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An arithmetic count of osculating lines

Giosuè Muratore

Abstract. We say that a line inℙ𝑛+1

𝑘
is osculating to a hypersurface𝑌 if they

meet with contact order 𝑛+1. When 𝑘 = ℂ, it is known that through a fixed
point of 𝑌, there are exactly 𝑛! of such lines. Under some parity condition
on 𝑛 and deg(𝑌), we define a quadratically enriched count of these lines over
any perfect field 𝑘. The count takes values in the Grothendieck–Witt ring of
quadratic forms over 𝑘 and depends linearly on deg(𝑌).
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1. Introduction
A classical result by Salmon states that, over 𝑘 = ℂ, for a general smooth sur-

face 𝑌 ⊂ ℙ3
ℂ
and a general point 𝑝 ∈ 𝑌 there are exactly two lines meeting 𝑌 at

𝑝 with contact order 3 [Sal65]. That result does not depend on the degree of 𝑌.
A possible generalization of Salmon’s result consists on the number of rational
curves𝐶 ⊂ ℙ𝑛+1

ℂ
meeting a hypersurface with contact order (𝑛+2) deg(𝐶)−1 at

a fixed general point. These curves have recently been used in a number of in-
teresting applications [LP18], and their number has been computed recursively
using Gromov–Witten invariants in [MS21, Mur21]. They are called osculating
curves. In particular, the number of osculating lines to a hypersurface𝑌 ⊂ ℙ𝑛+1

ℂ

is
𝑛!. (1.1)

This result was probably first proved in [CM18, Proposition 3.4]. In this pa-
per, we generalize Equation (1.1) to any perfect field 𝑘 using 𝔸1-homotopy.
In this theory, the solution of an enumerative problem is an element of the
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Grothendieck–Witt ring GW(𝑘) of 𝑘. It is the completion of the semi-ring of
isomorphism classes of nondegenerate, symmetric bilinear forms on finite di-
mensional vector spaces over 𝑘. This technique has been used, for example, to
compute the number of lines in the cubic surface [KW21], in the quintic three-
fold [Pau22], and the degree of the Grassmannian of lines [SW21].

1.1. Statement of the main result. Let 𝑎 ∈ 𝑘 ⧵ {0}. We denote by ⟨𝑎⟩ ∈
GW(𝑘) the class of the bilinear form 𝑘 × 𝑘 → 𝑘 given by (𝑥, 𝑦) ↦ 𝑎𝑥𝑦. Given
a finite extension 𝐾∕𝑘, the group morphism Tr𝐾∕𝑘 ∶ GW(𝐾) → GW(𝑘) is the
natural map induced by the field trace 𝐾 → 𝑘.
We denote by ℍ ∶= ⟨1⟩ + ⟨−1⟩.
Let 𝑌 ⊂ ℙ𝑛+1

𝑘
be a hypersurface of degree 𝑑 ≥ 𝑛 given by a homogeneous

polynomial 𝑓, and 𝑝 ∈ 𝑌 be a point. If 𝑝 is not 𝑘-rational, we extend the scalars
and consider 𝑓𝑘(𝑝) with a lift �̃� of 𝑝.
If 𝑈 is an affine open set of ℙ𝑛+1

𝑘(𝑝)
centered at �̃�, the restriction of 𝑓𝑘(𝑝) to

𝑈 has a unique Taylor series, that is it decomposes as sum of homogeneous
polynomials 𝑓(𝑖) of degree 𝑖:

𝑓𝑘(𝑝)|𝑈
= 𝑓(1) + 𝑓(2) +⋯ + 𝑓(𝑑).

If the subscheme 𝐹 ∶= 𝑓(1) ∩⋯ ∩ 𝑓(𝑛) of ℙ𝑛
𝑘(𝑝)

is finite, for each point 𝑙 ∈ 𝐹

we denote by 𝐽(𝑙) the signed volume of the parallelepiped determined by the
gradient vectors of 𝑓(1), 𝑓(2),⋯ , 𝑓(𝑛) at 𝑙, and

𝐽(𝑌, 𝑝) ∶=
∑

𝑙∈𝑓(1)∩⋯∩𝑓(𝑛)

Tr𝑘(𝑙)∕𝑘(𝑝)⟨𝐽(𝑙)⟩.

Our main result is the following.

Theorem 1.1. Let 𝑛 and 𝑑 be positive integers such that the following conditions
are satisfied

∙ 𝑛 ≡ 2mod 4,
∙ 𝑑 ≡ 0mod 2.

Let 𝑌 ⊂ ℙ𝑛+1
𝑘

be a general hypersurface of degree 𝑑 ≥ 𝑛, and ℒ be a general
𝑘-rational line meeting 𝑌 transversely. Then

∑

𝑝∈𝑌∩ℒ

Tr𝑘(𝑝)∕𝑘⟨𝐽(𝑌, 𝑝)⟩ = 𝑑
𝑛!

2
ℍ.

When 𝑘 = ℂ, the map rank∶ GW(ℂ) → ℤ is an isomorphism, so the theo-
rem implies Equation (1.1). Indeed, each osculating line contributes with ⟨1⟩ to
the sum. By [Mur21, Proposition 4.1], the number of complex osculating lines
is the same for each of the general 𝑑 points {𝑝1,… , 𝑝𝑑} = 𝑌 ∩ ℒ. Hence there
are 𝑛! lines through each of these points.
Our result is related to Bézout–McKean Theorem, see Remark 6.3.
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1.2. Possible generalizations. Onemay consider conics instead of lines. For
example, the number of osculating conics to a hypersurface 𝑌 ⊂ ℙ𝑛+1

ℂ
at 𝑝 is

(2𝑛 + 2)!

2𝑛+2
−
((𝑛 + 1)!)2

2
.

This is proved in [Mur21, Equation (6.1)]. See also the tree-formula of [MS23].
Hence, if 𝑛 = 2, there are 27 osculating conics. Darboux [Dar80] noted that,
when deg(𝑌) = 3, each line of 𝑌 is coplanar to a unique osculating conic, and
vice versa. This explains why they are 27. Recent examples of enriched counts
of conics are [McK22, DGGM23, BW23b]. We hope to address the problem of
the enriched count of osculating curves of higher degree in the near future. We
do not expect that the solution will be a multiple of the hyperbolic class ℍ.

1.3. Outline. We introduce 𝔸1-homotopy in Section 2. Sections 3 and 5 con-
tain many preliminary results. They follow closely the style of [McK21, Sec-
tion 3]. Section 4 defines the relavant vector bundle, and the bundle of principal
parts. The last section proves the main results.

Acknowledgements. The author thanksEthanCotterill, GabrieleDegano, Stephen
McKean, Kyler Siegel, and Israel Vainsencher for many useful discussions. The
author also thankMichael Stillman andMatthias Zach for their computational
help, and the Reviewers for taking the necessary time and effort to review the
manuscript. This work is supported by FCT - Fundação para a Ciência e a Tec-
nologia, under the project: UIDP/04561/2020 (https://doi.org/10.54499/
UIDP/04561/2020). The author is a member of GNSAGA (INdAM).

2. Background in 𝔸𝟏-enumerative geometry
Let 𝑘 be a field and 𝑋 be a smooth proper scheme over 𝑘 of dimension 𝑛.

Moreover, let 𝐸 be a vector bundle of rank 𝑛 on 𝑋.

Definition 2.1. The bundle 𝐸 is relatively oriented if there exists a line bundle
𝐿 on 𝑋, and an isomorphism 𝜓∶ Hom(det𝑇𝑋 , det𝐸) → 𝐿⊗2. The pair (𝐿, 𝜓) is
called a relative orientation of 𝐸.

Definition 2.2. Let 𝑧 be a point of𝑋. A system of Nisnevich coordinates around
𝑧 is a Zariski open neighborhood 𝑈 of 𝑧 in 𝑋, and an étale map 𝜑∶ 𝑈 → 𝔸𝑛

𝑘

such that the extension of residue fields 𝑘(𝜑(𝑧)) ⊆ 𝑘(𝑧) is an isomorphism.

Example 2.3 ([MVW06, Example 12.1]). Let char(𝑘) ≠ 2 and 𝑎 ∈ 𝑘 ⧵ {0}. The
maps 𝑖∶ 𝔸1

𝑘
⧵ {𝑎2} ↪ 𝔸1

𝑘
and (_)2∶ 𝔸1

𝑘
⧵ {0} → 𝔸1

𝑘
are a system of Nisnevich

coordinates around all points of 𝔸1

𝑘
.

Example 2.4. Let𝑅 ∶= ℝ[𝑥, 𝑦]∕(𝑥2+𝑦2+1) and let 𝑝 be the ideal generated by
𝑦 + 1. Let 𝑈 be the spectrum of the localization 𝑅𝑝. The inclusion ℝ[𝑥] ↪ 𝑅𝑝
induces a system of Nisnevich coordinates around 𝑧 = Spec(𝑅∕𝑝).

https://doi.org/10.54499/UIDP/04561/2020
https://doi.org/10.54499/UIDP/04561/2020
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Example 2.5. If 𝑘 ⊊ 𝐾 is an extension of fields, then the 𝑘-scheme Spec(𝐾)
does not admit any system of Nisnevich coordinates. Indeed, the residue fields
are not isomorphic.

The existence of a system of Nisnevich coordinates is granted if dim𝑋 ≥ 1

by [KW21, Proposition 20]. If 𝐸 is a vector bundle and 𝜑∶ 𝑈 → 𝔸𝑛

𝑘
is a system

of Nisnevich coordinates given by 𝜑 = (𝜑1,… , 𝜑𝑛), by shrinking 𝑈 we may
suppose without loss of generality that there exists a trivialization 𝜑∶ 𝐸|𝑈 →

𝒪
⊕𝑛

𝑈
. This local trivialization induces a distinguished element det(𝜑) ∶= 𝜑1 ∧

… ∧ 𝜑𝑛 of Γ(𝑈, det𝐸) . On the other hand, there is a distinguished element of
Γ(𝑈, det𝑇𝑋) induced by the standard basis of 𝑇𝔸𝑛

𝑘
.

Definition 2.6. Let (𝐿, 𝜓) be a relative orientation of 𝐸. Let 𝜑∶ 𝑈 → 𝔸𝑛

𝑘
be

a system of Nisnevich coordinates, and let 𝜑∶ 𝐸|𝑈 → 𝒪
⊕𝑛

𝑈
be a trivialization.

Let 𝜆 be the linearmap sending the distinguished element of Γ(𝑈, det𝑇𝑋) to the
distinguished element det(𝜑) of Γ(𝑈, det𝐸). We say that 𝜓 is compatiblewith 𝜑
and the trivialization 𝜑 if the induced map on global sections

𝜓|
𝑈
∶ Hom𝑘(Γ(𝑈, det𝑇𝑋),Γ(𝑈, det𝐸))⟶ Γ(𝑈, 𝐿⊗2)

sends 𝜆 to a square element of Γ(𝑈, 𝐿)⊗2.

