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The method of infinite descent in stable
homotopy theory II

Hirofumi Nakai and Douglas C. Ravenel

Abstract. This paper is a continuation of [Rav02] of the same title, which
wewill refer hereafter to as [I], which intends to clarify and expand the results
in the last chapter of [Rav86] (“the green book”). In particular, we give the
stable homotopy groups of𝑝-local spectra𝑇(𝑚)(1) for𝑚 > 0. This is a part of a
program to compute the 𝑝-components of𝜋∗(𝑆0) through dimension 2𝑝4(𝑝−
1) for 𝑝 > 2. We will refer to the results from [I] freely as if they were in the
first four sections of this paper, which begins with section 5.
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1. Introduction
In [Rav04] the second author described a method for computing the Adams-

Novikov 𝐸2-term for spheres and used it to determine the stable homotopy
groups through dimension 108 for𝑝 = 3 and 999 for𝑝 = 5. The latter computa-
tionwas a substantial improvement over prior knowledge, and neither has been
improved upon since. It is generally agreed among homotopy theorists that it
is not worthwhile to try to improve our knowledge of stable homotopy groups
by a few stems, but that the prospect of increasing the known range by a factor
of 𝑝 would be worth pursuing. This possibility may be within reach now, due
to a better understanding of the methods of [Rav04, Chapter 7] and improved
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computer technology. This paper should be regarded as laying the foundation
for a program to compute 𝜋∗(𝑆0)(𝑝) through roughly dimension 2𝑝4(𝑝−1), i.e.,
324 for 𝑝 = 3 and 5,000 for 𝑝 = 5.
It is unlikely that either author will take up this computational project any

time soon. The purpose of the present paper is to document what we believe to
be the most promising method of extending the computation of [Rav04, Chap-
ter 7] in hopes that some more energetic mathematicians will use it in the fu-
ture.
The paper [Rav02], which we will refer to here as [I], is published in a con-

ference proceedings volume which is not available online. However a digital
copy can be found on the second author’s home page, for which a link is given
in the bibliography of the present paper

1.1. Summary of [I]. Themethod referred to in the title involves the connec-
tive 𝑝-local ring spectra 𝑇(𝑚) satisfying

𝐵𝑃∗(𝑇(𝑚)) = 𝐵𝑃∗[𝑡1,… , 𝑡𝑚] ⊂ 𝐵𝑃∗(𝐵𝑃)

and the natural map 𝑇(𝑚) → 𝐵𝑃 which is an equivalence below dimension
|𝑡𝑚+1|. In particular, we have 𝑇(0) = 𝑆0(𝑝) and 𝑇(∞) = 𝐵𝑃.
For a Hopf algebroid (𝐴,Γ) and Γ-comodule𝑀, we will often drop the first

variable of Ext for short, i.e., ExtΓ(𝐴,𝑀) will be denoted by ExtΓ(𝑀). If we
define the quotient module Γ(𝑘) by

Γ(𝑚 + 1) = 𝐵𝑃∗(𝐵𝑃)∕(𝑡1,… , 𝑡𝑚) ≅ 𝐵𝑃∗[̂𝑡1, �̂�2,…],

where �̂�𝑖 = 𝑡𝑚+𝑖, then the pair (𝐵𝑃∗,Γ(𝑚 + 1)) forms a Hopf algebroid, whose
structure maps are inherited from (𝐵𝑃∗, 𝐵𝑃∗(𝐵𝑃)). Note that Γ(1) = 𝐵𝑃∗(𝐵𝑃).
By the change-of-rings isomorphism [Rav04, Theorem A1.3.12], the Adams-
Novikov 𝐸2-term for 𝑇(𝑚) is reduced to Ext∗Γ(𝑚+1)(𝐵𝑃∗). We will also use the
notation

𝑣𝑖 = 𝑣𝑚+𝑖 and 𝐴(𝑚) = ℤ(𝑝)[𝑣1,… 𝑣𝑚].

It is not difficult to find the structure of Ext∗Γ(𝑚+1)(𝐵𝑃∗) in low dimensions.
We know by Proposition 3.6 for 𝑛 = 0, that

Ext0Γ(𝑚+1) (𝐵𝑃∗) ≅ 𝐴(𝑚).

The group Ext1Γ(𝑚+1) (𝐵𝑃∗) is described in Theorem 3.16. Excluding the case
𝑚 = 0 and 𝑝 = 2 (which is handled in [Rav04, Theorem 5.2.6]), it is the 𝐴(𝑚)-
module generated by the set

⎧

⎨
⎩

𝛼𝑗 ∶= 𝛼
⎛
⎜
⎝

𝑣𝑗1
𝑗𝑝
⎞
⎟
⎠
∶ 𝑗 > 0

⎫

⎬
⎭

,
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where 𝛼 is the connecting homomorphism for the short exact sequence

0 // 𝐵𝑃∗ // 𝑀0 // 𝑁1 // 0

𝑝−1𝐵𝑃∗ 𝐵𝑃∗∕(𝑝∞)

as in (1.6). We also define

�̂�𝑗 ∶= 𝛼
⎛
⎜
⎝

𝑣𝑗1
𝑝
⎞
⎟
⎠

for 𝑗 > 0, with ℎ̂1,0 ∶= �̂�1.

The structure of Ext∗Γ(𝑚+1)(𝐵𝑃∗) below dimension 𝑝2|𝑣1| was determined in
Theorem 4.5. We make use of the 4-term exact sequence

0 // 𝐵𝑃∗ // 𝑀0 // 𝑀1 // 𝑁2 // 0

𝑣−11 𝐵𝑃∗∕(𝑝∞) 𝐵𝑃∗∕(𝑝∞, 𝑣∞1 ),

which leads to a double connecting homomorphism

𝛽 ∶ Ext𝑠Γ(𝑚+1)
(
𝑁2)→ Ext𝑠+2Γ(𝑚+1) (𝐵𝑃∗) .

We define

𝛽𝑗 ∶= 𝛽
⎛
⎜
⎝

𝑣𝑗2
𝑝𝑣1

⎞
⎟
⎠

for 𝑗 > 0, with 𝑏1,0 = 𝛽1.

Theorem 4.5 says that below dimension 𝑝2|𝑣1|, the groups Ext
𝑠+2
Γ(𝑚+1) (𝐵𝑃∗)

for 𝑠 ≥ 0 have the form

𝐴(𝑚 + 1)∕𝐼2 ⊗ 𝐸(ℎ̂1,0)⊗ 𝑃(𝑏1,0)⊗
{
𝛽𝑗 ∶ 𝑗 ≥ 1

}
.

where 𝐼𝑛 is the ideal (𝑝, 𝑣1,… , 𝑣𝑛−1) as usual. We have constructed the short
exact sequence of Γ(𝑚 + 1)-comodules

0⟶ 𝐵𝑃∗
𝑖1⟶ 𝐷0

𝑚+1
𝑗1⟶ 𝐸1𝑚+1 ⟶ 0 for𝑚 ≥ 0 (1.1)

where the map 𝑖1 induces an isomorphism of Ext0 (cf. Theorems 3.7 and 3.11),
and𝐷0

𝑚+1 is a weak injective Γ(𝑚+1)-comodule. Hencewe have isomorphisms

Ext𝑡Γ(𝑚+1)(𝐸
1
𝑚+1) ≅ Ext𝑡+1Γ(𝑚+1)(𝐵𝑃∗) for 𝑡 ≥ 0.

𝐷𝑚+1
0 is the sub-𝐴(𝑚)-algebra of 𝑝−1𝐵𝑃∗ generated by certain elements 𝜆𝑚+𝑖

for 𝑖 > 0 congruent to 𝑣𝑖∕𝑝modulo decomposables. To describe them we need
to recall Hazewinkel’s formula [Haz77] relating polynomial generators 𝑣𝑖 ∈
𝐵𝑃∗ to the coefficients 𝓁𝑖 of the formal group law, namely

𝑝𝓁𝑖 =
∑

0≤𝑗<𝑖
𝓁𝑗𝑣

𝑝𝑗
𝑖−𝑗. (1.2)
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This recursive formula expands to

𝓁1 =
𝑣1
𝑝 , 𝓁2 =

𝑣2
𝑝 +

𝑣𝑝+11

𝑝2
, 𝓁3 =

𝑣3
𝑝 +

𝑣1𝑣
𝑝
2

𝑝2
+
𝑣2𝑣

𝑝2
1

𝑝2
+
𝑣1+𝑝+𝑝

2

1

𝑝3
, ⋯

We need to define reduced log coefficients 𝓁𝑘 obtained from the 𝓁𝑚+𝑘 by sub-
tracting the terms which are monomials in the 𝑣𝑗 for 𝑗 ≤ 𝑚. Thus for 𝑚 = 1
we have

𝓁1 =
𝑣1
𝑝 , 𝓁2 =

𝑣2
𝑝 +

𝑣1𝑣
𝑝
1

𝑝2
+
𝑣1𝑣

𝑝2
1

𝑝2
, ⋯

The analog of Hazewinkel’s formula for these elements is

𝑝𝓁𝑖 =

⎧
⎪

⎨
⎪
⎩

0 if 𝑖 ≤ 0

∑

0≤𝑗<𝑖
𝓁𝑗𝑣

𝑝𝑗
𝑖−𝑗 +

∑

0<𝑗<min(𝑖,𝑚+1)
𝓁𝑖−𝑗𝑣

𝑝𝑖−𝑗𝜔
𝑗 if 𝑖 > 0.

(1.3)

We use these to define our generators 𝜆𝑖 recursively for 𝑖 > 0 by

𝓁𝑖 =
∑

0≤𝑗<𝑖
𝓁𝑗𝜆

𝑝𝑗
𝑖−𝑗. (1.4)

We may also assume the existence of the short exact sequence

0⟶ 𝐸1𝑚+1
𝑖2⟶ 𝐷1

𝑚+1
𝑗2⟶ 𝐸2𝑚+1 ⟶ 0. (1.5)

where 𝐷1
𝑚+1 is weak injective: it is specifically constructed in Lemma 4.1 for

𝑚 = 0 and 𝑝 odd, with themap 𝑖2 inducing an isomorphism inExt0. For𝑚 > 0,
it is shown that 𝑣−11 𝐸1𝑚+1 is weak injective with

Ext0Γ(𝑚+1)(𝑣
−1
1 𝐸1𝑚+1) ≅ 𝑣−11 Ext1Γ(𝑚+1)(𝐵𝑃∗)

thus we may regard 𝐷1
𝑚+1 as 𝑣

−1
1 𝐸1𝑚+1 at worst (cf. Lemma 3.18).

It is desirable to define 𝐷1
𝑚+1 for𝑚 > 0 to make its Ext0 as small as possible.

If we assume that the map 𝑖2 induces an isomorphism in Ext0, then we have
isomorphisms

Ext𝑡Γ(𝑚+1)(𝐸
2
𝑚+1) ≅ Ext𝑡+2Γ(𝑚+1)(𝐵𝑃∗) for 𝑡 ≥ 0.

We constructed such isomorphisms 1 and computed the Ext groups below di-
mension 𝑝2|𝑣𝑚+1| by producing 𝐸2𝑚+1 satisfying some desirable conditions and

1Unfortunately, 𝑖2 induces an isomorphism in Ext0 only below dimension 𝑝|𝑣𝑚+2| for𝑚 > 0.
See Remark 3.3.
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the weak injective 𝐷1
𝑚+1 as the induced extension (cf. Corollary 4.3):

0 // 𝐸1𝑚+1
𝑖2 // 𝐷1

𝑚+1
𝑗2 //

� _

��

𝐸2𝑚+1 //
� _

��

0

0 // 𝐸1𝑚+1 // 𝑣−11 𝐸1𝑚+1 // 𝐸1𝑚+1∕(𝑣
∞
1 ) // 0.

Since there is no Adams-Novikov differential and no nontrivial group exten-
sion in this range (except in the case 𝑚 = 0 and 𝑝 = 2), this also determines
𝜋∗(𝑇(𝑚)) in the same range. This was the goal of [I].

1.2. Introduction to II. To descend from 𝑇(𝑚 + 1) to 𝑇(𝑚), we can consider
some interpolating spectra 𝑇(𝑚)(𝑖) introduced in Lemma 1.15. Each 𝑇(𝑚)(𝑖) is
the 𝑇(𝑚)-module spectrum satisfying

𝐵𝑃∗(𝑇(𝑚)(𝑖)) = 𝐵𝑃∗(𝑇(𝑚)){𝑡𝓁𝑚+1 ∣ 0 ≤ 𝓁 < 𝑝𝑖}

and the natural map 𝑇(𝑚)(𝑖) → 𝑇(𝑚+1) is an equivalence in dimensions below
𝑝𝑖|𝑡𝑚+1|. In particular, we have 𝑇(𝑚)(0) = 𝑇(𝑚) and 𝑇(𝑚)(∞) = 𝑇(𝑚 + 1).
The Adams-Novikov 𝐸2-term for 𝑇(𝑚)(𝑖) is

𝐸𝑠,∗2 = Ext𝑠,∗𝐵𝑃∗(𝐵𝑃)(𝐵𝑃∗(𝑇(𝑚)(𝑖)))

and it is reduced to
Ext𝑠,∗Γ(𝑚+1)(𝑇

(𝑖)
𝑚 )

by Lemma 1.15, where 𝑇(𝑖)𝑚 is the 𝐵𝑃∗-module generated by

{𝑡𝓁𝑚+1 ∣ 0 ≤ 𝓁 < 𝑝𝑖}.

Then, we have the 3-term resolution of 𝑇(𝑖)𝑚 by tensoring the short exact se-
quence (1.1) with 𝑇(𝑖)𝑚 , and the associated spectral sequence {𝐸

𝑠,𝑡
𝑟 , 𝑑𝑟}𝑟≥1 con-

verges to Ext∗Γ(𝑚+1)(𝑇
(𝑖)
𝑚 ) with

𝐸𝑠,𝑡1 =
⎧

⎨
⎩

Ext0Γ(𝑚+1)(𝑇
(𝑖)
𝑚 ⊗𝐵𝑃∗ 𝐷

0
𝑚+1) for 𝑠 = 0,

Ext𝑡Γ(𝑚+1)(𝑇
(𝑖)
𝑚 ⊗𝐵𝑃∗ 𝐸

1
𝑚+1) for 𝑠 = 1,

0 otherwise.
(1.6)

The only nontrivial differential is 𝑑1 ∶ 𝐸
0,0
1 → 𝐸1,01 induced by 𝑗1 (1.1), and the

spectral sequence collapses from 𝐸2-term. Thus we have

Proposition 1.7. The Adams-Novikov 𝐸2-term for 𝑇(𝑚)(𝑖) is

Ext𝑠Γ(𝑚+1)(𝑇
(𝑖)
𝑚 ) ≅

⎧

⎨
⎩

ker𝑑1 for 𝑠 = 0,
coker𝑑1 for 𝑠 = 1,
Ext𝑠−1Γ(𝑚+1)(𝑇

(𝑖)
𝑚 ⊗𝐵𝑃∗ 𝐸

1
𝑚+1) for 𝑠 ≥ 2.

Note that the groups for 𝑠 = 0 and 1were determined in [Nak08, Proposition 2.5,
Theorem 4.1 and §5] (See also Proposition 2.6).
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Once we know about 𝑇(𝑚)(𝑖+1) for some 𝑖, we can descend the value of 𝑖 by
using the small descent spectral sequence (Theorem 1.21), whose 𝐸1-term is

𝐸(ℎ𝑚+1,𝑖)⊗ 𝑃(𝑏𝑚+1,𝑖)⊗𝜋∗(𝑇(𝑚)(𝑖+1))

where ℎ𝑚+1,𝑖 ∈ 𝐸1,2𝑝
𝑖(𝑝𝑚+1−1)

1 and 𝑏𝑚+1,𝑖 ∈ 𝐸2,2𝑝
𝑖+1(𝑝𝑚+1−1)

1 are permanent cy-
cyles. Note that we know 𝜋∗(𝑇(1)(3)) below dimension 𝑝3|𝑡2| by Theorem 4.5
without any use of spectral sequences, since the dimension is smaller than
𝑝2|𝑡3| and 𝑇(1)(3) = 𝑇(2) in that range. This allows us to compute 𝜋∗(𝑇(1))
from the information of 𝜋∗(𝑇(1)(3)). Since 𝑇(0)(4) = 𝑇(1) below dimension
𝑝4|𝑣1|, this also makes possible to have 𝜋∗(𝑆0) in the same range.

In this paper we assume that 𝑚 > 0 unless otherwise noted. The main re-
sults are the determination of the Adams-Novikov 𝐸2-terms for 𝑇(𝑚)(1) below
dimension 𝑝|𝑣𝑚+3| in Theorem 6.14. In this range there is still no room for
Adams-Novikov differentials, so the homotopy and Ext calculations coincide2.
It is onlywhenwepass from𝑇(𝑚)(1) to𝑇(𝑚) thatwe encounterAdams-Novikov
differentials below dimension 𝑝2|𝑣𝑚+2|. For𝑚 = 0, the first of these is the Toda
differential 𝑑2𝑝−1(𝛽𝑝∕𝑝) = 𝛼1𝛽

𝑝
1 of [Tod67] and [Tod68], and the relevant cal-

culations were the subject of [Rav04, Chapter 7]. An analogous differential for
𝑚 > 0 was also established in [Rav], and we will discuss it somewhere else in
the future.

