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Graph homology computations

Simon Brun and ThomasWillwacher

Abstract. We compute numerically the homology of several graph com-
plexes in low loop orders, extending previous results.
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1. Introduction
Graph complexes are differential graded vector spaces of linear combinations

of isomorphism classes of graphs. There exist many variants, using different
types of graphs, for example, simple graphs, ribbon graphs, directed acyclic
graphs and many more. The differential on graph complexes is typically given
by the operation of edge contraction, though again variants exist.
Graph complexes play a central role in many areas of algebraic topology and

homological algebra. Most often, they constitute a combinatorial encoding of
a homotopy theoretic problem. To name a few examples, complexes of simple
graphs encode automorphisms of the chains operad of the little disks operad
[14, 33], hairy graphs govern the rational homotopy type of higher dimensional
knot spaces [15] and the ribbon graph homology computes the homology of
moduli spaces of curves [29].
In most cases, little is known about the homology of the complexes, the

graph homology, which has a rich and complicated structure, inherited from the
homotopy theoretic problems the graph complex encodes. At the same time it is
relatively hard for a mathematician working in the area to come up with, or rule
out, conjectures or statements about that structure. This is due mostly to the
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quickly growing combinatorial complexity of graphs, which makes it difficult
to conduct computations by hand. Furthermore, there is typically a significant
time cost associated to implementing such computations on a computer, paired
with a non-zero probability of eventually obtaining incorrect answers due to
programming mistakes.
Here we report on computer experiments, determining the dimensions of

the graph homology in low degrees for several common graph complexes. We
furthermore test and verify or support numerically some existing results and
conjectures on the graph homology, at least in low loop orders. We also present
a new conjecture (Conjecture 4.4 below) about the forested graph homology,
inspired by our computational results. The reader interested in the numerical
results about graph complexes only, and not in preliminaries, is invited to jump
directly to the data tables in section 4. Mind however that a significant part of
the computations has been performed over finite fields for memory reasons – for
a discussion about the validity overℚ please consult the “Methods” subsections
within section 4.
To conduct the experiments, we wrote the GH framework and library, dis-

cussed briefly in section 3 below. GH contains classes and routines for handling
the generation of bases of graph complexes, implementing linear operators on
such complexes, managing data files produced, and visualising results. The GH
library is an attempt to unify numerical experiments on graph complexes, which
have appeared scattered throughout the literature [2, 25, 6], and to enable other
reasearchers to implement similar experiments relatively quickly.

Acknowledgements. We are greatly indebted to the IT support group of the
mathematics department of ETH Zurich, who helped significantly to get our
code to run on the departmental servers.

2. Graph complexes
In this section we introduce the graph complexes whose homology we study

numerically in this paper. All our graph complexes will be differential graded
vector spaces over a fixed ground ring 𝑅, that is usually 𝑅 = ℚ. We use homo-
logical conventions, that is, our differentials have degree -1.

2.1. The Kontsevich graph complex. Possibly the simplest graph complexes
are the Kontsevich graph complexes G𝑛, for 𝑛 an integer.
We define an admissible graph to be a connected 1-vertex irreducible simple

graph all of whose vertices have valence ≥ 3. Here, simple means that the
graph is undirected without multiple edges or edges connecting a vertex to itself.
One-vertex irreducibility means that deleting any single vertex leaves the graph
connected.
An orientation of an admissible graph 𝛾 are the following data, depending on

the parity of 𝑛.
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∙ For 𝑛 even, an orientation is an ordering of the set of edges of 𝛾, up to
even permutations. We will write

𝑜𝑟 = 𝑒1 ∧ 𝑒2 ∧⋯ ∧ 𝑒𝑘

for the ordering 𝑒1 > 𝑒2 >⋯ > 𝑒𝑘 of the set of edges 𝐸Γ = {𝑒1,… , 𝑒𝑘} of
𝛾.

∙ For 𝑛 odd, an orientation is an ordering of the set of vertices and half-
edges, up to even permutations. Let the set of vertices be𝑉𝛾 = {𝑣1,… , 𝑣𝑝}
and the set of half-edges be𝐻𝛾 = {ℎ1,… , ℎ2𝑘}. Then the orientation is an
ordering of the set𝐻𝛾⊔𝑉𝛾 and, as above, we denote such an orientation
by a wedge product as follows:

𝑜𝑟 = ℎ1 ∧⋯ ∧ ℎ2𝑘 ∧ 𝑣1 ∧⋯ ∧ 𝑣𝑝.

In any case, there are only two different orientations for an admissible graph.
Given some orientation 𝑜𝑟, we denote by −𝑜𝑟 the other permutation. An ori-
ented graph is a pair (𝛾, 𝑜𝑟) of an admissible graph 𝛾 and an orientation 𝑜𝑟 of
𝛾. Two oriented graphs (𝛾, 𝑜𝑟) and (𝛾′, 𝑜𝑟′) are called isomorphic if there is an
isomorphism between 𝛾 and 𝛾′ that maps 𝑜𝑟 to 𝑜𝑟′.
Elements of the Kontsevich graph complexG𝑛 are then 𝑅-linear combinations

of oriented graphs, modulo the following relations.
∙ We identify isomorphic oriented graphs.
∙ We identify opposite orientations up to sign, (𝛾, 𝑜𝑟) = −(𝛾,−𝑜𝑟).

For example, for 𝑛 even this means that for any permutation 𝜎 ∈ 𝑆𝑘

(𝛾, 𝑒1 ∧ 𝑒2 ∧⋯ ∧ 𝑒𝑘) = (−1)𝜎(𝛾, 𝑒𝜎(1) ∧⋯ ∧ 𝑒𝜎(𝑘)),

thus justifying the wedge product notation. For illustration purposes, we depict
elements of G𝑛 as linear combinations of graphs, for example

+ 5
2 ∈ G𝑛,

where we leave implicit the orientation. The vector space G𝑛 is naturally graded.
More concretely, we declare that a graph 𝛾 with 𝑣 vertices and 𝑒 edges has
homological degree

𝛾 = 𝑛(𝑣 − 1) − (𝑛 − 1)𝑒.

We define a linear operator 𝑑 of degree +1 on 𝐺𝑛 by contracting edges. For 𝑛
even we set

𝑑(𝛾, 𝑒1 ∧⋯ ∧ 𝑒𝑘) =
𝑘
𝑗=1

(−1)𝑘+1(𝛾∕𝑒𝑗, 𝑒1 ∧⋯ ∧ 𝑒𝑗 ∧⋯ ∧ 𝑒𝑘), (1)

where the graph 𝛾∕𝑒𝑗 is obtained by contracting the edge 𝑒𝑗. If the graph 𝛾∕𝑒 is
not simple, then we set the term to zero. We also write this same formula (1) as

𝑑(𝛾, 𝑜𝑟) =
𝑒∈𝐸𝛾

(𝛾∕𝑒, 𝜕𝑒𝑜𝑟),
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where the sum is over edges 𝑒 of 𝛾, and 𝜕𝑒𝑜𝑟 is the derivative with respect to a
formal variable corresponding to the edge 𝑒, of the orientation, considered as a
monomial of the variables corresponding to edges.
For 𝑛 odd the formula is similar, but we need some notation. For an edge

𝑒 ∈ 𝐸𝛾 let us denote by 𝑣1𝑒 , 𝑣2𝑒 the vertices connected by 𝑒, and by ℎ1𝑒 , ℎ2𝑒 the two
half-edges of 𝑒, in the same order. That is, ℎ𝑗𝑒 is incident to 𝑣

𝑗
𝑒 . The graph 𝛾∕𝑒 is

obtained by merging 𝑣1𝑒 and 𝑣2𝑒 to one new vertex, that we call 𝑣𝑒.

𝛾 =
𝑣1𝑒 𝑣2𝑒𝑒

ℎ1𝑒 ℎ2𝑒

contract
,,,,,,,→

𝑣
= 𝛾∕𝑒

Then we define, for odd 𝑛,

𝑑(𝛾, 𝑜𝑟) =
𝑒∈𝐸𝛾

(𝛾∕𝑒, 𝑣𝑒 ∧ (𝜕𝑣1𝑒 𝜕𝑣2𝑒 𝜕ℎ1𝑒𝜕ℎ2𝑒𝑜𝑟)), (2)

using analogous partial derivative notation as above.
It is an exercise to check that 𝑑 is actually well-defined and that 𝑑2 = 0. The

Kontsevich graph homology is then

𝐻(G𝑛) = ker𝑑∕ im𝑑.

Note that in the definition of G𝑛 the integer 𝑛 enters only in the above degree
convention and in the definition of orientation, and in the latter only up to parity.
Hence, essentially, there are only two fundamentally distinct graph complexes
defined here, 𝐺𝑛 for even 𝑛 and 𝐺𝑛 for odd 𝑛.

Remark 2.1. Our graph complex G𝑛 is the smallest version of the Kontsevich
graph complex. Analogous complexes allowing a larger class of admissible
graphs have been considered in the literature, but have essentially the same
homology. For example, dropping the 1-vertex-irreducibility condition leads to
a quasi-isomorphic complex [33, Appendix F]. Allowing vertices of any valence
leads (with the appropriate extension of the differential) to a complex that is
quasi-isomorphic to 𝐺𝑛 in loop orders > 1. Dropping the simplicitly condition
by allowing tadpoles or multiple edges yields a graph homology that is larger by
at most one dimension [33, 34]. Finally, one can allow graphs to be directed with
≥ 2-valent vertices, and also obtain a quasi-isomorphic complex [33, Appendix
K].

2.1.1. Merkulov’s subcomplex. The graph complexG𝑛 comes with a descend-
ing bounded above filtration

G𝑛 = ℱ3G𝑛 ⊃ ℱ4G𝑛 ⊃⋯

such that ℱ𝑝G𝑛 ⊂ G𝑛 is spanned by graphs whose highest-valent vertex has
valence≥ 𝑝. This filtration is compatiblewith the differential𝑑, 𝑑ℱ𝑝G𝑛 ⊂ ℱ𝑝G𝑛,
since the contraction of edges can only increase valences of vertices, but not
decrease them.
Let

𝜋5∶ G𝑛 → ℱ5G𝑛
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be the natural projection of graded vector spaces, defined such that 𝜋5Γ = 0 if
the graph Γ has only vertices of valence 3 and 4, and 𝜋5Γ = Γ otherwise. We
may then consider Merkulov’s truncated graph complex

GMe
𝑛 = {Γ ∈ G𝑛 ∣ 𝜋5Γ = 𝜋5𝑑Γ = 0} ⊂ G𝑛.

The differential 𝑑 obviously restricts to GMe
𝑛 .

Conjecture 2.2 (Merkulov’s conjecture). The inclusion of dg vector spacesGMe
𝑛 ⊂

G𝑛 induces a homology isomorphism

𝐻𝑘(GMe
𝑛 ) ≅ 𝐻𝑘(G𝑛)

for all 𝑛 and 𝑘.
2.2. Hairy graph complex. We define an admissible hairy graph to be a con-
nected 1-vertex irreducible simple graph all of whose vertices have valence 1 or
valence ≥ 3. We call the vertices of valence 1 the hairs (or legs) of the graph, and
the other vertices the internal vertices. In pictures, we only draw the internal
vertices.

, , .

Depending on (the parity of) two fixed integers𝑚 and 𝑛we define the orientation
of an admissible hairy graph 𝛾 to be the following.