In differential topology, the Brouwer degree of a differentiable map 𝑓∶ 𝑋 →

𝑌 can be computed in the following way. Take 𝑦 ∈ 𝑌 a regular value, so that
the Jacobian matrix 𝐽𝑓 is invertible for each one of the finite points 𝑥 ∈ 𝑋 such
that 𝑓(𝑥) = 𝑦. The local Brouwer degree at 𝑥 is +1 if det(𝐽𝑓)|𝑥 > 0, and −1
otherwise. The Brouwer degree is the sum of all local degrees, that is

deg(𝑓) =
∑

𝑥∈𝑓−1(𝑦)

sgn(det(𝐽𝑓)|𝑥), (2.1)

and it depends only on the homotopy class of 𝑓. See [Lee13, Chapter 17] for a
nice introduction.
Morel extended this notion by defining the 𝔸1

𝑘
-homotopy degree. Roughly

speaking, in [MV99] a category is constructed upon algebraic varieties over
𝑘, but allowing many tools of usual topology of manifolds. In particular, the
unit interval is replaced by 𝔸1

𝑘
in homotopy. In this new category there is a

Brouwer degree taking value in GW(𝑘) (see [Mor12, Corollary 1.24] and refer-
ence therein, and [Mor06] for an introduction). Morel’s construction has been
made explicit in various contexts (see [Caz12, BMP23]).

2.1. Euler class of a vector bundle. Let (𝐿, 𝜓) be a relative orientation of𝐸 as
in Definition 2.1. Themap𝜓 induces an isomorphism𝜓′∶ det𝐸∨⊗𝐿⊗2 → 𝜔𝑋 .
For each 0 ≤ 𝑎, 𝑏 ≤ 𝑛, we may use 𝜓′, the graded Koszul complex [Eis95, 17.2],
and Serre duality to construct a perfect pairing

𝛽𝑎,𝑏 ∶ 𝐻
𝑎(𝑋,∧𝑏𝐸∨ ⊗ 𝐿)⊗𝐻𝑛−𝑎(𝑋,∧𝑛−𝑏𝐸∨ ⊗ 𝐿)⟶ 𝑘.

When 2𝑎 = 2𝑏 = 𝑛, 𝛽𝑎,𝑏 is a bilinear form. For all other values of 𝑎 and 𝑏, the
direct sum 𝛽𝑎,𝑏 ⊕ 𝛽𝑛−𝑎,𝑛−𝑏 is also a nondegenerate symmetric bilinear form.
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Definition 2.7. The Grothendieck–Serre–duality Euler number of 𝐸 is

𝑒(𝐸) ∶=
∑

0≤𝑎,𝑏≤𝑛

(−1)𝑎+𝑏𝛽𝑎,𝑏 ∈ GW(𝑘).

See [BW23a, Section 2]. This definition does not depend on the relative ori-
entation.
An older but more explicit definition of Euler class was given in [KW21]. It

requires a section 𝜎∶ 𝑋 → 𝐸 with isolated zeros.

Let 𝑧 be a zero of 𝜎, and let deg
𝔸1
𝑘

𝑧 (𝜎) ∈ GW(𝑘) denote its local𝔸1

𝑘
-degree. In

the case where 𝑧 is simple, has a compatible Nisnevich neighborhood isomor-
phic to the affine space, and 𝑘(𝑧)∕𝑘 is separable, then by [KW19, Proposition
15] we have

deg
𝔸1
𝑘

𝑧 (𝜎) = Tr𝑘(𝑧)∕𝑘⟨det(𝐽𝜎)|𝑧⟩. (2.2)
The Jacobian 𝐽𝜎 of 𝜎 is computed locally at 𝜎∶ 𝔸𝑛

𝑘
→ 𝔸𝑛

𝑘
.

More generally, if 𝑧 is not simple, deg
𝔸1
𝑘

𝑧 (𝜎) is constructed in a different way.
Let 𝑍 denote the zero locus of 𝜎. There is a natural isomorphism

Hom𝑘(𝒪𝑍,𝑧, 𝑘) ≅ 𝒪𝑍,𝑧

of 𝒪𝑍,𝑧-algebras. The Scheja–Storch form ([SS75]) is the map 𝜂 corresponding
to 1 under this isomorphism. This defines a bilinear form 𝑥 ⊗ 𝑦 ↦ 𝜂(𝑥𝑦) on

𝒪𝑍,𝑧 (see [Him77, EL77, Eis78]), and deg
𝔸1
𝑘

𝑧 (𝜎) is the class of this bilinear form
as proved in [KW19, Main Theorem]. Finally

𝑒(𝐸) =
∑

𝑧∈𝜎−1(0)

deg
𝔸1
𝑘

𝑧 (𝜎), (2.3)

by [BW23a, Theorem1.1]. Equation (2.2)makes clear the analogy between (2.3)
and the classical Brouwer degree (2.1).

2.2. The non-orientable case. Many interesting vector bundles are not rel-
atively orientable, so that there is no Euler class as in Definition 2.7. Larson
and Vogt partially solve this problem by introducing the relative orientability
relative to a divisor.

Definition 2.8. Let 𝑋 be a smooth variety, 𝐸 → 𝑋 be a vector bundle and
𝐷 ⊂ 𝑋 be an effective divisor. We say that 𝐸 is relatively orientable relative to 𝐷
if there exists a line bundle 𝐿 on 𝑋, and an isomorphism

𝜓∶ Hom(det𝑇𝑋 , det𝐸)⊗𝒪𝑋(𝐷)⟶ 𝐿⊗2.

Equivalently, 𝐸 is relatively orientable on the open subvariety 𝑋 ⧵ 𝐷.

At least over ℝ, this definition allows us to define the Euler class of a vector
bundle that does not satisfyDefinition 2.1. So, let𝑋 be a smooth real variety. Let
𝜎 be a section of 𝐸 with isolated zeros. For each zero 𝑧, the class of the Scheja–

Storch form deg
𝔸1
ℝ

𝑧 (𝜎) is still well-defined. Let us denote by 𝑉𝐷 ⊂ 𝐻0(𝐸) the
locus of ℝ-points of𝐻0(𝐸) with a real zero along 𝐷.
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Lemma 2.9. Let 𝑋 be a smooth real projective variety and 𝐸 be a vector bundle
relatively oriented relative to an effective divisor 𝐷. Let 𝐻0(𝐸)◦ denote the space
of sections with isolated zeros. Then

∑

𝑧∈𝜎−1(0)

deg
𝔸1
ℝ

𝑧 (𝜎)

is constant for 𝜎 in any real connected component of𝐻0(𝐸)◦ ⧵ 𝑉𝐷 .

Proof. See [LV21, Lemma 2.4]. □

Suppose that 1𝐷 is a global section of𝒪𝑋(𝐷) that gives𝐷. For a vector bundle
𝐸 relatively orientable relative to 𝐷, we say that the relative orientation (𝐿, 𝜓)
is compatible with a system of Nisnevich coordinates 𝜑∶ 𝑈 → 𝔸𝑛

𝑘
if 𝜆⊗ 1𝐷 is a

square, where 𝜆 is like in Definition 2.6. See [McK21, Definition 3.7] for more
details.

3. Results on the flag variety
Let 𝑛 be a nonnegative integer, and 𝑘 be a perfect field. Let 𝑖 ∈ {0,… , 𝑛 + 1},

we denote by 𝑈𝑖 the open subset

𝑈𝑖 ∶= Spec (𝑘 [
𝑥0

𝑥𝑖
,… ,

𝑥𝑛+1

𝑥𝑖
]) ⊂ Proj (𝑘[𝑥0,… , 𝑥𝑛+1]) =∶ ℙ

𝑛+1

𝑘
.

Remark 3.1. In [McK21, Section 2], 𝑈𝑖 is defined as the open subset of ℙ𝑛+1𝑘

parameterizing points [𝑝0 ∶ … ∶ 𝑝𝑛+1] such that 𝑝𝑖 ≠ 0. This notation makes
sense only for 𝑘-points, as it denotes the point corresponding to the homoge-
neous ideal

(𝑝𝑖𝑥0 − 𝑝0𝑥𝑖,… , 𝑝𝑖𝑥𝑛+1 − 𝑝𝑛+1𝑥𝑖).

Nevertheless, we adopt the same convention. In particular, we characterize any
morphism by its action on the coordinates {𝑥0,… , 𝑥𝑛+1}.

Let 𝐺 = 𝐺(2, 𝑛 + 2) be the Grassmannian of lines in ℙ𝑛+1
𝑘

. It is the space of
matrices of order 2×(𝑛+2) of maximal rank, modulo the action ofGL(2, 𝑘). In
particular, for each pair of distinct indices {𝑖, 𝛼} ⊂ {0,… , 𝑛+1}, there is an open
subset isomorphic to 𝔸2𝑛

𝑘
parameterizing those orbits in 𝐺 whose submatrix

containing the columns 𝑖 and 𝛼 is invertible. See, for example, [Muk03, 8.1].
We denote by𝒪𝐺(−1) the determinant of the tautological vector bundle 𝒮 of 𝐺,
see p. 248 of loc. cit.. We denote by 𝑋 the variety of flags

{0} ⊂ 𝑘 ⊂ 𝑘2 ⊂ 𝑘𝑛+2.

It has two natural maps:

𝜋∶ 𝑋 → 𝐺, ev ∶ 𝑋 → ℙ𝑛+1.

The pair (𝑋, ev) is naturally isomorphic to the projectivization of tangent
bundle of ℙ𝑛+1

𝑘
, thus it is a ℙ𝑛

𝑘
-bundle over ℙ𝑛+1

𝑘
. We denote by 𝒪𝑋(1) the line

bundle ev∗𝒪ℙ𝑛+1
𝑘
(1). We will use the following properties of the Grassmannian.
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Proposition 3.2. Let 𝑝 ∈ ℙ𝑛+1
𝑘

(𝑘) and 𝑍 = ev−1(𝑝). In the notation above, we
have the following:

𝜔𝐺 ≅ 𝒪𝐺(−𝑛 − 2), (3.1)
𝜋∗𝒪𝐺(1) ≅ 𝜔𝜋 ⊗𝒪𝑋(2), (3.2)

𝜔𝜋|𝑍 ≅ 𝒪ℙ𝑛
𝑘
(1). (3.3)

Proof. Thefirst equation follows by [EH16, Proposition 5.25]. In order to prove
the second formula, note that (𝑋, 𝜋) is naturally isomorphic the projectivization
of the vector bundle 𝒮. Theorem 11.4 of loc. cit. implies that

𝑐1(𝜔
∨
𝜋) =

(1 + 1 − 0

1 − 0

)
𝑐1(𝒪𝑋(1)) +

(1 + 1 − 1

1 − 1

)
𝑐1(𝜋

∗𝒮).

Since 𝑐1(𝜋∗𝒮) = 𝜋∗𝑐1(det𝒮) = 𝜋∗𝑐1(𝒪𝐺(−1)), we easily deduce Equation (3.2).
In order to prove the last one, note that 𝑍 parameterizes the set of flags

{0} ⊂ 𝑝 ⊂ 𝑘2 ⊂ 𝑘𝑛+2.

Dividing the above equation by 𝑝, we see that 𝑍 is naturally isomorphic to the
variety of projective lines of 𝑘𝑛+2∕𝑝, which is ℙ𝑛

𝑘
. Thus there is a natural em-

bedding 𝑖∶ 𝑍 ↪ 𝐺. This embedding preserves the Schubert cycles as discussed
in Chapter 4.1 of loc. cit., thus 𝑖∗𝒪𝐺(1) = 𝒪𝑍(1) and the result follows from the
second equation. □

Remark 3.3. If𝑝 is not 𝑘-rational, then𝑍 = ℙ(𝑇ℙ𝑛
𝑘
,𝑝) ≅ ℙ𝑛

𝑘(𝑝)
. Since𝐺 is covered

by affine spaces, the equation 𝜔𝜋|𝑍 = 𝒪𝑍(1) could still be proved using Galois
descent (see [BLR90, Example 6.2/B]).