2. A variant of Cartan-Eilenberg spectral sequence
Assume that𝑀 is a Γ(𝑚)-comodule for some𝑚. Oncewe know the structure

of Ext∗Γ(𝑚)(𝑀), there is an inductive step reducing the value of𝑚. Set

𝐴(𝑚) = ℤ(𝑝)[𝑣1,… , 𝑣𝑚] and 𝐺(𝑚) = 𝐴(𝑚)[𝑡𝑚].

The pair (𝐴(𝑚), 𝐺(𝑚)) is a Hopf algebroid. Then we have an extension of Hopf
algebroids (cf. Proposition 1.2)

(𝐴(𝑚), 𝐺(𝑚))⟶ (𝐵𝑃∗,Γ(𝑚))⟶ (𝐵𝑃∗,Γ(𝑚 + 1))

and the associated Cartan-Eilenberg spectral sequence

Ext∗𝐺(𝑚)(Ext
∗
Γ(𝑚+1)(𝑀)) ⟹ Ext∗Γ(𝑚)(𝑀).

A Γ(𝑚+ 1)-comodule𝑀 is naturally a Γ(𝑚+ 2)-comodule, and we will denote
Ext0Γ(𝑚+2)(𝑀) by𝑀 for short. In particular, we have

𝑇
(𝑖)
𝑚 = 𝐴(𝑚 + 1){𝑡𝓁𝑚+1 ∣ 0 ≤ 𝓁 < 𝑝𝑖}.

Then the Cartan-Eilenberg 𝐸2-term converging to Ext∗Γ(𝑚+1)(𝑇
(𝑖)
𝑚 ⊗𝐵𝑃∗ 𝐸

1
𝑚+1) is

�̃�𝑠
′,𝑠′′
2 = Ext𝑠

′

𝐺(𝑚+1)(Ext
𝑠′′
Γ(𝑚+2)(𝑇

(𝑖)
𝑚 ⊗𝐵𝑃∗ 𝐸

1
𝑚+1))

2For 𝑚 = 0, the second author determined the structure of Ext∗+2Γ(1)(𝑇
(1)
0 ) in [Rav04, Theorem

7.5.1] for 𝑝 > 2 below dimension (𝑝3 + 𝑝)|𝑣1|.
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≅ Ext𝑠
′

𝐺(𝑚+1)(𝑇
(𝑖)
𝑚 ⊗𝐴(𝑚+1) Ext

𝑠′′
Γ(𝑚+2)(𝐸

1
𝑚+1)) (2.1)

with differentials 𝑑𝑟 ∶ �̃�
𝑠′,𝑠′′
𝑟 → �̃�𝑠

′+𝑟,𝑠′′−𝑟+1
𝑟 . Since the case 𝑠′ = 𝑠′′ = 0 is not

interesting, we will assume that 𝑠′ + 𝑠′′ ≥ 1.
For simplicity, we will hereafter omit the subscript in ⊗𝐴(𝑚+1), and we will

denote Ext𝑠
′′

Γ(𝑚+2)(𝐵𝑃∗) by 𝑈
𝑠′′
𝑚+1. Since 𝐷

0
𝑚+1 in (1.1) is weak injective, we have

isomorphisms Ext𝑠
′′

Γ(𝑚+2)(𝐸
1
𝑚+1) ≅ 𝑈𝑠′′+1

𝑚+1 and

�̃�𝑠
′,𝑠′′
2 ≅ Ext𝑠

′

𝐺(𝑚+1)(𝑇
(𝑖)
𝑚 ⊗𝑈𝑠′′+1

𝑚+1 ) for 𝑠′′ ≥ 1. (2.2)

Note that the structure of 𝑈∗
𝑚+1 can be read from Theorem 4.5. This will be

discussed again in Corollary 4.1.

To describe �̃�𝑠
′,0
2 , we need a resolution of 𝐸

1
𝑚+1 = Ext0Γ(𝑚+2)(𝐸

1
𝑚+1). The ob-

vious one is obtained by applying Ext0Γ(𝑚+2)(−) to (1.5). In practice, there is a
“smaller resolution”.
Now we recall some notations used in [I]. For a fixed positive integer𝑚, we

will set 𝑣𝑖 = 𝑣𝑚+𝑖 and �̂�𝑖 = 𝑡𝑚+𝑖, and define

𝛽𝑖∕𝑒1,𝑒0 =
𝑣𝑖2

𝑝𝑒0𝑣𝑒11
, 𝛽𝑖∕𝑒1 = 𝛽𝑖∕𝑒1,1, 𝛽𝑖 = 𝛽𝑖∕1,

𝛽′𝑖∕𝑒1 =
1
𝑖 𝛽𝑖∕𝑒1 =

𝑣𝑖2
𝑖𝑝𝑣𝑒11

, 𝛽′𝑖 = 𝛽′𝑖∕1, and 𝛾𝑖 =
𝑣𝑖3

𝑝𝑣1𝑣2
.

Then we have

Proposition 2.3. Let 𝐵𝑚+1 be the 𝐴(𝑚 + 1)-module generated by 𝛽′𝑖∕𝑖 for 𝑖 > 0.
Then 𝐵𝑚+1 is a sub 𝐺(𝑚 + 1)-comodule of 𝐸1𝑚+1∕(𝑣

∞
1 ) and it is invariant over

Γ(𝑚 + 2). Its Poincaré series is

𝑔(𝐵𝑚+1) = 𝑔𝑚+1(𝑡)
∑

𝑘≥0

𝑥𝑝𝑘+1(1 − 𝑦𝑝𝑘 )

(1 − 𝑥𝑝𝑘+1)(1 − 𝑥𝑝
𝑗

2 )

where 𝑦 = 𝑡|𝑣1|, 𝑥 = 𝑡|𝑣1|, 𝑥2 = 𝑡|𝑣2| and

𝑔𝑚+1(𝑡) =
𝑚+1∏

𝑖=1

1
1 − 𝑦𝑖

where 𝑦𝑖 = 𝑡|𝑣𝑖|.

Proof. This is [NR09, Theorem 2.4]. To clarify that 𝛽′𝑖∕𝑖 are in 𝐸
1
𝑚+1∕(𝑣

∞
1 ), note

that an element in 𝑁2 lies in 𝐸1𝑚+1∕(𝑣
∞
1 ) if and only if it has trivial image in
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(𝑀0∕𝐷0
𝑚+1)∕(𝑣

∞
1 ). This can be shown using the commutative diagram

3

0 // 𝐸1𝑚+1 //

��

��

𝑣−11 𝐸1𝑚+1 //

��

��

𝐸1𝑚+1∕(𝑣
∞
1 ) //

��

��

0

0 // 𝑁1 //

����

𝑀1 //

����

𝑁2 //

����

0

0 // 𝑀0∕𝐷0
𝑚+1

// 𝑣−11 (𝑀0∕𝐷0
𝑚+1) // (𝑀0∕𝐷0

𝑚+1)∕(𝑣
∞
1 ) // 0

where𝑀𝑖 and 𝑁𝑖 are usual chromatic comodules. Define 𝑤 ∈ 𝐷0
𝑚+1 by

𝑤 = (1 − 𝑝𝑝−1)𝜆𝑝1 − 𝑣𝑝
𝑚+1−1

1 𝜆1. (2.4)

Then we have 𝑣2 = 𝑝(𝜆2 + 𝜆1𝑤) and

𝛽′𝑖∕𝑖 =
𝑝𝑖(𝜆2 + 𝜆1𝑤)𝑖

𝑖𝑝𝑣𝑖1
=
𝑝𝑖−1(𝜆2 + 𝜆1𝑤)𝑖

𝑖𝑣𝑖1
which is clearly in (𝑀0∕𝐷0

𝑚+1)∕(𝑣
∞
1 ) as desired. □

Let𝑊𝑚+1 be the 𝐺(𝑚 + 1)-comodule4 defined by the induced extension in
the following commutative diagram (cf. [NR09, (1.4)]):

0 // 𝐸
1
𝑚+1

𝜄 // 𝑊𝑚+1
𝜌

//
� _

��

𝐵𝑚+1 //
� _

��

0

0 // 𝐸
1
𝑚+1 // 𝑣−11 𝐸

1
𝑚+1 // 𝐸

1
𝑚+1∕(𝑣∞1 ) // 0

In fact, we can describe𝑊𝑚+1 explicitly. Recall that

Ext1Γ(𝑚+2)(𝐵𝑃∗) ≅ 𝐴(𝑚 + 1) {
𝑣𝑖2
𝑖𝑝 ∣ 𝑖 > 0} .

Applying ExtΓ(𝑚+2) to (1.1) we have the short exact sequence

0⟶ 𝐴(𝑚)[𝜆1]∕𝐴(𝑚 + 1)⟶ 𝐸
1
𝑚+1

𝛿
⟶ 𝑈1

𝑚+1 ⟶ 0.

Then, a lift of 𝑣𝑖2∕𝑖𝑝 ∈ 𝑈1
𝑚+1 to 𝐸

1
𝑚+1 is given by

𝑏𝑖 =
𝑣𝑖2 − (𝑣1𝑤)𝑖

𝑖𝑝 where 𝑤 is as in (2.4).

3For𝑚 = 0 and 𝑝 > 2, 𝐸1
1∕(𝑣

∞
1 ) is isomorphic to 𝑁

2.
4For 𝑚 = 0 and 𝑝 > 2, we may simply set𝑊1 = Ext0Γ(2)(𝐷

1
1) (cf. [Rav04, (7.2.17)]), since the

map 𝐸1
1 → 𝐷1

1 induces an isomorphism in Ext0Γ(1).
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and a lift of 𝛽′𝑖∕𝑖 ∈ 𝐵𝑚+1 to𝑊𝑚+1 is given by

𝑣−𝑖1 𝑏𝑖 =
∑

0<𝑗≤𝑖

(𝑖 − 1
𝑗 − 1

) (𝑝𝑣−11 𝜆2)𝑗

𝑝𝑗 𝑤𝑖−𝑗.

So,𝑊𝑚+1 is the subcomodule of𝑀1 obtained by adjoining 𝑣−𝑖1 𝑏𝑖 (𝑖 > 0) to𝐸
1
𝑚+1.

The following properties of𝑊𝑚+1 can be read from [NR09, Theorem 2.4].

Proposition 2.5. 𝑊𝑚+1 isweak injective and themap 𝜄 ∶ 𝐸
1
𝑚+1 →𝑊𝑚+1 induces

an isomorphism in Ext0: we have Ext0𝐺(𝑚+1)(𝑊𝑚+1) ≅ 𝑈1
𝑚+1.

Now we have a 3-term resolution of 𝐸
1
𝑚+1

0⟶ 𝐸
1
𝑚+1

𝜄
⟶𝑊𝑚+1

𝜌
⟶ 𝐵𝑚+1 ⟶ 0.

Let 𝐶∗,𝑠 denote the cochain complex obtained by applying Ext𝑠𝐺(𝑚+1)(𝑇
(𝑗)
𝑚 ⊗−)

to the sequence

𝐷
0
𝑚+1

𝜄◦(𝑗1)∗ // 𝑊𝑚+1
𝜌
// 𝐵𝑚+1

and let𝐻∗,𝑠(𝐶) be the associated cohomology group. Then we have

Proposition 2.6. For 𝑛 = 0 and 1,𝐻𝑛,0(𝐶) is isomorphic to the Adams-Novikov
𝐸2-term Ext𝑛Γ(𝑚+1)(𝑇

(𝑗)
𝑚 ).

Proof. Since𝑊𝑚+1 is weak injective over 𝐺(𝑚 + 1), 𝑇
(𝑖)
𝑚 ⊗𝑊𝑚+1 is also weak

injective by Lemma 1.14 and 𝐶1,𝑠 = 0 for 𝑠 ≥ 1. We have the commutative
diagram

𝐶0,0 //

(𝑗1)∗
��

𝐶1,0 // 𝐶2,0

0 // �̃�0,02
𝜄∗ // 𝐶1,0

𝜌∗ // 𝐶2,0 // �̃�1,02 // 0 (exact)

and isomorphisms 𝐶2,𝑠−1 ≅ �̃�𝑠,02 for 𝑠 ≥ 2. The map (𝑗1)∗ coincides with the
differential 𝑑1 ∶ 𝐸

0,0
1 → 𝐸1,01 of the resolution spectral sequence of (1.6), so we

have

𝐻0,0(𝐶) = ker(𝑗1)∗ = ker𝑑1,

𝐻1,0(𝐶) = ker 𝜌∗∕ im(𝑗1)∗ ≅ �̃�0,02 ∕ im(𝑗1)∗ = coker𝑑1. □

The structure of 𝐻𝑛,0(𝐶) for 𝑛 = 0, 1 was determined in [Nak08]. We can
also read the following result from the above proof.
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Proposition 2.7. For the Cartan-Eilenberg spectral sequence of (2.1) we have

�̃�𝑠
′,0
2 ≅

⎧
⎪

⎨
⎪
⎩

ker 𝜌∗ for 𝑠′ = 0,
coker 𝜌∗ (= 𝐻2,0(𝐶)) for 𝑠′ = 1,

Ext𝑠
′−1
𝐺(𝑚+1)(𝑇

(𝑗)
𝑚 ⊗ 𝐵𝑚+1) for 𝑠′ ≥ 2.

Combining this with (2.2), we have the chart of Cartan-Eilenberg 𝐸2-terms
as in Table 1.

Table 1. The Cartan-Eilenberg 𝐸2-term of (2.1). Here all Ext
groups are over 𝐺(𝑚 + 1).

⋮ ⋮ ⋮

𝑠′′ = 2 Ext0(𝑇
(𝑗)
𝑚 ⊗𝑈3

𝑚+1) Ext1(𝑇
(𝑗)
𝑚 ⊗𝑈3

𝑚+1) Ext2(𝑇
(𝑗)
𝑚 ⊗𝑈3

𝑚+1) ⋯

𝑠′′ = 1 Ext0(𝑇
(𝑗)
𝑚 ⊗𝑈2

𝑚+1) Ext1(𝑇
(𝑗)
𝑚 ⊗𝑈2

𝑚+1) Ext2(𝑇
(𝑗)
𝑚 ⊗𝑈2

𝑚+1) ⋯

𝑠′′ = 0 ker 𝜌∗ coker 𝜌∗ Ext1(𝑇
(𝑗)
𝑚 ⊗ 𝐵𝑚+1) ⋯

𝑠′ = 0 𝑠′ = 1 𝑠′ = 2

Note that the case 𝑠′ = 𝑠′′ = 0 is not interesting here, as we stated before. For
coker 𝜌∗, we need to recall some results from the other papers. For a 𝐺(𝑚 + 1)-
comodule𝑀, denote the subgroup

⋂
𝑛≥𝑝𝑗 ker �̂�𝑛 of𝑀 by 𝐿𝑗(𝑀). Then, the map

(𝑐 ⊗ 1)𝜓 ∶ 𝐿𝑗(𝑀)⟶ Ext0𝐺(𝑚+1)(𝑇
(𝑗)
𝑚 ⊗𝑀)

is an isomorphism between𝐴(𝑚+1)-modules by Lemma 1.12. Thus, to obtain
the structure of �̃�1,02 , we may alternatively examine the map

𝜌∗ ∶ 𝐿𝑗(𝑊𝑚+1)⟶ 𝐿𝑗(𝐵𝑚+1).
The following can be read from [Nak08, Corollary 4.3].

Lemma 2.8. The coker 𝜌∗ is isomorphic to the quotient

𝐿𝑗(𝐵𝑚+1)
/(

𝐴(𝑚 + 1)
{
𝛽′𝑖∕𝑖 ∣ 0 < 𝑖 ≤ 𝑝𝑗−1

})
.

The structure of 𝐿𝑗(𝐵𝑚+1) is determined in [NR09] for all𝑚 and 𝑗. In partic-
ular, the following is the results for 𝑗 = 2.

Lemma 2.9 ([NR09, Theorem 6.1]). Below dimension 𝑝3|𝑣2|, 𝐿2(𝐵𝑚+1) is the
𝐴(𝑚 + 1)-module generated by
{
𝛽′𝑖∕𝑡 ∣ 𝑖 ≥ 1, 0 < 𝑡 ≤ min(𝑖, 𝑝)

}
∪
{
𝛽𝑎𝑝2+𝑏∕𝑡 ∣ 𝑝 < 𝑡 ≤ 𝑝2, 𝑎 > 0 and 0 ≤ 𝑏 < 𝑝

}
.
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In particular, below dimension |𝑣𝑝
2+1

2 ∕𝑣𝑝
2

1 |, the comodule 𝐵𝑚+1 is 2-free and
𝐿2(𝐵𝑚+1) is the 𝐴(𝑚 + 1)-module generated by

{
𝛽′𝑖∕min(𝑖,𝑝) ∣ 𝑖 > 0

}
∪
{
𝛽𝑖∕𝑡 ∣ 𝑝 < 𝑡 ≤ 𝑝2 ≤ 𝑖 < 𝑝2 + 𝑝

}
. (2.10)

3. Extending the range of 𝑬𝟐
𝒎+𝟏

In Theorem 4.5we determined the structure ofExt∗Γ(𝑚+1)(𝐵𝑃∗) below dimen-
sion 𝑝2|𝑣1|. Here we extend this range to 𝑝|𝑣2|. This is the dimension where
the subcomodule 𝐸2𝑚+1 of 𝐸

1
𝑚+1∕(𝑣

∞
1 ) starts to behave badly for𝑚 > 0.

