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Hopf-Galois structures on extensions of
degree 𝒑𝟐𝒒 and skew braces of order 𝒑𝟐𝒒: the
elementary abelian Sylow 𝒑-subgroup case

E. Campedel, A. Caranti and I. Del Corso

Abstract. Let 𝑝, 𝑞 be distinct primes, with 𝑝 > 2. In a previous paper
we classified the Hopf-Galois structures on Galois extensions of degree 𝑝2𝑞,
when the Sylow𝑝-subgroups of theGalois group are cyclic. This is equivalent
to classifying the skew braces of order 𝑝2𝑞, for which the Sylow 𝑝-subgroups
of the multiplicative group are cyclic. In this paper we complete the classi-
fication by dealing with the case when the Sylow 𝑝-subgroups of the Galois
group are elementary abelian.

According to Greither and Pareigis, and Byott, we will do this by classi-
fying, for the groups (𝐺, ⋅) of order 𝑝2𝑞, the regular subgroups of their holo-
morphs whose Sylow 𝑝-subgroups are elementary abelian.

We rely on the use of certain gamma functions 𝛾 ∶ 𝐺 → Aut(𝐺). These
functions are in one-to-one correspondence with the regular subgroups of
the holomorph of𝐺, and are characterised by the functional equation 𝛾(𝑔𝛾(ℎ) ⋅
ℎ) = 𝛾(𝑔)𝛾(ℎ), for 𝑔, ℎ ∈ 𝐺. Wedevelopmethods to dealwith these functions,
with the aim of making their enumeration easier and more conceptual.
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1. Introduction
1.1. The general problem, and the classical approach. Let 𝐿∕𝐾 be a finite
Galois field extension, and let Γ = Gal(𝐿∕𝐾). The group algebra 𝐾[Γ] is a
𝐾-Hopf algebra, and its natural action on 𝐿 endows 𝐿∕𝐾 with a Hopf–Galois
structure. In general this is not the only Hopf–Galois structure on 𝐿∕𝐾, and
the study of the Hopf–Galois structures other than the classical one is relevant,
for example in the context of algebraic number theory where different Hopf–
Galois structures may behave differently at integral level (see Child’s book [10]
for an overview and [5] for a specific result).
Thismotivated the study of theHopf-Galois structures on a finite Galois field

extension 𝐿∕𝐾 and their classification.
On the other hand, the celebrated result by Greither and Pareigis [12, The-

orem 2.1] showed that all Hopf–Galois structures on 𝐿∕𝐾 can be described in
a purely group theoretic way. In the reformulation due to Byott [4] this result
states that to each Hopf–Galois structure on 𝐿∕𝐾 one can associate a group 𝐺,
with the same cardinality as Γ, and such that the holomorph Hol(𝐺), regarded
as a subgroup of Perm(𝐺), contains a regular subgroup isomorphic to Γ. Wewill
refer to the isomorphism class of𝐺 as the type of the corrispondingHopf–Galois
structures.
As first noticed by Bachiller in [3], and clearly explained in the appendix to

[18] by Byott and Vendramin, classifying the regular subgroups of Hol(𝐺) is
equivalent to determining the operations “◦” on 𝐺 such that (𝐺, ⋅, ◦) is a (right)
skew brace (in the relevant literature it is more common to use left skew braces;
we have translated the statements in the literature from left to right). Therefore,
the Hopf–Galois structures on an extension with Galois group isomorphic to a
group Γ correspond to the skew braces (𝐺, ⋅, ◦) with (𝐺, ◦) = Γ; see also the
recent work [17]. This has further motivated the study of this context, which
in recent years has been deeply investigated.

Definition 1.1. Let Γ, 𝐺 = (𝐺, ⋅) be finite groups with |𝐺| = |Γ|. We define
the following numbers.

(1) 𝑒(Γ, 𝐺), the number of Hopf-Galois structures of type 𝐺 on a Galois ex-
tension with group Γ,

(2) 𝑒′(Γ, 𝐺), the number of regular subgroups of Hol(𝐺) isomorphic to Γ,
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(3) 𝑒′′(Γ, 𝐺), the total number of (right) skew braces (𝐺, ⋅, ◦) such that Γ ≅
(𝐺, ◦).

(4) 𝑓′(Γ, 𝐺), the number of classes of regular subgroups of Hol(𝐺) isomor-
phic to Γ, under conjugation by elements of Aut(𝐺),

(5) 𝑓′′(Γ, 𝐺), the number of isomorphism classes of skew braces (𝐺, ⋅, ◦)
such that Γ ≅ (𝐺, ◦).

Remark. Recall that, given a group (𝐺, ⋅), by the (total) number of skew braces
on (𝐺, ⋅) we mean the number of distinct operations “◦” on the set 𝐺 such that
(𝐺, ⋅, ◦) is a skew brace.

Theorem 1.2. Let 𝐿∕𝐾 be a finite Galois field extension with Galois group Γ. For
any group 𝐺 = (𝐺, ⋅) with |𝐺| = |Γ|, we have

[13, Theorem 4.2]: 𝑒′(Γ, 𝐺) = 𝑒′′(Γ, 𝐺);
[18, Proposition A.3]: 𝑓′(Γ, 𝐺) = 𝑓′′(Γ, 𝐺).

The number 𝑒(Γ, 𝐺) is given by
[4, Corollary p. 3220]:

𝑒(Γ, 𝐺) =
|||Aut(Γ)|||
|||Aut(𝐺)|||

𝑒′(Γ, 𝐺). (1.1)

Moreover 𝑒(Γ), the total number ofHopf-Galois structures on𝐿∕𝐾, is given
by
∑

𝐺 𝑒(Γ, 𝐺) where the sum is over all isomorphism types 𝐺 of groups of
order |Γ|.

In the paper [7], to the introduction of which we refer for more details on the
literature, we classified theHopf-Galois structures on a Galois extension 𝐿∕𝐾 of
order 𝑝2𝑞, where 𝑝, 𝑞 are distinct primes, 𝑝 is odd, and the Sylow 𝑝-subgroups
of Γ = Gal(𝐿∕𝐾) are cyclic. In the same paper we also computed, for (𝐺, ⋅) a
group of order 𝑝2𝑞 with cyclic Sylow 𝑝-subgroups, the number of skew braces
(𝐺, ⋅, ◦), that is, the number of group operations “◦” on the set 𝐺, such that
(𝐺, ⋅, ◦) is a skew brace. We also computed the number of isomorphism classes
of such skew braces, together with the cardinality of each such class.
Acri and Bonatto in [1, 2], using a different method, determine the number

of isomorphism classes of all skew braces (𝐺, ⋅, ◦) of order 𝑝2𝑞; for the case of
groups (𝐺, ⋅) with cyclic Sylow 𝑝-subgroups, their results coincide with ours.
The classification of [7] has been extended to all groups of order 𝑝2𝑞 in the

PhD thesis of the first author [6]. The present paper completes the work of [7],
by determining the classification of Hopf–Galois structures on a Galois exten-
sion 𝐿∕𝐾 of order 𝑝2𝑞, where 𝑝, 𝑞 are distinct primes, in the remaining cases
where 𝑝 > 2 and the Sylow 𝑝-subgroups of Γ = Gal(𝐿∕𝐾) are elementary
abelian. Our methods work also in the case 𝑝 = 2 (see [6]), but we do not in-
clude this case here, since the classification in the case 4𝑞 has already appeared
in [15, 18].
In [7, Theorem 3.3 and Corollary 3.4] we have shown that for 𝑝 > 2 a Ga-

lois field extension 𝐿∕𝐾 of order 𝑝2𝑞 with Galois group Γ admits Hopf–Galois
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structures of type 𝐺 only for those 𝐺 such that 𝐺 and Γ have isomorphic Sylow
𝑝-subgroups.
As in [7], we explicitly determine the number of Hopf–Galois structures on

𝐿∕𝐾 for each type, showing in particular that each 𝐺 with elementary abelian
Sylow 𝑝-subgroups defines some structure.
We accomplish this as follows. For any given group 𝐺 = (𝐺, ⋅) of order 𝑝2𝑞,

with 𝑝 > 2, and for each group Γ of order 𝑝2𝑞 with elementary abelian Sylow
𝑝-subgroups, we determine the following numbers.

(1) The total number of regular subgroups ofHol(𝐺) isomorphic to Γ (The-
orem 1.6).
This is the same, according to Theorem 1.2 [13, Theorem 4.2], as the
total number of (right) skew braces (𝐺, ⋅, ◦) such that Γ ≅ (𝐺, ◦).

(2) The number of isomorphism classes of (right) skew braces (𝐺, ⋅, ◦) such
that Γ ≅ (𝐺, ◦) (Theorem 1.7).
This is the same, according to Theorem 1.2 [18, Proposition A.3], as the
number of conjugacy classes inHol(𝐺) of regular subgroups isomorphic
to Γ; our numbers here coincide with the numbers found by Acri and
Bonatto in [2].
Additionally, in Theorem 1.7 we also determine the length of each such
conjugacy class.

(3) The number of Hopf–Galois structures of type 𝐺 on a Galois extension
with Galois group isomorphic to Γ (Theorem 1.5).

Remark 1.3. Frattini’s argument states that if a group 𝑋 acts on a set, and 𝑁 is
a transitive subgroup of 𝑋, then 𝑋 = 𝑁𝑆, where 𝑆 is any one-point stabiliser. In
our situation, a regular subgroup𝑁 ≤ Hol(𝐺) = 𝑋 acts transitively on 𝐺, so that
Hol(𝐺) = 𝑁Aut(𝐺), as Aut(𝐺) is the stabiliser of 1. It follows that the conjugacy
class of𝑁 inHol(𝐺) is the same as the orbit of𝑁 under the action of Aut(𝐺).
1.2. The methods. As in our previous paper [7], we follow Byott’s approach,
that is, for each group𝐺 = (𝐺, ⋅) of order 𝑝2𝑞 with elementary abelian Sylow 𝑝-
subgroups, we determine the regular subgroups ofHol(𝐺) isomorphic to Γ. As
we noted above, this is in turn equivalent to determining the right skew braces
(𝐺, ⋅, ◦) such that (𝐺, ◦) ≅ Γ.
Ourmethod relies on the use of the alternative brace operation ◦ on𝐺mainly

through the use of the function
𝛾 ∶ 𝐺 → Aut(𝐺)

𝑔 ↦ (𝑥 ↦ (𝑥◦𝑔) ⋅ 𝑔−1),
which is characterised by the functional equation

𝛾(𝑔𝛾(ℎ) ⋅ ℎ) = 𝛾(𝑔)𝛾(ℎ). (1.2)
(See [7, Theorem 2.2] and the ensuing discussion for the details.) The functions
𝛾 satisfying (1.2) are called gamma functions (GF) and we will refer to (1.2) as
the gamma functional equation (GFE). The GF’s are in one-to-one correspon-
dence with the regular subgroups of Hol(𝐺), and occur naturally in the theory
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of skew braces. It follows that to determine the number 𝑒′(Γ, 𝐺) defined in Def-
inition 1.1 we can count the number of functions 𝛾 ∶ 𝐺 → Aut(𝐺) verifying
(1.2) and such that, for the operation ◦ defined on 𝐺 by

𝑔◦ℎ = 𝑔𝛾(ℎ)ℎ,

we have (𝐺, ◦) ≅ Γ.
The classification of the groups of order 𝑝2𝑞 is known after Hölder [14];

we have recorded the classification of these groups and of their automorphism
groups in [8].
To enumerate the gamma functions we use the general results listed in Sec-

tion 2 below; some of these had been developed in [7]. In the course of our
discussion, we will appeal to some ad-hoc arguments; indeed, counting the
gamma functions in the case of groupswith elementary abelian Sylow𝑝-subgroups
presents several additional difficulties compared to the cyclic case.
The first is due to the sheer number of groups involved. Following the nota-

tion in Section 3, we distinguish the groups into types indexed by the numbers
5, 6, 7, 8, 9, 10 and 11 (see Table 3). Each type corresponds to an isomorphism
class of groups of order 𝑝2𝑞, except for type 8, which correspond to 𝑞−3

2
isomor-

phism classes 𝐺𝑘, where 𝑘 ∈ ℤ∕𝑞ℤ, 𝑘 ≠ 0,±1 and 𝐺𝑘 ≃ 𝐺𝑘−1 .
Our analysis is further complicated by the difficulty of proving the existence

of a Sylow 𝑞-subgroup which is invariant under its image under 𝛾 (see Subsec-
tions 8.6, 9.5, 10.5, 10.6), and by having to deal with the case when 𝛾(𝐺) is not
contained in the group of inner automorphisms of 𝐺 (e.g. see Section 10).

We now sketch the main tools and arguments we will use in counting the
gamma functions.
Wemakeuse of an argument of duality, as introduced byA.Koch andP.J. Tru-

man in [16], which we employ in the form spelled out in [7]. Each gamma
function 𝛾 can be paired with a gamma function �̃�, which defines Hopf-Galois
structures of the same type ([7, Subsection 2.8]). Under suitable assumptions,
we can use this pairing to halve the number of GF we have to consider. More-
over, in some circumstances, the duality argument allows us to choose a GF
with a kernel that is more suitable for calculations (Lemma 2.7 and Proposi-
tion 2.9).
The theory developed in Section 2 offers somemethods to build gamma func-

tions on 𝐺 piecewise. The first tool is Proposition 2.6, which is sort of a ho-
momorphism theorem for gamma functions. Under suitable assumptions, it
gives a one-to-one correspondence between certain gamma functions defined
on 𝐺 and the (relatives) gamma functions defined on a quotient of 𝐺, which
is smaller and then easier to investigate. We refer to this method as lifting and
restriction.
A further tool is Proposition 2.8 (gluing), which is a generalisation of Propo-

sition 2.6, and describes a way to construct GF’s on 𝐺, when 𝐺 is of the form
𝐺 = 𝐴𝐵, for 𝐴, 𝐵 ≤ 𝐺, starting from a relative gamma function defined on 𝐴
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(see Definition 2.1) and a relative gamma function defined on 𝐵.

Let 𝑟 ∈ {𝑝, 𝑞}. To apply the tools above it will be useful to know when there
exists a Sylow 𝑟-subgroup𝐻 which is 𝛾(𝐻)-invariant (invariant for short).
In [7, Theorem 3.3] we prove that for 𝐺 a group of order 𝑝2𝑞 and 𝛾 a GF on

𝐺, there always exists an invariant Sylow 𝑝-subgroup.
If 𝐺 is a group of order 𝑝2𝑞, then either 𝐺 has a unique Sylow 𝑞-subgroup or

it has 𝑝𝑓 Sylow 𝑞-subgroups, where 𝑓 = 1, 2.
In the first case, since the unique Sylow 𝑞-subgroup 𝐵 is characteristic, it is

invariant.
In the second case, there are 𝑝 Sylow 𝑞-subgroups when 𝐺 is of type 6, and

𝑝2 when 𝐺 is of type 7, 8, 9, 10 and also 4 (for the last one we refer to [8],[7]).
Let 𝛾 be a GF on 𝐺, and consider the action of 𝛾(𝐺) on the set 𝒬 of the Sylow

𝑞-subgroups of 𝐺. If 𝑝2 ∣ |||ker(𝛾)|||, then |||𝛾(𝐺)||| = 1 or 𝑞, so that there exists at
least one orbit of length 1, namely there exists 𝐵 ∈ 𝒬 which is 𝛾(𝐺)-invariant.
Moreover, if 𝑞 ∣ |||ker(𝛾)|||, then there exists a Sylow 𝑞-subgroup 𝐵 contained

in ker(𝛾), therefore it is 𝛾(𝐵)-invariant.
In the remaining cases, namely when |||ker(𝛾)||| = 1 or 𝑝, we will prove for

some specific type of group𝐺 that we can find such a Sylow 𝑞-subgroup (see 6.2,
7.1, 8.7, 10.6, and 11.4). (For the type 4 see [7, Subsection 4.4]).
Therefore, we obtain the following.

Proposition 1.4. If 𝐺 is a group of order 𝑝2𝑞 and 𝛾 is a GF on 𝐺, then there al-
ways exist both an invariant Sylow𝑝-subgroupandan invariant Sylow𝑞-subgroup
of 𝐺.

1.3. Hopf-Galois structures of order 𝒑𝟐𝒒.

Theorem 1.5. Let 𝐿∕𝐾 be a Galois field extension of order 𝑝2𝑞, where 𝑝 and 𝑞
are two distinct primes with 𝑝 > 2, and let Γ = Gal(𝐿∕𝐾).
Let 𝐺 be a group of order 𝑝2𝑞.
If the Sylow𝑝-subgroups of𝐺 andΓ are not isomorphic, then there are noHopf-

Galois structures of type 𝐺 on 𝐿∕𝐾.
If the Sylow 𝑝-subgroups of Γ and 𝐺 are elementary abelian, then the numbers

𝑒(Γ, 𝐺) ofHopf-Galois structures of type𝐺 on𝐿∕𝐾 are given in the following tables.

(i) For 𝑞 ∤ 𝑝2 − 1:

Γ
𝐺 5 11

5 𝑝2 2𝑝(𝑝2 − 1)
11 𝑝2𝑞 2𝑝(1 + 𝑞𝑝2 − 2𝑞)

where the upper left sub-tables of sizes 1 × 1 and 2 × 2 give respectively the
cases 𝑝 ∤ 𝑞 − 1 and 𝑝 ∣ 𝑞 − 1.

(ii) For 𝑞 ∤ 𝑝 − 1 and 𝑞 ∣ 𝑝 + 1:
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Γ
𝐺 5 10

5 𝑝2 𝑝(𝑝 − 1)(𝑞 − 1)
10 𝑝2 2 + 2𝑝2(𝑞 − 3) − 𝑝3 + 𝑝4

(iii) For 𝑞 ∣ 𝑝 − 1:
If 𝑞 = 2,

Γ
𝐺 5 6 7

5 𝑝2 2𝑝(𝑝 + 1) 𝑝(3𝑝 + 1)
6 𝑝2 2𝑝(𝑝 + 1) 𝑝(3𝑝 + 1)
7 𝑝2 2𝑝2(𝑝 + 1) 2 + 𝑝(𝑝 + 1)(2𝑝 − 1)

If 𝑞 = 3,

Γ
𝐺 5 6 7 9

5 𝑝2 4𝑝(𝑝 + 1) 2𝑝(3𝑝 + 1) 4𝑝(𝑝 + 1)
6 𝑝 2𝑝(𝑝 + 3) 4𝑝(𝑝 + 1) 𝑝(3𝑝 + 5)
7 𝑝2 2𝑝2(𝑝 + 1)2 2 + 𝑝2(2𝑝2 + 3𝑝 + 2) 𝑝(𝑝 + 1)3
9 𝑝2(2𝑝 − 1) 4𝑝(𝑝2 + 1) 2(2𝑝3 + 3𝑝2 − 2𝑝 + 1) 2 + 2𝑝 + 𝑝3(𝑝 + 3)

If 𝑞 > 3,

Γ
𝐺 5 6

5 𝑝2 2𝑝(𝑝 + 1)(𝑞 − 1)
6 𝑝 2𝑝(𝑝 + 2𝑞 − 3)
7 𝑝2 2𝑝2(𝑝 + 1)(𝑝𝑞 − 2𝑝 + 1)
8, 𝐺2 𝑝3 4𝑝(𝑝2 + 𝑝𝑞 − 3𝑝 + 1)
8, 𝐺𝑘 ≄ 𝐺2 𝑝2 4𝑝(𝑝2 + 𝑝𝑞 − 3𝑝 + 1)
9 𝑝2 4𝑝(𝑝2 + 𝑝𝑞 − 3𝑝 + 1)

Γ
𝐺 7 9

5 𝑝(3𝑝 + 1)(𝑞 − 1) 2𝑝(𝑝 + 1)(𝑞 − 1)
6 4(𝑝2 + 𝑝𝑞 − 2𝑝) 𝑝(4𝑞 + 3𝑝 − 7)
7 2 + 𝑝2(2𝑝2 + 𝑝𝑞 + 2𝑞 − 4) 𝑝(𝑝 + 1)(𝑝2(2𝑞 − 5) + 2𝑝 + 1)
8, 𝐺2 2𝑝(𝑝2𝑞 − 4𝑝 + 𝑝𝑞 + 2) 𝑝(𝑝3 + 3𝑝2 − 14𝑝 + 4𝑝𝑞 − 6)
8, 𝐺𝑘 ≄ 𝐺2 4𝑝(2𝑝2 − 5𝑝 + 𝑝𝑞 + 2) 𝑝(𝑝3 + 5𝑝2 − 18𝑝 + 4𝑝𝑞 + 8)
9 2(4𝑝3 − 9𝑝2 + 2𝑝2𝑞 + 2𝑝 + 1) 2 + 4𝑝 + 𝑝2(𝑝2 + 5𝑝 + 4𝑞 − 16)

Γ
𝐺8 𝐺 ≄ 𝐺±2 𝐺 ≃ 𝐺±2, 𝑞 > 5 𝐺 ≃ 𝐺2, 𝑞 = 5
5 4𝑝(𝑝 + 1)(𝑞 − 1) 4𝑝(𝑝 + 1)(𝑞 − 1) 16𝑝(𝑝 + 1)
6 8𝑝(𝑞 + 𝑝 − 2) 8𝑝(𝑞 + 𝑝 − 2) 8𝑝(𝑝 + 3)
7 4𝑝2(𝑝 + 1)(𝑝𝑞 − 3𝑝 + 2) 4𝑝2(𝑝 + 1)(𝑝𝑞 − 3𝑝 + 2) 8𝑝2(𝑝 + 1)2
8 Table 1 Table 2 4(1 + 𝑝 + 3𝑝2(𝑝 + 1))
9 8𝑝(2𝑝2 + 𝑝𝑞 − 5𝑝 + 2)) 4𝑝(3𝑝2 + 2𝑝𝑞 − 8𝑝 + 3) 16𝑝(2𝑝3 − 2𝑝 + 𝑝 + 1)
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Table 1. 𝐺 and Γ of type 8, 𝐺 ≃ 𝐺𝑘 ≄ 𝐺±2
Γ if either 𝑘 or 𝑘−1 is a solution of 𝑥2 − 𝑥 − 1 = 0:

𝐺𝑘, 𝐺1−𝑘 2(1 + 5𝑝 + 4𝑝2𝑞 − 17𝑝2 + 7𝑝3)
𝐺1+𝑘 4(3𝑝 + 2𝑝2𝑞 − 8𝑝2 + 3𝑝3)
𝐺𝑠 ≄ 𝐺𝑘, 𝐺1+𝑘, 𝐺1−𝑘 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

Γ if 𝑘 and 𝑘−1 are the solutions of 𝑥2 + 𝑥 + 1 = 0:

𝐺𝑘 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)
𝐺1−𝑘, 𝐺1−𝑘−1 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)
𝐺1+𝑘 2(1 + 4𝑝 + 4𝑝2𝑞 − 15𝑝2 + 6𝑝3)
𝐺𝑠 ≄ 𝐺𝑘, 𝐺1+𝑘, 𝐺1−𝑘, 𝐺1−𝑘−1 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

Γ if 𝑘 and 𝑘−1 are the solutions of 𝑥2 − 𝑥 + 1 = 0:

𝐺−𝑘 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)
𝐺1+𝑘, 𝐺1+𝑘−1 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)
𝐺1−𝑘 2(1 + 4𝑝 + 4𝑝2𝑞 − 15𝑝2 + 6𝑝3)
𝐺𝑠 ≄ 𝐺−𝑘, 𝐺1−𝑘, 𝐺1+𝑘, 𝐺1+𝑘−1 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

Γ if 𝑘 and 𝑘−1 are the solutions of 𝑥2 + 1 = 0:

𝐺𝑘 4(1 + 2𝑝 + 2𝑝2𝑞 − 9𝑝2 + 4𝑝3)
𝐺1+𝑘, 𝐺1−𝑘 4(3𝑝 + 2𝑝2𝑞 − 8𝑝2 + 3𝑝3)
𝐺𝑠 ≄ 𝐺𝑘, 𝐺1+𝑘, 𝐺1−𝑘 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

Γ if 𝑘2 ≠ ±𝑘 ± 1,−1:

𝐺𝑘, 𝐺−𝑘 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)
𝐺1+𝑘, 𝐺1+𝑘−1 , 𝐺1−𝑘, 𝐺1−𝑘−1 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)
𝐺𝑠 ≄ 𝐺±𝑘, 𝐺1±𝑘, 𝐺1±𝑘−1 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

Table 2. 𝐺 and Γ of type 8, 𝐺 ≃ 𝐺𝑘 for 𝑘 = ±2,
Γ if 𝑞 > 7:
𝐺2 2(1 + 5𝑝 + 4𝑝2𝑞 − 17𝑝2 + 7𝑝3)
𝐺3, 𝐺 3

2
2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)

𝐺−2 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)
𝐺𝑠 ≄ 𝐺2, 𝐺3, 𝐺 3

2
, 𝐺−2 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

Γ if 𝑞 = 7:
𝐺2 2(1 + 5𝑝 + 11𝑝2 + 7𝑝3)
𝐺3 2(1 + 4𝑝 + 13𝑝2 + 6𝑝3)

Theorem 1.6. Let 𝐺 = (𝐺, ⋅) be a group of order 𝑝2𝑞, where 𝑝, 𝑞 are distinct
primes, with 𝑝 > 2.
If Γ is a group of order 𝑝2𝑞 and the Sylow 𝑝-subgroups of 𝐺 and Γ are not

isomorphic, then no regular subgroup ofHol(𝐺) is isomorphic to Γ.
If 𝐺 and Γ have elementary abelian Sylow 𝑝-subgroups, then the following ta-

bles give equivalently
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(1) the number 𝑒′(Γ, 𝐺) of regular subgroups ofHol(𝐺) isomorphic to Γ;
(2) the number of (right) skew braces (𝐺, ⋅, ◦) such that Γ ≅ (𝐺, ◦).

(i) For 𝑞 ∤ 𝑝2 − 1:

Γ
𝐺 5 11

5 𝑝2 2𝑝𝑞
11 𝑝2(𝑝2 − 1) 2𝑝(1 + 𝑞𝑝2 − 2𝑞)

where the upper left sub-tables of sizes 1 × 1 and 2 × 2 give respectively the
cases 𝑝 ∤ 𝑞 − 1 and 𝑝 ∣ 𝑞 − 1.

(ii) For 𝑞 ∤ 𝑝 − 1 and 𝑞 ∣ 𝑝 + 1:

Γ
𝐺 5 10

5 𝑝2 2𝑝2
10 1

2
𝑝(𝑝 − 1)(𝑞 − 1) 2 + 2𝑝2(𝑞 − 3) − 𝑝3 + 𝑝4

(iii) For 𝑞 ∣ 𝑝 − 1:
If 𝑞 = 2,

Γ
𝐺 5 6 7

5 𝑝2 2𝑝 𝑝3(3𝑝 + 1)
6 𝑝2(𝑝 + 1) 2𝑝(𝑝 + 1) 𝑝3(𝑝 + 1)(3𝑝 + 1)
7 1 2 2 + 𝑝(𝑝 + 1)(2𝑝 − 1)

If 𝑞 = 3,

Γ
𝐺 5 6 7 9

5 𝑝2 2𝑝 𝑝3(3𝑝 + 1) 4𝑝2
6 2𝑝(𝑝 + 1) 2𝑝(𝑝 + 3) 4𝑝3(𝑝 + 1)2 2𝑝2(3𝑝 + 5)
7 2 2(𝑝 + 1) 2 + 𝑝2(2𝑝2 + 3𝑝 + 2) 2𝑝2 + 4𝑝 + 2
9 2𝑝3 + 𝑝2 − 𝑝 2(𝑝2 + 1) 2𝑝5 + 5𝑝4 + 𝑝3 − 𝑝2 + 𝑝 𝑝4 + 3𝑝3 + 2𝑝 + 2

If 𝑞 > 3,

Γ
𝐺 5 7

5 𝑝2 𝑝3(3𝑝 + 1)
6 𝑝(𝑝 + 1)(𝑞 − 1) 4𝑝2(𝑝 + 1)(𝑝2 + 𝑝𝑞 − 2𝑝)
7 𝑞 − 1 2 + 𝑝2(2𝑝2 + 𝑝𝑞 + 2𝑞 − 4)
8, 𝐺2 𝑝2(𝑝 + 1)(𝑞 − 1) 2𝑝2(𝑝 + 1)(𝑝2𝑞 − 4𝑝 + 𝑝𝑞 + 2)
8, 𝐺𝑘 ≄ 𝐺2 𝑝(𝑝 + 1)(𝑞 − 1) 4𝑝2(𝑝 + 1)(2𝑝2 − 5𝑝 + 𝑝𝑞 + 2)
9 1

2
𝑝(𝑝 + 1)(𝑞 − 1) 4𝑝5 + 𝑝4(𝑞 − 2) + 𝑝3(2𝑞 − 7) + 3𝑝2 + 𝑝
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Γ
𝐺 6 9

5 2𝑝 4𝑝2
6 2𝑝(𝑝 + 2𝑞 − 3) 2𝑝2(4𝑞 + 3𝑝 − 7)
7 2 + 2𝑝(𝑞 − 2) 2 + 4𝑝 + 2𝑝2(2𝑞 − 5)
8, 𝐺2 4(1 + 𝑝(𝑝 + 𝑞 − 3)) 2𝑝(𝑝3 + 3𝑝2 − 14𝑝 + 4𝑝𝑞 − 6)
8, 𝐺𝑘 ≄ 𝐺2 4(1 + 𝑝(𝑝 + 𝑞 − 3)) 2𝑝(𝑝3 + 5𝑝2 − 18𝑝 + 4𝑝𝑞 + 8)
9 2 + 2𝑝(𝑝 + 𝑞 − 3) 2 + 4𝑝 + 𝑝2(𝑝2 + 5𝑝 + 4𝑞 − 16)

Γ
𝐺8 𝐺 ≄ 𝐺±2 𝐺 ≃ 𝐺±2, 𝑞 > 5 𝐺 ≃ 𝐺2, 𝑞 = 5
5 4𝑝2 4𝑝2 4𝑝2
6 8𝑝2(𝑞 + 𝑝 − 2) 8𝑝2(𝑞 + 𝑝 − 2) 8𝑝2(𝑝 + 3)
7 8𝑝 + 4𝑝2(𝑞 − 3) 8𝑝 + 4𝑝2(𝑞 − 3) 8𝑝 + 8𝑝2
8 Table 1 Table 2 4(1 + 𝑝 + 3𝑝2(𝑝 + 1))
9 4𝑝(2 + 𝑝(𝑞 + 2𝑝 − 5)) 2𝑝(3 + 𝑝(2𝑞 + 3𝑝 − 8)) 8𝑝(1 + 𝑝 + 2𝑝(𝑝2 − 1))

As a consequence, we are able to compute the numbers of isomorphism
classes of skew braces of size 𝑝2𝑞; these numbers coincide with those given
in [1, 2] for 𝑞 > 2, and [11] for 𝑞 = 2.
Theorem 1.7. Let 𝐺 = (𝐺, ⋅) be a group of order 𝑝2𝑞, where 𝑝, 𝑞 are distinct
primes, with 𝑝 > 2. For each group Γ of order 𝑝2𝑞 with elementary abelian Sylow
𝑝-subgroups the following tables give equivalently

(1) the number of conjugacy classes within Hol(𝐺) of regular subgroups iso-
morphic to Γ;

(2) the number of isomorphism classes of skew braces (𝐺, ⋅, ◦) such that Γ ≅
(𝐺, ◦).

(i) For 𝑞 ∤ 𝑝2 − 1:

Γ
𝐺 5 11

5 2 4
11 4 6𝑝 − 4

where the upper left sub-tables of sizes 1 × 1 and 2 × 2 give respectively the
cases 𝑝 ∤ 𝑞 − 1 and 𝑝 ∣ 𝑞 − 1.

(ii) For 𝑞 ∤ 𝑝 − 1 and 𝑞 ∣ 𝑝 + 1:

Γ
𝐺 5 10

5 2 2
10 1 𝑝 + 2𝑞 − 4

(iii) For 𝑞 ∣ 𝑝 − 1:
If 𝑞 = 2,

Γ
𝐺 5 6 7

5 2 2 5
6 2 8 𝑝 + 10
7 1 2 5

If 𝑞 = 3,
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Γ
𝐺 5 6 7 9

5 2 2 5 3
6 1 12 16 𝑝 + 14
7 1 4 8 4
9 2 6 10 𝑝 + 8

If 𝑞 > 3,

Γ
𝐺 5 6 7 8, 𝐺𝑘 9

5 2 2 5 4 3
6 1 4𝑞 4(𝑞 + 1) 8(𝑞 + 1) 4𝑞 + 𝑝 + 2
7 1 2(𝑞 − 1) 3𝑞 − 1 4(𝑞 − 1) 2(𝑞 − 1)
8, 𝐺𝑠 ≄ 𝐺2 1 4𝑞 4(𝑞 + 1) 8(𝑞 + 1) 4𝑞 + 𝑝 + 2
8, 𝐺2 2 4𝑞 6𝑞 8(𝑞 + 1) 4𝑞 + 𝑝 + 2
9 1 2𝑞 2(𝑞 + 1) 4(𝑞 + 1) 3𝑞 + 𝑝 − 1

The lengths of the conjugacy classes are spelled out in Propositions 5.2, 6.1,
8.3, 9.3, 10.3, 11.2 and 12.1.
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2. Tools
Definition 2.1. Let 𝐺 be a group, 𝐴 ≤ 𝐺, and 𝛾 ∶ 𝐴 → Aut(𝐺) a function.
𝛾 is said to satisfy the gamma functional equation (or GFE for short) if

𝛾(𝑔𝛾(ℎ)ℎ) = 𝛾(𝑔)𝛾(ℎ), (2.1)

for all 𝑔, ℎ ∈ 𝐴.
We will say that 𝐴 is invariant if it is invariant under the action of 𝛾(𝐴).
𝛾 is said to be a relative gamma function (or RGF for short) on 𝐴 if it satisfies

the gamma functional equation, and 𝐴 is 𝛾(𝐴)-invariant.
If 𝐴 = 𝐺, a relative gamma function is simply called a gamma function (or

GF for short) on 𝐺.

For later use, we note that (2.1) can be rephrased, setting 𝑘 = 𝑔𝛾(ℎ), as

𝛾(𝑘ℎ) = 𝛾(𝑘𝛾(ℎ)−1)𝛾(ℎ). (2.2)

Wewill make use of the following results from [7]; some of these results were
stated in [7] under the assumption that the relevant group 𝐺 is finite, but the
proofs stand verbatim for arbitrary groups.
Given a group 𝐺, denote by Perm(𝐺) the group of all permutations on the

underlying set 𝐺. The right regular representation of 𝐺 is the homomorphism

𝜌 ∶ 𝐺 → Perm(𝐺)
𝑔 ↦ (𝑥 ↦ 𝑥𝑔).
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Theorem 2.2 ([7, Theorem 2.2]).
Let (𝐺, ⋅) be a group. The following data are equivalent.
(1) A regular subgroup𝑁 ≤ Hol(𝐺).
(2) A gamma function 𝛾 ∶ 𝐺 → Aut(𝐺).
(3) A group operation ◦ on 𝐺 such that (𝐺, ⋅, ◦) is a (right) skew brace.

The data of (1)-(3) are related as follows.
(i) 𝑔◦ℎ = 𝑔𝛾(ℎ)ℎ for 𝑔, ℎ ∈ 𝐺.
(ii) Each element of𝑁 can be written uniquely in the form 𝜈(ℎ) = 𝛾(ℎ)𝜌(ℎ), for

some ℎ ∈ 𝐺.
(iii) For 𝑔, ℎ ∈ 𝐺 one has 𝑔𝜈(ℎ) = 𝑔◦ℎ.
(iv) The map

𝛾 ∶ (𝐺, ◦)→ Aut(𝐺)
is a morphism, in particolar ker(𝛾) ⊲ (𝐺, ◦).

(v) The map

𝜈 ∶ (𝐺, ◦)→ 𝑁
ℎ ↦ 𝛾(ℎ)𝜌(ℎ)

is an isomorphism.

We report two useful simple facts concerning inverses and conjugacy in the
group (𝐺, ◦) (see Lemma 2.10 [7]). We write 𝑎◦𝑘 for the 𝑘-th power of 𝑎 in
(𝐺, ◦), and 𝑎⊖𝑘 for the inverse of 𝑎◦𝑘 in (𝐺, ◦). In the notation of Theorem 2.2,
we have, for 𝑎, 𝑏 ∈ 𝐺,

𝑎⊖1 = 𝑎−𝛾(𝑎)−1 ,
and

𝑎⊖1◦𝑏◦𝑎 = 𝑎−𝛾(𝑎)−1𝛾(𝑏)𝛾(𝑎)𝑏𝛾(𝑎)𝑎.

Proposition 2.3 ([7, Proposition 2.6]).
Let 𝐺 be a group, let𝐻 ⊆ 𝐺 and let 𝛾 be a GF on 𝐺.

Any two of the following conditions imply the third one:
(1) 𝐻 ≤ 𝐺;
(2) (𝐻, ◦) ≤ (𝐺, ◦);
(3) 𝐻 is 𝛾(𝐻)-invariant.

If these conditions hold, then (𝐻, ◦) is isomorphic to a regular subgroup ofHol(𝐻).

From Theorem 2.2 and Proposition 2.3 we have the following.

Corollary 2.4. Let 𝐺 be a group and let 𝛾 be a GF on 𝐺.
(1) ker(𝛾) ≤ 𝐺, and
(2) 𝛾(𝐺) ≤ Aut(𝐺) of order [𝐺 ∶ ker(𝛾)].

Lemma 2.5 ([7, Lemma 2.13]).
Let 𝐺 be a group, 𝐴 ≤ 𝐺 and 𝛾 ∶ 𝐴 → Aut(𝐺) be a function such that 𝐴 is

invariant under 𝛾(𝐴).
Then any two of the following conditions imply the third one.
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(1) 𝛾([𝐴, 𝛾(𝐴)]) = {1}.
(2) 𝛾 ∶ 𝐴 → Aut(𝐺) is a morphism of groups.
(3) 𝛾 satisfies the GFE.

We write

𝜄 ∶𝐺 → Aut(𝐺)
𝑔 ↦ (𝑥 ↦ 𝑔−1𝑥𝑔).

Proposition 2.6 ([7, Proposition 2.14]).
Let 𝐺 be a group and let 𝐴, 𝐵 be subgroups of 𝐺 such that 𝐺 = 𝐴𝐵.
If 𝛾 is a GF on 𝐺, and 𝐵 ≤ ker(𝛾), then

𝛾(𝑎𝑏) = 𝛾(𝑎), for 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, (2.3)

so that 𝛾(𝐺) = 𝛾(𝐴).
Moreover, if 𝐴 is 𝛾(𝐴)-invariant, then

𝛾′ = 𝛾↾𝐴 ∶ 𝐴 → Aut(𝐺) (2.4)

is a RGF on 𝐴 and ker(𝛾) is invariant under the subgroup
{
𝛾′(𝑎)𝜄(𝑎) ∶ 𝑎 ∈ 𝐴

}

of Aut(𝐺).
Conversely, let 𝛾′ ∶ 𝐴 → Aut(𝐺) be a RGF such that
(1) 𝛾′(𝐴 ∩ 𝐵) ≡ 1,
(2) 𝐵 is invariant under {𝛾′(𝑎)𝜄(𝑎) ∶ 𝑎 ∈ 𝐴}.

Then the map
𝛾(𝑎𝑏) = 𝛾′(𝑎), for 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,

is a well defined GF on 𝐺, and ker(𝛾) = ker(𝛾′)𝐵.

In this situation we will say that 𝛾 is a lifting of 𝛾′.
The following is a slightly different version of [7, Lemma 2.23].

Lemma 2.7. Let 𝐺 be a group. Let 𝐶 be a subgroup of 𝐺 such that:
(1) 𝐶 is abelian;
(2) 𝐶 is characteristic in 𝐺;
(3) 𝐶 ∩ 𝑍(𝐺) = {1}.

Let 𝛾∶ 𝐺 → Aut(𝐺) be a GF, and suppose that for every 𝑐 ∈ 𝐶 we have 𝛾(𝑐) =
𝜄(𝑐−𝜎) for some function 𝜎∶ 𝐶 → 𝐶.
Then 𝜎 ∈ End(𝐶), and the following relations hold in End(𝐶):

𝜎 𝛾(𝑔)↾𝐶 (𝜎 − 1) = (𝜎 − 1) 𝛾(𝑔)↾𝐶 𝜄(𝑔)↾𝐶 𝜎, for 𝑔 ∈ 𝐺. (2.5)

Note that 𝛾(𝑔)𝜄(𝑔) = 𝜄(𝑔𝛾(𝑔)−1)𝛾(𝑔). Setting 𝑔′ = 𝑔⊖1 = 𝑔−𝛾(𝑔)−1 , we see that
𝛾(𝑔)𝜄(𝑔) = 𝜄(𝑔′)−1𝛾(𝑔′)−1. Therefore, (2.5) can be rewritten as

𝜎 𝛾(𝑔)−1↾𝐶 (𝜎 − 1) = (𝜎 − 1) 𝜄(𝑔)−1↾𝐶 𝛾(𝑔)
−1
↾𝐶 𝜎, for 𝑔 ∈ 𝐺. (2.6)



106 E. CAMPEDEL, A. CARANTI AND I. DEL CORSO

Let 𝐺 be a group, and 𝛾 a gamma function on 𝐺. Suppose 𝐺 = 𝐴𝐵, where
𝐴, 𝐵 are subgroups of𝐺, such that𝐴∩𝐵 = {1}, the subgroup𝐴 is 𝛾(𝐵)-invariant,
and there is 𝜎 ∈ End(𝐴) such that 𝛾(𝑎) = 𝜄(𝑎−𝜎) for 𝑎 ∈ 𝐴. Then

𝛾(𝑎𝑏) = 𝜄(𝑎−𝛾(𝑏)−1𝜎)𝛾(𝑏), for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. (2.7)

We are interested in recording the following situation in which gamma func-
tions of this form arise.

Proposition 2.8. Let 𝐺 = 𝐴𝐵 be a group, where 𝐴, 𝐵 are subgroups of 𝐺, such
that

(1) 𝐴 ∩ 𝐵 = {1},
(2) 𝐴 is abelian,
(3) 𝐴 is characteristic in 𝐺,
(4) 𝐴 ∩ 𝑍(𝐺) = {1}.
If there exist a RGF 𝛾 ∶ 𝐵 → Aut(𝐺) and 𝜎 ∈ End(𝐴) which satisfy

𝜎 𝛾(𝑏)↾𝐴 (𝜎 − 1) = (𝜎 − 1) 𝛾(𝑏)↾𝐴 𝜄(𝑏)↾𝐴 𝜎, for 𝑏 ∈ 𝐵, (2.8)

then the extension of 𝛾 to the function 𝛾 ∶ 𝐺 → Aut(𝐺) defined as in (2.7) is a GF
on 𝐺.

In this situation we will say that 𝛾 is the gluing of the two RGF on 𝐴 and 𝐵.