∙ For 𝑛 even, an orientation contains a linear ordering of the set of edges
of 𝛾, up to even permutations. For 𝑛 odd, an orientation contains an
ordering of the set of vertices and half-edges, up to even permutations. In
either case, the edges at the hairs also count as edges for the orientation.

∙ In addition, for𝑚 odd the orientation contains an ordering of the set of
hairs, up to even permutations.

Again, there are only two different orientations for an admissible graph. An
oriented hairy graph is a pair (𝛾, 𝑜𝑟) of an admissible hairy graph 𝛾 and an
orientation 𝑜𝑟 of 𝛾. Two oriented hairy graphs (𝛾, 𝑜𝑟) and (𝛾′, 𝑜𝑟′) are called
isomorphic if there is an isomorphism between 𝛾 and 𝛾′ that maps 𝑜𝑟 to 𝑜𝑟′.
Elements of the hairy graph complex𝖧𝖦𝑚,𝑛 are then 𝑅-linear combinations of

oriented graphs, modulo the relations of identifying isomorphic oriented graphs,
and identifying (𝛾, 𝑜𝑟) = −(𝛾,−𝑜𝑟). The vector space 𝖧𝖦𝑚,𝑛 is typically graded
by assigning a hairy graph 𝛾 with 𝑣 internal vertices, 𝑒 edges and ℎ hairs the
homological degree

𝛾 = 𝑛𝑣 +𝑚(ℎ − 1) − (𝑛 − 1)𝑒.
We may define a differential 𝑑 ∶ 𝖧𝖦𝑚,𝑛 → 𝖧𝖦𝑚,𝑛 by the same formulas (1) and
(2) as in the previous section, just with the caveat that we do not contract edges
that are connected to a univalent (hair) vertex.
The graph complexes 𝖧𝖦𝑚,𝑛 compute in particular the duals of the rational

homotopy groups of embedding spaces ℝ𝑚 → ℝ𝑛, see [1, 15] for the precise
formulation.
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2.2.1. Variant with numbered hairs. In the above graph complex 𝖧𝖦𝑚,𝑛 we
did not distinguish hairs in that we allowed isomorphisms of graphs to permute
the hairs. One can generalize the definition and require that the hair vertices
are numbered from 1 to 𝑟, each number occurring exactly once, and require that
graph isomorphisms must send each hair to a hair with the same number.

1

23
, 1 2

An orientation of such a graph with numbered hairs is defined as before, but
omitting the ordering of hairs, and hence omitting reference to the number𝑚.
The generalized or colored hairy graph complex 𝖢𝖧𝖦𝑛(𝑟) is spanned by ori-

ented admissible hairy graphs with 𝑟 numbered hairs, modulo the same equiva-
lence relations as above. The differential 𝑑 is again given by edge contraction as
before.
The complex 𝖢𝖧𝖦𝑛(𝑟) carries a natural action of the symmetric group 𝑆𝑟 by

renumbering hairs, and 𝖧𝖦𝑚,𝑛 can be obtained from 𝖢𝖧𝖦𝑛(𝑟) by taking 𝑆𝑟-(anti-
)invariants and a direct sum over 𝑟.
The complexes 𝖢𝖧𝖦𝑛(𝑟) also appear in the literature. In particular Chan-

Galatius-Payne [7] have shown that for 𝑛 even their homology computes the top
weight part of the homology of the moduli spaces of curves, up to degree shifts.
Furthermore, the rational homotopy groups of link spaces may be expressed
through the homology of 𝖢𝖧𝖦𝑛(𝑟), see [30].

2.2.2. Vanishing result. There are known vanishing results for the hairy graph
homology, outside a certain range. We formulate them here in terms of the
number of vertices rather than the homological degree.

Proposition 2.3. Let 𝑉𝑔,ℎ represent the part of loop order 𝑔 and ℎ hairs of either
of the complexes 𝖧𝖦𝑚,𝑛 or 𝖢𝖧𝖦𝑛(𝑟). Then the nontrivial homology of 𝑉𝑔,ℎ can be
represented by linear combinations of graphs with their number of internal vertices
𝑣 in the range

𝑔 + ℎ − 2 ≤ 𝑣 ≤ 2𝑔 + ℎ − 2.

Proof. The upper bound on 𝑣 follows by using that the internal vertices must
be at least trivalent. The lower bound is a reformulation of [5, Corollary 16]. □

2.3. Forested graph complexes. An admissible forested graph with 𝑟 hairs is
given by the following data:

∙ An undirected connected graph with 𝑟 numbered univalent and an
arbitrary number of ≥ 3-valent vertices. The 𝑟 univalent vertices we call
the hairs, and the other vertices internal vertices.

∙ In addition, there is a distinguished forest, that is, a subset 𝑇 ⊂ 𝐸𝛾 of
the set of edges, that does not contain any edge incident to a hair vertex,
and that does not contain loops. We call the set of edges in the forest 𝑇
the marked edges.
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Mind that such graphs are a priori allowed to have tadpoles and multiple edges.

1 2

Depending on an integer 𝑛 ∈ {0, 1} we define the orientation of an admissible
forested graph as the following data:

∙ For 𝑛 = 0, an orientation is an ordering of the set of marked edges, up
to even permutations.

∙ For 𝑛 = 1, an orientation is an ordering of the set of internal vertices,
half-edges, and unmarked edges, up to even permutation.

We define the graph complex 𝖥𝖦𝑛(𝑟) to be spanned by triples (𝛾, 𝑇, 𝑜𝑟) consist-
ing of a graph 𝛾 with 𝑟 hairs, a distinguished forest 𝑇 ⊂ 𝐸𝛾 and an orientation
𝑜𝑟, modulo the following equivalence relations:

∙ We identify isomorphic oriented forested graphs. Here isomorphisms are
required to preserve the numbering of the hairs, and preserve (set-wise)
the distinguished forest.

∙ We identify opposite orientations up to sign, (𝛾, 𝑜𝑟) = −(𝛾,−𝑜𝑟).
We define the homological degree of an admissible forested graph with 𝑚

internal marked edges to be 𝑚. The graded vector spaces 𝖥𝖦𝑛(𝑟) carry two
differentials:

∙ The edge contraction differential 𝑑𝑐 acts by contracting a marked edge,
similar to (1) and (2). For 𝑛 even we define

𝑑𝑐(𝛾, 𝑇, 𝑜𝑟) = 𝑒∈𝑇
(𝛾∕𝑒, 𝑇 ⧵ {𝑒}, 𝜕𝑒𝑜𝑟).

For 𝑛 odd we set

𝑑𝑐(𝛾, 𝑇, 𝑜𝑟) = 𝑒∈𝑇
(𝛾∕𝑒, 𝑇 ⧵ {𝑒}, 𝑣𝑒 ∧ (𝜕𝑣1𝑒 𝜕𝑣2𝑒 𝜕ℎ1𝑒𝜕ℎ2𝑒𝑜𝑟)).

∙ The unmarking differential 𝑑𝑢 acts by unmarking a marked edge. For 𝑛
even it is defined by

𝑑𝑢(𝛾, 𝑇, 𝑜𝑟) = 𝑒∈𝑇
(𝛾, 𝑇 ⧵ {𝑒}, 𝜕𝑒𝑜𝑟),

and for 𝑛 odd,

𝑑𝑢(𝛾, 𝑇, 𝑜𝑟) = 𝑒∈𝑇
(𝛾, 𝑇 ⧵ {𝑒}, 𝑒 ∧ 𝑜𝑟).

We leave it as an exercise for the reader to check the following result, see [8]:

Lemma 2.4. We have 𝑑2𝑐 = 𝑑𝑐𝑑𝑢 + 𝑑𝑢𝑑𝑐 = 𝑑2𝑢 = 0.

The primary differential on the complex 𝖥𝖦𝑛(𝑟) we consider is 𝑑 = 𝑑𝑐 + 𝑑𝑢.
With this differential the graph complex computes the homology of a family
of groups Γ𝑔,𝑟 (see [18]) that generalize the outer automorphism groups of free
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groups Out(𝐹𝑔) = Γ𝑔,0 and the automorphism groups of free groups Aut(𝐹𝑔) =
Γ𝑔,1. More precisely, one has the following result:

Theorem 2.5 (after Conant, Kassabov, Hatcher, Vogtmann). Let 𝑔, 𝑟 ≥ 0 be such
that 2𝑔 + 𝑟 ≥ 3. Then we have that

𝐻𝑘(𝖥𝖦
𝑔-loop
0 (𝑟), 𝑑𝑐 + 𝑑𝑢) ≅ 𝐻𝑘(Γ𝑔,𝑟;ℚ) (3)

𝐻𝑘(𝖥𝖦
𝑔-loop
1 , 𝑑𝑐 + 𝑑𝑢) ≅ 𝐻𝑘(Γ𝑔,𝑟; sgn), (4)

withℚ the trivial representation of Γ𝑔,𝑟, and sgn the sign representation.

Proof sketch. Although the result is (mostly) shown in the literature, we do
not know a reference in which it appears in the stated form. First, (3) for 𝑟 = 0
can be found in [11, 21]. The general case (i.e., general 𝑟) of (3) is shown in [10,
Theorem 11.1].
This latter proof can be generalized to other representations of Γ𝑔,𝑟 to obtain

in particular (4). More precisely, as in said proof, one uses again [10, Proposition
8.7] with 𝑋 = 𝐴𝑔,𝑟 the spaces of [18], but with𝑀 the sign representation. This
expresses the right-hand side of (4) as the homology of𝐴𝑔,𝑟∕Γ𝑔,𝑟, but with twisted
coefficients. The local system that gives rise to the twist is, on the cell of 𝐴𝑔,𝑟 of
a graph 𝛾, the one-dimensional vector spaces Det(𝐻1(𝛾)) = ∧𝑔𝐻1(𝛾).
Similarly, the left-hand side of (4) is identified with the homology of𝐴𝑔,𝑟∕Γ𝑔,𝑟

with coefficients in the local system 𝑂 such that a generator of 𝑂(𝛾) is given
by an ordering on the set of half-edges, edges and vertices of 𝛾, modulo even
permutations. Equivalently, 𝑂(𝛾) = Det(𝐶1(𝛾))Det(𝐶0(𝛾))−1,where 𝐶∙(𝛾) is the
simplicial chain complex of 𝛾. Finally, we leave it as an exercise that the local
systems 𝑂(−) and Det(𝐻1(−)) are isomorphic. □

There are furthermore known stabilization and vanishing results for the
homology ofOut(𝐹𝑔) due toHatcher-Vogtmann andGalatius that we summarize
as follows.

Theorem 2.6 ([17, 18, 16] ). The homology 𝐻𝑘(Out(𝐹𝑔);ℚ) vanishes if 5𝑘 <
4𝑔 − 5.

The graph complexes 𝖥𝖦𝑛(𝑟) are relatively large. Fortunately however, they
contain slightly smaller quasi-isomorphic subcomplexes, that we shall describe
in the following sections.

2.3.1. Bridgeless version. A bridge in a connected graph 𝛾 is an edge 𝑒 such
that the graph 𝛾 ⧵ 𝑒 obtained by removing 𝑒 is disconnected. The graph Γ is
called bridgeless if none of its edges is a bridge. Note that by convention we do
not count external legs as edges, and hence there can be bridgeless graphs with
external legs. We denote by

𝖥𝖦𝑏𝑙𝑛 ⊂ 𝖥𝖦𝑛
the subcomplex spanned by bridgeless forested graphs.
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Proposition 2.7. The inclusion 𝖥𝖦𝑏𝑙,𝑔-loop𝑛 ⊂ 𝖥𝖦𝑔-loop𝑛 is a quasi-isomorphism for
all 𝑛 and all 𝑔 ≥ 1.