By Lemma 4.2 the Poincaré series of 𝐸2𝑚+1 below dimension 𝑝|𝑣2| is at least

𝑔𝑚+2(𝑡)
⎛
⎜
⎝

𝑥𝑝1 (1 − 𝑦)

(1 − 𝑥𝑝1 )(1 − 𝑥2)
+

𝑥𝑝
2

1 (1 − 𝑦𝑝+1)

(1 − 𝑥𝑝
2

1 )(1 − 𝑥3)

⎞
⎟
⎠
, (3.1)

where

𝑔𝑚+2(𝑡) =
∏

1≤𝑖≤𝑚+2

1
1 − 𝑡|𝑣𝑖|

, 𝑥𝑖 = 𝑡|𝑣𝑖|, and 𝑦 = 𝑡|𝑣1|.

The first term corresponds to the module described in Theorem 4.5, and the
second term presumably corresponds to

𝐵𝑃∗∕(𝑝, 𝑣1)
{
𝛽𝑝∕𝑗,𝑝+2−𝑗 ∣ 0 < 𝑗 ≤ 𝑝

}
.

We see that

𝛽𝑝∕𝑗,𝑝+2−𝑗 =
𝑣𝑝2

𝑝𝑝+2−𝑗𝑣𝑗1
=

∑

0≤𝑘<𝑗

(𝑝
𝑘

)𝑝𝑗−2−𝑘

𝑣𝑗−𝑘1

𝜆𝑝−𝑘2 𝑤𝑘 ∈ 𝐸1𝑚+1∕(𝑣
∞
1 )

(where 𝑤 is as in (2.4)) for 𝑗 ≥ 2, but 𝛽𝑝∕1,𝑝+1 ∉ 𝐸1𝑚+1∕(𝑣
∞
1 ). We get around

this problem by replacing 𝛽𝑝∕1,𝑝+1 with

̃̂𝛽𝑝∕1,𝑝+1 =
𝑣𝑝2

𝑝𝑝+1𝑣1
−

𝑣3
𝑝𝑣21

+
𝑣2𝑣

𝑝
2

𝑝𝑣𝑝+21

−
𝑣𝑝

𝑚+1

2 𝑣1
𝑝2𝑣21

∈ 𝐸1𝑚+1∕(𝑣
∞
1 ).

Then, our extension of Theorem 4.5 for𝑚 > 0 is the following.

Theorem 3.2. Let 𝐸2𝑚+1 be the 𝐴(𝑚 + 2)-module generated by the set
{
𝛽𝑖∕𝑗,𝑘 ∣ 𝑖 + 1 ≥ 𝑗 + 𝑘

}
∪
{
𝛽𝑝∕𝑗,𝑝+2−𝑗 ∣ 2 ≤ 𝑗 ≤ 𝑝

}
∪
{ ̃̂𝛽𝑝∕1,𝑝+1

}
.

Below dimension 𝑝|𝑣2|, it has the Poincaré series specified in (3.1), it is a sub
Γ(𝑚 + 1)-comodule of 𝐸1𝑚+1∕(𝑣

∞
1 ), and its Ext group is isomorphic to

𝐴(𝑚 + 1)∕𝐼2 ⊗𝐸(ℎ̂1,0)⊗ 𝑃(𝑏1,0)⊗
{
𝛽′𝑖 , 𝛽𝑝∕𝑘 ∣ 𝑖 ≥ 1, 2 ≤ 𝑘 ≤ 𝑝

}
.

In particular Ext0 maps monomorphically to Ext2Γ(𝑚+1)(𝐵𝑃∗) in that range.
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Proof. Define a decreasing filtration on 𝐵𝑃∗∕(𝑝∞, 𝑣∞1 ) by 𝑣
𝑎
2∕𝑝

𝑏𝑣𝑐1 ∈ 𝐹𝑛 if and
only if 𝑎− 𝑏− 𝑐 ≥ 𝑛. Then, each element of the first set belongs to 𝐹−1 and the
submodule generated by the set is a subcomodule. We also see that the reduced
expansion of 𝛽𝑝∕𝑗,𝑝+2−𝑗 is in 𝐹−1 though 𝛽𝑝∕𝑗,𝑝+2−𝑗 itself is belonging to 𝐹−2,
and the reduced expansion of ̃̂𝛽𝑝∕1,𝑝+1 is in 𝐹

−2. Thus the module generated by
the assigned set is a comodule as desired.
The Ext group can be computed similarly to the proof of Theorem 4.5. □

Remark 3.3. From (1.5), we have the long exact sequence:

0 // Ext0(𝐸1𝑚+1)
(𝑖2)∗ // Ext0(𝐷1

𝑚+1)
(𝑗2)∗ // Ext0(𝐸2𝑚+1)

𝛿1

// Ext1(𝐸1𝑚+1)
(𝑖2)∗ //⋯ ,

where all Ext groups are over Γ(𝑚+1). As we have seen in Lemma 4.1, themap
(𝑖2)∗ induces an isomorphism in Ext0 for𝑚 = 0. However, for𝑚 > 0, we have
a non-trivial element

𝑝𝑣1
̃̂𝛽𝑝∕1,𝑝+1 = −𝑣𝑝

𝑚+1

2 𝑣1∕𝑝𝑣1 ∈ ker 𝛿1.

This is actually the first such element and the map (𝑖2)∗ is still isomorphic and
Ext0Γ(𝑚+1)(𝐸

2
𝑚+1) is isomorphic to Ext

2
Γ(𝑚+1)(𝐵𝑃∗) below its dimension, 𝑝|𝑣2|.

4. Quillen operations of some elements

Recall that the Quillen operation �̂�𝑗 ∶ 𝑀 → Σ𝑗|̂𝑡1|𝑀 for 𝐺(𝑚 + 1)-comodule
𝑀 is defined by

𝜓(𝑥) =
∑

𝑗
�̂�𝑗1 ⊗ �̂�𝑗(𝑥) +⋯ .

In the following sections we will need the action of some Quillen operations on
𝑀 = 𝑈∗

𝑚+1 to compute the Cartan-Eilenberg 𝐸2-terms �̃�
𝑠′,𝑠′′
2 (𝑠′′ ≥ 1) of Table 1.

A translation of Theorem 3.2 to the present context is the following.

Corollary 4.1. Below dimension 𝑝|𝑣3|, we have an isomorphism

𝑈∗+2
𝑚+1 ≅ 𝐸(ℎ̂2,0)⊗ 𝑃(𝑏2,0)⊗𝑈2

𝑚+1

where𝑈2
𝑚+1 is isomorphic to the 𝐴(𝑚 + 1)∕𝐼2-module generated by

⎧

⎨
⎩

𝑢𝑖,𝑗 = 𝛿0𝛿1
⎛
⎜
⎝

𝑣𝑗2𝑣
𝑖
3

𝑖!𝑝𝑣1

⎞
⎟
⎠
, 𝑢𝑝∕𝑘 = 𝛿0𝛿1 (

𝑣𝑝3
𝑝𝑣𝑘1

) ∣ 0 < 𝑖 ≤ 𝑝, 𝑗 ≥ 0, 2 ≤ 𝑘 ≤ 𝑝
⎫

⎬
⎭
(4.2)

and 𝛿0 and 𝛿1 are the connecting homomorphisms for the short exact sequences
0→ 𝐵𝑃∗ → 𝑀0 → 𝑁1 → 0 𝑎𝑛𝑑 0→ 𝑁1 → 𝑀1 → 𝑁2 → 0
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respectively. The bidegrees of elements are |ℎ̂2,0| = (1, |̂𝑡2|) and |𝑏2,0| = (2, |̂𝑡𝑝2 |).

In particular, we have

𝑈2𝑎+𝜀
𝑚+1 ≅ 𝑏𝑎−12,0 ⊗ ℎ̂𝜀2,0 ⊗𝑈2

𝑚+1 for 𝑎 ≥ 1 and 𝜀 = 0, 1.

So, it is sufficient to know the Quillen operations on 𝑈2
𝑚+1. Instead, we here

compute the Quillen operation on Ext0Γ(𝑚+2)(𝐸
1
𝑚+1∕(𝑣

∞
1 )) after pulling back el-

ements of (4.2) by the composition of connecting homomorphisms:

Ext0Γ(𝑚+2)(𝐸
1
𝑚+1∕(𝑣

∞
1 ))

𝛿1 // // Ext1Γ(𝑚+2)(𝐸
1
𝑚+1)

𝛿0

≅
// 𝑈2

𝑚+1. (4.3)

The corresponding elements will be denoted by 𝜃𝑖,𝑗 and 𝜃𝑝∕𝑘.

Remark 4.4. The choice of 𝜃𝑖,𝑗 is not unique: the definition of 𝜃𝑖,𝑗 has ambi-
guity up to elements of ker 𝛿1. In particular, the comodule 𝐵𝑚+1 is involved in
ker 𝛿1 and we may tack any element of 𝐵𝑚+1 to 𝜃𝑖,𝑗.

Recall the recursive formula (3.10) for the 𝓁𝑖, which are independent of𝑚:

𝓁1 = 𝜆1, 𝓁2 = 𝜆2 + 𝓁1𝜆
𝑝
1 , 𝓁3 = 𝜆3 + 𝓁1𝜆

𝑝
2 + 𝓁2𝜆

𝑝2
1 . (4.5)

On the other hand, the expression of 𝑣𝑖 in terms of 𝜆𝑖 depends on𝑚. For small
values of 𝑖, we have

Lemma 4.6. In 𝐷0
𝑚+1 for𝑚 > 0, we have

𝑣1 = 𝑝𝜆1,

𝑣2 = 𝑝𝜆2 + (1 − 𝑝𝑝−1)𝑣1𝜆
𝑝
1 − 𝑣𝑝

𝑚+1

1 𝜆1,

𝑣3 ≡ 𝑝𝜆3 − 𝑝𝑝2−1𝑣2𝜆
𝑝2
1 + 𝜁 mod (𝑣1), where 𝜁 = 𝑣2𝜆

𝑝2
1 − {

0 (𝑚 = 1),
𝑣𝑝

𝑚+1

2 𝜆1 (𝑚 ≥ 2).

Proof. By (3.9) we have

𝑝𝓁1 = 𝑣1,

𝑝𝓁2 = 𝑣2 + 𝓁1𝑣
𝑝
1 + 𝓁1𝑣

𝑝𝑚+1
1 ,

𝑝𝓁3 = 𝑣3 + 𝓁1𝑣
𝑝
2 + 𝓁2𝑣

𝑝2
1 +

⎧

⎨
⎩

𝑣𝑝
𝑚+2

1 𝓁2 (𝑚 = 1),
𝑣𝑝

𝑚+2

1 𝓁2 + 𝑣𝑝
𝑚+

2 𝓁1 (𝑚 ≥ 2).

The result follows from (4.5) and the relations between 𝓁𝑖 and 𝑣𝑖. □

Define the element 𝜉 in 𝐷0
𝑚+1 by

𝜉 = 𝑣2𝑣
𝑝
2 −

⎧

⎨
⎩

0 (𝑚 = 1),

𝑣𝑝1 𝑣
𝑝𝑚+1
2 𝜆1 (𝑚 ≥ 2).
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Lemma 4.7. For𝑚 ≥ 1, we have 𝑣𝑝1 𝜁 ≡ 𝜉 mod (𝑝2, 𝑣𝑝
𝑚+1

1 ) in 𝐸1𝑚+1.

Proof. Note that 𝑣2 ≡ 𝑣1𝜆
𝑝
1 mod (𝑝, 𝑣

𝑝𝑚+1
1 ). For𝑚 ≥ 2

𝑣𝑝1 𝜁 = 𝑣2(𝑣1𝜆
𝑝
1 )
𝑝 − 𝑣𝑝1 𝑣

𝑝𝑚+1
2 𝜆1 ≡ 𝑣2𝑣

𝑝
2 − 𝑣𝑝1 𝑣

𝑝𝑚+1
2 𝜆1 = 𝜉

mod (𝑝2, 𝑣𝑝
𝑚+1

1 ). The case𝑚 = 1 is similarly proved. □

Proposition 4.8. Define 𝜃𝑝,𝑗 for 𝑗 ≥ 0 by

𝜃𝑝,𝑗 = 𝑣𝑗2
⎛
⎜
⎝

𝑣𝑝3
𝑝! ⋅ 𝑝𝑣1

−
𝜉𝑝

𝑝! ⋅ 𝑝𝑣1+𝑝
2

1

⎞
⎟
⎠
. (4.9)

Then it is in Ext0Γ(𝑚+2)(𝐸
1
𝑚+1∕(𝑣

∞
1 )) and satisfies 𝛿

0𝛿1(𝜃𝑝,𝑗) = 𝑢𝑝,𝑗 .

Proof. By Lemma 4.7 we see that

𝑣𝑗2𝑣
𝑝
3

𝑝! ⋅ 𝑝𝑣1
≡
𝑣𝑗2(𝑝𝜆3 − 𝑝𝑝2−1𝑣2𝜆

𝑝2
1 + 𝜁)𝑝

𝑝! ⋅ 𝑝𝑣1
≡

𝑣𝑗2(𝑣
𝑝
1 𝜁)

𝑝

𝑝! ⋅ 𝑝𝑣1+𝑝
2

1

≡
𝑣𝑗2𝜉

𝑝

𝑝! ⋅ 𝑝𝑣1+𝑝
2

1

mod 𝐸1𝑚+1∕(𝑣
∞
1 ). Direct calculations show that 𝜃𝑝,𝑗 is invariant over Γ(𝑚 + 2).

Since 𝑣−𝑝
2−1

1 𝜉𝑝∕𝑝2 is in ker 𝛿1, the second statement follows. □

Proposition 4.10. Define 𝜃𝑖,𝑗 for 0 < 𝑖 ≤ 𝑝 and 𝑗 ≥ 0 by (4.9) and the downward
induction on 𝑖:

𝜃𝑖,𝑗 = 𝑣−12 �̂�𝑝2(𝜃𝑖+1,𝑗) for 0 < 𝑖 < 𝑝.

Then they are in Ext0Γ(𝑚+2)(𝐸
1
𝑚+1∕(𝑣

∞
1 )) and satisfy 𝛿

0𝛿1(𝜃𝑖,𝑗) = 𝑢𝑖,𝑗 .

Proof. The first statement is obvious since Ext0Γ(𝑚+2)(𝐸
1
𝑚+1∕(𝑣

∞
1 )) is a subco-

module of 𝐸1𝑚+1∕(𝑣
∞
1 ). Since the second term of (4.9) is in ker 𝛿1 and each

Quillen operation commutes with the connecting homomorphism, the second
statement follows. □

The following lemma on Quillen operations is useful.

Lemma 4.11. The 𝑘-fold iteration of �̂�𝑝𝑗 is congruent to 𝑘! �̂�𝑘𝑝𝑗 modulo 𝑝𝑗 .

Proof. Since 𝑟𝑠𝑟𝑡 =
(𝑠+𝑡
𝑠

)
𝑟𝑠+𝑡, the 𝑘-fold iteration of �̂�𝑝𝑗 is equal to

(𝑘𝑝𝑗)!
(𝑝𝑗!)𝑘

�̂�𝑘𝑝𝑗 ,

where the coefficient is congruent to 𝑘!modulo 𝑝𝑗. □

Then we have
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Proposition 4.12. Quillen operations on 𝜃1,𝑗 for 0 ≤ 𝑗 ≤ 𝑝2 − 𝑝 are given by

�̂�𝑝2(𝜃1,𝑗) = 0 and �̂�𝑝(𝜃1,𝑗) = 𝑗𝑣2𝛽𝑗+𝑝−1∕𝑝

up to unit scalar multiplication.

Proof. By Lemma 4.11 �̂�𝑝2(𝜃1,𝑗) is a unit multiple of 𝑣
−𝑝+1
2 �̂�𝑝3(𝜃𝑝,𝑗), and we can

check �̂�𝑝3(𝜃𝑝,𝑗) = 0. Similarly, �̂�𝑝(𝜃1,𝑗) is a unit multiple of 𝑣
−𝑝+1
2 �̂�𝑝3−𝑝2+𝑝(𝜃𝑝,𝑗),

which can be computed by direct calculation. □

Proposition 4.13. We have

𝜓(𝜃𝑖,𝑗) ≡
∑

0≤𝑘<𝑖
�̂�𝑘𝑝

2

1 ⊗
𝑣𝑘2𝜃𝑖−𝑘,𝑗
𝑘!

mod (𝑣𝑖2).

Proof. Roughly speaking, this follows from 𝑘! �̂�𝑘𝑝2(𝜃𝑖,𝑗) = 𝑣𝑘2𝜃𝑖−𝑘,𝑗 since
�̂�𝑝2(𝜃𝑖+1,𝑗) = 𝑣2𝜃𝑖,𝑗. More precisely, it is enough to consider 𝜓(𝑣

𝑝−𝑖
2 𝜃𝑖,𝑗) mod

(𝑣𝑝2 ) using the equality 𝑣
𝑝−𝑖
2 𝜃𝑖,𝑗 = (𝑝 − 𝑖)! �̂�(𝑝−𝑖)𝑝2(𝜃𝑝,𝑗). □

Proposition 4.14. Define 𝜃𝑝∕𝑘 (0 < 𝑘 ≤ 𝑝) by

𝜃𝑝∕𝑘 =
𝑣𝑝3
𝑝𝑣𝑘1

−
𝑣𝑝2 𝑣

𝑝2
2

𝑝𝑣𝑝
2+𝑘

1

+
𝑣𝑝

𝑚+2

2 𝑣2
𝑝𝑣𝑘+11

.