Given a set of indeces 𝐼 and a sequence of elements {𝑎𝑖}𝑖∈𝐼 , by (… , 𝑎𝑗,…) we
mean that 𝑎𝑗 is missing from the sequence.
There is a standard system of Nisnevich coordinates of ℙ𝑛

𝑘
that we denote by

{(𝑈𝑖, 𝜑𝑖)}
𝑛
𝑖=0
. That is

𝜑𝑖([𝑝0 ∶ … ∶ 𝑝𝑛+1]) = (
𝑝0

𝑝𝑖
,… ,

𝑝𝑖−1

𝑝𝑖
,
𝑝𝑖+1

𝑝𝑖
,… ,

𝑝𝑛

𝑝𝑖
) . (3.4)

These coordinates give a natural system of coordinates of 𝑇ℙ𝑛+1
𝑘

in the following
way. Let (𝑥0,… , 𝑥𝑗,… , 𝑥𝑛+1) ∈ 𝔸𝑛+1

𝑘
be local coordinates. The maps

𝜑𝑖◦𝜑
−1
𝑗
(𝑥0,… , 𝑥𝑗,… , 𝑥𝑛+1) = (… ,

𝑥𝑗−1

𝑥𝑖
,
1

𝑥𝑖
,
𝑥𝑗+1

𝑥𝑖
,… ,

𝑥𝑛+1

𝑥𝑖
) ∈ 𝔸𝑛+1

𝑘
(3.5)

are the standard gluing of the projective space along𝑈𝑗 ∩𝑈𝑖. In order to obtain
the standard gluing of the tangent bundle with respect to the standard basis
{
𝜕

𝜕𝑥𝑡
}𝑡≠𝑗, we take the Jacobian 𝐽𝑖𝑗 of (3.5), leading to maps

𝐽𝑖𝑗 (
𝜕

𝜕𝑥𝑠
) =

⎧

⎨

⎩

1

𝑥𝑖

𝜕

𝜕𝑥𝑠
if 𝑠 ≠ 𝑖, 𝑗

−
1

𝑥2
𝑖

𝜕

𝜕𝑥𝑖
−

∑

𝑡≠𝑖,𝑗

𝑥𝑡

𝑥2
𝑖

𝜕

𝜕𝑥𝑡
if 𝑠 = 𝑖.

(3.6)
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Thus the cocycle det(𝐽𝑖𝑗)◦𝜑𝑗 maps the distinguished basis

𝜕

𝜕𝑥0
∧ … ∧

�̂�

𝜕𝑥𝑗
∧ … ∧

𝜕

𝜕𝑥𝑛+1

to

𝐽𝑖𝑗 (
𝜕

𝜕𝑥0
) ∧ … ∧ 𝐽𝑖𝑗 (

𝜕

𝜕𝑥𝑗−1
) ∧ 𝐽𝑖𝑗 (

𝜕

𝜕𝑥𝑗+1
) ∧ … ∧ 𝐽𝑖𝑗 (

𝜕

𝜕𝑥𝑛+1
) ,

which is equal to

(−1)𝑖+𝑗

𝑥𝑛+2
𝑖

𝜕

𝜕𝑥0
∧ … ∧

�̂�

𝜕𝑥𝑗
∧ … ∧

𝜕

𝜕𝑥𝑛+1
.

The Jacobian determinant is −1∕𝑥𝑛+2
𝑖

, but we multiply by (−1)𝑖+𝑗+1 after re-
ordering the derivations. See the proof of [Huy05, Proposition 2.4.3]. We will
use another system of coordinates, which is better suited for our problem.

Definition 3.4. The twisted open cover {(𝑈𝑖, �̃�𝑖)}
𝑛
𝑖=0

ofℙ𝑛
𝑘
is defined as �̃�0 = 𝜑0

and
�̃�𝑖([𝑝0 ∶ … ∶ 𝑝𝑛]) = ((−1)𝑖

𝑝0

𝑝𝑖
,… ,

𝑝𝑖−1

𝑝𝑖
,
𝑝𝑖+1

𝑝𝑖
,… ,

𝑝𝑛

𝑝𝑖
) . (3.7)

Proposition 3.5. The twisted covering maps {(𝑈𝑖, �̃�𝑖)}
𝑛+1

𝑖=0
are a system of Nis-

nevich coordinates. Moreover, for each pair of indeces (𝑖, 𝑗), the morphism 𝜑𝑖 de-
termines: the distinguished basis element

(−1)𝑖 ⋅ 𝜕𝑖 ∶= (−1)𝑖
⋀

𝑡≠𝑖

𝜕

𝜕(𝑥𝑡∕𝑥𝑖)
∈ Γ (𝑈𝑖, det𝑇ℙ𝑛+1

𝑘
|
𝑈𝑖

) ,

and the transition functions 𝑔𝑖𝑗 ∶ 𝑇ℙ𝑛+1
𝑘
|
𝑈𝑗

→ 𝑇ℙ𝑛+1
𝑘
|
𝑈𝑖

such that

det 𝑔𝑖𝑗 = (−1)𝑖+𝑗 (
𝑥𝑖

𝑥𝑗
)

𝑛+2

. (3.8)

Proof. See [McK21, Proposition 3.8]. □

We will use the coordinates described in Equation (3.7) to a natural atlas of
𝑋.

Definition 3.6. Let 𝑖, 𝛼 ∈ {0,… , 𝑛 + 1} be such that 𝛼 ≠ 𝑖. Let { 𝜕

𝜕𝑥𝑡
}𝑡≠𝑖 be

a trivializing base of 𝑇𝑈𝑖
. Let 𝑈𝛼 ⊂ ℙ(𝑇𝑈𝑖

) be the open set corresponding to
𝜕

𝜕𝑥𝛼
≠ 0. Thus ev−1(𝑈𝑖) = 𝑈𝑖 × ℙ

𝑛

𝑘
is covered by open subsets 𝑈𝑖𝛼 ∶= 𝑈𝑖 ×𝑈𝛼.

The morphism �̃�𝑖𝛼 ∶ 𝑈𝑖𝛼 → 𝔸𝑛+1

𝑘
×𝔸𝑛

𝑘
is defined as follows

�̃�𝑖𝛼([𝑝0 ∶ … ∶ 𝑝𝑛+1]×[𝑞0 ∶ … ∶ 𝑞𝑛]) ∶= 𝜑𝑖([𝑝0 ∶ … ∶ 𝑝𝑛+1])×�̃�𝛼([𝑞0 ∶ … ∶ 𝑞𝑛]).

(3.9)

Since �̃�𝑖𝛼 is the direct product of two isomorphisms, it is an isomorphism. In
particular it gives a system of Nisnevich coordinates.
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Proposition 3.7. The covering maps {(𝑈𝑖𝛼, �̃�𝑖𝛼)} are Nisnevich coordinates.
Moreover, �̃�𝑖𝛼 determines a distinguished basis element of det𝑇𝑋|𝑈𝑖

with tran-
sition functions 𝑔(𝑖𝛼),(𝑗𝛽)∶ 𝑇𝑋|𝑈𝑗𝛽

→ 𝑇𝑋|𝑈𝑖𝛼
such that

det 𝑔(𝑖𝛼),(𝑗𝛽) = (
𝑥𝑖

𝑥𝑗
)

2

(
𝑥𝑖𝑦𝛼

𝑥𝑗𝑦𝛽
)

𝑛+1

. (3.10)

Proof. In order to obtain the gluing functions of 𝑋, we need to combine (3.5)
and (3.6). A few calculations lead to the following maps of 𝔸𝑛+1

𝑘
×𝔸𝑛

𝑘
:

�̃�𝑖𝛼◦�̃�
−1

𝑗𝛽
((𝑥0,… , 𝑥𝑗,… , 𝑥𝑛+1) × (𝑦0,… , 𝑦𝑗,… , 𝑦𝛽,… , 𝑦𝑛+1)) (3.11)

= (𝑥′
0
,… , 𝑥′

𝑖
,… , 𝑥′

𝑛+1
) × ((−1)𝛼+𝛽𝑦′

0
,… , 𝑦′

𝑖
,… , 𝑦′𝛼,… , 𝑦

′
𝑛+1

),

where for 𝑠 ≠ 𝑖, 𝑗, 𝛽,

𝑥′𝑠 =
𝑥𝑠

𝑥𝑖
, 𝑥′

𝛽
=
𝑥𝛽

𝑥𝑖
, 𝑥′

𝑗
=

1

𝑥𝑖
,

𝑦′𝑠 =
𝑦𝑠

𝑦𝛼
, 𝑦′

𝛽
=

1

𝑦𝛼
, 𝑦′

𝑗
=
−1

𝑥𝑖

𝑦𝑖

𝑦𝛼
−
𝑥𝛽

𝑥𝑖

1

𝑦𝛼
−

∑

𝑡≠𝑖,𝑗,𝛽

𝑥𝑡

𝑥𝑖

𝑦𝑡

𝑦𝛼
.

The determinant of the Jacobian matrix of (3.11) is

𝐽𝑖𝑗𝛼𝛽 ∶= (−1)𝛼+𝛽 det 𝐽𝑖𝑗 det (
𝜕𝑦′

𝑡

𝜕𝑦𝑠
) .

Note that in order to compute it, we can take 𝑦′
𝑗
= −𝑦𝑖∕(𝑥𝑖𝑦𝛼) since the linear

combination of the other coordinates 𝑦′𝑠 does not influence the determinant.
Thus

det 𝐽𝑖𝑗 det (
𝜕𝑦′

𝑡

𝜕𝑦𝑠
) = (−1)𝛼+𝛽 (

1

𝑥𝑖
)

𝑛+2

(
−1

𝑥𝑖
) (−1) (

1

𝑦𝛼
)

𝑛+1

= (−1)𝛼+𝛽 (
1

𝑥𝑖
)

2

(
1

𝑥𝑖𝑦𝛼
)

𝑛+1

.

We have a distinguished basis element of det𝑇𝑋|𝑈𝑖𝛼
given by

(−1)𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼 ∶=
⋀

𝑡≠𝑖

𝜕

𝜕(𝑥𝑡∕𝑥𝑖)
∧ (−1)𝛼

⋀

𝑡≠𝑖,𝛼

𝜕

𝜕(𝑦𝑡∕𝑦𝛼)
.

After reordering, we see that the cocycles 𝐽𝑖𝑗𝛼𝛽◦�̃�𝑗𝛽 equal (3.10) and are com-
patible with the distinguished basis. The reason for the compatibility is that the
transition map in (3.11) acts with a permutation (𝑗 + 1, 𝑖) if 𝑗 < 𝑖 (or (𝑖 + 1, 𝑗),
if 𝑗 > 𝑖) on the coordinates {𝑥𝑠}𝑠≠𝑗. On the other hand, if 𝑗 < 𝑖 and 𝛽 < 𝛼 it acts
with a permutation (𝑗 + 1, 𝑖)(𝛽 + 1, 𝛼) on the coordinates {𝑦𝑠}𝑠≠𝑗,𝛽 . In any case,
the signature of (3.11) is (−1)𝛼+𝛽+1. □
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Lemma 3.8. The line bundles 𝒪𝑋(1) and 𝜋∗𝒪𝐺(1) are locally trivialized over
𝑈𝑖𝛼, respectively, by

(
𝑥𝑖

𝑥0
) , (

𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
) .