Proof. Let 𝛾 be a RGF on 𝐵 and 𝜎 ∈ End(𝐴) such that (2.8) is satisfied. We
now show that the function defined in (2.7) satisfies the GFE. Let 𝑎1, 𝑎2 ∈ 𝐴
and 𝑏1, 𝑏2 ∈ 𝐵.
We have

𝛾(𝑎1𝑏1)𝛾(𝑎2𝑏2) = 𝜄(𝑎−𝛾(𝑏1)
−1𝜎

1 )𝛾(𝑏1)𝜄(𝑎
−𝛾(𝑏2)−1𝜎
2 )𝛾(𝑏2)

= 𝜄(𝑎−𝛾(𝑏1)
−1𝜎

1 𝑎−𝛾(𝑏2)
−1𝜎𝛾(𝑏1)−1

2 )𝛾(𝑏1)𝛾(𝑏2).
On the other hand

𝛾((𝑎1𝑏1)𝛾(𝑎2𝑏2)𝑎2𝑏2) =

𝛾(𝑎𝛾(𝑏2)1 𝑏𝜄(𝑎
−𝛾(𝑏2)−1𝜎
2 )𝛾(𝑏2)

1 𝑎2𝑏2) =

𝛾(𝑎𝛾(𝑏2)1 (𝑎𝛾(𝑏2)
−1𝜎

2 𝑏1𝑎
−𝛾(𝑏2)−1𝜎
2 )𝛾(𝑏2)𝑎2𝑏2) =

𝛾(𝑎𝛾(𝑏2)1 𝑎𝛾(𝑏2)
−1𝜎𝛾(𝑏2)

2 𝑏𝛾(𝑏2)1 𝑎−𝛾(𝑏2)
−1𝜎𝛾(𝑏2)

2 𝑎2𝑏2) =

𝛾(𝑎𝛾(𝑏2)1 𝑎𝛾(𝑏2)
−1𝜎𝛾(𝑏2)

2 𝑎−𝛾(𝑏2)
−1𝜎𝜄(𝑏1)−1𝛾(𝑏2)

2 𝑎𝛾(𝑏2)
−1𝜄(𝑏1)−1𝛾(𝑏2)

2 𝑏𝛾(𝑏2)1 𝑏2) =

𝜄((𝑎𝛾(𝑏2)1 𝑎𝛾(𝑏2)
−1𝜎𝛾(𝑏2)

2 𝑎−𝛾(𝑏2)
−1𝜎𝜄(𝑏1)−1𝛾(𝑏2)

2 𝑎𝛾(𝑏2)
−1𝜄(𝑏1)−1𝛾(𝑏2)

2 )−𝛾(𝑏2)−1𝛾(𝑏1)−1𝜎)
𝛾(𝑏1)𝛾(𝑏2) =

𝜄(𝑎−𝛾(𝑏1)
−1𝜎

1 𝑎−𝛾(𝑏2)
−1𝜎𝛾(𝑏1)−1𝜎+𝛾(𝑏2)−1𝜎𝜄(𝑏1)−1𝛾(𝑏1)−1𝜎−𝛾(𝑏2)−1𝜄(𝑏1)−1𝛾(𝑏1)−1𝜎

2 )
𝛾(𝑏1)𝛾(𝑏2).
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Now (2.8) (in the form of (2.6)) shows that the two expressions

−𝜎𝛾(𝑏1)−1↾𝐴
and

−𝜎𝛾(𝑏1)−1↾𝐴𝜎 + 𝜎𝜄(𝑏1)−1↾𝐴𝛾(𝑏1)
−1
↾𝐴𝜎 − 𝜄(𝑏1)−1↾𝐴𝛾(𝑏1)

−1
↾𝐴𝜎

coincide. □

Let 𝛾 be a GF on 𝐺, 𝑁 the associated regular subgroup of Hol(𝐺) and ◦ the
associated operation. Write inv ∶ 𝑔 ↦ 𝑔−1 for the inversion map on 𝐺. Clearly
inv ∈ Perm(𝐺). Then 𝑁inv , the conjugate of 𝑁 under inv, is another regular
subgroup of Hol(𝐺), with corresponding gamma function

�̃� ∶ 𝐺 → Aut(𝐺)
𝑥 ↦ 𝛾(𝑥−1)𝜄(𝑥−1), (2.9)

and circle operation
𝑥 ◦̃ 𝑦 = (𝑥−1◦𝑦−1)−1

(see [7, Proposition 2.22]).
The following is essentially [7, Proposition 2.24], in which we replaced the

hypothesis that the subgroup 𝐶 is characteristic with the slightly more general
hypothesis that 𝐶 is normal and 𝛾(𝐺)-invariant. In that case 𝛾(𝑔)↾𝐶 ∈ Aut(𝐶).
The proof in [7, Proposition 2.24] still stands, as 𝑐𝜄(𝑔), 𝑐𝛾(𝑔) ∈ 𝐶.

Proposition 2.9. Let 𝐺 be a non-abelian group. Let 𝐶 be a subgroup of 𝐺 such
that:

(1) 𝐶 = ⟨ 𝑐 ⟩ is cyclic, of order a power of the prime 𝑟,
(2) 𝐶 is normal in 𝐺,
(3) 𝐶 ∩ 𝑍(𝐺) = {1}, and
(4) there is 𝑎 ∈ 𝐺 which induces by conjugation on 𝐶 an automorphism

whose order is not a power of 𝑟.
Let 𝛾∶ 𝐺 → Aut(𝐺) be a GF, and suppose that 𝐶 is 𝛾(𝐺)-invariant and 𝛾(𝐶) ≤
𝜄(𝐶), so that for every 𝑐 ∈ 𝐶 we have 𝛾(𝑐) = 𝜄(𝑐−𝜎), for some function 𝜎∶ 𝐶 → 𝐶.
Then
(1) either 𝜎 = 0, that is, 𝐶 ≤ ker(𝛾),
(2) or 𝜎 = 1, that is, 𝛾(𝑐) = 𝜄(𝑐−1), so that 𝐶 ≤ ker(�̃�).

Corollary 2.10. Let 𝐺 be a non-abelian group. Suppose that 𝐺 contains a sub-
group 𝐶 ≠ {1} which satisfies the hypotheses (1)-(4) of Proposition 2.9, and sup-
pose that for every GF 𝛾 on 𝐺, 𝐶 is 𝛾(𝐺)-invariant and 𝛾(𝐶) ≤ 𝜄(𝐶).
For each group 𝒢 of the same order as 𝐺, let

𝑛𝐶(𝒢) = |||{𝛾 GF on 𝐺 ∶ (𝐺, ◦) ≅ 𝒢 and 𝐶 ≤ ker(𝛾)}||| .

Then
𝑒′(𝒢, 𝐺) = |||{𝛾 GF on 𝐺 ∶ (𝐺, ◦) ≅ 𝒢}||| = 2𝑛𝐶(𝒢).
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Proof. Let 𝑋 = {𝛾 GF on 𝐺 ∶ (𝐺, ◦) ≅ 𝒢}, and
𝑋1 = {𝛾 GF on 𝐺 ∶ (𝐺, ◦) ≅ 𝒢 and 𝐶 ≤ ker(𝛾)} ,
𝑋2 = {𝛾 GF on 𝐺 ∶ (𝐺, ◦) ≅ 𝒢 and 𝐶 ≤ ker(�̃�)} ,

where �̃� is as in (2.9).
Proposition 2.9 shows that 𝑋 = 𝑋1 ∪𝑋2. We claim that 𝑋1 ∩𝑋2 = ∅. Indeed,

if 𝛾 ∈ 𝑋1 ∩ 𝑋2, then for all 𝑐 ∈ 𝐶 we have 𝛾(𝑐) = 1 = 𝛾(𝑐−1)𝜄(𝑐−1), so that
𝐶 ≤ 𝑍(𝐺), a contradiction.
We have

𝑒′(𝒢, 𝐺) = |𝑋| = |𝑋1| + |𝑋2| = 𝑛𝐶(𝒢) + |𝑋2|.
Now we show that there is a bijection between 𝑋1 and 𝑋2, so that 𝑒′(𝒢, 𝐺) =
2𝑛𝐶(𝒢). Consider

𝜓 ∶ 𝑋 → 𝑋
𝛾 ↦ �̃�.

The map 𝜓 is well defined, indeed �̃� is a GF on 𝐺 and (𝐺, ◦̃) ≅ (𝐺, ◦) ≅ 𝒢 (see
[7, Proposition 2.22]); moreover

𝜓2(𝛾) = 𝜓(�̃�) = ̃̃𝛾.
It is immediate from the formula for �̃�, or from its definition in terms of reg-

ular subgroups, that ̃̃𝛾 = 𝛾, that is, 𝜓2 = 1, so that 𝜓 is bijective Now, using
Proposition 2.9, we obtain 𝜓(𝑋2) = 𝑋1, and so |𝑋2| = |𝑋1|. □

Lemma 2.11 ([7, Lemma 2.9]).
Let𝐺 be a group,𝑁 a regular subgroup ofHol(𝐺), and 𝛾 the associated gamma

function.
Let 𝜑 ∈ Aut(𝐺).
(1) The gamma function 𝛾𝜑 associated to the regular subgroup𝑁𝜑 is given by

𝛾𝜑(𝑔) = 𝛾(𝑔𝜑−1)𝜑 = 𝜑−1𝛾(𝑔𝜑−1)𝜑, (2.10)

for 𝑔 ∈ 𝐺.
(2) If𝐻 ≤ 𝐺 is invariant under 𝛾(𝐻), then𝐻𝜑 is invariant under 𝛾𝜑(𝐻𝜑).

Wewill refer to the action (2.10) ofAut(𝐺) on 𝛾 of the Lemma as conjugation.

Lemma2.12. Let (𝐺, ⋅) be a group of order𝑝2𝑞,𝑝 > 2, andassume that the Sylow
𝑝-subgroup 𝐴 of 𝐺 is normal. Let 𝛾 be a GF on 𝐺 and let (𝐺, ⋅, ◦) the associated
skew brace.

(1) If 𝐴 = ⟨ 𝑎 ⟩ is cyclic, then 𝑎 is also a generator for (𝐴, ◦).
(2) If𝐴 = ⟨ 𝑎1, 𝑎2 ⟩ is elementary abelian and ⟨ 𝑎1 ⟩ is 𝛾(⟨ 𝑎1 ⟩)-invariant, then

{𝑎1, 𝑎2} is also a set of generators for (𝐴, ◦).

Proof. The Sylow𝑝-subgroup𝐴 is characteristic, and so 𝛾(𝐴)-invariant. There-
fore, 𝐴 is also a subgroup of (𝐺, ◦). Moreover, the condition 𝑝 > 2 ensures that
𝐴 ≃ (𝐴, ◦) (see [7, Theorem 3.3]).
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If 𝐴 = ⟨ 𝑎 ⟩ is cyclic then ord𝐴(𝑎) = ord(𝐴,◦)(𝑎) (take 𝛾|𝐴 in [7, Corollary
2.18]), therefore 𝑎 is also a generator of (𝐴, ◦).
If 𝐴 is elementary abelian then every non-trivial element of (𝐴, ◦) has order

𝑝. Moreover if𝐴1 ∶= ⟨ 𝑎1 ⟩ is 𝛾(𝐴1)-invariant then 𝑎2 ∉ 𝐴1 = (𝐴1, ◦), so {𝑎1, 𝑎2}
generate (𝐴, ◦). □

3. Groups of order 𝒑𝟐𝒒
Webriefly describe the groups of order𝑝2𝑞with elementary abelian Sylow𝑝-

subgroups, and list them and their automorphisms in the table below, referring
to [8] for the details.
We will say that two groups have the same type if they have isomorphic auto-

morphism groups. For groups of order 𝑝2𝑞 each type corresponds to an isomor-
phism class, except for type 8, which corresponds to 𝑞−3

2
isomorphism classes.

We use the notation 𝒞𝑛 for a cyclic group of order 𝑛.
Type 5: Abelian group.
Type 6: This is the non-abelian group with centre of order 𝑝 for 𝑞 ∣ 𝑝−1,
which we denote by 𝒞𝑝 × (𝒞𝑝 ⋊ 𝒞𝑞). It can be described as

⟨
𝑎1, 𝑎2, 𝑏 ∶ 𝑎1𝑎2 = 𝑎2𝑎1, 𝑎

𝑝
1 = 𝑎𝑝2 = 𝑏𝑞 = 1, 𝑎𝜄(𝑏)1 = 𝑎1, 𝑎

𝜄(𝑏)
2 = 𝑎𝜆2

⟩
,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ.
Type 7: This is the non-abelian group for 𝑞 ∣ 𝑝 − 1 in which a generator
of 𝒞𝑞 acts on 𝒞𝑝 × 𝒞𝑝 as a non-identity scalar matrix. We denote it by
(𝒞𝑝 × 𝒞𝑝)⋊𝑆 𝒞𝑞, and it can be described as

⟨
𝑎1, 𝑎2, 𝑏 ∶ 𝑎1𝑎2 = 𝑎2𝑎1, 𝑎

𝑝
1 = 𝑎𝑝2 = 𝑏𝑞 = 1, 𝑎𝜄(𝑏)1 = 𝑎𝜆1 , 𝑎

𝜄(𝑏)
2 = 𝑎𝜆2

⟩
,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ.
Type 8: These are the non-abelian groups for 𝑞 ∣ 𝑝 − 1, 𝑞 > 3, in which a
generator of 𝒞𝑞 acts on 𝒞𝑝×𝒞𝑝 as a diagonal, non-scalar matrix with no
eigenvalue 1, and determinant different from 1. We denote this type by
(𝒞𝑝×𝒞𝑝)⋊𝐷0𝒞𝑞, and it consists of the groups𝐺𝑘 which can be described
as

𝐺𝑘 =
⟨
𝑎1, 𝑎2, 𝑏 ∶ 𝑎1𝑎2 = 𝑎2𝑎1, 𝑎

𝑝
1 = 𝑎𝑝2 = 𝑏𝑞 = 1, 𝑎𝜄(𝑏)1 = 𝑎𝜆1 , 𝑎

𝜄(𝑏)
2 = 𝑎𝜆𝑘2

⟩
,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ, and 𝑘 is an
integer modulo 𝑞, 𝑘 ≠ 0,±1.
Since for each 𝑘 ≠ 0,±1 we have that 𝐺𝑘 ≃ 𝐺𝑘−1 , the type 8 includes

𝑞−3
2
isomorphism classes of groups.

We will denote by 𝒦 the set of the elements 𝑘 ≠ 0,±1 for which
{𝐺𝑘 ∶ 𝑘 ∈ 𝒦} is a set of representatives of the isomorphism classes of
groups of type 8.

Type 9: This is the non-abelian group for 𝑞 ∣ 𝑝 − 1, 𝑞 > 2, in which a
generator of 𝒞𝑞 acts on 𝒞𝑝 × 𝒞𝑝 as a diagonal, non-scalar matrix with
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no eigenvalue 1, and determinant 1. We denote it by (𝒞𝑝 × 𝒞𝑝)⋊𝐷1 𝒞𝑞,
and it can be described as

⟨
𝑎1, 𝑎2, 𝑏 ∶ 𝑎1𝑎2 = 𝑎2𝑎1, 𝑎

𝑝
1 = 𝑎𝑝2 = 𝑏𝑞 = 1, 𝑎𝜄(𝑏)1 = 𝑎𝜆1 , 𝑎

𝜄(𝑏)
2 = 𝑎𝜆−12

⟩
,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ.
Type 10: This is the non-abelian group group for 𝑞 ∣ 𝑝 + 1, 𝑞 > 2, in
which a generator of 𝒞𝑞 acts on 𝒞𝑝 × 𝒞𝑝 as a matrix 𝐶 with det(𝐶) = 1
and tr(𝐶) = 𝜆 + 𝜆−1, where 𝜆 ≠ 1 is a 𝑞-th root of unity in a quadratic
extension of 𝔽𝑝. We denote it by (𝒞𝑝×𝒞𝑝)⋊𝐶𝒞𝑞, and it can be described
as

⟨
𝑎1, 𝑎2, 𝑏 ∶ 𝑎1𝑎2 = 𝑎2𝑎1, 𝑎

𝑝
1 = 𝑎𝑝2 = 𝑏𝑞 = 1, 𝑎𝜄(𝑏)1 = 𝑎𝜆+𝜆−11 𝑎2, 𝑎

𝜄(𝑏)
2 = 𝑎−11

⟩
.

Type 11: This is the non-abelian groupwith centre of order 𝑝 for 𝑝 ∣ 𝑞−1,
which we denote by (𝒞𝑞 ⋊ 𝒞𝑝) × 𝒞𝑝. It can be described as
⟨
𝑎1, 𝑎2, 𝑏 ∶ 𝑎1𝑎2 = 𝑎2𝑎1, 𝑎

𝑝
1 = 𝑎𝑝2 = 𝑏𝑞 = 1, 𝑏𝜄(𝑎1) = 𝑏𝑢

⟩
,

where 𝑢 is an element of order 𝑝 in ℤ∕𝑞ℤ.

Table 3. Groups of order 𝑝2𝑞 with elementary abelian Sylow
𝑝-subgroups and their automorphisms

Type Conditions 𝐺 Aut(𝐺) |Z(G)| ev
5 𝒞𝑝 × 𝒞𝑝 × 𝒞𝑞 GL(2, 𝑝) × 𝒞𝑞−1 𝑝2𝑞 1, 1
6 𝑞 ∣ 𝑝 − 1 𝒞𝑝 × (𝒞𝑝 ⋊ 𝒞𝑞) 𝒞𝑝−1 × Hol(𝒞𝑝) 𝑝 1, 𝜆
7 𝑞 ∣ 𝑝 − 1 (𝒞𝑝 × 𝒞𝑝)⋊𝑆 𝒞𝑞 Hol(𝒞𝑝 × 𝒞𝑝) 1 𝜆, 𝜆
8 3 < 𝑞 ∣ 𝑝 − 1 (𝒞𝑝 × 𝒞𝑝)⋊𝐷0 𝒞𝑞 Hol(𝒞𝑝) × Hol(𝒞𝑝) 1 𝜆, 𝜆𝑘, 𝑘 ≠ 0,±1
9 2 < 𝑞 ∣ 𝑝 − 1 (𝒞𝑝 × 𝒞𝑝)⋊𝐷1 𝒞𝑞 (Hol(𝒞𝑝) × Hol(𝒞𝑝))⋊ 𝒞2 1 𝜆, 𝜆−1
10 2 < 𝑞 ∣ 𝑝 + 1 (𝒞𝑝 × 𝒞𝑝)⋊𝐶 𝒞𝑞 (𝒞𝑝 × 𝒞𝑝)⋊ (𝒞𝑝2−1 ⋊ 𝒞2) 1 no ev
11 𝑝 ∣ 𝑞 − 1 (𝒞𝑞 ⋊ 𝒞𝑝) × 𝒞𝑝 Hol(𝒞𝑝) × Hol(𝒞𝑞) 𝑝 −

Remark 3.1. The column "ev" determines the eigenvalues of the action of an ele-
ment of order 𝑞 on the Sylow 𝑝-subgroup.

4. The main case distinction
In this section we spell out the case distinction we will pursue in the follow-

ing sections, and collect a few facts that will be useful at several points in the
classification.
In what follows we will discuss about duality, so that we consider only the

non-abelian groups.
For type 6, we can apply Corollary 2.10 to a non-central subgroup of order 𝑝.

For type 11, we can apply this to the Sylow 𝑞-subgroup 𝐶.
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For 𝐺 of the remaining types, namely 7, 8, 9 and 10, denote by𝐴 the elemen-
tary abelian Sylow 𝑝-subgroup of 𝐺. We will show in Sections 7 and 11 that for
the types 8, 9 and 10 (when 𝑝 > 2) one has

∀𝑎 ∈ 𝐴, 𝛾(𝑎) = 𝜄(𝑎−𝜎), (4.1)

for some 𝜎 ∈ End(𝐴). If 𝐺 is of type 7 then it is not always the case that
𝛾(𝐴) ≤ Inn(𝐺); we will treat the case 𝛾(𝐴) ≰ Inn(𝐺) separately in Section 10.
Therefore, for 𝐺 of types 8, 9, 10, or of type 7 and 𝛾(𝐴) ≤ Inn(𝐺), equation (4.1)
holds and we can apply Lemma 2.7 with 𝐶 = 𝐴, getting equation (2.5).
We have the following case distinction.

4.1. 𝝈, 𝟏 − 𝝈 are not both invertibile. This means that 𝜎 has an eigenvalue
0 or 1. If it is 0, then 𝑝 ∣ |||ker(𝛾)|||. If it is 1, consider the dual gamma function
defined as �̃�(𝑔) = 𝛾(𝑔−1)𝜄(𝑔−1) (see [7, Proposition 2.22]). Then for 𝑎 ∈ 𝐴,
�̃�(𝑎) = 𝛾(𝑎−1)𝜄(𝑎−1) = 𝜄(𝑎𝜎−1), so that 𝑝 ∣ |||ker(�̃�)|||. Therefore, up to switch 𝛾
with �̃�, we can assume the eigenvalue is 0, so that 𝑝 divides the order of the
kernel of 𝛾.

4.2. 𝝈, 𝟏−𝝈 are both invertibile. This means that 𝜎 has no eigenvalues 0, 1.
Then equation (2.5) yields

(𝜎−1 − 1)−1𝛾(𝑏)↾𝐴(𝜎−1 − 1) = 𝛾(𝑏)↾𝐴𝜄(𝑏)↾𝐴, (4.2)

where 𝑏 ≠ 1 is a 𝑞-element. Thus 𝛾(𝑏)↾𝐴 and 𝛾(𝑏)↾𝐴𝜄(𝑏)↾𝐴 are conjugate, and
this yields some information about the eigenvalues of 𝛾(𝑏)↾𝐴.
For type 7, if 𝑞 > 2 (4.2) is plainly impossible, as

𝜄(𝑏) = [𝜆 𝜆] ,

for some 𝜆 ≠ 1, 𝜆 of order 𝑞.
For type 8, the two normal subgroups of order 𝑝 are characteristic, so 𝛾(𝑏)↾𝐴

and 𝜄(𝑏)↾𝐴 commute, as they are simultaneously diagonal. Let

𝜄(𝑏)↾𝐴 = [𝜆1 𝜆2
] , 𝛾(𝑏)↾𝐴 = [𝛼1 𝛼2

] ,

with 𝜆𝑖 ≠ 1. This implies 𝛼1 = 𝜆2𝛼2 and 𝛼2 = 𝜆1𝛼1, so that 𝛼1 = 𝜆1𝜆2𝛼1 and
𝜆1𝜆2 = 1, against the assumption of type 8.
For type 9, however, this is well possible. This time there is an automorphism

of order two exchanging the two eigenspaces, but since 𝛾(𝑏)↾𝐴 has odd order 𝑞,
it leaves them invariant, so that once more 𝛾(𝑏)↾𝐴 and 𝜄(𝑏)↾𝐴 commute, as they
are simultaneously diagonal.
In the same notation as for type 8, here we get 𝜆1 = 𝜆, 𝜆2 = 𝜆−1, 𝛼1 = 𝛼 and

𝛼2 = 𝜆𝛼. We get

𝜎−1 − 1 = [ 𝑠1
𝑠2

]
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(with 𝑠1𝑠2 ≠ 1), or

𝜎 = (1 − 𝑠1𝑠2)−1 [
1 −𝑠1
−𝑠2 1 ] .

For type 10, the eigenvalues of 𝜄(𝑏) are not in the base field, but in a quadratic
extension of it. Still, this is similar to type 9.

4.3. Someresults on𝐆𝐋(𝟐, 𝒑). Wecollect here some information aboutGL(2, 𝑝),
which will be useful for the groups 𝐺 of type 5 or 7. We will denote by𝐴 and 𝐵,
the Sylow 𝑝-subgroup (which is unique in both cases) and a Sylow 𝑞-subgroup
of 𝐺, respectively.

4.3.1. Sylow 𝒑-subgroups. GL(2, 𝑝) has 𝑝 + 1 Sylow 𝑝-subgroups and each
of them fixes a subgroup of order 𝑝 of 𝒞𝑝 × 𝒞𝑝. In the following we will denote
by 𝛼 an element of order 𝑝 of GL(2, 𝑝).

4.3.2. Elements of order𝒑when𝒑 ∥ |||𝐤𝐞𝐫(𝜸)|||. Suppose that𝐺 is of type 5 or
7, and let 𝛾 be a GF on 𝐺 such that ⟨ 𝑎1 ⟩ ≤ ker(𝛾) ≠ 𝐴, where 𝑎1 ∈ 𝐴, 𝑎1 ≠ 1.
Let 𝑎2 ∈ 𝐴 ⧵ ⟨ 𝑎1 ⟩, then 𝛾(𝑎2) = 𝛼 (possibly modulo an automorphism of 𝐴
which is the identity on 𝐴), where 𝛼 ∈ GL(2, 𝑝) has order 𝑝. Then

𝑎𝛼1𝑎2 = 𝑎1◦𝑎2 = 𝑎2◦𝑎1 = 𝑎2𝑎1, (4.3)

so that 𝑎1 is fixed by 𝛼. This means that ker(𝛾) determines ⟨𝛼 ⟩, which is the
Sylow 𝑝-subgroup of GL(2, 𝑝) fixing ker(𝛾). With respect to the basis {𝑎1, 𝑎2}
we can write

𝛼 = [1 0
𝑑 1] ,

where 0 ≠ 𝑑 ∈ ℤ∕𝑝ℤ.

4.3.3. Sylow 𝒒-subgroups. Suppose that 𝑞 ∣ 𝑝−1 and recall that |||GL(2, 𝑝)||| =
(𝑝 − 1)2𝑝(𝑝 + 1).
If 𝑞 > 2 a Sylow 𝑞-subgroup of GL(2, 𝑝) has order 𝑞2𝑒, where 𝑞𝑒 ∥ 𝑝 − 1.
Every Sylow 𝑞-subgroup of GL(2, 𝑝) is of the form

𝑄𝐴1,𝐴2 = {𝛽 ∈ GL(2, 𝑝)∶ 𝐴1, 𝐴2 are eigenspaces of 𝛽 with respect
to eigenvalues of order dividing 𝑞𝑒}

≅ 𝒞𝑞𝑒 × 𝒞𝑞𝑒 ,
for any choice of a pair {𝐴1, 𝐴2} of distinct one-dimensional subspaces of 𝐴.
Thus there are 𝑝(𝑝+1)

2
Sylow 𝑞-subgroups.

Moreover, each Sylow 𝑞-subgroup ofGL(2, 𝑝) has 𝑞2−1 elements of order 𝑞.
However, the scalar elements are common to all the Sylow 𝑞-subgroups. Hence,
GL(2, 𝑝) has

(𝑞2 − 𝑞) ⋅ (𝑝 + 1)𝑝
2 + 𝑞 − 1

elements of order 𝑞.
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If 𝑞 = 2, the Sylow 2-subgroups of GL(2, 𝑝) are described in [9]. Note that in
this case if 𝜗 has order 2, then its minimal polynomial divides 𝑥2−1, and there-
fore its eigenvalues belong to {±1}. Moreover all the elements with eigenvalues
1,−1 are conjugate, and such an element, say 𝜗, is stabilised by the diagonal
matrices, therefore |||Orb(𝜗)||| = 𝑝(𝑝 + 1). Thus there are 𝑝(𝑝 + 1) non-scalar
elements of order 2, plus the scalar matrix diag(−1,−1).

4.3.4. Elements of order 𝒒 when |||𝐤𝐞𝐫(𝜸)||| = 𝒑. Suppose that 𝑞 ∣ 𝑝 − 1 and
𝐺 is of type 5 or 7. Let 𝛾 be a GF on 𝐺 with kernel ⟨ 𝑎1 ⟩, where 𝑎1 ∈ 𝐴. Let
𝑎2 ∈ 𝐴 ⧵ ⟨ 𝑎1 ⟩ and set 𝛾(𝑎2) = 𝛼, an element of order 𝑝 in GL(2, 𝑝). Let 𝑏 ∈ 𝐺
be such that 𝛾(𝑏) = 𝛽 (possibly modulo 𝜄(𝐴)), where 𝛽 is an element of order
𝑞 in the normaliser of ⟨𝛼 ⟩. Then 𝛼𝛽 = 𝛼𝑡 for a certain 𝑡, and Subsection 4.3.2
yields that 𝑎1 is fixed by 𝛼, so that

𝑎𝛽𝛼1 = 𝑎𝛼
𝑡−1𝛽

1 = 𝑎𝛽1 ,

namely 𝑎𝛽1 is fixed by 𝛼 as well. Therefore 𝑎𝛽1 ∈ ⟨ 𝑎1 ⟩, so that ⟨ 𝑎1 ⟩ is an
eigenspace for 𝛽 too.
Let 𝑎3 be another eigenvector for 𝛽. Then, since det(𝛼)𝑝 = 1, we can write,

with respect to the basis ⟨ 𝑎1, 𝑎3 ⟩,

𝛼 = [1 0
𝑑 1] , 𝛽 = [𝜆

𝑥1 0
0 𝜆𝑥2] ,

where 0 ≠ 𝑑 ∈ ℤ∕𝑝ℤ, 𝜆 has order 𝑞, and 𝑥1, 𝑥2 are not both 0.
Note that replacing 𝑎3 with a suitable element in ⟨ 𝑎3 ⟩, with respect to that

new basis we have

𝛼 = [1 0
1 1] .

Note that if𝛽 is a scalarmatrix, there are 𝑞−1 elements𝛽 as above. If𝛽 is non-
scalar, taking into account the choice of ⟨ 𝑎3 ⟩, there are 𝑞(𝑞 − 1)𝑝 possibilities
for 𝛽.

5. Type 5
Here 𝐺 = (𝒞𝑝 × 𝒞𝑝) × 𝒞𝑞, and Aut(𝐺) = GL(2, 𝑝) × 𝒞𝑞−1.
Let 𝐴 be the Sylow 𝑝-subgroup, and 𝐵 = ⟨ 𝑏 ⟩ the Sylow 𝑞-subgroup.
In the following we will denote by 𝛼 an element of order 𝑝 of GL(2, 𝑝). If

𝑝 ∣ 𝑞 − 1 we will denote by 𝜂 an element of order 𝑝 of 𝒞𝑞−1: clearly 𝜂 fixes 𝐴
point-wise. If 𝑞 ∣ 𝑝 − 1 we will denote by 𝛽 an element of order 𝑞 of GL(2, 𝑝).

5.1. Abelian groups. Assume here (𝐺, ◦) abelian. These are in particular the
only cases when there are no divisibilities.
Since 𝐵 is characteristic, by Proposition 2.3 and Theorem 2.2, (iv), 𝛾(𝑏) will

have order dividing 𝑞, so it is an element in GL(2, 𝑝) of order dividing 𝑞. Then
for 𝑎 ∈ 𝐴 we have

𝑎 = 𝑏⊖1◦𝑎◦𝑏 = 𝑏−𝛾(𝑏)−1𝛾(𝑎)𝛾(𝑏)𝑏𝑎𝛾(𝑏) = 𝑏−𝛾(𝑎)𝑏𝑎𝛾(𝑏),
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from which we get that 𝛾(𝑏) = 1, and also that 𝛾(𝑎)↾𝐵 = 1.
Thus 𝐵 ≤ ker(𝛾). If 𝛾(𝐺) = {1}, then we obtain the right regular representa-

tion, which corresponds to one group of type 5. Otherwise 𝛾(𝐺) ≠ {1}, and we
can only have 𝛾(𝐺) = 𝛾(𝐴) = ⟨𝛼 ⟩, where 𝛼 ∈ GL(2, 𝑝) has order 𝑝. Therefore,
each GF on 𝐺 is the lifting of a RGF 𝛾∶ 𝐴 → Aut(𝐺) with |||𝛾(𝐴)||| = 𝑝.
Let 1 ≠ 𝑎1 ∈ 𝐴 and let ker(𝛾) = ⟨ 𝑎1 ⟩ (we have 𝑝 + 1 choices for such

a subgroup); the argument in 4.3.2 shows that 𝑎1 is fixed by 𝛼, so that ker(𝛾)
determines 𝛾(𝐴), and for 𝑎2 ∈ 𝐴 ⧵ ⟨ 𝑎1 ⟩ we have 𝛾(𝑎2) = 𝛼𝑖, for 1 ≤ 𝑖 ≤ 𝑝 − 1.
Note that for each 𝑖 the unique morphism defined by 𝛾(𝑎1) = 1 and 𝛾(𝑎2) = 𝛼𝑖
is such that [𝐴, 𝛾(𝐴)] = ker(𝛾), so by Lemma 2.5, these morphisms coincide
with the RGF’s. Therefore, here we have (𝑝+1)(𝑝−1) = 𝑝2 −1 different GF’s
on 𝐺 giving groups (𝐺, ◦) of type 5.
As to the conjugacy classes, since 𝐵 ≤ ker(𝛾) is characteristic, every auto-

morphism 𝜑 of 𝐺 stabilises 𝛾|𝐵. Moreover, if 𝜇 ∈ Aut(𝐵) ≅ 𝒞𝑞−1, then 𝜇 fixes 𝑎
and centralises 𝛾(𝑎) for 𝑎 ∈ 𝐴, so that it stabilises 𝛾.
Now, let 𝛿 ∈ Aut(𝐴) ≅ GL(2, 𝑝). If 𝛿 stabilises 𝛾, then 𝛾𝛿(𝑎1) = 1, namely

𝛾(𝑎𝛿−11 ) = 1. Therefore 𝛿−1 fixes ⟨ 𝑎1 ⟩, and writing 𝛿 = (𝛿𝑖𝑗)𝑖,𝑗 with respect to
the basis {𝑎1, 𝑎2}, this implies that 𝛿12 = 0.
As for 𝑎2, we have

𝛾𝛿(𝑎2) = 𝛿−1𝛾(𝑎𝛿−12 )𝛿 = 𝛿−1𝛼𝛿−122 𝛿,

and it coincides with 𝛾(𝑎2) precisely when 𝛿−1𝛼𝛿
−1
22 𝛿 = 𝛼. Taking 𝛼 as in Sub-

subsection 4.3.2, an explicit computation shows that the latter yields 𝛿11 = 𝛿222.
Therefore, the stabiliser of 𝛾 has order (𝑞−1)𝑝(𝑝−1), and there is one orbit of
length 𝑝2 − 1.
In the following we exclude the abelian cases just dealt with.

5.2. 𝒑 ∣ 𝒒 − 𝟏. Here 𝐵 ≤ ker(𝛾), and the only type of groups we can have here
is the type 11, beside the type 5 already considered.
Suppose first ker(𝛾) = ⟨ 𝑎1 ⟩𝐵 has order𝑝𝑞. Then 𝛾(𝐺)has order𝑝, and let 𝑎2

be such that 𝛾(𝑎2) = 𝛼𝑖𝜂𝑗, where 0 ≤ 𝑖 < 𝑝, 𝑗 ≠ 0 (since we are assuming (𝐺, ◦)
is non abelian). The argument in 4.3.2 shows that 𝑎𝛼1 = 𝑎1, and Lemma A.2
yields that 𝛾 is a RGF if and only if it is a morphism. Therefore, the GF’s are as
many as the choices of (⟨ 𝑎1 ⟩ , 𝑖, 𝑗), namely (𝑝 + 1)𝑝(𝑝 − 1) = 𝑝(𝑝2 − 1), and
each of them corresponds to a group (𝐺, ◦) of type 11.
As to the conjugacy classes, again 𝒞𝑞−1 stabilises every 𝛾. Moreover, if 𝛿 ∈

GL(2, 𝑝) stabilises 𝛾, then 𝛿−1 fixes ⟨ 𝑎1 ⟩, so that 𝛿12 = 0. This time

𝛾𝛿(𝑎2) = 𝛿−1𝛾(𝑎𝛿
−1
22
2 )𝛿 = 𝛿−1𝛼𝑖𝛿−122 𝛿𝜂𝑗𝛿−122 ,

where 𝑗 ≠ 0. Therefore, 𝛿 stabilises 𝛾 precisely when 𝛿12 = 0, 𝛿22 = 1, and 𝛿
centralises 𝛼𝑖. If 𝑖 = 0, the latter yields no condition, while it corresponds to
take 𝛿11 = 1 if 𝑖 ≠ 0. So the 𝛿’s in the stabiliser are those of the form

𝛿 = [𝛿11 0
𝛿21 1] if 𝑖 = 0, and 𝛿 = [ 1 0

𝛿21 1] if 𝑖 ≠ 0.
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Therefore, if 𝑖 = 0 the stabiliser has order (𝑞−1)𝑝(𝑝−1), and there is one orbit
of length 𝑝2−1. If 𝑖 ≠ 0, the stabiliser has order (𝑞−1)𝑝, and there is one orbit
of length (𝑝2 − 1)(𝑝 − 1).

Now suppose ker(𝛾) = 𝐵 has order 𝑞. Then 𝛾(𝐺) = 𝛾(𝐴) = ⟨𝛼, 𝜂 ⟩ . Let
𝑎1, 𝑎2 ∈ 𝐴 be such that

{ 𝛾(𝑎1) = 𝜂
𝛾(𝑎2) = 𝛼

. (5.1)

Since

𝑎𝛼1𝑎2 = 𝑎1◦𝑎2 = 𝑎2◦𝑎1 = 𝑎2𝑎1,

𝑎1 is a fixed point of 𝛼, and since 𝛼 has determinant equal to 1, we can suppose

𝛼 = [1 0
𝑑 1] ,

with respect to {𝑎1, 𝑎2}, where 1 ≤ 𝑑 ≤ 𝑝 − 1. By Lemma 2.12 and Lemma A.1,
each assignment (5.1) defines exactly one GF. Therefore, in this case, we have
𝑝 + 1 choices for 𝛾(𝐺), and once 𝛾(𝐺) has been chosen, there are 𝑝 − 1 ways to
choose 𝑎1 among the fixed points of 𝛼, and 𝑝2 − 𝑝 choices for 𝑎2, which is any
element of 𝐴 ⧵ ⟨ 𝑎1 ⟩. So there are (𝑝2 − 1)𝑝(𝑝 − 1) groups of type 11.
As to the conjugacy classes, every automorphism in 𝒞𝑞−1 stabilises 𝛾. Since

𝐵 = ker(𝛾) is characteristic, by Lemma 2.12, we just consider the action of
GL(2, 𝑝) on 𝛾 defined on the generators of 𝐴.
Let 𝛿 ∈ GL(2, 𝑝). Then, 𝛾𝛿(𝑎1) = 𝛾(𝑎1) if and only if 𝛾(𝑎𝛿

−1

1 ) = 𝛾(𝑎1), as
𝛿−1 centralises 𝜂. The latter yields 𝛾(𝑎𝛿−11 )|𝐴 = 1, so that 𝑎𝛿−11 ∈ ⟨ 𝑎1 ⟩, namely
𝛿12 = 0. Moreover, since 𝛾|⟨ 𝑎1 ⟩ is amorphism, 𝛾(𝑎

𝛿−1
1 ) = 𝜂 if and only if 𝛿11 = 1.

Now, since

𝛾(𝑎𝑘2 ) = 𝛾(𝑎1)
−𝑑( 𝑘(𝑘−1)

2
)𝛾(𝑎2)𝑘 = 𝜂−𝑑(

𝑘(𝑘−1)
2

)𝛼𝑘,

we have

𝛾𝛿(𝑎2) = 𝛿−1𝛾(𝑎𝛿−12 )𝛿 = 𝛿−1𝛾(𝑎−𝛿21𝛿
−1
22

1 𝑎𝛿
−1
22
2 )𝛿 = 𝜂−𝛿

−1
22 (𝛿21+

𝑑
2
(𝛿−122 −1))𝛿−1𝛼𝛿−122 𝛿,

and the latter coincides with 𝛾(𝑎2) precisely when

{
𝛿−1𝛼𝛿−122 𝛿 = 𝛼
𝛿21 = −𝑑

2
(𝛿−122 − 1).

The first condition yields 𝛿222 = 1, namely 𝛿22 = ±1, so that the second yields
𝛿21 = 0, 𝑑 respectively when 𝛿22 = 1,−1. Therefore, the stabiliser has order
2(𝑞 − 1) and we get 2 orbits of length 1

2
(𝑝2 − 1)𝑝(𝑝 − 1).
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5.3. 𝒒 ∣ 𝒑 − 𝟏. Here 𝛾(𝐺) ⊆ GL2(𝑝), so 𝑝 ∣ |||ker(𝛾)||| and 𝛾(𝐺) acts trivially on
𝐵, so that

𝑏⊖1◦𝑎◦𝑏 = 𝑏−𝛾(𝑏)−1𝛾(𝑎)𝛾(𝑏)𝑎𝛾(𝑏)𝑏 = 𝑏−1𝑏𝑎𝛾(𝑏) = 𝑎𝛾(𝑏). (5.2)

If 𝑝𝑞 ∣ ker(𝛾), then equation (5.2) becomes
𝑏⊖1◦𝑎◦𝑏 = 𝑎,

so (𝐺, ◦) of type 5 and has already been considered. Thus we just deal with the
cases of kernel 𝑝2 and 𝑝.
If ker(𝛾) = 𝐴 the GF’s are exactly the morphisms. Let 𝜆 ∈ ℤ∕𝑝ℤ be an

element of multiplicative order 𝑞. By Subsubsection 4.3.4, with respect to a
suitable basis {𝑎1, 𝑎2} of 𝐴, we have

𝑇 = [𝛾(𝑏)] = [𝜆
𝑥1 0
0 𝜆𝑥2] .

Now, since 𝑎𝑡 = 𝑎◦𝑡 for all 𝑡, equation (5.2) yields that the action of 𝑏 on 𝐴
in (𝐺, ◦) is precisely 𝛾(𝑏). According to the choices of 𝛾(𝑏) we easily obtain,
besides the abelian cases,

(1) 𝑞 − 1 groups of type 7, corresponding to the choices 𝑥1 = 𝑥2 ≠ 0.
(2) (𝑝+1)𝑝

2
⋅ 2 ⋅ (𝑞 − 1) groups of type 6: choose the eigenspaces, and then

the eigenvalue different from 1.
(3) if 𝑞 > 2, we get (𝑝+1)𝑝

2
⋅ (𝑞 − 1) groups of type 9.

(4) if 𝑞 > 3 we get (𝑝+1)𝑝
2

⋅ (𝑞 − 1)(𝑞 − 3) groups of type 8. More pre-
cisely, denoting by 𝑍◦ the action of 𝑏 on 𝐴 in (𝐺, ◦), since 𝑍◦ is similar
to diag(𝜇𝑥1𝑥−12 , 𝜇), where 𝜇 = 𝜆𝑥2 , they split in 𝑝(𝑝 + 1)(𝑞 − 1) groups
isomorphic to 𝐺𝑠 for every 𝑠 ∈ 𝒦.

Remark 5.1. In the following we will write 𝑍1 ∼ 𝑍2 to mean that the two square
matrices 𝑍1, 𝑍2 are similar.

As to the conjugacy classes, since 𝐴 = ker(𝛾) is characteristic, 𝛾|𝐴 is sta-
bilised by every automorphism 𝜑 of 𝐺.
As for 𝛾|𝐵, let 𝜇 ∈ 𝒞𝑞−1, so that 𝑏𝜇

−1 = 𝑏𝑚 for some𝑚, and let 𝛿 ∈ GL(2, 𝑝).
Then

𝛾𝜇𝛿(𝑏) = 𝛿−1𝛾(𝑏)𝑚𝛿.
Therefore, 𝜇𝛿 stabilises 𝛾 precisely when 𝑇 and 𝑇𝑚 are conjugate via 𝛿, and
in that case they need to have the same eigenvalues, namely 𝑚𝑥1 = 𝑥1 and
𝑚𝑥2 = 𝑥2 or 𝑚𝑥1 = 𝑥2 and 𝑚𝑥2 = 𝑥1. Note that if 𝑚 = 1, then 𝛿 stabilises 𝛾
if and only if it is in the centraliser of 𝑇: if 𝑇 is scalar, then every 𝛿 ∈ GL(2, 𝑝)
stabilises 𝛾, while for a non-scalar matrix 𝑇 the condition is equivalent to have
𝛿 a diagonal matrix with no diagonal elements equal to zero.
Referring to the cases above, we have the following.
(1) 𝑇 is scalar and 𝑇 ∼ 𝑇𝑚 if and only if 𝑚 = 1, so that the stabiliser has

order |||GL(2, 𝑝)|||, and there is one orbit of length 𝑞 − 1.
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(2) 𝑇 is non-scalar and 𝑚 = 1. In this case the centraliser of 𝑇 consists of
the elements 𝛿 = diag(𝛿11, 𝛿22), with 𝛿𝑖𝑖 ≠ 0, therefore it has (𝑝 − 1)2
elements. Thus |||Stab(𝛾)||| = (𝑝 − 1)2, and there is one orbit of length
𝑝(𝑝 + 1)(𝑞 − 1).

(3) 𝑇 is non-scalar and𝑚 = ±1. If𝑚 = 1 then the elements in the stabiliser
are the diagonal matrices as above. If𝑚 = −1 the stabiliser consists of
the elements 𝜇𝛿, where 𝑏𝜇−1 = 𝑏−1, and

𝛿 = [ 0 𝛿12
𝛿21 0 ] ,

where 𝛿12 ≠ 0 ≠ 𝛿21. Therefore |Stab 𝛾| = 2(𝑝 − 1)2, and there is one
orbit of length 1

2
𝑝(𝑝 + 1)(𝑞 − 1).

(4) 𝑇 is non-scalar and 𝑚 = 1, indeed if 𝑚𝑥1 = 𝑥2 and 𝑚𝑥2 = 𝑥1, then
𝑥−12 𝑥1 = 𝑚 = 𝑥−11 𝑥2, namely 𝑥1 = ±𝑥2 (contradiction). Therefore
|Stab 𝛾| = (𝑝 − 1)2, and for each 𝐺𝑠, 𝑠 ∈ 𝒦, there is one orbit of length
𝑝(𝑝 + 1)(𝑞 − 1).

