑎

1
𝑅2(𝑡) 𝑑 (

𝑃𝐵−1(log𝑥∕𝑡)
𝑡 )

= 𝜋𝑃𝐵−1(log𝑥∕𝑎) + 𝑂(𝑥𝜀𝑎−
1
2 ) + ∫

𝑎

1
𝑅2(𝑡)

𝑄𝐵−1(log𝑥∕𝑡)
𝑡2

𝑑𝑡

= 𝜋𝑃𝐵−1(log𝑥∕𝑎) + 𝑂(𝑥𝜀𝑎−
1
2 ) + 𝜋 ∫

𝑎

1

𝑄𝐵−1(log𝑥∕𝑡)
𝑡 𝑑𝑡

+ ∫
𝑎

1

(𝑅2(𝑡) − 𝜋𝑡) ⋅ 𝑄𝐵−1(log𝑥∕𝑡)
𝑡2

𝑑𝑡

= 𝜋𝑃𝐵−1(log𝑥∕𝑎) + 𝑂(𝑥𝜀𝑎−
1
2 ) + 𝜋 ∫

𝑎

1

𝑄𝐵−1(log𝑥∕𝑡)
𝑡 𝑑𝑡

+ ∫
∞

1

(𝑅2(𝑡) − 𝜋𝑡) ⋅ 𝑄𝐵−1(log𝑥∕𝑡)
𝑡2

𝑑𝑡 − ∫
∞

𝑎

(𝑅2(𝑡) − 𝜋𝑡) ⋅ 𝑄𝐵−1(log𝑥∕𝑡)
𝑡2

𝑑𝑡

= 𝑇𝐵(log𝑥, log 𝑎) + 𝑂 (𝑥𝜀𝑎−
1
2 ) (3.37)

where 𝑄𝐵−1(𝑡) ∶= 𝑃′𝐵−1(𝑡) + 𝑃𝐵−1(𝑡) and 𝑇𝐵(𝑋,𝑌) is a polynomial in 𝑋 and 𝑌
of degree 𝐵 − 2. The second sum in the right-hand side of (3.36) is

≪ 𝑥𝛿𝐵−1+𝜀
∑

𝑛≤𝑎

𝑞2(𝑛)
𝑛𝛿𝐵−1+𝜀

≪ 𝑥𝛿𝐵−1+𝜀(1 + 𝑎1−𝛿𝐵−1+𝜀). (3.38)

Next, we have

∑

𝑛≤𝑏
𝑞𝐵−1(𝑛)𝑅2(𝑥∕𝑛) =

∑

𝑛≤𝑏
𝑞𝐵−1(𝑛) (

𝜋𝑥
𝑛 + 𝑂 (

(𝑥
𝑛

)1∕2
))

= 𝜋𝑥
∑

𝑛≤𝑏

𝑞𝐵−1(𝑛)
𝑛 + 𝑂

⎛
⎜
⎝

√
𝑥
∑

𝑛≤𝑏

𝑞𝐵−1(𝑛)√
𝑛

⎞
⎟
⎠
. (3.39)

To estimate the first sum in the right-hand side of (3.39), we use (3.34) and
Abel’s summation formula to obtain

∑

𝑛≤𝑏

𝑞𝐵−1(𝑛)
𝑛 =

𝑅𝐵−1(𝑏)
𝑏

+ ∫
𝑏

1

𝑅𝐵−1(𝑡)
𝑡2

𝑑𝑡

= 𝑃𝐵−1(log 𝑏) + 𝑂
(
𝑏𝛿𝐵−1−1+𝜀

)
+ ∫

𝑏

1

𝑡𝑃𝐵−1(log 𝑡)
𝑡2

𝑑𝑡
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+ ∫
𝑏

1

𝑅𝐵−1(𝑡) − 𝑡𝑃𝐵−1(log 𝑡)
𝑡2

𝑑𝑡

= 𝑃𝐵−1(log 𝑏) + 𝑂
(
𝑏𝛿𝐵−1−1+𝜀

)
+ ∫

𝑏

1

𝑡𝑃𝐵−1(log 𝑡)
𝑡2

𝑑𝑡

+ ∫
∞

1

𝑅𝐵−1(𝑡) − 𝑡𝑃𝐵−1(log 𝑡)
𝑡2

𝑑𝑡 − ∫
∞

𝑏

𝑅𝐵−1(𝑡) − 𝑡𝑃𝐵−1(log 𝑡)
𝑡2

𝑑𝑡

= 𝑉𝐵(log 𝑏) + 𝑂
(
𝑏𝛿𝐵−1−1+𝜀

)
(3.40)

where 𝑉𝐵(𝑥) is a polynomial in 𝑥 of degree 𝐵 − 2. In a similar way, the second
sum in the right-hand side of (3.39) can be estimated as follows:

∑

𝑛≤𝑏

𝑞𝐵−1(𝑛)√
𝑛

≪ 𝑏
1
2
+𝜀. (3.41)

Finally, we have

𝑅2(𝑎)𝑅𝐵−1(𝑏) = (𝜋𝑎 + 𝑂(𝑎
1
2 ))(𝑏𝑃𝐵−1(log 𝑏) + 𝑂(𝑏𝛿𝐵−1+𝜀))

= 𝜋𝑎𝑏𝑃𝐵−1(log 𝑏) + 𝑂 (𝑎𝑏𝛿𝐵−1+𝜀 + 𝑎
1
2𝑏1+𝜀) . (3.42)

From (3.35)–(3.42), we obtain

𝑅𝐵(𝑥) = 𝑥𝑇𝐵(log𝑥, log 𝑎) + 𝜋𝑥𝑉𝐵(log 𝑏) − 𝜋𝑥𝑃𝐵−1(log 𝑏) (3.43)

+ 𝑂 (𝑥1+𝜀𝑎−
1
2 + 𝑥𝛿𝐵−1+𝜀 + 𝑥𝛿𝐵−1+𝜀𝑎1−𝛿𝐵−1+𝜀 + 𝑥𝑏𝛿𝐵−1−1+𝜀 + 𝑥

1
2𝑏

1
2
+𝜀

+𝑎𝑏𝛿𝐵−1+𝜀 + 𝑎
1
2𝑏1+𝜀) .

At this point, we substitute 𝑏 = 𝑥
𝑎
to find that the 𝑂-term is

≪ 𝑥1+𝜀𝑎−
1
2 + 𝑥𝛿𝐵−1+𝜀𝑎1−𝛿𝐵−1+𝜀 (3.44)

and tominimize this error, we choose 𝑎 = 𝑥
1−𝛿𝐵−1
3
2 −𝛿𝐵−1 to find that the error in (3.44)

is≪ 𝑥𝛿𝐵+𝜀 for 𝜀 sufficiently small where 𝛿𝐵 =
2−𝛿𝐵−1
3−2𝛿𝐵−1

< 1. From preceding dis-
cussions, the first two terms in the right-hand side of (3.43) are polynomials of
degree 𝐵− 2 and under the above substitutions, their sum still yields a polyno-
mial in log𝑥 of degree 𝐵 − 2. The result now follows from noting that the first
three terms in the right-hand side of (3.43) together yields 𝑥𝑃𝐵(log𝑥) where
𝑃𝐵(𝑥) is a polynomial in 𝑥 of degree 𝐵 − 2. □

4. Proof of main results
4.1. Proof ofTheorem2.1. Wefirst show that the continuous function ℛ̃(𝑥, 𝑦)
is a good approximation to �̃�(𝑥, 𝑦) for a certain range of 𝑦. To this end, let ℎ ≥ 1.
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For 2 ≤ 𝑦 ≤ 𝑡 ≤ 𝑡ℎ ≤ 𝑥, let us put

E(𝑥, 𝑡) = �̃�(𝑥, 𝑡) − ℛ̃(𝑥, 𝑡).

Then it follows from Lemma 3.9 and Lemma 3.10 that

E(𝑥, 𝑡) = E(𝑥, 𝑡ℎ) − ∫
𝑡ℎ

𝑡
E
(𝑥
𝑢 , 𝑢

) 𝑑𝑢
log𝑢

+ 𝑂
(
𝑥 log𝑥 exp(−𝑐1

√
log 𝑡)

)
. (4.1)

For 𝑦 ≥ 2 and 𝑘 ∈ ℕ, we further define

𝜙𝑘(𝑦) ∶= sup
0<𝑥≤𝑡𝑘
𝑡≥𝑦

𝑥−1|E(𝑥, 𝑡)|. (4.2)

We shall prove an inequality for 𝜙𝑘(𝑦) by induction on 𝑘. It is clear that 𝜙1(𝑦) =
0. For 𝑘 ≥ 2, choose ℎ = 𝑘∕(𝑘−1) and take 𝑥 ≤ 𝑦𝑘 ≤ 𝑡𝑘. Then 𝑥 ≤ (𝑡ℎ)𝑘−1 and
for 𝑡 ≤ 𝑢 ≤ 𝑡ℎ, we have 𝑥∕𝑢 ≤ 𝑢𝑘−1. Thus, (4.1) yields

|E(𝑥, 𝑡)| ≤ 𝑥 ⋅ 𝜙𝑘−1(𝑦)
⎛
⎜
⎝
1 + ∫

𝑡ℎ

𝑡

𝑑𝑢
𝑢 log𝑢

⎞
⎟
⎠
+ 𝑂

(
𝑥 log𝑥 exp(−𝑐1

√
log 𝑡)

)

≤ 𝑥 ⋅ 𝜙𝑘−1(𝑦) (1 + log ( 𝑘
𝑘 − 1

)) + 𝑂
(
𝛼𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

)
.