Then it is in Ext0Γ(𝑚+2)(𝐸
1
𝑚+1∕(𝑣

∞
1 )) and satisfies 𝛿

0𝛿1(𝜃𝑝∕𝑘) = 𝑢𝑝∕𝑘. Moreover, it
is 𝐺(𝑚 + 1)-invariant: we have �̂�𝑗(𝜃𝑝∕𝑘) = 0 for all 𝑗 ≥ 1.

Proof. By Lemma 4.6, modulo 𝐸1𝑚+1∕(𝑣
∞
1 )

𝜃𝑝∕𝑘 ≡
𝑣𝑝1 𝜆

𝑝2
2 + 𝑣𝑝2 𝜆

𝑝3
1

𝑝𝑣𝑘1
−
𝑣𝑝2 ⋅ 𝑣

𝑝2
1 𝜆

𝑝3
1

𝑝𝑣𝑝
2+𝑘

1

+
𝑣𝑝

𝑚+2

2 ⋅ 𝑣1𝜆
𝑝
1

𝑝𝑣𝑘+11

≡
𝑣𝑝1 𝜆

𝑝2
2

𝑝𝑣𝑘1
+
(𝑝𝜆1)𝑝

𝑚+2 ⋅ 𝜆𝑝1
𝑝𝑣𝑘1

≡ 0

for𝑚 = 1, and

𝜃𝑝∕𝑘 ≡
𝑣𝑝1 𝜆

𝑝2
2 + 𝑣𝑝2 𝜆

𝑝3
1 − 𝑣𝑝

𝑚+2

2 𝜆𝑝1
𝑝𝑣𝑘1

−
𝑣𝑝2 ⋅ 𝑣

𝑝2
1 𝜆

𝑝3
1

𝑝𝑣𝑝
2+𝑘

1

+
𝑣𝑝

𝑚+2

2 ⋅ 𝑣1𝜆
𝑝
1

𝑝𝑣𝑘+11

≡ 0

for 𝑚 ≥ 2. The second statement follows since all terms in 𝜃𝑝∕𝑘 except for the
leading term are in ker 𝛿1. The last statement follows from direct calculations.

□
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5. The homotopy groups of 𝑻(𝒎)(𝟐)
In this section we determine the homotopy groups of 𝑇(𝑚)(2) below dimen-

sions 𝑝|𝑣3| by analyzing the Cartan-Eilenberg 𝐸2-term of Table 1 for 𝑗 = 2. By
Lemma 2.8 and 2.9 we have

Proposition 5.1. Below dimension |𝑣𝑝
2+1

2 ∕𝑣𝑝
2

1 |, the Cartan-Eilenberg 𝐸2-term
of Table 1 for 𝑗 = 2 satisfies �̃�𝑠

′,0
2 = 0 for 𝑠′ ≥ 2, and �̃�1,02 is isomorphic to the

𝐴(𝑚 + 1)-module generated by

{
𝛽′𝑖∕𝑡 ∣ 𝑖 ≥ 2, 0 < 𝑡 ≤ min(𝑖 − 1, 𝑝)

}
∪
{
𝛽𝑝2∕𝑡 ∣ 𝑝 < 𝑡 ≤ 𝑝2

}
.

Note that |𝑣𝑝
2+1

2 ∕𝑣𝑝
2

1 | is larger than 𝑝|𝑣3| if𝑚 > 0.

Thus our remaining task is to determine the structure of

�̃�𝑠
′,𝑠′′
2 ≅ Ext𝑠

′

𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈𝑠′′+1

𝑚+1 ) for 𝑠′′ ≥ 1.

Since this is a certain suspension of �̃�𝑠
′,1
2 (i.e., tensored object with some power

of 𝑏2,0 and ℎ̂2,0), it suffices to treat the case �̃�
𝑠′,1
2 . Below dimension 𝑝|𝑣3|, de-

fine the 𝑣2-torsion free 𝐴(𝑚 + 1)-submodule 𝑈0 of 𝑣−12 𝑈2
𝑚+1 by adjoining the

elements

{
𝑣−𝑖2 𝑢𝑖,𝑗 ∣ 0 < 𝑖 ≤ 𝑝, 𝑗 ≥ 0

}
∪
{
𝑣−𝑝2 𝑢𝑝∕𝑘 ∣ 2 ≤ 𝑘 ≤ 𝑝

}

to 𝑈2
𝑚+1. Note that 𝑈

0 is a comodule since the congruence in Proposition 4.13
is modulo 𝑣𝑖2 and the ignored elements have non-negative 𝑣2-exponent after
applying 𝑣−𝑖2 . We also define the quotient comodule 𝑈

1 by the following short
exact sequence:

0⟶ 𝑈2
𝑚+1 ⟶ 𝑈0 ⟶ 𝑈1 ⟶ 0 (5.2)

The Quillen operations on 𝑣−𝑝2 𝑢𝑝∕𝑘 ∈ 𝑈0 are trivial by Proposition 4.14. The
behavior of Quillen operations on 𝑣−𝑖2 𝑢𝑖,𝑗 ∈ 𝑈0 follows from Proposition 4.10,
and it is demonstrated in (5.3) for 𝑝 = 5, where each diagonal arrow repre-
sents the action of �̂�𝑝2 up to unit scalar multiplication and the elements in the
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rightmost column are out of our range except for 𝑗 = 0.

⋮ ⋮ ⋮ ⋮ ⋮

𝑢1,𝑗 𝑢2,𝑗 𝑢3,𝑗 𝑢4,𝑗 𝑢5,𝑗

𝑣−12 𝑢1,𝑗 𝑣−12 𝑢2,𝑗

ee

𝑣−12 𝑢3,𝑗

ee

𝑣−12 𝑢4,𝑗

ee

𝑣−12 𝑢5,𝑗

ee

𝑣−22 𝑢2,𝑗

ee

𝑣−22 𝑢3,𝑗

ee

𝑣−22 𝑢4,𝑗

ee

𝑣−22 𝑢5,𝑗

ee

𝑣−32 𝑢3,𝑗

ee

𝑣−32 𝑢4,𝑗

ee

𝑣−32 𝑢5,𝑗

ee

𝑣−42 𝑢4,𝑗

ee

𝑣−42 𝑢5,𝑗

ee

𝑣−52 𝑢5,𝑗

ee

(5.3)

Proposition 5.4. 𝑈0 is 2-free, andwe have an isomorphism of𝐴(𝑚+1)-modules

Ext0𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈0) ≅ 𝐴(𝑚 + 1)⊗

{
𝑣−12 𝑢1,𝑗, 𝑣

−𝑝
2 𝑢𝑝∕𝑘 ∣ 𝑗 ≥ 0, 2 ≤ 𝑘 ≤ 𝑝

}
.

Proof. By Lemma 1.12, Ext0𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈0) is additively isomorphic to

𝐿2(𝑈0) =
⋂

𝓁≥𝑝2
ker �̂�𝓁.

In (5.3) the only possible elements with trivial action of �̂�𝑝2 are 𝑣−12 𝑢1,𝑗. Note
that

�̂�𝓁(𝑣−12 𝑢1,𝑗) = 𝛿0𝛿1(𝑣−12 �̂�𝓁(𝜃1,𝑗))

and 𝑣−12 �̂�𝓁(𝜃1,𝑗) = 0 for 𝓁 ≠ 1, 𝑝2 because

𝜓
⎛
⎜
⎝

𝑣𝑗2𝑣3
𝑝𝑣1

⎞
⎟
⎠
=
𝑣𝑗2(𝑣3 + 𝑣2�̂�

𝑝2
1 − 𝑣𝑝

𝑚+1

2 �̂�1)
𝑝𝑣1

.

Indeed, we have �̂�𝓁(𝑣−12 𝑢1,𝑗) = 0 even for 𝓁 = 1 or 𝑝2 because

𝑣−12 �̂�1(𝜃1,𝑗) = 𝑣𝑝
𝑚+1−1

2 𝛽𝑗 and 𝑣−12 �̂�𝑝2(𝜃1,𝑗) = 𝛽𝑗
are in ker 𝛿1. Thus all Quillen operations on 𝑣−12 𝑢1,𝑗 are trivial. Note that

it is also shown that there is a bijection between Ext0𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗ 𝑈0) and

Ext0𝐺(𝑚+1)(𝑈
0).

The diagram (5.3) also suggests the equality of Poincaré series

𝑔(𝑈0) =
𝑔(Ext0(𝑈0))
1 − 𝑥𝑝2

where 𝑥 = 𝑡|𝑣1|
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and we have

𝑔(𝑇
(2)
𝑚 ⊗𝑈0) = 𝑔(𝑈0) ⋅ 1 − 𝑥𝑝2

1 − 𝑥 =
𝑔(Ext0(𝑈0))

1 − 𝑥
= 𝑔(Ext0(𝑈0)) ⋅ 𝑔(𝐺(𝑚 + 1)∕𝐼)

= 𝑔(Ext0(𝑇
(2)
𝑚 ⊗𝑈0)) ⋅ 𝑔(𝐺(𝑚 + 1)∕𝐼)

which means that 𝑈0 is 2-free. □

Proposition 5.5. 𝑈1 is 2-free, andwe have an isomorphism of𝐴(𝑚+1)-modules

Ext0𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈1) ≅ 𝐴(𝑚 + 1)∕𝐼3 ⊗

{
𝑢𝑖,𝑗∕𝑣2 ∣ 𝑖 ≥ 1, 𝑗 ≥ 0

}
.

Proof. The analogous diagram to (5.3) for 𝑝 = 5 is as follows:

𝑢1,𝑗∕𝑣2 𝑢2,𝑗∕𝑣2 𝑢3,𝑗∕𝑣2 𝑢4,𝑗∕𝑣2 𝑢5,𝑗∕𝑣2

𝑢2,𝑗∕𝑣22

ee

𝑢3,𝑗∕𝑣22

ee

𝑢4,𝑗∕𝑣22

ee

𝑢5,𝑗∕𝑣22

ee

𝑢3,𝑗∕𝑣32

ee

𝑢4,𝑗∕𝑣32

ee

𝑢5,𝑗∕𝑣32

ee

𝑢4,𝑗∕𝑣42

ee

𝑢5,𝑗∕𝑣42

ee

𝑢5,𝑗∕𝑣52

ee

In this case Ext0 is generated by the elements in the top row. The 2-freeness of
𝑈1 is similarly shown to 𝑈0. □

Proposition 5.6. Below dimension 𝑝|𝑣3|, the Cartan-Eilenberg 𝐸2-term of Ta-
ble 1 for 𝑗 = 2 satisfies

�̃�𝑠
′,∗+1
2 ≅ 𝐸(ℎ̂2,0)⊗ 𝑃(𝑏2,0)⊗ Ext𝑠

′

𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈2

𝑚+1)

and

�̃�𝑠
′,1
2 = Ext𝑠

′

𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈2

𝑚+1)

≅

⎧
⎪

⎨
⎪
⎩

𝐴(𝑚 + 1)∕𝐼2 ⊗
{
𝑢1,𝑖, 𝑢𝑝∕𝑘 ∣ 𝑖 ≥ 0, 2 ≤ 𝑘 ≤ 𝑝

}
for 𝑠′ = 0,

𝐴(𝑚 + 2)∕𝐼3 ⊗ {𝛾𝓁 ∣ 𝓁 ≥ 2} for 𝑠′ = 1,

0 for 𝑠′ ≥ 2

where 𝛾𝓁 = 𝛿2
(
𝑢𝓁,0∕𝑣2

)
and 𝛿2 is the connecting homomorphism associated to

(5.2). The operators behave as if they had bidegree ℎ̂2,0 ∈ �̃�0,12 and 𝑏2,0 ∈ �̃�0,22 .
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Proof. By Proposition 5.4 and 5.5, we have the 4-term exact sequence5

0⟶ �̃�0,12 ⟶ Ext0𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈0)⟶ Ext0𝐺(𝑚+1)(𝑇

(2)
𝑚 ⊗𝑈1)⟶ �̃�1,12 ⟶ 0

and �̃�𝑠
′,1
2 = 0 for 𝑠′ ≥ 2. Since the image of the middle map is

𝐴(𝑚 + 1)∕𝐼2 ⊗ {𝑢1,𝑖∕𝑣2 ∣ 𝑗 ≥ 0} ≅ 𝐴(𝑚 + 2)∕𝐼3 ⊗ {𝑢1,0∕𝑣2}

we obtain the result. □

By Proposition 5.1 and 5.6, Table 1 is reduced to the following one:

Table 2. The Cartan-Eilenberg 𝐸2-term of (2.1) for 𝑗 = 2.

⋮ ⋮ ⋮

𝑠′′ = 2 Ext0(𝑇
(2)
𝑚 ⊗𝑈3

𝑚+1) Ext1(𝑇
(2)
𝑚 ⊗𝑈3

𝑚+1) 0 ⋯

𝑠′′ = 1 Ext0(𝑇
(2)
𝑚 ⊗𝑈2

𝑚+1) Ext1(𝑇
(2)
𝑚 ⊗𝑈2

𝑚+1) 0 ⋯

𝑠′′ = 0 ker 𝜌∗ described in Proposition 5.1 0 ⋯

𝑠′ = 0 𝑠′ = 1 𝑠′ = 2

Proposition 5.7. Belowdimension𝑝|𝑣3|, theCartan-Eilenberg spectral sequence
of Table 1 for 𝑗 = 2 collapses, and we have the short exact sequence

0⟶ �̃�1,𝑠
′′

∞ ⟶ Ext𝑠
′′+2
Γ(𝑚+1)(𝑇

(2)
𝑚 )⟶ �̃�0,𝑠

′′+1
∞ ⟶ 0

which splits for 𝑠′′ ≥ 1, but not for 𝑠′′ = 0.

Proof. The spectral sequence collapses since we have only two columns in Ta-
ble 2. Themiddle groups is isomorphic to Ext𝑠

′′+1
Γ(𝑚+1)(𝑇

(2)
𝑚 ⊗𝐸1𝑚+1), and the short

exact sequences follow by inspection of Table 2. For 𝑠′′ ≥ 1, it splits because
�̃�1,𝑠

′′

2 is 𝑣2-torsion while �̃�
0,𝑠′′+1
2 is 𝑣2-torsion free by Proposition 5.6. For 𝑠′′ = 0,

for example, an element

𝑢1,0 ∈ Ext0𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈2

𝑚+1) ≅ �̃�0,12
is killed by 𝑣1, however, its lift

𝛿0𝛿1(𝜃1,0) = 𝛿0𝛿1
⎛
⎜
⎝

𝑣3
𝑝𝑣1

−
𝑣2𝑣

𝑝
2

𝑝𝑣1+𝑝1

⎞
⎟
⎠
∈ Ext2Γ(𝑚+1)(𝑇

(2)
𝑚 )

is not killed by 𝑣1. Thus, it does not split. □

5The case𝑚 = 0 was described in [Rav04, Lemma 7.3.5].
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Theorem 5.8. Below dimension 𝑝|𝑣3|, the Adams-Novikov spectral sequence for
𝑇(𝑚)(2) collapses.

Proof. We have computed the Adams-Novikov 𝐸𝑛,∗2 = Ext𝑛Γ(𝑚+1)(𝑇
(2)
𝑚 ) for 𝑛 ≥

2 and the shortest possible differential is 𝑑2𝑝−1 ∶ 𝐸2,∗2 → 𝐸2𝑝+1,∗2 . The first
element in the target is ℎ̂2,0𝑏

𝑝−1
2,0 𝑢1,0 ∈ 𝐸2𝑝+1,∗2 , and its total degree

2(𝑝𝑚+4 + 𝑝𝑚+2 − 𝑝2 − 𝑝) − 3

is larger than 𝑝|𝑣3|. □

6. The homotopy groups of 𝑻(𝒎)(𝟏)
In this section we determine the homotopy groups of 𝑇(𝑚)(1) below dimen-

sions 𝑝|𝑣3|. To determine the Cartan-Eilenberg 𝐸2-term of Table 1 for 𝑗 = 1,
we use the algebraic small descent spectral sequence of Theorem 1.17: For a
𝐺(𝑚 + 1)-comodule𝑀 and non-negative integer 𝑖, there is a spectral sequence

converging to Ext𝐺(𝑚+1)(𝑇
(𝑖)
𝑚 ⊗𝐴(𝑚+1) 𝑀) with

𝐸∗,𝑡1 ≅ 𝐸(ℎ̂1,𝑗)⊗ 𝑃(𝑏1,𝑗)⊗ Ext𝑡𝐺(𝑚+1)(𝑇
(𝑖+1)
𝑚 ⊗𝐴(𝑚+1) 𝑀)

with ℎ̂1,𝑗 ∈ 𝐸1,01 , 𝑏1,𝑗 ∈ 𝐸2,01 , and 𝑑𝑟 ∶ 𝐸𝑠,𝑡𝑟 → 𝐸𝑠+𝑟,𝑡−𝑟+1𝑟 . In particular, 𝑑1
is induced by the action on 𝑀 of 𝑟𝑝𝑗 for 𝑠 even and 𝑟(𝑝−1)𝑝𝑗 for 𝑠 odd. Note
that 𝑟(𝑝−1)𝑝𝑗 is congruent to the (𝑝 − 1)-fold iteration of 𝑟𝑝𝑗 up to unit scalar
multiplication.