If ker(𝛾) = ⟨ 𝑎1 ⟩ has order 𝑝, then 𝛾(𝐺) is a subgroup of order 𝑝𝑞 ofGL(2, 𝑝),
so 𝛾(𝐺) = ⟨𝛼, 𝛽 ⟩, where 𝛼 has order 𝑝, 𝑎𝛼1 = 𝑎1, and 𝛽 is an element of order
𝑞 in the normaliser of ⟨𝛼 ⟩ in GL(2, 𝑝). By Subsubsection 4.3.4, we can choose
𝑎2 ∈ 𝐴 such that, with respect to the basis {𝑎1, 𝑎2},

[𝛼] = [1 0
1 1] , [𝛽] = [𝜆

𝑥1 0
0 𝜆𝑥2] ,

where 𝜆 has multiplicative order 𝑞 in ℤ∕𝑝ℤ, and (𝑥1, 𝑥2) ≠ (0, 0). Since 𝐴 is
characteristic, 𝑎2 has order 𝑝 in (𝐺, ◦), so that 𝛾(𝑎2) is an element of order 𝑝 (as
𝑎2 ∉ ker(𝛾)). Therefore 𝛾(𝑎2) = 𝛼𝑑, where 1 ≤ 𝑑 ≤ 𝑝 − 1. Moreover, let 𝑏 ∈ 𝐵
be such that 𝛾(𝑏) = 𝛽.
By applying 𝛾 to (5.2), we get

𝛾(𝑏)−1𝛾(𝑎)𝛾(𝑏) = 𝛾(𝑎𝛾(𝑏))
which for 𝑎 = 𝑎2, in terms of our notation, can be rewritten as

𝛽−1𝛼𝑑𝛽 =𝛼𝑑𝜆𝑥2

𝛼𝑑𝜆𝑥1−𝑥2 =𝛼𝑑𝜆𝑥2

which correspond to the condition

𝑥1 ≡ 2𝑥2 (mod 𝑞). (5.3)

This condition restricts the choices of 𝛽 to a set of (𝑞 − 1)𝑝 maps, namely the
elements of order 𝑞 in the normaliser of ⟨𝛼 ⟩ with diagonal 𝜆2𝑥2 , 𝜆𝑥2 . Thus for
each choice of ⟨𝛼 ⟩ only one group of order 𝑝𝑞 can be the image of a GF.
We note that the maps 𝛽 fulfilling equation (5.3) normalise but do not cen-

tralise ⟨𝛼 ⟩, so ⟨𝛼, 𝛽 ⟩ is not abelian.
The condition (5.3) is also sufficient to have that the map 𝛾, defined as

𝛾(𝑎𝑒1𝑎
𝑓
2 𝑏

𝑔) = 𝛽𝑔𝛼𝑓,
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is a gamma function, indeed we have

𝛾((𝑎𝑒1𝑎
𝑓
2 𝑏

𝑔)𝛾(𝑎𝑢1𝑎𝑣2𝑏𝑧)𝑎𝑢1𝑎
𝑣
2𝑏

𝑧) = 𝛾((𝑎𝑒1𝑎
𝑓
2 𝑏

𝑔)𝛽𝑧𝛼𝑣𝑎𝑢1𝑎
𝑣
2𝑏

𝑧)

= 𝛾((𝑎∗1𝑎
𝑓𝜆𝑥2𝑧
2 𝑏𝑔)𝑎𝑢1𝑎

𝑣
2𝑏

𝑧)

= 𝛾(𝑎∗1𝑎
𝑓𝜆𝑥2𝑧+𝑣
2 𝑏𝑔+𝑧)

= 𝛽𝑔+𝑧𝛼𝑓𝜆𝑥2𝑧+𝑣.
On the other hand,

𝛾(𝑎𝑒1𝑎
𝑓
2 𝑏

𝑔)𝛾(𝑎𝑢1𝑎
𝑣
2𝑏

𝑧) = 𝛽𝑔𝛼𝑓𝛽𝑧𝛼𝑣

= 𝛽𝑔+𝑧𝛼𝑓𝜆(𝑥1−𝑥2)𝑧+𝑣,
so that 𝛾 defined as above is a GF if and only if 𝑥1 ≡ 2𝑥2 (mod 𝑞).
Moreover, since we have 𝑝 + 1 choices for ⟨𝛼 ⟩, 𝑝 − 1 for 𝑑, and 𝑝(𝑞 − 1) for

𝛽, we obtain 𝑝(𝑝2 − 1)(𝑞 − 1) groups (𝐺, ◦).
As for the type of (𝐺, ◦), with respect to the basis {𝑎1, 𝑎2} we have

𝑇 = [𝛽] = [𝜆
2𝑥2 0
0 𝜆𝑥2] .

Since 𝑎𝑡1 = 𝑎◦𝑡1 and 𝑎𝑡2 = 𝑎◦𝑡2 modulo ⟨ 𝑎1 ⟩ for all 𝑡, denoting by 𝑍◦ the action of
𝑏 on 𝐴 in (𝐺, ◦), we have 𝑍◦ ∼ 𝑇. Therefore,

∙ if 𝑞 > 3 all groups (𝐺, ◦) are of type 8, and they are all isomorphic to𝐺2;
∙ if 𝑞 = 3 all groups (𝐺, ◦) are of type 9;
∙ if 𝑞 = 2 we have 𝑥1 = 0, 𝑥2 = 1, so all groups (𝐺, ◦) are of type 6.

As to the conjugacy classes, let 𝜑 ∈ Aut(𝐺), and write 𝜑 = 𝜇𝛿 as above.
Recall that 𝑏𝜇−1 = 𝑏𝑚. If 𝜑 is in the stabiliser of 𝛾 then 𝜑, and hence 𝛿, stabilises
⟨ 𝑎1 ⟩, so 𝛿12 = 0. Moreover,

𝛾𝜑(𝑎2) = 𝜑−1𝛾(𝑎𝛿−12 )𝜑 = 𝜑−1𝛾(𝑎𝛿
−1
22
2 )𝜑 = 𝛿−1𝛼𝛿−122 𝛿,

and 𝛾𝜑(𝑎2) = 𝛾(𝑎2) if and only if 𝛿11 = 𝛿222. Now,

𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑏𝜇−1)𝜑 = 𝜑−1𝛾(𝑏𝑚)𝜑 = 𝛿−1𝑇𝑚𝛿,
so that, if 𝜑 stabilises 𝛾, then 𝑇 and 𝑇𝑚 are conjugate, and they have the same
eigenvalues. This implies that either 𝑚 = 1 or 𝑚 = 2 and 𝑞 = 3. If 𝑚 = 1,
then every diagonal matrix 𝛿 commutes with 𝑇. If 𝑞 = 3 and 𝑚 = 2, then the
condition 𝛿−1𝑇−1𝛿 = 𝑇 yields 𝜆𝑥2 = 𝜆−𝑥2 , and since 𝑥2 ≠ 0 this case does not
arise. Therefore the stabiliser has order 𝑝 − 1, and there is one orbit of length
𝑝(𝑝2 − 1)(𝑞 − 1).
5.4. 𝒒 ∣ 𝒑 + 𝟏. We have to exclude the cases already considered, so we restrict
to 𝑞 > 2 (otherwise 𝑞 also divides 𝑝 − 1) and (𝐺, ◦) non-abelian. Therefore,
(𝐺, ◦) can only have type 10.
As in Subsection 5.3, 𝛾(𝐺) ⊆ GL2(𝑝), so 𝑝 ∣ |||ker(𝛾)|||. The only possibility is|||ker(𝛾)||| = 𝑝2 since a group of type 10 has no normal subgroups of order 𝑝 or

𝑝𝑞.
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Lemma 2.5 guarantees that in this case all the GF’s are morphisms, so to
count them we can just count the possibilities for the image of 𝑏.
An element 𝜗 ∈ GL(2, 𝑝) of order 𝑞 has determinant equal to 1, as 𝑞 ∤ 𝑝−1,

and its eigenvalues 𝜆, 𝜆−1 belong to a quadratic extension of 𝒞𝑝. Therefore,
every subgroup ofGL(2, 𝑝) of order 𝑞 is conjugate to ⟨𝜗 ⟩, and inGL(2, 𝑝) there
are

|||GL(2, 𝑝)|||
|||Stab(⟨𝜗 ⟩)|||

subgroups of order 𝑞. Now, if 𝜗 and 𝜗𝑘 are conjugate, they have the same eigen-
values, and this yields 𝑘 = ±1. For each of these two choices we obtain 𝑝2 − 1
elements in the stabiliser, therefore there are

(𝑝2 − 1)(𝑝2 − 𝑝)
2(𝑝2 − 1)

=
(𝑝
2
)

subgroups of order 𝑞 in GL(2, 𝑝).
So we can choose the image of 𝑏 in such a subgroup in 𝑞 − 1 ways, and we

get

(1)
(𝑝
2
)
(𝑞 − 1) groups of type 10.

As to the conjugacy classes, 𝐴 = ker(𝛾) is characteristic, therefore every
automorphism 𝜑 of 𝐺 stabilises 𝛾|𝐴.
Let 𝑏 ∈ 𝐵 be such that 𝛾(𝑏) = 𝜗, and let 𝜑 = 𝜇𝛿 ∈ Aut(𝐺), where 𝜇 ∈ 𝒞𝑞−1,

𝛿 ∈ GL(2, 𝑝) and𝑚 is such that 𝑏𝜇−1 = 𝑏𝑚. Then

𝛾𝜑(𝑏) = 𝛿−1𝛾(𝑏𝑚)𝛿,

so that 𝜑 stabilises 𝛾 if and only if 𝜗 and 𝜗𝑚 are conjugate via 𝛿. As above, in
this case𝑚 = ±1, and for each of these values of𝑚 there are 𝑝2−1 possibilities
for 𝛿.
Therefore, we get one orbit of length 1

2
(𝑞 − 1)𝑝(𝑝 − 1).

We summarise, including the right regular representation.

Proposition 5.2. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝 > 2, of type 5. For each
isomorphism class of groups (Γ), the number of regular subgroups inHol(𝐺) (𝑅𝑆),
and the number (𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺) are listed
in the following tables.
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
(i)

Γ 𝑅𝑆 𝑛 𝑙

5 𝑝2 1 1
1 (𝑝2 − 1)

(ii) for 𝑝 ∣ (𝑞 − 1):
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Γ RS 𝑛 𝑙

5 𝑝2 1 1
1 (𝑝2 − 1)

11 𝑝2(𝑝2 − 1)
1 (𝑝2 − 1)
1 (𝑝 − 1)(𝑝2 − 1)
2 1

2
𝑝(𝑝 − 1)(𝑝2 − 1)

(iii) for 𝑞 ∣ (𝑝 − 1),
Γ Conditions RS 𝑛 𝑙

5 𝑝2 1 1
1 𝑝2 − 1

6 𝑝(𝑝 + 1)(𝑞 − 1) 1 𝑝(𝑝 + 1)(𝑞 − 1)
𝑞 = 2 𝑝(𝑝2 − 1) 1 𝑝(𝑝2 − 1)

7 𝑞 − 1 1 𝑞 − 1

8𝐺2 𝑞 > 3 𝑝2(𝑝 + 1)(𝑞 − 1) 1 𝑝(𝑝 + 1)(𝑞 − 1)
1 𝑝(𝑝2 − 1)(𝑞 − 1)

8𝐺𝑠 , 𝑠 ≠ 2 𝑞 > 3 𝑝(𝑝 + 1)(𝑞 − 1) 1 𝑝(𝑝 + 1)(𝑞 − 1)

9 𝑞 > 2 1
2
𝑝(𝑝 + 1)(𝑞 − 1) 1 1

2
𝑝(𝑝 + 1)(𝑞 − 1)

𝑞 = 3 𝑝(𝑝2 − 1)(𝑞 − 1) 1 𝑝(𝑝2 − 1)(𝑞 − 1)

In the row of 8𝐺𝑠 wemean that for every 𝑠 ∈ 𝒦, 𝑠 ≠ 2, there are𝑝(𝑝+1)(𝑞−1)
regular subgroups isomorphic to 𝐺𝑠.

(iv) for 𝑞 ∣ (𝑝 + 1) and 𝑞 > 2:
Γ RS 𝑛 𝑙

5 𝑝2 1 1
1 (𝑝2 − 1)

10 1
2
𝑝(𝑝 − 1)(𝑞 − 1) 1 1

2
𝑝(𝑝 − 1)(𝑞 − 1)

6. Type 6
In this case 𝑞 ∣ 𝑝 − 1, and 𝐺 = 𝒞𝑝 × (𝒞𝑝 ⋊ 𝒞𝑞). The Sylow 𝑝-subgroup 𝐴

is characteristic in 𝐺. Write 𝐶 = ⟨ 𝑐 ⟩ for the normal subgroup of order 𝑝 in
𝒞𝑝⋊𝒞𝑞, and 𝑍 = ⟨ 𝑧 ⟩ for the central factor of order 𝑝, so that𝐴 = 𝐶𝑍 = ⟨ 𝑐, 𝑧 ⟩.
We have

Aut(𝐺) = 𝒞𝑝−1 × Hol(𝒞𝑝).

Write ⟨𝜓 ⟩ = 𝒞𝑝−1 for the central factor inAut(𝐺), and letHol(𝒞𝑝) = 𝜄(𝐶)⋊⟨𝜇 ⟩,
where, according to [8],

𝜓 ∶
⎧

⎨
⎩

𝑧 ↦ 𝑧𝑘
𝑐 ↦ 𝑐
𝑏 ↦ 𝑏

, 𝜇 ∶
⎧

⎨
⎩

𝑧 ↦ 𝑧
𝑐 ↦ 𝑐ℎ
𝑏 ↦ 𝑏

, (6.1)

for some 1 ≤ ℎ, 𝑘 ≤ 𝑝 − 1, and where 𝑏 ∈ 𝐺 is chosen in such a way that
𝜄(𝑏) ∈ ⟨𝜇 ⟩.
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Aut(𝐺) contains a unique Sylow 𝑝-subgroup of order 𝑝, namely 𝜄(𝐶). 𝐶 is
characteristic in𝐺, so that it is a subgroup of (𝐺, ◦) too. Therefore 𝛾(𝐶) is a sub-
group of Aut(𝐺), and necessarily it is contained in 𝜄(𝐶). We can apply Proposi-
tion 2.9 and assume that 𝐶 ≤ ker(𝛾). Then, by Corollary 2.10, to count all the
GFs we simply double the numbers obtained.
In the following, it is useful to keep in mind that

{ 𝑏
⊖1◦𝑐◦𝑏 = 𝑐𝛾(𝑏)𝜄(𝑏)
𝑏⊖1◦𝑧◦𝑏 = (𝑏−𝛾(𝑏)−1𝛾(𝑧)𝛾(𝑏)𝑏)𝑧𝛾(𝑏).

6.1. The case 𝑨 ≤ 𝐤𝐞𝐫(𝜸). Suppose ker(𝛾) = 𝐴, as the case ker(𝛾) = 𝐺 yields
the right regular representation. So 𝛾(𝐺) has order 𝑞.
The action of 𝛾(𝐺) of order 𝑞 on the set of the Sylow 𝑞-subgroups of 𝐺 has

at least one fixed point, namely there is at least one 𝛾(𝐺)-invariant Sylow 𝑞-
subgroup 𝐵 of 𝐺. Therefore, by Proposition 2.6, the GF’s on 𝐺 are induced by
the RGF’s on 𝐵, and each 𝛾 is obtained 𝑟 times, where 𝑟 is the number of 𝛾(𝐺)-
invariant Sylow 𝑞-subgroups of 𝐺.
Note moreover that [𝐵, 𝛾(𝐵)] = 1, as 𝐵 and 𝛾(𝐵) have order 𝑞 (𝛾(𝐵) = 𝛾(𝐺),

see Corollary 2.4), so that by Lemma 2.5 the RGF’s on 𝐵 are precisely the mor-
phisms 𝐵 → Aut(𝐺).
Let 𝛽 be the element of order 𝑞 in the central factor 𝒞𝑝−1 ofAut(𝐺), such that

𝑧𝛽 = 𝑧𝜆, where 𝜆 is the eigenvalue of 𝐶 under the action of 𝑏, namely 𝑐𝑏 = 𝑐𝜆.
Here 𝑐◦𝑡 = 𝑐𝑡 and 𝑧◦𝑡 = 𝑧𝑡 for all 𝑡. Let 𝑍◦ be the action of 𝑏 on 𝐴 in (𝐺, ◦).

We will write 𝑍◦ with respect to the basis {𝑐, 𝑧} of (𝐴, ◦).
(1) If 𝛾(𝑏) = 𝛽𝑖, for some 0 < 𝑖 < 𝑞, then 𝑍◦ = diag(𝜆, 𝜆𝑖). Here the choice

of 𝐵 is immaterial, and we get
(a) 1 group of type 7 when 𝑖 = 1;
(b) 1 group of type 9 when 𝑖 = 𝑞 − 1 and 𝑞 > 2;
(c) 𝑞 − 3 groups of type 8, when 𝑞 > 3. They split in 2 groups isomor-

phic to 𝐺𝑠 for every 𝑠 ∈ 𝒦.
(2) If 𝛾(𝑏) = 𝜄(𝑏)𝑗, for some 0 < 𝑗 < 𝑞, then 𝑍◦ = diag(𝜆𝑗+1, 1) and we get

(a) 𝑝 groups of type 5 when 𝑗 = 𝑞 − 1, for the possible choices of 𝐵;
(b) 𝑝(𝑞 − 2) groups of type 6 when 0 < 𝑗 < 𝑞 − 1, for the possible

choices of 𝐵.
(3) If 𝛾(𝑏) = 𝛽𝑖𝜄(𝑏)𝑗, for some 0 < 𝑖, 𝑗 < 𝑞, then 𝑍◦ = diag(𝜆1+𝑗, 𝜆𝑖) and we

get
(a) 𝑝(𝑞 − 1) groups of type 6, when 𝑗 = 𝑞 − 1;
(b) 𝑝(𝑞 − 2) of type 7, when 𝑖 = 𝑗 + 1 ≠ 0;
(c) 𝑝(𝑞 − 2) of type 9, when −𝑖 = 𝑗 + 1 ≠ 0 and 𝑞 > 2;
(d) 𝑝((𝑞 − 1)2 − 3𝑞 + 5) = 𝑝(𝑞 − 2)(𝑞 − 3) groups of type 8 in the

remaining cases; they occur only for 𝑞 > 3. They split in 2𝑝(𝑞−2)
groups isomorphic to 𝐺𝑠, for every 𝑠 ∈ 𝒦.

As to the conjugacy classes, since 𝐴 = ker(𝛾) is characteristic, to find the
automorphisms which stabilise 𝛾, we can look at the action of Aut(𝐺) on 𝛾|𝐵.
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The central factor ⟨𝜓 ⟩ ofAut(𝐺) and ⟨𝜇 ⟩ are in the stabiliser of 𝛾, as they fix
𝑏 and centralise 𝛾(𝑏). As for 𝜄(𝐶), for 𝛾(𝑏) = 𝛽𝑖𝜄(𝑏)𝑗, we have

𝛾𝜄(𝑐𝑚)(𝑏) = 𝜄(𝑐−𝑚)𝛾(𝑏)𝜄(𝑐𝑚) = 𝛽𝑖𝜄(𝑏𝑗𝑐𝑚(1−𝜆𝑗)),
so that 𝜄(𝑐𝑚) stabilises 𝛾 if and only if𝑚 = 0 or 𝑗 = 0.
Therefore, if 𝛾 is a GF defined by 𝛾(𝑏) = 𝛽𝑖𝜄(𝑏)𝑗, 𝑗 ≠ 0, the stabiliser has

order (𝑝 − 1)2, and the orbits have length 𝑝. Otherwise 𝛾(𝑏) = 𝛽𝑖 and every
automorphism stabilises 𝛾, so that the orbits have length 1. More precisely we
obtain

(1) 𝑝 groups of type 5 which form one class of length 𝑝;
(2) 𝑝(𝑞 − 2) + 𝑝(𝑞 − 1) = 𝑝(2𝑞 − 3) groups of type 6 which split in 2𝑞 − 3

classes of length 𝑝;
(3) 𝑝(𝑞−2)+1 groups of type 7, which split in 𝑞−2 classes of length 𝑝 and

one class of length one (the last one is for 𝑗 = 0).
(4) if 𝑞 > 3, 2𝑝(𝑞−2)+2 groups for each isomorphism class𝐺𝑠 of groups of

type 8, which split in 2(𝑞−2) classes of length 𝑝, and 2 classes of length
one (these are for 𝑗 = 0).

(5) if 𝑞 > 2, 𝑝(𝑞 − 2) + 1 groups of type 9, which split in 𝑞 − 2 classes of
length 𝑝, and one class of length one (this is for 𝑗 = 0).

6.2. The case 𝑪 ≤ 𝐤𝐞𝐫(𝜸) ≠ 𝑨. Suppose now 𝐶 ≤ ker(𝛾) ≠ 𝐴, so that we
will have 𝛾(𝑧) = 𝜄(𝑐)𝑒, for some 𝑒 ≠ 0. If 𝛾(𝑏) is a (possibly trivial) 𝑞-element in
𝛾(𝐺), then 𝑏 is a 𝑞-element in 𝐺, and we will have

𝛾(𝑏) ∈ ⟨ 𝛽, 𝜄(𝑏𝑐𝑚) ⟩
for some𝑚.
Recall that 𝜆 is the eigenvalue of 𝐶 under the action of 𝑏. If 𝛾(𝑏) = 𝛽𝑡, for

some 𝑡, then 𝛾(𝐺) is abelian, so that (𝐺, ◦) is of type 5 or 6. However,
𝑏⊖1◦𝑐◦𝑏 = 𝑐𝛾(𝑏)𝜄(𝑏) = 𝑐𝜆 = 𝑐◦𝜆 ≠ 𝑐,

so that (𝐺, ◦) is not abelian, and thus of type 6.
We also have

𝑏⊖1◦𝑧◦𝑏 = 𝑏−𝛾(𝑏)−1𝛾(𝑧)𝛾(𝑏)𝑧𝛾(𝑏)𝑏 ≡ mod 𝐶 𝑧𝜆
𝑡 = 𝑧◦𝜆𝑡 ,

so that 𝑡 = 0, as (𝐺, ◦) has to be of type 6. Therefore the kernel has order 𝑝𝑞,
𝛾(𝐺) = 𝛾(𝑍) and [𝑍, 𝛾(𝑍)] = 1, so that by Proposition 2.6 and Lemma 2.5 the
GF’s on 𝐺 are precisely the morphisms 𝑍 → Aut(𝐺), which are as many as the
choices for 𝑒, namely 𝑝 − 1.
If 𝛾(𝑏) = 𝛽𝑡𝜄(𝑏𝑐𝑚)𝑙 for some 𝑙 ≠ 0 and 𝑡, replacing 𝑏 with 𝑏𝑐𝑚 we see that we

can take𝑚 = 0.
We have

𝑏⊖1◦𝑐◦𝑏 = 𝑐𝛾(𝑏)𝜄(𝑏) = 𝑐𝜆𝑙+1 = 𝑐◦𝜆𝑙+1 .
Then

𝑏⊖1◦𝑧◦𝑏 = 𝑏−𝛾(𝑏)−1𝛾(𝑧)𝛾(𝑏)𝑧𝛾(𝑏)𝑏 ≡ mod 𝐶 𝑧𝜆
𝑡 = 𝑧◦𝜆𝑡 .
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However
𝛾(𝑏⊖1◦𝑧◦𝑏) = 𝛾(𝑏)−1𝛾(𝑧)𝛾(𝑏) = 𝜄(𝑐)𝑒𝜆𝑙 = 𝛾(𝑧)𝜆𝑙 .

It follows that 𝑡 = 𝑙.
The latter is also a sufficient condition in order to have that themap 𝛾 defined

by
𝛾(𝑏𝑚𝑐𝑘𝑧𝑛) = 𝛽𝑚𝑡𝜄(𝑏𝑚𝑙𝑐𝑛𝑒)

satisfies the GFE. Indeed

𝛾(𝑏𝑚𝑐𝑘𝑧𝑛)𝛾(𝑏𝑢𝑐𝑣𝑧𝑤) = 𝛽𝑚𝑡𝜄(𝑏𝑚𝑙𝑐𝑛𝑒)𝛽𝑢𝑡𝜄(𝑏𝑢𝑙𝑐𝑤𝑒)
= 𝛽(𝑚+𝑢)𝑡𝜄(𝑏(𝑚+𝑢)𝑙𝑐(𝑛𝜆𝑢𝑙+𝑤)𝑒),

𝛾((𝑏𝑚𝑐𝑘𝑧𝑛)𝛾(𝑏𝑢𝑐𝑣𝑧𝑤)𝑏𝑢𝑐𝑣𝑧𝑤) = 𝛾((𝑏𝑚𝑐𝑘𝑧𝑛)𝛽𝑢𝑡 𝜄(𝑏𝑢𝑙𝑐𝑤𝑒)𝑏𝑢𝑐𝑣𝑧𝑤)
= 𝛾((𝑏𝑚𝑐∗𝑧𝑛𝜆𝑢𝑡 )𝑏𝑢𝑐𝑣𝑧𝑤)
= 𝛾((𝑏𝑚+𝑢𝑐∗𝑧𝑛𝜆𝑢𝑡+𝑤)
= 𝛽(𝑚+𝑢)𝑡𝜄(𝑏(𝑚+𝑢)𝑙𝑐(𝑛𝜆𝑢𝑡+𝑤)𝑒),

and they are equal if and only if 𝑙 = 𝑡.
As for (𝐺, ◦) we have that 𝑍◦ ∼ diag(𝜆𝑡+1, 𝜆𝑡).
(1) For 𝑡 = −1 we get 𝑝(𝑝 − 1) groups of type 6, with 𝑝 choices for 𝐵 and

𝑝 − 1 choices for 𝑒.
(2) For 𝑞 > 2 and 𝑡 = (𝑞 − 1)∕2 we have 𝜆𝑡+1𝜆𝑡 = 𝜆2𝑡+1 = 1, so 𝑝(𝑝 − 1)

groups of type 9.
(3) For 𝑞 > 3 for each of the remaining 𝑞 − 3 values of 𝑡, we get 𝑝(𝑝 − 1)

groups of type 8, so (𝑞 − 3)𝑝(𝑝 − 1) in total. They split in 2𝑝(𝑝 − 1)
groups isomorphic to 𝐺𝑠, for every 𝑠 ∈ 𝒦.

As to the conjugacy classes, write 𝜑 = 𝜓𝜄(𝑐𝑚)𝜇 for an automorphism of
𝐺, with 𝜓 and 𝜇 as in (6.1). Here 𝐶 ≤ ker(𝛾) is characteristic, so that by
Lemma 2.12, we can look at the action of 𝜑 on 𝛾 defined on the generators
𝑧, 𝑏.
Write 𝜇−1𝜄(𝑐𝑚)𝜇 = 𝜄(𝑐𝑚)𝑟 for the commutation rule in Hol(𝒞𝑝), where 1 ≤

𝑟 ≤ 𝑝 − 1. Then

𝛾𝜑(𝑧) = 𝜑−1𝛾(𝑧𝜓−1)𝜑 = 𝜇−1𝜄(𝑐𝑒𝑘−1)𝜇 = 𝜄(𝑐𝑒𝑘−1)𝑟,
so that 𝛾𝜑(𝑧) = 𝛾(𝑧) if and only if 𝑘 = 𝑟. Moreover, for 𝛾(𝑏) = 𝛽𝑡𝜄(𝑏)𝑡,

𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑐𝑚(1−𝜆−1)𝑏)𝜑
= 𝜇−1𝜄(𝑐−𝑚)𝛾(𝑏)𝜄(𝑐𝑚)𝜇
= 𝛽𝑡𝜇−1𝜄(𝑐−𝑚)𝜄(𝑏𝑡)𝜄(𝑐𝑚)𝜇
= 𝛽𝑡𝜇−1𝜄(𝑏𝑡𝑐𝑚(1−𝜆𝑡))𝜇
= 𝛽𝑡𝜄(𝑏𝑡)𝜄(𝑐𝑚(1−𝜆𝑡))𝑟,

so that 𝛾𝜑(𝑏) = 𝛾(𝑏) if and only if 𝑡 = 0 or𝑚 = 0.
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Therefore, if 𝑡 = 0, namely when ker(𝛾) has size 𝑝𝑞, the stabiliser has order
𝑝(𝑝 − 1), and there is one orbit of length 𝑝 − 1. Otherwise, if 𝑡 ≠ 0, namely
ker(𝛾) has size 𝑝, then the stabiliser has order 𝑝 − 1, and there are 𝑞 − 1 orbits
of length 𝑝(𝑝 − 1).
We summarise, including the right regular representations, and doubling the

numbers just obtained.

Proposition 6.1. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝 > 2, of type 6. For each
isomorphism class of groups (Γ), the number of regular subgroups inHol(𝐺) (𝑅𝑆),
and the number (𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺) are listed
in the following table.
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
Γ Conditions RS 𝑛 𝑙
5 2𝑝 2 𝑝

6 2𝑝(𝑝 + 2𝑞 − 3)
2 1

2(2𝑞 − 3) 𝑝
2 𝑝 − 1
2 𝑝(𝑝 − 1)

7 2(𝑝(𝑞 − 2) + 1) 2 1
2(𝑞 − 2) 𝑝

8𝐺𝑠 𝑞 > 3 4(1 + 𝑝(𝑝 + 𝑞 − 3))
4 1

4(𝑞 − 2) 𝑝
4 𝑝(𝑝 − 1)

9 𝑞 > 2 2(1 + 𝑝(𝑝 + 𝑞 − 3))
2 1

2(𝑞 − 2) 𝑝
2 𝑝(𝑝 − 1)

In the row of 8𝐺𝑠 we mean that for every 𝑠 ∈ 𝒦 there are 4(1 + 𝑝(𝑝 + 𝑞 − 3))
regular subgroups isomorphic to 𝐺𝑠.

7. Prologue to Sections 8, 9 and 10
In this section we collect some arguments which are common to the study

of the groups of types 7, 8 and 9.
In these groups the Sylow 𝑝-subgroup 𝐴 of 𝐺 is characteristic. With respect

to a suitable basis 𝑎1, 𝑎2, the action of a generator 𝑏 of a Sylow 𝑞-subgroup 𝐵 on
𝐴 can be represented by the matrix

𝑍 = 𝑍𝑘 = [𝜆 0
0 𝜆𝑘] ,

where 𝜆 is an element of multiplicative order 𝑞 inℤ∕𝑝ℤ and 𝑘 ≠ 0 is an integer
modulo 𝑞. If 𝑘 = 1 the type is 7, if 𝑘 = −1 the type is 9, and if 𝑘 ≠ 0,±1 the
type is 8.

Remark 7.1. Note that if we choose as a basis 𝑎2, 𝑎1, then the action of the gen-
erator 𝑏𝑘−1 of 𝐵 on 𝐴 is represented by the matrix 𝑍𝑘−1 .
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For types 8 and 9, each gamma function 𝛾 is such that
there is 𝜎 ∈ End(𝐴) such that 𝛾(𝑎) = 𝜄(𝑎−𝜎), for all 𝑎 ∈ 𝐴 (7.1)

(see Sections 8, 9). This is not always the case for groups of type 7 (see Sec-
tion 10). Therefore, in this section we will work under the following:

Assumption 7.2.
(𝐺, 𝛾) is a pair, where 𝐺 is a group, and 𝛾 is a GF on 𝐺, such that
− 𝐺 is a group of type 8 or 9, and 𝛾 is arbitrary, or
− 𝐺 is a group of type 7 and 𝛾 on 𝐺 satisfies 𝛾(𝐴) ≤ Inn(𝐺).

Under this assumption we have 𝛾(𝐴) ≤ Inn(𝐺). This implies 𝛾(𝐴) ≤ 𝜄(𝐴),
since 𝛾(𝑎), for 𝑎 ∈ 𝐴, has order dividing 𝑝2, and thus has to be a conjugation by
an element of𝐺. Lemma 2.7 shows that the condition 𝛾(𝐴) ≤ 𝜄(𝐴) implies (7.1).
We will prove that for a pair (𝐺, 𝛾) as in Assumption 7.2, the group 𝐺 admits

an invariant Sylow 𝑞-subgroup 𝐵, so that 𝛾 can be obtained as a lifting of a RGF
on𝐵 or as a gluing of a RGF on𝐵 and themap 𝑎 ↦ 𝜄(𝑎−𝜎), for some𝜎 ∈ End(𝐴).
It follows that 𝛾 will be of the form (2.7).
To count eachGF exactly once wewill also need to determine the exact num-

ber of invariant Sylow 𝑞-subgroups in each case.
A proof of these facts will require a detailed analysis, that will be carried out

in several steps in the next subsections. Wewill then complete the classification
for the three types in Sections 8, 9, 10.

7.1. Invariant Sylow 𝒒-subgroups of 𝑮. When 𝑞 ∣ |||ker(𝛾)|||, there is a Sylow
𝑞-subgroup contained in ker(𝛾), and this is clearly invariant.
Consider thus the case 𝑞 ∤ |||ker(𝛾)|||, so that 𝛾(𝐺) contains an element of or-

der 𝑞. In this subsection we give a characterization of the invariant Sylow 𝑞-
subgroups of 𝐺, that we will then use to count them for the various types.
Under Assumption 7.2, an element of order 𝑞 ofAut(𝐺) has the form 𝜄(𝑎∗)𝛽,

where 𝑎∗ ∈ 𝐴, and 𝛽 is an element of order 𝑞. As we will explain in Subsec-
tions 8.2.1, 9.2 and 10.2, an element 𝛽 of order 𝑞 fixes every 𝑏 ∈ 𝐵. Moreover,
with respect to the chosen basis, 𝛽 acts as

𝑇 = [𝜆
𝑥1 0
0 𝜆𝑘𝑥2] , (7.2)

where 𝜆 and 𝑘 are as above, and 𝑥1 and 𝑥2 are not both zero (this will be detailed
in Sections 8, 9 and 10).
Note that if an element of order 𝑞 inAut(𝐺) belongs to 𝛾(𝐺), then necessarily

it will be the image of an element 𝑏 ∈ 𝐺 of order 𝑞. In fact, the elements of a
group 𝐺 of type 7, 8 or 9 can have order 1, 𝑝 or 𝑞. The elements whose order
divides 𝑝 are those of the Sylow 𝑝-subgroup 𝐴, which is characteristic, so that
combining Proposition 2.3 and Theorem 2.2, (iv) for 𝑎 ∈ 𝐴, 𝛾(𝑎) has order
dividing 𝑝.
So let 𝑏 ∈ 𝐺 be an element of order 𝑞 such that

𝛾(𝑏) = 𝜄(𝑎∗)𝛽. (7.3)
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A Sylow 𝑞-subgroup of 𝐺 is of the form ⟨ 𝑏𝑥 ⟩, for 𝑥 ∈ 𝐴, and it is invariant if
and only if (𝑏𝑥)𝛾(𝑏𝑥) ∈ ⟨ 𝑏𝑥 ⟩. Now,

𝛾(𝑏𝑥) = 𝛾(𝑥−1+𝑍−1𝑏) = 𝜄(𝑥(1−𝑍−1)𝑇−1𝜎𝑎∗)𝛽,
so that

(𝑏𝑥)𝛾(𝑏𝑥) = (𝑥−1+𝑍−1𝑏)𝜄(𝑥(1−𝑍
−1)𝑇−1𝜎𝑎∗)𝛽

= (𝑥−(1−𝑍−1)(1+𝑇−1𝜎(1−𝑍−1))𝑎−(1−𝑍
−1)

∗ 𝑏)𝛽

= 𝑥−(1−𝑍−1)(1+𝑇−1𝜎(1−𝑍−1))𝑇𝑎−(1−𝑍
−1)𝑇

∗ 𝑏.

Since (𝑏𝑥)𝑗 = 𝑥−1+𝑍−𝑗𝑏𝑗 for all 𝑗, the last expression is in ⟨ 𝑏𝑥 ⟩ if and only if

𝑥−(1−𝑍−1)(1+𝑇−1𝜎(1−𝑍−1))𝑇𝑎−(1−𝑍
−1)𝑇

∗ 𝑏 = 𝑥−(1−𝑍−1)𝑏,
which, writing𝑀 = 1 − (1 + 𝑇−1𝜎(1 − 𝑍−1))𝑇, can be rewritten as

𝑥(1−𝑍−1)𝑀 = 𝑎(1−𝑍
−1)𝑇

∗ . (7.4)

The number of solutions 𝑥 of the system (7.4) is the number of invariant
Sylow 𝑞-subgroups: a solution 𝑥 corresponds to the invariant Sylow 𝑞-subgroup
𝐵 = ⟨ 𝑏𝑥 ⟩.
When the kernel of 𝛾 has size 𝑝2, the existence of an invariant Sylow 𝑞-

subgroup can be easily shown by noticing that the action of the group 𝛾(𝐺),
of size 𝑞, on the set of Sylow 𝑞-subgroups, that has cardinality 𝑝2, admits at
least one fixed point. This means that the system (7.4) is always solvable.
When the kernel of 𝛾 has size 𝑝 or 1 the system (7.4) can be unsolvable for

some 𝑎∗.However, we will show in 7.3.1 and in 8.7 that under Assumption 7.2
the following are equivalent: for a given 𝑎∗,

(1) equation (7.4) admits a solution 𝑥, and
(2) the assignments given in (7.1) and (7.3) can be extended to a GF on 𝐺.

In fact, if the assignments in (7.1) and (7.3) can be extended to a GF, then

𝛾(𝑏𝑚) = 𝛾((𝑏𝑚−1)𝛾(𝑏)
−1
)𝛾(𝑏),

and an inductive argument shows that

𝛾(𝑏𝑚) = 𝜄(𝑎−𝐴𝑚𝜎+1+𝑇
−1+⋯+𝑇−(𝑚−1)

∗ )𝛽𝑚, (7.5)

where

𝐴𝑚 =
𝑚−1∑

𝑖=1
(1 − 𝑍−𝑖)𝑇−𝑖.

Since 𝛾(𝑏𝑞) = 1 and the center of 𝐺 is trivial, (7.5) yields

𝑎𝐴𝑞𝜎∗ = 𝑎1+𝑇−1+⋯+𝑇−(𝑞−1)
∗ . (7.6)

In Subsections 7.3 and 8.7 wewill see that the elements 𝑎∗ satisfying (7.6) are
exactly those for which the system (7.4) admits solutions. The case |||ker(𝛾)||| = 1
is specific to the type 9 and it will be considered in Section 8.
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7.2. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝟐. As we already noticed, the action on 𝐺 of the
group 𝛾(𝐺) of order 𝑞 fixes at least one of the 𝑝2 Sylow 𝑞-subgroups of 𝐺, say
𝐵 = ⟨ 𝑏 ⟩. Therefore, by Proposition 2.6, each 𝛾 on 𝐺 is the lifting of at least one
RGF defined on such a Sylow 𝑞-subgroup 𝐵. To count each GF exactly once,
we need to compute the number of invariant Sylow 𝑞-subgroups.
In this case, the element 𝛾(𝑏) of order 𝑞 acts trivially on 𝐵, so that 𝑎∗ =

1 and [𝐵, 𝛾(𝐵)] = {1}; by Lemma 2.5, the RGF’s on 𝐵 are thus precisely the
morphisms.
Let 𝛾(𝑏)|𝐴 = 𝛽, where 𝛽 is as in (7.2).
Equation (7.4) yields

𝑥(1−𝑍−1)𝑀 = 1,
where

𝑀 = 1 − 𝑇 = [1 − 𝜆𝑥1 0
0 1 − 𝜆𝑘𝑥2] .

Since det(1 − 𝑍−1) ≠ 0, we obtain that
(1) there is a unique solution, namely a unique invariant Sylow 𝑞-subgroup,

when both 𝑥1, 𝑥2 ≠ 0;
(2) there are 𝑝 solutions, that is, 𝑝 invariant Sylow 𝑞-subgroups, when ei-

ther 𝑥1 = 0 or 𝑥2 = 0.
The action of 𝑏 on 𝐴 with respect to the operation ◦ is given by

𝑏⊖1◦𝑎◦𝑏 = 𝑏−𝛾(𝑏)−1𝛾(𝑎)𝛾(𝑏)𝑎𝛾(𝑏)𝑏 = 𝑎𝛾(𝑏)𝜄(𝑏),

and denoting by 𝑍◦ its associated matrix, we have

𝑍◦ ∼ [𝜆
1+𝑥1 0
0 𝜆𝑘+𝑘𝑥2] .

The enumeration of the groups (𝐺, ◦) depends on the type of the groups 𝐺,
that is, on the parameter 𝑘. We will treat the various types separately in Sub-
sections 8.5, 9.4 and 10.4.

7.3. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑. Here |||𝛾(𝐺)||| = 𝑝𝑞. Write 𝛾(𝑏) = 𝜄(𝑎∗)𝛽, where 𝑏
has order 𝑞, and 𝑎∗ and 𝛽 are as in Subsection 7.1. Equation (2.5) yields

𝜎𝑇(𝜎 − 1) = (𝜎 − 1)𝑇𝑍𝜎. (7.7)

The condition |||ker(𝛾)||| = 𝑝 means that |||ker(𝜎)||| = 𝑝, so let ker(𝜎) = ⟨ 𝑣 ⟩.
Using (7.7) we obtain 𝑣−𝑇𝑍𝜎 = 1, therefore 𝑣−𝑇𝑍 ∈ ⟨ 𝑣 ⟩, namely, 𝑣 is an eigen-
vector for 𝑇𝑍. If 𝑇𝑍 is not scalar, then its eigenspaces are ⟨ 𝑎1 ⟩ and ⟨ 𝑎2 ⟩, so
either 𝑣 ∈ ⟨ 𝑎1 ⟩ or 𝑣 ∈ ⟨ 𝑎2 ⟩. When 𝑇𝑍 is scalar, 𝑣 can be any non-zero element
of 𝐴.
We proceed by distinguishing three cases, namely when ker(𝜎) = ⟨ 𝑎1 ⟩,

when ker(𝜎) = ⟨ 𝑎2 ⟩, and lastly when ker(𝜎) is generated by 𝑣 = 𝑎𝑥1𝑎
𝑦
2 , where

𝑥, 𝑦 ≠ 0.
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Case 𝐴: ker(𝜎) = ⟨ 𝑎1 ⟩. Here 𝑎𝜎1 = 1, and 𝑎𝜎2 = 𝑎𝜇1𝑎
𝜈
2 for some 𝜇, 𝜈 not both

0. Evaluating equation (7.7) in 𝑎2, we get

{ 𝜇(𝜈 − 𝜆𝑥1−𝑥2𝑘) = 𝜇(𝜈 − 1)𝜆𝑘
(𝜈 − 1)𝜈 = (𝜈 − 1)𝜈𝜆𝑘.

(7.8)

Since 𝜆𝑘 ≠ 1, the second equation gives that either 𝜈 = 0 or 𝜈 = 1. If 𝜈 = 0,
then 𝜇 ≠ 0 and 𝑥1−𝑥2𝑘 = 𝑘. If 𝜈 = 1, then either 𝜇 = 0 or 𝜇 ≠ 0 and 𝑥1 = 𝑥2𝑘.
Case 𝐴∗: ker(𝜎) = ⟨ 𝑎2 ⟩. This case can be reduced to case 𝐴 according to

Remark 7.1, obtaining a system as in (7.8) with 𝜆𝑘−1 replacing 𝜆𝑘.
When 𝑘 = 𝑘−1, that is for the groups 𝐺 of type 7 and 9, the conditions are

the same, so we will double the results we will obtain in case 𝐴.
For the groups𝐺 of type 8, 𝑘−1 ≠ 𝑘, therefore we will sum the results we will

obtain in case 𝐴 for 𝑘 with the same results for 𝑘−1.
Case 𝐵: ker(𝜎) =

⟨
𝑎𝑥1𝑎

𝑦
2
⟩
, where 𝑥, 𝑦 ≠ 0. Here 𝑇𝑍 is scalar, namely 𝑥1 =

𝑥2𝑘 + 𝑘 − 1. We can replace the generator 𝑣 = 𝑎𝑥1𝑎
𝑦
2 of the kernel by 𝑣

𝑥−1 =
𝑎1𝑎

𝑦𝑥−1
2 , and thus assume 𝑣 = 𝑎1𝑎𝑧2 , for some 𝑧 ≠ 0. Rescaling 𝑎2, we can also

assume 𝑧 = 1, keeping in mind that this covers 𝑝 − 1 cases here. Therefore,
here 𝜎 is defined as

𝑎𝜎1 = 𝑎−𝜇1 𝑎−𝜈2 , 𝑎𝜎2 = 𝑎𝜇1𝑎
𝜈
2 ,

for some 𝜇, 𝜈 not both 0. Evaluating equation (7.7) on 𝑎2, we get

{ 𝜇(−𝜇𝜆
−1 − 𝜆−1 + 𝜈𝜆−𝑘) = 𝜇(−𝜇 + 𝜈 − 1)

𝜈(−𝜇𝜆−1 − 𝜆−𝑘 + 𝜈𝜆−𝑘) = 𝜈(−𝜇 + 𝜈 − 1).
(7.9)

If 𝜈 = 0 then 𝜇 ≠ 0 and we get −(𝜇 + 1)𝜆−1 = −(𝜇 + 1), that is, 𝜇 = −1, so
𝐴𝜎 = ⟨ 𝑎1 ⟩. If 𝜈 ≠ 0 and 𝜇 = 0, we get (𝜈 − 1)𝜆−𝑘 = 𝜈 − 1, that is, 𝜈 = 1 and
𝐴𝜎 = ⟨ 𝑎2 ⟩. Lastly, if both 𝜈, 𝜇 ≠ 0, then if 𝑘 = 1 we get 𝜇 + 1 − 𝜈 = 0, and if
𝑘 ≠ 1 the system has no solution.
If 𝑘 = 1, namely 𝐺 is of type 7, then the condition 𝜇+1−𝜈 = 0 includes also

the cases above in which 𝜇 = −1 and 𝜈 = 0, or 𝜇 = 0 and 𝜈 = 1.
If 𝑘 ≠ 1, namely 𝐺 is of type 8 or 9, the last case does not happen. More-

over we reduce the case (𝜇, 𝜈) = (0,−1) to the case (𝜇, 𝜈) = (1, 0) according to
Remark 7.1, obtaining a system as in (7.9) with 𝜆𝑘−1 replacing 𝜆𝑘.
As for case 𝐴∗, for the groups 𝐺 of type 9 we will double the results we will

obtain in case (𝜇, 𝜈) = (1, 0), and for the groups 𝐺 of type 8 we will sum the
results we will obtain in case (𝜇, 𝜈) = (1, 0) for 𝑘 with the same results for 𝑘−1.
Under Assumption 7.2, for a group 𝐺 ≃ 𝐺𝑘, we sum up our analysis as fol-

lows:
∙ Case A: ker(𝜎) = ⟨ 𝑎1 ⟩.
(A1) 𝜈 = 0, 𝜇 ≠ 0, 𝑥1 − 𝑥2𝑘 = 𝑘;
(A2) 𝜈 = 1, 𝜇 ≠ 0, 𝑥1 = 𝑥2𝑘;
(A3) 𝜈 = 1, 𝜇 = 0.
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∙ Case A∗: ker(𝜎) = ⟨ 𝑎2 ⟩.
It is equivalent to considering the case A for 𝐺 ≃ 𝐺𝑘−1 , as explained
above. Therefore, replacing 𝜆𝑘 with 𝜆𝑘−1 in (A1), (A2) and (A3), here
we obtain the subcases (A1∗), (A2∗) and (A3∗).