(4.3)

Thus, (4.2), (4.3) and the facts that log(𝑘∕(𝑘 − 1)) < (𝑘 − 1)−1 and 𝜙1(𝑦) = 0
yield

1
𝑘
𝜙𝑘(𝑦) <

1
𝑘 − 1

𝜙𝑘−1(𝑦) + 𝑂
(
𝑘−1𝛼 log 𝑦 exp(−𝑐1

√
log 𝑦)

)
, 𝑘 = 2, 3,⋯ .

(4.4)

By summing both sides over 𝑘 = 2, 3,⋯ , 𝑁 for some positive integer 𝑁 and
noting that the inequality in (4.4) telescopes, we end up getting

𝜙𝑁(𝑦)≪ 𝛼𝑁(log𝑁)(log 𝑦) exp(−𝑐1
√
log 𝑦). (4.5)

By choosing 𝑁 = ⌊𝛼⌋ in (4.5), we obtain

|E(𝑥, 𝑦)| = |�̃�(𝑥, 𝑦) − ℛ̃(𝑥, 𝑦)| ≤ 𝑥𝜙⌊𝛼⌋(𝑦)≪ 𝛼2 log𝛼 𝑥 log 𝑦 exp(−𝑐1
√
log 𝑦).
(4.6)

We estimate ℛ̃(𝑥, 𝑦). First, we note that 𝜌(𝛼) = 0, 𝛼 < 0 and 𝜌(𝛼) = 1, 0 ≤
𝛼 ≤ 1. Also, �̃�(𝑡) = 0, 0 < 𝑡 ≤ 1. Thus, the limits of the integral in (3.3) reduce
to 1 and 𝑥 and we have

ℛ̃(𝑥, 𝑦) = 𝑥 ∫
𝑥

1
𝜌 (

log𝑥 − log 𝑡
log 𝑦

)𝑑 (
�̃�(𝑡) − 𝑡∕𝜋

𝑡 ) . (4.7)

Using integration by parts in (4.7) and Lemma 3.7 we get

𝑥 ∫
𝑥

1
𝜌 (

log𝑥 − log 𝑡
log 𝑦

)𝑑 (
�̃�(𝑡) − 𝑡∕𝜋

𝑡 ) = 𝑥 𝜌 (
log𝑥 − log 𝑡

log 𝑦
)
�̃�(𝑡) − 𝑡∕𝜋

𝑡

||||||||

𝑥

1−
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+ 𝑥
log 𝑦

∫
𝑥

1
𝜌′ (

log𝑥 − log 𝑡
log 𝑦

)
�̃�(𝑡) − 𝑡∕𝜋

𝑡2
𝑑𝑡

=
𝑥 ⋅ 𝜌(𝛼)

𝜋 + 𝑂(
√
𝑥 log𝑥) + 𝑥

log 𝑦
∫

𝑥

1
𝜌′ (

log𝑥 − log 𝑡
log 𝑦

)
�̃�(𝑡) − 𝑡∕𝜋

𝑡2
𝑑𝑡.

(4.8)

We will now estimate the integral in the right-hand side of (4.8). First, note
the well-known inequalities satisfied by 𝜌(𝛼), (see [7, Equations (4.1)-(4.2)]),
namely

0 >
𝜌′(𝛼)
𝜌(𝛼)

> −𝐶1 log(𝛼 + 1) (𝛼 > 1), 0 >
𝜌′′(𝛼)
𝜌′(𝛼)

> −𝐶2 log(𝛼) (𝛼 > 2)

(4.9)

for some absolute constants 𝐶1, 𝐶2 > 0. From this, we infer (see the offset
equation between (4.4) and (4.5) in [7, Page 8]) that

𝜌′(𝛼 − 𝑠)
𝜌′(𝛼)

< 𝐶3 ⋅ 𝛼𝐶4𝑠, 𝛼 ≥ 2, 0 ≤ 𝑠 ≤ 𝛼, 𝐶3, 𝐶4 > 0. (4.10)

Using Lemma 3.7 and (4.10), we have

1
log 𝑦

∫
𝑥

1
𝜌′ (

log𝑥 − log 𝑡
log 𝑦

)
�̃�(𝑡) − 𝑡∕𝜋

𝑡2
𝑑𝑡 ≪ 1

log 𝑦
∫

𝑥

1
𝜌′ (

log𝑥 − log 𝑡
log 𝑦

)
log 𝑡 𝑑𝑡
𝑡3∕2

≪
|𝜌′(𝛼)|
log 𝑦

∫
𝑥

1

𝑡𝐶4 log𝛼∕ log 𝑦 log 𝑡
𝑡3∕2

𝑑𝑡.