Proof. For 𝛾 a forested graph we denote by𝑚(𝛾) the number of marked non-
bridge edges, and by 𝑏(Γ) the number of (marked or unmarked) bridges in
Γ.
We endow 𝖥𝖦𝑛 with a filtration

0 = ℱ−1𝖥𝖦𝑛 ⊂ ℱ0𝖥𝖦𝑛 ⊂⋯
such that ℱ𝑝𝖥𝖦𝑛 is spanned by graphs Γ such that

𝑚(Γ) + 𝑏(Γ) ≤ 𝑝.
Note that the contraction of a marked edge always reduces the number on the
left by at least one. The unmarking of an edge reduces the number by one if
the edge is not a bridge, and leaves the number the same if it is. Let us denote
the summand of 𝑑𝑢 that acts on bridge edges only by 𝑑′𝑢. Then the associated
graded of 𝖥𝖦𝑛 with respect to the above filtration is identified with (𝖥𝖦𝑛, 𝑑′𝑢).
We may restrict the filtration on 𝖥𝖦𝑏𝑙𝑛 as well. It is then sufficient to check

that the inclusion of associated graded complexes

(𝖥𝖦𝑏𝑙𝑛 , 0) = gr 𝖥𝖦𝑏𝑙𝑛 ⊂ (𝖥𝖦𝑛, 𝑑′𝑢) = gr 𝖥𝖦𝑛
is a quasi-isomorphism. But define on (𝖥𝖦𝑛, 𝑑′𝑢) a homotopy ℎ such

ℎΓ =
𝑒∈𝐵Γ

Γmark 𝑒,

with 𝐵Γ the set of bridges. Then
(𝑑′𝑢ℎ + ℎ𝑑′𝑢)Γ = 𝑏(Γ)Γ.

Hence the homology is indeed identified with the bridgeless part 𝖥𝖦𝑏𝑙𝑛 . □

2.3.2. Homology of 𝒅𝒄. A second simplification of the complexes 𝖥𝖦𝑛 is pos-
sible due to the homology of the differential 𝑑𝑐 being concentrated in “top”
(in a suitable sense) degree, corresponding to trivalent graphs. This is known
for (a version of) the standard forested graph complex 𝖥𝖦0(0) due to work of
Kontsevich and Conant-Vogtmann. We need to slightly generalize the result.
For a forested graph Γ let us define the excess of Γ as

𝑒𝑥𝑐(Γ) =
𝑣∈𝑉Γ

(valence(𝑣) − 3) ≥ 0.

For example, graphs of excess zero are the trivalent graphs. Let 𝖥𝖦𝑏𝑙,𝑒−𝑒𝑥𝑐𝑛 ⊂ 𝖥𝖦𝑏𝑙𝑛
be the graded subspace spanned by graphs of excess 𝑒.

Proposition 2.8. ∙ For each 𝑛 and 𝑔 ≥ 0 the homology of 𝖥𝖦𝑔-loop𝑛 with
respect to the edge contraction differential 𝑑𝑐 is concentrated in excess zero,
corresponding to graphs all of whose vertices are trivalent.

∙ For each 𝑛 and 𝑔 ≥ 1 the homology of 𝖥𝖦𝑏𝑙,𝑔-loop𝑛 with respect to the edge
contraction differential 𝑑𝑐 is concentrated in excess zero, corresponding to
graphs all of whose vertices are trivalent.



GRAPH HOMOLOGY COMPUTATIONS 67

The first statement follows from the Koszulness of the cyclic commutative
operad and was already used in [27, 3]. We shall give a proof of the second
statement in Appendix A below.

Corollary 2.9. Let 𝐾𝑛 ⊂ 𝖥𝖦𝑏𝑙,0-exc𝑛 be the kernel of the contraction differential

𝑑𝑐 ∶ 𝖥𝖦
𝑏𝑙,0-exc
𝑛 → 𝖥𝖦𝑏𝑙,1-exc𝑛 .

Then the differential𝑑𝑢 restricts to𝐾𝑛 and for every 𝑔 ≥ 1we have that the inclusion

(𝐾𝑔-loop
𝑛 , 𝑑𝑢) ⊂ (𝖥𝖦𝑏𝑙,𝑔-loop𝑛 , 𝑑𝑐 + 𝑑𝑢)

is a quasi-isomorphism.

2.4. Graph complexes in general, from a computational viewpoint. Gen-
erally, a graph complex is a differential graded vector space with a basis indexed
by isomorphism classes of some sort of combinatorial graphs, with a combinato-
rially defined differential. From a computational standpoint, the computation
of graph homology has the following characteristic features.

(1) The computation of a basis of the graph complex is a graph enumeration
problem.

(2) Both the computation of the basis and of the differential involve keeping
track of graph isomorphisms.

(3) The matrix of the differential is very sparse. For example, the matrix of
the edge contraction differential has at most as many non-zero entries
per column as the maximum number of edges in the graphs considered.

We also note that for numeric computations we have to restrict to graph com-
plexes that are degree-wise finite dimensional. For all the complexes described
above, this is true if one restricts to the part of fixed loop order. This is possible
since the differentials do not alter the loop order, and hence the graph complexes
split into a direct sum of subcomplexes.

3. The GH library
Implementing a graph complex on the computer can be a laborious and error-

prone task. Much of the effort is however associated to relatively uninteresting
and tedious problems, like organizing files and managing long running compu-
tations, that have nothing to do with the graph complex at hand. We developed
the GH framework and library to take over these chores. The goal is that the
developer can focus on the implementation of the mathematical core content of
the graph complex.
GH is written in python and makes essential use of Sage [31], Nauty [23]

and LinBox [22]. It contains the following main components.
Basis generation and graph isomorphisms. All graphs used in GH are

undirected simple graphs with colored vertices. They are internally represented
in the Sage Graph format for undirected graphs. If the graph complex the user
wants to implement contains graphs with more structure, as is usually the case,
they need to be encoded as colored simple graphs.
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Example 3.1. For example, the forested graphs above with 𝑟 distinguishable
hairs can be encoded as colored simple graphs with vertices of 𝑟 + 2 colors as
follows. Color 1 is for the internal vertices, with the marked edges encoded
as edges between these vertices. A non-marked edge is encoded by a bivalent
vertex of color 2 and its two adjacent edges. Each external leg is represented by
a univalent vertex of a unique color 3,… , 𝑟 + 2.

1 2

→

The graph vector space is decomposed into finite dimensional subspaces,
characterised by a specific combination of parameters like a fixed number of
vertices and loops and is represented by the abstract class GraphVectorSpace.
The user of GH implements this class and mainly provides two functions: First,
a method perm_sign(), which determines the sign by which an isomorphism
acts on a graph. And second, a graph generation routine, overriding the method
get_generating_graphs(), which is supposed to return a generating set of
graphs whose isomorphism classes span the graph vector space, not necessarily
freely. The user can use the Nauty graph library [23] to list simple or bipartite
graphs. A corresponding interface is provided. From the generating set of graphs
the method build_basis() builds a basis consisting of canonically labelled
graphs by dropping all graphs with odd automorphisms. Finally the basis is
stored as a list of graph6 strings in a corresponding basis file.

Linear operators. Linear operators acting on graph vector spaces like con-
tracting edges or splitting edges in one or two hairs are represented by the class
GraphOperator. Essentially, the user only needs to implement the abstract
method operate_on() that receives a graph of the domain GraphVectorSpace
and is supposed to return a linear combination of graphs in the target
GraphVectorSpace. GraphOperator provides the method build_matrix() to
build the transformation matrix of the operator with respect to the basis of the
domain and target graph vector space and stores it in a corresponding matrix
file using the SMS format. Furthermore, the method compute_rank() offers
different ways to compute the rank of the operator matrix, which is needed
to determine the dimension of the homology. For small matrices Sage’s own
method to determine a matrix rank can be used, whereas for large matrices it is
adequate to use either the LinBox [22] or the Rheinfall [26] library for exact
rank computations.
The class Differential inherits from represents linear operators which are

supposed to be a differential. Hence it provides themethod square_zero_test()
which verifies whether the linear operator squares to zero, i.e. is a differential.
Furthermore, there are methods for computing and plotting the dimension of
the homology of the complex associated with the differential.
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Graphcomplexes. Agraph complex is represented by the class GraphComplex.
Fields refer to the underlying vector space as well as a list of linear operators.
The method test_anti_commutativity() tests whether two linear operators
anti-commute and thus whether two differentials build a bicomplex.

Bicomplexes. We also consider the complexes associated with the total
differential of bicomplexes. In those cases the vector space is composed of
a direct sum of degree slices represented by the class DegSlice, which are
themselves direct sums of graph vector spaces representing the subspaces of
constant total degree. The total differential of the bicomplex is represented by
a collection of operator matrices in the form of the class BiOperatorMatrix
whose domain and target vector spaces are degree slices. For example, the
forested graph complex is encoded as a bicomplex in this manner.

Testing. Beside the built-in generic tests to verify whether a differential
squares to zero and whether two differentials anti-commute, there is the op-
portunity to compare the generated basis as well as operator matrices with
reference data, which is implemented in the classes RefGraphVectorSpace and
RefOperatorMatrix respectively.

4. Experiments and numerical results
4.1. Foreword on data presentation. This section contains tables of numeri-
cal results of graph homology computations. In these tables we generally use
the following conventions:

∙ The rows and columns correspond to the relevant gradings of the graph
complex, mostly loop order 𝑙 and number of vertices 𝑣. The entry in the
(𝑙, 𝑣) cell of the table is the computed dimension of the (𝑙, 𝑣)-part of the
homology of the graph complex. Entries “?” mean that we could not
compute the homology dimension at that place, mostly due to increasing
computational demands.

∙ If the graph complex has a natural action of the symmetric group, then
we have computed the decomposition of the homology into irreducible
representations of 𝑆𝑛. For example, a table entry

3 (𝑠[3] + 𝑠[2,1])

means that the total dimension of the respective homology group is 3,
and this 3-dimensional space decomposes into a trivial representation
of 𝑆3 and the 2-dimensional irreducible representation, corresponding
to the partition 2 + 1. In particular, the above notation does notmean
that both of these ireducibles occur three times each.

∙ Entries “-” mean that the respective graded piece of the graph complex
is trivial, i.e., it contains no graphs and hence the associated homology
is trivial. Entries “0” mean that the graph complex is nontrivial, but the
homology turned out zero nevertheless. The reader may treat “0” and
“-” the same, but the distinction indicates where the graph complex is an
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efficient or not so efficient representation of the underlying homological
problem.

∙ Where applicable, we have indicated known theoretical vanishing results
by shading cells that are known to contain no homology.

∙ Some tables also reference Euler characteristic data from the literature.
This is included both as confirmation of our results, and an indicator of
the expected amount of homology in the respective row of the table.

∙ Note that our computations were mostly conducted over finite fields 𝔽𝑝
rather than ℚ, see the methods sections below for a discussion of the
obtained results.

More data and the 𝐺𝐻 source code can be found on the project’s github page.
https://github.com/sibrun/GH

4.2. Ordinary graphs. Considering the ordinary graph complex 𝐺𝑛 with the
contract-edges-differential we found the dimensions of the homology shown in
Figure 1.
We note that a subset of the data has been computed earlier by Bar-Natan

and McKay [2]. Furthermore, a subset of the tables has appeared in [19], based
on previous computations of the second author, mostly using floating point
arithmetic.