∙ Case B: ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩.
(1) If 𝑘 ≠ 1 (namely 𝐺 is of type 8 or 9):

(B1) 𝜈 = 0, 𝜇 = −1, 𝑥1 = 𝑥2𝑘 + 𝑘 − 1;
(B1∗) 𝜈 = 1, 𝜇 = 0, 𝑥1 = 𝑥2𝑘+𝑘−1. As explained above, this case

is equivalent to considering the case (B1) for 𝐺 ≃ 𝐺𝑘−1 .
(2) If 𝑘 = 1 (namely 𝐺 is of type 7):

(B2) 𝜇 + 1 − 𝜈 = 0, 𝑥1 = 𝑥2.

7.3.1. Invariant Sylow 𝒒-subgroups. We are now ready to prove, under As-
sumption 7.2 and when | ker(𝛾)| = 𝑝, that the groups always have at least one
invariant Sylow 𝑞-subgroup and to determine their number in terms of our as-
signments 𝛾(𝑎) = 𝜄(𝑎−𝜎) and 𝛾(𝑏) = 𝜄(𝑎∗)𝛽.
Subsection 7.1 yields that, for 𝑥 ∈ 𝐴, the Sylow 𝑞-subgroup ⟨ 𝑏𝑥 ⟩ is invariant

if and only if 𝑥 is a solution of (7.4):

𝑥(1−𝑍−1)𝑀 = 𝑎(1−𝑍
−1)𝑇

∗ ,

where𝑀 = 1 − (1 + 𝑇−1𝜎(1 − 𝑍−1))𝑇, and det(1 − 𝑍−1) ≠ 0.
If det(𝑀) ≠ 0, then the system (7.4) admits a unique solution for each 𝑎∗, or

equivalently, for each choice of 𝛾(𝑏).
If det(𝑀) = 0, then for some 𝑎∗’s the system (7.4) admits 𝑝 or 𝑝2 solutions,

and for others it has no solution. However, we show that in the latter case the
values for 𝛾(𝑎), 𝛾(𝑏) do not extend to a full GF on 𝐺.
In fact, if 𝛾 is a GF on 𝐺 such that 𝛾(𝑏) = 𝜄(𝑎∗)𝛽, then 𝛾 satisfies (7.5)

and (7.6). Wewill show that if the system (7.4) has no solution for some 𝑎∗, then
𝑎∗ does not satisfy the condition (7.6), and thus the assignments 𝛾(𝑎) = 𝜄(𝑎−𝜎)
and 𝛾(𝑏) = 𝜄(𝑎∗)𝛽 cannot be extended to a GF.
Write 𝑎∗ = 𝑎𝑥1𝑎

𝑦
2 . We distinguish several cases.

Case A: Here ker(𝜎) = ⟨ 𝑎1 ⟩, and

𝑀 = [ 1 − 𝜆𝑥1 0
−𝜇𝜆𝑥1−𝑥2𝑘(1 − 𝜆−1) 1 − 𝜆𝑥2𝑘 − 𝜈(1 − 𝜆−𝑘)] .

According to the division into subcases, we have
A1: det(𝑀) = (1−𝜆𝑥1)(1−𝜆𝑥1−𝑘), so that there is a unique invariant
Sylow 𝑞-subgroup when 𝑥1 ≠ 0, 𝑘.
If 𝑥1 = 0, then the system (7.4) admits (a number of 𝑝) solutions if
and only if 𝑎∗ = 𝑎−𝜇𝑦1 𝑎𝑦2 . In this case there are 𝑝 invariant Sylow 𝑞-
subgroups. Moreover, if 𝑎∗ = 𝑎𝑥1𝑎

𝑦
2 , the condition (7.6) yields that

𝑥 = −𝜇𝑦. Therefore, by the discussion above, the case in which
there are no invariant Sylow 𝑞-subgroups does not arise.
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If 𝑥1 = 𝑘, then (7.4) admits (a number of 𝑝) solutions if and only if
𝑎∗ = 𝑎𝑥1 , and in this case there are𝑝 invariant Sylow 𝑞-subgroups. (7.6)
yields that 𝑦 = 0, therefore the case in which there are no invariant
Sylow 𝑞-subgroups does not arise.

A2: det(𝑀) = (1 − 𝜆𝑥1)(𝜆−𝑘(1 − 𝜆𝑥1+𝑘)), so that there is a unique
invariant Sylow 𝑞-subgroup when 𝑥1 ≠ 0,−𝑘. Note that here nec-
essarily 𝑥1 ≠ 0, otherwise we would also have 𝑥2 = 0, namely
𝛽 = 1.
If 𝑥1 = −𝑘, then the system (7.4) admits (a number of 𝑝) solutions
if and only if 𝑎∗ = 𝑎𝑥1 , and in this case there are 𝑝 invariant Sylow
𝑞-subgroups. Also here the 𝑎∗’s for which (7.4) has no solutions
are precisely those for which (7.6) is not satisfied, in fact here (7.6)
yields 𝑦 = 0.

A3: det(𝑀) = (1 − 𝜆𝑥1)(𝜆−𝑘(1 − 𝜆𝑥2𝑘+𝑘)), so that there is a unique
solution when 𝑥1 ≠ 0 and 𝑥2 ≠ −1.
If either 𝑥1 = 0 and 𝑥2 ≠ −1, or 𝑥1 ≠ 0 and 𝑥2 = −1, then (1 −
𝑍−1)𝑀 has rank 1, and the system (7.4) admits 𝑝 solutions if and
only if 𝑎∗ = 𝑎𝑦2 in the first case, and 𝑎∗ = 𝑎𝑥1 in the second case.
Once again, the 𝑎∗’s for which (7.4) has no solutions are precisely
those for which (7.6) is not satisfied, in fact here (7.6) yields 𝑥 = 0
in the case 𝑥1 = 0 and 𝑥2 ≠ −1, and 𝑦 = 0 in the case 𝑥1 ≠ 0 and
𝑥2 = −1.
If 𝑥1 = 0 and 𝑥2 = −1, then (1 − 𝑍−1)𝑀 has rank 0, and the sys-
tem (7.4) admits 𝑝2 solutions if and only if 𝑎(1−𝑍

−1)𝑇
∗ = 1, namely

when 𝑎∗ = 1. Moreover, the condition (7.6) yields 𝑥, 𝑦 = 0, so that
the case in which the system has no solution does not arise.

Case B: Here ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩ and (7.4) yields

𝑀 = [1 − 𝜆𝑥1 + 𝜇(1 − 𝜆−1) 𝜆−𝑥1+𝑘𝑥2𝜈(1 − 𝜆−𝑘)
−𝜆𝑥1−𝑘𝑥2𝜇(1 − 𝜆−1) 1 − 𝜆𝑘𝑥2 − 𝜈(1 − 𝜆−𝑘)] .

According to the division into subcases, we have
B1: det(𝑀) = 𝜆−1(1 − 𝜆𝑥1+1)(1 − 𝜆𝑥1+1−𝑘), and there exists a unique in-
variant Sylow 𝑞-subgroup when 𝑥1 ≠ −1, 𝑘 − 1.
If 𝑥1 = −1, 𝑘−1, then there are 𝑝 invariant Sylow 𝑞-subgroups when

𝑎∗ = 𝑎𝑥1𝑎
𝑥
2 in the case 𝑥1 = −1, and 𝑎∗ = 𝑎𝑥1 in the case 𝑥1 = 𝑘 − 1.

The other cases, namely those for which there are no invariant Sylow 𝑞-
subgroups, do not arise, in fact the condition (7.6) yields precisely 𝑥 = 𝑦
in the case 𝑥1 = −1, and 𝑦 = 0 in the case 𝑥1 = 𝑘 − 1.

B2: det(𝑀) = (𝜆𝑥1 − 1)𝜆−1(𝜆𝑥1+1 − 1), and there exists a unique invariant
Sylow 𝑞-subgroup when 𝑥1 ≠ 0,−1. Note that here necessarily 𝑥1 ≠ 0,
otherwise we would also have 𝑥2 = 0.
If 𝑥1 = −1, then there are 𝑝 invariant Sylow 𝑞-subgroups when 𝑎∗ =

𝑎𝑥1𝑎
𝑥
2 . The other cases, namely those for which there are no invariant
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Sylow 𝑞-subgroups, do not arise, in fact the condition (7.6) yields pre-
cisely 𝑥 = 𝑦.

By the discussion above, we get the following.

Proposition 7.3. Under Assumption 7.2, if 𝐺 is a group and 𝛾 is a GF on 𝐺 with
|||ker(𝛾)||| = 𝑝, then the number of invariant Sylow 𝑞-subgroups is
(A1) 1 when 𝑥1 ≠ 0, 𝑘 and 𝑝 otherwise.
(A2) 1 when 𝑥1 ≠ −𝑘 and 𝑝 otherwise.
(A3) 1 when 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 𝑝2 when 𝑥1 = 0 and 𝑥2 = −1, and 𝑝

otherwise.
(A1∗) 1 when 𝑥2 ≠ 0, 𝑘−1 and 𝑝 otherwise.
(A2∗) 1 when 𝑥2 ≠ −𝑘−1 and 𝑝 otherwise.
(A3∗) 1 when 𝑥2 ≠ 0 and 𝑥1 ≠ −1, 𝑝2 when 𝑥2 = 0 and 𝑥1 = −1, and 𝑝

otherwise.
(B1) 1 when 𝑥1 ≠ −1, 𝑘 − 1 and 𝑝 otherwise.
(B1∗) 1 when 𝑥2 ≠ −1,−1 + 𝑘−1 and 𝑝 otherwise.
(B2) 1 when 𝑥1 ≠ −1 and 𝑝 otherwise.

7.3.2. Enumerating the GF’s. Wehave shown that there is always a Sylow 𝑞-
subgroup 𝐵 which is invariant under 𝛾(𝐵), and Proposition 7.3 yields the exact
number of such invariant Sylow 𝑞-subgroups. Since (7.1) is also satisfied, we
have that 𝛾 is of the form (2.7).
To enumerate the GF’s we can, according to Proposition 2.8, count the pos-

sible couples (𝛾𝐴, 𝛾𝐵) with the properties above, taking into account that every
such choice defines a unique 𝛾, and that a given 𝛾 built in this way is obtained
𝑠 times, where 𝑠 is the number of invariant Sylow 𝑞-subgroups of 𝐺. Thus to
obtain the number of distinct GF’s on 𝐺 we count the choices for (𝛾𝐴, 𝛾𝐵) as
above, and then divide this number by 𝑠.
Let 𝑍◦ denote the action of 𝑏 on 𝐴 in (𝐺, ◦). We have

𝑏⊖1◦𝑎◦𝑏 = (𝑏𝛾(𝑏)−1𝛾(𝑎)𝛾(𝑏))−1𝑎𝛾(𝑏)𝑏
= (𝑏𝜄(𝑎−𝜎)𝛽)−1𝑎𝛾(𝑏)𝑏
= ((𝑎−𝜎(−1+𝑍−1)𝑏)𝛽)−1𝑎𝛾(𝑏)𝑏
= (𝑎−𝜎(−1+𝑍−1)𝑇𝑏)−1𝑎𝑇𝑏
= 𝑏−1𝑎𝜎(−1+𝑍−1)𝑇+𝑇𝑏
= 𝑎(𝜎(1−𝑍)+𝑍)𝑇,

and since 𝑎◦𝑡 = 𝑎𝑡 for all 𝑡, with respect to the basis {𝑎1, 𝑎2} of (𝐴, ◦) we have
𝑍◦ = (𝜎(1 − 𝑍) + 𝑍)𝑇. (7.10)

Case A. Here ker(𝜎) = ⟨ 𝑎1 ⟩ and equality (7.10) yields

𝑍◦ = [ 𝜆𝑥1+1 0
𝜇(1 − 𝜆)𝜆𝑥1 𝜆𝑥2𝑘(𝜈(1 − 𝜆𝑘) + 𝜆𝑘)] .
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(A1) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

(A2) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

(A3) We have 1 choice for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥2𝑘] .

Case B. Here ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩, 𝑥1 = 𝑥2𝑘 + 𝑘 − 1, and equality (7.10) yields

𝑍◦ = [𝜆
𝑥1+1 − 𝜆𝑥1𝜇(1 − 𝜆) −𝜆𝑘𝑥2𝜈(1 − 𝜆𝑘)
𝜆𝑥1𝜇(1 − 𝜆) 𝜆𝑘𝑥2+𝑘 + 𝜆𝑘𝑥2𝜈(1 − 𝜆𝑘)] .

(B1) Here 𝑘 ≠ 1. We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ = [ 𝜆𝑥1 0
−𝜆𝑥1(1 − 𝜆) 𝜆𝑥2𝑘+𝑘] ∼ [𝜆

𝑥1 0
0 𝜆𝑥1+1] .

(B2) Here 𝑘 = 1, 𝑥1 = 𝑥2, 𝜇 + 1 = 𝜈, and we have 𝑝(𝑝 − 1) choices for

𝜎 = [−𝜇 −𝜇 − 1
𝜇 𝜇 + 1 ] .

We have

𝑍◦ = [𝜆
𝑥1+1 − 𝜆𝑥1𝜇(1 − 𝜆) −𝜆𝑥1(𝜇 + 1)(1 − 𝜆)
𝜆𝑥1𝜇(1 − 𝜆) 𝜆𝑥1+1 + 𝜆𝑥1(𝜇 + 1)(1 − 𝜆)] ,

and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

7.3.3. Conjugacy classes. Here we exhibit a general scheme to compute the
conjugacy classes for groupswhich satisfy the assumptions of this section in the
case |||ker(𝛾)||| = 𝑝, when the automorphisms are of the form 𝜑 = 𝜄(𝑥)𝛿, where
𝑥 ∈ 𝐴 and 𝛿|𝐴 ∈ GL(2, 𝑝). We will show in Subsections 8.6, 9.5 and 10.5 that
this scheme can be applied to the groups of types 9, 8 and to the groups 𝐺 of
type 7, when 𝛾(𝐴) ≤ Inn(𝐺).
Suppose thus that an automorphism of 𝐺 has the form 𝜑 = 𝜄(𝑥)𝛿, where

𝑥 ∈ 𝐴 and 𝛿 ∈ GL(2, 𝑝). We have

𝛾𝜑(𝑎) = 𝜑−1𝛾(𝑎𝛿−1)𝜑
= 𝛿−1𝜄(𝑎−𝛿−1𝜎)𝛿
= 𝜄(𝑎−𝛿−1𝜎𝛿),
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and

𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑥1−𝑍−1𝑏)𝜑
= 𝜑−1𝜄(𝑥−(1−𝑍−1)𝑇−1𝜎)𝛽𝜑
= 𝛿−1𝜄(𝑥−1+𝑇−1−(1−𝑍−1)𝑇−1𝜎)𝛽𝛿
= 𝜄(𝑥(−1+𝑇−1−(1−𝑍−1)𝑇−1𝜎)𝛿)𝛿−1𝛽𝛿.

Write 𝐻 = −1 + 𝑇−1 − (1 − 𝑍−1)𝑇−1𝜎. Setting 𝛾𝜑(𝑎) = 𝜄(𝑎−𝜎) and 𝛾𝜑(𝑏) = 𝛽,
we obtain that 𝜑 stabilises 𝛾 if and only if the conditions

[𝜎, 𝛿] = 1, (7.11)
[𝛽, 𝛿] = 1, (7.12)

𝑥𝐻𝛿 = 1, (7.13)

hold.
We now distinguish two cases, namely when 𝛿 is diagonal and when 𝛿 is not

necessarily diagonal.

7.3.4. 𝜹 is a diagonal matrix. Suppose first that 𝛿 is diagonal, namely 𝛿 =
diag(𝛿11, 𝛿22); as we will see in Subsections 8.6 and 9.5, this will be the case for
the groups 𝐺 of type 9 and 8, therefore we do not consider here the case (B2).
In this case equation (7.12) is satisfied for every 𝛿. In both cases (A) and (B1),

the condition (7.11) yields 𝜇𝛿−122 𝛿11 = 𝜇, so that 𝜇 = 0 or 𝛿 is scalar. Note that
𝜇 = 0 only in the case (A3), thus we consider any 𝛿 in this case, and 𝛿 scalar in
the cases (A1), (A2) and (B1).
In the case (A1) we have

𝐻 = [ −1 + 𝜆−𝑥1 0
−𝜇(1 − 𝜆−𝑘)𝜆𝑘+𝑥1 −1 + 𝜆𝑘+𝑥1] ,

so that (7.11) has one solution if 𝑥1 ≠ 0, 𝑘, and 𝑝 solutions if 𝑥1 = 0, 𝑘.
In the case (A2),

𝐻 = [ −1 + 𝜆−𝑥1 0
−𝜇(1 − 𝜆−𝑘)𝜆−𝑥1 −1 + 𝜆−𝑘−𝑥1] ,

and (7.11) has one solution if 𝑥1 ≠ −𝑘, and 𝑝 solutions if 𝑥1 = −𝑘.
In the case (A3),

𝐻 = [−1 + 𝜆−𝑥1 0
0 −1 + 𝜆−𝑘−𝑘𝑥2] ,

and (7.11) has one solution if 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 𝑝2 solutions if 𝑥1 = 0 and
𝑥2 = −1, and 𝑝 solutions otherwise.
In the case (B1),

𝐻 = [ −1 + 𝜆−𝑥1−1 0
(1 − 𝜆−𝑘)𝜆𝑘−1−𝑥1 −1 + 𝜆𝑘−1−𝑥1] ,
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and (7.11) has one solution if 𝑥1 ≠ −1, 𝑘 − 1, and 𝑝 solutions otherwise.

7.3.5. 𝜹 is a (not necessarily diagonal) matrix. Suppose now that 𝛿 is an
arbitrary matrix. As we will see in Subsection 10.5 this will be the case for the
groups 𝐺 of type 7, therefore we do not consider here the case (B1).
If we are in case (A1), then (7.11) yields 𝛿12 = 0 and 𝛿11 = 𝛿22, and (7.12)

yields 𝛿21 = 0. Therefore 𝛿 is scalar, and with the same computations above
(taking 𝑘 = 1) we obtain that𝐻 has rank 2 if 𝑥1 ≠ 0, 1, and 1 otherwise.
If we are in case (A2), then (7.11) yields 𝛿12 = 0 and 𝛿21 = 𝜇(𝛿22−𝛿11). Since

in the case (A2) 𝑇 is scalar, equation (7.12) is satisfied for every 𝛿. Moreover𝐻
has rank 2 if 𝑥1 ≠ −1, and 1 otherwise.
If we are in case (A3), then (7.11) yields 𝛿12, 𝛿21 = 0, namely 𝛿 is diagonal.

In particular (7.12) is satisfied. 𝐻 has rank 2 if 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 0 if 𝑥1 = 0
and 𝑥2 = −1, and 1 otherwise.
If we are in case (B2), then (7.11) yields

⎧

⎨
⎩

𝜇𝛿12 = −(𝜇 + 1)𝛿21
𝜇(𝛿12 − 𝛿11) = 𝜇(𝛿21 − 𝛿22)
(𝜇 + 1)(𝛿12 − 𝛿11) = (𝜇 + 1)(𝛿21 − 𝛿22).

If 𝜇 = 0 then 𝛿21 = 0 and 𝛿12 = 𝛿11 − 𝛿22; if 𝜇 = −1, then 𝛿12 = 0 and
𝛿21 = 𝛿22 − 𝛿21; if 𝜇 ≠ 0,−1, then 𝛿12 = −𝜇+1

𝜇
𝛿21 and

2𝜇+1
𝜇
𝛿21 = 𝛿22 − 𝛿11.

Therefore, in all cases we have one choice for the elements 𝛿12, 𝛿21, and (𝑝−1)2
choices for 𝛿11, 𝛿22. Since 𝑇 is scalar here, (7.12) is always satisfied. Moreover

𝐻 = [−1 + 𝜆−𝑥1 + 𝜇(1 − 𝜆−1)𝜆−𝑥1 (𝜇 + 1)(1 − 𝜆−1)𝜆−𝑥1
−𝜇(1 − 𝜆−1)𝜆−𝑥1 −1 + 𝜆−𝑥1 + (𝜇 + 1)(1 − 𝜆−1)𝜆−𝑥1]

has determinant (1−𝜆−𝑥1)(1−𝜆−𝑥1−1). Since 𝑥1 ≠ 0, we obtain that𝐻 has rank
2 if 𝑥1 ≠ −1, and 1 otherwise.

8. Type 9
Here 𝑞 ∣ 𝑝−1, where 𝑞 > 2, and𝐺 = (𝒞𝑝×𝒞𝑝)⋊𝐷1𝒞𝑞. The Sylow𝑝-subgroup

𝐴 = ⟨ 𝑎1, 𝑎2 ⟩ of 𝐺 is characteristic, and if 𝑎1, 𝑎2 ∈ 𝐴 are in the eigenspaces of
the action of a generator 𝑏 of a Sylow 𝑞-subgroup 𝐵 on 𝐴, then this action can
be represented by a non-scalar diagonal matrix 𝑍, with no eigenvalues 1 and
det(𝑍) = 1.
For all of this section, we consider 𝐴 = ⟨ 𝑎1, 𝑎2 ⟩, where 𝑎1, 𝑎2 are eigenvec-

tors for 𝜄(𝑏). With respect to that basis, we have

𝑍 = [𝜆 0
0 𝜆−1] ,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ.
The divisibility condition on 𝑝 and 𝑞 implies that (𝐺, ◦) can be of type 5, 6,

7, 8 and 9.



𝑝2𝑞 135

According to Subsections 4.1 and 4.3 of [8], we have

Aut(𝐺) = (Hol(𝒞𝑝) × Hol(𝒞𝑝))⋊ 𝒞2.

The Sylow 𝑝-subgroup of Aut(𝐺) has order 𝑝2 and is characteristic, so, since
𝐺 has trivial center, all of its elements are conjugation by elements of 𝐴.
If 𝛾 is a GF on 𝐺, then 𝛾|𝐴 ∶ 𝐴 → Inn(𝐺) ≤ Aut(𝐺) is a RGF, as 𝐴 is charac-

teristic in 𝐺. Moreover, Lemma 2.5 yields that 𝛾|𝐴 is a morphism, as 𝜄(𝐴) acts
trivially on the abelian group 𝐴. Therefore, for each gamma function 𝛾 there
exists 𝜎 ∈ End(𝐴) such that

𝛾(𝑎) = 𝜄(𝑎−𝜎) (8.1)

for each 𝑎 ∈ 𝐴.

8.1. Duality. Since every 𝛾 on𝐺 satisfies equation (8.1), we can apply Lemma2.7
with 𝐶 = 𝐴, and this yields equation (2.5).
Now, by the discussion in Subsections 4.1 and 4.2, if 𝜎 and 1 − 𝜎 are not

both invertible, then 𝑝 ∣ |||ker(𝛾)||| or 𝑝 ∣ |||ker(�̃�)|||, namely 𝜎 has 0 or 1 as an
eigenvalue. Otherwise 𝜎 and 1 − 𝜎 are both invertible, and there are actually
𝜎 with no eigenvalues 0 and 1, and this corresponds to the existence of 𝛾 such
that 𝑝 ∤ |||ker(𝛾)||| , |||ker(�̃�)|||.
Except for the case when both 𝛾 and �̃� have kernel of size not divisible by 𝑝,

we will use duality to swich to a more convenient kernel.

8.2. Outline. Wewill use Proposition 2.6 to deal with the kernels of size 𝑞, 𝑝𝑞,
and 𝑝2. As for the kernels of size 𝑝 and 1, we will appeal to Proposition 2.8. To
do this, we will show that each 𝛾 on 𝐺 with kernel of size 𝑝 or 1 always admits
at least one invariant Sylow 𝑞-subgroup 𝐵.
In order to do that, in Subsubsection 8.2.1we describe the elements ofAut(𝐺)

of order 𝑞.

8.2.1. Descriptionof the elements of order𝒒of𝐀𝐮𝐭(𝑮). The Sylow 𝑞-subgroups
of Aut(𝐺) are of the form 𝒞𝑞𝑒 × 𝒞𝑞𝑒 , for 𝑞𝑒||𝑝 − 1, and they can be described as
the Sylow 𝑞-subgroups of the centraliser 𝐶Aut(𝐺)(⟨ 𝜄(𝑏) ⟩) of ⟨ 𝜄(𝑏) ⟩, generated in
Aut(𝐺), where ⟨ 𝑏 ⟩ varies among the Sylow 𝑞-subgroups of 𝐺. Since they are
abelian, each of them contains exactly one subgroup of type 𝜄(⟨ 𝑏 ⟩), and this
establishes a one-to-one correspondence between the Sylow 𝑞-subgroups of 𝐺
and the Sylow 𝑞-subgroups of Aut(𝐺).
We note also that for 𝑎 ∈ 𝐴 one has

𝐶Aut(𝐺)(⟨ 𝜄(𝑏) ⟩)𝜄(𝑎) = 𝐶Aut(𝐺)(⟨ 𝜄(𝑏𝑎) ⟩).

For 𝑏 ∈ 𝐺 ⧵ 𝐴, recalling that 𝜄(𝑏) acts on 𝐴 as diag(𝜆, 𝜆−1), we write

𝛽1∶ 𝑎1 ↦ 𝑎𝜆1
𝑎2 ↦ 𝑎2
𝑏 ↦ 𝑏

𝛽2∶ 𝑎1 ↦ 𝑎1
𝑎2 ↦ 𝑎𝜆−12
𝑏 ↦ 𝑏

(8.2)
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so that 𝜄(𝑏) = 𝛽1𝛽2, and ⟨ 𝛽1, 𝛽2 ⟩ is the elementary abelian subgroup of order 𝑞2
of a Sylow 𝑞-subgroup of 𝐶Aut(𝐺)(⟨ 𝜄(𝑏) ⟩).
Now, if 𝛽 ∈ Aut(𝐺) is an element of order 𝑞, then it belongs to the centraliser

of ⟨ 𝜄(𝑏) ⟩, where ⟨ 𝑏 ⟩ is a Sylow 𝑞-subgroup of 𝐺. Therefore, if 𝛽1, 𝛽2 are as
above, then 𝛽 ∈ ⟨ 𝛽1, 𝛽2 ⟩, namely 𝛽 = 𝛽𝑥11 𝛽

𝑥2
2 , where 0 ≤ 𝑥1, 𝑥2 < 𝑞 not both

zero.

Let us start with the enumeration of the GF’s on 𝐺. We proceed case by case,
according to the size of the kernel.
As usual, if |||ker(𝛾)||| = 𝑝2𝑞, then 𝛾 corresponds to the right regular represen-

tation, so that we will assume 𝛾 ≠ 1.

8.3. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒒. Let 𝐵 = ker(𝛾). Here (𝐺, ◦) is necessarily of type
5, as it is the only type having a normal subgroup of order 𝑞.
By Proposition 2.6, since 𝐴 is characteristic, each GF on 𝐺 is the lifting of a

RGF on 𝐴, and, conversely, a RGF on 𝐴 lifts to 𝐺 if and only if 𝐵 is invariant
under {𝛾(𝑎)𝜄(𝑎) ∣ 𝑎 ∈ 𝐴}.
For each 𝑎 ∈ 𝐴, 𝛾(𝑎) = 𝜄(𝑎−𝜎), where 𝜎 ∈ GL(2, 𝑝), so that 𝛾(𝑎)𝜄(𝑎) =

𝜄(𝑎1−𝜎). Taking into account that each Sylow 𝑞-subgroup of𝐺 is self-normalising,
we obtain that 𝛾 lifts to 𝐺 if and only if 𝜎 = 1, namely when

𝛾(𝑎) = 𝜄(𝑎−1).

Since this map is a morphism and [𝐴, 𝛾(𝐴)] = {1}, by Lemma 2.5 𝛾 is actually
a RGF. Therefore, for each of the 𝑝2 choices for a Sylow 𝑞-subgroup, there is a
unique RGF on 𝐴 which lifts to 𝐺, and we obtain 𝑝2 groups.
Note that for all the 𝛾’s in this case 𝑝 ∣ |||ker(�̃�)||| .
As to the conjugacy classes, if 𝛾 has kernel 𝐵, then, for 𝑥 ∈ 𝐴, 𝛾𝜄(𝑥) has kernel

𝐵𝜄(𝑥), as for 𝑏 ∈ ker(𝛾),

𝛾𝜄(𝑥)(𝑏𝜄(𝑥)) = 𝜄(𝑥−1)𝛾(𝑏)𝜄(𝑥) = 1.

Since 𝜄(𝐴) conjugates transitively the𝑝2 Sylow 𝑞-subgroups of𝐺, the orbits con-
tain at least 𝑝2 elements. Since there are 𝑝2 GF, there is a unique orbit of length
𝑝2.

8.4. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝒒. Here 𝐾 = ker(𝛾) is a subgroup of 𝐺 isomorphic
to 𝒞𝑝⋊𝒞𝑞, therefore we will obtain (𝐺, ◦) of type 6, as it is the only type having
a non abelian normal subgroup of order 𝑝𝑞.
We can choose𝐾 in 2𝑝 ways, indeed for each of the 𝑝2 choices for a Sylow 𝑞-

subgroup𝐵, the subgroups of order𝑝 that are𝐵-invariant are the 1-dimensional
invariant subspaces of the action of 𝐵. Therefore, there are 2 of such subgroups.
Moreover, since𝒞𝑝⋊𝒞𝑞 has 𝑝 subgroups of order 𝑞, exactly 𝑝 choices for 𝐵 give
the same group.
Let 𝐾 = ⟨ 𝑎1, 𝑏 ⟩, and let 𝑎2 ∈ 𝐴 be such that 𝐴 = ⟨ 𝑎1, 𝑎2 ⟩. The cyclic

complement ⟨ 𝑎2 ⟩ of 𝐾 in 𝐺 can be chosen in 𝑝 ways, and since 𝛾(𝐺) ≤ 𝜄(𝐴),
each of these choices yields a 𝛾(𝐺)-invariant subgroup.
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Therefore, by Proposition 2.6, each 𝛾 is the lifting of a RGF defined on any
of the complements of order 𝑝. So, we fix ⟨ 𝑎2 ⟩ and we consider the RGF’s
𝛾′ ∶ ⟨ 𝑎2 ⟩ → Aut(𝐺), taking into account that the choice of the complement
is immaterial. Again appealing to Proposition 2.6, the RGF’s 𝛾′ which can be
lifted to 𝐺 are those for which 𝐾 is invariant under {𝛾′(𝑥)𝜄(𝑥) ∶ 𝑥 ∈ ⟨ 𝑎2 ⟩},
namely the maps defined as

𝛾′(𝑎2) = 𝜄(𝑎𝑗1𝑎
−1
2 ),

for some 𝑗, 0 ≤ 𝑗 ≤ 𝑝−1. Moreover, since [⟨ 𝑎2 ⟩ , 𝛾(⟨ 𝑎2 ⟩)] = {1}, by Lemma 2.5
the RGF’s correspond to the morphisms. Therefore, since there are 𝑝 choices
for 𝑗 and 2𝑝 for 𝐾, the number of distinct gamma functions is 2𝑝2.
Notice that, for every 𝛾 as above, 𝑝 ∣ |||ker(�̃�)||| .
As to the conjugacy classes, let 𝜑 ∈ Aut(𝐺). According to [8], 𝜑 has the form

𝜄(𝑥)𝛿𝜓, where 𝑥 ∈ 𝐴, 𝛿|𝐵 = 1 and, with respect to the fixed basis, 𝛿|𝐴 = (𝛿𝑖𝑗) ∈
GL(2, 𝑝) is diagonal. 𝜓 is defined as 𝑏𝜓 = 𝑏𝑟 and 𝑎𝜓 = 𝑎𝑆, where either 𝑟 = 1
and 𝑆 = 1, or 𝑟 = −1 and

𝑆 = [0 1
1 0] .

Wehave that 𝛾(𝑎𝜑
−1

1 ) = 𝛾(𝑎𝜓𝛿
−1

1 ), and 𝛾𝜑(𝑎1) = 1 if and only if 𝑎𝜑
−1

1 ∈ ker(𝛾)∩
𝐴 = ⟨ 𝑎1 ⟩, therefore 𝜓 = 1. Moreover,

𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑏𝜄(𝑥−1))𝜑 = 𝜑−1𝛾(𝑥1−𝑍−1)𝜑, (8.3)

so it is equal to 𝛾(𝑏) = 1 when 𝑥 ∈ ⟨ 𝑎1 ⟩. Now, writing 𝑎 = 𝑎𝑗1𝑎
−1
2 , we have

𝛾𝜑(𝑎2) = 𝜑−1𝛾(𝑎𝛿−12 )𝜑 = 𝜑−1𝛾(𝑎𝛿
−1
22
2 )𝜑 = 𝜄(𝑎𝛿−122 )𝛿, (8.4)

so that 𝜑 stabilises 𝛾 if and only if 𝜄(𝑎𝛿−122 )𝛿 = 𝜄(𝑎), and this yields the condition
𝑗(𝛿11 − 𝛿22) = 0.
So, if 𝑗 = 0 the last condition is always satisfied, and if 𝑗 ≠ 0 the 𝛿’s in the

stabiliser are the scalar matrices. Therefore we get one orbit of length 2𝑝 and
one orbit of length 2𝑝(𝑝 − 1).

8.5. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝟐. The action of 𝛾(𝐺) of order 𝑞 on 𝐺 fixes at least
one of the 𝑝2 Sylow 𝑞-subgroups of 𝐺, say 𝐵 = ⟨ 𝑏 ⟩.
Now, as 𝐵 is 𝛾(𝐺)-invariant, 𝛾(𝑏)|𝐵 = 1, and let 𝛾(𝑏)|𝐴 = 𝛽. The discussion

in Subsubsection 8.2.1 yields that 𝛽 = 𝛽𝑥11 𝛽
𝑥2
2 , where 𝑥1, 𝑥2 are not both zero,

so that, with respect to the basis {𝑎1, 𝑎2}, we can represent 𝛽 as the matrix

𝑇 = [𝜆
𝑥1 0
0 𝜆−𝑥2] ,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ.
Therefore, since we are under the assumptions of Subsection 7.2, we obtain

that
(1) there is a unique invariant Sylow 𝑞-subgroup when both 𝑥1, 𝑥2 ≠ 0;
(2) there are 𝑝 invariant Sylow 𝑞-subgroups when either 𝑥1 = 0 or 𝑥2 = 0.



138 E. CAMPEDEL, A. CARANTI AND I. DEL CORSO

Moreover, taking 𝑘 = −1 in Subsection 7.2, we find that the action of 𝑏 on 𝐴
with respect to the operation ◦ has associated matrix

𝑍◦ ∼ [𝜆
1+𝑥1 0
0 𝜆−1−𝑥2] .

Therefore we obtain the following groups (𝐺, ◦).
Type 5: if 𝑥1 = 𝑥2 = −1, and there are 𝑝2 groups.
Type 6: if either 𝑥1 = −1 and 𝑥2 ≠ −1, or 𝑥1 ≠ −1 and 𝑥2 = −1. In
both the cases there is a unique invariant Sylow 𝑞-subgroup, except if
either 𝑥2 = 0 or 𝑥1 = 0, when there are 𝑝 invariant Sylow 𝑞-subgroups.
Therefore there are 2𝑝2(𝑞− 2) groups when we are in the case (1), plus
other 2𝑝 groups for the case (2).

Type 7: if 𝑥1 +1 = −(𝑥2 +1) ≠ 0. There are 𝑝2(𝑞−3) groups for the case
(1), plus 2𝑝 groups for the case (2).

Type 8: if 𝑍◦ is a non scalar matrix with no eigenvalues 1, and determi-
nant different from 1.
In case (1) this corresponds to the conditions 𝑥2 ≠ 0,−1 and the

four conditions 𝑥1 ≠ 0,−1,−𝑥2,−𝑥2 − 2, which are independent if and
only if in addition 𝑥2 ≠ −2. Therefore, for 𝑥2 ≠ 0,−1,−2 we obtain
𝑝2(𝑞 − 4)(𝑞 − 3), groups. For 𝑥2 = −2 the four conditions on 𝑥1 reduce
to three conditions, and we obtain further 𝑝2(𝑞 − 3), groups.
In case (2), suppose 𝑥1 = 0. Then there are three independent con-

ditions on 𝑥2. Doubling for the case 𝑥2 = 0, we obtain 2𝑝(𝑞 − 3).
Summing up, we have just obtained 𝑝2(𝑞−3)2+2𝑝(𝑞−3) groups of

type 8; looking at the eigenvalues of 𝑍◦, we easily obtain that they are
2𝑝2(𝑞 − 3) + 4𝑝 groups isomorphic to 𝐺𝑠, for every 𝑠 ∈ 𝒦.

Type 9: if 𝑍◦ is a non-scalar matrix with no eigenvalue 1 and determinant
1, namely 𝑥1 ≠ −1,−𝑥2−2, 𝑥2 ≠ −1, and 𝑥1−𝑥2 = 0. The case (2) can
not happen, otherwise 𝛽 = 1. In case (1) we have 𝑥2 ≠ 0,−1, therefore
there are 𝑝2(𝑞 − 2) groups.

As to the conjugacy classes, since the kernel𝐴 is characteristic, we have that
𝛾𝜑(𝑎) = 𝛾(𝑎), for every 𝜑 ∈ Aut(𝐺).
In the notation of Subsection 8.4 , write 𝜑 = 𝜄(𝑥)𝛿𝜓. Since 𝑏𝜑−1 = 𝑏𝜓𝜄(𝑥−1) ≡

𝑏𝑟 mod ker(𝛾), we have
𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑏𝑟)𝜑 = 𝜓𝛿−1𝑇𝑟𝜄(𝑥1−𝑇𝑟)𝛿𝜓 = 𝜓𝛿−1𝑇𝑟𝛿𝜄(𝑥(1−𝑇𝑟)𝛿)𝜓.

Therefore, 𝜑 stabilises 𝛾 if and only if

{ 𝑥
(1−𝑇𝑟)𝛿 = 1
𝛿−1𝑇𝑟𝛿 = 𝜓𝑇𝜓.

The first condition yields 𝑥 = 1 or, if 𝑥 = 𝑎𝑢1𝑎
𝑣
2 , either 𝑥1 = 0 and 𝑣 = 0,

or 𝑥2 = 0 and 𝑢 = 0. If 𝜓 = 1 the second condition is always satisfied. If
𝜓 ≠ 1, since 𝛿−1𝑇−1𝛿 = 𝑇−1 and 𝜓 acts on 𝑇 by conjugation exchanging the
eigenvalues, the second condition yields 𝑥1 = 𝑥2.
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We obtain the following.

(1) For (𝐺, ◦) of type 5 the stabiliser has order 2(𝑝−1)2, so that there is one
orbit of length 𝑝2.

(2) For (𝐺, ◦) of type 6 the stabiliser has order 𝑝(𝑝−1)2 when either 𝑥1 = 0
or 𝑥2 = 0, and (𝑝−1)2 when 𝑥1, 𝑥2 ≠ 0. Therefore, there is one orbit of
length 2𝑝 together with 𝑞 − 2 orbits of length 2𝑝2.

(3) For (𝐺, ◦) of type 7 the stabiliser has order (𝑝−1)2 when 𝑥1, 𝑥2 ≠ 0, and
𝑝(𝑝 − 1)2 otherwise. Therefore there are 𝑞−3

2
orbits of length 2𝑝2, and

one orbit of length 2𝑝.
(4) For (𝐺, ◦) of type 8, if 𝑥1, 𝑥2 ≠ 0 then the stabiliser has order (𝑝 − 1)2;

otherwise either 𝑥1 = 0 or 𝑥2 = 0, and the stabiliser has order 𝑝(𝑝−1)2.
Therefore, if (𝐺, ◦) ≃ 𝐺𝑠, for every 𝑠 ∈ 𝒦 we obtain 𝑞−3 orbits of length
2𝑝2 and two orbits of length 2𝑝.

(5) For (𝐺, ◦) of type 9, 𝑥1, 𝑥2 ≠ 0 so that the stabiliser has order (𝑝 − 1)2,
and there are 𝑞 − 2 orbits of length 𝑝2.

8.6. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑. To count the GF’s of this case we will use Propo-
sition 2.8.
Here |||𝛾(𝐺)||| = 𝑝𝑞. The discussion in Subsubsection 8.2.1 yields that 𝛾(𝐺) =

⟨ 𝜄(𝑎0), 𝛽 ⟩, for some 1 ≠ 𝑎0 ∈ 𝐴 with 𝐴𝜎 = ⟨ 𝜄(𝑎0) ⟩, and 𝛽 ≠ 1. We can assume
𝛾(𝑏) = 𝜄(𝑎𝑗0)𝛽 for some 𝑗, where 𝛽 = 𝛽𝑥11 𝛽

𝑥2
2 . With respect to the basis {𝑎1, 𝑎2},

where ⟨ 𝑎1 ⟩ and ⟨ 𝑎2 ⟩ are the eigenspaces of 𝜄(𝑏), the matrix associated to 𝛽 is
diag(𝜆𝑥1 , 𝜆−𝑥2), where 𝑥1 and 𝑥2 are not both zero.
We write 𝛾(𝑏) = 𝜄(𝑎∗)𝛽, and with respect to {𝑎1, 𝑎2}, we can represent 𝛽|𝐴 as

𝑇 = [𝜆
𝑥1 0
0 𝜆−𝑥2] ,

where 𝑥1, 𝑥2 are not both zero.
Following Subsection 7.3, and recalling that for 𝐺 of type 9 𝑘 = −1, here we

find the following cases:

∙ Case A: ker(𝜎) = ⟨ 𝑎1 ⟩.
(A1) 𝜈 = 0, 𝜇 ≠ 0, 𝑥1 + 𝑥2 = −1;
(A2) 𝜈 = 1, 𝜇 ≠ 0, 𝑥1 = −𝑥2;
(A3) 𝜈 = 1, 𝜇 = 0.
∙ Case B: ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩.
(B1) 𝜈 = 0, 𝜇 = −1, 𝑥1 = −𝑥2 − 2;

As explained in Subsection 7.3, the results in the cases (A1∗), (A2∗), (A3∗) and
(B1∗) can be obtained by doubling the results we will obtain in the cases (A1),
(A2), (A3) and (B1).
Notice that 𝑝 divides both |||ker(𝛾)||| and |||ker(�̃�)||| if and only if 𝜎 has both 0 and

1 as eigenvalues, that is, in all the cases above except (A1), where, since 𝜎 has
only 0 as eigenvalue, 𝑝 ∣ |||ker(𝛾)||| but 𝑝 ∤ |||ker(�̃�)|||.
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8.6.1. Invariant Sylow 𝒒-subgroups. Taking 𝑘 = −1 in Subsubsection 7.3.1,
we find the following.

Proposition 8.1. If 𝐺 is of type 9 and 𝛾 is a GF on 𝐺 with |||ker(𝛾)||| = 𝑝, the
number of invariant Sylow 𝑞-subgroups is
(A1) 1 when 𝑥1 ≠ 0,−1 and 𝑝 otherwise.
(A2) 1 when 𝑥1 ≠ 1 and 𝑝 otherwise.
(A3) 1 when 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 𝑝2 when 𝑥1 = 0 and 𝑥2 = −1, and 𝑝

otherwise.
(B1) 1 when 𝑥1 ≠ −1,−2 and 𝑝 otherwise.