(4.11)

If 𝐶4 log𝛼 <
1
4
log 𝑦, then in view of (4.9) and (4.11), we get

1
log 𝑦

∫
𝑥

1
𝜌′ (

log𝑥 − log 𝑡
log 𝑦

)
�̃�(𝑡) − 𝑡∕𝜋

𝑡2
≪

𝜌(𝛼) log(𝛼 + 1)
log 𝑦

. (4.12)

Hence, (4.7), (4.8) and (4.12) give

ℛ̃(𝑥, 𝑦) =
𝑥 ⋅ 𝜌(𝛼)

𝜋 + 𝑂 (
𝑥𝜌(𝛼) log(𝛼 + 1)

log 𝑦
) + 𝑂(

√
𝑥 log𝑥). (4.13)

Combining (4.6) and (4.13), we find that

�̃�(𝑥, 𝑦) =
𝑥 ⋅ 𝜌(𝛼)

𝜋 + 𝑂 (
𝑥𝜌(𝛼) log(𝛼 + 1)

log 𝑦
)

+ 𝑂
(
𝛼2 log𝛼 𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

)
. (4.14)

In particular, (4.14) shows that for any fixed 𝛼 > 1, we have

lim
𝑥→∞

�̃�(𝑥, 𝑥1∕𝛼)
𝑥 =

𝜌(𝛼)
𝜋 . (4.15)
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We now find the range where the asymptotic estimate in (4.14) is valid. First,
note that (4.14) is valid when 𝐶4 log𝛼 <

1
4
log 𝑦 for some 𝐶4 > 0 in which case

the first 𝑂-term in (4.14) is smaller than the main term. If 𝛼 is fixed (does not
tend to infinity with 𝑥), then we can obtain a very large range of 𝑦 where (4.14)
holds; however, for 𝛼 not necessarily fixed, we find that the range of 𝑦 where
(4.14) holds is much smaller. Taking into account these facts, we choose 𝑦 in
the range

exp((log𝑥)1−𝛿) ≤ 𝑦 ≤ 𝑥 (4.16)

where 𝛿 ∈ (0, 1). Clearly, the inequality 𝐶4 log𝛼 < 1
4
log 𝑦 is satisfied for the

range of 𝑦 in (4.16) and 𝑥 ≫𝛿 1. We want to choose an optimal 𝛿 > 0 in
(4.16) such that both 𝑂-terms in (4.14) are smaller than the main term. Since
𝜌(𝛼) = exp(−𝛼 log𝛼 − 𝛼 log log𝛼 + 𝑂(𝛼)) as 𝛼 → ∞ (see [7]), it suffices to
consider the following inequality

𝛼2 log𝛼 log 𝑦 exp(−𝑐1
√
log 𝑦) < exp(−𝛼 log𝛼),

which is satisfied if

(2𝛿 + 1) log log𝑥 + log 𝛿 + log log log𝑥 − 𝑐1(log𝑥)
1−𝛿
2 < −𝛿(log𝑥)𝛿 log log𝑥.

(4.17)

Thus, for sufficiently large 𝑥, (4.17) is true provided 1−𝛿
2

> 𝛿, which yields
𝛿 < 1∕3, so we can choose 𝛿 = 1∕3 − 𝜖 for any 𝜖 > 0. Thus the range in which
the asymptotic estimate in (4.14) is valid is

exp((log𝑥)2∕3+𝜖) ≤ 𝑦 ≤ 𝑥. (4.18)

Thus, we get the required result.

4.2. Proof of Theorem 2.2. Let 𝜓(⋅) denote the characteristic function on 𝑦-
smooth numbers 𝑆(𝑥, 𝑦) ∶= {𝑛 ≤ 𝑥 ∶ 𝑃(𝑛) ≤ 𝑦}. Then clearly 𝜓 is multiplica-
tive (in fact, totallymultiplicative). Let 𝑞2(𝑛) = 𝑟2(𝑛)∕4, which ismultiplicative
in view of Lemma 3.4. It is easy to verify that

∞∑

𝑛=1

𝑞2(𝑛)𝜓(𝑛)
𝑛𝑠 =

∏

𝑝<𝑦
(1 − 𝑝−𝑠)−1

∏

𝑝≡1 (mod 4)
𝑝<𝑦

(1 − 𝑝−𝑠)−1
∏

𝑝≡3 (mod 4)
𝑝<𝑦

(1 + 𝑝−𝑠)−1.

(4.19)

It can also be verified easily that

∞∑

𝑛=1

𝜅(𝑛)2𝜈(𝑛)𝜓(𝑛)
𝑛𝑠 (4.20)
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= (1 + 2−𝑠)−1

∏

𝑝<𝑦
(1 − 𝑝−𝑠)−1

∏

𝑝≡1 (mod 4)
𝑝<𝑦

(1 − 𝑝−𝑠)−1
∏

𝑝≡3 (mod 4)
𝑝<𝑦

(1 + 𝑝−𝑠)−1

∏

𝑝<𝑦
(1 − 𝑝−2𝑠)−1

.