4.2.1. Methods. We consider the subspaces

𝑉𝑔,𝑛,𝑣 ⊂ G𝑛

spanned by graphs of loop order 𝑔 with 𝑣 vertices, and the linear operators

𝑑𝑣 ∶= 𝑑 ∣𝑉𝑔,𝑛,𝑣∶ 𝑉𝑔,𝑛,𝑣 → 𝑉𝑔,𝑛,𝑣−1.

The dimension of the 𝑔-loop, 𝑣-vertex part of the homology is then

𝐷𝑣 ∶= dim𝑉𝑔,𝑛,𝑣 − rank 𝑑𝑣 − rank 𝑑𝑣+1. (5)

We generate a basis of 𝑉𝑔,𝑛,𝑣 as follows. We first produce a list of all isomor-
phism classes of connected 1-vertex irreducible 𝑔-loop graphs with 𝑣 vertices of
valence ≥ 3. To this end we use B. McKay’s Nauty library [23]. We canonically
label the graphs and remove all that have odd symmetries, and are hence zero
in G𝑛. This yields a basis of 𝑉𝑔,𝑛,𝑣, and hence its dimension.
We next produce thematrices of the differentials 𝑑𝑣 in a custom Sage program.

These matrices are very sparse, with integer entries. Finally, we use LinBox
[22] to compute the ranks of these matrices, and hence the numbers 𝐷𝑣 above.
To avoid memory overflow a part of the rank computations is conducted over

a prime (32189). Note that the rank modulo a prime of an integer matrix is
always less than or equal to the actual (rational) rank of the matrix. Further-
more, the rank computation algorithm used internally by LinBox provides an
approximation to the actual rank, that is only guaranteed to be a lower bound

https://github.com/sibrun/GH
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odd 𝑛
l,v 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 𝜒 𝜒𝑟𝑒𝑓
3 1 - - - - - - - - - - - - - - - - - 1 1
4 - 0 1 - - - - - - - - - - - - - - - 1 1
5 - 0 0 0 2 - - - - - - - - - - - - - 2 2
6 - 0 0 1 0 0 2 - - - - - - - - - - - 1 1
7 - - 0 0 0 1 0 0 3 - - - - - - - - - 2 2
8 - - 0 0 0 0 0 2 0 0 4 - - - - - - - 2 2
9 - - 0 0 0 0 0 0 0 3 0 0 5 - - - - - 2 2
10 - - 0 0 0 0 0 0 0 0 0 5 0 0 6 - - - 1 1
11 - - - 0 0 0 0 ? ? ? ? ? ? ? ? ? 8 - ? 3

even 𝑛
l,v 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 𝜒 𝜒𝑟𝑒𝑓
3 1 - - - - - - - - - - - - - - - - - 1 1
4 - 0 0 - - - - - - - - - - - - - - - 0 0
5 - 0 1 0 0 - - - - - - - - - - - - - 1 1
6 - 0 0 0 0 0 1 - - - - - - - - - - - 1 1
7 - - 0 0 1 0 0 0 0 - - - - - - - - - 1 1
8 - - 0 0 0 1 0 0 1 0 0 - - - - - - - 0 0
9 - - 0 0 0 0 1 0 0 1 0 0 0 - - - - - 0 0
10 - - 0 0 0 0 0 1 0 0 2 0 0 0 1 - - - 2 2
11 - - - 0 0 0 0 ? ? ? ? ? ? ? ? ? 0 - ? 1

Figure 1. Homology dimensions for the ordinary graph com-
plex 𝐻(G𝑛). The rows correspond to loop order 𝑙 and the
columns to the number of vertices 𝑣. The shaded cells must
be zero by known vanishing theorems. Concretely, the upper
bound is due to the trivalence condition on vertices of graphs in
the graph complex. The lower bound is due to [33]. We remark
that only the case of even 𝑛 is stated in [33]. However, for odd 𝑛
the corresponding result can be shown analogously. The refer-
ence Euler characteristics have been taken from [34].

to the actual rank. (That said, it is correct with high probability.) Overall, this
means that we only compute a lower bound (and approximation)

𝑟𝑣 ≤ rank𝑑𝑣 (6)

to the desired ranks of 𝑑𝑣. From (5) we then see that

𝐷𝑣 ≤ dim𝑉𝑔,𝑛,𝑣 − 𝑟𝑣 − 𝑟𝑣+1.

Suppose that 𝑣 is such that the right-hand side is 0. Then, since 𝐷𝑣 ≥ 0 we
deduce 𝐷𝑣 = 0. But from (5) and (6) we then obtain that

𝑟𝑣 = rank𝑑𝑣 𝑟𝑣+1 = rank𝑑𝑣+1,

that is, our approximations to the ranks are exact. This argument has been used
before by Bartholdi [3].
Looking at the tables in Figure 1 we see that no two horizontally consecutive

cells are non-zero, except for the (8,20)-entry of the first table. Hence we can
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deduce that our computation of𝐷𝑣 is actually correct overℚ and rigorous, except
for the entry “8” in the even-edge graph complex, with 11 loops and 20 vertices.

4.3. Testing Merkulov’s conjecture. We checked Merkulov’s conjecture,
Conjecture 2.2, numerically, up to loop order 10. The results are displayed
in Figure 2. As one can see comparing to Figure 1, Merkulov’s conjecture ap-
pears to be true up to loop order 10. We shall note, however, that we partially
used finite-field arithmetic, see the discussion below.

odd 𝑛
l,v 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
3 1 - - - - - - - - - - - - - - - - -
4 0 0 1 - - - - - - - - - - - - - - -
5 0 0 0 0 2 - - - - - - - - - - - - -
6 - 0 0 1 0 0 2 - - - - - - - - - - -
7 - - 0 0 0 1 0 0 3 - - - - - - - - -
8 - - - 0 0 0 0 2 0 0 4 - - - - - - -
9 - - - - 0 0 0 0 0 3 0 0 5 - - - - -
10 - - - - - 0 0 0 0 0 0 5 0 0 6 - - -
11 - - - - - - 0 0 0 ? ? ? ? ? ? ? ? -

even 𝑛
l,v 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
3 1 - - - - - - - - - - - - - - - - -
4 0 0 0 - - - - - - - - - - - - - - -
5 0 0 1 0 0 - - - - - - - - - - - - -
6 - 0 0 0 0 0 1 - - - - - - - - - - -
7 - - 0 0 1 0 0 0 0 - - - - - - - - -
8 - - - 0 0 1 0 0 1 0 0 - - - - - - -
9 - - - - 0 0 1 0 0 1 0 0 0 - - - - -
10 - - - - - 0 0 1 0 0 2 0 0 0 1 - - -
11 - - - - - - 0 0 2 ? ? ? ? ? ? ? ? -

Figure 2. Results of homology computations for Merkulov’s
graph complex GMe

𝑛 .

4.3.1. Methods. For checking Merkulov’s conjecture in loop order 𝑔 there are
two relevant subspaces

𝑉3,4
𝑔,𝑛,𝑣 ⊂ G𝑛 𝑉5,6

𝑔,𝑛,𝑣 ⊂ G𝑛,

with 𝑉3,4
𝑔,𝑛,𝑣 spanned by the 𝑔-loop graphs with 𝑣 vertices all of which are 3- or

4-valent, and 𝑉5,6
𝑔,𝑛,𝑣 spanned by graphs with exactly one vertex of valence 5 or 6

and all others 3- or 4-valent.
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Furthermore, we are interested in the parts of the differential 𝑑,

𝑑𝑣,1 ∶ 𝑉
3,4
𝑔,𝑛,𝑣 → 𝑉3,4

𝑔,𝑛,𝑣−1

𝑑𝑣,2 ∶ 𝑉
3,4
𝑔,𝑛,𝑣 → 𝑉5,6

𝑔,𝑛,𝑣−1

𝑑𝑣,12 =
(
𝑑𝑣,1
𝑑𝑣,2

)
∶ 𝑉3,4

𝑔,𝑛,𝑣 → 𝑉3,4
𝑔,𝑛,𝑣−1 ⊕𝑉5,6

𝑔,𝑛,𝑣−1.

The dimension of the 𝑔-loop, 𝑣-vertex part of the homology of GMe
𝑛 is then, by

definition,

𝐷𝑣 ∶= dimker 𝑑𝑣,2 − rank 𝑑𝑣,1 ∣ker𝑑𝑣,2 −rank𝑑𝑣+1,1 ∣ker𝑑𝑣+1,2 .

We can reduce the computation of 𝐷𝑣 to the computations of ranks of the opera-
tors 𝑑𝑣,− and of dimensions of vector spaces as follows: First note that

dimker𝑑𝑣,2 = dim𝑉3,4
𝑔,𝑛,𝑣 − rank 𝑑𝑣,2.

Next,
ker𝑑𝑣,1 ∣ker𝑑𝑣,2= ker𝑑𝑣,12,

and hence

rank𝑑𝑣,1 ∣ker𝑑𝑣,2 = dimker 𝑑𝑣,2 − dimker𝑑𝑣,1 ∣ker𝑑𝑣,2
= dim𝑉3,4

𝑔,𝑛,𝑣 − rank 𝑑𝑣,2 − dim𝑉3,4
𝑔,𝑛,𝑣 + rank 𝑑𝑣,12

= rank𝑑𝑣,12 − rank 𝑑𝑣,2.

Putting everything together we obtain

𝐷𝑣 = dim𝑉3,4
𝑔,𝑛,𝑣 − rank 𝑑𝑣,12 − rank 𝑑𝑣+1,12 + rank 𝑑𝑣+1,2. (7)

Computationally, we generate bases of𝑉3,4
𝑔,𝑛,𝑣 and𝑉4,6

𝑔,𝑛,𝑣 with the help of nauty,
and the matrices of 𝑑𝑣,2 and 𝑑𝑣,12, analogously to section 4.2.1 above. We then
compute the ranks of the matrices 𝑑𝑣,2 and 𝑑𝑣,12 using LinBox. In part, these
computations are done modulo a prime (32189) to prevent memory problems.
Furthermore, the rank algorithm used by LinBox computes only a (likely exact)
lower bound for the ranks. In contrast to section 4.2.1 we now cannot argue
that our computation of 𝐷𝑣 is exact nevertheless, since the presence of the sign
“+” in front of the last term of (7) spoils the argument. We shall hence consider
the numbers depicted in Figure 2 as (likely correct) approximations of 𝐷𝑣.

4.4. Hairy graphs. For the hairy graph complexex 𝖧𝖦𝑚,𝑛, with the differential
given by contracting edges, we found the dimensions of the homology shown
in Figures 3-10. In each case the shaded cells lie in the vanishing region of
Proposition 2.3. We remark that parts of the data appeared in the literature
before [20, 2]. Furthermore, for genera ≤ 2 the homology is known analytically
for any number of hairs [13].
Let us also draw attention to one particular aspect of the tables. There is amap

of complexes 𝖧𝖦1−ℎ𝑎𝑖𝑟𝑚,𝑛 → G𝑛[1] by removing the single hair from a 1-hair graph.
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It is well known (see e.g., [32, Theorem 1]) that this map induces a surjection
on homology

𝐻𝑘(𝖧𝖦
1−ℎ𝑎𝑖𝑟
𝑚,𝑛 )↠ 𝐻𝑘−1(G𝑛).