8.6.2. Computations. By Subsubsection 7.3.2 the action𝑍◦ of 𝑏 on𝐴 in (𝐺, ◦)
is given by

𝑍◦ = (𝜎(1 − 𝑍) + 𝑍)𝑇,
and we obtain the following.
Case A. Here ker(𝜎) = ⟨ 𝑎1 ⟩ and equality (7.10) yields

𝑍◦ = [ 𝜆𝑥1+1 0
𝜇(1 − 𝜆)𝜆𝑥1 𝜆−𝑥2(𝜈(1 − 𝜆−1) + 𝜆−1)] .

(A1) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: if 𝑥1 = 0 or 𝑥1 = −1. If 𝑥1 = 0 for each of the (𝑝−1) choices
for 𝜎 we have 𝑝2∕𝑝 choices for 𝐵 giving different GF’s, so 𝑝(𝑝− 1)
groups. If 𝑥1 = −1, then there are 𝑝(𝑝 − 1) groups.

Type 7: does not arise.
Type 8: if 𝑥1 ≠ 0, −1, (𝑞− 1)∕2, and these are always three indepen-
dent conditions. Since 𝑥1 ≠ −1, we get 𝑝2(𝑝 − 1)(𝑞 − 3) groups.
They split in 2𝑝2(𝑝 − 1) groups isomorphic to 𝐺𝑠 for every 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞 − 1)∕2. Since 𝑥1 ≠ −1, we get 𝑝2(𝑝 − 1) groups.
(A2) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: when 𝑥1 = −1. Since 𝑥1 ≠ 1, there are 𝑝2(𝑝 − 1) groups.
Type 7: does not arise.
Type 8: if 𝑥1 ≠ 0, −1, (𝑞 − 1)∕2, and these are always three inde-
pendent conditions. Here 𝑥1 can be equal to 1 and so there are
𝑝(𝑝−1)+𝑝2(𝑝−1)(𝑞−4) groups. They split in 𝑝(𝑝−1)+𝑝2(𝑝−1)
groups isomorphic to 𝐺2 and 2𝑝2(𝑝 − 1) groups isomorphic to 𝐺𝑠
for every 𝑠 ≠ 2, 𝑠 ∈ 𝒦.
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Type 9: if 𝑥1 = (𝑞 − 1)∕2. Here 𝑥1 = 1 if and only if 𝑞 = 3, so that
there are 𝑝2(𝑝 − 1) groups if 𝑞 > 3 and 𝑝(𝑝 − 1) if 𝑞 = 3.

(A3) We have 1 choice for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆−𝑥2] .

We obtain the following groups (𝐺, ◦).
Type 5: if 1 + 𝑥1 = −𝑥2 = 0. Since 𝑥1 ≠ 0 and 𝑥2 ≠ −1, there are 𝑝2
groups.

Type 6: if either 𝑥1 = −1 and 𝑥2 ≠ 0 or 𝑥1 ≠ −1 and 𝑥2 = 0. In
the first case, there are 𝑝 groups when 𝑥2 = −1, otherwise, for
𝑥2 ≠ −1, there are 𝑝2(𝑞 − 2) groups. In the second case, since
𝑥2 = 0, we have to take 𝑥1 ≠ 0 and there are 𝑝2(𝑞 − 2) groups.

Type 7: when −𝑥2 = 1 + 𝑥1 ≠ 0. If 𝑥1 = 0 and 𝑥2 = −1, then there
is one group. The cases 𝑥1 ≠ 0, 𝑥2 = −1, and 𝑥1 = 0, 𝑥2 ≠ −1
can not happen, while if 𝑥1 ≠ 0 and 𝑥2 ≠ −1 there are 𝑝2(𝑞 − 2)
groups.

Type 8: when 𝑥1 ≠ −1,−𝑥2 − 1, 𝑥2 − 1, 𝑥2 ≠ 0. The case 𝑥1 = 0
and 𝑥2 = −1 can not happen. If 𝑥1 ≠ 0 and 𝑥2 = −1, the four
conditions on 𝑥1 are actually three conditions, and there are 𝑝(𝑞−
3) groups. If 𝑥1 = 0 and 𝑥2 ≠ −1 we get further 𝑝(𝑞 − 3) groups.
Suppose now 𝑥1 ≠ 0, 𝑥2 ≠ −1.
There are always four independent conditions on 𝑥1 except when
𝑥2 = 1, where the conditions become three. There are 𝑝2((𝑞 −
4)(𝑞 − 3) + (𝑞 − 3)) = 𝑝2(𝑞 − 3)2 groups.
Therefore we have just obtained 2𝑝(𝑞 − 3) + 𝑝2(𝑞 − 3)2 groups,
which split in 4𝑝 + 2𝑝2(𝑞 − 3) groups isomorphic to 𝐺𝑠 for every
𝑠 ∈ 𝒦.

Type 9: if 𝑥1 ≠ −1, 𝑥2 ≠ 0 and 1 + 𝑥1 − 𝑥2 = 0. For 𝑥2 = −1 and
𝑥1 = −2 ≠ 0 there are 𝑝 groups. Similarly, for 𝑥2 ≠ −1 and 𝑥1 = 0
and there are 𝑝 groups. For 𝑥2 ≠ −1 and 𝑥1 = 𝑥2 − 1 ≠ 0, namely
𝑥2 ≠ 0,±1, we get 𝑝2(𝑞 − 3) groups.

Case B. Here ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩, 𝑥1 = −𝑥2 − 2.
(B1) We have 𝑝 − 1 choices for 𝜎, and equality (7.10) yields

𝑍◦ = [ 𝜆𝑥1 0
−𝜆𝑥1(1 − 𝜆) 𝜆−𝑥2−1] ∼ [𝜆

𝑥1 0
0 𝜆𝑥1+1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: when 𝑥1 = 0 or 𝑥1 = −1. In the first case 𝑥1 ≠ −2,−1
and there are 𝑝2(𝑝 − 1) groups, while in the second case there are
𝑝(𝑝 − 1) groups.

Type 7: does not arise.
Type 8: when 𝑥1 ≠ 0,−1, (𝑞 − 1)∕2. If 𝑥1 = −2 there are 𝑝(𝑝 −
1) groups. Suppose now 𝑥1 ≠ −2; the four conditions on 𝑥1 are



142 E. CAMPEDEL, A. CARANTI AND I. DEL CORSO

independent and there are (𝑝−1)(𝑞−4)𝑝2 groups. Therefore there
are𝑝2(𝑝−1)(𝑞−4)+𝑝(𝑝−1) groups, which split in𝑝(𝑝−1)+𝑝2(𝑝−
1) groups isomorphic to 𝐺2, and 2𝑝2(𝑝 − 1) groups isomorphic to
𝐺𝑠 for every 𝑠 ≠ 2, 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞 − 1)∕2 (𝑥1 ≠ 0 and 𝑥1 ≠ −1). There are (𝑝 − 1)𝑝2
groups.

8.6.3. Conjugacy classes. As to the conjugacy classes, let 𝜑 = 𝜄(𝑥)𝛿𝜓, where
𝑥 ∈ 𝐴, 𝛿 ∈ GL(2, 𝑝) is diagonal, and 𝜓 ∈ 𝒞2. Suppose 𝜓 ≠ 1. Then

𝛾𝜑(𝑎1) = 𝜑−1𝛾(𝑎𝑆𝛿−11 )𝜑 = 𝜑−1𝜄(𝑎−𝛿
−1
22 𝜎

2 )𝜑 = 𝜑−1𝜄(𝑎−𝜇𝛿
−1
22

1 𝑎−𝜈𝛿
−1
22

2 )𝜑.

In the case (A) we have that 𝛾(𝑎1) = 1, and since 𝜄(𝑎−𝜇𝛿
−1
22

1 𝑎−𝜈𝛿
−1
22

2 ) ≠ 1, then
𝛾𝜑(𝑎1) ≠ 𝛾(𝑎1). In the case (B1), 𝛾(𝑎1) = 𝜄(𝑎−𝜎1 ) = 𝜄(𝑎1), and since here 𝜈 = 0
and 𝜇 = −1,

𝛾𝜑(𝑎1) = 𝜓−1𝛿−1𝜄(𝑎𝛿
−1
22
1 )𝛿𝜓 = 𝜓−1𝜄(𝑎𝛿

−1
22 𝛿11
1 )𝜓 = 𝜄(𝑎𝛿

−1
22 𝛿11
2 ) ≠ 𝛾(𝑎1).

Therefore 𝜓 = 1, and consider 𝜑 = 𝜄(𝑥)𝛿. Now taking 𝑘 = −1 and 𝛿 diagonal
in Subsubsection 7.3.3, we obtain the following.
In the case (A1), equation (7.11) has one solution if 𝑥1 ≠ 0,−1, and 𝑝 solu-

tions if 𝑥1 = 0,−1, therefore the orbits have length 2𝑝(𝑝− 1) if 𝑥1 = 0,−1, and
2𝑝2(𝑝 − 1) when 𝑥1 ≠ 0,−1.
In the case (A2), equation (7.11) has one solution if 𝑥1 ≠ 1, and 𝑝 solutions if

𝑥1 = 1, therefore the orbits have length 2𝑝(𝑝−1)when 𝑥1 = 1, and 2𝑝2(𝑝−1)
when 𝑥1 ≠ 1.
In the case (A3), equation (7.11) has one solution if 𝑥1 ≠ 0 and 𝑥2 ≠ −1,

𝑝2 solutions if 𝑥1 = 0 and 𝑥2 = −1, and 𝑝 solutions otherwise. Therefore, the
orbits have length 2𝑝2 if 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 1 if 𝑥1 = 0 and 𝑥2 = −1, and 2𝑝
otherwise.
In the case (B1), equation (7.11) has one solution if 𝑥1 ≠ −1,−2, and 𝑝 so-

lutions otherwise. Therefore, the orbits have length 2𝑝2(𝑝 − 1) if 𝑥1 ≠ −1,−2,
and 2𝑝(𝑝 − 1) otherwise.
Therefore, here the orbits have length:
(1) in the case (A1), 2𝑝(𝑝 − 1) if 𝑥1 = 0,−1, and 2𝑝2(𝑝 − 1) otherwise;
(2) in the case (A2), 2𝑝(𝑝 − 1) if 𝑥1 = −1, and 2𝑝2(𝑝 − 1) otherwise;
(3) in the case (A3), 2𝑝2 if 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 2 if 𝑥1 = 0 and 𝑥2 = −1,

and 2𝑝 otherwise;
(4) in the case (B1), 2𝑝(𝑝 − 1) if 𝑥1 = −1,−2, and 2𝑝2(𝑝 − 1) otherwise.

Recap 8.2. For 𝐺 of type 9 and 𝛾 a GF on 𝐺 with kernel of size 𝑝, we list for each
isomorphism class of groups ((𝐺, ◦)), the number (𝑛) and the lengths (𝑙) of the
conjugacy classes inHol(𝐺).
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
𝑇(𝑛) denotes the total number of conjugacy classes.
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(𝐺, ◦) Conditions 𝑛 𝑙 𝑇(𝑛)
5 1 2𝑝2 1

6

1 2𝑝
2(𝑞 + 1)2(𝑞 − 2) 2𝑝2

3 2𝑝(𝑝 − 1)
2 2𝑝2(𝑝 − 1)

7 1 2 𝑞 − 1𝑞 − 2 2𝑝2

8𝐺2 𝑞 > 3
4 2𝑝

2(𝑞 + 2)2(𝑞 − 3) 2𝑝2
2 2𝑝(𝑝 − 1)
4 2𝑝2(𝑝 − 1)

8𝐺𝑘 , 𝑘 ≠ 2 𝑞 > 3
4 2𝑝

2(𝑞 + 2)2(𝑞 − 3) 2𝑝2
6 2𝑝2(𝑝 − 1)

9

𝑞 > 2 2 2𝑝

𝑞 + 2
𝑞 − 3 2𝑝2

𝑞 = 3 1 2𝑝(𝑝 − 1)
2 2𝑝2(𝑝 − 1)

𝑞 > 3 3 2𝑝2(𝑝 − 1)
In the row of 8𝐺𝑘 wemean that for every 𝑘 ∈ 𝒦, 𝑘 ≠ 2 there are 𝑛 classes of length
𝑙 of regular subgroups isomorphic to 𝐺𝑘.

8.7. The case |||𝐤𝐞𝐫(𝜸)||| = 𝟏. The GF’s of this case can be divided into sub-
classes according to the size of ker(�̃�). Those for which |||ker(�̃�)||| ≠ 1 can be
recovered via duality from the previous computations applied to �̃�. For the oth-
ers, for which |||ker(�̃�)||| = 1, we will use Proposition 2.8.
We recall that �̃�(𝑥) = 𝛾(𝑥−1)𝜄(𝑥−1) for all 𝑥 ∈ 𝐺, so |||ker(�̃�)||| ≠ 1means that

there exists 𝑥0 ∈ 𝐺, 𝑥0 ≠ 1, such that

𝛾(𝑥0) = 𝜄(𝑥−10 ) (8.5)

whereas the condition |||ker(𝛾)||| = 1 corresponds to

�̃�(𝑥) ≠ 𝜄(𝑥−1), for each 𝑥 ∈ 𝐺, 𝑥 ≠ 1. (8.6)

Clearly, when |||ker(�̃�)||| = 𝑝2𝑞, 𝛾 = ̃̃𝛾 corresponds to the left regular representa-
tion, and this gives one group of the same type as 𝐺.
In the remaining cases for which 𝑞 ∣ |||ker(�̃�)|||, the condition (8.6) is not ful-

filled, so none of the corresponding 𝛾’s has trivial kernel.
Consider now the GF’s 𝛾 for which 𝑝 ∣ |||ker(�̃�)||| (and 𝑞 ∤ |||ker(�̃�)|||). Here

𝛾(𝑎) = 𝜄(𝑎−𝜎), where 𝜎 has 1, but not 0, as eigenvalue (because 𝑝 ∣ |||ker(�̃�)||| and
𝛾 is injective). Therefore, for each 𝑎 ∈ 𝐴, we have that �̃�(𝑎) = 𝛾(𝑎−1)𝜄(𝑎−1) =
𝜄(𝑎𝜎−1).
Suppose that 𝜎 = 1. Then |||ker(�̃�)||| = 𝑝2 and 𝛾(𝑎) = 𝜄(𝑎−1). Therefore,

𝑝2 ∣ |||𝛾(𝐺)|||, and ker(𝛾) can have size 1 or 𝑞. We have |||ker(𝛾)||| = 1 if and only
if (8.6) is satisfied, and by Subsection 8.5, �̃�(𝑏) = 𝜄(𝑏−1) if and only if 𝑥1 = 𝑥2 =
−1. Therefore, the 𝑝2 GF’s �̃� corresponding to (𝐺, ◦) of type 5 are such that the
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corresponding 𝛾 have kernel of size 𝑞, and all the others �̃� correspond to 𝛾 with
kernel of size 1.
Suppose now that 𝜎 ≠ 1. Since 𝜎 has 1 as eigenvalue, then |||ker(�̃�)||| = 𝑝, and

if 𝑎0 ∈ 𝐴 generates ker(�̃�), then 𝛾(𝑎0) = 𝜄(𝑎−10 ), namely 𝑝 ∣ |||𝛾(𝐺)|||. Moreover,
since 0 is not an eigenvalue for 𝜎, 𝑝 ∤ |||ker(𝛾)|||. Therefore, again, ker(𝛾) can have
size 1 or 𝑞. By Subsection 8.6, the �̃�’s such that 𝑝 ∣ |||ker(�̃�)||| and 𝑝 ∤ |||ker(𝛾)||| are
those of the cases (A1) and (A1∗). Moreover, for every �̃� belonging to these cases
the condition (8.6) is satisfied, namely the corresponding 𝛾 are injective.
We are left with the case when |||ker(𝛾)||| = |||ker(�̃�)||| = 1. In the following, we

suppose that 𝜎 has no eigenvalues 0 or 1.
Here 𝛾(𝐺) = ⟨ 𝜄(𝑎1), 𝜄(𝑎2), 𝛽 ⟩, where 𝛽 ≠ 1. As in Subsubsection 7.1, if 𝑏 is an

element of order 𝑞 fixed by 𝛽, we can assume 𝛾(𝑏) = 𝜄(𝑎∗)𝛽 for some 𝑎∗ ∈ 𝐴𝜎,
and 𝛽 = 𝛽𝑥11 𝛽

𝑥2
2 . As usual, denote by 𝑇 the matrix of 𝛾(𝑏)|𝐴 with respect to the

basis {𝑎1, 𝑎2}. The discussion in Subsection 8.2 yields equation (4.2), which in
our notation here is

(𝜎−1 − 1)−1𝑇(𝜎−1 − 1) = 𝑇𝑍. (8.7)
Now 𝑇 and 𝑇𝑍, being conjugate, have the same eigenvalues, so that 𝜆−𝑥2 =
𝜆𝑥1+1. Therefore 𝑇 = diag(𝜆𝑥1 , 𝜆1+𝑥1), and 𝜎−1−1 exchanges the two eigenspa-
ces, so

𝜎−1 − 1 = [0 𝑠1
𝑠2 0 ] (8.8)

with the conditions 𝑠1, 𝑠2 ≠ 0 (due to our assumptions on the eigenvalues of 𝜎)
and 𝑠1𝑠2 ≠ 1.

8.7.1. Invariant Sylow𝒒-subgroups. Wewill show that also in this case there
always exists at least one invariant Sylow 𝑞-subgroup. By the discussion above
𝛾(𝑏) = 𝜄(𝑎∗)𝛽

𝑥1
1 𝛽

−(𝑥1+1)
2 , for some 𝑎∗ ∈ 𝐴𝜎 and 0 ≤ 𝑥1 < 𝑞.

By Subsection 7.1 there exists an invariant Sylow 𝑞-subgroup, ⟨ 𝑏𝑥 ⟩ where
𝑥 ∈ 𝐴, if and only if the equation (7.4), namely

𝑥(1−𝑍−1)𝑀 = 𝑎(1−𝑍
−1)𝑇

∗

where𝑀 = 1 − (1 + 𝑇−1𝜎(1 − 𝑍−1))𝑇, has a solution in 𝑥.
Here

𝑀 =
⎡
⎢
⎢
⎣

1 − 𝜆𝑥1 − (1−𝜆−1)
1−𝑠1𝑠2

𝑠1𝜆(1−𝜆)
1−𝑠1𝑠2

𝑠2𝜆−1(1−𝜆−1)
1−𝑠1𝑠2

1 − 𝜆𝑥1+1 − (1−𝜆)
1−𝑠1𝑠2

⎤
⎥
⎥
⎦

,

and since det(1 − 𝑍−1) ≠ 0 and det(𝑀) = (1 − 𝜆𝑥1)(1 − 𝜆𝑥1+1), we have the
following.

(1) If 𝑥1 ≠ 0,−1, then𝑀 has rank 2 and the system (7.4) admits a unique
solution.

(2) If 𝑥1 = 0, then, writing 𝑎∗ = 𝑎𝑥1𝑎
𝑦
2 , the system (7.4) admits solutions if

and only if 𝑦 = −𝑠1𝑥. Moreover, in that case there are 𝑝 solutions. If
𝑦 ≠ −𝑠1𝑥, then there are no GF on 𝐺 extending the assignment 𝛾(𝑏) =
𝜄(𝑎∗)𝛽, as the condition (7.6) is not satisfied.
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(3) If 𝑥1 = −1, then (7.4) admits 𝑝 solutions if and only if 𝑎∗ = 𝑎−𝑠2𝑦1 𝑎𝑦2 .
Reasoning as above, if 𝑥 ≠ −𝑠2𝑦 there are no GF on 𝐺 extending the
assignment 𝛾(𝑏) = 𝜄(𝑎∗)𝛽.

8.7.2. Computations. Since in this case all gamma functions fulfil (2.7), we
can count them using Proposition 2.8, as follows.

∙ Choose𝜎 ∈ GL(2, 𝑝)without eigenvalues 1, and aRGF 𝛾 ∶ 𝐵 → Aut(𝐺)
such that 𝜎 and 𝛾 satisfy (2.5) (𝑞 choices for 𝛾 corresponding to 𝛾(𝑏) =
𝛽𝑥11 𝛽

−(𝑥1+1)
2 and (𝑝 − 1)(𝑝 − 2) choices for 𝜎 as in equation (8.8)).

∙ By Proposition 2.8 each such assignment defines a unique function 𝛾,
and the GF’s obtained in this way are distinct for 𝑥1 ≠ 0,−1 (namely
when 𝛾(𝐺) is centerless) and each of them is obtained 𝑝 times when
𝑥1 = 0 or −1 (namely when 𝑍(𝛾(𝐺)) is non trivial).

Now, let 𝛾 be a GF obtained for a choice of 𝜎, 𝐵, 𝑥1. Since 𝛾 is injective, (𝐺, ◦)
is isomorphic to 𝛾(𝐺). We have

𝛾(𝑏)−1𝛾(𝑎)𝛾(𝑏) = 𝛾(𝑏)−1𝜄(𝑎−𝜎)𝛾(𝑏) = 𝜄(𝑎−𝜎𝑇) = 𝛾(𝑎𝜎𝑇𝜎−1),
from which we obtain,

𝑏⊖1◦𝑎◦𝑏 = 𝑎𝜎𝑇𝜎−1 .
Since 𝑎◦𝑡 = 𝑎𝑡 for all 𝑡, the action of 𝜄(𝑏) on 𝐴 in (𝐺, ◦) is

𝑍◦ ∼ [𝜆
𝑥1 0
0 𝜆𝑥1+1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: when 𝑥1 = 0 or 𝑥1 = −1 and there are 2𝑝(𝑝 − 1)(𝑝 − 2) groups.
Type 7: does not arise.
Type 8: when 𝑥1 ≠ 0,−1, (𝑞 − 1)∕2 and there are 𝑝2(𝑝 − 1)(𝑝 − 2)(𝑞 − 3)
groups. They are 2𝑝2(𝑝 − 1)(𝑝 − 2) groups isomorphic to 𝐺𝑠 for every
𝑠 ∈ 𝒦.

Type 9: when 𝑥1 = (𝑞 − 1)∕2 and there are 𝑝2(𝑝 − 1)(𝑝 − 2) groups.

8.7.3. Conjugacy classes. As to the conjugacy classes, in the notation of Sub-
section 8.4 , let 𝜑 = 𝜄(𝑥)𝛿𝜓 ∈ Aut(𝐺). We have

𝛾𝜑(𝑎) = 𝜑−1𝛾(𝑎𝑆𝛿−1)𝜑 = 𝜓−1𝛿−1𝜄(𝑎−𝑆𝛿−1𝜎)𝛿𝜓 = 𝜄(𝑎−𝑆𝛿−1𝜎𝛿𝑆),
so that 𝛾𝜑(𝑎) = 𝛾(𝑎) if and only if 𝜎−1𝛿𝑆𝜎 = 𝛿𝑆. The last condition yields
𝛿22 = 𝛿11 if 𝑆 = 1, and 𝛿22 =

𝑠2
𝑠1
𝛿11 if 𝑆 ≠ 1.

Now,
𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑏𝜑−1)𝜑 = 𝜑−1𝛾(𝑥1−𝑍−𝑟𝑏𝑟)𝜑;

suppose first 𝜓 = 1. Using Proposition 2.8, we obtain
𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑥1−𝑍−1𝑏)𝜑

= 𝜑−1𝜄(𝑥−(1−𝑍−1)𝑇−1𝜎)𝛽𝜑
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= 𝛿−1𝜄(𝑥−1+𝑇−1−(1−𝑍−1)𝑇−1𝜎)𝛽𝛿
= 𝜄(𝑥(−1+𝑇−1−(1−𝑍−1)𝑇−1𝜎)𝛿)𝛽,

so that 𝛾𝜑(𝑏) = 𝛾(𝑏) if and only if the system 𝑥𝐻1 = 1, where𝐻1 ∶= −1+𝑇−1−
(1−𝑍−1)𝑇−1𝜎, admits a solution. Since det(𝐻1) = (1−𝜆−𝑥1)(1−𝜆−𝑥1−1), there
is one solution if 𝑥1 ≠ 0,−1, and 𝑝 solutions otherwise.
Suppose now that 𝜓 ≠ 1. Since 𝛾(𝑏−1) = 𝛽−1, we have

𝛾𝜑(𝑏) = 𝜑−1𝛾(𝑥1−𝑍𝑏−1)𝜑
= 𝜑−1𝜄(𝑥−(1−𝑍)𝑇𝜎)𝛾(𝑏−1)𝜑
= 𝜑−1𝜄(𝑥−(1−𝑍)𝑇𝜎)𝛽−1𝜑
= 𝜓𝛿−1𝜄(𝑥−1+𝑇−(1−𝑍)𝑇𝜎)𝛽−1𝛿𝜓
= 𝜓𝜄(𝑥(−1+𝑇−(1−𝑍)𝑇𝜎)𝛿)𝛽−1𝜓.

If𝐻2 ∶= −1 + 𝑇 − (1 − 𝑍)𝑇𝜎, we have that 𝛾𝜑(𝑏) = 𝛾(𝑏) if and only if

𝜄(𝑥𝐻2𝛿)𝛽−1 = 𝜓𝛽𝜓,

namely if and only if

{ 𝑥
𝐻2 = 1
𝑇−1 = 𝑆𝑇𝑆.

Since det(𝐻2) = (1 − 𝜆𝑥1)(1 − 𝜆𝑥1+1), the system 𝑥𝐻2 = 1 has one solution
if 𝑥1 ≠ 0,−1 and 𝑝 solutions otherwise, while the condition 𝑇−1 = 𝑆𝑇𝑆 is
satisfied if and only if 𝑥1 =

𝑞−1
2
.

We obtain the following.

(1) if 𝑥1 = 0,−1, then the stabiliser has order 𝑝(𝑝 − 1). Here there are
2𝑝(𝑝−1)(𝑝−2) groups (𝐺, ◦) of type 6, so that there are 𝑝−2 orbits of
length 2𝑝(𝑝 − 1).

(2) if 𝑥1 =
𝑞−1
2
, then (𝐺, ◦) is of type 9, and the stabiliser has order 2(𝑝−1).

Since there are 𝑝2(𝑝 − 1)(𝑝 − 2) groups, they split in 𝑝 − 2 orbits of
length 𝑝2(𝑝 − 1).

(3) if 𝑥1 ≠ 0,−1, 𝑞−1
2
, then (𝐺, ◦) is of type 8, and the stabiliser has order𝑝−

1. Since for every 𝑠 ∈ 𝒦 there are 2𝑝2(𝑝−1)(𝑝−2) groups isomorphic
to 𝐺𝑠, they split in 𝑝 − 2 classes for every 𝑠 ∈ 𝒦.
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8.8. Results.

Proposition 8.3. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝, 𝑞 > 2, of type 9. For each
isomorphism class of groups (Γ), the number of regular subgroups inHol(𝐺) (𝑅𝑆),
and the number (𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺) are listed
in the following table.
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
𝑇(𝑛) denotes the total number of conjugacy classes.

Γ Conditions RS 𝑛 𝑙 𝑇(𝑛)

5 4𝑝2 2 𝑝2 31 2𝑝2

6 2𝑝2(4𝑞 + 3𝑝 − 7)
4 2𝑝

4𝑞 + 𝑝 + 24(𝑞 − 2) 2𝑝2
𝑝 + 4 2𝑝(𝑝 − 1)
2 2𝑝2(𝑝 − 1)

7 2 + 4𝑝 + 2𝑝2(2𝑞 − 5) 1 2
2(𝑞 − 1)2 2𝑝

2𝑞 − 5 2𝑝2

8𝐺2 𝑞 > 3 2𝑝(𝑝3 + 3𝑝2 − 14𝑝 + 4𝑝𝑞 − 6)
8 2𝑝

4𝑞 + 𝑝 + 24(𝑞 − 3) 2𝑝2
2 2𝑝(𝑝 − 1)

𝑝 + 4 2𝑝2(𝑝 − 1)

8𝐺𝑠 , 𝑠 ≠ 2 𝑞 > 3 2𝑝(𝑝3 + 5𝑝2 − 18𝑝 + 4𝑝𝑞 + 8)
8 2𝑝

4𝑞 + 𝑝 + 24(𝑞 − 3) 2𝑝2
𝑝 + 6 2𝑝2(𝑝 − 1)

9

𝑞 > 3 2 + 4𝑝 + 𝑝2(𝑝2 + 5𝑝 + 4𝑞 − 16)

2 1

3𝑞 + 𝑝 − 1
2(𝑞 − 2) 𝑝2

2 2𝑝
𝑞 − 3 2𝑝2
𝑝 − 2 𝑝2(𝑝 − 1)
4 2𝑝2(𝑝 − 1)

𝑞 = 3 2 + 2𝑝 + 𝑝3(𝑝 + 3)

2 1

8 + 𝑝
2 𝑝2
2 2𝑝

𝑝 − 2 𝑝2(𝑝 − 1)
1 2𝑝(𝑝 − 1)
3 2𝑝2(𝑝 − 1)

In the row of 8𝐺𝑠 we mean that for every 𝑠 ∈ 𝒦, 𝑠 ≠ 2, there are 2𝑝(𝑝3 + 5𝑝2 −
18𝑝 + 4𝑝𝑞 + 8) regular subgroups isomorphic to 𝐺𝑠.

9. Type 8
This case can be handled in a very similar way to the case in which 𝐺 is type

9, so in the following we will often refer to the previous Section, highlighting
only the points that require a different treatment.

Here 𝑞 ∣ 𝑝−1, 𝑞 > 3, and𝐺 is isomorphic to one of the groups (𝒞𝑝×𝒞𝑝)⋊𝐷0
𝒞𝑞. The Sylow 𝑝-subgroup𝐴 = ⟨ 𝑎1, 𝑎2 ⟩ of 𝐺 is characteristic, and if 𝑎1, 𝑎2 ∈ 𝐴
are in the eigenspaces of the action of a generator 𝑏 of a Sylow 𝑞-subgroup 𝐵 on
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𝐴, then this action can be represented by a non-scalar diagonal matrix 𝑍, with
no eigenvalues 1 and det(𝑍) ≠ 1.
For all of this section, we consider 𝐴 = ⟨ 𝑎1, 𝑎2 ⟩, where 𝑎1, 𝑎2 are eigenvec-

tors for 𝜄(𝑏). With respect to that basis, we have

𝑍 = [𝜆 0
0 𝜆𝑘] ,

where 𝜆 has order 𝑞, and 𝑘 ≠ 0,±1.
Recall that the type 8 includes 𝑞−3

2
different isomorphism classes of groups,

and that {𝐺𝑘 ∶ 𝑘 ∈ 𝒦}denotes a set of representatives of the isomorphismclasses
(see Section 3).
According to Subsections 4.1 and 4.3 of [8], we have

Aut(𝐺) = Hol(𝒞𝑝) × Hol(𝒞𝑝);

as in the case of the groups of type 9, all the elements of the Sylow 𝑝-subgroup
of Aut(𝐺) are conjugation by elements of 𝐴, and for each gamma function 𝛾
there exists 𝜎 ∈ End(𝐴) such that (7.1), namely 𝛾(𝑎) = 𝜄(𝑎−𝜎), is satisfied for
each 𝑎 ∈ 𝐴 (see Section 8).

9.1. Duality. For 𝐺 of type 8 the discussion in Subsections 4.1 and 4.2 yields
that 𝜎 has 0 or 1 as an eigenvalue, and this corresponds to have 𝑝 ∣ |||ker(𝛾)||| or
𝑝 ∣ |||ker(�̃�)|||.
Therefore, we can assume that 𝑝 ∣ |||ker(𝛾)||| (equivalently 𝜎 has 0 as an eigen-

value), and once we have counted the gamma functions with this property, we
will double the number of those for which moreover 𝑝 ∤ |||ker(�̃�)||| (we will dou-
ble only those GF for which 1 is not an eigenvalue of 𝜎).

9.2. Description of the elements of order 𝒒 of 𝐀𝐮𝐭(𝑮). The discussion in
Subsubsection 8.2.1 yields that, if 𝑏 ∈ 𝐺 ⧵ 𝐴, recalling that 𝜄(𝑏) acts on 𝐴 as
diag(𝜆, 𝜆𝑘), we can write

𝛽1∶ 𝑎1 ↦ 𝑎𝜆1
𝑎2 ↦ 𝑎2
𝑏 ↦ 𝑏

𝛽2∶ 𝑎1 ↦ 𝑎1
𝑎2 ↦ 𝑎𝜆𝑘2
𝑏 ↦ 𝑏

(9.1)

so that 𝜄(𝑏) = 𝛽1𝛽2, and if 𝛽 ∈ Aut(𝐺) is an element of order 𝑞, then 𝛽 ∈
⟨ 𝛽1, 𝛽2 ⟩, namely 𝛽 = 𝛽𝑥11 𝛽

𝑥2
2 , where 0 ≤ 𝑥1, 𝑥2 < 𝑞 are not both zero.

Let us start with the enumeration of the GF’s on 𝐺. As usual, if |||ker(𝛾)||| =
𝑝2𝑞, then 𝛾 corresponds to the right regular representation, so that we will as-
sume 𝛾 ≠ 1.
Suppose moreover that 𝐺 ≃ 𝐺𝑘, for a certain 𝑘 ∈ 𝒦.
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9.3. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝒒. Reasoning as in Subsection 8.4, we obtain 2𝑝2
gamma functions corresponding to groups (𝐺, ◦) of type 6.
Moreover, for every 𝛾 here, 𝑝 ∣ |||ker(�̃�)|||.
As to the conjugacy classes, this time an automorphism 𝜑 of 𝐺 has the form

𝜑 = 𝜄(𝑥)𝛿, where 𝑥 ∈ 𝐴 and 𝛿 is such that 𝛿|𝐵 = 1, 𝛿|𝐴 = (𝛿𝑖𝑗) ∈ GL(2, 𝑝)
diagonal with respect to the fixed basis.
With the same computations of Subsection 8.4 we obtain two orbits of length

𝑝 and two orbits of length 𝑝(𝑝 − 1).

9.4. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝟐. Reasoning as in Subsection 8.5, we obtain that
each 𝛾 on 𝐺 is the lifting of at least one RGF defined on an invariant Sylow 𝑞-
subgroup𝐵, and the RGF’s on𝐵 are precisely themorphisms. We have 𝛾(𝑏)|𝐵 =
1, and let 𝛾(𝑏)|𝐴 = 𝛽; then the discussion in Subsubsection 9.2 yields that 𝛽 =
𝛽𝑥11 𝛽

𝑥2
2 , where 𝑥1, 𝑥2 not both zero, so that, with respect to the basis {𝑎1, 𝑎2}, we

can represent 𝛽 as the matrix

𝑇 = [𝜆
𝑥1 0
0 𝜆𝑘𝑥2] ,

where 𝜆 is an element of multiplicative order 𝑞 in ℤ∕𝑝ℤ, 𝑥1, 𝑥2 are not both
zero, and 𝑘 ∈ 𝒦 is such that 𝐺 ≃ 𝐺𝑘.
To know the exact number of the invariant Sylow 𝑞-subgroups we appeal to

the discussion in Subsubsection 7.1; here equation (7.4) yields 𝑥(1−𝑍−1)𝑀 = 1,
where

𝑀 = 1 − 𝑇 = [1 − 𝜆𝑥1 0
0 1 − 𝜆𝑘𝑥2] ,

and we obtain that
(1) if both 𝑥1, 𝑥2 ≠ 0, there is a unique invariant Sylow 𝑞-subgroup;
(2) if either 𝑥1 = 0 or 𝑥2 = 0, there are 𝑝 invariant Sylow 𝑞-subgroups.
Denoting as usual by 𝑍◦ the associated matrix of the action of 𝑏 on 𝐴 with

respect to the operation ◦, here we have

𝑍◦ ∼ [𝜆
1+𝑥1 0
0 𝜆𝑘+𝑘𝑥2] ,

and we obtain precisely the same number of groups (𝐺, ◦) of type 5, 6, and 7 as
in Subsection 8.5. As for the type 8 and 9, we have the following.
Type 8. In case (1) the type 8 corresponds to the conditions 𝑥2 ≠ 0,−1 and

𝑥1 ≠ 0,−1,−𝑘𝑥2 − 𝑘 − 1, 𝑘𝑥2 + 𝑘 − 1. The conditions on 𝑥1 are independent if
and only if in addition 𝑥2 ≠ 𝑘−1 − 1,−𝑘−1 − 1. When these four conditions on
𝑥1 are dependent, they reduce to three.
We obtain 𝑝2(𝑞−4)2 groups if 𝑥2 ≠ −𝑘−1−1, 𝑘−1−1, plus further 𝑝2(𝑞−3)

groups if 𝑥2 = −𝑘−1 − 1, 𝑘−1 − 1.
In case (2), suppose 𝑥1 = 0. Then, there are four independent conditions on

𝑥2. Doubling for the case 𝑥2 = 0, we obtain 2𝑝(𝑞 − 4) groups.
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Now, looking at the eigenvalues of 𝑍◦ as 𝑥1 and 𝑥2 vary, and taking into ac-
count the conditions on 𝑥1 and 𝑥2, one can see that the 2𝑝2(𝑞 − 3) groups split
in 4𝑝2 groups isomorphic to 𝐺𝑠 for every 𝑠 ∈ 𝒦, and the 𝑝2(𝑞−4)2 +2𝑝(𝑞−4)
groups split in 2𝑝2(𝑞 − 5) + 4𝑝 groups isomorphic to 𝐺𝑠 for every 𝑠 ≠ 𝑘, and
2𝑝2(𝑞 − 5) + 𝑝2 + 2𝑝 groups isomorphic to 𝐺𝑘. Therefore, in total, we have

∙ 2𝑝2(𝑞 − 3) + 4𝑝 groups isomorphic to 𝐺𝑠 for every 𝑠 ≠ 𝑘;
∙ 𝑝2(2𝑞 − 5) + 2𝑝 groups isomorphic to 𝐺𝑘.

Type 9. (𝐺, ◦) is of type 9 when 𝑥1 ≠ −1, 𝑘𝑥2 + 𝑘 − 1, 𝑥2 ≠ −1, and 𝑥1 + 1+
𝑘𝑥2+𝑘 = 0. In case (1) 𝑥2 ≠ 0,−1 and also 𝑥2 ≠ −𝑘−1−1 (otherwise we would
have 𝑥1 = 0). Since the last one is a further condition, we obtain 𝑝2(𝑞 − 3)
groups. The case (2) yields 2𝑝 groups.
Summing up, there are 2𝑝 + 𝑝2(𝑞 − 3) groups.
As to the conjugacy classes, with the same computations as in Subsection 8.5

(imposing 𝜓 = 1), we obtain the following.
(1) For (𝐺, ◦) of type 5 there is one orbit of length 𝑝2;
(2) For (𝐺, ◦) of type 6 we obtain 2 orbits of length 𝑝 and 2(𝑞 − 2) orbits of

length 𝑝2;
(3) For (𝐺, ◦) of type 7 there are 𝑞 − 3 orbits of length 𝑝2 and 2 orbits of

length 𝑝.
(4) For (𝐺, ◦) of type 8, (𝐺, ◦) ≃ 𝐺𝑠, then for every 𝑠 ≠ 𝑘, 𝑠 ∈ 𝒦, we obtain

2(𝑞 − 3) orbits of length 𝑝2 and 4 orbits of length 𝑝; otherwise 𝑠 = 𝑘,
and we get 2𝑞 − 5 orbits of length 𝑝2 and 2 orbits of length 𝑝.

(5) For (𝐺, ◦) of type 9 there are 𝑞 − 3 orbits of length 𝑝2 and 2 orbits of
length 𝑝.

9.5. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑. As in Subsection 8.6, we have 𝛾(𝐺) = ⟨ 𝜄(𝑎0), 𝛽 ⟩,
for some 1 ≠ 𝑎0 ∈ 𝐴 with 𝐴𝜎 = ⟨ 𝜄(𝑎0) ⟩, and 𝛽 ≠ 1. We can assume 𝛾(𝑏) =
𝜄(𝑎𝑗0)𝛽 for some 𝑗, where 𝛽 = 𝛽𝑥11 𝛽

𝑥2
2 (by Subsection 9.2). With respect to the

fixed basis we can represent 𝛽|𝐴 as

𝑇 = [𝜆
𝑥1 0
0 𝜆𝑘𝑥2] .

Also here ker(𝛾) = ker(𝜎) = ⟨ 𝑣 ⟩ and from equation (2.5) we obtain (7.7),
and we distinguish in the three cases 𝑣 ∈ ⟨ 𝑎1 ⟩, 𝑣 ∈ ⟨ 𝑎2 ⟩, and 𝑣 = 𝑎𝑥1𝑎

𝑦
2 .

Following Subsection 7.3, and recalling that 𝑘 ≠ ±1, 0, here we find the fol-
lowing cases.

∙ Case A: ker(𝜎) = ⟨ 𝑎1 ⟩.
(A1) 𝜈 = 0, 𝜇 ≠ 0, 𝑥1 − 𝑥2𝑘 = 𝑘;
(A2) 𝜈 = 1, 𝜇 ≠ 0, 𝑥1 = 𝑥2𝑘;
(A3) 𝜈 = 1, 𝜇 = 0.
∙ Case B: ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩.
(B1) 𝜈 = 0, 𝜇 = −1, 𝑥1 = 𝑥2𝑘 + 𝑘 − 1;

As explained in Subsection 7.3, the cases (A1∗), (A2∗), (A3∗) and (B1∗) can be
recovered by the cases (A1), (A2), (A3) and (B1) considering 𝑘−1 instead of 𝑘.
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Notice that 𝑝 divides both |||ker(𝛾)||| and |||ker(�̃�)||| if and only if 𝜎 has both 0 and
1 as eigenvalues, that is, in all the cases above except (A1) and (A1∗), where,
since 𝜎 has only 0 as eigenvalue, 𝑝 ∣ |||ker(𝛾)||| but 𝑝 ∤ |||ker(�̃�)|||.

9.5.1. Invariant Sylow𝒒-subgroups. Taking𝑘 ≠ ±1, 0 in Subsubsection 7.3.1,
we find the following.

Proposition 9.1. If𝐺 is of type 8 and |||ker(𝛾)||| = 𝑝, then the number of invariant
Sylow 𝑞-subgroups is
(A1) 1 when 𝑥1 ≠ 0, 𝑘 and 𝑝 otherwise.
(A2) 1 when 𝑥1 ≠ −𝑘 and 𝑝 otherwise.
(A3) 1 when 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 𝑝2 when 𝑥1 = 0 and 𝑥2 = −1, and 𝑝

otherwise.
(B1) 1 when 𝑥1 ≠ −1, 𝑘 − 1 and 𝑝 otherwise.
(B1∗) 1 when 𝑥2 ≠ −1,−1 + 𝑘−1 and 𝑝 otherwise.

9.5.2. Computations. By Subsubsection 7.3.2 the action𝑍◦ of 𝑏 on𝐴 in (𝐺, ◦)
is given by

𝑍◦ = (𝜎(1 − 𝑍) + 𝑍)𝑇,
and we obtain the following.
Case A. Here

𝑍◦ = [ 𝜆𝑥1+1 0
𝜇(1 − 𝜆)𝜆𝑥1 𝜆𝑥2𝑘(𝜈(1 − 𝜆𝑘) + 𝜆𝑘)] .

(A1) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: if 𝑥1 = 0 or 𝑥1 = −1. If 𝑥1 = 0 we obtain 𝑝(𝑝 − 1) groups; if
𝑥1 = −1 there are 𝑝2(𝑝 − 1) groups.

Type 7: does not arise.
Type 8: if 𝑥1 ≠ 0, −1, (𝑞 − 1)∕2. Suppose first that 𝑘 = (𝑞 − 1)∕2;
then 𝑥1 ≠ 𝑘 and there are 𝑝2(𝑝 − 1)(𝑞 − 3) groups. Otherwise
𝑘 ≠ (𝑞 − 1)∕2 and there are 𝑝(𝑝 − 1) + 𝑝2(𝑝 − 1)(𝑞 − 4) groups.
Therefore, if 𝑘 = 𝑞−1

2
, there are 2𝑝2(𝑝−1) groups isomorphic to𝐺𝑠

for every 𝑠 ∈ 𝒦, and if 𝑘 ≠ 𝑞−1
2
, then there are 𝑝(𝑝−1)+𝑝2(𝑝−1)

groups isomorphic to 𝐺1+𝑘−1 (obtained for 𝑥1 = 𝑘,−(𝑘 + 1)) and
2𝑝2(𝑝 − 1) groups isomorphic to 𝐺𝑠 for every 𝑠 ≠ 1 + 𝑘−1, 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞−1)∕2. When 𝑘 = (𝑞−1)∕2 then 𝑥1 = 𝑘 and there
are 𝑝(𝑝 − 1) groups. Otherwise 𝑘 ≠ (𝑞 − 1)∕2 so that 𝑥1 ≠ 𝑘 and
there are 𝑝2(𝑝 − 1) groups.