Then it follows from (4.19) and (4.20) by Dirichlet convolution that
∑

𝑛∈𝑆(𝑥,𝑦)
𝑞2(𝑛) =

∑

𝑛∈𝑆(
√
𝑥,𝑦)

�̃�(𝑥∕𝑛, 𝑦) +
∑

𝑛∈𝑆(
√
𝑥∕2,𝑦)

�̃�(𝑥∕𝑛, 𝑦). (4.21)

Using Theorem 2.1 in (4.21) we have

∑

𝑛∈𝑆(
√
𝑥,𝑦)

�̃�(𝑥∕𝑛, 𝑦) +
∑

𝑛∈𝑆(
√
𝑥∕2,𝑦)

�̃�(𝑥∕𝑛, 𝑦) = 𝑥
𝜋

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌 (
log(𝑥∕𝑛2)
log 𝑦

)

𝑛2

+ 𝑥
2𝜋

∑

𝑛∈𝑆(
√
𝑥∕2,𝑦)

𝜌 (
log(𝑥∕(2𝑛2))

log 𝑦
)

𝑛2
+ 𝐷1 + 𝐷2 (4.22)

where

𝐷1 ∶= 𝑂
⎛
⎜
⎝

𝑥
log 𝑦

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌 (𝛼𝑛) log(𝛼𝑛 + 1)
𝑛2

⎞
⎟
⎠

+ 𝑂
⎛
⎜
⎝
𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝛼2𝑛 log𝛼𝑛
𝑛2

⎞
⎟
⎠

𝐷2 ∶= 𝑂
⎛
⎜
⎜
⎝

𝑥
log 𝑦

∑

𝑛∈𝑆
(√

𝑥∕2,𝑦
)

𝜌 (�̃�𝑛) log(�̃�𝑛 + 1)
𝑛2

⎞
⎟
⎟
⎠

+ 𝑂
⎛
⎜
⎜
⎝

𝑥 log 𝑦 exp(−𝑐1
√
log 𝑦)

∑

𝑛∈𝑆
(√

𝑥∕2,𝑦
)

�̃�2𝑛 log �̃�𝑛
𝑛2

⎞
⎟
⎟
⎠

where for convenience we put

𝛼𝑛 = log(𝑥∕𝑛2)∕ log 𝑦, �̃�𝑛 = log(𝑥∕(2𝑛2))∕ log 𝑦.
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We estimate the first sum in the right-hand side of (4.22) by Stieltjes integration
and integration by parts to get

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌 (
log(𝑥∕𝑛2)
log 𝑦

)

𝑛2
= ∫

√
𝑥

1−
𝜌 (

log(𝑥∕𝑡2)
log 𝑦

)𝑑
⎛
⎜
⎝

∑

𝑛∈𝑆(𝑡,𝑦)
𝑛−2

⎞
⎟
⎠

= 𝜌 (
log(𝑥∕𝑡2)
log 𝑦

)
⎛
⎜
⎝

∑

𝑛∈𝑆(𝑡,𝑦)
𝑛−2

⎞
⎟
⎠

|||||||||||

√
𝑥

1−

+ 2
log 𝑦

∫

√
𝑥

1
𝑡−1𝜌′ (

log(𝑥∕𝑡2)
log 𝑦

)
⎛
⎜
⎝

∑

𝑛∈𝑆(𝑡,𝑦)
𝑛−2

⎞
⎟
⎠
𝑑𝑡

=
∑

𝑛∈𝑆(
√
𝑥,𝑦)

1
𝑛2

+ 2
log 𝑦

∫

√
𝑥

1
𝑡−1𝜌′ (

log(𝑥∕𝑡2)
log 𝑦

)
⎛
⎜
⎝

∑

𝑛∈𝑆(𝑡,𝑦)
𝑛−2

⎞
⎟
⎠
𝑑𝑡. (4.23)

We now use Lemma 3.11 in the right-hand side of (4.23) to get

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌 (
log(𝑥∕𝑛2)
log 𝑦

)

𝑛2
= 𝜁(2) + 𝑂(𝑥−1∕2) + 𝑂(𝑦−1)

− 𝜁(2) ∫

√
𝑥

1
𝑑 (𝜌 (

log(𝑥∕𝑡2)
log 𝑦

)) + 𝑂
⎛
⎜
⎝

1
log 𝑦

∫

√
𝑥

1
𝜌′ (

log(𝑥∕𝑡2)
log 𝑦

)
𝑑𝑡
𝑡2
⎞
⎟
⎠

+ 𝑂
⎛
⎜
⎝

1
𝑦 log 𝑦

∫

√
𝑥

1
𝜌′ (

log(𝑥∕𝑡2)
log 𝑦

)
𝑑𝑡
𝑡
⎞
⎟
⎠

= 𝜁(2)𝜌(𝛼) + 𝑂(𝑥−1∕2) + 𝑂(𝑦−1) + 𝐸1 + 𝐸2 (4.24)

where 𝐸1 and 𝐸2 are respectively the last two 𝑂-terms in the penultimate step
above. We estimate 𝐸1 first. To do so, we use (4.9) and (4.10) to find that for
𝐶4 log𝛼 < 1