Moreover, the transition functions are, respectively,

(
𝑥𝑖

𝑥𝑗
) , (

𝑥𝑖𝑦𝛼

𝑥𝑗𝑦𝛽
) .

Proof. On ev−1(𝑈𝑖) (thus, on𝑈𝑖𝛼), 𝒪𝑋(1) is trivialized by the pullback of (
𝑥𝑖

𝑥0
),

which is the trivializer of 𝒪ℙ𝑛+1
𝑘
(1) on 𝑈𝑖. The induced transition functions on

𝒪𝑋(1) are those of Equation (3.8); see [McK21, Proposition 3.9]. In order to
trivialize 𝜋∗𝒪𝐺(1), we recall that 𝐺 is defined as the space of GL(2, 𝑘)-orbits of
2 × (𝑛 + 2)matrices. In particular, we may see 𝑋 as the space of pairs

[𝑥0 ∶ … ∶ 𝑥𝑛+1] × [(
𝑥0 … 𝑥𝑛+1
𝑦0 … 𝑦𝑛+1

)]
GL(2,𝑘)

.

Suppose that [𝑥0 ∶ … ∶ 𝑥𝑛+1] ∈ 𝑈𝑖. Using the fact that 𝑥𝑖 ≠ 0 all orbits appear-
ing in the above equation admit a representative with 𝑦𝑖 = 0. In particular, we
may think that 𝐺 is the moduli space of orbits of the form

(
𝑥0 … 𝑥𝑖 … 𝑥𝑛+1
𝑦0 … 0 … 𝑦𝑛+1

) . (3.12)

Moreover, the coordinates of ev−1(𝑈𝑖) are naturally identified with the projec-
tive points [𝑥0 ∶ … ∶ 𝑥𝑛+1] and [𝑦0 ∶ … ∶ 0 ∶ … ∶ 𝑦𝑛+1] appearing above.
Let Π∶ 𝐺 → ℙ(∧2𝑘𝑛+2) be the Plücker embedding. That is, the embedding

sending a matrix like in Equation (3.12) to the point [… ∶ 𝑃𝑡𝑠 ∶ …] where 𝑡 < 𝑠

and 𝑃𝑡𝑠 = 𝑥𝑡𝑦𝑠 − 𝑥𝑠𝑦𝑡. Suppose that 𝑖 < 𝛼. Note that the composition Π◦𝜋
defines an isomorphism between 𝑈𝑖𝛼 and 𝜋(𝐺) ∩ {𝑃𝑖𝛼 ≠ 0}.
Since 𝜋 is surjective and Π is not degenerate, the map 𝑈𝑖𝛼 → 𝔸1

𝑘
defined by

(𝑃01∕𝑃𝑖𝛼) is regular and nonzero.
As above, 𝒪ℙ(∧2𝑘𝑛+2)(1) is trivialized over {𝑃𝑖𝛼 ≠ 0} by (𝑃𝑖𝛼∕𝑃01). Thus by

pullbackwe get that𝜋∗𝒪𝐺(1) = 𝜋∗Π∗𝒪ℙ(∧2𝑘𝑛+2)(1) is trivialized by𝑥𝑖𝑦𝛼∕(𝑥0𝑦1−
𝑥1𝑦0) with transition functions (𝑥𝑖𝑦𝛼∕𝑥𝑗𝑦𝛽). If 𝛼 < 𝑖, we take without loss of
generality the map −(𝑃01∕𝑃𝛼𝑖) and repeat the same argument. □

4. Osculating lines

Let𝑌 ⊂ ℙ𝑛+1
𝑘

be a smooth hypersurface, andℒ ⊂ ℙ𝑛+1
𝑘

be a line. We say that
ℒ and 𝑌 have 𝑡-contact with each other if ℒ ∩ 𝑌 contains a divisor of ℒ of the
form 𝑡𝑝 for some point 𝑝 ∈ ℒ.
We say that ℒ is osculating to 𝑌 if they are (𝑛 + 1)-contact.
Lines with (𝑡 + 1)-contact with 𝑌 are parameterized by the zero locus of a

section of the 𝑡th bundle of principal parts, see [Vai81, Section 5].
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Definition 4.1. Let 𝑑 be an integer. For every 𝑡 ≥ 0, the 𝑡th bundle of principal
parts of 𝒪𝑋(𝑑) is

𝒫𝑡(𝑑) ∶= 𝑞∗(𝑝
∗𝒪𝑋(𝑑)⊗𝒪𝑋×𝐺𝑋

∕ℐ𝑡+1
∆

), (4.1)

where 𝑝 and 𝑞 are the two projections 𝑋 ×𝐺 𝑋 → 𝑋.

There exists a canonical differentialmorphismof sheaves 𝜕𝑡 ∶ 𝒪𝑋(𝑑)→ 𝒫𝑡(𝑑)

(see [Gro67, Définition (16.3.6)]). For any section 𝑠 of 𝒪𝑋(𝑑), the section 𝜕𝑡𝑠 of
𝒫𝑡(𝑑) is called principal part of 𝑠. Geometrically, 𝜕𝑡maps a local section defined
at a point 𝑥 ∈ 𝑋 to its first 𝑡 Hasse–Schmidt derivatives relative to 𝜋. This is
because (𝜕𝑡,𝒫𝑡(𝑑)) represents the functor sending a line bundle 𝑀 to the set
of 𝒪𝐺-linear 𝑡-derivations 𝐷∶ 𝒪𝑋(𝑑) → 𝑀 relative to 𝜋 [Gro67, Proposition
(16.8.4)]. See [Voj07, CDH23] for a more explicit approach. Finally the exact
sequence

0→ ℐ𝑡+1
∆

∕ℐ𝑡+2
∆

→ 𝒪𝑋×𝐺𝑋
∕ℐ𝑡+2

∆
→ 𝒪𝑋×𝐺𝑋

∕ℐ𝑡+1
∆

→ 0

induces the exact sequence

0→ 𝜔
⊗𝑡+1
𝜋 ⊗𝒪𝑋(𝑑)→ 𝒫𝑡+1(𝑑)→ 𝒫𝑡(𝑑)→ 0. (4.2)

Finally, we define the following vector bundle.

Definition 4.2. We denote by 𝒱 the vector bundle on 𝑋 given by 𝒫𝑛(𝑑) ⊕
𝒪𝑋(1)

⊕𝑛.

5. Relative orientation
The rank of𝒱 is clearly 2𝑛+1. Moreover, using the property of the determi-

nant of a vector bundle, it is easy to see that

det𝒱 = 𝒪𝑋(1)
⊗𝑛 ⊗𝒪𝑋(𝑑)

⊗𝑛+1 ⊗𝜔
𝑛(𝑛+1)∕2

𝜋 . (5.1)

Indeed, det𝒱 = det(𝒫𝑛(𝑑))⊗𝒪𝑋(𝑛). Using (4.2) and an easy induction,

det(𝒫𝑛(𝑑)) = det(𝒫𝑛−1(𝑑))⊗𝜔
⊗𝑛
𝜋 ⊗𝒪𝑋(𝑑)

= 𝜔
⊗𝑛(𝑛+1)∕2

𝜋 ⊗𝒪𝑋((𝑛 + 1)𝑑).

We use this equation for trivializing det𝒱 .

Proposition 5.1. The line bundle det𝒱 is trivialized on𝑈𝑖𝛼 by the distinguished
element

(
𝑥𝑖

𝑥0
)

𝑛+𝑑(𝑛+1)

(
𝑥𝑖

𝑥0
)

−𝑛(𝑛+1)

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑛(𝑛+1)∕2

, (5.2)

with transition functions det𝒱|𝑈𝑗𝛽
→ det𝒱|𝑈𝑖𝛼

being

(
𝑥𝑖

𝑥𝑗
)

𝑑(𝑛+1)−𝑛2

(
𝑥𝑖𝑦𝛼

𝑥𝑗𝑦𝛽
)

𝑛(𝑛+1)∕2

. (5.3)
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Proof. ByEquation (5.1), weneed only the local trivializations of𝜔𝜋 and𝒪𝑋(1).
They are easily deduced from Lemma 3.8 and Equation (3.2). In particular,
𝜔𝜋|𝑈𝑖𝛼

is trivialized by

(
𝑥𝑖

𝑥0
)

−2

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
) .

Finally, Equations (5.2) and (5.3) follow from (5.1). □

5.1. Relatively orientable case. The following proposition gives us the con-
ditions on 𝑛 and 𝑑 such that 𝒱 is relatively orientable.

Proposition 5.2. The vector bundle 𝒱 is relatively orientable if and only if the
following conditions are satisfied:

∙ 𝑛 ≡ 2mod 4,
∙ 𝑑 ≡ 0mod 2.

We prove this proposition after the following two simple lemmas.

Lemma 5.3. The following conditions are equivalent:
(1) 𝑛 ≡ 2mod 4, or 𝑛 ≡ 3mod 4.
(2)

∑𝑛

𝑡=0
𝑡 ≡ (𝑛 + 1)mod 2.

Proof. Since the sum of four consecutive integers is even, we may take the re-
mainder of 𝑛modulo 4. By a direct computation, we see that 𝑛 ∈ {2, 3} satisfies
the condition, but 𝑛 ∈ {0, 1} does not. □

Lemma 5.4. Let 𝑛 ≥ 0 and 𝑑 > 0 be integers. Then

Hom(det(𝑇𝑋), det(𝒱)) = 𝜔
⊗(𝑛+1)(𝑛∕2−1)

𝜋 ⊗𝒪𝑋((𝑛 + 1)(𝑑 − 1) − 3). (5.4)

Proof. Since𝜋 is a smoothmap, the exact sequence [Har77, Proposition II.8.11]
is exact also on the left, thus

𝜔𝑋 = 𝜔𝜋 ⊗𝜋∗𝜔𝐺 .

By Equations (3.1) and (3.2) it follows:

𝜔𝑋 = 𝜔𝜋 ⊗ (𝜔𝜋 ⊗𝒪𝑋(2))
⊗−𝑛−2 = 𝜔

⊗−𝑛−1
𝜋 ⊗𝒪𝑋(−2𝑛 − 4).

On the other hand, using Equation (5.1)

Hom(det(𝑇𝑋), det(𝒱)) = det(𝑇𝑋)
∨ ⊗𝒪𝑋(𝑛 + 𝑑(𝑛 + 1))⊗𝜔

⊗𝑛(𝑛+1)∕2

𝜋

= 𝜔
⊗𝑛(𝑛+1)∕2−𝑛−1

𝜋 ⊗𝒪𝑋(𝑛 + 𝑑(𝑛 + 1) − 2𝑛 − 4)

= 𝜔
⊗𝑛(𝑛+1)∕2−𝑛−1

𝜋 ⊗𝒪𝑋((𝑛 + 1)(𝑑 − 1) − 3).

as stated in Equation (5.4). □

Finally, we can proceed with the proof of the proposition.
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Proof of Proposition 5.2. By Equation (5.4), 𝒱 is relatively orientable if and
only if

𝜔
⊗(𝑛+1)(𝑛∕2−1)

𝜋 ⊗𝒪𝑋((𝑛 + 1)(𝑑 − 1) − 3)

is the square of a line bundle. Since𝜔𝜋 and𝒪𝑋(1) generate Pic(𝑋) (for example,
by (3.2)), we need that (𝑛 + 1)(𝑛∕2 − 1) and (𝑛 + 1)(𝑑 − 1) − 3 to be even. By
Lemma 5.3, it is easy to see that it must be 𝑑 even and 𝑛 ≡ 2mod 4. □

So, we know exactly when 𝒱 is relatively orientable. In particular, there is
a well-defined Euler class. Now, we define explicitly a relative orientation and
we will prove that it is compatible with the coordinates given in Definition 3.6.
For each open set 𝑈𝑖𝛼, let us consider the following map 𝜆𝑖𝛼 ∶ det𝑇𝑋|𝑈𝑖𝛼

→

det𝒱|𝑈𝑖𝛼
where

𝜆𝑖𝛼((−1)
𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼) = (

𝑥𝑖

𝑥0
)

𝑛+𝑑(𝑛+1)

(
𝑥𝑖

𝑥0
)

−𝑛(𝑛+1)

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑛(𝑛+1)∕2

.