Through Euler characteristic computations one can see that this map cannot
be an isomorphism for sufficiently high loop orders, but no homology class in
the kernel had been found. By our numerical computations we can however
deduce:

Proposition 4.1. The map𝐻𝑘(𝖧𝖦
1−ℎ𝑎𝑖𝑟
𝑚,𝑛 )→ 𝐻𝑘−1(G𝑛) is an isomorphism in loop

orders ≤ 7 and all 𝑛, 𝑘. In loop order 8 and 𝑛 even the map is not injective, with
the first class in the kernel spanned by a linear combination of graphs with 8 loops
and 12 vertices.

4.4.1. Methods. The computation of the hairy graph homology is essentially
identical to the computation of the ordinary graph homology𝐻(G𝑛), and hence
we just refer to section 4.2.1 for algorithmic details.
As discussed there, a significant part of the rank computations were done in

modular arithmetic. Nevertheless, table entries are upper bounds overℚ, and
correct overℚ if their two horizontally adjacent neighbors are zero. Looking at
the tables, this condition holds for most entries, though not all.

4.5. Hairy graphs with distinguishable hairs. The homology dimensions
of the graph complexes with colored hairs are shown in Figures 11 and 12. At
least for part of the entries we also show how the corresponding representation
of the symmetric group 𝑆𝑟 (acting by permuting hair labels) decomposes into
irreducible representations.
We note that a part of the data displayed in Figure 11 has already appeared

in [28, Figure 1]. Furthermore, another subset of the numeric results had been
found in [7, Appendix A]. Finally, for loop order 2, even 𝑛 and 𝑟 ≤ 11 hairs the
homology has been computed in [4].

4.5.1. Methods. The homology dimensions are computed analogously to those
of the ordinary graph complex, see section 4.2.1.
The decomposition into irreducible representations is computed as follows.

Let 𝑉𝑙,𝑛,𝑣,𝑟 ⊂ 𝖢𝖧𝖦𝑛(𝑟) be the subspace spanned by graphs with 𝑙 loops and
𝑣 vertices. For every irreducible representation of 𝑆𝑟, say 𝜆, we compute the
projector 𝑃𝜆,𝑣 onto the corresponding isotypical component of 𝑉𝑙,𝑛,𝑣,𝑟. Denote
by 𝑑𝑣 ∶ 𝑉𝑙,𝑛,𝑣,𝑟 → 𝑉𝑙,𝑛,𝑣−1,𝑟 the contraction differential. Then the dimension of
the corresponding 𝜆-isotypical component of the homology is

rank𝑃𝜆,𝑣 − rank (𝑑𝑣𝑃𝜆,𝑣) − rank (𝑑𝑣+1𝑃𝜆,𝑣+1). (8)

We note that our use of a matrix product 𝑑𝑣𝑃𝜆,𝑣 is computationally expensive.
This could in principle be avoided by using that

ker𝑑𝑣 ∣im𝑃𝜆,𝑣= ker
(

𝑑𝑣
1 − 𝑃𝜆,𝑣

)
.
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1 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - -
3 - - - - 1 0 - - - - - - - - - - - -
4 - - - - - 0 1 0 - - - - - - - - - -
5 - - - - - 0 0 0 2 0 - - - - - - - -
6 - - - - - 0 0 1 0 0 2 0 - - - - - -
7 - - - - - - 0 0 0 1 0 0 3 0 - - - -
8 - - - - - - 0 0 0 0 0 2 0 0 4 0 - -
9 - - - - - - 0 0 0 0 0 0 0 3 0 0 5 0

2 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - 0 - - - - - - - - - - - - -
3 - - - - 0 0 0 - - - - - - - - - - -
4 - - - - - 0 0 0 0 - - - - - - - - -
5 - - - - - 0 0 0 1 0 0 - - - - - - -
6 - - - - - 0 0 0 0 0 1 0 0 - - - - -
7 - - - - - - 0 0 0 0 0 0 2 0 0 - - -
8 - - - - - - 0 0 0 0 0 0 0 0 3 0 0 -

3 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - 1 - - - - - - - - - - - - - -
2 - - - - 0 1 - - - - - - - - - - - -
3 - - - - 0 0 0 2 - - - - - - - - - -
4 - - - - - 0 0 0 0 2 - - - - - - - -
5 - - - - - 0 0 0 0 0 0 3 - - - - - -
6 - - - - - 0 0 0 0 0 0 0 0 4 - - - -
7 - - - - - - 0 0 0 0 0 0 1 0 0 5 - -

4 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - 0 - - - - - - - - - - - - -
2 - - - - 0 0 0 - - - - - - - - - - -
3 - - - - 0 0 0 1 0 - - - - - - - - -
4 - - - - - 0 0 0 0 1 0 - - - - - - -
5 - - - - - 0 0 0 0 1 0 2 0 - - - - -
6 - - - - - 0 0 0 0 0 0 2 0 3 0 - - -

5 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - 0 - - - - - - - - - - - -
2 - - - - - 0 1 0 - - - - - - - - - -
3 - - - - - 0 0 0 2 0 - - - - - - - -
4 - - - - - 0 0 0 0 0 3 0 - - - - - -
5 - - - - - 0 0 0 0 0 0 1 5 0 - - - -
6 - - - - - 0 0 0 0 0 0 0 0 1 7 0 - -

Figure 3. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 odd and𝑚
even. The tables are continued in Figure 4.



76 SIMON BRUN AND THOMASWILLWACHER

6 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - 0 - - - - - - - - - - -
2 - - - - - - 0 0 0 - - - - - - - - -
3 - - - - - - 0 0 1 0 0 - - - - - - -
4 - - - - - - 0 0 0 0 2 0 0 - - - - -
5 - - - - - - 0 0 0 0 0 0 5 0 0 - - -

7 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - 1 - - - - - - - - - -
2 - - - - - - - 0 0 1 - - - - - - - -
3 - - - - - - - 0 0 0 0 2 - - - - - -
4 - - - - - - - 0 0 0 0 1 0 3 - - - -
5 - - - - - - - 0 0 0 0 0 1 3 0 4 - -

8 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - 0 - - - - - - - - -
2 - - - - - - - - 0 0 0 - - - - - - -
3 - - - - - - - - 0 0 0 1 0 - - - - -
4 - - - - - - - - 0 0 0 1 0 3 0 - - -

Figure 4. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 odd and𝑚
even, continued from Figure 3.

We nevertheless restricted ourselves to the simplest implementation, using (8).

4.6. Forested graph complex. The dimensions of the homology groups of
the forested graph complex (𝖥𝖦𝑛(𝑟), 𝑑𝑐 + 𝑑𝑢) are shown in Figures 13 (for odd
𝑛) and 14 (for even 𝑛). In the tables, 𝑙 is the loop order and 𝑚 is the number
of marked edges in the forest. For some entries for 𝑟 ≥ 2 hairs we have also
indicated the decomposition into irreducible components.
We note that the first table in Figure 14, corresponding to the case of even

𝑛 and 𝑟 = 0 hairs, is not new. It has previously been computed by Ohashi [27]
for 𝑔 ≤ 6 and Bartholdi [3] for g≤ 7. We nevertheless include this table for
reference and as confirmation of previous results. The entries of loop order one
are known for all 𝑔 [9]. The other data in Figures 13 (for odd 𝑛) and 14 are new
to our knowledge.
Our tables do not contain loop order zero data. This is because 𝐻(𝖥𝖦0-loop𝑛 )

is well known and just a degree shifted version of the commutative operad.
Furthermore, some computational simplifications due to Proposition 2.8 only
apply in positive loop order.

4.6.1. Morita classes and analogues for odd 𝒏. We consider first the homol-
ogy 𝐻(𝖥𝖦2𝑘+20 (0)), see the first table (0 hairs) in Figure 14. In particular the
entries in the (𝑙, 𝑚) = (4, 4)- and (6, 8)-positions are known to be the first two of
an infinite family of classes, the Morita classes [𝜇𝑘] ∈ 𝐻4𝑘(𝖥𝖦

2𝑘+2-loop
0 (0)), see
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1 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - -
3 - - - - 1 0 - - - - - - - - - - - -
4 - - - - - 0 1 0 - - - - - - - - - -
5 - - - - - 0 0 0 2 0 - - - - - - - -
6 - - - - - 0 0 1 0 0 2 0 - - - - - -
7 - - - - - - 0 0 0 1 0 0 3 0 - - - -
8 - - - - - - 0 0 0 0 0 2 0 0 4 0 - -
9 - - - - - - 0 0 0 0 0 0 0 3 0 0 5 0

2 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - 1 - - - - - - - - - - - - -
3 - - - - 0 0 1 - - - - - - - - - - -
4 - - - - - 0 0 0 2 - - - - - - - - -
5 - - - - - 0 0 0 0 0 2 - - - - - - -
6 - - - - - 0 0 0 0 0 0 0 3 - - - - -
7 - - - - - - 0 0 0 0 0 0 0 0 4 - - -
8 - - - - - - 0 0 0 0 0 0 1 1 0 0 5 -

3 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - 0 - - - - - - - - - - - - - -
2 - - - - 1 0 - - - - - - - - - - - -
3 - - - - 0 0 1 0 - - - - - - - - - -
4 - - - - - 0 0 0 3 0 - - - - - - - -
5 - - - - - 0 0 0 0 0 4 0 - - - - - -
6 - - - - - 0 0 0 0 0 0 0 6 0 - - - -
7 - - - - - - 0 0 0 0 0 0 2 0 8 0 - -

4 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - 1 - - - - - - - - - - - - -
2 - - - - 0 0 1 - - - - - - - - - - -
3 - - - - 0 0 0 0 2 - - - - - - - - -
4 - - - - - 0 0 0 1 0 3 - - - - - - -
5 - - - - - 0 0 0 0 0 3 0 4 - - - - -
6 - - - - - 0 0 0 0 0 0 0 6 0 6 - - -

5 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - 0 - - - - - - - - - - - -
2 - - - - - 0 1 0 - - - - - - - - - -
3 - - - - - 0 0 0 3 0 - - - - - - - -
4 - - - - - 0 0 0 0 0 6 0 - - - - - -
5 - - - - - 0 0 0 0 0 1 0 10 0 - - - -
6 - - - - - 0 0 0 0 0 0 0 5 0 17 0 - -

Figure 5. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 odd and𝑚
odd. The tables are continued in Figure 6.
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6 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - 1 - - - - - - - - - - -
2 - - - - - - 0 0 2 - - - - - - - - -
3 - - - - - - 0 0 1 0 3 - - - - - - -
4 - - - - - - 0 0 0 0 4 0 5 - - - - -
5 - - - - - - 0 0 0 0 0 0 11 0 8 - - -

7 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - 0 - - - - - - - - - -
2 - - - - - - - 0 2 0 - - - - - - - -
3 - - - - - - - 0 0 0 5 0 - - - - - -
4 - - - - - - - 0 0 0 1 0 11 0 - - - -
5 - - - - - - - 0 0 0 0 0 6 0 23 0 - -

8 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - 1 - - - - - - - - -
2 - - - - - - - - 0 0 2 - - - - - - -
3 - - - - - - - - 0 0 2 0 4 - - - - -
4 - - - - - - - - 0 0 0 0 8 0 8 - - -

Figure 6. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 odd and𝑚
odd, continued from Figure 5.

[12, 24]. They are spanned by the cycles of loop order 2𝑘+2with 4𝑘+2 vertices
and 4𝑘 marked edges

𝜇𝑘 = 𝜎∈𝑆𝑘
(−1)𝜎

𝜎

2𝑘 + 1× .

Here the dashed vertical line in the middle indicates that one connects the edges
on the left- and right-hand sides according to the permutation 𝜎. The following
conjecture is well known:

Conjecture 4.2. The Morita homology classes [𝜇𝑘] ∈ 𝐻(𝖥𝖦2𝑘+20 (0)) are non-
trivial for every 𝑘 ≥ 1.