4
log 𝑦 (satisfied if 𝑦 is in the range specified in the theorem and

𝑥 ≫ 1), we have

𝐸1 ≪
𝜌(𝛼) log(𝛼 + 1)

log 𝑦
. (4.25)

To estimate 𝐸2 we notice that

𝐸2 ≪
1
𝑦 ∫

√
𝑥

1
𝑑 (𝜌 (

log(𝑥∕𝑡2)
log 𝑦

)) =
1 − 𝜌(𝛼)

𝑦 ≪ 1
𝑦 . (4.26)
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Thus, (4.24), (4.25), (4.26) and the fact that 𝜌(𝛼) = 𝑂
(
𝑒−𝛼 log𝛼

)
as 𝛼 →∞ yield

the following in the range specified in the theorem:

𝑥
𝜋

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌 (
log(𝑥∕𝑛2)
log 𝑦

)

𝑛2
=
𝜁(2)𝜌(𝛼)𝑥

𝜋 + 𝑂 (
𝑥𝜌(𝛼) log(𝛼 + 1)

log 𝑦
) + 𝑂(𝑥𝑦−1).

(4.27)

Replacing 𝑥 by 𝑥∕2, it follows that

𝑥
2𝜋

∑

𝑛∈𝑆
(√

𝑥∕2,𝑦
)

𝜌 (
log(𝑥∕(2𝑛2))

log 𝑦
)

𝑛2
=
𝜁(2)𝜌(𝛼)𝑥

2𝜋 + 𝑂 (
𝑥𝜌(𝛼) log(𝛼 + 1)

log 𝑦
)

+ 𝑂(𝑥𝑦−1). (4.28)

Let us now estimate 𝐷1. In a similar way, 𝐷2 can be estimated. First, we note
that the second 𝑂-term in 𝐷1 can be trivially estimated and we have that

𝑥 log 𝑦 exp(−𝑐1
√
log 𝑦)

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝛼2𝑛 log𝛼𝑛
𝑛2

≪ 𝛼2 log𝛼 𝑥 log 𝑦 exp(−𝑐1
√
log 𝑦).

(4.29)

The first 𝑂-term in 𝐷1 is

𝑥
log 𝑦

∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌 (𝛼𝑛) log(𝛼𝑛 + 1)
𝑛2

≪
𝑥 log(𝛼 + 1)

log 𝑦
∑

𝑛∈𝑆(
√
𝑥,𝑦)

𝜌(𝛼𝑛)
𝑛2

≪
𝑥 log2(𝛼 + 1)𝜌(𝛼)

log 𝑦
+
𝑥 log(𝛼 + 1)
𝑦 log 𝑦

(4.30)

where we have used (4.27) in the last line above. We have similar estimates for
the two 𝑂-terms in 𝐷2. Thus we have from (4.21), (4.22), (4.27), (4.28), (4.29)
and (4.30) that

∑

𝑛∈𝑆(𝑥,𝑦)
𝑞2(𝑛) =

𝜋𝜌(𝛼)𝑥
4 + 𝑂 (

𝑥𝜌(𝛼) log2(𝛼 + 1)
log 𝑦

)

+ 𝑂
(
𝛼2 log𝛼 𝑥 log 𝑦 exp(−𝑐1

√
log 𝑦)

)
+ 𝑂 (

𝑥 log(𝛼 + 1)
𝑦 log 𝑦

) + 𝑂
(
𝑥𝑦−1

)
.

(4.31)

Finally, if 𝑦 is in the range specified in the theorem, then it follows that the four
𝑂-terms in (4.31) are smaller than the main term and the last two 𝑂-terms can
be absorbed in the first two, and we are done.
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4.3. Proof of Theorem 2.3. The proof of this result is in the same vein as the
proof of the asymptotic formula for the partial sum of the generalized divisor
function in [14, Theorem 7.17]. Thus, we freely skip certain details if the ar-
guments are exactly as laid out in [14, Theorem 7.17]. Using Euler product
formula for 𝜁(𝑠)𝛽(𝑠), we obtain

∑

𝑛≥1

𝑞𝑧(𝑛)
𝑛𝑠 = (𝜁(𝑠)𝛽(𝑠))𝑧−1 =

∏

𝑝
(1 − 1

𝑝𝑠 )
1−𝑧

(1 −
𝜒−4(𝑝)
𝑝𝑠 )

1−𝑧

= (1 − 1
2𝑠 )

1−𝑧 ∏

𝑝≡1 (mod 4)
(1 − 1

𝑝𝑠 )
2−2𝑧 ∏

𝑝≡3 (mod 4)
(1 − 1

𝑝2𝑠
)
1−𝑧

.