Combining Proposition 3.7 and 5.1, we see that

𝜆𝑖𝛼((−1)
𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼) = (

𝑥𝑖

𝑥𝑗
)

𝑁

(
𝑥𝑖

𝑥𝑗
)

−2𝑀

(
𝑥𝑖𝑦𝛼

𝑥𝑗𝑦𝛽
)

𝑀

𝜆𝑗𝛽((−1)
𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼) (5.5)

where we denoted

𝑁 ∶= (𝑛 + 1)(𝑑 − 1) − 3, 𝑀 ∶= (𝑛 + 1)(𝑛∕2 − 1).

It follows that there exists a well-defined morphism

𝜓∶ 𝜔
⊗𝑀
𝜋 ⊗𝒪𝑋(𝑁)→ Hom(det(𝑇𝑋), det(𝒱)),

such that

𝜓|
𝑈𝑖𝛼

((
𝑥𝑖

𝑥0
)

−2𝑀

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑀

(
𝑥𝑖

𝑥0
)

𝑁

) = 𝜆𝑖𝛼. (5.6)

We conclude this section by proving that 𝜓 induces a trivialization compatible
with the twisted coordinates, as in Definition (2.6).

Lemma 5.5. Let 𝑛 and 𝑑 be positive integers such that 𝑛 ≡ 2mod 4, 𝑑 ≡ 0mod 2.
The local trivializations

(
𝑥𝑖

𝑥0
)

𝑛+𝑑(𝑛+1)

(
𝑥𝑖

𝑥0
)

−𝑛(𝑛+1)

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑛(𝑛+1)∕2

of det𝒱 are compatible with the Nisnevich coordinates {(𝑈𝑖𝛼, �̃�𝑖𝛼)} and the rela-
tive orientation (𝜔⊗𝑀∕2

𝜋 ⊗𝒪𝑋(𝑁∕2), 𝜓).

Proof. As we saw in Proposition 5.2, 𝑁 and 𝑀 are even, so it makes sense to
consider𝑁∕2 and𝑀∕2. By construction, 𝜆𝑖𝛼maps the distinguished basis of the
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anticanonical bundle to a distinguished basis of det𝒱 . Finally, Equation (5.6)
implies that

𝜓|
𝑈𝑖𝛼

⎛

⎜

⎝

((
𝑥𝑖

𝑥0
)

−𝑀

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑀∕2

(
𝑥𝑖

𝑥0
)

𝑁∕2

)

⊗2
⎞

⎟

⎠

= 𝜆𝑖𝛼.

Hence, 𝜆𝑖𝛼 is a square. □

5.2. Non-relatively orientable case. Let us assume that 𝑛 ≡ 2mod 4, and
that 𝑑 is odd. So𝑁 is odd, and𝒱 cannot be relatively orientable. We show that,
in this case, 𝒱 is relatively orientable relative to the divisor 𝐷 = ev∗({𝑥0 = 0}).
We adopt the same approach of [McK21, Lemma 3.11].
Since 𝒪𝑋(𝐷) = 𝒪𝑋(1) and𝑀 and𝑁 + 1 are even, by Equation (5.4) we have

Hom(det(𝑇𝑋), det(𝒱))⊗𝒪𝑋(𝐷) = (𝜔
⊗𝑀∕2

𝜋 ⊗𝒪𝑋 (
𝑁 + 1

2
))

⊗2

,

that is, it is a tensor square. As 𝒪𝑋(𝐷) is locally trivialized by (
𝑥𝑖

𝑥0
), we may

define on 𝑈𝑖𝛼

�̃�|
𝑈𝑖𝛼

((
𝑥𝑖

𝑥0
)

−2𝑀

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑀

(
𝑥𝑖

𝑥0
)

𝑁+1

) = 𝜆𝑖𝛼. (5.7)

Lemma 5.6. Let 𝑛 and 𝑑 be positive integers such that 𝑛 ≡ 2mod 4, 𝑑 ≡ 1mod 2.
The local trivializations

(
𝑥𝑖

𝑥0
)

𝑛+𝑑(𝑛+1)

(
𝑥𝑖

𝑥0
)

−𝑛(𝑛+1)

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑛(𝑛+1)∕2

of det𝒱 are compatible with the Nisnevich coordinates {(𝑈𝑖𝛼, �̃�𝑖𝛼)} and the rela-
tive orientation (𝜔⊗𝑀∕2

𝜋 ⊗𝒪𝑋((𝑁 + 1)∕2), �̃�) relative to the divisor 𝐷.

Proof. The canonical section 1𝐷 of 𝒪𝑋(𝐷) is locally given by (the pullback of)
𝑥𝑖

𝑥0
. By construction,

𝜆𝑖𝛼((−1)
𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼)⊗ (

𝑥𝑖

𝑥0
)

= (
𝑥𝑖

𝑥0
)

𝑛+𝑑(𝑛+1)

(
𝑥𝑖

𝑥0
)

−𝑛(𝑛+1)+1

(
𝑥𝑖𝑦𝛼

𝑥0𝑦1 − 𝑥1𝑦0
)

𝑛(𝑛+1)∕2

,

so by Equation (5.5),

𝜆𝑖𝛼((−1)
𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼)⊗ (

𝑥𝑖

𝑥0
)

= (
𝑥𝑖

𝑥𝑗
)

𝑁+1

(
𝑥𝑖

𝑥𝑗
)

−2𝑀

(
𝑥𝑖𝑦𝛼

𝑥𝑗𝑦𝛽
)

𝑀

𝜆𝑗𝛽((−1)
𝛼 ⋅ 𝜕𝑖 ∧ 𝜕𝛼)⊗ (

𝑥𝑗

𝑥0
) .
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Thus the maps �̃�|
𝑈𝑗𝛽

and �̃�|
𝑈𝑖𝛼

differ by the transition function

⎛

⎜

⎝

(
𝑥𝑖

𝑥𝑗
)

(𝑁+1)∕2

(
𝑥𝑖

𝑥𝑗
)

−𝑀

(
𝑥𝑖𝑦𝛼

𝑥𝑗𝑦𝛽
)

𝑀∕2
⎞

⎟

⎠

⊗2

.

So {(𝑈𝑖𝛼, �̃�𝑖𝛼)} is well-defined, and the relative orientation is a square by con-
struction. This proves the lemma. □

6. Euler Class
In this section we compute the Euler class of 𝒱 . Although the result is an-

ticipated by the fact that 𝑋 is odd-dimensional (see Remark 6.2), we adopt the
classical strategy of defining a section with only one zero, compute the Scheja–
Storch form, and finally apply Equation (2.3).

Theorem 6.1. Let 𝑛 and 𝑑 be positive integers such that the following conditions
are satisfied

∙ 𝑛 ≡ 2mod 4,
∙ 𝑑 ≡ 0mod 2.

The vector bundle 𝒱 is relatively orientable. Moreover, if 𝑑 ≥ 𝑛, the Euler class of
𝒱 is

𝑒(𝒱) = 𝑑
𝑛!

2
ℍ. (6.1)

Proof. By Proposition 5.2, 𝒱 is relatively orientable and its Euler class is well-
defined. Consider the global section 𝑓 of 𝒪ℙ𝑛+1

𝑘
(𝑑), and the global sections

{𝑔𝑗}
𝑛
𝑗=1

of 𝒪ℙ𝑛+1
𝑘
(1) given by

𝑓 = 𝑥𝑑
0
+

𝑛∑

𝑖=1

𝑥𝑑−𝑖
𝑛+1

𝑥𝑖
𝑖
, 𝑔𝑗 = 𝑥𝑗.

Combining 𝑓 and {𝑔𝑗}𝑛𝑗=1, we obtain a global section of 𝒪ℙ𝑛+1
𝑘
(𝑑)⊕𝒪ℙ𝑛+1

𝑘
(1)⊕𝑛,

with zeros in 𝑋 consist only of one 𝑘-point 𝑝 in 𝑈𝑛+1 ∶= {𝑥𝑛+1 ≠ 0} ≅ 𝔸𝑛+1

𝑘
.

Let 𝑍 ∶= ev−1(𝑝) ≅ ℙ𝑛
𝑘
. Clearly 𝒪𝑋(1)|𝑍 is trivial and by Equation (3.3)

𝜔𝜋|𝑍 = 𝒪𝑍(1). Thus any bundle of principal parts 𝒫𝑡(𝑑) splits when restricted
to ev−1(𝑈𝑛+1) = 𝑈𝑛+1 × 𝑍 as Ext

1
(𝒪𝑍 ,𝒪𝑍(𝑡)) = 0 for 𝑡 ≥ 0.

Let 𝜕𝑛𝑓 be the induced section of 𝒫𝑛(𝑑) and consider the section

Λ = (𝜕𝑛𝑓, 𝑔1,… , 𝑔𝑛)

of 𝒱 . Note that, by evaluation, all zeros of Λ are contained in ev−1(𝑈𝑛+1). The
surjection

𝜏∶ 𝒱 ⟶ ev∗(𝒪ℙ𝑛+1
𝑘
(𝑑)⊕𝒪ℙ𝑛+1

𝑘
(1)⊕𝑛), (6.2)
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restricted to ev−1(𝑈𝑛+1) splits because all the 𝒫𝑡(𝑑) do. Thus the kernel of (6.2)
is

ker(𝜏) = 𝒪𝑈𝑛+1
⊗

𝑛⨁

𝑖=1

𝒪𝑍(𝑖).

Let 𝑧𝑖 ∶= ev∗(𝑥𝑖|𝑈𝑛+1
) = ev∗(𝑥𝑖∕𝑥𝑛+1) and consider the pullback of 𝑓|𝑈𝑛+1

ev∗(𝑓|
𝑈𝑛+1

) = 𝑧𝑑
0
+

𝑛∑

𝑖=1

𝑧𝑖
𝑖
.