The case𝑀 = 𝑈2
𝑚+1 is easy.

Proposition 6.1. Below dimension 𝑝|𝑣3|, the algebraic small descent spectral
sequence for𝑈2

𝑚+1 collapses from the 𝐸2-term, and

Ext∗+𝑘𝐺(𝑚+1)(𝑇
(1)
𝑚 ⊗𝑈2

𝑚+1) ≅ 𝐸(ℎ̂1,1)⊗ 𝑃(𝑏1,1)⊗ Ext𝑘𝐺(𝑚+1)(𝑇
(2)
𝑚 ⊗𝑈2

𝑚+1).

Proof. Since the action of �̂�𝑝 on 𝑈2
𝑚+1 is trivial by Corollary 4.1, the 𝐸1-term

coincides with the 𝐸2-term. The differentials 𝑑2 ∶ 𝐸
𝑠,1
2 → 𝐸𝑠+2,02 are also trivial

since the source is 𝑣2-torsion while the target is 𝑣2-torsion free. By Proposi-
tion 5.6 the small descent spectral sequence has only two rows, and so 𝑑𝑟 = 0
for 𝑟 ≥ 3. □

Hereafter we will denote 𝑢1,𝑖 by 𝑢𝑖 for short. Since

�̃�𝑠
′,𝑠′′
2 ≅ Ext𝑠

′

𝐺(𝑚+1)(𝑇
(1)
𝑚 ⊗𝑈𝑠′′+1

𝑚+1 ) for 𝑠′′ ≥ 1,

the following is a translation of Proposition 6.1.

Corollary 6.2. Below dimension 𝑝|𝑣3|, the Cartan-Eilenberg 𝐸2-term of Table 1

�̃�∗+𝑠
′,∗+1

2 ≅ Ext∗+𝑠
′

𝐺(𝑚+1)(𝑇
(1)
𝑚 ⊗𝑈∗+2

𝑚+1)
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is isomorphic to

𝐸(ℎ̂2,0, ℎ̂1,1)⊗ 𝑃(𝑏2,0, 𝑏1,1)⊗
⎧

⎨
⎩

𝐴(𝑚 + 1)∕𝐼2 ⊗
{
𝑢𝑖, 𝑢𝑝∕𝑘 ∣ 𝑖 ≥ 0, 2 ≤ 𝑘 ≤ 𝑝

}

⊕
𝐴(𝑚 + 2)∕𝐼3 ⊗

{
𝛾𝓁 ∣ 𝓁 ≥ 2

}

where the bidegree of elements are 𝑢 ∈ �̃�0,12 and 𝛾 ∈ �̃�1,12 and the operators behave
as if they had the bidegree ℎ̂2,0 ∈ �̃�0,12 , 𝑏2,0 ∈ �̃�0,22 , ℎ̂1,1 ∈ �̃�1,02 and 𝑏1,1 ∈ �̃�2,02 .

The algebraic small descent spectral sequence for𝑀 = 𝐵𝑚+1 was treated in
[NR09], which we summarize here. Below dimension |𝑣𝑝

2+1
2 ∕𝑣𝑝

2

1 | it collapses
from 𝐸2-term since 𝐵𝑚+1 is 2-free by Lemma 2.9, so we need to compute only

𝑑1. On the elements of Ext
0
𝐺(𝑚+1)(𝑇

(2)
𝑚 ⊗ 𝐵𝑚+1) (2.10), we have

�̂�𝑝(𝛽′𝑖∕𝑒1) = 𝛽𝑖−1∕𝑒1−1, �̂�𝑝(𝛽𝑝𝑖∕𝑒1) = 0 and �̂�𝑝2−𝑝(𝛽′𝑖∕𝑝) = 𝛽𝑖−𝑝+1∕1

up to unit scalar multiplication (cf. [NR09, Proposition B.2]). It may be helpful
to demonstrate the behavior of 𝑑1 for 𝑝 = 3. The following diagrams describes
𝑑1 related to the first set of (2.10):

𝛽′3∕1 𝛽′3∕2
�̂�3
��

𝛽′3∕3
�̂�3
��

�̂�6

ww

𝛽′2∕1 𝛽′2∕2
�̂�3
��

𝛽′1∕1

𝛽5∕3

�̂�3~~�̂�6

��

𝛽4∕2

�̂�3~~

𝛽4∕3

�̂�3~~

𝛽3∕1 𝛽3∕2 𝛽3∕3

(6.3)

Corresponding to the diagonal containing 𝛽′1∕1, the subgroup of 𝐸1 generated
by

𝐸(ℎ̂1,1)⊗ 𝑃(𝑏1,1)⊗ {𝛽′1∕1,… , 𝛽
′
𝑝∕𝑝}

reduces to simply {𝛽′1∕1} on passage to 𝐸2. The similar argument is true for the

diagonal containing 𝛽𝑝∕1. On the other hand, corresponding to the diagonal
containing 𝛽′𝑖∕1 (2 ≤ 𝑖 ≤ 𝑝) is the subgroup generated by

𝐸(ℎ̂1,1)⊗ 𝑃(𝑏1,1)⊗ {𝛽′𝑖∕1,… , 𝛽
′
𝑝∕𝑝−𝑖+1}

which is reduced to 𝑃(𝑏1,1)⊗ {𝛽′𝑖∕1, ℎ̂1,1𝛽
′
𝑝∕𝑝−𝑖+1}. The similar argument is true

for the diagonal containing 𝛽𝑝∕𝑖 (2 ≤ 𝑖 ≤ 𝑝); the subgroup generated by

𝐸(ℎ̂1,1)⊗ 𝑃(𝑏1,1)⊗ {𝛽𝑝∕𝑖,… , 𝛽2𝑝−𝑖∕𝑝}
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reduces to 𝑃(𝑏1,1)⊗{𝛽𝑝∕𝑖, ℎ̂1,1𝛽2𝑝−𝑖∕𝑝}. In particular, the subgroups correspond-
ing to 𝛽′𝑝∕1 and 𝛽𝑝∕𝑝 survive to 𝐸2 entirely.

Remark6.4. In the diagram (6.3)we can read off the existence of certainMassey
products. For example, if we have a relation �̂�𝑝(𝑏) = 𝑎, thenwehave theMassey
product ⟨ℎ̂1,1, ℎ̂1,1, 𝑎⟩, as we will explain in Appendix A. In general, if we have
a sequence

𝑎𝑖
�̂�𝑝
⟶ 𝑎𝑖−1

�̂�𝑝
⟶⋯

�̂�𝑝
⟶ 𝑎1 (0 < 𝑖 < 𝑝) (6.5)

then we would have the Massey product ⟨ℎ̂1,1,… , ℎ̂1,1, 𝑎1⟩ with 𝑖-factors of ℎ̂1,1
whose representative has the leading term �̂�𝑝1 ⊗𝑎𝑖. In this paper we denote this
Massey product by 𝜇𝑖(𝑎1), although it is denoted by 𝑝𝑖𝑎1 in [Rav04, Definition
7.4.12].

Note that the entire configuration is 𝑣𝑝2 -periodic. The diagram containing
𝛽𝑝2∕1 corresponding to the right one of (6.3) is combined with the diagram for
the second set of (2.10):

𝛽11∕3

�̂�3||
�̂�6

��

⋯ ⋯ 𝛽11∕9

�̂�3||
�̂�6

��

𝛽10∕2

�̂�3}}

⋯ ⋯ 𝛽10∕8

�̂�3}}

𝛽10∕9

�̂�3||

𝛽9∕1 ⋯ ⋯ 𝛽9∕7 𝛽9∕8 𝛽9∕9

(6.6)

Then, the summand corresponding to 𝛽𝑝2∕𝑘 (1 ≤ 𝑘 ≤ 𝑝2 − 𝑝 + 1) reduces to
{𝛽𝑝2∕𝑘}, and the summand corresponding to 𝛽𝑝2∕𝑝2−𝓁 (0 ≤ 𝓁 ≤ 𝑝 − 2) reduces
to 𝑃(𝑏1,1)⊗ {𝛽𝑝2∕𝑝2−𝓁, ℎ̂1,1𝛽𝑝2+𝓁∕𝑝2}.

By these observations we have the following result:

Proposition 6.7 ([NR09, Proposition 7.3]). Below dimensions |𝑣𝑝
2+1

2 ∕𝑣𝑝
2

1 |, the
Cartan-Eilenberg 𝐸2-term of Table 1

�̃�∗+1,02 = Ext∗𝐺(𝑚+1)(𝑇
(1)
𝑚 ⊗ 𝐵𝑚+1)

has the following 𝐴(𝑚 + 1)∕𝐼2-basis:

𝑃(𝑣𝑝2 )⊗
{
𝛽′1, 𝛽𝑝∕1

}
⊕
{
𝛽𝑝2∕𝑘 ∣ 1 ≤ 𝑘 ≤ 𝑝2 − 𝑝 + 1

}

⊕

𝑃(𝑏1,1)⊗
⎛
⎜
⎜
⎝

𝑃(𝑣𝑝2 )⊗
{
𝛽′𝑖∕1, ℎ̂1,1𝛽

′
𝑝∕𝑝−𝑖+1, 𝛽𝑝∕𝑖, ℎ̂1,1𝛽2𝑝−𝑖∕𝑝 ∣ 2 ≤ 𝑖 ≤ 𝑝

}

⊕{
𝛽𝑝2∕𝑝2−𝓁, ℎ̂1,1𝛽𝑝2+𝓁∕𝑝2 ∣ 0 ≤ 𝓁 ≤ 𝑝 − 2

}

⎞
⎟
⎟
⎠
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subject to the caveat that 𝑣2𝛽𝑘∕𝑒 = 𝛽𝑘+1∕𝑒. The bigrading of elements are (omitting
unnecessary subscripts) 𝛽 ∈ �̃�1,02 and the operators ℎ̂1,1 and 𝑏1,1 behave as if they
had the bidegrees given in Corollary 6.2.

Note that the range of dimensions (i.e., |𝑣𝑝
2+1

2 ∕𝑣𝑝
2

1 |) exceeds 𝑝|𝑣3| for𝑚 > 0.

Nowwe have determined the Cartan-Eilenberg 𝐸2-term for 𝑗 = 1. In the fol-
lowings wewill see that the spectral sequence has a rich pattern of differentials,
which is essentially independent of𝑚.
For the differential

𝑑2 ∶ �̃�
𝑠′,1
2 = Ext𝑠

′

𝐺(𝑚+1)(𝑇
(1)
𝑚 ⊗𝑈2

𝑚+1)⟶ �̃�𝑠
′+2,0
2 = Ext𝑠

′+1
𝐺(𝑚+1)(𝑇

(1)
𝑚 ⊗ 𝐵𝑚+1)

wemay ignore the 𝑣2-torsion part of the source (i.e.,𝛾-elements) since the target
is 𝑣2-torsion free. For the other part, we have the following result6.

Lemma 6.8. The Cartan-Eilenberg spectral sequence of Table 1 for 𝑗 = 1 has the
following differentials:

(i) 𝑑2(𝑢𝑖) = 𝑖𝑣2ℎ̂1,1𝛽𝑖+𝑝−1∕𝑝 for 𝑖≡∕ 0mod 𝑝.

(ii) 𝑑2(ℎ̂1,1𝑢𝑖) =
( 𝑖
𝑝 − 1

)
𝑣2𝑏1,1𝛽𝑖+1∕2 for 𝑖 ≡ −1mod 𝑝.

All differentials commute with multiplication by 𝑏1,1.

Proof. We are considering the Cartan-Eilenberg spectral sequence for 𝑇(1)𝑚 ⊗
𝐸1𝑚+1, and its Ext

𝑠′ for 𝑠′ > 0 is a quotient of (isomorphic to for 𝑠′ > 1) Ext𝑠
′−1

for 𝑇(1)𝑚 ⊗ 𝐸1𝑚+1∕(𝑣
∞
1 ), so we can work in the cobar complex over 𝐺(𝑚 + 1) for

the latter comodule.
The differential (i) follows from �̂�𝑝(𝑢𝑖) = 𝑖𝑣2𝛽𝑖+𝑝−1∕𝑝 given byProposition 4.12.

We also have �̂�𝑝2−𝑝(𝑢𝑖) =
( 𝑖
𝑝−1

)
𝑣2𝛽𝑖+1∕2 and the differential (ii) by Lemma 4.11.

□

Now the diagram (6.3)) for 𝑝 = 3 is reviewed as follows. In each case the
graph now has 2𝑝 + 1 instead of 2𝑝 components, three of which are maximal:

𝛽′3∕1 𝛽′3∕2
�̂�3
��

𝛽′3∕3
�̂�3
��

�̂�6

ww

𝛽′2∕1 𝛽′2∕2
�̂�3
��

𝛽′1∕1

𝛽5∕3
�̂�3
~~

�̂�6

		

𝑣−12 𝑢2

𝑑2||
𝑑2

��

𝛽4∕2
�̂�3
~~

𝛽4∕3

�̂�3~~

𝑣−12 𝑢1

𝑑2||

𝛽3∕1 𝛽3∕2 𝛽3∕3 𝑣−12 𝑢0

(6.9)

In fact, each 𝑑1 in the small descent spectral sequence behaves as it were the
Cartan-Eilenberg 𝑑2. Note that the bigrading of elements in the small descent

6The result for𝑚 = 0 was described in [Rav04, Lemma 7.3.12].
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spectral sequence are 𝛽 ∈ 𝐸0,2𝑟 , 𝑢 ∈ 𝐸0,2𝑟 and 𝛾 ∈ 𝐸0,3𝑟 , and each operator has
the same bigrading as that for Cartan-Eilenberg spectral sequence. In general,
the small descent 𝑑𝑟 correspond to the Cartan-Eilenberg 𝑑𝑟+1 for 𝑟 ≥ 1. See
Table 3.

Table 3. Bigradings of elements. Some subscripts have been omitted.

Cartan-Eilenberg spectral sequence for 𝑗 = 1

𝑠′′ = 3 𝑏2,0𝑢 ℎ̂1,1𝑏2,0𝑢 𝑏1,1𝑏2,0𝑢 ℎ̂1,1𝑏1,1𝑏2,0𝑢

𝑠′′ = 2 ℎ̂2,0𝑢 ℎ̂1,1ℎ̂2,0𝑢 𝑏1,1ℎ̂2,0𝑢 ℎ̂1,1𝑏1,1ℎ̂2,0𝑢

𝑠′′ = 1 𝑢 ℎ̂1,1𝑢 𝑏1,1𝑢 ℎ̂1,1𝑏1,1𝑢

𝑠′′ = 0 ∗ 𝛽 ℎ̂1,1𝛽 𝑏1,1𝛽

𝑠′ = 0 𝑠′ = 1 𝑠′ = 2 𝑠′ = 3

small descent spectral sequence for 𝑗 = 1

𝑠′′ = 4 𝑏2,0𝑢 ℎ̂1,1𝑏2,0𝑢 𝑏1,1𝑏2,0𝑢 ℎ̂1,1𝑏1,1𝑏2,0𝑢

𝑠′′ = 3 ℎ̂2,0𝑢 ℎ̂1,1ℎ̂2,0𝑢 𝑏1,1ℎ̂2,0𝑢 ℎ̂1,1𝑏1,1ℎ̂2,0𝑢

𝑠′′ = 2 𝑢 ℎ̂1,1𝑢 𝑏1,1𝑢 ℎ̂1,1𝑏1,1𝑢

𝛽 ℎ̂1,1𝛽 𝑏1,1𝛽 ℎ̂1,1𝑏1,1𝛽

𝑠′′ = 1 ∗

𝑠′ = 0 𝑠′ = 1 𝑠′ = 2 𝑠′ = 3

Remark 6.10. In (6.9) the “virtual” element 𝑣−12 𝑢𝑖 lives in Ext
0
𝐺(𝑚+1)(𝑇

(1)
𝑚 ⊗

𝑈0) but not in Ext0𝐺(𝑚+1)(𝑇
(1)
𝑚 ⊗𝑈2

𝑚+1). This means that ℎ̂1,1𝑏
𝑘
1,1𝛽𝑖+𝑝−1∕𝑝 is not

actually trivial but 𝑣2-torsion, and that it is chromatically renamed 𝑣𝑖2𝑏
𝑘
1,1𝛾1.

This is a feature of the cases 𝑚 ≥ 0 and it does not happen for 𝑚 = 0. For
example, in the chromatic spectral sequence we have

𝑑𝑒(𝑣−12 𝑢1) = 𝑑𝑒
⎛
⎜
⎝

𝑣−12 𝑣2𝑣3
𝑝𝑣1

−
𝑣𝑝+12

𝑝𝑣𝑝+11

⎞
⎟
⎠
=

𝑣2𝑣3
𝑝𝑣1𝑣2

= 𝑣2𝛾1

and 𝑑𝑖(𝑣−12 𝑢1) = −
𝑣𝑝2 �̂�

𝑝
1

𝑝𝑣𝑝1
−
𝑣𝑝

𝑚+1−1
2 𝑣2�̂�1
𝑝𝑣1

≡ −ℎ̂1,1𝛽𝑝∕𝑝.