152 E. CAMPEDEL, A. CARANTI AND I. DEL CORSO

(A2) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: when 𝑥1 = −1. Here 𝑥1 ≠ −𝑘 and there are𝑝2(𝑝−1) groups.
Type 7: does not arise.
Type 8: if 𝑥1 ≠ 0, −1, (𝑞 − 1)∕2. When 𝑘 = 1∕2 then 𝑥1 ≠ −𝑘 and
there are (𝑝 − 1)(𝑞 − 3)𝑝2 groups, which split 2𝑝2(𝑝 − 1) groups
isomorphic to 𝐺𝑠 for every 𝑠 ∈ 𝒦. If 𝑘 ≠ 1∕2 then there are (𝑝 −
1)𝑝 + 𝑝2(𝑝 − 1)(𝑞 − 4) groups, which split in 𝑝2(𝑝 − 1) + 𝑝(𝑝 − 1)
groups isomorphic to 𝐺1−𝑘−1 , and 2𝑝2(𝑝−1) groups isomorphic to
𝐺𝑠 for every 𝑠 ≠ 1 − 𝑘−1, 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞 − 1)∕2. If 𝑘 = 1∕2 then 𝑥1 = −𝑘 and there are
𝑝(𝑝 − 1) groups. Otherwise 𝑘 ≠ 1∕2, so 𝑥1 ≠ −𝑘 and there are
𝑝2(𝑝 − 1) groups.

(A3) We have 1 choice for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥2𝑘] .

We obtain the following groups (𝐺, ◦).
Type 5: if 1 + 𝑥1 = 𝑥2𝑘 = 0. There are 𝑝2 groups.
Type 6: if either 𝑥1 = −1 and 𝑥2 ≠ 0 or 𝑥1 ≠ −1 and 𝑥2 = 0. In
the first case, there are 𝑝 groups when 𝑥2 = −1, and 𝑝2(𝑞 − 2)
otherwise. In the second case, since 𝑥2 = 0, we have to take 𝑥1 ≠ 0
and there there 𝑝2(𝑞 − 2) groups.

Type 7: when 𝑥2𝑘 = 1 + 𝑥1 ≠ 0. In both the cases 𝑥1 ≠ 0, 𝑥2 = −1,
and 𝑥1 = 0, 𝑥2 ≠ −1 there are 2𝑝 groups. If 𝑥1 ≠ 0 and 𝑥2 ≠ −1
there are 𝑝2(𝑞 − 3) groups.

Type 8: when 𝑥1 ≠ −1, 𝑥2𝑘 − 1,−𝑥2𝑘 − 1, 𝑥2 ≠ 0. If 𝑥1 = 0 and
𝑥2 = −1, then there is one group. If 𝑥1 ≠ 0 and 𝑥2 = −1, the four
conditions on 𝑥1 are independent, and so there are 𝑝(𝑞−4) groups.
If 𝑥1 = 0 and 𝑥2 ≠ −1we get further 𝑝(𝑞−4) groups. Suppose now
𝑥1 ≠ 0, 𝑥2 ≠ −1; there are always four independent conditions on
𝑥1, except when 𝑥2 = ±𝑘−1, where the conditions become three.
Thus there are 𝑝2(𝑞 − 4)2 + 2𝑝2(𝑞 − 3) groups.
The 2𝑝2(𝑞−3) groups split in 4𝑝2 groups isomorphic to𝐺𝑠 for every
𝑠 ∈ 𝒦, and the 1+2𝑝(𝑞−4)+𝑝2(𝑞−4)2 groups split in 4𝑝+2𝑝2(𝑞−
5) groups isomorphic to 𝐺𝑠 for every 𝑠 ≠ −𝑘, and 1 + 2𝑝 + 𝑝2 +
2𝑝2(𝑞−5) groups isomorphic to 𝐺−𝑘. Therefore, in total, there are
1+2𝑝+𝑝2(2𝑞−5) groups isomorphic to 𝐺−𝑘, and 4𝑝+2𝑝2(𝑞−3)
groups isomorphic to 𝐺𝑠 for every 𝑠 ≠ −𝑘, 𝑠 ∈ 𝒦.
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Type 9: if 𝑥1 ≠ −1, 𝑥2 ≠ 0 and 1 + 𝑥1 + 𝑥2𝑘 = 0. For 𝑥2 = −1
and 𝑥1 = 𝑘 − 1 ≠ 0 there are 𝑝 groups. Similarly, for 𝑥2 ≠ −1 and
𝑥1 = 0 and there are 𝑝 groups. For 𝑥2 ≠ −1 and 𝑥1 = −𝑥2𝑘−1 ≠ 0,
namely 𝑥2 ≠ 0,−1, 𝑘−1, we get 𝑝2(𝑞 − 3) groups.

Case B. Here 𝑥1 = 𝑥2𝑘 + 𝑘 − 1.

(B1) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ = [ 𝜆𝑥1 0
−𝜆𝑥1(1 − 𝜆) 𝜆𝑥2𝑘+𝑘] ∼ [𝜆

𝑥1 0
0 𝜆𝑥1+1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: when 𝑥1 = 0 or 𝑥1 = −1. In the first case 𝑥1 ≠ 𝑘 − 1,−1
and there are 𝑝2(𝑝 − 1) groups, while in the second case there are
𝑝(𝑝 − 1) groups.

Type 7: does not arise.
Type 8: when 𝑥1 ≠ 0,−1,−1∕2. If 𝑥1 = 𝑘 − 1 (and thus 𝑘 ≠ 1∕2)
there are 𝑝(𝑝−1) groups. Suppose now 𝑥1 ≠ 𝑘−1; when 𝑘 ≠ 1∕2
(in particular when 𝐺 is of type 9) the four conditions on 𝑥1 are
independent and there are (𝑝 − 1)(𝑞 − 4)𝑝2 groups. Otherwise
𝑘 = 1∕2 and the four conditions are actually three, thus there are
𝑝2(𝑝−1)(𝑞−3) groups. Therefore there are 𝑝2(𝑝−1)(𝑞−3) groups
if 𝑘 = 1∕2, and they split in 2𝑝2(𝑝−1) groups isomorphic to 𝐺𝑠 for
every 𝑠 ∈ 𝒦. If 𝑘 ≠ 1∕2 there are 𝑝2(𝑝−1)(𝑞−4)+𝑝(𝑝−1) groups,
which split in𝑝(𝑝−1)+𝑝2(𝑝−1) groups isomorphic to𝐺1−𝑘−1 , and
2𝑝2(𝑝 − 1) groups isomorphic to 𝐺𝑠 for every 𝑠 ≠ 1 − 𝑘−1, 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞 − 1)∕2. We have that 𝑥1 = 𝑘 − 1 when 𝑘 = 1∕2
and in this case there are (𝑝 − 1)𝑝 groups. Otherwise 𝑘 ≠ 1∕2 and
there are (𝑝 − 1)𝑝2 groups.

As for the conjugacy classes, here an automorphism of 𝐺 has the form 𝜑 =
𝜄(𝑥)𝛿, where 𝑥 ∈ 𝐴 and 𝛿 is a diagonal matrix. Therefore, we can refer to
Subsubsection 7.3.3 for the computation of the conjugacy classes.
Summing up all the results obtained for the kernel of size 𝑝, we have the

following.

Recap 9.2. For𝐺 of type 8, 𝐺 ≃ 𝐺𝑘, and 𝛾 a GF on𝐺 with kernel of size 𝑝, we list
for each isomorphism class of groups ((𝐺, ◦)), the number (𝑛) and the lengths (𝑙)
of the conjugacy classes inHol(𝐺).
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
𝑇(𝑛) denotes the total number of conjugacy classes.
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Cases Conditions (𝐺, ◦) 𝑛 𝑙 𝑇(𝑛)
5 2 𝑝2 2

6

2 𝑝
4(𝑞 + 1)4(𝑞 − 2) 𝑝2

4 𝑝(𝑝 − 1)
6 𝑝2(𝑝 − 1)

7 4 𝑝 2(𝑞 − 1)2(𝑞 − 3) 𝑝2

(A3)+(A3∗)
8𝐺−𝑘

2 1
4(𝑞 − 1)4 𝑝

2(2𝑞 − 5) 𝑝2

8𝐺𝑠 , 𝑠 ≠ −𝑘 8 𝑝 4(𝑞 − 1)4(𝑞 − 3) 𝑝2

(A1)+(A1∗)

either 𝑘 or 𝑘−1
is equal to 𝑞 − 2

8𝐺2
1 𝑝(𝑝 − 1) 43 𝑝2(𝑝 − 1)

8𝐺𝑠 , 𝑠 ≠ 2 4 𝑝2(𝑝 − 1) 4
𝑘, 𝑘−1 ≠ 𝑞 − 2 8𝐺𝑠 , 𝑠 ≠ 1 + 𝑘, 1 + 𝑘−1 4 𝑝2(𝑝 − 1) 4
𝑘, 𝑘−1 ≠ 𝑞 − 2

and 𝐺1+𝑘 ≃ 𝐺1+𝑘−1
8𝐺1+𝑘

2 𝑝(𝑝 − 1) 42 𝑝2(𝑝 − 1)
𝑘, 𝑘−1 ≠ 𝑞 − 2

and 𝐺1+𝑘 ≄ 𝐺1+𝑘−1
8𝐺1+𝑘 , 8𝐺1+𝑘−1

1 𝑝(𝑝 − 1) 43 𝑝2(𝑝 − 1)

(A2)+(A2∗)
+

(B1)+(B1∗)

either 𝑘 or 𝑘−1
is equal to 2

8𝐺2
2 𝑝(𝑝 − 1) 86 𝑝2(𝑝 − 1)

8𝐺𝑠 , 𝑠 ≠ 2 8 𝑝2(𝑝 − 1) 8
𝑘, 𝑘−1 ≠ 2 8𝐺𝑠 , 𝑠 ≠ 1 − 𝑘, 1 − 𝑘−1 8 𝑝2(𝑝 − 1) 8
𝑘, 𝑘−1 ≠ 2

and 𝐺1−𝑘 ≃ 𝐺1−𝑘−1
8𝐺1−𝑘

4 𝑝(𝑝 − 1) 84 𝑝2(𝑝 − 1)
𝑘, 𝑘−1 ≠ 𝑞 − 2

and 𝐺1−𝑘 ≄ 𝐺1−𝑘−1
8𝐺1−𝑘 , 8𝐺1−𝑘−1

2 𝑝(𝑝 − 1) 86 𝑝2(𝑝 − 1)

(A3)+(A3∗) 9 4 𝑝 2(𝑞 − 1)2(𝑞 − 3) 𝑝2

(A1)+(A1∗)
either 𝑘 or 𝑘−1
is equal to 𝑞 − 2 9 1 𝑝(𝑝 − 1) 21 𝑝2(𝑝 − 1)
𝑘, 𝑘−1 ≠ 𝑞 − 2 9 2 𝑝2(𝑝 − 1) 2

(A2)+(A2∗)
+

(B1)+(B1∗)

either 𝑘 or 𝑘−1
is equal to 2 9 2 𝑝(𝑝 − 1) 42 𝑝2(𝑝 − 1)
𝑘, 𝑘−1 ≠ 2 9 4 𝑝2(𝑝 − 1) 4

In the rows of 8𝐺𝑠 we mean that for every 𝑠 ∈ 𝒦 there are 𝑛 classes of length 𝑙
of regular subgroups isomorphic to 𝐺𝑠.
9.6. Results.

Proposition 9.3. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝 > 2, 𝑞 > 3, of type 8, so that
𝐺 is isomorphic to 𝐺𝑘, where 𝑘, an integer modulo 𝑞, 𝑘 ≠ 0, 1,−1, determines the
isomorphism class of 𝐺. For each isomorphism class of groups (Γ), the number of
regular subgroups in Hol(𝐺) (𝑅𝑆), and the number (𝑛) and the lengths (𝑙) of the
conjugacy classes inHol(𝐺) are listed in the following table.
𝑇(𝑛) denotes the total number of conjugacy classes.

Γ Conditions RS 𝑛 𝑙 𝑇(𝑛)
5 4𝑝2 4 𝑝2 4

6 8𝑝2(𝑞 + 𝑝 − 2)

8 𝑝

8(𝑞 + 1)8(𝑞 − 2) 𝑝2
8 𝑝(𝑝 − 1)
8 𝑝2(𝑝 − 1)
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7 8𝑝 + 4𝑝2(𝑞 − 3) 8 𝑝 4(𝑞 − 1)4(𝑞 − 3) 𝑝2

8 𝐺 ≄ 𝐺±2, 𝑞 > 5 Table 5 8(𝑞 + 1)𝐺 ≃ 𝐺±2, 𝑞 > 3 Table 6

9

𝐺 ≄ 𝐺±2, 𝑞 > 5 4𝑝(2 + 𝑝(𝑞 + 2𝑝 − 5))
8 𝑝

4(𝑞 + 1)4(𝑞 − 3) 𝑝2
8 𝑝2(𝑝 − 1)

𝐺 ≃ 𝐺±2, 𝑞 > 5 2𝑝(3 + 𝑝(2𝑞 + 3𝑝 − 8))

8 𝑝

4(𝑞 + 1)4(𝑞 − 3) 𝑝2
2 𝑝(𝑝 − 1)
6 𝑝2(𝑝 − 1)

𝐺 ≃ 𝐺±2, 𝑞 = 5 8𝑝(1 + 𝑝 + 2𝑝(𝑝2 − 1))

8 𝑝

248 𝑝2
4 𝑝(𝑝 − 1)
4 𝑝2(𝑝 − 1)

Table 5: Γ, 𝐺 of type 8, 𝐺 ≃ 𝐺𝑘 ≄ 𝐺±2

Γ RS 𝑛 𝑙
if either 𝑘 or 𝑘−1 is a solution of 𝑥2 − 𝑥 − 1 = 0:

𝐺𝑘 , 𝐺1−𝑘 2(1 + 5𝑝 + 4𝑝2𝑞 − 17𝑝2 + 7𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
2 𝑝(𝑝 − 1)
14 𝑝2(𝑝 − 1)

𝐺1+𝑘 4(3𝑝 + 2𝑝2𝑞 − 8𝑝2 + 3𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

4 𝑝(𝑝 − 1)
12 𝑝2(𝑝 − 1)

∀𝑠 ∈ 𝒦 ∶ 𝐺𝑠 ≄ 𝐺𝑘 , 𝐺1±𝑘 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)
16 𝑝

8(𝑞 − 3) 𝑝2
16 𝑝2(𝑝 − 1)

if 𝑘 and 𝑘−1 are the solutions of 𝑥2 + 𝑥 + 1 = 0:

𝐺𝑘 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
16 𝑝2(𝑝 − 1)

𝐺1+𝑘 2(1 + 4𝑝 + 4𝑝2𝑞 − 15𝑝2 + 6𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
4 𝑝(𝑝 − 1)
16 𝑝2(𝑝 − 1)

𝐺1−𝑘 , 𝐺1−𝑘−1 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

2 𝑝(𝑝 − 1)
14 𝑝2(𝑝 − 1)

∀𝑠 ∈ 𝒦 ∶
𝐺𝑠 ≄ 𝐺𝑘 , 𝐺1±𝑘 , 𝐺1−𝑘−1 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

16 𝑝2(𝑝 − 1)
if 𝑘 and 𝑘−1 are the solutions of 𝑥2 − 𝑥 + 1 = 0:
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𝐺−𝑘 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
16 𝑝2(𝑝 − 1)

𝐺1−𝑘 2(1 + 4𝑝 + 4𝑝2𝑞 − 15𝑝2 + 6𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
4 𝑝(𝑝 − 1)
16 𝑝2(𝑝 − 1)

𝐺1+𝑘 , 𝐺1+𝑘−1 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

2 𝑝(𝑝 − 1)
14 𝑝2(𝑝 − 1)

∀𝑠 ∈ 𝒦 ∶
𝐺𝑠 ≄ 𝐺𝑘 , 𝐺1±𝑘 , 𝐺1+𝑘−1 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

16 𝑝2(𝑝 − 1)
if 𝑘 and 𝑘−1 are the solutions of 𝑥2 + 1 = 0:

𝐺𝑘 4(1 + 2𝑝 + 2𝑝2𝑞 − 9𝑝2 + 4𝑝3)

4 1
8 𝑝

4(2𝑞 − 5) 𝑝2
16 𝑝2(𝑝 − 1)

𝐺1+𝑘 , 𝐺1−𝑘 4(3𝑝 + 2𝑝2𝑞 − 8𝑝2 + 3𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

4 𝑝(𝑝 − 1)
12 𝑝2(𝑝 − 1)

∀𝑠 ∈ 𝒦 ∶ 𝐺𝑠 ≄ 𝐺𝑘 , 𝐺1±𝑘 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)
16 𝑝

8(𝑞 − 3) 𝑝2
16 𝑝2(𝑝 − 1)

if 𝑘2 ≠ ±𝑘 ± 1,−1:

𝐺𝑘 , 𝐺−𝑘 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
16 𝑝2(𝑝 − 1)

𝐺1±𝑘 , 𝐺1±𝑘−1 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

2 𝑝(𝑝 − 1)
14 𝑝2(𝑝 − 1)

∀𝑠 ∈ 𝒦 ∶
𝐺𝑠 ≄ 𝐺±𝑘 , 𝐺1±𝑘 , 𝐺1±𝑘−1 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

16 𝑝2(𝑝 − 1)

When in a row there is more than one isomorphism class for Γ, we mean that
there are RS regular subgroups for each of these. In particular, in the rows of 𝐺𝑠
we mean that that there are RS regular subgroups for each 𝑠 ∈ 𝒦.
Note that in each of the cases in Table 5, and for each isomorphism class of Γ,

the total number of conjugacy classes is 𝑇(𝑛) = 8(𝑞 + 1).
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Table 6: Γ, 𝐺 of type 8, 𝐺 ≃ 𝐺2

Γ Conditions RS 𝑛 𝑙

𝐺2 𝑞 = 5 4(1 + 𝑝 + 3𝑝2(𝑝 + 1))

4 1
8 𝑝
20 𝑝2
4 𝑝(𝑝 − 1)
12 𝑝2(𝑝 − 1)

𝐺2 𝑞 > 5 2(1 + 5𝑝 + 4𝑝2𝑞 − 17𝑝2 + 7𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
2 𝑝(𝑝 − 1)
14 𝑝2(𝑝 − 1)

𝐺3 𝑞 = 7 2(1 + 4𝑝 + 13𝑝2 + 6𝑝3)

2 1
12 𝑝
34 𝑝2
4 𝑝(𝑝 − 1)
12 𝑝2(𝑝 − 1)

𝐺−2 𝑞 > 7 2(1 + 6𝑝 + 4𝑝2𝑞 − 19𝑝2 + 8𝑝3)

2 1
12 𝑝

2(4𝑞 − 11) 𝑝2
16 𝑝2(𝑝 − 1)

𝐺3, 𝐺 3
2

𝑞 > 7 2(7𝑝 + 4𝑝2𝑞 − 18𝑝2 + 7𝑝3)

16 𝑝
8(𝑞 − 3) 𝑝2

2 𝑝(𝑝 − 1)
14 𝑝2(𝑝 − 1)

∀𝑠 ∈ 𝒦 ∶
𝐺𝑠 ≄ 𝐺2, 𝐺𝑞−2,
𝐺3, 𝐺(𝑞+3)∕2

𝑞 > 7 8(2𝑝 + 𝑝2𝑞 − 5𝑝2 + 2𝑝3)
16 𝑝

8(𝑞 − 3) 𝑝2
16 𝑝2(𝑝 − 1)

In each of the cases in Table 6, and for each isomorphism class of Γ, the total
number of conjugacy classes is 𝑇(𝑛) = 8(𝑞 + 1).

Proof. For the types 5, 6, 7 and 9, the number of (𝐺, ◦) is obtained just summing
up the results in Subsections 9.3, 9.4, and 9.5, and doubling those such that
𝑝 ∤ |||ker(�̃�)||| (see the discussion in Subsection 9.1), namely when |||ker(𝛾)||| = 𝑝2
and the cases (A1), (A1∗) when |||ker(𝛾)||| = 𝑝.
If (𝐺, ◦) is of type 8 and 𝑞 = 5, then there is only one isomorphism class of

groups of type 8, so that also in this case we obtain the number of (𝐺, ◦) ≃ 𝐺2
simply summing up the results in the previous sections, and doubling for the
cases |||ker(𝛾)||| = 𝑝2𝑞, |||ker(𝛾)||| = 𝑝2 and the cases (A1), (A1∗) when |||ker(𝛾)||| = 𝑝.
Suppose now (𝐺, ◦) of type 8 and 𝑞 > 5. To obtain the total number of (𝐺, ◦)

for every isomorpism class of groups of type 8, we have to distinguish some
cases.
Suppose first 𝑘 = ±2, then by Subsections 9.4 and 9.5 the number of (𝐺, ◦)

of type 8 depends on the isomorphis classes of the groups 𝐺2, 𝐺3, 𝐺 3
2
and 𝐺−2.

Since two groups of type 8, say𝐺𝑘1 and𝐺𝑘2 , are isomorphic if and only if 𝑘1 = 𝑘2
or 𝑘1𝑘2 = 1, in this case we have that the 𝐺3 ≃ 𝐺 3

2
≃ 𝐺−2 ≄ 𝐺2 if 𝑞 = 7, and

that 𝐺2, 𝐺3, 𝐺 3
2
and 𝐺−2 represent different isomorphism classes if 𝑞 > 7.
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Suppose now 𝑘 ≠ ±2. By Subsections 9.4 and 9.5 the number of (𝐺, ◦) of type
8 depends on the isomorphis classes of the groups𝐺𝑘,𝐺1+𝑘−1 ,𝐺1+𝑘,𝐺1−𝑘−1 ,𝐺1−𝑘
and 𝐺−𝑘.
Suppose 5 is a quadratic residue modulo 𝑞; then 𝐺𝑘 ≃ 𝐺1+𝑘−1 , 𝐺1+𝑘 ≃ 𝐺1−𝑘−1

and 𝐺1−𝑘 ≃ 𝐺−𝑘 if and only if 𝑘 is a solution of 𝑥2 − 𝑥 − 1 = 0. Moreover
𝐺𝑘 ≃ 𝐺1+𝑘, 𝐺1+𝑘−1 ≃ 𝐺1−𝑘 and 𝐺1−𝑘−1 ≃ 𝐺−𝑘 if and only if 𝑘 is a solution of
𝑥2 + 𝑥 − 1 = 0. Note also that if 𝑘 is a solution of 𝑥2 − 𝑥 − 1 = 0, then 𝑘−1 is a
solution of 𝑥2+𝑥−1 = 0. Therefore, if 𝐺 ≃ 𝐺𝑘 and either 𝑘 or 𝑘−1 is a solution
of 𝑥2 − 𝑥 − 1 = 0, then the groups above are in three different isomorphism
classes, namely 𝐺𝑘 ≃ 𝐺1+𝑘−1 , 𝐺1+𝑘 ≃ 𝐺1−𝑘−1 , and 𝐺1−𝑘 ≃ 𝐺−𝑘.
Suppose 𝑞 − 3 is a quadratic residue modulo 𝑞; then 𝐺1+𝑘−1 ≃ 𝐺1+𝑘 ≃ 𝐺−𝑘 if

and only if 𝑘 is a solution of 𝑥2+𝑥+1 = 0. In that case 𝑘−1 is the other solution,
and the groups above are in four different isomorphism classes. Similarly, if 𝑘
is a solution of 𝑥2−𝑥+1 = 0 there are four different isomorphism classes. Note
moreover that if 𝛼1, 𝛼2 are the solutions of 𝑥2+ 𝑥+1 = 0, then the solutions of
𝑥2 − 𝑥 + 1 = 0 are −𝛼1,−𝛼2. Therefore, the last case can be obtained from the
previous one by changing 𝑘 in −𝑘.
Lastly suppose 𝑞−4 is a quadratic residue modulo 𝑞; then 𝐺𝑘 ≃ 𝐺−𝑘, 𝐺1+𝑘 ≃

𝐺1−𝑘−1 and 𝐺1−𝑘 ≃ 𝐺1+𝑘−1 if and only if 𝑘 is a solution of 𝑥2 + 1 = 0. Also here
the other solution is 𝑘−1.
Now, note that either 𝑘 is a solution of exactly one of the above equations,

or 𝑘 is not a solution for any of them. In the last case the groups above form 6
different isomorphism classes.
In compliance with these facts, summing up the results of the previous sub-

sections and doubling for the cases |||ker(𝛾)||| = 𝑝2𝑞, |||ker(𝛾)||| = 𝑝2 and the cases
(A1), (A1∗) when |||ker(𝛾)||| = 𝑝, we obtain (a)-(e) in 4 and (a)-(c) in 5. □

10. Type 7
Here 𝑞 ∣ 𝑝−1 and 𝐺 is isomorphic to a group (𝒞𝑝 ×𝒞𝑝)⋊𝑆 𝒞𝑞. The Sylow 𝑝-

subgroup𝐴 = ⟨ 𝑎1, 𝑎2 ⟩ of𝐺 is characteristic, and if 𝑎1, 𝑎2 are in the eigenspaces
of the action of a generator 𝑏 of a Sylow 𝑞-subgroup 𝐵 on𝐴, then this action can
be represented by a scalar matrix 𝑍 with no eigenvalues 1. Therefore, if 𝑎1, 𝑎2
are eigenvectors for 𝜄(𝑏), then with respect to that basis, we have

𝑍 = [𝜆 0
0 𝜆] .

The divisibility condition on 𝑝 and 𝑞 implies that (𝐺, ◦) can be of type 5, 6,
7, 8 and 9.
According to Subsections 4.1 and 4.2 of [8], we have

Aut(𝐺) = Hol(𝒞𝑝 × 𝒞𝑝).
Different from the types 8 and 9, in this case if 𝛾 is a GF on a group 𝐺 of type

7, then 𝛾(𝐴) is not necessarily contained in Inn(𝐺), as here a Sylow 𝑝-subgroup
of Aut(𝐺) is of the form 𝜄(𝐴)⋊ 𝒫, where 𝒫 is a Sylow 𝑝-subgroup of GL(2, 𝑝).
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In the following, we will distinguish two cases, namely when 𝛾(𝐴) ≤ Inn(𝐺)
and when 𝛾(𝐴) ≰ Inn(𝐺). In the first case, if 𝛾 is a GF on 𝐺, then 𝛾|𝐴 ∶ 𝐴 →
Inn(𝐺) ≤ Aut(𝐺) is a RGF, as 𝐴 is characteristic in 𝐺. Moreover, Lemma 2.5
yields that 𝛾|𝐴 is a morphism, as 𝜄(𝐴) acts trivially on the abelian group 𝐴.
Therefore, for each gamma function 𝛾 there exists 𝜎 ∈ End(𝐴) satisfying equa-
tion (7.1), namely

𝛾(𝑎) = 𝜄(𝑎−𝜎)
for each 𝑎 ∈ 𝐴.
The case 𝛾(𝐴) ≤ Inn(𝐺) can be handled in a very similar way to the cases in

which𝐺 is type 8 or 9, therefore in the followingwewill often refer to Sections 7,
8 and 9. The case 𝛾(𝐴) ≰ Inn(𝐺) instead will require a separate treatment.

10.1. Duality. Suppose first that 𝛾(𝐴) ≤ Inn(𝐺), so that every 𝛾 on 𝐺 satisfies
equation (7.1). We can apply Lemma 2.7 with 𝐶 = 𝐴, and this yields equa-
tion (2.5). By the discussion in Subsections 4.1 and 4.2, if 𝜎 and 1 − 𝜎 are not
both invertible, then 𝑝 ∣ |||ker(𝛾)||| or 𝑝 ∣ |||ker(�̃�)|||, namely 𝜎 has 0 or 1 as an eigen-
value. Otherwise 𝜎 and 1 − 𝜎 are both invertible, but this happens only when
𝑞 = 2.
Suppose now that 𝛾(𝐴) ≰ Inn(𝐺). We show that, appealing to duality, we

can always suppose that 𝑝 ∣ |||ker(𝛾)|||.
If 𝛾(𝐴) has order 𝑝, then 𝑝 ∣ |||ker(𝛾)|||. Moreover 𝛾(𝐴) = ⟨ 𝜄(𝑐)𝛼 ⟩, for some 𝑐 ∈

𝐴 and 𝛼 inGL(2, 𝑝) of order 𝑝, therefore, by the discussion in Subsection 4.3.2,
the kernel is the fixed point space of 𝛼.
Now suppose |||𝛾(𝐴)||| = 𝑝2. We show that there exists a subgroup 𝐶 of order

𝑝 which satisfies the hypotheses of Proposition 2.9.
Let 𝛾(𝐴) = ⟨ 𝜄(𝑐), 𝜄(𝑑)𝛼 ⟩, for some 𝑐, 𝑑 ∈ 𝐴, and 𝛼 ∈ GL(2, 𝑝) of order 𝑝.

Since 1 = [𝜄(𝑐), 𝜄(𝑑)𝛼] = 𝜄([𝑐, 𝛼]), we have that 𝛼 fixes 𝑐. Let 𝑥1, 𝑥2 ∈ 𝐴 be such
that 𝛾(𝑥1) = 𝜄(𝑐), and 𝛾(𝑥2) = 𝜄(𝑑)𝛼. Then

𝑥𝛼1𝑥2 = 𝑥1◦𝑥2 = 𝑥2◦𝑥1 = 𝑥2𝑥1,
so that 𝑥1 ∈ ⟨ 𝑐 ⟩. It follows that 𝛾(𝑐) = 𝜄(𝑐−𝑘) for some 𝑘. The subgroup𝐶 = ⟨ 𝑐 ⟩
is 𝛾(𝐺)-invariant, as if 𝑏 ∈ 𝐺 has order 𝑞, then 𝛾(𝐴) ∩ 𝜄(𝐴) is normalised by
⟨ 𝛾(𝑏) ⟩, so that 𝛾(𝑏) leaves 𝐶 invariant. Since 𝐶 is also normal in 𝐺, Proposi-
tion 2.9 yields that 𝛾(𝑐) = 𝜄(𝑐−𝑘) with 𝑘 = 0, 1, namely either 𝐶 ≤ ker(𝛾) or
𝐶 ≤ ker(�̃�). Now by Corollary 2.10 we can assume 𝐶 ≤ ker(𝛾).
Therefore, when 𝛾(𝐴) ≤ Inn(𝐺) and 𝑞 > 2 we can assume that 𝑝 ∣ |||ker(𝛾)|||

(equivalentely 𝜎 has 0 as an eigenvalue), and once we have counted the gamma
functions with this property, we will double the number of those for which
moreover 𝑝 ∤ |||ker(�̃�)||| (we will double only those GF for which 1 is not an
eigenvalue of 𝜎). If 𝛾(𝐴) ≤ Inn(𝐺) and 𝑞 = 2 then there are actually 𝜎 with
no eigenvalues 0 and 1, and this corresponds to the existence of 𝛾 such that
𝑝 ∤ |||ker(𝛾)||| , |||ker(�̃�)|||. Here, except for the case when both 𝛾 and �̃� have ker-
nel of size not divisible by 𝑝, we will use duality to swich to a more convenient
kernel. Otherwise, when 𝛾(𝐴) ≰ Inn(𝐺), we can assume that 𝑝 ∣ |||ker(𝛾)|||, and
then we will double the numbers we will obtain.
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10.2. Description of the elements of order 𝒒 of 𝐀𝐮𝐭(𝑮). An element of or-
der 𝑞 in Aut(𝐺) is of the form 𝜄(𝑎∗)𝛽, where 𝑎∗ ∈ 𝐴, and 𝛽 ∈ GL(2, 𝑝) of order
𝑞.
We now show that the number of Sylow 𝑞-subgroups of Aut(𝐺) is 𝑝2 times

the number of Sylow 𝑞-subgroups of GL(2, 𝑝) (see Subsection 4.3.3).
The image inGL(2, 𝑝) of a Sylow 𝑞-subgroup ofAut(𝐺) is a Sylow 𝑞-subgroup

of GL(2, 𝑝). Conversely, if 𝑄 is a Sylow 𝑞-subgroup of GL(2, 𝑝), the Sylow 𝑞-
subgroups of Aut(𝐺) that have 𝑄 as an image are precisely the ones contained
in 𝑄𝐴. Let 𝑋 be the intersection of 𝐴 with the normaliser of 𝑄 in 𝑄𝐴, so that
[𝑋,𝑄] ≤ 𝑄. Since 𝐴 is normal, and 𝑋 ≤ 𝐴, we also have [𝑋,𝑄] ≤ [𝐴,𝑄] ≤ 𝐴.
Since 𝐴 ∩ 𝑄 = {1}, we have that 𝑋 is centralised by 𝑄. Since 𝑞 ∣ 𝑝 − 1, in
GL(2, 𝑝) there is a group 𝑌 of order 𝑞 of scalar matrices. Since 𝑌 is central in
GL(2, 𝑝), it is contained in every Sylow 𝑞-subgroup of GL(2, 𝑝), hence in 𝑄. It
follows that 𝑋 = {1}, so that 𝑄 is self-normalising in 𝑄𝐴, and thus there are
|𝑄𝐴 ∶ 𝑄| = |𝐴| = 𝑝2 Sylow 𝑞-subgroups in 𝑄𝐴.

Let us start with the enumeration of the GF’s on 𝐺. We proceed case by case,
according to the size of the kernel.
As usual, if |||ker(𝛾)||| = 𝑝2𝑞, then 𝛾 corresponds to the right regular represen-

tation, so that we will assume 𝛾 ≠ 1.

10.3. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝒒. Here𝐾 = ker(𝛾) is a subgroup of𝐺 isomorphic
to 𝒞𝑝⋊𝒞𝑞, therefore we will obtain (𝐺, ◦) of type 6, as it is the only type having
a non abelian normal subgroup of order 𝑝𝑞.
We can choose 𝐾 in 𝑝(𝑝 + 1) ways, indeed for each of the 𝑝2 choices for a

Sylow 𝑞-subgroup 𝐵, the subgroups of order 𝑝 that are 𝐵-invariant are the 1-
dimensional invariant subspaces of the action of 𝐵. Since the action of a Sylow
𝑞-subgroup on 𝐴 here is scalar, all of the 𝑝 + 1 subgroups of 𝐺 of order 𝑝 are
𝐵-invariant. Moreover, since 𝒞𝑝 ⋊ 𝒞𝑞 has 𝑝 subgroups of order 𝑞, exactly 𝑝
choices for 𝐵 give the same group.
Let 𝐾 = ⟨ 𝑎1, 𝑏 ⟩, and let 𝑎2 ∈ 𝐴 be such that 𝐴 = ⟨ 𝑎1, 𝑎2 ⟩.
Suppose first that 𝛾(𝐴) ≤ Inn(𝐺). Reasoning as in Subsection 8.4, here we

obtain 𝑝2(𝑝 + 1) gamma functions, corresponding to groups (𝐺, ◦) of type 6.
Moreover, for every 𝛾 here, 𝑝 ∣ |||ker(�̃�)|||.
As to the conjugacy classes, this time an automorphism 𝜑 of 𝐺 has the form

𝜑 = 𝜄(𝑥)𝛿, where 𝑥 ∈ 𝐴 and 𝛿 is such that 𝛿|𝐵 = 1, 𝛿|𝐴 = (𝛿𝑖𝑗) ∈ GL(2, 𝑝).
With computations similar to those of Subsection 8.4 we obtain

∙ 𝛾𝜑(𝑎1) = 1 if and only if 𝑎𝛿−11 ∈ ker(𝛾) ∩ 𝐴 = ⟨ 𝑎1 ⟩, namely 𝛿12 = 0;
∙ taking into account (8.3), we have that 𝛾𝜑(𝑏) = 1 if and only if 𝑥 ∈ ⟨ 𝑎1 ⟩;
∙ taking into account (8.4) and writing 𝑎 = 𝑎𝑗1𝑎

−1
2 , we have that 𝛾𝜑(𝑎2) =

𝛾(𝑎2) if and only if 𝜄(𝑎𝛿
−1
22 )𝛿 = 𝜄(𝑎), namely 𝑗(𝛿11 − 𝛿22) = 𝛿21.

The latter condition yields 𝛿21 as a function of the diagonal elements, so that
the stabiliser has order 𝑝(𝑝 − 1)2, and we obtain one orbit of length 𝑝2(𝑝 + 1).



𝑝2𝑞 161

Suppose now that 𝛾(𝐴) ≰ Inn(𝐺). In this case there are no 𝛾(𝐺)-invariant
complements of𝐾, therefore let us consider𝐺 = 𝐾𝐴. Proposition 2.6 yields that
every GF on 𝐺 is the lifting of a RGF 𝛾′ ∶ 𝐴 → Aut(𝐺) with 𝛾(𝐺) = 𝛾′(𝐴), and
such that 𝐾 is invariant under

{
𝛾′(𝑥)𝜄(𝑥) ∶ 𝑥 ∈ 𝐴

}
. Conversely, every RGF 𝛾′

such that 𝛾′(⟨ 𝑎1 ⟩) = 1, andwhichmakes𝐾 invariant under
{
𝛾′(𝑥)𝜄(𝑥) ∶ 𝑥 ∈ 𝐴

}
,

can be lifted to𝐺. Nowwe show that a suchmap is amorphism, and it is defined
by

𝛾′(𝑎2) = 𝛼𝜄(𝑎𝑗1𝑎
−1
2 ),

for some 0 ≤ 𝑗 ≤ 𝑝 − 1, and 𝛼 ∈ GL(2, 𝑝) of order 𝑝.
Indeed, since 𝛾′(𝐴) = 𝛾′(⟨ 𝑎2 ⟩) has order 𝑝, 𝛾′(𝑎2) = 𝛼𝜄(𝑎) for some 𝑎 ∈ 𝐴,

and 𝛼 ∈ GL(2, 𝑝) of order 𝑝. By Subsubsection 4.3.2, ⟨ 𝑎1 ⟩ is the space of the
fixed points of 𝛼, so that 𝑎𝛼1 = 𝑎1. Moreover, we can write 𝑎𝛼2 = 𝑎𝑑1𝑎2, for some
1 ≤ 𝑑 ≤ 𝑝 − 1, and by Lemma A.2 in the Appendix, the RGF’s are morphisms.
Now, if 𝐾 is invariant under 𝛾′(𝑥)𝜄(𝑥) for every 𝑥 ∈ 𝐴, then 𝛾′(𝑎2)𝜄(𝑎2) =

𝛼𝜄(𝑎𝑎2) leaves 𝐾 invariant, so that 𝑎𝑎2 ∈ ⟨ 𝑎1 ⟩, namely 𝑎 = 𝑎𝑗1𝑎
−1
2 for some 𝑗,

0 ≤ 𝑗 ≤ 𝑝 − 1. Conversely, choosing 𝑎 = 𝑎𝑗1𝑎
−1
2 then 𝛾′(𝑎2)𝜄(𝑎2) = 𝛼𝜄(𝑎𝑗1), and

since 𝛾′ is a morphism, 𝐾 is invariant under 𝛾′(𝑥)𝜄(𝑥) for every 𝑥 ∈ ⟨ 𝑎2 ⟩, and
so for every 𝑥 ∈ 𝐴.
Since there are 𝑝(𝑝 + 1) choices for 𝐾, 𝑝 − 1 choices for 𝛼 and 𝑝 choices for

𝜄(𝑎𝑗1𝑎
−1
2 ), we obtain 𝑝2(𝑝2 − 1) groups.

As to the conjugacy classes, let𝜑 = 𝜄(𝑥)𝛿 ∈ Aut(𝐺). As above, the conditions
𝛾𝜑(𝑎1) = 𝛾(𝑎1) and 𝛾𝜑(𝑏) = 𝛾(𝑏) yield 𝛿12 = 0 and 𝑥 ∈ ⟨ 𝑎1 ⟩. Moreover here

𝛾𝜑(𝑎2) = 𝜑−1𝛾(𝑎𝛿−12 )𝜑

= 𝛿−1𝛼𝛿−122 𝜄(𝑎𝛼
𝛿−122 −1+⋯+𝛼+1)𝛿

= 𝛿−1𝛼𝛿−122 𝛿𝜄(𝑎𝛼
𝛿−122 −1+⋯+𝛼+1)𝛿,

so that 𝜑 stabilises 𝛾 if and only if both 𝛿−1𝛼𝛿−122 𝛿 = 𝛼 (namely 𝛿222 = 𝛿11) and

𝜄(𝑎𝛼
𝛿−122 −1+⋯+𝛼+1)𝛿 = 𝜄(𝑎),

namely 𝛿21 = (𝑗 + 𝑑
2
)𝛿22(𝛿22 − 1). Therefore the stabiliser has order 𝑝(𝑝 − 1),

and there is one orbit of length 𝑝2(𝑝2 − 1).

10.4. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝟐. Reasoning as in Subsection 8.5, we obtain that
each 𝛾 on 𝐺 is the lifting of at least one RGF defined on an invariant Sylow 𝑞-
subgroup𝐵, and the RGF’s on𝐵 are precisely themorphisms. We have 𝛾(𝑏)|𝐵 =
1, and let 𝛾(𝑏)|𝐴 = 𝛽; then the discussion in Subsubsection 10.2 yields that 𝛽
is a matrix of order 𝑞 in GL(2, 𝑝), and, with respect to a suitable basis of 𝐴, we
can represent 𝛽 as the diagonal matrix

𝑇 = [𝜆
𝑥1 0
0 𝜆𝑥2] ,
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where 𝜆 is an element of multiplicative order 𝑞 inℤ∕𝑝ℤ and 𝑥1, 𝑥2 are not both
zero (see Subsubsection 4.3.3). We assume that 𝛽 is diagonal with respect to
{𝑎1, 𝑎2}, taking into account that if 𝛽 is non-scalar, then there are 1

2
𝑝(𝑝 + 1)

choices for a pair {𝐴1, 𝐴2} of distinct one-dimensional subspaces of 𝐴.
To know the exact number of the invariant Sylow 𝑞-subgroups we appeal to

the discussion in Subsubsection 7.1; here equation (7.4) yields 𝑥(1−𝑍−1)𝑀 = 1,
where

𝑀 = 1 − 𝑇 = [1 − 𝜆𝑥1 0
0 1 − 𝜆𝑥2] ,

and we obtain that
(1) if both 𝑥1, 𝑥2 ≠ 0, there is a unique invariant Sylow 𝑞-subgroup;
(2) if either 𝑥1 = 0 or 𝑥2 = 0, there are 𝑝 invariant Sylow 𝑞-subgroups.
Denoting as usual by 𝑍◦ the associated matrix of the action of 𝑏 on 𝐴 with

respect to the operation ◦, here we have

𝑍◦ ∼ [𝜆
1+𝑥1 0
0 𝜆1+𝑥2] .

We obtain the followings groups (𝐺, ◦).
Type 5: if 𝑥1 = 𝑥2 = −1, therefore 𝑝2 groups.
Type 6: if either 𝑥1 = −1 and 𝑥2 ≠ −1, or 𝑥1 ≠ −1 and 𝑥2 = −1. In both
cases there is a unique invariant Sylow 𝑞-subgroup, except if either 𝑥2 =
0 or 𝑥1 = 0, when there are 𝑝 invariant Sylow 𝑞-subgroups. Therefore,
there are 𝑝3(𝑝 + 1)(𝑞 − 2) + 𝑝2(𝑝 + 1) groups.

Type 7: if 𝑥1+1 = 𝑥2+1 ≠ 0, namely 𝑥1 = 𝑥2 ≠ −1. Since we are in case
(1), we obtain 𝑝2(𝑞 − 2) groups.

Type 8: if 𝑍◦ is a non scalar matrix with no eigenvalues 1, and determi-
nant different from 1.
In case (1) this corresponds to the conditions 𝑥2 ≠ 0,−1 and the four

conditions 𝑥1 ≠ 0,−1,−𝑥2 − 2, 𝑥2, which are independent if and only
if in addition 𝑥2 ≠ 0,−2. When these four conditions are dependent,
they reduce to three independent condition on 𝑥1. If 𝑥2 ≠ 0,−1,−2
we have four independent conditions on 𝑥1, and therefore we obtain
1
2
𝑝3(𝑝+1)(𝑞−4)(𝑞−3) groups. For 𝑥2 = −2 there are three conditions,
and we obtain further 1

2
𝑝3(𝑝 + 1)(𝑞 − 3) groups.

In case (2), if 𝑥1 = 0 there are three independent conditions on 𝑥2.
Doubling for the case 𝑥2 = 0, we obtain 𝑝2(𝑝 + 1)(𝑞 − 3) groups.
Summing up, we have just obtained 1

2
𝑝3(𝑝 + 1)(𝑞 − 3)2 + 𝑝2(𝑝 +

1)(𝑞 − 3) groups of type 8; looking at the eigenvalues of 𝑍◦, we easily
obtain that they are 2𝑝2(𝑝+1)+𝑝3(𝑝+1)(𝑞−3) groups isomorphic to
𝐺𝑠, for every 𝑠 ∈ 𝒦;

Type 9: if 𝑍◦ is a non-scalar matrix with no eigenvalue 1 and determinant
1, namely 𝑥1 ≠ −1, 𝑥2, 𝑥2 ≠ −1, and 𝑥1 + 𝑥2 + 2 = 0. In case (1)
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𝑥2 ≠ 0,−1 and also 𝑥2 ≠ −2, otherwise we would have 𝑥1 = 0; since
the latter is a new condition there are 1

2
𝑝3(𝑝 + 1)(𝑞 − 3) groups. The

case (2) yields 𝑝2(𝑝 + 1).
Summing up, there are 𝑝2(𝑝 + 1) + 1

2
𝑝3(𝑝 + 1)(𝑞 − 3) groups.