Computing the Hasse derivatives of 𝑓, we see that Λ|ev−1(𝑈𝑛+1)
is the global sec-

tion of ker(𝜏)⊕𝒪
⊕𝑛+1

𝑈𝑛+1
, given by

Λ|ev−1(𝑈𝑛+1)
= (𝑓(1), 𝑓(2),… , 𝑓(𝑛), ev∗(𝑓|

𝑈𝑛+1
), 𝑧1, 𝑧2,… , 𝑧𝑛), (6.3)

where for all 𝑖 = 1,… , 𝑛,

𝑓(𝑖) ∶=
(𝑑

𝑖

)
𝑧𝑑−𝑖
0

(d𝑧0)
𝑖 + (d𝑧𝑖)

𝑖 +
(𝑖 + 1

𝑖

)
𝑧𝑖+1(d𝑧𝑖+1)

𝑖 +⋯ +
(𝑛

𝑖

)
𝑧𝑛−𝑖𝑛 (d𝑧𝑛)

𝑖,

and {d𝑧0,… , d𝑧𝑛} are independent global sections of𝒪𝑍(1). The section inEqua-
tion (6.3) has a unique (non-simple, rational) zero in ev−1(𝑈𝑛+1), and it is in
the open set 𝑈𝑛+1 × 𝑈0, where 𝑈0 ∶= {d𝑧0 ≠ 0}. This open set is a compat-
ible Nisnevich neighborhood around the zero by Lemma 5.5. Finally, setting
𝑤𝑖 ∶= d𝑧𝑖∕d𝑧0,

𝒪{Λ=0},0 ≅
𝑘[𝑤1,… , 𝑤𝑛, 𝑧0,… , 𝑧𝑛]0

(𝑓(1), 𝑓(2),… , 𝑓(𝑛), ev∗(𝑓|
𝑈𝑛+1

), 𝑧1,… , 𝑧𝑛)
(6.4)

≅
𝑘[𝑤1,… , 𝑤𝑛, 𝑧0,… , 𝑧𝑛]0

((
𝑑

1

)
𝑧𝑑−1
0

+ 𝑤1,
(
𝑑

2

)
𝑧𝑑−2
0

+ 𝑤2
2
,… ,

(
𝑑

𝑛

)
𝑧𝑑−𝑛
0

+ 𝑤𝑛
𝑛 , 𝑧

𝑑
0
, 𝑧1,… , 𝑧𝑛

) (6.5)

≅
𝑘[𝑤1,… , 𝑤𝑛, 𝑧0]0

((
𝑑

1

)
𝑧𝑑−1
0

+ 𝑤1,
(
𝑑

2

)
𝑧𝑑−2
0

+ 𝑤2
2
,… ,

(
𝑑

𝑛

)
𝑧𝑑−𝑛
0

+ 𝑤𝑛
𝑛 , 𝑧

𝑑
0

) ⊗
𝑘[𝑧1,… , 𝑧𝑛]0

(𝑧1,… , 𝑧𝑛)
. (6.6)

The passage from (6.4) to (6.5) is possible because the ideal (𝑓(𝑖), 𝑧1,… , 𝑧𝑛) equals

(
(𝑑

𝑖

)
𝑧𝑑−𝑖
0

+ 𝑤𝑖, 𝑧1,… , 𝑧𝑛) ,

as 𝑓(𝑖) −
(
𝑑

𝑖

)
𝑧𝑑−𝑖
0

−𝑤𝑖 ∈ (𝑧1,… , 𝑧𝑛). The same holds for ev∗(𝑓|𝑈𝑛+1
) − 𝑧𝑑

0
. Using

functoriality, the class of the Scheja–Storch form of (6.6) is the product of the
classes of the forms computed in each ring. For the ring on the right it is ⟨1⟩ by
[KW20, Lemma 5]. For the other ring, a direct computation (e.g., by induction
on 𝑛) shows that its class is

𝑑
𝑛!

2
ℍ,

so Equation (6.1) is proved. □



AN ARITHMETIC COUNT OF OSCULATING LINES 1699

Remark 6.2. A priori, we can deduce that 𝑒(𝒱) is a multiple of ℍ by applying
[SW21, Proposition 19] to ℰ = 𝒪𝑋(1)

⊕𝑛 and ℰ′ = 𝒫𝑛(𝑑). After that, me may
apply [SW21, Lemma 5] paired with [Mur21, Proposition 6.1].

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Suppose that 𝑌 and ℒ are given by, respectively, poly-
nomials𝑓 and {𝑔𝑗}𝑛𝑗=1. Sinceℒ is 𝑘-rational, all 𝑔𝑗 are linear. For each𝑝 ∈ 𝑌∩ℒ,
let 𝑈 be an affine open set containing 𝑝. We can construct a morphism

Λ∶ 𝑈′ ⟶ 𝔸2𝑛+1

𝑘
(6.7)

𝑥 ⟼ (𝜕𝑛ev∗(𝑓)(𝑥), ev∗(𝑔1)(𝑥),… , ev
∗(𝑔𝑛)(𝑥)),

defined in any affine open set 𝑈′ ≅ 𝑈 × 𝔸𝑛

𝑘
mapping surjectively to 𝑈. Con-

sider the 𝑘(𝑝) lift Λ𝑘(𝑝) of Λ. Since the extension of scalars is compatible with
pullback, and with the differential morphism 𝜕𝑛 (see [Gro67, (16.7.9.1)]), we
get

Λ𝑘(𝑝)(𝑥) = (𝜕𝑛ev∗(𝑓𝑘(𝑝))(𝑥), ev
∗(𝑔1)(𝑥)𝑘(𝑝),… , ev

∗(𝑔𝑛)(𝑥)𝑘(𝑝)).

Wemay suppose, after a translation, that a 𝑘(𝑝) lift �̃� of 𝑝 is the origin of𝑈𝑘(𝑝).
Moreover, after a linear transformation, we may suppose that ev∗(𝑔𝑖)(𝑥) = 𝑧𝑖
where {𝑧0,… , 𝑧𝑛} are coordinates of 𝑈. Note that 𝑓𝑘(𝑝) decomposes as sum of
homogeneous polynomials around 0, thus

ev∗(𝑓𝑘(𝑝)) =

𝑑∑

𝑖=1

ev∗(𝑓
(𝑖)

𝑘(𝑝)
) =

𝑑∑

𝑖=1

𝑓𝑘(𝑝)(𝑧0,… , 𝑧𝑛)
(𝑖).

In the ring
𝑅 = 𝑘(𝑝)[d𝑧0,… , d𝑧𝑛, 𝑧0,… , 𝑧𝑛],

the 𝑡th Hasse derivative d𝑡ev∗(𝑓𝑘(𝑝))(𝑖) is contained in the ideal (𝑧0,… , 𝑧𝑛) if 𝑡 <
𝑖. Moreover, since the intersection of 𝑌 and ℒ is transverse at 𝑝, there must be
an 𝛼 ∈ 𝑘(𝑝)⧵ {0} such that ev∗(𝑓𝑘(𝑝))−𝛼𝑧0 is contained in the ideal (𝑧0,… , 𝑧𝑛).
It follows:

𝑅

(Λ𝑘(𝑝))
≅
𝑘(𝑝)[d𝑧0,… , d𝑧𝑛]

(𝑓
(1)

𝑘(𝑝)
,… , 𝑓

(𝑛)

𝑘(𝑝)
)
⊗
𝑘(𝑝)[𝑧0,… , 𝑧𝑛]

(𝑧0,… , 𝑧𝑛)
.

Since𝑌 andℒ are general, the polynomials𝑓(1)
𝑘(𝑝)

,… , 𝑓
(𝑛)

𝑘(𝑝)
meet at finite number

of reduced points. If 𝑙 is any of those points, by [McK21, Lemma 5.5] it follows

deg
𝔸1

𝑘(𝑝)

(𝑙,�̃�)
(Λ𝑘(𝑝)) = deg

𝔸1

𝑘(𝑝)

𝑙
(𝑓

(1)

𝑘(𝑝)
,… , 𝑓

(𝑛)

𝑘(𝑝)
) = Tr𝑘(𝑙)∕𝑘(𝑝)⟨𝐽(𝑙)⟩.

Thus the sum
∑

𝑙
deg

𝔸1

𝑘(𝑝)

(𝑙,�̃�)
(Λ𝑘(𝑝)) is 𝐽(𝑌, 𝑝). The polynomials 𝑓 and {𝑔𝑗}𝑛𝑗=1 de-

fine a global section Ψ of 𝒱 . Hence by Theorem 6.1,
∑

𝑥∶Ψ=0

deg
𝔸1
𝑘

𝑥 (Ψ) = 𝑑
𝑛!

2
ℍ. (6.8)
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On the other hand, for each 𝑥 we may find a sistem of Nisnevich coordinates
𝑈′ such that Ψ|𝑈′ is represented like in Equation (6.7). Hence

∑

𝑥∶Ψ=0

deg
𝔸1
𝑘

𝑥 (Ψ) =
∑

𝑝∈𝑌∩ℒ

∑

𝑙∶ev(𝑙)=𝑝

Tr𝑘(𝑙)∕𝑘⟨deg
𝔸1

𝑘(𝑙)

(𝑙,�̃�)
Λ𝑘(𝑙)⟩ (6.9)

=
∑

𝑝∈𝑌∩ℒ

Tr𝑘(𝑝)∕𝑘

⎛

⎜

⎝

∑

𝑙∶ev(𝑙)=𝑝

Tr𝑘(𝑙)∕𝑘(𝑝)⟨deg
𝔸1

𝑘(𝑙)

(𝑙,�̃�)
Λ𝑘(𝑙)⟩

⎞

⎟

⎠

(6.10)

=
∑

𝑝∈𝑌∩ℒ

Tr𝑘(𝑝)∕𝑘

⎛

⎜

⎝

∑

𝑙∶ev(𝑙)=𝑝

deg
𝔸1

𝑘(𝑝)

(𝑙,�̃�)
Λ𝑘(𝑝)

⎞

⎟

⎠

(6.11)

=
∑

𝑝∈𝑌∩ℒ

Tr𝑘(𝑝)∕𝑘⟨𝐽(𝑌, 𝑃)⟩. (6.12)

We used [BBM+21, Corollary 1.4] in Equations (6.9) and (6.11), while in Equa-
tion (6.10), we used the decomposition of the trace of a tower of fields, see
[Wei09, Theorem 3.8.5.(3)]. Finally, combining Equations (6.8) and (6.12), we
conclude the proof. □

6.1. Final remarks.

Remark 6.3. In the proof, we used the geometric interpretation of 𝐽(𝑙) given in
Section 5 ofMcKean’s article. There is another possible way to prove our result,
which uses the main result of his paper. We give a sketch of it here. One may
observe that, by [McK21, Theorem 1.2],

𝐽(𝑌, 𝑝) =
𝑛!

2
ℍ ∈ GW(𝑘(𝑝)).

Together with Tr𝑘(𝑝)∕𝑘(ℍ) = [𝑘(𝑝) ∶ 𝑘]ℍ (see [KP23, Lemma 2.12]), and
∑

𝑝∈𝑌∩ℒ

[𝑘(𝑝) ∶ 𝑘] = 𝑑,

these would imply Theorem 1.1.

Remark 6.4. Onemay ask to compute the lines meeting a smooth hypersurface
𝑌 ⊂ ℙ𝑛+1

𝑘
with contact order 2𝑛+1. For example, inflectional tangent lines to a

plane curve. These would be given by a zero section of 𝒫2𝑛(𝑑), but that bundle
is not relatively orientable for any value of 𝑛.

One may extend the result when 𝑑 is odd and 𝑘 = ℝ. Following Subsec-
tion 5.2, we consider a divisor 𝐷 = ev∗(𝐻) where 𝐻 ⊂ ℙ𝑛+1

𝑘
is a hyperplane.