The second term in 𝑑𝑖 is the product of �̂�1 with an invariant element 𝑥. It is
ignored because we are working in 𝑇(𝑚)(1); it is the coboundary of �̂�1 ⊗ 𝑥.
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It is also observed that 𝑏𝑘+11,1 𝛽𝑖𝑝∕2 is renamed 𝑣
𝑖𝑝−1
2 ℎ̂1,1𝑏𝑘1,1𝛾1. For example, we

have

𝑑𝑒(𝑣−12 ℎ̂1,1𝑢𝑝−1) = 𝑑𝑒
⎛
⎜
⎝
�̂�𝑝1
⎛
⎜
⎝

𝑣−12 𝑣𝑝−12 𝑣3
𝑝𝑣1

−
𝑣2𝑝−12

𝑝𝑣𝑝+11

⎞
⎟
⎠

⎞
⎟
⎠
=
𝑣𝑝−12 𝑣3�̂�

𝑝
1

𝑝𝑣1𝑣2
= 𝑣𝑝−12 ℎ̂1,1𝛾1

and 𝑑𝑖(𝑣−12 ℎ̂1,1𝑢𝑝−1) = −�̂�𝑝1 ⊗
𝑣𝑝2 �̂�

𝑝2−𝑝
1

𝑝𝑣21
+⋯ = 𝑏1,1𝛽𝑝∕2.

The following result concerns higher Cartan-Eilenberg differentials, and we
will prove it in the next section.

Theorem 6.11. The Cartan-Eilenberg spectral sequence of Table 1 for 𝑗 = 1 has
the following differentials and no others in our range of dimensions:

(i) 𝑑3(ℎ̂2,0𝑢𝑖) = 𝑣2𝑏1,1𝛽′𝑖+1 for 𝑖≡∕ 0mod 𝑝.
(ii) 𝑑3(ℎ̂𝜀2,0𝑏

𝑘
2,0𝑢𝑖) = 𝑣2ℎ̂1,1𝑏1,1ℎ̂𝜖2,0𝑏

𝑘−1
2,0 𝑢𝑖−1 for 𝑖≡∕ 0mod 𝑝, 𝑘 ≥ 1 and 𝜀 = 0

or 1.
(iii) 𝑑2𝑘+3(ℎ̂1,1ℎ̂2,0𝑏𝑘2,0𝑢𝑖) = 𝑣𝑘+12 ℎ̂1,1𝑏𝑘+11,1 𝛽

′
𝑖+1∕𝑘+1 for 𝑖 ≡ −1mod 𝑝 and 0 ≤

𝑘 < 𝑝 − 1.
(iv) 𝑑2𝑘+2(ℎ̂1,1𝑏𝑘2,0𝑢𝑖) = 𝑣𝑘+12 𝑏𝑘+11,1 𝛽𝑖+1∕𝑘+2 for 𝑖 ≡ −1 mod 𝑝 and 1 ≤ 𝑘 <

𝑝 − 1 (the case 𝑘 = 0 is Lemma 6.8(ii)).
(v) 𝑑2𝑝−1(ℎ̂1,1𝑏

𝑝−1
2,0 𝑢𝑖) = 𝑣𝑝−12 𝑏𝑝1,1𝑢𝑖−𝑝+1 for 𝑖 ≡ −1mod 𝑝.

All differentials commute with multiplication by 𝑏1,1.

Since each source of the stated differentials lies in �̃�0,∗𝑟 or �̃�1,∗𝑟 , it cannot be the
target of another differential. Moreover, each differential has maximal length
for the bidegree of its source. Thus, the source should be a permanent cycle if
a differential is trivial.

Remark 6.12. We can define a decreasing filtration on 𝐵𝑚+1 and 𝑈𝑚+1 by

||𝛽′𝑖∕𝑗|| = 𝑖 − 𝑗 − 1, ||𝑢𝑖|| = 𝑖 + [𝑖∕𝑝], and ||𝑝|| = ||𝑣1|| = ||𝑣2|| = 1.

Then the source and target of each differential listed in Theorem 6.11 have the
same filtration. A similar filtration for 𝑚 = 0 is discussed in [Rav04, Lemma
7.4.6]. In (6.9) all elements along the same diagonal (e.g., 𝛽2, 𝛽′3∕2, 𝛽3∕3 and
𝑣−12 𝑢1 in filtration 0) have the same filtration.

Remark 6.13. Again, we obtained the differentials of the form 𝑑𝑟(𝑥) = 𝑣𝑡2𝑦,
each of which doesn’t kill 𝑦 but makes 𝑦 into a 𝑣𝑡2-torsion element, as we have
already seen in Remark 6.10. For example, the differential in (i) means that
𝑏1,1𝛽′𝑖+1 is killed by 𝑣2; in the chromatic cobar complex we have

𝑑(𝑣−12 ℎ̂2,0𝑢𝑖) = −𝑏1,1𝛽′𝑖+1 ± 𝑣
𝑖
2ℎ̂2,0𝛾1,
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so ±𝑣𝑖2ℎ̂2,0𝛾1 is the new name for 𝑏1,1𝛽′𝑖+1. Similarly, ℎ̂1,1𝑏1,1ℎ̂
𝜀
2,0𝑏

𝑘−1
2,0 𝑢𝑖−1 is re-

named 𝑣𝑖2ℎ̂
𝜀
2,0𝑏

𝑘
2,0𝛾1 by (ii), and ℎ̂1,1𝑏1,1𝛽

′
𝑝 is renamed 𝑣

𝑝−1
2 ℎ̂1,1ℎ̂2,0𝛾1 by (iii).

There are some patterns of differentails associated with each component of
(6.9), which we now demonstrate for 𝑝 = 3. For example, for 𝛽2 we have the
following diagram:

𝛽2 ℎ̂1,1𝛽2 𝑏1,1𝛽2 ℎ̂1,1𝑏1,1𝛽2 𝑏21,1𝛽2 ℎ̂1,1𝑏21,1𝛽2

𝛽′3∕2

�̂�𝑝
==

ℎ̂1,1𝛽′3∕2 𝑏1,1𝛽′3∕2

�̂�𝑝
::

ℎ̂1,1𝑏1,1𝛽′3∕2 𝑏21,1𝛽
′
3∕2

�̂�𝑝
::

ℎ̂1,1𝑏21,1𝛽
′
3∕2

𝑥1

𝑑3

DD

ℎ̂1,1𝑥1 𝑏1,1𝑥1

𝑑3

BB

ℎ̂1,1𝑏1,1𝑥1

𝑥2

𝑑3 88

ℎ̂1,1𝑥2

𝑑5

BB

where𝑥𝑘 = 𝑣−𝑘2 ℎ̂2,0𝑏𝑘−12,0 𝑢𝑘, and the boxed elements are permanent in theCartan-
Eilenberg spectral sequence. The underlined elements indeed survive, how-
ever, each of these changes into 𝑣2-torsion element (cf. Remark 6.10 and 6.13).
It is also observed that ℎ̂1,1𝛽′3∕2, 𝑏1,1𝛽2 and ℎ̂1,1𝑏1,1𝛽

′
3∕2 correspond to theMassey

products 𝜇2(𝛽2), 𝜇1(𝜇2(𝛽2)) and 𝜇2(𝜇1(𝜇2(𝛽2))) respectively (see Remark 6.4).
Similarly, for 𝛽3∕3 we have the following diagram:

𝛽3∕3 ℎ̂1,1𝛽3∕3 𝑏1,1𝛽3∕3 ℎ̂1,1𝑏1,1𝛽3∕3 𝑏21,1𝛽3∕3

𝑦1

�̂�𝑝 ==

ℎ̂1,1𝑦1 𝑏1,1𝑦1

�̂�𝑝 99

ℎ̂1,1𝑏1,1𝑦1

𝑦2

𝑑3 88

ℎ̂1,1𝑦2

𝑑4

CC
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where 𝑦𝑘 = 𝑣−𝑘2 𝑏𝑘−12,0 𝑢𝑘 and ℎ̂1,1𝛽3∕3 is renamed 𝑣2𝛾1, and for 𝛽3∕2 we also have
the following diagram:

𝛽3∕2 ℎ̂1,1𝛽3∕2 𝑏1,1𝛽3∕2

𝛽4∕3

�̂�3
<<

ℎ̂1,1𝛽4∕3

𝑧

𝑑2 ;;

ℎ̂1,1𝑧

𝑑2

DD

where 𝑧 = 𝑣−12 𝑢2, and we have ℎ̂1,1𝛽4∕3 = 𝜇2(𝛽3∕2).

Finally, we have the following result:

Theorem6.14. Belowdimension𝑝|𝑣3|, theCartan-Eilenberg �̃�∞-termof Table 1
for 𝑗 = 1 is the direct sum of the followings:

(i) the 𝐴(𝑚 + 1)∕𝐼2 ⊗ 𝑃(𝑣𝑝2 )-module generated by
{
𝛽′1, 𝛽

′
2,… , 𝛽

′
𝑝; 𝛽𝑝∕1, 𝛽𝑝∕2; ℎ̂1,1𝛽′𝑝

}

⊕
𝑃(𝑏1,1)⊗

{
ℎ̂1,1𝛽′𝑝∕𝑝−𝑖+1, 𝛽𝑝∕𝑗 ∣ 2 ≤ 𝑖 ≤ 𝑝 − 1, 3 ≤ 𝑗 ≤ 𝑝

}

⊕

𝐸(ℎ̂2,0)⊗ 𝑃(𝑏2,0)⊗
⎛
⎜
⎜
⎝

𝑃(𝑏1,1)⊗ {𝑢0}
⊕{

ℎ̂1,1𝑢𝑖 ∣ 0 ≤ 𝑖 ≤ 𝑝 − 2
}

⎞
⎟
⎟
⎠

;

(ii) the 𝐴(𝑚 + 1)∕𝐼3 ⊗ 𝑃(𝑣𝑝2 )-module generated by

𝐸(ℎ̂2,0)⊗ 𝑃(𝑏1,1, 𝑏2,0)⊗

⎛
⎜
⎜
⎜
⎜
⎝

𝐸(ℎ̂1,1)⊗ {𝑣𝑝−12 𝛾1}
⊕

{𝑣𝑖2𝛾1 ∣ 2 ≤ 𝑖 ≤ 𝑝 − 2}
⊕

{𝑣2𝛾1}

⎞
⎟
⎟
⎟
⎟
⎠

/⎛
⎜
⎜
⎝

𝑣𝑝−12 ℎ̂1,1𝑏2,0𝛾1,
𝑣𝑝−12 𝑏1,1𝑏2,0𝛾1,
𝑣𝑖2𝑏1,1𝑏2,0𝛾1

⎞
⎟
⎟
⎠

where the second summand is only for 𝑝 ≥ 5;
(iii) the 𝐴(𝑚 + 1)∕𝐼2-module generated by

{
𝛽𝑝2∕𝑘 ∣ 1 ≤ 𝑘 ≤ 𝑝2 − 𝑝 + 1

}

⊕

𝑃(𝑏1,1)⊗
⎛
⎜
⎜
⎝

{
𝛽𝑝2∕𝑝2−𝓁, ℎ̂1,1𝛽𝑝2+𝓁∕𝑝2 ∣ 0 ≤ 𝓁 ≤ 𝑝 − 2

}

⊕
𝐸(ℎ̂1,1, ℎ̂2,0)⊗ 𝑃(𝑏2,0)⊗

{
𝑢𝑝∕𝑘 ∣ 2 ≤ 𝑘 ≤ 𝑝

}

⎞
⎟
⎟
⎠

; and
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𝑡 − 𝑠 Element

46 𝛽1
98 𝛽2
142 𝛽3∕3
146 𝛽3∕2
150 𝛽3

𝛽′3
154 𝑢0
189 𝑣2𝛾1
193 ℎ̂1,1𝛽′3∕2
197 ℎ̂1,1𝛽′3
201 ℎ̂1,1𝑢0
202 𝛽4
205 ℎ̂2,0𝑢0
240 𝑣2ℎ̂2,0𝛾1
241 𝑣22𝛾1
252 ℎ̂1,1ℎ̂2,0𝑢0
253 ℎ̂1,1𝑢1
254 𝛽5
284 𝑏1,1𝛽3∕3
288 𝑣22ℎ̂1,1𝛾1
292 𝑣22ℎ̂2,0𝛾1

𝑡 − 𝑠 Element
296 𝑏1,1𝑢0
297 𝛾2
298 𝛽6∕3
302 𝛽6∕2
304 ℎ̂1,1ℎ̂2,0𝑢1
306 𝛽′6

𝛽6
308 𝑏2,0𝑢0
310 𝑢3
331 𝑣2𝑏1,1𝛾1
335 ℎ̂1,1𝑏1,1𝛽′3∕2
339 𝑣22ℎ̂1,1ℎ̂2,0𝛾1
343 𝑣2𝑏2,0𝛾1
344 ℎ̂1,1𝛾2
345 𝑣42𝛾1
347 𝑏1,1ℎ̂2,0𝑢0
348 ℎ̂2,0𝛾2
349 ℎ̂1,1𝛽′6∕2

𝑣2𝛾2
353 ℎ̂1,1𝛽′6

𝑡 − 𝑠 Element
355 ℎ̂1,1𝑏2,0𝑢0
357 ℎ̂1,1𝑢3
358 𝛽7
359 ℎ̂2,0𝑏2,0𝑢0
361 ℎ̂2,0𝑢3
382 𝑣2𝑏1,1ℎ̂2,0𝛾1
383 𝑣22𝑏1,1𝛾1
394 𝑣2ℎ̂2,0𝑏2,0𝛾1
395 𝑣22𝑏2,0𝛾1

ℎ̂1,1ℎ̂2,0𝛾2
396 𝑣42ℎ̂2,0𝛾1

𝑣2ℎ̂1,1𝛾2
397 𝑣52𝛾1
400 𝑣2ℎ̂2,0𝛾2
401 𝑣22𝛾2
406 ℎ̂1,1ℎ̂2,0𝑏2,0𝑢0
407 ℎ̂1,1𝑏2,0𝑢1
408 ℎ̂1,1ℎ̂2,0𝑢3
409 ℎ̂1,1𝑢4
410 𝛽8

Figure 1. The elements of Ext𝑠,𝑡𝐵𝑃∗(𝐵𝑃)(𝐵𝑃∗(𝑇(1)(1))) for 𝑝 = 3,
and 𝑡 − 𝑠 ≤ 426.

(iv) the 𝐴(𝑚 + 2)∕𝐼3-module generated by

𝐸(ℎ̂1,1, ℎ̂2,0)⊗ 𝑃(𝑏1,1, 𝑏2,0)⊗
{
𝛾𝓁 ∣ 𝓁 ≥ 2

}
.

Remark 6.15. Theorem 6.11 (iii) and (iv) mean that some elements in the sec-
ond summand of Theorem 6.14 (i) have higher 𝑣2-torsion. They should be re-
named chromatically so as to be realized explicitly that they are 𝑣2-torsion.

Now we have computed Ext𝑛Γ(𝑚+1)(𝑇
(1)
𝑚 ) for 𝑛 ≥ 2. There is no Adams-

Novikov differential in this range because the first element in filtration≥ 2𝑝+1
is 𝑣2𝑏

𝑝−1
1,1 𝛾1, which is not killed by 𝑑2𝑝−1. Thus, the Adams-Novikov spectral se-

quence for 𝑇(𝑚)(1) collapses and Theorem 6.14 gives us the stable homotopy
groups of 𝑇(𝑚)(1). The elements for (𝑝,𝑚) = (3, 1) are listed in Figure 1 and
depicted in Figure 2.
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7. The proof of Theorem 6.11

In this section we give a detailed proof7 of Theorem 6.11 for 𝑚 > 0. As is
stated in the proof of Lemma 6.8, our spectral sequence is a quotient of the
Cartan-Eilenberg spectral sequence and it is enough to prove each differential
by computing in 𝐶Γ(𝑚+1)(𝑇

(1)
𝑚 ⊗ 𝑁2).

Lemma 7.1. For 𝑚 > 0, we have a cocycle 𝑏′2,0 = 𝑝−1(𝑣𝑝1 𝑏1,1 + 𝑑(̂𝑡𝑝2 )) in the
cobar complex over Γ(𝑚 + 1), which projects to 𝑏2,0 in that over Γ(𝑚 + 2).

Proof. Recall that we are using the symbols 𝑏1,𝑗 and 𝑏2,0 for their cobar repre-
sentatives, namely

𝑏1,𝑗 = 𝑝−1𝑑 (�̂�𝑝
𝑗+1

1 ) = −
∑

0<𝓁<𝑝𝑗+1
𝑝−1

(𝑝𝑗+1

𝓁

)
�̂�𝓁1 ⊗ �̂�𝑝

𝑗+1−𝓁
1

and 𝑏2,0 ≡ 𝑝−1
(
�̂�𝑝2 ⊗ 1 + 1⊗ �̂�𝑝2 − (̂𝑡2 ⊗ 1 + 1⊗ �̂�2)𝑝

)

≡ −
∑

0<𝓁<𝑝
𝑝−1

(𝑝
𝓁

)
�̂�𝓁2 ⊗ �̂�𝑝−𝓁2 mod

(
�̂�1
)
.

Then the result follows from 𝑑(̂𝑡𝑝2 ) = (̂𝑡𝑝2 ⊗ 1 + 1⊗ �̂�𝑝2 − (̂𝑡2 ⊗ 1 + 𝑣1𝑏1,0 + 1⊗
�̂�2)𝑝). □

By Lemma 1.4 and Lemma 7.1, it follows that the product of any permanent
cycle with 𝑏2,0 is again a permanent cycle. This implies that each element in

𝐴(𝑚 + 1)∕𝐼2 ⊗ 𝐸(ℎ̂1,1, ℎ̂2,0)⊗ 𝑃(𝑏1,1, 𝑏2,0)⊗
{
𝑢𝑝∕𝑘 ∣ 2 ≤ 𝑘 ≤ 𝑝

}

⊕
𝐴(𝑚 + 2)∕𝐼3 ⊗ 𝐸(ℎ̂1,1, ℎ̂2,0)⊗ 𝑃(𝑏1,1, 𝑏2,0)⊗ {𝛾2, 𝛾3,… }

is a permanent cycle, unlike the case𝑚 = 0.