(4.32)

Next, for |𝜉| < 1 and 𝑤 ∈ ℂ, we have

1
(1 − 𝜉)𝑤

=
∑

𝜈≥0

(𝑤 + 𝜈 − 1
𝜈

)
𝜉𝜈, where

(𝜏
𝜈

)
∶= 1

𝜈!
∏

0≤𝑗<𝜈
(𝜏 − 𝑗), 𝜏 ∈ ℂ

and using this in the right-hand side of (4.32) we get

∑

𝑛≥1

𝑞𝑧(𝑛)
𝑛𝑠 =

⎛
⎜
⎝
1 +

∑

𝜈1≥1

(𝑧 + 𝜈1 − 2
𝜈1

)
2−𝑠𝜈1

⎞
⎟
⎠

×
∏

𝑝≡1 (mod 4)

⎛
⎜
⎝
1 +

∑

𝜈2≥1

(2𝑧 + 𝜈2 − 3
𝜈2

)
𝑝−𝑠𝜈2

⎞
⎟
⎠

×
∏

𝑝≡3 (mod 4)

⎛
⎜
⎝
1 +

∑

𝜈3≥1

(𝑧 + 𝜈3 − 2
𝜈3

)
𝑝−2𝑠𝜈3

⎞
⎟
⎠

from which it follows that for a prime 𝑝 and 𝜈 ∈ ℕ, we have

⎧
⎪

⎨
⎪
⎩

𝑞𝑧(𝑝𝜈) =
(2𝑧+𝜈−3

𝜈

)
, 𝑝 ≡ 1 (mod 4),

𝑞𝑧(𝑝2𝜈) =
(𝑧+𝜈−2

𝜈

)
, 𝑝 ≡ 3 (mod 4),

𝑞𝑧(𝑝2𝜈+1) = 0, 𝑝 ≡ 3 (mod 4),
𝑞𝑧(𝑝𝜈) =

(𝑧+𝜈−2
𝜈

)
, 𝑝 = 2.

We note that for 𝜈 ∈ ℕ, and |𝑧| < 𝐵,
|||||
(𝑧+𝜈−2

𝜈

)||||| ≤
(|𝑧−1|+𝜈−1

𝜈

)
and

|||||
(2𝑧+𝜈−3

𝜈

)||||| ≤(2|𝑧−1|+𝜈−1
𝜈

)
which imply that |𝑞𝑧(𝑝𝜈)| ≤ 𝑞|𝑧−1|+1(𝑝𝜈), and by multiplicativity of

𝑞𝑧(𝑛), it follows that

|𝑞𝑧(𝑛)| ≤ 𝑞|𝑧−1|+1(𝑛) ≤ 𝑞𝐵+2(𝑛). (4.33)
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Next, let 𝑐 = 1+(log𝑥)−1. Then by effective Perron integral formula [14, Chap-
ter 5, Corollary 5.3] and (1.7), we have that

𝑆𝑧(𝑥) ∶=
∑

𝑛≤𝑥
𝑞𝑧(𝑛) =

1
2𝜋𝑖

∫
𝑐+𝑖𝑇

𝑐−𝑖𝑇
(𝜁(𝑠)𝛽(𝑠))𝑧−1𝑥

𝑠

𝑠 𝑑𝑠 + 𝑅 (4.34)

where 1 ≤ 𝑇 ≤ 𝑥 (to be chosen later) and

𝑅 ≪
∑

𝑥∕2<𝑛<2𝑥
𝑛≠𝑥

|𝑞𝑧(𝑛)|min (1,
𝑥

𝑇|𝑥 − 𝑛|
) + 4𝑐 + 𝑥𝑐

𝑇

∞∑

𝑛=1

|𝑞𝑧(𝑛)|
𝑛𝑐 . (4.35)

For 𝑈 > 0 and large, consider the set B ∶= {𝑛 ≤ 𝑥 ∶ |𝑥 − 𝑛| ≤ 𝑥∕𝑈}.
Using Lemma 3.12 and (4.33), it now follows that the contribution of the first

sum in the error term in (4.35) for 𝑛 ∈ B is

≪
∑

𝑛∈B
|𝑞𝑧(𝑛)|≪

∑

𝑛∈B
𝑞𝐵+2(𝑛)≪

𝑥(log𝑥)𝐵

𝑈 + 𝑥𝛿𝐵+2+𝜀 (4.36)

and that for 𝑛 ∉ B is

≪ 𝑈
𝑇

∑

𝑛≤2𝑥
|𝑞𝑧(𝑛)|≪

𝑈𝑥(log𝑥)𝐵

𝑇 . (4.37)