Thus 𝒱 is relatively orientable with respect to 𝐷, so Lemma 2.9 applies to 𝐸 =

𝒱 .
In general, the space 𝐻0(𝐸)◦ ⧵ 𝑉𝐷 could be totally disconnected, so there

might not be interesting enumerative results.
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However, we believe that it happens something similar to [LV21, Lemma4.1].
That is,𝐻0(𝒱)◦ ⧵ 𝑉𝐷 has only two connected components. For any section

(𝑓, 𝑔1,… , 𝑔𝑛) ∈ 𝐻0(𝒪ℙ𝑛+1
𝑘
(𝑑)⊕𝒪ℙ𝑛+1

𝑘
(1)⊕𝑛), (6.13)

let us denote by ℒ the locus {𝑔1 = … = 𝑔𝑛 = 0}, and by
𝐴 ⊂ 𝐻0(𝒪ℙ𝑛+1

𝑘
(𝑑)⊕𝒪ℙ𝑛+1

𝑘
(1)⊕𝑛)

the space of all sections such that either
(1) dim(ℒ ∩𝐻) ≥ 1, or
(2) 𝑝 = ℒ ∩𝐻 is a ℝ-point and 𝑓(𝑝) = 0.

One can easily show that only the second condition makes 𝐴 a subspace of
codimension 1. Thus, the complement of 𝐴 has two connected components,
where one is the locus of sections as in Equation (6.13) such that ℒ is a line
not contained in 𝐻 and 𝑓(𝑝) > 0. The other component is obtained by the
involution

(𝑓, 𝑔1,… , 𝑔𝑛)⟼ (−𝑓, 𝑔1,… , 𝑔𝑛). (6.14)
By the continuous map

𝐻0(𝒱) ⧵ 𝑉𝐷 ⟶ 𝐻0(𝒪𝑋(𝑑)⊕𝒪𝑋(1)
⊕𝑛) ⧵ ev∗(𝐴),

Wededuce that𝐻0(𝒱)◦⧵𝑉𝐷 has at least two connected components. We believe
that there are only two, and they are isomorphic through an involution similar
to (6.14). With minor changes, the proof of Theorem 6.1 is still valid in this
case.
In the appendix of the arXiv version of this paper, we exhibit a computation

described by the theorem for two cubic surfaces, 𝑌+ and 𝑌−, meeting a line ℒ,
with respect to a relative divisor. Our example is set for 𝑘 = ℚ, but can easily
be adapted to ℝ. Thus, Lemma 2.9 implies that, in the connected components
of sections defined by (𝑌+,ℒ) and (𝑌−,ℒ), the theorem holds true. In order to
perform the cohomological computations, we usedMacaulay2 and OSCAR (see
[GS, DEF+24]).
Finally, we may extend the theorem even to other values of 𝑛. For example,

when 𝑛 = 1 osculating lines are exactly tangent lines to a point of a curve 𝑌.
We plan to address this problem in the future.

References
[BBM+21] Brazelton, Thomas; Burklund, Robert; McKean, Stephen; Mon-

toro, Michael; Opie, Morgan. The trace of the local 𝔸1-degree. Homol-
ogy Homotopy Appl. 23 (2021), no. 1, 243–255. MR4162156, Zbl 1456.14027,
doi: 10.4310/hha.2021.v23.n1.a1. 1700

[BLR90] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel. Néron mod-
els. Ergebnisse derMathematik und ihrer Grenzgebiete (3) [Results inMathematics
and Related Areas (3)], 21. Springer-Verlag, Berlin, 1990. x+325 pp. ISBN: 3-540-
50587-3. MR1045822, Zbl 0705.14001, doi: 10.1007/978-3-642-51438-8. 1689

[BMP23] Brazelton, Thomas; McKean, Stephen; Pauli, Sabrina. Bézoutians and the
𝔸1-degree. Algebra Number Theory 17 (2023), no. 11, 1985–2012. MR4648854, Zbl
1537.14033, doi: 10.2140/ant.2023.17.1985. 1686

http://www.ams.org/mathscinet-getitem?mr=4162156
http://www.emis.de/cgi-bin/MATH-item?1456.14027
http://dx.doi.org/10.4310/hha.2021.v23.n1.a1
http://www.ams.org/mathscinet-getitem?mr=1045822
http://www.emis.de/cgi-bin/MATH-item?0705.14001
http://dx.doi.org/10.1007/978-3-642-51438-8
http://www.ams.org/mathscinet-getitem?mr=4648854
http://www.emis.de/cgi-bin/MATH-item?1537.14033
http://www.emis.de/cgi-bin/MATH-item?1537.14033
http://dx.doi.org/10.2140/ant.2023.17.1985


1702 GIOSUÈ MURATORE

[BW23a] Bachmann, Tom; Wickelgren, Kirsten. Euler classes: six-functors for-
malism, dualities, integrality and linear subspaces of complete intersections.
J. Inst. Math. Jussieu 22 (2023), no. 2, 681–746. MR4557905, Zbl 1515.14037,
doi: 10.1017/S147474802100027X. 1687

[BW23b] Bachmann, Tom; Wickelgren, Kirsten. On quadratically enriched excess and
residual intersections. J. Reine Angew. Math. 802 (2023), 77–123. MR4635342, Zbl
1539.14041, doi: 10.1515/crelle-2023-0041. 1685

[Caz12] Cazanave, Christophe. Algebraic homotopy classes of rational functions. Ann.
Sci. Éc. Norm. Supér. (4) 45 (2012), no. 4, 511–534. MR3059240, Zbl 1419.14025,
doi: 10.24033/asens.2172. 1686

[CDH23] Cotterill, Ethan; Darago, Ignacio; Han, Changho. Arithmetic inflection
formulae for linear series on hyperelliptic curves. Math. Nachr. 296 (2023), no. 8,
3272–3300. MR4626882, Zbl 1537.14034, doi: 10.1002/mana.202100229. 1693

[CM18] Cieliebak, K.; Mohnke, K.. Punctured holomorphic curves and Lagrangian em-
beddings. Invent. Math. 212 (2018), no. 1, 213–295. MR3773793, Zbl 1396.53105,
doi: 10.1007/s00222-017-0767-8. 1683

[Dar80] Darboux, Gaston. Sur le contact des courbes et des surfaces. Bulletin des Sciences
Mathématiques et Astronomiques 2e série, 4 (1880), no. 1, 348–384. Zbl 2708651.
1685

[DEF+24] Decker, Wolfram; Eder, Christian; Fieker, Claus; Horn, Max; Joswig,
Michael (eds.). The Computer Algebra System OSCAR: Algorithms and Exam-
ples. Algorithms and Computation inMathematics, 32. Springer, 2024. XVI, 455 pp.
ISBN: 978-3-031-62126-0. 1701

[DGGM23] Darwin, Cameron; Galimova, Aygul; Gu, Miao; McKean, Stephen. Conics
meeting eight lines over perfect fields. J. Algebra 631 (2023), 24–45. MR4589636, Zbl
1531.14068, doi: 10.1016/j.jalgebra.2023.04.024. 1685

[EH16] Eisenbud, David; Harris, Joe. 3264 and all that—a second course in
algebraic geometry. Cambridge University Press, Cambridge, 2016. xiv+616
pp. ISBN: 978-1-107-60272-4; 978-1-107-01708-5. MR3617981, Zbl 1341.14001,
doi: 10.1017/CBO9781139062046. 1689

[Eis78] Eisenbud, David. An algebraic approach to the topological degree of a smooth
map. Bull. Amer. Math. Soc. 84 (1978), no. 5, 751–764. MR494226, Zbl 0425.55003,
doi: 10.1090/S0002-9904-1978-14509-1. 1687

[Eis95] Eisenbud, David. Commutative algebra. Graduate Texts in Mathematics, 150.
Springer-Verlag, New York, 1995. xvi+785 pp. ISBN: 0-387-94268-8; 0-387-94269-6.
MR1322960, Zbl 0819.13001, doi: 10.1007/978-1-4612-5350-1. 1686

[EL77] Eisenbud, David; Levine, Harold I.. An algebraic formula for the degree of a𝐶∞

map germ. Ann. of Math. (2) 106 (1977), no. 1, 19–44. MR467800, Zbl 0398.57020,
doi: 10.2307/1971156. 1687

[Gro67] Grothendieck, A.. Éléments de géométrie algébrique. IV. Étude locale des sché-
mas et desmorphismes de schémas IV Inst. Hautes Études Sci. Publ.Math. 24 (1967),
no. 32, 361. MR238860, Zbl 0135.39701. 1693, 1699

[GS] Grayson, Daniel R.; Stillman, Michael E.. Macaulay2, a software system for
research in algebraic geometry. Available at http://www2.macaulay2.com. 1701

[Har77] Hartshorne, Robin. Algebraic Geometry. Grad. Texts Math., 52. Springer-Verlag,
New York-Heidelberg, 1977. xvi+496 pp. ISBN: 0-387-90244-9. MR0463157, Zbl
0367.14001. 1694

[Him77] Himšiašvili, G. N.. The local degree of a smooth mapping. Sakharth. SSR Mecn.
Akad. Moambe 85 (1977), no. 2, 309–312. MR458467, Zbl 0346.55008. 1687

[Huy05] Huybrechts, Daniel. Complex geometry. An introduction. Universitext.
Springer-Verlag, Berlin, 2005. xii+309 pp. ISBN: 3-540-21290-6. MR2093043, Zbl
1055.14001, doi: 10.1007/b137952. 1690

http://www.ams.org/mathscinet-getitem?mr=4557905
http://www.emis.de/cgi-bin/MATH-item?1515.14037
http://dx.doi.org/10.1017/S147474802100027X
http://www.ams.org/mathscinet-getitem?mr=4635342
http://www.emis.de/cgi-bin/MATH-item?1539.14041
http://www.emis.de/cgi-bin/MATH-item?1539.14041
http://dx.doi.org/10.1515/crelle-2023-0041
http://www.ams.org/mathscinet-getitem?mr=3059240
http://www.emis.de/cgi-bin/MATH-item?1419.14025
http://dx.doi.org/10.24033/asens.2172
http://www.ams.org/mathscinet-getitem?mr=4626882
http://www.emis.de/cgi-bin/MATH-item?1537.14034
http://dx.doi.org/10.1002/mana.202100229
http://www.ams.org/mathscinet-getitem?mr=3773793
http://www.emis.de/cgi-bin/MATH-item?1396.53105
http://dx.doi.org/10.1007/s00222-017-0767-8
http://www.emis.de/cgi-bin/MATH-item?2708651
http://www.ams.org/mathscinet-getitem?mr=4589636
http://www.emis.de/cgi-bin/MATH-item?1531.14068
http://www.emis.de/cgi-bin/MATH-item?1531.14068
http://dx.doi.org/10.1016/j.jalgebra.2023.04.024
http://www.ams.org/mathscinet-getitem?mr=3617981
http://www.emis.de/cgi-bin/MATH-item?1341.14001
http://dx.doi.org/10.1017/CBO9781139062046
http://www.ams.org/mathscinet-getitem?mr=494226
http://www.emis.de/cgi-bin/MATH-item?0425.55003
http://dx.doi.org/10.1090/S0002-9904-1978-14509-1
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.emis.de/cgi-bin/MATH-item?0819.13001
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://www.ams.org/mathscinet-getitem?mr=467800
http://www.emis.de/cgi-bin/MATH-item?0398.57020
http://dx.doi.org/10.2307/1971156
http://www.ams.org/mathscinet-getitem?mr=238860
http://www.emis.de/cgi-bin/MATH-item?0135.39701
http://www2.macaulay2.com
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.emis.de/cgi-bin/MATH-item?0367.14001
http://www.emis.de/cgi-bin/MATH-item?0367.14001
http://www.ams.org/mathscinet-getitem?mr=458467
http://www.emis.de/cgi-bin/MATH-item?0346.55008
http://www.ams.org/mathscinet-getitem?mr=2093043
http://www.emis.de/cgi-bin/MATH-item?1055.14001
http://www.emis.de/cgi-bin/MATH-item?1055.14001
http://dx.doi.org/10.1007/b137952