Lemma 7.2. Let �̂�3 be the conjugation of �̂�3. Then we have

∆(̂𝑡3) = �̂�3 ⊗ 1 + 1⊗ �̂�3 − 𝑣1𝑏2,0 − 𝑣2𝑏1,1 + {�̂�
𝑝2
1 ⊗ �̂�1 for𝑚 = 1
0 for𝑚 ≥ 2.

The difference between �̂�3 and −�̂�3 has trivial image in Γ(𝑚 + 2).

Proof. By definition, �̂�3 = −�̂�3 + �̂�
1+𝑝2
1 for𝑚 = 1 and �̂�3 = −�̂�3 for𝑚 ≥ 2. Since

∆(̂𝑡3) = �̂�3 ⊗ 1 + 1⊗ �̂�3 + 𝑣1𝑏2,0 + 𝑣2𝑏1,1 + {�̂�1 ⊗ �̂�𝑝
2

1 for𝑚 = 1
0 for𝑚 ≥ 2

we have the result. □

7The case𝑚 = 0 was treated in [Rav04, §7.4].
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Proof of Theorem 6.11 (i). Wemay use
𝑣𝑖2𝑣3
𝑝𝑣1

instead of 𝑢𝑖 because these have

the same 𝛿1𝛿0-image (4.3) into 𝑈2
𝑚+1. For 𝑖 > 0, we have

𝑑 (�̂�2 ⊗ 1⊗
𝑣𝑖2𝑣3
𝑝𝑣1

) = �̂�2 ⊗ (𝑣2�̂�
𝑝2
1 − 𝑣𝑝

𝑚+1

2 �̂�1)⊗ 1⊗
𝑣𝑖2
𝑝𝑣1

,

𝑑
⎛
⎜
⎝
�̂�2 ⊗ �̂�1 ⊗

𝑣𝑝
𝑚+1

2 𝑣𝑖2
𝑝𝑣1

⎞
⎟
⎠
= �̂�2 ⊗ �̂�1 ⊗ 1⊗

𝑣𝑝
𝑚+1

2 𝑣𝑖2
𝑝𝑣1

,

𝑑 (�̂�2�̂�
𝑝2
1 ⊗ 1⊗

𝑣2𝑣𝑖2
𝑝𝑣1

) = −
(
�̂�2 ⊗ �̂�𝑝

2

1 + �̂�𝑝
2

1 ⊗ �̂�2
)
⊗ 1⊗

𝑣2𝑣𝑖2
𝑝𝑣1

,

𝑑 (�̂�𝑝
2

1 ⊗ 1⊗
𝑣2𝑣𝑖+12

(𝑖 + 1)𝑝2𝑣1
) = �̂�𝑝

2

1 ⊗ �̂�2 ⊗ 1⊗
𝑣2𝑣𝑖2
𝑝𝑣1

+ 𝑏1,1 ⊗ 1⊗
𝑣2𝑣𝑖+12

(𝑖 + 1)𝑝𝑣1
.

The sum of the preimages on the left represents ℎ̂2,0𝑢𝑖; summing on the right
gives the result. □

Proof of Theorem 6.11 (ii). We give the proof for 𝑘 = 1 and 𝜀 = 1. The gen-
eral case follows by replacing 𝑏2,0 by 𝑏′2,0 (Lemma 7.1) and tensoring all equa-
tions on the left with the cocycle (𝑏′2,0)

𝑘−1.
We have 𝜂𝑅(𝑣2) ≡ 𝑣2 + 𝑧mod 𝐼𝑝

𝑚+1 , where 𝐼 = (𝑝, 𝑣1,…) and 𝑧 = 𝑣1�̂�
𝑝
1 + 𝑝�̂�2.

By this and Lemma 7.2 we have

𝑑(𝑏2,0 ⊗ 1⊗ 𝑢𝑖) = 𝑏2,0 ⊗ 𝑑 (1⊗ 𝑢𝑖)

= −𝑏2,0 ⊗ 𝑣2
∑

0<𝑘<𝑝

(𝑖 + 𝑝
𝑘

)
𝑧𝑘 ⊗ 1⊗

𝑣𝑖+𝑝−𝑘2
(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝+11

= −𝑏2,0 ⊗ 𝑣2
⎛
⎜
⎝
(𝑖 + 𝑝)̂𝑡𝑝1 ⊗ 1⊗

𝑣𝑖+𝑝−12(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝1

+⋯
⎞
⎟
⎠
,

𝑑
⎛
⎜
⎜
⎝

−�̂�3 ⊗ 𝑣2

⎛
⎜
⎜
⎝

−(𝑖 + 𝑝)̂𝑡𝑝1 ⊗ 1⊗
𝑣𝑖+𝑝−12

(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝+11

+⋯
⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

= −(𝑣1𝑏2,0 + 𝑣2𝑏1,1)⊗ 𝑣2

⎛
⎜
⎜
⎝

−(𝑖 + 𝑝)̂𝑡𝑝1 ⊗ 1⊗
𝑣𝑖+𝑝−12

(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝+11

+⋯
⎞
⎟
⎟
⎠

− �̂�3 ⊗ −𝑣2(𝑖 + 𝑝)̂𝑡𝑝1 ⊗
(𝑖 + 𝑝 − 1

𝑝

)
�̂�𝑝

2

1 ⊗ 1⊗
𝑣𝑖−12(𝑖+𝑝
𝑝

)
𝑝𝑣1
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= −𝑏2,0 ⊗ 𝑣2
⎛
⎜
⎝
−(𝑖 + 𝑝)̂𝑡𝑝1 ⊗ 1⊗

𝑣𝑖+𝑝−12(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝1

+⋯
⎞
⎟
⎠

− 𝑣2𝑏1,1 ⊗ 𝑣2

⎛
⎜
⎜
⎝

−(𝑖 + 𝑝)̂𝑡𝑝1 ⊗ 1⊗
𝑣𝑖+𝑝−12

(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝+11

+⋯
⎞
⎟
⎟
⎠

+ 𝑖𝑣2�̂�3 ⊗ �̂�𝑝1 ⊗ �̂�𝑝
2

1 ⊗ 1⊗
𝑣𝑖−12
𝑝𝑣1

,

and

𝑑 (−𝑖�̂�3 ⊗ �̂�𝑝1 ⊗ 1⊗
𝑣𝑖−12 𝑣3
𝑝𝑣1

)

= −𝑖𝑣2𝑏1,1 ⊗ �̂�𝑝1 ⊗ 1⊗
𝑣𝑖−12 𝑣3
𝑝𝑣1

− 𝑖�̂�3 ⊗ �̂�𝑝1 ⊗ 𝑣2�̂�
𝑝2
1 ⊗ 1⊗

𝑣𝑖−12
𝑝𝑣1

.

The sum of the preimages on the left represents 𝑏2,0𝑢𝑖, and the terms on the
right add up to

𝑏1,1 ⊗ �̂�𝑝1 ⊗ 1⊗
⎛
⎜
⎜
⎝

−
𝑖𝑣2𝑣𝑖−12 𝑣3
𝑝𝑣1

+
(𝑖 + 𝑝)𝑣22𝑣

𝑖+𝑝−1
2

(𝑖+𝑝
𝑝

)
𝑝𝑣𝑝+11

⎞
⎟
⎟
⎠

+⋯

= −𝑖𝑣2𝑏1,1 ⊗ �̂�𝑝1 ⊗ 1⊗
⎛
⎜
⎜
⎝

𝑣𝑖−12 𝑣3
𝑝𝑣1

−
𝑣𝑖+𝑝−12

(𝑖+𝑝−1
𝑝

)
𝑝𝑣𝑝+11

⎞
⎟
⎟
⎠

+⋯

The inspection of �̃�2-terms described in Corollary 6.2 shows that the element
represents −𝑖𝑣2ℎ̂1,1𝑏1,1𝑢𝑖−1 as claimed. □

To derive (iii), (iv) and (v) from (i) and (ii), we use Massey product argu-
ments. Oberve Figure 3 for 𝑝 = 5, in which each diagonal is similar to (6.5)
and the arrows labeled 𝑑𝑟 are related to Cartan-Eilenberg differentials given in
Lemma 6.8 and (ii); for example, the differential 𝑑3(𝑏2,0𝑢4) = 𝑣2ℎ̂1,1𝑏1,1𝑢3 is
denoted

𝑏2,0𝑢4
𝑑3⟶ 𝑣2𝑏1,1𝑢3.

Proof of Theorem 6.11 (iii). For 𝑘 = 0 this is a direct consequence of (i) via
multiplication by ℎ̂1,1. We will illustrate with the case 𝑖 = 𝑝− 1 and 𝑘 ≤ 2, and
the other cases are similarly shown. For 𝑘 = 1, we have the sequence analogous
to that of Remark 6.4:

𝑏2,0𝑢𝑝−1
𝑑3⟶ 𝑣2𝑏1,1𝑢𝑝−2

𝑑2⟶ 𝑣22𝑏1,1𝛽2𝑝−3∕𝑝
�̂�𝑝
⟶⋯

�̂�𝑝
⟶ 𝑣22𝑏1,1𝛽𝑝∕3.
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𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽′10

𝑣2𝛽5∕2 𝛽6∕2

�̂�3
gg

𝛽7∕2

�̂�3
gg

𝛽8∕2

�̂�3
gg

𝛽9∕2

�̂�3
ff

𝛽′10∕2

�̂�3
bb

𝑣22𝑏1,1𝛽5∕3 𝑣2𝛽6∕3

�̂�3gg

𝛽7∕3

�̂�3
gg

𝛽8∕3

�̂�3
gg

𝛽9∕3

�̂�3
ee

𝛽′10∕3

�̂�3bb

𝑣32𝑏
2
1,1𝛽5∕4 𝑣22𝑏1,1𝛽6∕4

�̂�3gg

𝑣2𝛽7∕4

�̂�3gg

𝛽8∕4

�̂�3
gg

𝛽9∕4

�̂�3
ee

𝛽′10∕4

�̂�3bb

𝑣42𝑏
3
1,1𝛽5∕5 𝑣32𝑏

2
1,1𝛽6∕5

�̂�3gg

𝑣22𝑏1,1𝛽7∕5

�̂�3gg

𝑣2𝛽8∕5

�̂�3gg

𝛽9∕5

�̂�3
ee

𝛽′10∕5

�̂�3bb

𝑣42𝑏
4
1,1𝑢0 𝑣32𝑏

3
1,1𝑢1

𝑑2gg

𝑣22𝑏
2
1,1𝑢2

𝑑2gg

𝑣2𝑏1,1𝑢3

𝑑2gg

𝑢4

𝑑2ff

𝑣32𝑏
3
1,1𝑏2,0𝑢1

𝑑3gg

𝑣22𝑏
2
1,1𝑏2,0𝑢2

𝑑3hh

𝑣2𝑏1,1𝑏2,0𝑢3

𝑑3hh

𝑏2,0𝑢4

𝑑3ff

𝑣22𝑏
2
1,1𝑏

2
2,0𝑢2

𝑑3hh

𝑣2𝑏1,1𝑏22,0𝑢3

𝑑3hh

𝑏22,0𝑢4

𝑑3ff

𝑣2𝑏1,1𝑏32,0𝑢3

𝑑3hh

𝑏32,0𝑢4

𝑑3ff

𝑏42,0𝑢4

𝑑3ff

Figure 3. Differentials for the case 𝑝 = 5.

This allows us to identify 𝑣2ℎ̂1,1𝑏1,1𝑢𝑝−2, up to unit scalar multiplication, with
the Massey product 𝜇𝑝−1(𝑣22𝑏1,1𝛽𝑝∕3). It then follows that the differential on
ℎ̂2,0ℎ̂1,1(𝑏2,0𝑢𝑝−1) is the value of ℎ̂2,0ℎ̂1,1𝜇𝑝−1(𝑣22𝑏1,1𝛽𝑝∕3). Now ℎ̂2,0ℎ̂1,1 (resp. 𝑏1,1)
is the image of 𝛽2 (resp. 𝛽𝑝∕𝑝) under a suitable reduction map, so we have

𝑑5(ℎ̂1,1ℎ̂2,0𝑏2,0𝑢𝑝−1) = ℎ̂2,0ℎ̂1,1𝜇𝑝−1(𝑣22𝑏1,1𝛽𝑝∕3) = 𝑣22𝑏1,1𝛽2𝜇𝑝−1(𝛽𝑝∕3)

= 𝑣22𝑏1,1𝜇𝑝−1(𝛽2)𝛽𝑝∕3 by Lemma A.8

= 𝑣22𝑏1,1𝜇𝑝−1(𝛽2)𝑣
𝑝−3
1 𝛽𝑝∕𝑝 = 𝑣22𝑏

2
1,1𝑣

𝑝−3
1 𝜇𝑝−1(𝛽2)

= 𝑣22𝑏
2
1,1𝜇2(𝛽𝑝−1) by Example A.9

= 𝑣22𝑏
2
1,1ℎ̂1,1𝛽

′
𝑝∕2
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as claimed. For 𝑘 = 2, we have the sequence8

𝑏22,0𝑢𝑝−1
𝑑3⟶ 𝑣2𝑏1,1𝑏2,0𝑢𝑝−2

𝑑3⟶ 𝑣22𝑏
2
1,1𝑢𝑝−3

𝑑2⟶ 𝑣32𝑏
2
1,1𝛽2𝑝−4∕𝑝

�̂�𝑝
⟶⋯

�̂�𝑝
⟶ 𝑣32𝑏

2
1,1𝛽𝑝∕4

By the similar argument to the case 𝑘 = 1, we have

𝑑7(ℎ̂1,1ℎ̂2,0𝑏22,0𝑢𝑝−1) = ℎ̂2,0ℎ̂1,1𝜇𝑝−1(𝑣32𝑏
2
1,1𝛽𝑝∕4) = 𝑣32𝑏

2
1,1𝛽2𝜇𝑝−1(𝛽𝑝∕4)

= 𝑣32𝑏
2
1,1𝜇

′
𝑝−1(𝛽2)𝛽𝑝∕4 by Lemma A.8

= 𝑣32𝑏
2
1,1𝜇

′
𝑝−1(𝛽2)𝑣

𝑝−4
1 𝛽𝑝∕𝑝 = 𝑣32𝑏

3
1,1𝑣

𝑝−4
1 𝜇′𝑝−1(𝛽2)

= 𝑣32𝑏
3
1,1𝜇

′
3(𝛽𝑝−2) by Example A.9

= 𝑣32𝑏
3
1,1ℎ̂1,1𝛽

′
𝑝∕3

as claimed. □

Proof of Theorem 6.11 (iv) and (v). We have the sequence

𝑏𝑘2,0𝑢𝑝−1
𝑑3⟶⋯

𝑑3⟶ 𝑣𝑘2𝑏
𝑘
1,1𝑢𝑝−1−𝑘

𝑑2⟶ 𝑣𝑘+12 𝑏𝑘1,1𝛽2𝑝−2−𝑘∕𝑝
�̂�𝑝
⟶⋯

�̂�𝑝
⟶ 𝑣𝑘+12 𝑏𝑘1,1𝛽𝑝∕𝑘+2

for 1 ≤ 𝑘 < 𝑝 − 1, and

𝑏𝑝−12,0 𝑢𝑝−1
𝑑3⟶⋯

𝑑3⟶ 𝑣𝑝−12 𝑏𝑝−11,1 𝑢0
for 𝑘 = 𝑝 − 1. Thus we have

𝑑𝑟(𝑏𝑘2,0𝑢𝑝−1) = {
𝜇𝑝−1(𝑣𝑘+12 𝑏𝑘1,1𝛽𝑝∕𝑘+2) for 𝑘 < 𝑝 − 1
𝜇𝑝−1(𝑣

𝑝−1
2 𝑏𝑝−11,1 𝑢0) for 𝑘 = 𝑝 − 1

up to unit scalar multiplication. Since ℎ̂1,1𝜇𝑝−1(𝑥) = 𝑏1,1𝑥 we have

𝑑𝑟(ℎ̂1,1𝑏𝑘2,0𝑢𝑝−1) = {
𝑣𝑘+12 𝑏𝑘+11,1 𝛽𝑝∕𝑘+2 for 𝑘 < 𝑝 − 1
𝑣𝑝−12 𝑏𝑝1,1𝑢0 for 𝑘 = 𝑝 − 1

as claimed. □

Appendix A. Massey products
Here we recall the definition and properties of Massey products very briefly