As to the conjugacy classes, in thenotation of Subsection 10.3, let𝜑 = 𝜄(𝑥)𝛿 ∈
Aut(𝐺). With computations similar to those in Subsection 8.5 (taking 𝜓 = 1),
here we obtain that 𝜑 stabilises 𝛾 if and only if

{ 𝑥
(1−𝑇)𝛿 = 1
𝛿−1𝑇𝛿 = 𝑇.

The first condition yields 𝑥 = 1 or, if 𝑥 = 𝑎𝑢1𝑎
𝑣
2 , either 𝑥1 = 0 and 𝑣 = 0, or

𝑥2 = 0 and 𝑢 = 0. From the second condition we obtain that 𝛿 is any matrix
when 𝑇 is scalar, and 𝛿 is diagonal when 𝑇 is non-scalar.
We obtain the following.
(1) For (𝐺, ◦) of type 5 , 𝑥1 = 𝑥2 = −1, so that the stabiliser has order

|||GL(2, 𝑝)|||, and there is one orbit of length 𝑝2.
(2) For (𝐺, ◦) of type 6, 𝑥1 ≠ 𝑥2. The stabiliser has order 𝑝(𝑝 − 1)2 when

either 𝑥1 = 0 or 𝑥2 = 0, and (𝑝 − 1)2 when 𝑥1, 𝑥2 ≠ 0. Therefore, we
obtain one orbit of length 𝑝2(𝑝+1) and 𝑞−2 orbits of length 𝑝3(𝑝+1).

(3) For (𝐺, ◦) of type 7, 𝑥1 = 𝑥2 ≠ −1. The stabiliser has order |||GL(2, 𝑝)|||
and there are 𝑞 − 2 orbits of length 𝑝2.

(4) For (𝐺, ◦) of type 8 𝑥1 ≠ 𝑥2, so that if 𝑥1, 𝑥2 ≠ 0 the stabiliser has order
(𝑝 − 1)2; otherwise either 𝑥1 = 0 or 𝑥2 = 0, and the stabiliser has order
𝑝(𝑝 − 1)2. Therefore, if (𝐺, ◦) ≃ 𝐺𝑠, for every 𝑠 ∈ 𝒦 we obtain 𝑞 − 3
orbits of length 𝑝3(𝑝 + 1) and two orbits of length 𝑝2(𝑝 + 1);

(5) For (𝐺, ◦) of type 9, 𝑥1 ≠ 𝑥2. When 𝑥1, 𝑥2 ≠ 0 the stabiliser has order
(𝑝 − 1)2, otherwise the stabiliser has order 𝑝(𝑝 − 1)2. Therefore, there
are 𝑞−3

2
orbits of length 𝑝3(𝑝 + 1) and one of length 𝑝2(𝑝 + 1);

10.5. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑 and 𝜸(𝑨) ≤ 𝐈𝐧𝐧(𝑮). Since here |||𝛾(𝐺)||| = 𝑝𝑞 and
𝛾(𝐺) intersects 𝜄(𝐴) non-trivially, we have

𝛾(𝐺) = ⟨ 𝜄(𝑐), 𝜄(𝑑)𝛽 ⟩

for some 𝑐, 𝑑 ∈ 𝐴, with 𝐴𝜎 = ⟨ 𝜄(𝑐) ⟩, and 𝛽 ∈ GL(2, 𝑝), 𝛽 ≠ 1.
Let 𝑏 ∈ 𝐺 (of order 𝑞) such that 𝛾(𝑏) = 𝜄(𝑑)𝛽. With respect to a suitable basis

of 𝐴, the matrix associated to 𝛾(𝑏)|𝐴 is

𝑇 ∶= [𝜆
𝑥1 0
0 𝜆𝑥2] ,

where 𝑥1, 𝑥2 are not both zero. Denote by {𝑎1, 𝑎2} such a basis, and keep inmind
that when [𝛾(𝑏)|𝐴] is non-scalar there are

1
2
𝑝(𝑝 + 1) choices for a pair {𝐴1, 𝐴2}

of distinct one-dimensional subspaces of 𝐴.
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Following Subsection 7.3, and recalling that for 𝐺 of type 7 𝑘 = 1, here we
find the following cases:

∙ Case A: ker(𝜎) = ⟨ 𝑎1 ⟩.
(A1) 𝜈 = 0, 𝜇 ≠ 0, 𝑥1 − 𝑥2 = 1;
(A2) 𝜈 = 1, 𝜇 ≠ 0, 𝑥1 = 𝑥2;
(A3) 𝜈 = 1, 𝜇 = 0.
∙ Case B: ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩.
(B2) 𝜇 + 1 − 𝜈 = 0, 𝑥1 = 𝑥2.

As explained in Subsection 7.3, the results in the cases (A1∗), (A2∗) and (A3∗)
can be obtained doubling the results we will obtain in the cases (A1), (A2) and
(A3).
Notice that 𝑝 divides both |||ker(𝛾)||| and |||ker(�̃�)||| if and only if 𝜎 has both 0 and

1 as eigenvalues, that is, in all the cases above except (A1), where, since 𝜎 has
only 0 as eigenvalue, 𝑝 ∣ |||ker(𝛾)||| but 𝑝 ∤ |||ker(�̃�)|||.

10.5.1. Invariant Sylow𝒒-subgroups. Following Subsubsection 7.3.1 and tak-
ing 𝑘 = 1, we obtain the following.

Proposition 10.1. The number of invariant Sylow 𝑞-subgroups is
(A1) 1 when 𝑥1 ≠ 0, 1 and 𝑝 otherwise.
(A2) 1 when 𝑥1 ≠ −1 and 𝑝 otherwise.
(A3) 1 when 𝑥1 ≠ 0 and 𝑥2 ≠ −1, 𝑝2 when 𝑥1 = 0 and 𝑥2 = −1, and 𝑝

otherwise.
(B2) 1 when 𝑥1 ≠ −1 and 𝑝 otherwise.

10.5.2. Computations. BySubsubsection 7.3.2 the action𝑍◦ of 𝑏 on𝐴 in (𝐺, ◦)
is given by

𝑍◦ = (𝜎(1 − 𝑍) + 𝑍)𝑇, (10.1)
and we obtain the following.
Case A. Here ker(𝜎) = ⟨ 𝑎1 ⟩ and equality (7.10) yields

𝑍◦ = [ 𝜆𝑥1+1 0
𝜇(1 − 𝜆)𝜆𝑥1 𝜆𝑥2(𝜈(1 − 𝜆) + 𝜆)] .

(A1)+(A1∗) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: if 𝑥1 = 0 or 𝑥1 = −1. If 𝑥1 = 0 for each of the (𝑝 − 1)
choices for 𝜎 we have 𝑝2∕𝑝 choices for 𝐵 giving different GF’s, so
𝑝2(𝑝2 − 1) groups. If 𝑥1 = −1, then 𝑥1 = 1 if and only if 𝑞 = 2.
If 𝑞 > 2 there are 𝑝3(𝑝2 − 1) groups, otherwise if 𝑞 = 2 there are
𝑝2(𝑝2 − 1) groups.

Type 7: does not arise.
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Type 8: if 𝑥1 ≠ 0, −1, (𝑞 − 1)∕2, and these are always three inde-
pendent conditions. We have 𝑝2(𝑝2 − 1) groups when 𝑥1 = 1 and
𝑝3(𝑝2 − 1)(𝑞 − 4) groups when 𝑥1 ≠ 1. They split in 𝑝2(𝑝2 − 1) +
𝑝3(𝑝2 − 1) groups isomorphic to 𝐺2, and 2𝑝3(𝑝2 − 1) groups iso-
morphic to 𝐺𝑠, for every 𝑠 ≠ 2, 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞−1)∕2. Since (𝑞−1)∕2 = 1 if and only if 𝑞 = 3, we
have 𝑝2(𝑝2 − 1) groups when 𝑞 = 3 and 𝑝3(𝑝2 − 1) groups when
𝑞 > 3.

(A2)+(A2∗) We have 𝑝 − 1 choices for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: when 𝑥1 = −1. Since 𝑥1 = −1 there are 2𝑝(𝑝 − 1) groups.
Type 7: does not arise.
Type 8: if 𝑥1 ≠ 0, −1, (𝑞− 1)∕2, and these are always three indepen-
dent conditions. Since 𝑥1 ≠ −1, there are 2𝑝2(𝑝−1)(𝑞−3) groups.
They split in 4𝑝2(𝑝 − 1) groups isomorphic to 𝐺𝑠 for every 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 = (𝑞−1)∕2. Since 𝑥1 ≠ −1, there are 2𝑝2(𝑝−1) groups.
(A3)+(A3∗) We have 1 choice for 𝜎, and

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥2] .

We obtain the following groups (𝐺, ◦).
Type 5: if 1 + 𝑥1 = 𝑥2 = 0. Since 𝑥1 ≠ 0 and 𝑥2 ≠ −1, there are
𝑝3(𝑝 + 1) groups.

Type 6: if either 𝑥1 = −1 and 𝑥2 ≠ 0 or 𝑥1 ≠ −1 and 𝑥2 = 0. In
the first case, there are 2𝑝 groups when 𝑥2 = −1, otherwise, for
𝑥2 ≠ −1, there are 𝑝3(𝑝 + 1)(𝑞 − 2) groups. In the second case,
since 𝑥2 = 0, we have to take 𝑥1 ≠ 0 and there are 𝑝3(𝑝+1)(𝑞−2)
groups.

Type 7: when 𝑥2 = 1 + 𝑥1 ≠ 0. If 𝑥1 = 0 and 𝑥2 = −1, then 𝑞 = 2
and there are 𝑝(𝑝 + 1) groups. In both the cases 𝑥1 ≠ 0, 𝑥2 = −1,
and 𝑥1 = 0, 𝑥2 ≠ −1 there are 2𝑝2(𝑝 + 1) groups. If 𝑥1 ≠ 0 and
𝑥2 ≠ −1 there are 𝑝3(𝑝 + 1)(𝑞 − 3) groups.

Type 8: when 𝑥1 ≠ −1, 𝑥2 − 1,−𝑥2 − 1, 𝑥2 ≠ 0. The case 𝑥1 = 0 and
𝑥2 = −1 does not arise. If 𝑥1 ≠ 0 and 𝑥2 = −1, the four conditions
on 𝑥1 are actually three conditions and there are 𝑝2(𝑝 + 1)(𝑞 − 3)
groups. If 𝑥1 = 0 and 𝑥2 ≠ −1 we get further 𝑝2(𝑝 + 1)(𝑞 − 3)
groups.
Suppose now 𝑥1 ≠ 0, 𝑥2 ≠ −1. There are always four independent
conditions on 𝑥1 except when 𝑥2 = 1; in the latter case the con-
ditions become three. If 𝑥2 = 1 then there is one invariant Sylow
𝑞-subgroup and 𝛽 is scalar if and only if 𝑥1 = 1 = 𝑥2, so there are
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2𝑝2+𝑝3(𝑝+1)(𝑞−4) groups. If 𝑥2 ≠ 1, there is one invariant Sylow
𝑞-subgroup and 𝛽 can always be scalar except when 𝑥2 = (𝑞−1)∕2,
thus there are 𝑝3(𝑝 + 1)(𝑞 − 4) groups when 𝑥2 = (𝑞 − 1)∕2 and
2𝑝2(𝑞 − 4) + 𝑝3(𝑝 + 1)(𝑞 − 5)(𝑞 − 4) when 𝑥2 ≠ (𝑞 − 1)∕2.
Summing up, we have just obtained 2𝑝2(𝑝 + 1)(𝑞 − 3) + 2𝑝2(𝑞 −
3)+𝑝3(𝑝+1)(𝑞−4)(𝑞−3) groups. They split in 4𝑝2(𝑝+1)+4𝑝2+
2𝑝3(𝑝 + 1)(𝑞 − 4) groups isomorphic to 𝐺𝑠 for every 𝑠 ∈ 𝒦.

Type 9: if 𝑥1 ≠ −1, 𝑥2 ≠ 0 and 1 + 𝑥1 + 𝑥2 = 0. Here 𝑥1 = 𝑥2 if and
only if 𝑥2 = (𝑞−1)∕2. If 𝑥2 = −1 then 𝑥1 = 0 and there are𝑝(𝑝+1)
groups. If 𝑥2 = (𝑞 − 1)∕2 = 𝑥1 there are 2𝑝2 groups. Otherwise
𝑥2 ≠ 0,−1, (𝑞 − 1)∕2 and there are 𝑝3(𝑝 + 1)(𝑞 − 3) groups.

Case B. Here ker(𝜎) = ⟨ 𝑎1𝑎2 ⟩, 𝑥1 = 𝑥2.
(B2) Here 𝜇 + 1 = 𝜈, and we have 𝑝(𝑝 − 1) choices for

𝜎 = [−𝜇 −𝜇 − 1
𝜇 𝜇 + 1 ] .

Equality (7.10) yields

𝑍◦ = [𝜆
𝑥1+1 − 𝜆𝑥1𝜇(1 − 𝜆) −𝜆𝑥1(𝜇 + 1)(1 − 𝜆)
𝜆𝑥1𝜇(1 − 𝜆) 𝜆𝑥1+1 + 𝜆𝑥1(𝜇 + 1)(1 − 𝜆)] ,

so that

𝑍◦ ∼ [𝜆
𝑥1+1 0
0 𝜆𝑥1] .

We obtain the following groups (𝐺, ◦).
Type 5: does not arise.
Type 6: if 𝑥1 = −1, and there are 𝑝2(𝑝 − 1) groups.
Type 7: does not arise.
Type 8: when 𝑥1 ≠ −1, 0, (𝑞 − 1)∕2. These are three independent
conditions and there are 𝑝3(𝑝 − 1)(𝑞 − 3) groups.

Type 9: if 𝑥1 ≠ −1, 0, 𝑥1 = (𝑞−1)∕2, and there are 𝑝3(𝑝−1) groups,
which split in 2𝑝3(𝑝 − 1) groups isomorphic to 𝐺𝑠 for every 𝑠.

As for the conjugacy classes, here an automorphism of 𝐺 has the form 𝜑 =
𝜄(𝑥)𝛿, where 𝑥 ∈ 𝐴 and 𝛿 ∈ GL(2, 𝑝). Therefore, we can refer to Subsubsec-
tion 7.3.3 for the computation of the conjugacy classes.
Summing up all the results obtained for the kernel of size 𝑝, we have the

following.

Recap 10.2. For 𝐺 of type 7 and 𝛾 a GF on 𝐺 with kernel of size 𝑝 and such that
𝛾(𝐴) ≤ Inn(𝐺), we list for each isomorphism class of groups ((𝐺, ◦)), the number
(𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺).
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
𝑇(𝑛) denotes the total number of conjugacy classes.
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(𝐺, ◦) Conditions 𝑛 𝑙 𝑇(𝑛)
5 1 𝑝3(𝑝 + 1) 1

6

1 𝑝2(𝑝2 − 1)
2𝑞 − 11 𝑝3(𝑝2 − 1)

1 𝑝2(𝑝 + 1)
2(𝑞 − 2) 𝑝3(𝑝 + 1)

7 2 𝑝2(𝑝 + 1) 𝑞 − 1𝑞 − 3 𝑝3(𝑝 + 1)

8𝐺2 𝑞 > 3
1 𝑝2(𝑝2 − 1)

2𝑞1 𝑝3(𝑝2 − 1)
4 𝑝2(𝑝 + 1)

2(𝑞 − 3) 𝑝3(𝑝 + 1)

8𝐺𝑠 , 𝑠 ≠ 2 𝑞 > 3
2 𝑝3(𝑝2 − 1)

2𝑞4 𝑝2(𝑝 + 1)
2(𝑞 − 3) 𝑝3(𝑝 + 1)

9
𝑞 > 2 1 𝑝(𝑝 + 1)

𝑞
𝑞 − 2 𝑝3(𝑝 + 1)

𝑞 = 3 1 𝑝2(𝑝2 − 1)
𝑞 > 3 1 𝑝3(𝑝2 − 1)

In the row of 8𝐺𝑠 we mean that for every 𝑠 ∈ 𝒦, 𝑠 ≠ 2 there are 𝑛 classes of length
𝑙 of regular subgroups isomorphic to 𝐺𝑠.

10.6. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑 and 𝜸(𝑨) ≰ 𝐈𝐧𝐧(𝑮). Let ker(𝛾) = ⟨ 𝑎1 ⟩. We
claim that 𝛾(𝐺) ∩ 𝜄(𝐴) = {1}. Indeed, since 𝑞 ∣ 𝑝 − 1, 𝛾(𝐺) (of order 𝑝𝑞) has
a unique subgroup of order 𝑝. Moreover 𝐴 is the Sylow 𝑝-subgroup of both 𝐺
and (𝐺, ◦), so that 𝛾(𝐴) ≤ 𝛾(𝐺) and the order of 𝛾(𝐴) is a divisor of 𝑝2. There-
fore, the unique subgroup of order 𝑝 of 𝛾(𝐺) is necessarily 𝛾(𝐴). Now, either
|||𝛾(𝐺) ∩ 𝜄(𝐴)||| = 1, and we are done, or |||𝛾(𝐺) ∩ 𝜄(𝐴)||| = 𝑝. In the latter case
𝛾(𝐺) ∩ 𝜄(𝐴) = 𝛾(𝐴), namely 𝛾(𝐴) ≤ Inn(𝐺), contradiction.
Now, since 𝛾(𝐺) intersects 𝜄(𝐴) trivially,

𝛾(𝐺) = ⟨ 𝜄(𝑐)𝛼, 𝛽 ⟩ ,
where 𝑐 ∈ 𝐴, 𝛼 ∈ Aut(𝐺) has order 𝑝, and 𝛽 ∈ Aut(𝐺) has order 𝑞. So 𝛼|𝐴 is
an element of order 𝑝 in GL(2, 𝑝), and 𝛽|𝐴 is an element of order 𝑞 in GL(2, 𝑝).
By Subsection 4.3.2 𝛼|𝐴 fixes ⟨ 𝑎1 ⟩. Moreover, by Subsection 4.3.4, ⟨ 𝑎1 ⟩ is an
eigenspace for 𝛽|𝐴 too, and if ⟨ 𝑎2 ⟩ is another eigenspace for 𝛽|𝐴 for a suitable
choice of 𝑎2 we can write

𝛼|𝐴 = [1 0
1 1] , 𝛽|𝐴 = [𝜆

𝑥1 0
0 𝜆𝑥2] ,

with respect to the basis 𝑎1, 𝑎2, where 𝜆 is an element of multiplicative order 𝑞
in ℤ∕𝑝ℤ and 0 ≤ 𝑥1, 𝑥2 ≤ 𝑞 − 1 not both zero.
The subgroup ⟨ 𝛽 ⟩ of Aut(𝐺), of order 𝑞, acts on the set 𝒬 of the Sylow 𝑞-

subgroups of 𝐺, and since |𝒬| = 𝑝2, this action has at least one fixed point.
Suppose it is ⟨ 𝑏 ⟩. We can suppose that ⟨ 𝑏 ⟩ is fixed by 𝛼 too, in fact otherwise
it will be fixed by 𝛼′ ∶= 𝜄(𝑥)𝛼 for a suitable 𝑥 ∈ 𝐴, and up to an appropriate
adjustment of 𝑐, 𝛾(𝐺) =

⟨
𝜄(𝑐)𝛼′, 𝛽

⟩
.
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Thus we assume in the following that 𝛼|𝐴 and 𝛽|𝐴 are in the same copy of
GL(2, 𝑝).
Note that the Sylow 𝑞-subgroups ⟨𝑥𝑏 ⟩ fixed by 𝛽 are those for which 𝑥 sat-

isfies 𝑥1−𝛽 = 1. Therefore, there is a unique fixed Sylow 𝑞-subgroup when
𝑥1, 𝑥2 ≠ 0, and there are 𝑝 when either 𝑥1 = 0 or 𝑥2 = 0.

10.6.1. The case 𝜸(𝑮) abelian. Suppose first 𝛾(𝐺) is abelian. Then [𝛼, 𝛽] = 1
modulo 𝜄(𝐴), so that 𝛽|𝐴 is a non-trivial scalar matrix, namely 𝑥1 = 𝑥2 ≠ 0. We
can assume that 𝛽|𝐴 is scalar multiplication by 𝜆. Moreover by the discussion
above ⟨ 𝑏 ⟩ is the unique 𝛽-invariant Sylow 𝑞-subgroup, as 𝑥1, 𝑥2 ≠ 0.
Since 𝛾(𝐺) is abelian, 𝛽 has to centralise 𝜄(𝑐)𝛼, and since

𝑏𝛽𝜄(𝑐)𝛼 = 𝑐(−1+𝜆−1)𝛼𝑏, 𝑏𝜄(𝑐)𝛼𝛽 = 𝑐(−1+𝜆−1)𝛼𝛽𝑏,
and 𝛽 does not have fixed points in 𝐴, we get 𝑐 = 1.
Therefore,

𝛾(𝐺) = ⟨𝛼, 𝛽 ⟩ ,
where both 𝛼 and 𝛽 fix ⟨ 𝑏 ⟩ pointwise. In particular ⟨ 𝑏 ⟩ is 𝛾(𝐺)-invariant.
We will have 𝛾(𝑎2) = 𝛼𝑖 for 𝑖 ≠ 0. Moreover, since 𝑏 is fixed by 𝛾(𝐺), 𝛾(𝑏)𝑞 =

𝛾(𝑏𝑞) = 1, namely 𝛾(𝑏) = 𝛽𝑗. Now we show that necessarily 𝑗 = −1.
In fact, in this case (𝐺, ◦) can be of type 5 or 6, as they are the only types

which have an abelian quotient of order 𝑝𝑞. We have
𝑏⊖1◦𝑎◦𝑏 = 𝑏−1𝑎𝛾(𝑏)𝑏 = 𝑎𝛽𝑗 𝜄(𝑏) = 𝑎𝜆𝑗+1 .

Denoting by 𝑍◦ the action of 𝜄(𝑏) on 𝐴 in (𝐺, ◦), and taking into account that

𝑎◦𝑘1 = 𝑎𝑘1 and 𝑎◦𝑘2 = 𝑎
𝑖( 𝑘(𝑘−1)

2
)

1 𝑎𝑘2 ,
we have that 𝑍◦ has to be scalar multpilication by 1. In this case 𝑗 = −1, (𝐺, ◦)
is of type 5 and 𝛾(𝑏) = 𝛽−1 = 𝜄(𝑏−1).
Nowwe show that such an assignment extends to a gamma function, namely

if 𝑎 = 𝑎𝑠1𝑎
𝑡
2 the maps defined by

𝛾(𝑎𝑏𝑘) = 𝛼𝑖𝑡𝜆𝑘𝛽−𝑘

satisfy the GFE. Let 𝑎′ = 𝑎𝑥1𝑎
𝑦
2 . Then

𝛾(𝑎𝑏𝑘)𝛾(𝑎′𝑏𝑚) = 𝛼𝑖𝑡𝜆𝑘+𝑖𝑦𝜆𝑚𝛽−(𝑘+𝑚),
and

𝛾((𝑎𝑏𝑘)𝛾(𝑎′𝑏𝑚)𝑎′𝑏𝑚) = 𝛾(𝑎𝛼𝑖𝑦𝜆
𝑚𝛽−𝑚𝑏𝑘𝑎′𝑏𝑚)

= 𝛾((𝑎𝑡2)
𝛼𝑖𝑦𝜆𝑚𝛽−𝑚𝑎𝑦𝜆

−𝑘

2 𝑏𝑘+𝑚)

= 𝛾(𝑎𝑡𝜆
−𝑚+𝑦𝜆−𝑘

2 𝑏𝑘+𝑚)
= 𝛼𝑖(𝑡𝜆−𝑚+𝑦𝜆−𝑘)𝜆𝑘+𝑚𝛽−(𝑘+𝑚).

Since there are 𝑝 + 1 choices for ker(𝛾), 𝑝 − 1 choices for 𝑖, and 𝑝2 choices for
the Sylow 𝑞-subgroup fixed by 𝛽, we obtain 𝑝2(𝑝2 − 1) groups (𝐺, ◦).
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As to the conjugacy classes, 𝐵 = ⟨ 𝑏 ⟩ is the unique 𝛾(𝐵)-invariant Sylow 𝑞-
subgroup, so that by Lemma 2.11-(2) �̄� = 𝐵𝜄(𝑎) is the unique 𝛾𝜄(𝑎)(�̄�)-invariant
Sylow 𝑞-subgroup. Since 𝜄(𝐴) conjugates transitively the Sylow 𝑞-subgroups of
𝐺, all classes have order a multiple of 𝑝2.
Suppose now 𝛿 ∈ GL(2, 𝑝). Then 𝛾(𝑎𝛿−11 ) = 1 if and only if 𝛿12 = 0. More-

over,

𝛾𝛿(𝑎2) = 𝛿−1𝛾(𝑎𝛿
−1
22
2 )𝛿 = 𝛿−1𝛼𝑖𝛿−122 𝛿,

and it is equal to 𝛼𝑖 when 𝛿11 = 𝛿222. Since every 𝛿 stabilises 𝛽, as [𝛿, 𝛽] = 1,
we have that the stabiliser has order 𝑝(𝑝 − 1). Therefore, there is one class of
length 𝑝2(𝑝2 − 1).

10.6.2. The case 𝜸(𝑮) non-abelian. Suppose now 𝛾(𝐺) is non-abelian. Here
𝛽 normalises but does not centralise 𝜄(𝑐)𝛼. Therefore,

(𝜄(𝑐)𝛼)𝛽 = 𝜄(𝑐𝛽)𝛽−1𝛼𝛽 = 𝜄(𝑐𝛽)𝛼𝜆𝑥1−𝑥2

is an element of ⟨ 𝜄(𝑐)𝛼 ⟩, and 𝑥1 ≠ 𝑥2. Since (𝜄(𝑐)𝛼)𝑘 = 𝜄(𝑐1+𝛼−1+⋯+𝛼−(𝑘−1))𝛼𝑘,
we have that (𝜄(𝑐)𝛼)𝛽 ∈ ⟨ 𝜄(𝑐)𝛼 ⟩ if and only if

𝑐𝛽 = 𝑐1+𝛼−1+⋯+𝛼−(𝜆𝑥1−𝑥2−1) .
Writing 𝑐 = 𝑎𝑢1𝑎

𝑣
2 , the latter yields

{
𝑢(1 − 𝜆−𝑥2) = 1

2
𝑣𝜆−𝑥2(1 − 𝜆𝑥1−𝑥2)

𝑣𝜆𝑥2 = 𝑣𝜆𝑥1−𝑥2
. (10.2)

From the second equation we obtain either 𝑣 = 0 or 𝑥1 ≡ 2𝑥2 mod 𝑞.
First case. If 𝑣 = 0 the first equation yields 𝑢 = 0 or 𝑥2 = 0.
If 𝑥2 = 0 and 𝑢 ≠ 0, we have

𝛾(𝐺) =
⟨
𝜄(𝑎𝑢1 )𝛼, 𝛽

⟩
,

where 𝛼|⟨ 𝑏 ⟩, 𝛽|⟨ 𝑏 ⟩ = 1. In this case there are 𝑝 Sylow 𝑞-subgroups fixed by 𝛽,
namely

⟨
𝑎𝑡2𝑏

⟩
. Among these, those fixed by 𝜄(𝑎𝑢1 )𝛼 too are

𝑎𝑡2𝑏 = (𝑎𝑡2𝑏)
𝜄(𝑎𝑢1 )𝛼 = (𝑎𝑡2)

𝛼𝑎𝑢(−1+𝜆
−1)𝛼

1 𝑏 = (𝑎𝑡2)
𝛼𝑎𝑢(−1+𝜆

−1)
1 𝑏,

that is, those with 𝑡 such that (𝑎𝑡2)
1−𝛼 = 𝑎𝑢(−1+𝜆

−1)
1 , namely 𝑡 = 𝑢(1 − 𝜆−1).

Since ⟨𝑎𝑢(1−𝜆
−1)

2 𝑏⟩ is fixed by both 𝜄(𝑎1)𝛼 and 𝛽, we can suppose that 𝛾(𝐺) =
⟨𝛼, 𝛽 ⟩ with 𝛼 and 𝛽 fixing the same Sylow 𝑞-subgroup (which we still denote
by ⟨ 𝑏 ⟩).
By the discussion above, when 𝑣 = 0 we can always suppose

𝛾(𝐺) = ⟨𝛼, 𝛽 ⟩ ,
with 𝛼, 𝛽 fixing ⟨ 𝑏 ⟩. Moreover a Sylow 𝑞-subgroup ⟨ 𝑦𝑏 ⟩ is 𝛾(𝐺)-invariant if
and only if 𝑦𝛼 = 𝑦𝛽 = 𝑦. The latter has 𝑦 = 1 as a unique solution except when
𝑥1 = 0, which gives the 𝑝 solutions 𝑦 ∈ ⟨ 𝑎1 ⟩.
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We will have 𝛾(𝑎2) = 𝛼𝑖, 𝑖 ≠ 0, and replacing 𝛽 with another element of
order 𝑞 in 𝛾(𝐺) we can suppose 𝛾(𝑏) = 𝛽.
Now we show that such an assignment extends to a gamma function if and

only if 𝑥1 = 2𝑥2 + 1. If 𝑎 = 𝑎𝑠1𝑎
𝑡
2, consider the maps defined by

𝛾(𝑎𝑏𝑘) = 𝛼𝑖𝑡𝜆−𝑘𝑥2𝛽𝑘.

With computations similar to the previous case, for 𝑎′ = 𝑎𝑥1𝑎
𝑦
2 we find that

𝛾(𝑎𝑏𝑘)𝛾(𝑎′𝑏𝑚) = 𝛼𝑖𝑡𝜆−𝑘𝑥2+𝑖𝑦𝜆−𝑚𝑥2−𝑘(𝑥1−𝑥2)𝛽𝑘+𝑚,

and
𝛾((𝑎𝑏𝑘)𝛾(𝑎′𝑏𝑚)𝑐𝑏𝑚) = 𝛼𝑖(𝑡𝜆−𝑘𝑥2+𝑦𝜆−𝑘−(𝑘+𝑚)𝑥2 )𝛽𝑘+𝑚,

so that they are equal precisely when 𝑥1 = 2𝑥2 + 1.
Since there are 𝑝 + 1 choices for the kernel ⟨ 𝑎1 ⟩, 𝑝 choices for ⟨ 𝑎2 ⟩, 𝑝 − 1

for the image of 𝑎2, 𝑞−1 for 𝑥2 such that 𝛽|𝐴 is non-scalar, and 𝑝2 for the Sylow
𝑞-subgroup ⟨ 𝑏 ⟩ fixed by 𝛼 and 𝛽, we have 𝑝3(𝑝2 − 1)(𝑞 − 1) GF. They are all
distinct if ⟨ 𝑏 ⟩ is the unique 𝛾(𝐺)-invariant Sylow 𝑞-subgroup. Otherwise, when
𝑥2 =

𝑞−1
2
, the 𝑝 choices for a 𝛾(𝐺)-invariant Sylow 𝑞-subgroups yield the same

GF, so there are 𝑝2(𝑝2 − 1) distinct GF.
Note thatwe donot consider the choices for the images of 𝑏, as if 𝛾(𝑏) = 𝛼𝑖𝛽𝑘,

then the choices for 𝑘 correspond to the choices for 𝑥2, and since 𝛼𝑖𝛽𝑘 will have
eigenspaces ⟨ 𝑎1 ⟩ , ⟨ 𝑎3 ⟩, for 𝑎3 ∈ 𝐴 ⧵ ⟨ 𝑎1 ⟩, the choices for 𝑖 correspond to the
choices for the second eigenspace, namely to the choice for ⟨ 𝑎2 ⟩.
Since

𝑏⊖1◦𝑎◦𝑏 = 𝑎𝛾(𝑏)𝜄(𝑏),
and 𝑎◦𝑡1 = 𝑎𝑡1, 𝑎

◦𝑡
2 = 𝑎𝑡2 modulo ⟨ 𝑎1 ⟩ for all 𝑡, denoting by 𝑍◦ the action of 𝑏 on

𝐴 in (𝐺, ◦), we have

𝑍◦ ∼ [𝜆
2𝑥2+2 0
0 𝜆𝑥2+1] .

If 𝑞 = 2 the unique choice for 𝑥1, 𝑥2 compatible with the conditions 𝛽 non-
scalar and 𝑥1 = 2𝑥2 + 1 is 𝑥1 = 1 and 𝑥2 = 0. Therefore 𝑍◦ = diag(1, 𝜆), and
(𝐺, ◦) is of type 6. Therefore:

Type 6: is for 𝑞 = 2 and 𝑥2 = 0. Since 𝑥1 ≠ 0we obtain 𝑝3(𝑝2−1) groups.
Suppose now 𝑞 > 2. In this case if 𝑥2 = −1, then 𝑥1 = −1 too so that 𝛽 is

scalar, against the assumption that 𝛾(𝐺) is non-abelian. So suppose 𝑥2 ≠ −1,
so that the groups (𝐺, ◦) can have only types 8 or 9.

Type 9: is when det(𝑍◦) = 1, namely for 3(𝑥2 + 1) = 0. If 𝑞 > 3 then
there are no groups of type 9. If 𝑞 = 3 then for 𝑥2 = 0 there is a unique
invariant Sylow 𝑞-subgroup, and we have 𝑝3(𝑝2 − 1) groups. If 𝑥2 =
1 there are 𝑝 invariant Sylow 𝑞-subgroups, and there are 𝑝2(𝑝2 − 1)
groups. Thus in total 𝑝2(𝑝2 − 1) + 𝑝3(𝑝2 − 1) groups.
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Type 8: is when 𝑞 > 3 and det(𝑍◦) ≠ 1, namely 𝑥2 ≠ −1. For each choice
of 𝑥2 there are 𝑝3(𝑝2−1) groups, except when 𝑥2 =

𝑞−1
2
, in which there

are 𝑝2(𝑝2−1) groups. Thus in total 𝑝2(𝑝2−1)+𝑝3(𝑝2−1)(𝑞−2) groups.
Note that in this case 𝑍◦ ∼ diag(𝜇2, 𝜇), where 𝜇 = 𝜆𝑥2+1, therefore

the groups (𝐺, ◦) are all isomorphic to 𝐺2.
As to the conjugacy classes, when there is a unique Sylow 𝑞-subgroup 𝐵

which is 𝛾(𝐵)-invariant, as in the previous case, all classes have order a mul-
tiple of 𝑝2. Otherwise 𝑥1 = 0 and there are 𝑝 invariant Sylow 𝑞-subgroups. In
this case 𝜄(𝑥) stabilises 𝛾 if and only if 𝜄(𝑥) commutes with both 𝛼 and 𝛽, namely
when 𝑥 ∈ ⟨ 𝑎1 ⟩.
Now suppose 𝛿 = (𝛿𝑖𝑗) ∈ GL(2, 𝑝). As above, 𝛾𝛿(𝑎1) = 1 and 𝛾𝛿(𝑎2) = 𝛾(𝑎2)

if and only if 𝛿12 = 0 and 𝛿11 = 𝛿222. Moreover
𝛾𝛿(𝑏) = 𝛿−1𝛾(𝑏)𝛿 = 𝛿−1𝛽𝛿,

and 𝛽, which is non-scalar, is centralised by 𝛿 when 𝛿 is a diagonal matrix.
Therefore, the orbits have length 𝑝3(𝑝2−1) if 𝑥1 ≠ 0 and 𝑝2(𝑝2−1) if 𝑥1 = 0.
Second case. Suppose now 𝑣 ≠ 0 and 𝑥1 ≡ 2𝑥2 mod 𝑞. Then (10.2) yields

𝑣 = −2𝑢 and we have
𝛾(𝐺) = ⟨ 𝜄(𝑐)𝛼, 𝛽 ⟩ ,

where 𝛼 and 𝛽 fix ⟨ 𝑏 ⟩, and 𝑐 = 𝑎𝑢1𝑎
−2𝑢
2 .

replacing 𝑎1 with a suitable element in ⟨ 𝑎1 ⟩ we can suppose 𝑢 =
1
2
.

We will have 𝛾(𝑎2) = (𝜄(𝑐)𝛼)𝑖 for some 𝑖 ≠ 0, and 𝛾(𝑏) = (𝜄(𝑐)𝛼)𝑗𝛽𝑘, with
𝑘 ≠ 0, as it is an element of order 𝑞 in 𝛾(𝐺). replacing 𝛽 with a suitable element
in ⟨ 𝛽 ⟩ we can suppose that 𝑘 = 1.
Now we show that if the assignment above extends to a GF, then 𝑖 = 1. In

fact, denoting by𝑀𝑖 the matrix 1 + 𝛼−1 +⋯ + 𝛼−(𝑖−1), we will have

𝑏⊖1◦𝑎2◦𝑏 = (𝑏𝛾(𝑏)−1𝛾(𝑎2)𝛾(𝑏))−1𝑎𝛾(𝑏)2 𝑏

= (𝑏𝜄(𝑐𝑀𝑖 )𝛼𝑖𝛽)−1𝑎𝛼
𝑗𝛽

2 𝑏

= 𝑏−1𝑐(1−𝜆−1)𝑀𝑖𝛼𝑖𝛽𝑎𝛼
𝑗𝛽

2 𝑏

= 𝑐(𝜆−1)𝑀𝑖𝛼𝑖𝛽𝑎𝜆𝛼
𝑗𝛽

2

= 𝑎
( 1
2
(1−𝜆)𝑖2+𝑗𝜆)𝜆2𝑥2

1 𝑎((1−𝜆)𝑖+𝜆)𝜆
𝑥2

2 .
Applying 𝛾 to both the sides we obtain

𝛾(𝑏)−1𝛾(𝑎2)𝛾(𝑏) = 𝛾(𝑎2)((1−𝜆)𝑖+𝜆)𝜆
𝑥2 ,

and comparing with

𝛾(𝑏)−1𝛾(𝑎2)𝛾(𝑏) = 𝛽−1𝜄(𝑐𝑀𝑖 )𝛼𝑖 = 𝜄(𝑐𝑀𝑖𝛽)𝛼𝑖𝜆𝑥2

we obtain (1 − 𝜆)𝑖 + 𝜆 = 𝑖, so that 𝑖 = 1.
Now we show that if the map 𝛾 extends to a GF then there always exists at

least one Sylow 𝑞-subgroup 𝐵 which is 𝛾(𝐵)-invariant.
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Write 𝑥 = 𝑎𝑤1 𝑎
𝑧
2 for an element in 𝐴. If 𝛾 extends to a GF, then

𝛾(𝑥𝑏) = 𝛾(𝑎𝑧𝜆−𝑥22 )𝛾(𝑏) = 𝜄(𝑐𝑀𝐾 )𝛼𝐾𝛽,
where 𝐾 ∶= 𝑗 + 𝑧𝜆𝑥2 .
Since

(𝑥𝑏)𝛾(𝑥𝑏) = (𝑥𝑏)𝜄(𝑐𝑀𝐾 )𝛼𝐾𝛽 = (𝑥𝑐(−1+𝜆−1)𝑀𝐾 )𝛼𝐾𝛽𝑏,
(𝑥𝑏)𝛾(𝑥𝑏) belongs to ⟨𝑥𝑏 ⟩ if and only if

𝑥1−𝛼𝐾𝛽 = 𝑐(−1+𝜆−1)𝑀𝐾𝛼𝐾𝛽 . (10.3)

Writing 𝑥 and 𝑐 in the basis {𝑎1, 𝑎2} and looking at their second component
in (10.3) we find

𝑧(𝜆−1 − 𝜆𝑥2) = 𝑗𝜆𝑥2(1 − 𝜆−1). (10.4)
If 𝑥2 ≠ −1 then there is a unique solution for 𝑧 and in this case the first

component (10.3) yields

𝑤(1 − 𝜆2𝑥2) = 𝑗2𝜆2𝑥2 (1 − 𝜆−1)
2(𝜆−1 − 𝜆𝑥2)2

(1 − 𝜆2𝑥2),

so that, since 𝑞 > 2 (as 𝑥2 ≠ 0,−1), there is a unique invariant Sylow 𝑞-
subgroup.
Suppose now 𝑥2 = −1. By induction one can show that in this case if the

map 𝛾 is a GF then
𝛾(𝑏𝑚) = 𝛾(𝑎2)𝑗(𝑚−(1+𝜆+⋯+𝜆𝑚−1))𝛾(𝑏)𝑚.

Looking at the exponent of 𝛼 in 𝛾(𝑏𝑞) = 1, we obtain that 𝑗𝑞 = 0, namely 𝑗 = 0.
Therefore, (10.4) yields that there are 𝑝 solutions for 𝑧. Moreover in this case

𝑤(1 − 𝜆−2) = 1
2𝑧

2(1 + 𝜆−1),

so that there are 𝑝 invariant Sylow 𝑞-subgroups when 𝑞 > 2 and 𝑝2 when 𝑞 = 2.
Now, since the Sylow 𝑞-subgroup ⟨ 𝑏 ⟩ is invariant, 𝛾(𝑏) = 𝛽𝑘.
With computations similar to the previous cases one can show that the as-

signment

{ 𝛾(𝑎2) = 𝜄(𝑐)𝛼
𝛾(𝑏) = 𝛽

extends to a GF, namely if 𝑎 = 𝑎𝑠1𝑎
𝑡
2 then the map defined as

𝛾(𝑎𝑏𝑘) = 𝜄(𝑐𝑀𝑡𝜆−𝑘𝑥2 )𝛼𝑡𝜆−𝑘𝑥2𝛽𝑘

satisfies the GFE.
Since there are 𝑝+1 choices for ⟨ 𝑎1 ⟩, 𝑝 choices for ⟨ 𝑎2 ⟩, 𝑝−1 choices for 𝑎2

in ⟨ 𝑎2 ⟩, 𝑞 − 1 choices for 𝑥2, and 𝑝2 choices for the Sylow 𝑞-subgroup fixed by
𝛼 and 𝛽, we have 𝑝3(𝑝2−1)(𝑞−1)GF. They are all distinct if ⟨ 𝑏 ⟩ is the unique
invariant Sylow 𝑞-subgroup. Otherwise, when 𝑥2 = −1, the 𝑝 (respectively 𝑝2
when 𝑞 = 2) choices for an invariant Sylow 𝑞-subgroup yield the same GF, and
so there are 𝑝2(𝑝2 − 1) (respectively 𝑝(𝑝2 − 1)) distinct GF.
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We have

𝑏⊖1◦𝑎1◦𝑏 = 𝑎𝜆2𝑥2+11 ,

𝑏⊖1◦𝑎2◦𝑏 = 𝑎
1
2
(1−𝜆)𝜆2𝑥2

1 𝑎𝜆𝑥22 ,

and since 𝑎◦𝑡1 = 𝑎𝑡1 and 𝑎
◦𝑡
2 = 𝑎𝑡2 modulo ⟨ 𝑎1 ⟩ for all 𝑡, denoting as usual by 𝑍◦

the action of 𝑏 on 𝐴 in (𝐺, ◦), we have

𝑍◦ ∼ [𝜆
2𝑥2+1 0
0 𝜆𝑥2] .

Type 6: when 𝑍◦ has an eigenvalue 1, namely for 𝑥2 =
𝑞−1
2
. In this case

there are 𝑝3(𝑝2 − 1) groups.
Type 7: when 𝑍◦ is scalar, namely for 𝑥2 = −1. In this case there are
𝑝2(𝑝2−1) groups if 𝑞 > 2 and 𝑝(𝑝2−1) if 𝑞 = 2. (Note that for 𝑥1 = −1,
𝑏⊖1◦𝑎2◦𝑏 = 𝑎◦𝜆𝑥22 , so that 𝑍◦ is actually a scalar matrix.)

Type 8: when 𝑞 > 3 and 𝑥2 ≠ −1, 𝑞−1
2
, 𝑞−1

3
, so there are 𝑝3(𝑝2 − 1)(𝑞 − 4)

groups of type 8.
Here each group (𝐺, ◦) is isomorphic to 𝐺2+𝑥−12 for a certain 𝑥2. For

each 𝑠 ≠ 2, 𝑠 ∈ 𝒦, there are 2𝑝3(𝑝2 − 1) groups isomorphic to 𝐺𝑠,
namely those obtained for 𝑥2 such that 2 + 𝑥−12 = 𝑠 and 2 + 𝑥−12 =
𝑠−1, while there are 𝑝3(𝑝2 − 1) groups isomorphic to 𝐺2, as they can be
obtained just for 𝑥2 such that 2 + 𝑥−12 = 2−1.

Type 9: when 𝑥2 ≠ −1, 𝑞−1
2

and 𝑍◦ has determinant equal to 1, namely
when 𝑥2 =

𝑞−1
3
and 𝑞 > 3. In this case we obtain 𝑝3(𝑝2 − 1) groups.