Next, consider the homology of (𝖥𝖦𝑔--loop𝑛 (0), 𝑑𝑐 + 𝑑𝑢) for odd 𝑛, see the first
table of Figure 13. Note the first non-zero entries at the positions (𝑙, 𝑚) = (4, 3)
and (6, 5). Experimentally we found that the corresponding homology classes
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1 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - -
3 - - - - 1 0 - - - - - - - - - - - -
4 - - - - - 0 0 0 - - - - - - - - - -
5 - - - - - 0 1 0 0 0 - - - - - - - -
6 - - - - - 0 0 0 0 0 1 0 - - - - - -
7 - - - - - - 0 0 1 0 0 0 0 0 - - - -
8 - - - - - - 0 0 0 1 0 0 2 0 0 0 - -
9 - - - - - - 0 0 0 0 1 0 0 1 0 0 0 0

2 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - 0 - - - - - - - - - - - - -
3 - - - - 0 0 0 - - - - - - - - - - -
4 - - - - - 0 0 0 0 - - - - - - - - -
5 - - - - - 0 0 0 0 0 0 - - - - - - -
6 - - - - - 0 0 0 0 0 0 0 0 - - - - -
7 - - - - - - 0 0 0 0 0 0 0 0 0 - - -
8 - - - - - - 0 0 0 0 0 0 1 0 1 0 0 -

3 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - 1 - - - - - - - - - - - - - -
2 - - - - 0 0 - - - - - - - - - - - -
3 - - - - 0 0 0 0 - - - - - - - - - -
4 - - - - - 0 0 0 0 1 - - - - - - - -
5 - - - - - 0 0 0 0 0 0 0 - - - - - -
6 - - - - - 0 0 0 0 0 0 1 0 0 - - - -
7 - - - - - - 0 0 0 0 0 0 0 0 0 0 - -

4 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - 0 - - - - - - - - - - - - -
2 - - - - 0 0 0 - - - - - - - - - - -
3 - - - - 0 0 0 0 0 - - - - - - - - -
4 - - - - - 0 0 0 0 1 0 - - - - - - -
5 - - - - - 0 0 0 0 0 0 0 0 - - - - -
6 - - - - - 0 0 0 0 0 0 1 0 1 0 - - -

5 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - 1 - - - - - - - - - - - -
2 - - - - - 0 0 0 - - - - - - - - - -
3 - - - - - 0 0 0 0 0 - - - - - - - -
4 - - - - - 0 0 0 0 0 0 1 - - - - - -
5 - - - - - 0 0 0 0 0 0 0 1 0 - - - -
6 - - - - - 0 0 0 0 0 0 0 0 4 0 0 - -

Figure 7. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 even and𝑚
even. The tables are continued in Figure 8.
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6 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - 0 - - - - - - - - - - -
2 - - - - - - 0 0 1 - - - - - - - - -
3 - - - - - - 0 0 0 0 0 - - - - - - -
4 - - - - - - 0 0 0 0 0 1 0 - - - - -
5 - - - - - - 0 0 0 0 0 0 1 0 1 - - -

7 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - 1 - - - - - - - - - -
2 - - - - - - - 0 1 0 - - - - - - - -
3 - - - - - - - 0 0 0 0 0 - - - - - -
4 - - - - - - - 0 0 0 0 0 1 1 - - - -
5 - - - - - - - 0 0 0 0 0 0 0 4 0 - -

8 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - 0 - - - - - - - - -
2 - - - - - - - - 0 0 1 - - - - - - -
3 - - - - - - - - 0 0 0 1 0 - - - - -
4 - - - - - - - - 0 0 0 0 2 1 0 - - -

Figure 8. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 even and𝑚
even, continued from Figure 7.

are represented by the forested graphs

𝑊4 ∶= ∈ 𝖥𝖦4-loop1 (0) 𝑊6 ∶= ∈ 𝖥𝖦6-loop1 (0).

They are also part of an infinite family of cocycles: Let us define

𝑊2𝑘 ∶= ⋮ 4𝑘 − 2 vertices, 6𝑘 − 3 edges.

Then we have:

Lemma 4.3. The elements𝑊2𝑘 ∈ 𝖥𝖦2𝑘-loop1 (0) are non-zero and satisfy

𝑑𝑐𝑊2𝑘 = 𝑑𝑢𝑊2𝑘 = 0.

Proof. The symmetry group of𝑊2𝑘 is the dihedral group𝐷2𝑘−1, and one readily
verifies that the rotation and reflection generators of 𝐷2𝑘−1 act trivially on one
and hence on any given orientation of the graph. Hence𝑊2𝑘 ≠ 0 in 𝖥𝖦2𝑘-loop1 (0).
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1 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - -
3 - - - - 1 0 - - - - - - - - - - - -
4 - - - - - 0 0 0 - - - - - - - - - -
5 - - - - - 0 1 0 0 0 - - - - - - - -
6 - - - - - 0 0 0 0 0 1 0 - - - - - -
7 - - - - - - 0 0 1 0 0 0 0 0 - - - -
8 - - - - - - 0 0 0 1 0 0 2 0 0 0 - -
9 - - - - - - 0 0 0 0 1 0 0 1 0 0 0 0

2 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - - - -
2 - - - - 1 - - - - - - - - - - - - -
3 - - - - 0 0 0 - - - - - - - - - - -
4 - - - - - 0 0 0 0 - - - - - - - - -
5 - - - - - 0 0 0 0 0 1 - - - - - - -
6 - - - - - 0 0 0 0 0 0 0 0 - - - - -
7 - - - - - - 0 0 0 0 0 0 1 0 0 - - -
8 - - - - - - 0 0 0 0 0 0 0 0 0 0 0 -

3 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - 0 - - - - - - - - - - - - - -
2 - - - - 0 0 - - - - - - - - - - - -
3 - - - - 0 0 0 1 - - - - - - - - - -
4 - - - - - 0 0 0 0 0 - - - - - - - -
5 - - - - - 0 0 0 0 1 0 0 - - - - - -
6 - - - - - 0 0 0 0 0 0 0 0 1 - - - -
7 - - - - - - 0 0 0 0 0 0 1 0 1 0 - -

4 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - 0 - - - - - - - - - - - - -
2 - - - - 0 1 0 - - - - - - - - - - -
3 - - - - 0 0 0 0 0 - - - - - - - - -
4 - - - - - 0 0 0 0 1 1 - - - - - - -
5 - - - - - 0 0 0 0 0 0 2 0 - - - - -
6 - - - - - 0 0 0 0 0 0 0 2 1 0 - - -

5 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - 1 - - - - - - - - - - - -
2 - - - - - 0 0 0 - - - - - - - - - -
3 - - - - - 0 0 0 1 0 - - - - - - - -
4 - - - - - 0 0 0 0 1 0 1 - - - - - -
5 - - - - - 0 0 0 0 0 1 0 1 2 - - - -
6 - - - - - 0 0 0 0 0 0 0 0 2 2 0 - -

Figure 9. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 even and𝑚
odd. The tables are continued in Figure 10.
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6 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - 0 - - - - - - - - - - -
2 - - - - - - 0 0 1 - - - - - - - - -
3 - - - - - - 0 0 0 1 0 - - - - - - -
4 - - - - - - 0 0 0 0 1 1 0 - - - - -
5 - - - - - - 0 0 0 0 0 0 2 0 1 - - -

7 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - 0 - - - - - - - - - -
2 - - - - - - - 0 0 0 - - - - - - - -
3 - - - - - - - 0 0 0 0 1 - - - - - -
4 - - - - - - - 0 0 0 1 0 3 0 - - - -
5 - - - - - - - 0 0 0 0 0 0 4 3 0 - -

8 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 - - - - - - - - - - - - - - - - - -
1 - - - - - - - - 0 - - - - - - - - -
2 - - - - - - - - 0 1 0 - - - - - - -
3 - - - - - - - - 0 0 1 0 1 - - - - -
4 - - - - - - - - 0 0 0 0 0 1 2 - - -

Figure 10. Homology dimensions for 𝖧𝖦𝑚,𝑛 with 𝑛 even and
𝑚 odd, continued from Figure 9.

Next, 𝑑𝑐𝑊2𝑘 = 0 holds trivially because the graphs resulting from the edge
contraction all have a tadpole, and are hence zero. Similarly, 𝑑𝑢𝑊2𝑘 = 0 since
unmarking of edges leads to graphs with multiple unmarked edges, and hence
an odd symmetry by transposing a pair of such edges. □

We are hence led to the following conjecture, which can be seen as an “odd”
analogue of Conjecture 4.2:

Conjecture 4.4. For each 𝑘 = 2, 3, 4,… the elements𝑊2𝑘 ∈ 𝖥𝖦2𝑘-loop1 (0) repre-
sent non-trivial homology classes.

Note that the definition of𝑊2𝑘 above would also makes sense if one replaced
2𝑘 by an odd number. However, the graphs thus obtained are zero elements in
the graph complex 𝖥𝖦1(0), since they have an odd symmetry.

4.6.2. Methods. We compute the homology of the complex (𝐾𝑛, 𝑑𝑢), see Corol-
lary 2.9. To this end, we consider the finite dimensional graded subspaces

𝑉𝑛,𝑔,𝑚,𝑟,𝑒 ⊂ 𝖥𝖦𝑔-loop,𝑒−𝑒𝑥𝑐𝑛 (𝑟)

𝑉𝑛,𝑔,𝑚,𝑟 ⊂ 𝖥𝖦𝑔-loop,0−𝑒𝑥𝑐𝑛 (𝑟)

𝑉′
𝑛,𝑔,𝑚,𝑟 ⊂ 𝖥𝖦𝑔-loop,1−𝑒𝑥𝑐𝑛 (𝑟)
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2 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 - - - - - - - - - - - - - - - -
1 0 - - - - - - - - - - - - - - - -
2 - - - - 1 (𝑠[1,1]) - - - - - - - - - - - -
3 - - - - 0 0 0 - - - - - - - - - -
4 - - - - - 0 0 0 0 - - - - - - - -
5 - - - - - 0 0 0 0 0 1 (𝑠[1,1]) - - - - - -
6 - - - - - 0 0 0 0 0 0 0 0 - - - -
7 - - - - - - 0 0 0 0 0 0 1 (𝑠[1,1]) 0 0 - -

3 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 1 (𝑠[1,1,1]) - - - - - - - - - - - - -
1 0 - - 1 (𝑠[3]) - - - - - - - - - - -
2 - - - - 0 0 - - - - - - - - -
3 - - - - 0 0 0 1 (𝑠[1,1,1]) - - - - - - -
4 - - - - - 0 0 0 2 (𝑠[2,1]) 1 (𝑠[3]) - - - - -
5 - - - - - 0 0 0 0 1 (𝑠[1,1,1]) 2 (𝑠[2,1]) 0 - - -
6 - - - - - 0 0 0 0 0 0 1 (𝑠[3]) 0 1 (𝑠[1,1,1]) -

4 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 2 (𝑠[2,2]) - - - - - - - - - - -
1 0 - - 0 3 (𝑠[2,1,1]) - - - - - - - - -
2 - - - - 0 1 (𝑠[1,1,1,1]) 3 (𝑠[3,1]) - - - - - - -
3 - - - - 0 0 0 3 (𝑠[3,1]) 2 (𝑠[2,2]) - - - - -
4 - - - - - 0 0 0 0 2 (𝑠[4] + 𝑠[1,1,1,1]) 4 (𝑠[2,1,1] + 𝑠[1,1,1,1]) - - -
5 - - - - - 0 0 0 0 0 2 (𝑠[2,2]) 8 (2𝑠[2,1,1] + 2𝑠[1,1,1,1]) 3 (𝑠[3,1]) -