(cf. [Rav04, A1.4]) and prove some results used in this paper. Let 𝐶 be a dif-
ferential graded algebra, which makes 𝐻∗(𝐶) a graded algebra. For 𝑥 ∈ 𝐶 or
𝑥 ∈ 𝐻∗(𝐶), let 𝑥 = (−1)1+deg(𝑥)𝑥, where deg(𝑥) denotes the total degree: the
sum of its internal and cohomogical degrees of 𝑥. Then we have 𝑑(𝑥) = −𝑑(𝑥),
(𝑥𝑦) = −𝑥 𝑦, and 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 − 𝑥𝑑(𝑦).
Let 𝛼𝑘 ∈ 𝐻∗(𝐶) (𝑘 = 1, 2,… ) be a finite collection of elements and with

representative cocycles 𝑎𝑘−1,𝑘 ∈ 𝐶. When 𝛼1𝛼2 = 0 and 𝛼2𝛼3 = 0, there are
cochains 𝑎0,2 and 𝑎1,3 such that 𝑑(𝑎0,2) = 𝑎0,1𝑎1,2 and 𝑑(𝑎1,3) = 𝑎1,2𝑎2,3, and
we have a cocycle 𝑏0,3 = 𝑎0,2𝑎2,3 + 𝑎0,1𝑎1,3. The corresponding class in 𝐻∗(𝐶)

8Note that we may assume that 𝑝 ≥ 5 since 0 ≤ 𝑘 < 𝑝 − 1.
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represents the Massey product ⟨𝛼1, 𝛼2, 𝛼3⟩, which is the coset comprising all
cohomology classes represented by such 𝑏0,3 for all possible choices of 𝑎𝑖,𝑗. Two
choices of 𝑎0,2 or 𝑎1,3 differ by a cocycle. The indeterminacy of ⟨𝛼1, 𝛼2, 𝛼3⟩ is
the set

𝛼1𝐻|𝛼2𝛼3|(𝐶) +𝐻|𝛼1𝛼2|(𝐶)𝛼3.
If the triple product contains zero, then one such choice yields a 𝑏0,3 which is
the coboundary of a cochain 𝑎0,3.
If we have two 3-foldMassey products ⟨𝛼1, 𝛼2, 𝛼3⟩ and ⟨𝛼2, 𝛼3, 𝛼4⟩ containing

zero, then the 𝑎𝑖−1,𝑖 and 𝑎𝑖−2,𝑖 can be chosen so that there are cochains 𝑎0,3
and 𝑎1,4 with 𝑑(𝑎0,3) = 𝑏0,3 and 𝑑(𝑎1,4) = 𝑏1,4, and the 4-fold Massey product
⟨𝛼1, 𝛼2, 𝛼3, 𝛼4⟩ represented by the cocycle 𝑏0,4 = 𝑎0,3𝑎3,4 + 𝑎0,2𝑎2,4 + 𝑎0,1𝑎1,4.
More generally, if we have cocycles 𝑏𝑗,𝑘 and cochains 𝑎𝑗,𝑘 satisfying

𝑏𝑗,𝑘 =
∑

𝑗<𝓁<𝑘
𝑎𝑗,𝓁𝑎𝓁,𝑘 for 𝑖 ≤ 𝑗 < 𝑘 ≤ 𝑖 + 𝑛 (A.1)

and 𝑑(𝑎𝑗,𝑘) = 𝑏𝑗,𝑘 for 0 < 𝑘 − 𝑗 < 𝑛, then we have the 𝑛-fold Massey products
⟨𝛼𝑖+1,… , 𝛼𝑖+𝑛⟩ represented by 𝑏𝑖,𝑖+𝑛. The cochains 𝑎𝑗,𝑘 chosen above are called
the defining system for the Massey product.

If two products ⟨𝛼1,… , 𝛼𝑛−1⟩ and ⟨𝛼2,… , 𝛼𝑛⟩ are strictly defined (meaning all
the lower order products in sight have trivial indeterminacy), then we have

𝛼1⟨𝛼2,… , 𝛼𝑛⟩ = ⟨𝛼1,… , 𝛼𝑛−1⟩𝛼𝑛.

In fact, we can relax the hypothesis of strict definition in the following way.

Lemma A.2. Suppose that ⟨𝛼1,… , 𝛼𝑛−1⟩ and ⟨𝛼2,… , 𝛼𝑛⟩ are defined and have
representatives 𝑥 and 𝑦 respectively with the common defining system 𝑎𝑖,𝑗 (0 <
𝑖 < 𝑗 < 𝑛). Then, the cocycle 𝑥𝑎𝑛−1,𝑛 is cohomologous to 𝑎0,1𝑦.

Proof. If both 𝑥 and 𝑦 contain zero, then we would have cochains 𝑎1,𝑛 and
𝑎0,𝑛−1 satisfying 𝑑(𝑎0,𝑛−1) = 𝑥 and 𝑑(𝑎1,𝑛) = 𝑦. Hence we could define the
cocycle 𝑏0,𝑛 (A.1). In that case we would have

𝑑(𝑏0,𝑛) = 𝑑(𝑎0,1𝑎1,𝑛) + 𝑑(𝑎0,𝑛−1𝑎𝑛−1,𝑛) + 𝑑(�̃�0,𝑛)
= −𝑎0,1𝑦 + 𝑥𝑎𝑛−1,𝑛 + 𝑑(�̃�0,𝑛) = 0

where
�̃�0,𝑛 =

∑

1<𝑖<𝑛−1
𝑎0,𝑖𝑎𝑖,𝑛.

Even if𝑥 and 𝑦 donot contain zero, sowedon’t have cochains𝑎1,𝑛 and𝑎0,𝑛−1, we
can still define �̃�0,𝑛. A routine calculation gives the desired value of 𝑑(�̃�0,𝑛). □

We also have Massey products in the spectral sequence associated with a fil-
tered differential graded algebra or a filtered differential graded module over a
filtered differential graded algebra. Though our Cartan-Eilenberg spectral se-
quence is not associatedwith such afiltration, we can get around this as follows.
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Let 𝑇∗𝑚 =
⨁

𝑖≥0 𝑇
𝑖
𝑚 be a bigraded comodule algebra with 𝑖 being the second

grading and the algebra structure given by the pairings 𝑇𝑖𝑚 ⊗ 𝑇𝑗𝑚 → 𝑇𝑖+𝑗𝑚 .
Recall that for a Hopf algebroid (𝐴,Γ) and a comodule algebra 𝑀 the cup

product in the cobar complex 𝐶 = 𝐶Γ(𝑀) is given by

(𝛾1 ⊗⋯⊗ 𝛾𝑠 ⊗ 𝑚1) ∪ (𝛾𝑠+1 ⊗⋯⊗ 𝛾𝑠+𝑡 ⊗ 𝑚2)

= 𝛾1 ⊗⋯⊗ 𝛾𝑠 ⊗ 𝑚(1)
1 𝛾𝑠+1 ⊗⋯⊗ 𝑚(𝑡)

1 𝛾𝑠+𝑡 ⊗ 𝑚(𝑡+1)
1 𝑚2

where 𝛾𝑖 ∈ Γ(𝑚 + 1) and 𝑚𝑗 ∈ 𝑀, and 𝑚(1)
1 ⊗ ⋯ ⊗ 𝑚(𝑡+1)

1 is the iterated
coproduct on𝑚1. The coboundary operator is a derivation with respect to this
product and 𝐶 is a filtered differential graded algebra; we have

𝑑(𝑥 ∪ 𝑦) = 𝑑(𝑥) ∪ 𝑦 + (−1)deg(𝑥)𝑥 ∪ 𝑑(𝑦).

Now we have consider the two quadrigraded Cartan-Eilenberg spectral se-
quences:

Ext𝐺(𝑚+1)(ExtΓ(𝑚+2)(𝑇∗𝑚)) ⟹ ExtΓ(𝑚+1)(𝑇∗𝑚), (A.3)

which is associated with a filtration on 𝐶 = 𝐶Γ(𝑚+1)(𝑇∗𝑚), and

Ext𝐺(𝑚+1)(ExtΓ(𝑚+2)(𝑇∗𝑚 ⊗𝐸1𝑚+1)) ⟹ ExtΓ(𝑚+1)(𝑇∗𝑚 ⊗𝐸1𝑚+1), (A.4)

which is associated with a filtration on 𝐶′ = 𝐶Γ(𝑚+1)(𝑇∗𝑚 ⊗ 𝐸1𝑚+1). We may re-
gard the Cartan-Eilenberg spectral sequence of (2.1) as a quotient of the degree
𝑝𝑖 − 1 component of (A.4).

Since 𝐶′ is a left differential module over 𝐶, (A.4) is a module over (A.3).
Then we can make a similar product ⟨𝛼1,… , 𝛼𝑗⟩ with 𝛼𝑖 ∈ 𝐻∗(𝐶) (1 ≤ 𝑖 < 𝑗)
and 𝛼𝑗 ∈ 𝐻∗(𝐶′) under certain conditions. In particular, we will be interested
in Massey products of the form

𝜇𝑘(𝑦) = ⟨ℎ̂1,1,… , ℎ̂1,1, 𝑦⟩ and 𝜇′𝑘(𝑥) = ⟨𝑥, ℎ̂1,1,… , ℎ̂1,1⟩ (A.5)

with 𝑘 factors ℎ̂1,1. For 1 < 𝑘 < 𝑝, 𝜇𝑘(𝑦) is defined only if 0 ∈ 𝜇𝑘−1(𝑦). If
𝜇𝑘(𝜇𝑝−𝑘(𝑦)) is defined for some 𝑘, then it contains 𝑏1,1𝑦.

Remark A.6. ℎ̂1,1 ∈ Ext1Γ(𝑚+1)(𝑇
𝑝−1
𝑚 ) is represented in the cobar complex by

𝑥 = −𝑑(̂𝑡𝑝1 ) =
(
�̂�1 ⊗ 1 + 1⊗ �̂�1

)𝑝
− 1⊗ �̂�𝑝1 ≡ �̂�𝑝1 ⊗ 1 mod (𝑝),

which means that ℎ̂1,1 becomes trivial when we pass to Ext
1
Γ(𝑚+1)(𝑇

𝑝
𝑚). Simi-

larly, we have

𝑥 ∪ 𝑥 = 𝑑
(
𝑥 ∪ �̂�𝑝1

)
= 𝑑 (

∑

𝑖>0

(𝑝
𝑖

)
�̂�𝑖1 ⊗ �̂�2𝑝−𝑖1 ) .

Thus ℎ̂1,1 ∪ ℎ̂1,1 ∈ Ext2Γ(𝑚+1)(𝑇
2𝑝−2
𝑚 )maps trivially to Ext2Γ(𝑚+1)(𝑇

2𝑝−1
𝑚 ).
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Lemma A.7. Let 𝑥1 = 𝑥 as above and define 𝑥𝑖 inductively on 𝑖 by

𝑥𝑖 =
(
𝑥𝑖−1 ∪ �̂�

𝑝
1 − �̂�𝑝1 ∪ 𝑥𝑖−1

)
∕𝑖 (1 < 𝑖 < 𝑝).

Then 𝑥𝑖 is in 𝐶Γ(𝑚+1)(𝑇
(𝑖−1)(𝑝−1)
𝑚 ) and it satisfies

𝑥𝑖 ≡ (−1)𝑖+1�̂�𝑖𝑝1 ⊗ 1∕𝑖! mod (𝑝) and 𝑑(𝑥𝑖) =
∑

0<𝑗<𝑖
𝑥𝑗 ∪ 𝑥𝑖−𝑗.

Proof. We will prove these statements by induction. For the first statement,
let us assume that 𝑥𝑖 ∈ 𝐶Γ(𝑚+1)(𝑇

(𝑖−1)(𝑝−1)
𝑚 ). This means that it has the form

𝑐�̂�𝑖+𝑝−11 ⊗ �̂�(𝑖−1)(𝑝−1)1 modulo 𝐶Γ(𝑚+1)(𝑇
(𝑖−1)(𝑝−1)−1
𝑚 ) for some scalar 𝑐, and so we

have

𝑥𝑖+1 = (𝑥𝑖 ∪ �̂�
𝑝
1 − �̂�𝑝1 ∪ 𝑥𝑖)∕(𝑖 + 1)

≡ 𝑐(̂𝑡𝑖+𝑝−11 ⊗ �̂�(𝑖−1)(𝑝−1)+𝑝1 − �̂�𝑖+𝑝−11 ⊗ �̂�(𝑖−1)(𝑝−1)+𝑝1 )∕(𝑖 + 1) ≡ 0

modulo 𝐶Γ(𝑚+1)(𝑇
𝑖(𝑝−1)
𝑚 ). For the congruence, we see that

(𝑖 + 1)!𝑥𝑖+1 = 𝑖!(𝑥𝑖 ∪ �̂�
𝑝
1 − �̂�𝑝1 ∪ 𝑥𝑖) ≡ (−1)𝑖+1

(
(̂𝑡𝑖𝑝1 ⊗ 1) ∪ �̂�𝑝1 − �̂�𝑝1 ∪ (̂𝑡

𝑖𝑝
1 ⊗ 1)

)

= (−1)𝑖+1
(
�̂�𝑖𝑝1 ⊗ �̂�𝑝1 − �̂�(𝑖+1)𝑝1 ⊗ 1 − �̂�𝑖𝑝1 ⊗ �̂�𝑝1

)
= (−1)𝑖+2�̂�(𝑖+1)𝑝1 ⊗ 1.

For the derivation formula, we see that

(𝑖 + 1)𝑑(𝑥𝑖+1) − 𝑥𝑖 ∪ 𝑥1 − 𝑥1 ∪ 𝑥𝑖
= 𝑑(𝑥𝑖) ∪ �̂�

𝑝
1 − �̂�𝑝1 ∪ 𝑑(𝑥𝑖)

=
⎛
⎜
⎝

∑

0<𝑗<𝑖
𝑥𝑗 ∪ 𝑥𝑖−𝑗

⎞
⎟
⎠
∪ �̂�𝑝1 − �̂�𝑝1 ∪

⎛
⎜
⎝

∑

0<𝑗<𝑖
𝑥𝑗 ∪ 𝑥𝑖−𝑗

⎞
⎟
⎠

=
∑

0<𝑗<𝑖

(
𝑥𝑗 ∪ (𝑥𝑖−𝑗 ∪ �̂�

𝑝
1 − �̂�𝑝1 ∪ 𝑥𝑖−𝑗) + (𝑥𝑗 ∪ �̂�

𝑝
1 − �̂�𝑝1 ∪ 𝑥𝑗) ∪ 𝑥𝑖−𝑗

)

=
∑

0<𝑗<𝑖

(
(𝑖 + 1 − 𝑗)𝑥𝑗 ∪ 𝑥𝑖+1−𝑗 + (𝑗 + 1)𝑥𝑗+1 ∪ 𝑥𝑖−𝑗

)

= (𝑖 + 1)
∑

1<𝑗<𝑖
𝑥𝑗 ∪ 𝑥𝑖+1−𝑗. □

The following result follows easily from Lemma A.7.

Lemma A.8. Suppose that 𝛼, 𝛽 ∈ ExtΓ(𝑚+1)(𝑇ℎ𝑚 ⊗ 𝐸2𝑚+1) are represented by
cocycles 𝑎1 and 𝑏1, and that there are cochains

𝑎𝑖, 𝑏𝑖 ∈ 𝐶Γ(𝑚+1)(𝑇
ℎ+(𝑖−1)(𝑝−1)
𝑚 ⊗ 𝐸2𝑚+1) for 1 < 𝑖 ≤ 𝑘

satisfying

𝑑(𝑎𝑖) =
∑

0<𝑗<𝑖
𝑎𝑖−𝑗 ∪ 𝑥𝑗 and 𝑑(𝑏𝑖) =

∑

0<𝑗<𝑖
𝑥𝑗 ∪ 𝑏𝑖−𝑗,
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where 𝑥𝑗 are as in Lemma A.7. Then the Massey products

𝜇′𝑘(𝛼), 𝜇𝑘(𝛽) ∈ ExtΓ(𝑚+1)(𝑇
ℎ+𝑘(𝑝−1)
𝑚 ⊗ 𝐸2𝑚+1)

are defined and are represented by the cocycles
∑

0<𝑖<𝑘+1
𝑎𝑘+1−𝑖 ∪ 𝑥𝑖 and

∑

0<𝑖<𝑘+1
𝑥𝑖 ∪ 𝑏𝑘+1−𝑖.

Moreover, we have 𝛼𝜇𝑘(𝛽) = 𝜇′𝑘(𝛼)𝛽 using these representatives.

Here are two examples of such products.

Example A.9. For 0 < 𝑘 < 𝑝 and 𝓁 > 0, the Massey product 𝜇𝑘(𝛽′𝑝𝓁−𝑘+1) is
defined and it is represented by

∑

0<𝑖<𝑘+1
𝑥𝑖 ∪ (−1)𝑘−𝑖

(𝑝𝓁 − 𝑘)!
(𝑝𝓁 − 𝑖)!

𝛽′𝑝𝓁+1−𝑖∕𝑘+1−𝑖.

We have an equality 𝑣1𝜇𝑘(𝛽′𝑝𝓁+1−𝑘) = 𝜇𝑘−1(𝛽′𝑝𝓁+2−𝑘)∕(𝑘 − 1 − 𝑝𝓁) for 𝑘 > 1.

Example A.10. For 0 < 𝑘 < 𝑝 and 𝓁 > 0, the Massey product 𝜇𝑘(𝛽𝑝𝓁∕𝑝+2−𝑘)
is defined and it is represented by

𝑥1 ∪ 𝑣−12 𝑢𝑝𝓁+𝑘−1−𝑝 +
∑

1<𝑖<𝑘+1
𝑥𝑖 ∪ (−1)𝑖+1

(𝑝𝓁 + 𝑘)!
𝓁(𝑝𝓁 + 𝑘 − 𝑖)!

𝛽𝑝𝓁+𝑘−𝑖∕𝑝+2−𝑖.
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