As to the conjugacy classes, with computations similar to the previous cases
we obtain orbits of length 𝑝3(𝑝2 − 1) when 𝑥2 ≠ −1, otherwise 𝑥2 = −1 and
there is unique orbit of length 𝑝2(𝑝2 − 1) if 𝑞 > 2, and 𝑝(𝑝2 − 1) if 𝑞 = 2.

10.7. The cases |||𝐤𝐞𝐫(𝜸)||| = 𝒒 and |||𝐤𝐞𝐫(𝜸)||| = 𝟏when 𝒒 = 𝟐. The case 𝑞 = 2
was treated by Crespo in [11]. In the following, we show that we obtain the
same results using the gamma functions.
As explained in Subsection 10.1, in the case 𝛾(𝐴) ≤ Inn(𝐺) and 𝑞 = 2 we

cannot assume that 𝑝 ∣ |||ker(𝛾)|||. But, except for the case when both 𝛾 and �̃�
have kernel of size not divisible by 𝑝, we will use duality to swich to a more
convenient kernel as we done for the type 9. In particular, here we have to
consider also the kernels of size 𝑞 and 1.

10.7.1. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒒 = 𝟐. With exactly the same argument used for
the type 9 (see Subsection 8.3), we obtain 𝑝2 groups of type 5, which form a
unique orbit of length 𝑝2.
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10.7.2. The case |||𝐤𝐞𝐫(𝜸)||| = 𝟏. Also in this case we proceed as for the type 9
(see Subsection 8.7), namely we divide the GF’s of this case according to the
size of ker(�̃�), and for those for which |||ker(�̃�)||| ≠ 1 we use the previous compu-
tations applied to �̃�. The others, for which |||ker(�̃�)||| = 1, can be obtained using
Proposition 2.8.
Arguing as in Subsection 8.7, we obtain the following.

∙ When |||ker(�̃�)||| = 𝑝2𝑞, 𝛾 = ̃̃𝛾 corresponds to the left regular representa-
tion, and this gives one group of type 7.

∙ In the remaining cases for which 𝑞 ∣ |||ker(�̃�)|||, none of the corresponding
𝛾’s has trivial kernel.

∙ If |||ker(�̃�)||| = 𝑝2, the 𝑝2 GF’s �̃� corresponding to (𝐺, ◦) of type 5 are
such that the corresponding 𝛾 have kernel of size 𝑞, and all the others
�̃� correspond to 𝛾 with kernel of size 1. Therefore, in the case of kernel
of size 𝑝2 we double all the GF’s except those corresponding to (𝐺, ◦) of
type 5.

∙ If |||ker(�̃�)||| = 𝑝, again, ker(𝛾) canhave size 1 or 𝑞. By Subsection 10.5, the
�̃�’s such that 𝑝 ∣ |||ker(�̃�)||| and 𝑝 ∤ |||ker(𝛾)||| are those of the cases A1 and
A1∗. Moreover, for every �̃� belonging to these cases the corresponding
𝛾 are injective. Therefore, in the case of kernel of size 𝑝 we double the
GF’s of cases A1 and A1∗.

∙ When |||ker(�̃�)||| = 1, following the argument in Subsection 8.7, we obtain

2𝑝(𝑝 − 1)(𝑝 − 2) ⋅ 𝑝(𝑝 + 1)
2 = 𝑝2(𝑝2 − 1)(𝑝 − 2)

groups (𝐺, ◦) of type 6, which split in 𝑝−2 classes of length 𝑝2(𝑝2−1).
10.8. Results. Taking into accountwhatwe said in Subsection 10.1, we obtain
the following.

Proposition 10.3. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝 > 2, of type 7. For each
isomorphism class of groups (Γ), the number of regular subgroups inHol(𝐺) (𝑅𝑆),
and the number (𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺) are listed
in the following table.
For groups of type 8 we denote by 8𝐺𝑠 , where 𝑠 ∈ 𝒦, the isomorphism class of

𝐺𝑠.
𝑇(𝑛) denotes the total number of conjugacy classes.
In the row of 8𝐺𝑠 we mean that for every 𝑠 ∈ 𝒦, 𝑠 ≠ 2, there are

4𝑝2(𝑝 + 1)(2𝑝2 − 5𝑝 + 𝑝𝑞 + 2)
regular subgroups isomorphic to 𝐺𝑠.
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Γ Conditions RS 𝑛 𝑙 𝑇(𝑛)

5 𝑝3(3𝑝 + 1)
2 𝑝2

51 𝑝3(𝑝 + 1)
2 𝑝2(𝑝2 − 1)

6

𝑞 > 2 4𝑝2(𝑝 + 1)(𝑝2 + 𝑝𝑞 − 2𝑝)
4 𝑝2(𝑝 + 1)

4(𝑞 + 1)4(𝑞 − 2) 𝑝3(𝑝 + 1)
4 𝑝2(𝑝2 − 1)
4 𝑝3(𝑝2 − 1)

𝑞 = 2 𝑝3(𝑝 + 1)(3𝑝 + 1)
4 𝑝2(𝑝 + 1)

10 + 𝑝𝑝 + 4 𝑝2(𝑝2 − 1)
2 𝑝3(𝑝2 − 1)

7

𝑞 > 2 2 + 𝑝2(2𝑝2 + 𝑝𝑞 + 2𝑞 − 4)

2 1

3𝑞 − 1
2(𝑞 − 2) 𝑝2

2 𝑝2(𝑝 + 1)
2 𝑝2(𝑝2 − 1)

𝑞 − 3 𝑝3(𝑝 + 1)

𝑞 = 2 2 + 𝑝(𝑝 + 1)(2𝑝 − 1)
2 1

52 𝑝(𝑝2 − 1)
1 𝑝(𝑝 + 1)

8𝐺2 𝑞 > 3 2𝑝2(𝑝 + 1)(𝑝2𝑞 + 𝑝𝑞 − 4𝑝 + 2)
4(𝑞 − 3) 𝑝3(𝑝 + 1)

6𝑞8 𝑝2(𝑝 + 1)
4 𝑝2(𝑝2 − 1)
2𝑞 𝑝3(𝑝2 − 1)

8𝐺𝑠 , 𝑠 ≠ 2 𝑞 > 3 4𝑝2(𝑝 + 1)(2𝑝2 − 5𝑝 + 𝑝𝑞 + 2)
4(𝑞 − 3) 𝑝3(𝑝 + 1)

4(𝑞 + 1)8 𝑝2(𝑝 + 1)
8 𝑝3(𝑝2 − 1)

9

𝑞 > 3 4𝑝5 + 𝑝4(𝑞 − 2) + 𝑝3(2𝑞 − 7) + 3𝑝2 + 𝑝
2𝑞 − 5 𝑝3(𝑝 + 1)

2(𝑞 + 1)2 𝑝2(𝑝 + 1)
1 𝑝(𝑝 + 1)
4 𝑝3(𝑝2 − 1)

𝑞 = 3 𝑝(𝑝 + 1)(2𝑝3 + 3𝑝2 − 2𝑝 + 1)

1 𝑝3(𝑝 + 1)

10
2 𝑝2(𝑝 + 1)
1 𝑝(𝑝 + 1)
2 𝑝3(𝑝2 − 1)
4 𝑝2(𝑝2 − 1)

11. Type 10
In this case 𝑞 ∣ 𝑝 + 1, where 𝑞 > 2, and 𝐺 = (𝒞𝑝 × 𝒞𝑝)⋊𝐶 𝒞𝑞. The Sylow 𝑝-

subgroup𝐴 = ⟨ 𝑎1, 𝑎2 ⟩ is characteristic and a generator 𝑏 of a Sylow 𝑞-subgroup
acts on𝐴 as a suitable power 𝑍 of a Singer cycle, namely 𝑎𝑏 = 𝑎𝑍 for 𝑎 ∈ 𝐴. We
know that 𝑍 has determinant 1 and two (conjugate) eigenvalues 𝜆, 𝜆𝑝 = 𝜆−1 ∈
𝔽𝑝2 ⧵ 𝔽𝑝.
The divisibility condition on 𝑝 and 𝑞 implies that (𝐺, ◦) can only be of type

5 or 10.
According to Subsections 4.1 and 4.4 of [8], we have

Aut(𝐺) = (𝒞𝑝 × 𝒞𝑝)⋊ (𝒞𝑝2−1 ⋊ 𝒞2),
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where 𝒞𝑝 × 𝒞𝑝 = 𝜄(𝐴), and for 𝜇 ∈ 𝒞𝑝2−1 and 𝜓 ∈ 𝒞2 we write

𝜇 ∶ { 𝑎 ↦ 𝑎𝑀
𝑏 ↦ 𝑏

, 𝜓 ∶ { 𝑎 ↦ 𝑎𝑆
𝑏 ↦ 𝑏𝑟

, (11.1)

where𝑀 = 𝑢𝐼 + 𝑣𝑍 ∈ GL(2, 𝑝), for 𝑢, 𝑣 ∈ 𝔽𝑝 not both zero, and 𝑆, 𝑟 are such
that either 𝑟 = 1 and 𝑆 = 1, or 𝑟 = −1 and

𝑆 = [0 1
1 0] .

The Sylow 𝑝-subgroup of Aut(𝐺) has order 𝑝2 and is characteristic and a
Sylow 𝑞-subgroup is cyclic, so 𝛾(𝐺) of order a divisor of 𝑝2𝑞 is always contained
in Inn(𝐺).
Moreover

∙ since 𝐴 is characteristic, it is also a Sylow 𝑝-subgroup of (𝐺, ◦), so 𝛾(𝐴)
is a subgroup of 𝜄(𝐴), the Sylow 𝑝-subgroup of Aut(𝐺).

∙ 𝛾|𝐴 ∶ 𝐴 → Aut(𝐺) is a morphism, as for each 𝑎 ∈ 𝐴 the automorphism
𝜄(𝑎) acts trivially on the abelian group 𝐴, and so

𝛾(𝑎)𝛾(𝑎′) = 𝛾(𝑎𝛾(𝑎′)𝑎′) = 𝛾(𝑎𝑎′).
Therefore, 𝛾(𝑎) = 𝜄(𝑎−𝜎) for each 𝑎 ∈ 𝐴, where 𝜎 ∈ End(𝐴).

In the following assume 𝛾 ≠ 1.

11.1. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑. This case does not arise, in fact the group (𝐺, ◦)
cannot have type 5, since Inn(𝐺) does not contain an abelian subgroup of order
𝑝𝑞. (𝐺, ◦) can neither be of type 10, since a group of type 10 has no normal
subgroups of order 𝑝.

11.2. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝟐. Here ker(𝛾) = 𝐴 and |||𝛾(𝐺)||| = 𝑞, so 𝛾(𝐺) =
⟨ 𝜄(𝑏) ⟩ where 𝑏 is a 𝑞-element of 𝐺. In this case 𝐵 = ⟨ 𝑏 ⟩ is the unique 𝛾(𝐺)-
invariant Sylow 𝑞-subgroup, therefore by Proposition 2.6, each 𝛾 is the lifting of
exactly one RGF defined on the unique 𝛾(𝐺)-invariant Sylow 𝑞-subgroup. So,
for each choice of 𝐵 = ⟨ 𝑏 ⟩ (𝑝2 possibilities), we can define 𝛾(𝑏) = 𝜄(𝑏−𝑠), with
1 ≤ 𝑠 ≤ 𝑞 − 1 (𝑞 − 1 choices).
Since [𝐵, 𝛾(𝐵)] = 1, by Lemma 2.5 the RGF’s correspond to the morphisms.
For 𝑠 = 1 we obtain a group of type 5 and for 𝑠 ≠ 1 (𝑞 − 2 choices) we obtain

a group of type 10. In conclusion there are
(i) 𝑝2 groups of type 5;
(ii) 𝑝2(𝑞 − 2) groups of type 10.
As to the conjugacy classes, here the kernel 𝐴 is characteristic, so that every

𝜑 ∈ Aut(𝐺) stabilises 𝛾|𝐴.
All orbits here have length a multiple of 𝑝2, as

𝛾𝜄(𝑥)(𝑏) = 𝜄(𝑥−1)𝛾(𝑏)𝜄(𝑥) = 𝜄(𝑥−1+𝑍𝑠𝑏−𝑠) = 𝜄(𝑥−1+𝑍𝑠)𝛾(𝑏).
Now, let 𝜑 = 𝜇𝜓, where 𝜇 and 𝜓 are as in (11.1). Then

𝛾𝜑(𝑏) = 𝜑−1𝜄(𝑏−𝑠𝑟)𝜑 = 𝜓−1𝜄(𝑏−𝑠𝑟)𝜓 = 𝜄(𝑏−𝑠) = 𝛾(𝑏),
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so that the orbits have length exactly 𝑝2.

11.3. The case 𝒒 ∣ |||𝐤𝐞𝐫(𝜸)|||. In this case (𝐺, ◦) can only be of type 5, as a group
of type 10 has no normal subgroups of order 𝑞 or 𝑝𝑞.
Let 𝐵 ≤ ker(𝛾). Since 𝐴 is characteristic, by Proposition 2.6 each GF on 𝐺 is

the lifting of a RGF defined on 𝐴, and a RGF on 𝐴 can be lifted to 𝐺 if and only
if 𝐵 is invariant under {𝛾(𝑎)𝜄(𝑎) ∣ 𝑎 ∈ 𝐴}.
Now, for each 𝑎 ∈ 𝐴, 𝛾(𝑎) = 𝜄(𝑎−𝜎), where 𝜎 ∈ End(𝐴), so that 𝛾(𝑎)𝜄(𝑎) =

𝜄(𝑎1−𝜎). Since every Sylow 𝑞-subgroup of 𝐺 is self-normalising, necessarily 𝜎 =
1, so that for each 𝑎 ∈ 𝐴

𝛾(𝑎) = 𝜄(𝑎−1).
Since [𝐴, 𝛾(𝐴)] = 1, by Lemma 2.5 the RGF’s correspond to the morphisms.

So, for each of the 𝑝2 choices for 𝐵 there is a unique RGF on 𝐴 which lifts to 𝐺.
In conclusion we obtain 𝑝2 groups of type 5. Note that for all the GF’s of this

case |||ker(𝛾)||| = 𝑞, namely there are no GF’s on 𝐺 with |||ker(𝛾)||| = 𝑝𝑞.
As to the conjugacy classes, as in Subsection 8.3, since 𝜄(𝐴) conjugates tran-

sitively the 𝑝2 Sylow 𝑞-subgroups of 𝐺, the 𝑝2 GF’s are conjugate.

11.4. The case 𝐤𝐞𝐫(𝜸) = {𝟏}. As in Subsection 8.7, the GF’s of this case can
be divided into subclasses according to the size of ker(�̃�).
In this case 𝛾(𝐺) = Inn(𝐺) ≅ (𝐺, ◦), so that all the GF’s correspond to groups

of type 10.
Let 𝛾(𝑎) = 𝜄(𝑎−𝜎) for some 𝜎 ∈ GL(2, 𝑝).
Consider first the case 𝜎 = 1, namely 𝛾(𝑎) = 𝜄(𝑎−1). In this case 𝑝2 ∣ |||ker(�̃�)|||,

since �̃�(𝑥) = 𝛾(𝑥−1)𝜄(𝑥−1) for all 𝑥 ∈ 𝐺.
Consider the �̃�’s whose kernel has size exactly 𝑝2. By the result of Subsec-

tion 11.2, the are 𝑝2𝑞 such �̃�, and they split as follows.
∙ 𝑝2 of these �̃� correspond to (𝐺, ◦) of type 5; the corresponding 𝛾 have
kernel of size 𝑞, so that they have already been considered in Subsec-
tion 11.3.

∙ 𝑝2(𝑞 − 1) of these �̃� correspond to (𝐺, ◦) of type 10; the corresponding
𝛾 have indeed kernels of size 1.

Therefore the 𝛾 with |||ker(𝛾)||| = 1 and such that the corresponding �̃� have
|||ker(𝛾)||| ≠ 1 are 𝑝2(𝑞 − 1) plus the right regular representation, and all of them
correspond to groups of type 10.
Let now 𝜎 ≠ 1. In this case 1 is not an eigenvalue of 𝜎, in fact otherwise

𝑝 ∣ |||ker(�̃�)|||, but, as seen before, this implies 𝑝2 ∣ |||ker(�̃�)|||, and hence 𝜎 = 1.
Therefore, here both 𝜎 and (1 − 𝜎−1) are invertible.
Let 𝑏 be a 𝑞-element and let 𝛾(𝑏) = 𝜄(𝑎0𝑏−𝑠) for some 𝑎0 ∈ 𝐴 and 𝑠 ≢ 0 mod

𝑞. Then Subsection 4.2 yields (4.2), which in our notation here is
(𝜎−1 − 1)−1𝑍−𝑠(𝜎−1 − 1) = 𝑍1−𝑠. (11.2)

Recall that𝑍 has order 𝑞 and has two conjugate eigenvalues 𝜆 and 𝜆−1 in the ex-
tension𝔽𝑝2⧵𝔽𝑝. An easy computation shows that the corresponding eigenspaces
are ⟨ 𝑣1 ⟩ and ⟨ 𝑣2 ⟩ with 𝑣1 = 𝑎1 + 𝜆𝑎2, 𝑣2 = 𝑎1 + 𝜆−1𝑎2.
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From (11.2) we get {𝜆−𝑠, 𝜆𝑠} = {𝜆1−𝑠, 𝜆−1+𝑠}, which is possible only for 𝜆−𝑠 =
𝜆−1+𝑠: this gives the condition 2𝑠 ≡ 1 mod 𝑞 andmeans that 𝜎−1−1 exchanges
the two eigenspaces of 𝑍. Therefore, with respect to the basis {𝑣1, 𝑣2},

𝜎−1 − 1 = [0 𝜈𝑝
𝜈 0 ] ,

where 𝜈 ∈ 𝔽∗𝑝2 .The condition that 𝜎 has not 0 and 1 as eigenvalues reads here as
det(𝜎−1−1) = 𝜈𝑝+1 ≠ 0 anddet(𝜎−1) = 1−𝜈𝑝+1 ≠ 0, sowehave𝑝2−1−(𝑝+1) =
(𝑝 + 1)(𝑝 − 2) choice for 𝜎−1 − 1 and hence for 𝜎. Since 2𝑠 ≡ 1 mod 𝑞, there
are (𝑝 + 1)(𝑝 − 2) choices for the couple (𝜎, 𝑠).
The next Proposition shows that all the GF’s of this case can be constructed

via gluing.

Proposition 11.1. Let 𝛾 be a GF on a group 𝐺 of type 10. If |||ker(𝛾)||| = 1, then
there is a unique Sylow 𝑞-subgroup 𝐵 of 𝐺 invariant under 𝛾(𝐵).

Proof. Let 𝐵 = ⟨ 𝑏 ⟩ be a Sylow 𝑞-subgroup of 𝐺. Then, a Sylow 𝑞-subgroup
⟨ 𝑏𝑥 ⟩, where 𝑥 ∈ 𝐴, is invariant when (𝑏𝑥)𝛾(𝑏𝑥) ∈ ⟨ 𝑏𝑥 ⟩, that is,

𝛾(𝑏𝑥) ∈ NormAut(𝐺)(𝜄(𝑏𝑥)).
Since 𝛾(𝑏𝑥) is a 𝑞-element, the latter means that

𝛾(𝑏𝑥) ∈ ⟨ 𝜄(𝑏𝑥) ⟩ . (11.3)

Since

𝛾(𝑏𝑥) = 𝛾(𝑥−1+𝑍−1𝑏)
= 𝛾(𝑥(−1+𝑍−1)𝜄(𝑏𝑠))𝛾(𝑏)
= 𝜄(𝑥(1−𝑍−1)𝑍𝑠𝜎)𝜄(𝑎0𝑏−𝑠)
= 𝜄(𝑏−𝑠)𝜄(𝑥(1−𝑍−1)𝑍𝑠𝜎𝑍−𝑠𝑎𝑍−𝑠0 ),

(11.3) becomes

𝜄(𝑏−𝑠)𝜄(𝑥(1−𝑍−1)𝑍𝑠𝜎𝑍−𝑠𝑎𝑍−𝑠0 ) = 𝜄(𝑥−1+𝑍−1𝑏)−𝑠,
which is equivalent to

𝑏−𝑠𝑥(1−𝑍−1)𝑍𝑠𝜎𝑍−𝑠𝑎𝑍−𝑠0 = 𝑏−𝑠𝑥−𝑍−𝑠+1.
Therefore, we are left with showing that the equation

𝑥(1−𝑍−1)𝑍𝑠𝜎𝑍−𝑠𝑎𝑍−𝑠0 = 𝑥−𝑍−𝑠+1 (11.4)

has a unique solution 𝑥 for each choice of 𝑎0 ∈ 𝐴, namely that the matrix
𝐷 = (1 − 𝑍−1)𝑍𝑠 + (1 − 𝑍𝑠)𝜎−1

is invertible. One can easily compute𝐷 and det(𝐷) = (1−𝜆𝑠)(1−𝜆−𝑠)(1−𝜈𝑝+1),
and since the latter is non-zero, 𝐷 is invertible and (11.4) has a unique solution
𝑥. □
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Summarising, each 𝛾 admits a unique invariant Sylow 𝑞-subgroup, so that it
is a gluing of a RGF 𝛾𝐵 ∶ 𝐵 → Aut(𝐺) and a RGF 𝛾𝐴 determined by 𝜎, with
the condition that equation (11.2) holds. Necessarily, 𝛾𝐵(𝑏) = 𝜄(𝑏−𝑠) for some 𝑠,
and by (11.2) we get 2𝑠 ≡ 1 mod 𝑞. Therefore, for each 𝐵 (𝑝2 choices), we have
only one RGF on 𝐵 and (𝑝+1)(𝑝−2) choices for 𝜎, so there are 𝑝2(𝑝+1)(𝑝−2)
distinct GF, corresponding to groups of type 10.
As to the conjugacy classes, since each 𝛾 has a unique Sylow 𝑞-subgroup 𝐵

which is 𝛾(𝐵)-invariant, by Lemma 2.11-(2), for 𝑎 ∈ 𝐴, 𝛾𝜄(𝑎) has �̄� = 𝐵𝜄(𝑎) as
𝛾(�̄�)-invariant Sylow 𝑝-subgroup. Now 𝜄(𝐴) conjugates transitively the Sylow
𝑝-subgroups of 𝐺, so that all classes have order a multiple of 𝑝2.
Consider 𝜑 = 𝜇𝜓 ∈ Aut(𝐺), where 𝜇 and 𝜓 are as in (11.1). 𝜇 fixes 𝑏 and

centralises 𝛾(𝑏), so that it stabilises 𝛾|𝐵. Moreover 𝜓 has order 2, and 𝑏𝜓 = 𝑏𝑟,
𝜄(𝑏)𝜓 = 𝜄(𝑏𝑟), so that 𝜓 stabilises 𝛾|𝐵 as well.
As for 𝛾|𝐴, we have 𝑎𝜑

−1 = 𝑎𝜓𝜇−1 = 𝑎𝑆𝑀−1 , so that

𝛾𝜑(𝑎) = 𝜑−1𝛾(𝑎𝑆𝑀−1)𝜑 = 𝜑−1𝜄(𝑎−𝑆𝑀−1𝜎)𝜑,

and it coincides with 𝛾(𝑎) = 𝜄(𝑎−𝜎) if and only if 𝑎𝑆𝑀−1𝜎𝑀𝑆 = 𝑎𝜎, namely if and
only if 𝜎𝑀𝑆𝜎−1 = 𝑀𝑆. The latter can be written as

(𝜎−1 − 1)−1𝑀𝑆(𝜎−1 − 1) = 𝑀𝑆. (11.5)

If 𝑆 = 1, (11.5) yields 𝑢 + 𝑣𝜆−1 = 𝑢 + 𝑣𝜆, namely 𝑣 = 0, so that there are 𝑝 − 1
choices for 𝜇. If 𝑆 ≠ 1, (11.5) yields (𝑢 + 𝑣𝜆−1)𝜈𝑝−1 = 𝑢 + 𝑣𝜆, namely

𝑢
𝑣 = 𝜆 − 𝜆−1𝜈𝑝−1

𝜈𝑝−1 − 1
.

Since it is fixed by the Frobenius endomorphism, it is actually in 𝔽𝑝, and there
are 𝑝 − 1 choices for 𝜇.
Therefore, the stabiliser has order 2(𝑝−1), and there are𝑝−2 orbits of length

𝑝2(𝑝 + 1).
We summarise, including the right and left regular representations.

Proposition 11.2. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝 > 2, of type 10. For each
isomorphism class of groups (Γ), the number of regular subgroups inHol(𝐺) (𝑅𝑆),
and the number (𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺) are listed
in the following table.

Γ RS 𝑛 𝑙
5 2𝑝2 2 𝑝2

10 2 + 𝑝2(2(𝑞 − 2) + (𝑝 + 1)(𝑝 − 2))
2 1

2(𝑞 − 2) 𝑝2
𝑝 − 2 𝑝2(𝑝 + 1)

12. Type 11
In this case 𝑝 ∣ 𝑞 − 1 and 𝐺 = 𝒞𝑝 × (𝒞𝑝 ⋉ 𝒞𝑞). Let 𝑍 = ⟨ 𝑧 ⟩ be the center of

𝐺, and 𝐵 = ⟨ 𝑏 ⟩ the Sylow 𝑞-subgroup.
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According to Subsection 4.6 of [8],

Aut(𝐺) = Hol(𝒞𝑝) × Hol(𝒞𝑞),
so that a Sylow 𝑝-subgroup of Aut(𝐺) is of the form 𝒞𝑝 ×𝒫, where 𝒞𝑝 is gener-
ated by a central automorphismand𝒫 is a Sylow𝑝-subgroup ofHol(𝒞𝑞). There-
fore, a subgroup of order 𝑝2 in Aut(𝐺) is generated by an inner automorphism
𝜄(𝑎), for some non-central element 𝑎 of order 𝑝, and the central automorphism

𝜓 ∶
⎧

⎨
⎩

𝑧 ↦ 𝑧,
𝑎 ↦ 𝑎𝑧,
𝑏 ↦ 𝑏

. (12.1)

By Proposition 2.9 (see also [7, Corollary 2.25]) in counting the GF’s we can
suppose 𝐵 ≤ ker(𝛾). Therefore, the image 𝛾(𝐺) is contained in a subgroup of
Aut(𝐺) of order 𝑝2, that is,

𝛾(𝐺) ≤ ⟨ 𝜄(𝑎), 𝜓 ⟩ ,
for 𝑎 ∈ 𝐴 ⧵ 𝑍, and 𝜓 as in (12.1).
In this case there exists at least one Sylow 𝑝-subgroup 𝐴 of 𝐺 which is 𝛾(𝐺)-

invariant (see [7, Theorem 3.3]). More precisely 𝐴 = ⟨ 𝑎, 𝑧 ⟩ is 𝛾(𝐺)-invariant,
and it is the unique 𝛾(𝐺)-invariant Sylow 𝑝-subgroup if 𝛾(𝐺) ∩ Inn(𝐺) ≠ {1};
otherwise 𝛾(𝐺) ≤ ⟨𝜓 ⟩, and every Sylow 𝑝-subgroup is 𝛾(𝐺)-invariant.
We may thus apply Proposition 2.6, and look for the functions

𝛾′ ∶ 𝐴 → Aut(𝐺)
which satisfy the GFE (we will just write 𝛾 in the following). Since (𝐴, ◦) is
abelian, we have

𝑎𝛾(𝑧)𝑧 = 𝑎◦𝑧 = 𝑧◦𝑎 = 𝑧𝛾(𝑎)𝑎 = 𝑧𝑎,
so that 𝑎𝛾(𝑧) = 𝑎, namely

𝛾(𝑧) = 𝜄(𝑎)𝑠, (12.2)
for some 0 ≤ 𝑠 ≤ 𝑝 − 1. We also have

𝛾(𝑎) = 𝜄(𝑎)𝑡𝜓𝑢, (12.3)

for some 0 ≤ 𝑡, 𝑢 ≤ 𝑝 − 1.
If both 𝑠 = 0 and 𝑢 = 𝑡 = 0, then ker(𝛾) = 𝐺 and we get the right regular

representation.
Proposition 2.6 yields also that the RGF’s on 𝐴 with kernel of size 1, respec-

tively 𝑝, correspond to the GF’s on 𝐺 with kernel of size 𝑞, respectively 𝑞𝑝. In
the following we suppose 𝛾(𝐺) ≠ {1}.

12.1. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒒. Here 𝛾(𝐺) = ⟨ 𝜄(𝑎), 𝜓 ⟩ and 𝐴 = ⟨ 𝑎, 𝑧 ⟩ is the
unique Sylow𝑝-subgroup of𝐺which is 𝛾(𝐺)-invariant. By the discussion above,
we look for the RGF’s 𝛾 on𝐴 extending the assignments (12.2), (12.3), and with
trivial kernel, namely 𝑠 ≠ 0 and 𝑢 ≠ 0. By Lemma A.1 in the Appendix there is
a unique RGF 𝛾 like that, and since there are 𝑞 choices for𝐴, we get 𝑞𝑝(𝑝−1)2
maps.
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As to the circle operation, for every 𝑥 ∈ 𝐴, 𝑥⊖1◦𝑏◦𝑥 = 𝑏𝛾(𝑥)𝜄(𝑥), so that
𝑎⊖1◦𝑏◦𝑎 = 𝑏𝜄(𝑎𝑡+1)𝜓𝑢 , 𝑧⊖1◦𝑏◦𝑧 = 𝑏𝜄(𝑎𝑠𝑧).

Since 𝑏◦𝑘 = 𝑏𝑘 and 𝑠 ≠ 0, all groups (𝐺, ◦) are of type 11.
As to the conjugacy classes, let 𝜑 ∈ Aut(𝐺). Write 𝜑 = 𝜑1𝜑2, where 𝜑1 ∈

Hol(𝒞𝑝) and 𝜑2 ∈ Hol(𝒞𝑞), so that

𝜑1 ∶
⎧

⎨
⎩

𝑧 ↦ 𝑧𝑖
𝑎 ↦ 𝑎𝑧𝑗
𝑏 ↦ 𝑏

, 𝜑2 ∶
⎧

⎨
⎩

𝑧 ↦ 𝑧
𝑎 ↦ 𝑏𝑚𝑎
𝑏 ↦ 𝑏𝑘

. (12.4)

Since the kernel𝐵 is characteristic, then 𝛾|𝐵 is stabilised by every automorphism
of 𝐺.
Moreover

𝛾𝜑(𝑎) = 𝜑−1𝛾(𝑎𝑧−𝑗𝑖−1)𝜑
= 𝜑−1𝛾(𝑎)𝛾(𝑧)−𝑗𝑖−1𝜑
= 𝜑−1𝜄(𝑎𝑡−𝑠𝑗𝑖−1)𝜓𝑢𝜑
= (𝜄(𝑎𝑡−𝑠𝑗𝑖−1))𝜑2(𝜓𝑢)𝜑1 ,

and

𝛾𝜑(𝑧) = 𝜑−1𝛾(𝑧𝑖−1)𝜑
= 𝜑−1𝜄(𝑎𝑠𝑖−1)𝜑
= (𝜄(𝑎𝑠𝑖−1))𝜑2 ,

so that 𝜑 stabilises 𝛾 if and only if 𝜑1 = 1 and 𝜑2 ∈ 𝒞𝑞−1.
Therefore, the stabiliser has order 𝑞 − 1 and there are 𝑝 − 1 orbits of length

𝑞𝑝(𝑝 − 1).

12.2. The case |||𝐤𝐞𝐫(𝜸)||| = 𝒑𝒒. Here 𝛾(𝐺) is a subgroup of order 𝑝 of ⟨ 𝜄(𝑎), 𝜓 ⟩.
We look for the RGF’s 𝛾 on𝐴 extending the assignments (12.2), (12.3), andwith
kernel of size 𝑝, namely 𝑠 = 0 or 𝑢 = 0.
Suppose first that 𝑠 = 0, so that the kernel is 𝑍𝐵 and 𝛾(𝑎) = 𝜄(𝑎)𝑡𝜓𝑢. By

Lemma A.2 in the Appendix the RGF’s on 𝐴 with kernel of size 𝑝 are precisely
the morphisms.

(1) If 𝑡 = 0, then 𝛾(𝑎) = 𝜓𝑢 and every Sylow 𝑝-subgroup is 𝛾(𝐺)- invariant.
Therefore, here we obtain 𝑝 − 1 groups, and they are all of type 11 as 𝐵
is 𝛾(𝐵)-invariant and

𝑎⊖1◦𝑏◦𝑎 = 𝑏𝜄(𝑎).
(2) If 𝑡 ≠ 0, then 𝛾(𝑎) = 𝜄(𝑎)𝑡𝜓𝑢, and 𝐴 = ⟨ 𝑎, 𝑧 ⟩ is the unique 𝛾(𝐺)-

invariant Sylow 𝑝-subgroup, so that we have 𝑞 choices for 𝐴, 𝑝 − 1 for
𝑡 and 𝑝 for 𝑢, namely 𝑞𝑝(𝑝 − 1) functions. Since

𝑎⊖1◦𝑏◦𝑎 = 𝑏𝜄(𝑎)𝑡+1 ,
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they correspond to 𝑞𝑝 groups of type 5 and 𝑞𝑝(𝑝−2) groups of type 11.
As to the conjugacy classes, here the kernel 𝑍𝐵 is charactertistic, so that 𝛾|𝑍𝐵

is stabilised by every automorphism of 𝐺.
Now, since 𝑎𝜑 ≡ 𝑎 mod ker(𝛾), we have

𝛾𝜑(𝑎) = 𝜑−1𝛾(𝑎)𝜑 = 𝜑−1𝜄(𝑎𝑡)𝜓𝑢𝜑 = (𝜄(𝑎𝑡))𝜑2(𝜓𝑢)𝜑1 ,
so that 𝜑 stabilises 𝛾 if and only if it centralises 𝛾(𝑎).
If 𝑡 = 0, the last condition is equivalent to say that 𝜑1 ∈ ⟨𝜓 ⟩ and 𝜑2 ∈

Hol(𝒞𝑞), so that the 𝑝 − 1 groups of type 11 form one orbit of length 𝑝 − 1.
If 𝑡 ≠ 0, then 𝜑 centralises 𝛾(𝑎) if and only if 𝜑2 ∈ 𝒞𝑞−1, and either 𝑢 ≠ 0

and 𝜑1 ∈ ⟨𝜓 ⟩, or 𝑢 = 0 and 𝜑1 ∈ Hol(𝒞𝑝). In the first case the stabiliser has
order 𝑝(𝑞−1), and there is one orbit of length 𝑞(𝑝−1) for the type 5, and 𝑝−2
orbits of length 𝑞(𝑝 − 1) for the type 11. In the second case the stabiliser has
order 𝑝(𝑝−1)(𝑞−1), and there is one orbit of length 𝑞 for the type 5, and 𝑝−2
orbits of length 𝑞 for the type 11.
Suppose now 𝑢 = 0, so that 𝛾(𝑎) = 𝜄(𝑎𝑡) and 𝛾(𝑧) = 𝜄(𝑎𝑠). Here ker(𝛾) = ⟨ 𝑣 ⟩,

where 𝑣 = 𝑧𝑒𝑎𝑓 is such that 𝑡𝑓 + 𝑠𝑒 = 0. Up to changing the basis of 𝐴, we can
appeal again to Lemma A.2, which yields that the RGF’s here are exactly the
morphisms. Again,𝐴 = ⟨ 𝑎, 𝑧 ⟩ is the unique 𝛾(𝐺)-invariant Sylow 𝑝-subgroup,
and we obtain 𝑞𝑝(𝑝 − 1) functions. Since

𝑧⊖1◦𝑏◦𝑧 = 𝑏𝜄(𝑎𝑠)

they correspond to groups of type 11.
As to the conjugacy classes, since𝐵 ≤ ker(𝛾) is characteristic, 𝛾|𝐵 is stabilised

by every automorphism𝜑. Moreover , let𝜑 = 𝜑1𝜑2where𝜑1, 𝜑2 are as in (12.4).
We have

𝛾𝜑(𝑎) = 𝜑−1𝛾(𝑎𝑧−𝑗𝑖−1)𝜑 = (𝜄(𝑎𝑡−𝑠𝑗𝑖−1))𝜑2 ,
𝛾𝜑(𝑧) = 𝜑−1𝛾(𝑧𝑖−1)𝜑 = (𝜄(𝑎𝑠𝑖−1))𝜑2 ,

so that 𝜑 stabilises 𝛾 if and only if 𝜑1 = id and 𝜑2 ∈ 𝒞𝑞−1, namely the stabiliser
has order 𝑞 − 1, and there is one orbit of length 𝑞𝑝(𝑝 − 1).
We summarise, including the right and left regular representations.

Proposition 12.1. Let 𝐺 be a group of order 𝑝2𝑞, 𝑝 > 2, of type 11. For each
isomorphism class of groups (Γ), the number of regular subgroups inHol(𝐺) (𝑅𝑆),
and the number (𝑛) and the lengths (𝑙) of the conjugacy classes inHol(𝐺) are listed
in the following table.

Γ RS 𝑛 𝑙

5 2𝑝𝑞 2 𝑞
2 𝑞(𝑝 − 1)

11 2𝑝(1 + 𝑞(𝑝2 − 2))

2 1
2 𝑝 − 1
2𝑝 𝑞𝑝(𝑝 − 1)

2(𝑝 − 2) 𝑞(𝑝 − 1)
2(𝑝 − 2) 𝑞
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13. Conclusions
The proofs of Theorem 1.6 and Theorem 1.7 are obtained by piecing together

the results of Propositions 5.2, 6.1, 8.3, 9.3, 10.3, 11.2, 12.1, and recalling that if
the Sylow𝑝-subgroups of the groupsΓ and𝐺 are not isomorphic, then 𝑒′(Γ, 𝐺) =
𝑒(Γ, 𝐺) = 0 ([7, Corollary 3.4]).
To prove Theorem 1.5, we use Theorem 1.2 [4, Corollary p. 3220]. Therefore,

for each pair of finite groups Γ, 𝐺 with |Γ| = |𝐺|, we have

𝑒(Γ, 𝐺) =
|||Aut(Γ)|||
|||Aut(𝐺)|||

𝑒′(Γ, 𝐺).

The values of 𝑒′(Γ, 𝐺) computed in Propositions 5.2, 6.1, 8.3, 9.3, 10.3, 11.2,
12.1 and the cardinalities of the automorphism groups given in Table 3 yield
the values of 𝑒(Γ, 𝐺).

Appendix A.
The following Lemma proves that the maps found in Subsections 5.2, 12.1 in

the case |||ker(𝛾)||| = 𝑞 are gamma functions.

Lemma A.1. Let 𝐺 be a group of type 5 or 11, 𝐵 its Sylow 𝑞-subgroup, and 𝐴 =
⟨ 𝑎1, 𝑎2 ⟩ a Sylow 𝑝-subgroup.
Let 𝛾 ∶ 𝐴 → Aut(𝐺) a map such that

{ 𝛾(𝑎1) = 𝜂1
𝛾(𝑎2) = 𝜂2,

(A.1)

where 𝜂1|𝐴 = 1, 𝑎𝜂21 = 𝑎1, 𝑎
𝜂2
2 = 𝑎2𝑎𝑘1 , 1 ≤ 𝑘 < 𝑝.

Then
𝛾(𝑎𝑛1𝑎

𝑚
2 ) = 𝜂𝑛−𝑘(1+⋯+(𝑚−1))

1 𝜂𝑚2
is the unique RGF extending the assignment above.

Proof. By our assumptions 𝐴 is clearly 𝛾(𝐴)-invariant. Moreover

𝛾((𝑎𝑛1𝑎
𝑚
2 )

𝛾(𝑎𝑒1𝑎
𝑓
2 )𝑎𝑒1𝑎

𝑓
2 ) = 𝛾((𝑎𝑛1𝑎

𝑚
2 )

𝜂𝑒−𝑘(1+⋯+(𝑓−1))
1 𝜂𝑓2 𝑎𝑒1𝑎

𝑓
2 )

= 𝛾(𝑎𝑛1 (𝑎
𝑚
2 )

𝜂𝑓2 𝑎𝑒1𝑎
𝑓
2 )

= 𝛾(𝑎𝑛+𝑒+𝑘𝑓𝑚1 𝑎𝑚+𝑓2 )

= 𝜂𝑛+𝑒+𝑘𝑓𝑚−𝑘(1+⋯+(𝑚+𝑓−1))
1 𝜂𝑚+𝑓2 ,

and, on the other hand,

𝛾(𝑎𝑛1𝑎
𝑚
2 )𝛾(𝑎

𝑒
1𝑎

𝑓
2 ) = 𝜂𝑛−𝑘(1+⋯+(𝑚−1))

1 𝜂𝑚2 𝜂
𝑒−𝑘(1+⋯+(𝑓−1))
1 𝜂𝑓2

= 𝜂𝑛−𝑘(1+⋯+(𝑚−1))+𝑒−𝑘(1+⋯+(𝑓−1))
1 𝜂𝑚+𝑓2 .
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Therefore, 𝛾 satisfies the GFE if and only if

−𝑘(
𝑚+𝑓−1∑

𝑠=1
𝑠) + 𝑓𝑘𝑚 ≡ −𝑘(

𝑚−1∑

𝑠=1
𝑠 +

𝑓−1∑

𝑠=1
𝑠) mod 𝑝,

that is,
𝑚+𝑓−1∑

𝑠=𝑚
𝑠 − 𝑓𝑚 ≡

𝑓−1∑

𝑠=1
𝑠 mod 𝑝.

Since𝑚+(𝑚+1)+⋯+(𝑚+𝑓−1) = 𝑓𝑚+(1+⋯+𝑓−1), the last condition
holds true, and 𝛾 is a RGF on 𝐴.
Now let 𝛾′ be a RGF on 𝐴 extending the assignment (A.1). Since 𝜂1|𝐴 = 1,

necessarily 𝑎◦𝑛1 = 𝑎𝑛1 , so

𝛾′(𝑎𝑛1𝑎
𝑚
2 ) = 𝛾′((𝑎𝑚2 )

𝛾′(𝑎𝑛1 )
−1)𝛾′(𝑎𝑛1 ) = 𝛾′(𝑎𝑚2 )𝛾

′(𝑎1)𝑛.
Moreover

𝛾′(𝑎𝑚2 ) = 𝛾′((𝑎𝑚−12 )𝛾′(𝑎2)−1)𝛾′(𝑎2)

= 𝛾′(𝑎−𝑘(𝑚−1)1 𝑎𝑚−12 )𝛾′(𝑎2)
= 𝛾′(𝑎1)−𝑘(𝑚−1)𝛾′(𝑎𝑚−12 )𝛾′(𝑎2).

By induction we obtain 𝛾′(𝑎𝑚2 ) = 𝛾′(𝑎1)−𝑘((𝑚−1)+(𝑚−2)+⋯+1)𝛾′(𝑎2)𝑚, so that

𝛾′(𝑎𝑛1𝑎
𝑚
2 ) = 𝛾′(𝑎1)𝑛−𝑘((𝑚−1)+(𝑚−2)+⋯+1)𝛾′(𝑎2)𝑚,

namely 𝛾′ = 𝛾. □

The followingLemmaproves that themaps 𝛾 in Subsections 5.2, 10.3 and 12.2,
in the case |||ker(𝛾)||| = 𝑝𝑞, satisfy the assumptions of Lemma 2.5.
Lemma A.2. Let 𝐺 be a group of order 𝑝2𝑞, 𝐴 = ⟨ 𝑎1, 𝑎2 ⟩ a Sylow 𝑝-subgroup
of 𝐺, and 𝛾 ∶ 𝐴 → Aut(𝐺) a map such that

{ 𝛾(𝑎1) = 𝜑 (possibly modulo 𝜄(𝐴))
𝛾(𝑎2) = 1

,

where 𝑎𝜑2 = 𝑎2, 𝑎
𝜑
1 = 𝑎1𝑎

𝑘𝜑
2 for a certain 𝑘𝜑.

Then 𝛾 extends to a unique RGF on 𝐴 if and only if 𝛾 is a morphism.
Proof. We show that

[𝐴, 𝛾(𝐴)] = [𝐴, 𝛾(⟨ 𝑎1 ⟩)] ⊆ ⟨ 𝑎2 ⟩ ,
and then, by Lemma 2.5, the RGF’s on 𝐴 with kernel ⟨ 𝑎2 ⟩ correspond to the
morphisms 𝐴 → Aut(𝐺).
Note that if 𝛾 is a RGF or amorphism, then 𝛾(𝑎𝑠1) = 𝛾(𝑎1)𝑠, as ker(𝛾) = ⟨ 𝑎2 ⟩.

Thus we have

(𝑎𝑚2 𝑎
𝑡
1)
−1(𝑎𝑚2 𝑎

𝑡
1)
𝛾(𝑎𝑠1) = (𝑎𝑚2 𝑎

𝑡
1)
−1+𝜑𝑠 = (𝑎𝑡1)

−1+𝜑𝑠 = 𝑎𝑡𝑘𝜑𝑠2 ∈ ⟨ 𝑎2 ⟩ .
□
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