5 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 6 (𝑠[3,1,1]) - - - - - - - - -
1 0 - - 0 0 12 (𝑠[5] + 𝑠[3,2] +

𝑠[2,2,1] + 𝑠[1,1,1,1,1])
- - - - - - -

2 - - - - 0 0 5 (𝑠[2,2,1]) 15 (𝑠[3,1,1] + 𝑠[2,2,1]
+ 𝑠[2,1,1,1])

- - - - -

3 - - - - 0 0 0 0 16 (𝑠[3,1,1] + 𝑠[2,2,1] +
𝑠[2,1,1,1] + 𝑠[1,1,1,1,1])

16 (𝑠[4,1] + 2𝑠[3,1,1]) - - -

4 - - - - - 0 0 0 0 5 27 12 -

6 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 24 (𝑠[4,2] + 𝑠[3,1,1,1]

+ 𝑠[2,2,2])
- - - - - - -

1 0 - - 0 0 0 60 (2𝑠[4,1,1] + 𝑠[3,3]
+ 𝑠[3,2,1] + 𝑠[3,1,1,1]
+ 𝑠[2,2,1,1])

- - - - -

2 - - - - 0 0 0 26 (𝑠[3,2,1] + 𝑠[3,1,1,1]) 86 (𝑠[6] + 𝑠[5,1] + 𝑠[4,2]
+ 2𝑠[3,3] + 2𝑠[3,2,1] +
𝑠[2,2,2] + 2𝑠[2,2,1,1] +
𝑠[2,1,1,1,1] + 𝑠[1,1,1,1,1,1])

- - -

3 - - - - 0 0 0 0 0 94 94 -

Figure 11. Homology dimensions for 𝖢𝖧𝖦𝑛 with 𝑛 even.

with a fixed number of marked edges𝑚. We have the operators

𝑑𝑐,𝑔,𝑚,𝑟 ∶ 𝑉𝑛,𝑔,𝑚,𝑟 → 𝑉′
𝑛,𝑔,𝑚−1,𝑟

𝑑𝑢,𝑔,𝑚,𝑟 ∶ 𝑉𝑛,𝑔,𝑚,𝑟 → 𝑉𝑛,𝑔,𝑚−1,𝑟

𝑑𝑢𝑐,𝑔,𝑚,𝑟 =
(
𝑑𝑢,𝑔,𝑚,𝑟
𝑑𝑐,𝑔,𝑚,𝑟

)
∶ 𝑉𝑛,𝑔,𝑚,𝑟 → 𝑉𝑛,𝑔,𝑚−1,𝑟 ⊕𝑉′

𝑛,𝑔,𝑚−1,𝑟
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2 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 - - - - - - - - - - - - - - - -
1 0 - - - - - - - - - - - - - - - -
2 - - - - 1 (𝑠[1,1]) - - - - - - - - - - - -
3 - - - - 0 0 1 (𝑠[1,1]) - - - - - - - - - -
4 - - - - - 0 0 0 2 (2𝑠[1,1]) - - - - - - - -
5 - - - - - 0 0 0 1 (𝑠[2]) 0 2 (2𝑠[1,1]) - - - - - -
6 - - - - - 0 0 0 0 0 1 (𝑠[2]) 0 3 (3𝑠[1,1]) - - - -
7 - - - - - - 0 0 0 0 0 0 2 (2𝑠[2]) 0 4 (4𝑠[1,1]) - -

3 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 1 (𝑠[3]) - - - - - - - - - - - - -
1 0 - - 1 (𝑠[3]) - - - - - - - - - - -
2 - - - - 1 (𝑠[1,1,1]) 1 (𝑠[3]) - - - - - - - - -
3 - - - - 0 0 3 (𝑠[1,1,1] + 𝑠[2,1]) 2 (2𝑠[3]) - - - - - - -
4 - - - - - 0 0 0 5 (3𝑠[1,1,1] + 𝑠[2,1]) 2 (2𝑠[3]) - - - - -
5 - - - - - 0 0 0 0 0 8 (4𝑠[1,1,1] + 2𝑠[2,1]) 3 (3𝑠[3]) - - -
6 - - - - - 0 0 0 0 0 2 (𝑠[2,1]) 0 12 (6𝑠[1,1,1] + 3𝑠[2,1]) 4 (4𝑠[3]) -

4 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 2 (𝑠[2,2]) - - - - - - - - - - -
1 0 - - 0 3 (𝑠[1,1,1,1] + 𝑠[2,2]) - - - - - - - - -
2 - - - - 0 3 (𝑠[3,1]) 5 (𝑠[1,1,1,1] + 2𝑠[2,2]) - - - - - - -
3 - - - - 0 0 0 7 (2𝑠[3,1] + 𝑠[4]) 8 (2𝑠[1,1,1,1] +

3𝑠[2,2])
- - - - -

4 - - - - - 0 0 0 4 (𝑠[1,1,1,1] + 𝑠[2,1,1]) 13 (4𝑠[3,1] + 𝑠[4]) 11 (3𝑠[1,1,1,1]
+ 4𝑠[2,2])

- - -

5 - - - - - 0 0 0 0 1 (𝑠[4]) 17 (3𝑠[1,1,1,1] +
3𝑠[2,1,1] + 𝑠[2,2]
+ 𝑠[3,1])

23 (7𝑠[3,1] + 2𝑠[4]) 16 (4𝑠[1,1,1,1]
+ 6𝑠[2,2])

-

5 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 6 (𝑠[3,1,1]) - - - - - - - - -
1 0 - - 0 0 12 (2𝑠[3,1,1]) - - - - - - -
2 - - - - 0 0 12 (𝑠[1,1,1,1,1] + 𝑠[2,2,1]

+ 𝑠[3,2] + 𝑠[5])
22 (3𝑠[3,1,1] + 𝑠[4,1]) - - - - -

3 - - - - 0 0 0 0 34 (3𝑠[1,1,1,1,1] + 𝑠[2,1,1,1] +
3𝑠[2,2,1] + 2𝑠[3,2] + 2𝑠[5])

34 (5𝑠[3,1,1] + 𝑠[4,1]) - - -

4 - - - - - 0 0 0 0 25 85 50 -

6 hairs
l,v 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 24 (𝑠[2,2,1,1] + 𝑠[4,1,1]

+ 𝑠[3,3])
- - - - - - -

1 0 - - 0 0 0 60 (𝑠[1,1,1,1,1,1] + 2𝑠[2,2,1,1]
+ 𝑠[3,2,1] + 𝑠[4,1,1] +
2𝑠[3,3] + 𝑠[5,1])

- - - - -

2 - - - - 0 0 0 60 (2𝑠[3,1,1,1] + 𝑠[2,2,2] +
𝑠[3,2,1] + 𝑠[4,1,1] + 𝑠[4,2])

120 (2𝑠[1,1,1,1,1,1] +
4𝑠[2,2,1,1] + 2𝑠[3,2,1] +
2𝑠[4,1,1] + 4𝑠[3,3] + 2𝑠[5,1])

- - -

3 - - - - 0 0 0 0 7 206 199 -

Figure 12. Homology dimensions for 𝖢𝖧𝖦𝑛 with 𝑛 odd.

We desire to compute the homology dimensions

𝐷𝑔,𝑚,𝑟 = dimker 𝑑𝑐,𝑔,𝑚,𝑟 − rank 𝑑𝑢,𝑔,𝑚,𝑟 ∣ker𝑑𝑐,𝑔,𝑚,𝑟 −rank𝑑𝑢,𝑔,𝑚+1,𝑟 ∣ker𝑑𝑐,𝑔,𝑚+1,𝑟 .

Analogously to the derivation in section 4.3.1 we can rewrite this as

𝐷𝑔,𝑚,𝑟 = dim𝑉𝑛,𝑔,𝑚,𝑟 − rank 𝑑𝑢𝑐,𝑔,𝑚,𝑟 − rank 𝑑𝑢𝑐,𝑔,𝑚+1,𝑟 + rank 𝑑𝑐,𝑔,𝑚+1,𝑟 . (9)

By Proposition 2.8 we may furthermore compute the last summand using an
Euler characteristic,

rank𝑑𝑐,𝑔,𝑚+1,𝑟 = 𝑒≥1
(−1)𝑒−1 dim𝑉𝑛,𝑔,𝑚+1−𝑒,𝑟,𝑒. (10)
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We compute bases of the vector spaces 𝑉𝑛,𝑔,𝑚,𝑟,𝑒 by first producing a list of
isomorphism classes of hairy graphs using nauty, and then iterating over all pos-
sible choices of edge markings. We discard graphs that are not bridgeless. Then
we build matrices of the operators 𝑑𝑐,𝑔,𝑚,𝑟, 𝑑𝑢,𝑔,𝑚,𝑟 and 𝑑𝑢𝑐,𝑔,𝑚,𝑟. We compute
the ranks of the matrices 𝑑𝑢𝑐,𝑔,𝑚,𝑟 using LinBox, partially over a finite field. As
noted in section 4.2.1 the ranks thus produced are only lower bounds for the true
(rational) ranks, both because we use prime arithmetic and the algorithm used
by LinBox. However, note that the formula (10) gives the exact rank of 𝑑𝑐,𝑔,𝑚+1,𝑟,
and the two other ranks appearing in (9) come with a minus sign. Hence we
may use the argument of section 4.2.1 to conclude that the computed homology
dimensions are upper bounds to the true (rational) homology dimensions. They
are furthermore correct over ℚ as long as every involved operator 𝑑𝑐,𝑔,𝑚,𝑟 con-
tributes to one computation with zero result, that is, if the horizontally adjacent
table entries are both zero. Again this holds for many, though not all entries in
the tables of Figures 13 and 14.
We also remark that the simplifications of Propositions 2.7 and 2.8 and Corol-

lary 2.9 help the computation. To illustrate the rough orders of magnitude, we
tabulate here the dimensions of some underlying graph complexes.

𝑚 4 5 6 7 8
dim 𝖥𝖦𝑚,𝑏𝑙,7-loop0 (0) 1961033 4773384 8382482 10608362 9443274
dim 𝖥𝖦𝑚,0-exc,7-loop0 (0) 119751 344107 749292 1252757 1594769
dim 𝖥𝖦𝑚,𝑏𝑙,0-exc,7-loop0 (0) 112474 322855 703262 1178567 1507269
One sees that passing to the 0-excess part reduces the dimension of the vector
spaces involved by an order of magnitude, while removing the bridgeless graphs
yields only rather marginal improvements (< 10%).

Appendix A. An auxiliary Proposition for the forested graph
complexes

In this section we shall prove the second part of Proposition 2.8 above, namely
the following statement:

Proposition A.1. For each 𝑛 and 𝑔 ≥ 1 the homology of 𝖥𝖦𝑏𝑙,𝑔-loop𝑛 with respect
to the edge contraction differential 𝑑𝑐 is concentrated in excess zero, corresponding
to graphs all of whose vertices are trivalent.