AN ARITHMETIC COUNT OF OSCULATING LINES 1703

[KP23] Hyun Jong Kim; Sun Woo Park. Global 𝔸1 degrees of covering maps between
modular curves. arXiv:2106.10586. 1700

[KW19] Kass, Jesse Leo; Wickelgren, Kirsten. The class of Eisenbud-Khimshiashvili-
Levine is the local 𝐀1-Brouwer degree. Duke Math. J. 168 (2019), no. 3, 429–469.
MR3909901, Zbl 1412.14014, doi: 10.1215/00127094-2018-0046. 1687

[KW20] Kass, Jesse Leo; Wickelgren, Kirsten. A classical proof that the algebraic ho-
motopy class of a rational function is the residue pairing. Linear Algebra Appl. 595
(2020), 157–181. MR4073493, Zbl 1437.14030, doi: 10.1016/j.laa.2019.12.041. 1698

[KW21] Kass, Jesse Leo; Wickelgren, Kirsten. An arithmetic count of the lines on a
smooth cubic surface. Compos. Math. 157 (2021), no. 4, 677–709. MR4247570, Zbl
1477.14085, doi: 10.1112/s0010437x20007691. 1684, 1686, 1687

[Lee13] Lee, John M.. Introduction to smooth manifolds. Graduate Texts in Mathematics,
218. Springer, New York, 2013. xvi+708 pp. ISBN: 978-1-4419-9981-8. MR2954043,
Zbl 1258.53002, doi: 10.1007/978-1-4419-9982-5. 1686

[LP18] Luza, Maycol Falla; Pereira, Jorge Vitório. Extactic divisors for webs
and lines on projective surfaces. Michigan Math. J. 67 (2018), no. 4, 743–756.
MR3877435, Zbl 1421.53019, doi: 10.1307/mmj/1531447376. 1683

[LV21] Larson, Hannah; Vogt, Isabel. An enriched count of the bitangents to a smooth
plane quartic curve. Res. Math. Sci. 8 (2021), no. 2, 21. MR4253146, Zbl 1471.14070,
doi: 10.1007/s40687-021-00260-9. 1688, 1701

[McK21] McKean, Stephen. An arithmetic enrichment of Bézout’s Theorem. Math. Ann.
379 (2021), no. 1-2, 633–660. MR4211099, Zbl 1467.14126, doi: 10.1007/s00208-020-
02120-3. 1685, 1688, 1690, 1692, 1696, 1699, 1700

[McK22] McKean, Stephen. Circles of Apollonius two ways. arXiv:2210.13288. 1685
[Mor06] Morel, Fabien.𝔸1-algebraic topology. International Congress of Mathematicians,

vol. II. Eur. Math. Soc., Zürich, 2006. 1035–1059 pp. ISBN: 978-3-03719-022-7.
MR2275634, Zbl 1097.14014. 1686

[Mor12] Morel, Fabien. 𝔸1-algebraic topology over a field. Lecture Notes in Mathematics,
2052. Springer, Heidelberg, 2012. x+259 pp. ISBN: 978-3-642-29513-3. MR2934577,
Zbl 1263.14003, doi: 10.1007/978-3-642-29514-0. 1686

[MS21] McDuff, Dusa; Siegel, Kyler. Counting curves with local tangency con-
straints. J. Topol. 14 (2021), no. 4, 1176–1242. MR4332489, Zbl 7738192,
doi: 10.1112/topo.12204. 1683

[MS23] Grigory Mikhalkin; Kyler Siegel. Ellipsoidal superpotentials and stationary
descendants. arXiv:2307.13252. 1685

[Muk03] Mukai, Shigeru. An introduction to invariants and moduli. Cambridge Studies in
Advanced Mathematics, 81. Cambridge University Press, Cambridge, 2003. xx+503
pp. ISBN: 0-521-80906-1. MR2004218, Zbl 1033.14008. 1688

[Mur21] Muratore, Giosuè. A recursive formula for osculating curves.Ark.Mat. 59 (2021),
no. 1, 195–211. MR4256011, Zbl 1483.14093, doi: 10.4310/arkiv.2021.v59.n1.a7.
1683, 1684, 1685, 1699

[MV99] Morel, Fabien; Voevodsky, Vladimir. 𝐀𝟏-homotopy theory of schemes. Inst.
Hautes Études Sci. Publ. Math. 90 (1999), 45–143. MR1813224, Zbl 0983.14007,
doi: 10.1007/BF02698831. 1686

[MVW06] Mazza, Carlo; Voevodsky, Vladimir; Weibel, Charles. Lecture notes onmo-
tivic cohomology. Clay Mathematics Monographs, 2. American Mathematical Soci-
ety, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. xiv+216 pp.
ISBN: 978-0-8218-3847-1; 0-8218-3847-4. MR2242284, Zbl 1115.14010. 1685

[Pau22] Pauli, Sabrina. Quadratic types and the dynamic Euler number of lines on a
quintic threefold. Adv. Math. 405 (2022), Paper No. 108508, 37. MR4437612, Zbl
1495.14083, doi: 10.1016/j.aim.2022.108508. 1684

http://arXiv.org/abs/2106.10586
http://www.ams.org/mathscinet-getitem?mr=3909901
http://www.emis.de/cgi-bin/MATH-item?1412.14014
http://dx.doi.org/10.1215/00127094-2018-0046
http://www.ams.org/mathscinet-getitem?mr=4073493
http://www.emis.de/cgi-bin/MATH-item?1437.14030
http://dx.doi.org/10.1016/j.laa.2019.12.041
http://www.ams.org/mathscinet-getitem?mr=4247570
http://www.emis.de/cgi-bin/MATH-item?1477.14085
http://www.emis.de/cgi-bin/MATH-item?1477.14085
http://dx.doi.org/10.1112/s0010437x20007691
http://www.ams.org/mathscinet-getitem?mr=2954043
http://www.emis.de/cgi-bin/MATH-item?1258.53002
http://dx.doi.org/10.1007/978-1-4419-9982-5
http://www.ams.org/mathscinet-getitem?mr=3877435
http://www.emis.de/cgi-bin/MATH-item?1421.53019
http://dx.doi.org/10.1307/mmj/1531447376
http://www.ams.org/mathscinet-getitem?mr=4253146
http://www.emis.de/cgi-bin/MATH-item?1471.14070
http://dx.doi.org/10.1007/s40687-021-00260-9
http://www.ams.org/mathscinet-getitem?mr=4211099
http://www.emis.de/cgi-bin/MATH-item?1467.14126
http://dx.doi.org/10.1007/s00208-020-02120-3
http://dx.doi.org/10.1007/s00208-020-02120-3
http://arXiv.org/abs/2210.13288
http://www.ams.org/mathscinet-getitem?mr=2275634
http://www.emis.de/cgi-bin/MATH-item?1097.14014
http://www.ams.org/mathscinet-getitem?mr=2934577
http://www.emis.de/cgi-bin/MATH-item?1263.14003
http://dx.doi.org/10.1007/978-3-642-29514-0
http://www.ams.org/mathscinet-getitem?mr=4332489
http://www.emis.de/cgi-bin/MATH-item?7738192
http://dx.doi.org/10.1112/topo.12204
http://arXiv.org/abs/2307.13252
http://www.ams.org/mathscinet-getitem?mr=2004218
http://www.emis.de/cgi-bin/MATH-item?1033.14008
http://www.ams.org/mathscinet-getitem?mr=4256011
http://www.emis.de/cgi-bin/MATH-item?1483.14093
http://dx.doi.org/10.4310/arkiv.2021.v59.n1.a7
http://www.ams.org/mathscinet-getitem?mr=1813224
http://www.emis.de/cgi-bin/MATH-item?0983.14007
http://dx.doi.org/10.1007/BF02698831
http://www.ams.org/mathscinet-getitem?mr=2242284
http://www.emis.de/cgi-bin/MATH-item?1115.14010
http://www.ams.org/mathscinet-getitem?mr=4437612
http://www.emis.de/cgi-bin/MATH-item?1495.14083
http://www.emis.de/cgi-bin/MATH-item?1495.14083
http://dx.doi.org/10.1016/j.aim.2022.108508


1704 GIOSUÈ MURATORE

[Sal65] Salmon, George. A treatise on the analytic geometry of three dimensions. Fifth
edition. Edited by Reginald A. P. Rogers, vol. II. Chelsea Publishing Co., New York,
1965. xvi+334 pp.. MR0200123, Zbl 2630561. 1683

[SS75] Scheja, Günter; Storch, Uwe. Über Spurfunktionen bei vollständigen Durch-
schnitten. J. Reine Angew. Math. 278/279 (1975), 174–190. MR393056, Zbl
0316.13003. 1687

[SW21] Srinivasan, Padmavathi; Wickelgren, Kirsten. An arithmetic count of the
lines meeting four lines in 𝐏𝟑. Trans. Amer. Math. Soc. 374 (2021), no. 5, 3427–3451.
MR4237952, Zbl 1471.14110, doi: 10.1090/tran/8307. 1684, 1699

[Vai81] Vainsencher, Israel. Counting divisors with prescribed singularities. Trans.
Amer. Math. Soc. 267 (1981), no. 2, 399–422. MR626480, Zbl 0475.14047,
doi: 10.2307/1998661. 1692

[Voj07] Vojta, Paul. Jets via Hasse–Schmidt derivations. Diophantine geometry, CRM Se-
ries, 4. Ed. Norm., Pisa, 2007. 335–361 pp. ISBN: 978-88-7642-206-5. MR2349665,
Zbl 1194.13027. 1693

[Wei09] Weintraub, Steven H.. Galois theory. Universitext. Springer, New York,
2009. xiv+211 pp. ISBN: 978-0-387-87574-3. MR2459247, Zbl 1195.12001,
doi: 10.1007/978-0-387-87575-0. 1700

(Giosuè Muratore) CMAFcIO, Faculdade de Ciências da ULisboa, Campo Grande 1749-
016 Lisboa, Portugal
muratore.g.e@gmail.com

This paper is available via http://nyjm.albany.edu/j/2024/30-72.html.

http://www.ams.org/mathscinet-getitem?mr=0200123
http://www.emis.de/cgi-bin/MATH-item?2630561
http://www.ams.org/mathscinet-getitem?mr=393056
http://www.emis.de/cgi-bin/MATH-item?0316.13003
http://www.emis.de/cgi-bin/MATH-item?0316.13003
http://www.ams.org/mathscinet-getitem?mr=4237952
http://www.emis.de/cgi-bin/MATH-item?1471.14110
http://dx.doi.org/10.1090/tran/8307
http://www.ams.org/mathscinet-getitem?mr=626480
http://www.emis.de/cgi-bin/MATH-item?0475.14047
http://dx.doi.org/10.2307/1998661
http://www.ams.org/mathscinet-getitem?mr=2349665
http://www.emis.de/cgi-bin/MATH-item?1194.13027
http://www.ams.org/mathscinet-getitem?mr=2459247
http://www.emis.de/cgi-bin/MATH-item?1195.12001
http://dx.doi.org/10.1007/978-0-387-87575-0
mailto:muratore.g.e@gmail.com
http://nyjm.albany.edu/j/2024/30-72.html

	1. Introduction
	2. Background in A1-enumerative geometry
	3. Results on the flag variety
	4. Osculating lines
	5. Relative orientation
	6. Euler Class
	References