In (4.37) we choose 𝑇 = exp(
√
log𝑥) and to minimize the error in (4.36) and

(4.37), we choose 𝑈 =
√
𝑇 = exp

( 1
2

√
log𝑥

)
. Thus, the contribution of error

from the first sum in (4.35) is≪ 𝑥(log𝑥)−𝐵−3. The second sum in the error term
in (4.35) is≪ (𝜁(𝑐)𝛽(𝑐))𝐵−1 ≪ (log𝑥)2𝐵−2 in view of Lemma 3.3, thus the total
error from the second expression in (4.35) is≪ 𝑥(log𝑥)2𝐵−2∕𝑇 ≪ 𝑥(log𝑥)−𝐵−3.
This combined with (4.34), (4.36) and (4.37) yield

𝑆𝑧(𝑥) =
1
2𝜋𝑖

∫
𝑐+𝑖𝑇

𝑐−𝑖𝑇
(𝜁(𝑠)𝛽(𝑠))𝑧−1𝑥

𝑠

𝑠 𝑑𝑠 + 𝑂
(
𝑥(log𝑥)−𝐵−3

)
. (4.38)

Now, we deform the truncated contour [𝑐 − 𝑖𝑇, 𝑐 + 𝑖𝑇] to a path consisting of
𝒞1, 𝒞2 and 𝒞3 where 𝒞1 is polygonal with vertices 𝑐− 𝑖𝑇, 𝜎1− 𝑖𝑇, 𝜎1− 𝑖∕ log𝑥;
𝒞2 begins with the line segment from 𝜎1 − 𝑖∕ log𝑥 to 1 − 𝑖∕ log𝑥, continues
with the semicircle {1 + 𝑒𝑖𝜃∕ log𝑥 ∶ −𝜋∕2 ≤ 𝜃 ≤ 𝜋∕2}, and concludes with the
line segment from 1 + 𝑖∕ log𝑥 to 𝜎1 + 𝑖∕ log𝑥; and finally, 𝒞3 is polygonal with
vertices 𝜎1 + 𝑖∕ log𝑥, 𝜎1 + 𝑖𝑇, 𝑐 + 𝑖𝑇 where we choose 𝜎1 = 1 − 𝑐0(log𝑇)−1,
for some positive constant 𝑐0. Then Theorem 3.1 and Lemma 3.3 yield that
(𝜁(𝑠)𝛽(𝑠))𝑧−1 ≪ (log𝑥)2𝐵−2 on 𝒞1 ∪ 𝒞3 whence the contribution of the integral
on 𝒞1 ∪ 𝒞3 is ≪ 𝑥(log𝑥)−𝐵−3. On 𝒞2, we have (𝜁(𝑠)𝛽(𝑠))𝑧−1∕𝑠 = 𝛽(1)𝑧−1(𝑠 −
1)1−𝑧 (1 + 𝑂 (|𝑠 − 1|)). Hence,

1
2𝜋𝑖

∫
𝒞2

(𝜁(𝑠)𝛽(𝑠))𝑧−1𝑥
𝑠

𝑠 𝑑𝑠 =
𝛽(1)𝑧−1

2𝜋𝑖
∫
𝒞2

(𝑠 − 1)1−𝑧𝑥𝑠𝑑𝑠
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+ 𝑂 (∫
𝒞2

|𝑠 − 1|2−Re(𝑧)𝑥𝜎|𝑑𝑠|) (4.39)

To estimate the integrals in the right-hand side of (4.39), we follow the same
strategy as in the proof of [14, Theorem 7.17]. By changing variable 𝑠 = 1 +
𝑤∕ log𝑥 and relating the integral on 𝒞2 to Hankel’s formula

1
Γ(𝑧)

= 1
2𝜋𝑖

∫
ℋ
𝑒𝑠𝑠−𝑧𝑑𝑠 (4.40)

whereℋ is theHankel contour (consisting of a path encircling zero in the posi-
tive direction beginning at and returning to negative infinity with respect to the
branch cut along the negative real axis), it follows from (4.38)–(4.40) that

𝑆𝑧(𝑥) =
𝑥(log𝑥)𝑧−2𝛽(1)𝑧−1

Γ(𝑧 − 1)
+ 𝑂

(
𝑥(log𝑥)Re(𝑧)−3

)
.

5. Conclusions
The range of 𝑦 in Theorems 2.1 or 2.2 cannot be improved by our meth-

ods since this requires improving the error term in the Siegel-Walfisz theorem.
However, on the Generalized Riemann Hypothesis (GRH), one can show that
the range of 𝑦 where these theorems hold is

exp((log𝑥)𝛿) ≤ 𝑦 ≤ 𝑥, 𝛿 > 0. (5.1)

To further improve the range in these theorems, one might need to adopt the
methods of Hildebrand [10].
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