Note that the Proposition would immediately follow from the Koszulness of
the commutative (or Lie) operad if in the definition of 𝖥𝖦𝑛 we would not restrict
to bridgeless graphs. To show the more complicated version above, we shall use
a “bridgeless” variant of the Koszulness of 𝖢𝗈𝗆.
To this end we introduce some notation. We consider the cyclic bar construc-

tion of the commutative operad 𝐁𝐶𝑜𝑚. Elements of 𝐁𝐶𝑜𝑚((𝑟)) can be seen as
linear combinations of non-rooted trees with 𝑟 numbered leaves. The differential
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0 hairs
l,m 0 1 2 3 4 5 6 7 8 9 10 11
1 - - - - - - - - - - - -
2 0 0 - - - - - - - - - -
3 0 0 0 0 - - - - - - - -
4 0 0 0 1 0 0 - - - - - -
5 0 0 0 0 0 0 0 0 - - - -
6 0 0 0 0 0 1 0 0 0 0 - -
7 0 0 0 0 0 0 0 0 0 0 0 2

1 hairs
l,m 0 1 2 3 4 5 6 7 8 9 10 11
1 0 - - - - - - - - - - -
2 0 0 0 - - - - - - - - -
3 0 0 0 1 0 - - - - - - -
4 0 0 0 1 0 0 0 - - - - -
5 0 0 0 0 0 1 0 0 0 - - -
6 0 0 0 0 0 1 0 0 0 0 2 -

2 hairs
l,m 0 1 2 3 4 5 6 7 8 9 10
1 0 1 (𝑠[1,1]) - - - - - - - - -
2 0 0 1 (𝑠[2]) 1 (𝑠[1,1]) - - - - - - -
3 0 0 0 3 (𝑠[2] + 2𝑠[1,1]) 0 0 - - - - -
4 0 0 0 1 (𝑠[2]) 1 (𝑠[2]) 1 (𝑠[1,1]) 0 2 (𝑠[2] + 𝑠[1,1]) - - -
5 0 0 0 0 0 3 0 0 1 3 -

3 hairs
l,m 0 1 2 3 4 5 6 7 8 9
1 0 2 (𝑠[2,1]) 0 - - - - - - -
2 0 0 3 (𝑠[3] + 𝑠[2,1]) 3 (𝑠[2,1] + 𝑠[1,1,1]) 0 - - - - -
3 0 0 0 7 (2𝑠[3] + 2𝑠[2,1] + 𝑠[1,1,1]) 0 1 (𝑠[1,1,1]) 0 - - -
4 0 0 0 1 5 3 0 8 0 -

4 hairs
l,m 0 1 2 3 4 5 6 7 8 9
1 0 3 (𝑠[3,1]) 0 1 (𝑠[1,1,1,1]) - - - - - -
2 0 0 6 (𝑠[4] + 𝑠[3,1] + 𝑠[2,2]) 6 (𝑠[3,1] + 𝑠[2,1,1]) 0 1 (𝑠[1,1,1,1]) - - - -
3 0 0 0 14 (2𝑠[4] + 3𝑠[3,1] + 𝑠[2,1,1]) 0 4 (𝑠[2,1,1] + 𝑠[1,1,1,1]) 0 6 (𝑠[2,2] + 𝑠[2,1,1]

+ 𝑠[1,1,1,1])
- -

5 hairs
l,m 0 1 2 3 4 5 6 7 8 9
1 0 4 (𝑠[4,1]) 0 4 (𝑠[2,1,1,1]) 0 - - - - -
2 0 0 10 (𝑠[5] + 𝑠[4,1] + 𝑠[3,2]) 10 (𝑠[4,1] + 𝑠[3,1,1]) 0 5 (𝑠[2,1,1,1] +

𝑠[1,1,1,1,1])
0 - - -

3 0 0 0 25 0 10 0 36 0 -

Figure 13. Homology dimensions for 𝖥𝖦𝑛 with 𝑛 odd.

acts by edge contraction. We fix an integer 𝑁 and a partition

𝑝 = (𝑝1,… , 𝑝𝑁)
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0 hairs
l,m 0 1 2 3 4 5 6 7 8 9 10 11
1 - - - - - - - - - - - -
2 1 0 - - - - - - - - - -
3 1 0 0 0 - - - - - - - -
4 1 0 0 0 1 0 - - - - - -
5 1 0 0 0 0 0 0 0 - - - -
6 1 0 0 0 0 0 0 0 1 0 - -
7 1 0 0 0 0 0 0 0 1 0 0 1

1 hairs
l,m 0 1 2 3 4 5 6 7 8 9 10 11
1 1 - - - - - - - - - - -
2 1 0 0 - - - - - - - - -
3 1 0 0 0 0 - - - - - - -
4 1 0 0 0 1 0 0 - - - - -
5 1 0 0 0 0 0 0 1 0 - - -
6 1 0 0 0 0 0 0 0 1 0 1 -

2 hairs
l,m 0 1 2 3 4 5 6 7 8 9 10
1 1 (𝑠[2]) 0 - - - - - - - - -
2 1 (𝑠[2]) 0 0 0 - - - - - - -
3 1 (𝑠[2]) 0 0 0 1 (𝑠[2]) 0 - - - - -
4 1 (𝑠[2]) 0 0 0 1 (𝑠[2]) 0 1 (𝑠[1,1]) 0 - - -
5 1 0 0 0 0 0 0 3 1 1 -

3 hairs
l,m 0 1 2 3 4 5 6 7 8 9
1 1 (𝑠[3]) 0 1 (𝑠[1,1,1]) - - - - - - -
2 1 (𝑠[3]) 0 0 0 0 - - - - -
3 1 (𝑠[3]) 0 0 0 3 (𝑠[3] + 𝑠[2,1]) 0 2 (𝑠[2,1]) - - -
4 1 0 0 0 1 0 4 0 0 -

4 hairs
l,m 0 1 2 3 4 5 6 7 8 9
1 1 (𝑠[4]) 0 3 (𝑠[2,1,1]) 0 - - - - - -
2 1 (𝑠[4]) 0 0 0 2 (𝑠[2,2]) 3 (𝑠[2,1,1]) - - - -
3 1 (𝑠[4]) 0 0 0 6 (𝑠[4] + 𝑠[3,1] + 𝑠[2,2]) 0 11 (2𝑠[3,1] + 𝑠[2,2]

+ 𝑠[2,1,1])
0 - -

5 hairs
l,m 0 1 2 3 4 5 6 7 8 9
1 1 (𝑠[5]) 0 6 (𝑠[3,1,1]) 0 1 (𝑠[1,1,1,1,1]) - - - - -
2 1 (𝑠[5]) 0 0 0 10 (𝑠[3,2] + 𝑠[2,2,1]) 15 (𝑠[3,1,1] + 𝑠[2,2,1]

+ 𝑠[2,1,1,1])
0 - - -

3 1 0 0 0 10 0 41 0 9 -

Figure 14. Homology dimensions for 𝖥𝖦𝑛 with 𝑛 even.
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of 𝑟, i.e., 𝑟 = 𝑝1 +⋯ + 𝑝𝑁 . The partition can be considered as a coloring of the
leaves of trees in 𝐁𝐶𝑜𝑚((𝑟)), with the first 𝑝1 leaves of color 1, the following 𝑝2
leaves of color 2 etc.

Definition A.2. Let 𝑇 be an unrooted tree with 𝑟 leaves and let 𝑝 be a partition
of 𝑟, thought of as a coloring of the 𝑟 leaves. Then we say that an edge 𝑒 in 𝑇 is
a 𝑝-bridge, if removing the edge disconnects the tree 𝑇 in components 𝑇1 and 𝑇2
whose sets of leaf colors are disjoint. We say that 𝑇 is 𝑝-bridgeless if 𝑇 does not
have a 𝑝-bridge.

The property of being 𝑝-bridgeless is stable under edge contraction. We can
define the subcomplex

𝑉𝑟,𝑝 ⊂ 𝐁𝐶𝑜𝑚((𝑟))
spanned by the 𝑝-bridgeless trees.

Lemma A.3. Fix integers 𝑟 ≥ 3 and 𝑁 with 𝑟 ≥ 𝑁 + 1 and a partition 𝑝 =
(𝑝1,… , 𝑝𝑁) of 𝑟 with 𝑝𝑗 ≥ 1 for 𝑗 = 1,… , 𝑁. Then𝐻∙(𝑉𝑟,𝑝) is concentrated in the
bottom degree ∙ = 3 − 𝑟, corresponding to trivalent trees.

Note that if 𝑟 = 𝑁 the statement of the Lemma is false: In this case each leaf
has its own color and every internal edge of a tree is a 𝑝-bridge. This means that
𝑉𝑟,𝑝 is 1-dimensional, spanned by the unique tree without edges, of degree -1.

Proof. We perform an induction on 𝑟. For 𝑟 = 3 the Lemma is trivially true.
We then perform the induction step 𝑟−1→ 𝑟, assuming that the Lemma is true
up to arity 𝑟 − 1, and for all partitions.
By assumption there are 2 leaves of the same color, and without loss of gener-

ality we can assume that leaves 1 and 2 are of color 1.
We endow 𝑉𝑟,𝑝 with a filtration

0 = ℱ−1𝑉𝑟,𝑝 ⊂ ℱ0𝑉𝑟,𝑝 ⊂⋯

such that ℱ𝑞𝑉𝑟,𝑝 is spanned by trees 𝑇 that have at most 𝑞 edges not contained
in the unique path connecting leaves 1 and 2. We claim that the 𝐸2 page of the
spectral sequence associated to our filtration is concentrated in degree 3 − 𝑟,
thus showing the Lemma.
We look at the first page of the associated spectral sequence, that is, the

associated graded. It can be identified with 𝑉𝑟,𝑝 with differential 𝑑0 contracting
(only) edges along the unique path connecting leaves 1 and 2, leaving the other
edges untouched.
Let us call that unique path in a tree 𝑇 the backbone of the tree. Let us call the

individual subtrees 𝑇1, 𝑇2,… connected to the backbone the ribs of the graph,
see the following picture:

1 2

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5
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Note that the backbone edges can never be 𝑝-bridges, because the backbone is
the unique path connecting leaves 1 and 2 of like color. The differential 𝑑0 leaves
the ribs the same, and just contracts backbone edges. The resulting complex
is isomorphic to a direct summand of the (associative) bar complex of a free
commutative algebra, with generators corresponding to the ribs. It is well known
that the homology of the associative bar complex of a free commutative algebra
is a cofree cocommutative coalgebra, with degree shifted generators. In our
setting, this means that the homology 𝐻(𝑉𝑟,𝑝, 𝑑0) is freely generated by linear
combinations of trees all of whose backbone vertices are trivalent, and the ribs
are attached anti-symmetrically:

𝜎∈𝑆3
(−1)𝜎 1 2

𝑇𝜎(1) 𝑇𝜎(2) 𝑇𝜎(3)

The differential 𝑑1 on the next page of our spectral sequence acts by con-
tracting a non-root edge inside a rib. The resulting complex decomposes into
tensor products of complexes for individual ribs, which can in turn be seen
to be isomorphic to 𝑉𝑟′,𝑝′ for some 𝑟′ < 𝑟. Applying the induction hypothesis
hence shows that the homology of the 𝐸1-page of our spectral sequence can be
represented by trivalent trees. □

Proof of Proposition A.1. Bydefinition, the forested graph complexwith bridges
is the (appropriately degree shifted) Feynman transform of the cyclic bar con-
struction of 𝖢𝗈𝗆. We can hence consider a forested graph as a “meta”-graph
whose vertices are decorated by elements of the cyclic bar construction of 𝖢𝗈𝗆.
The shape of the meta-graph is unaltered by the differential 𝑑𝑐 acting only on
the decorations at the meta-vertices. Hence the forested graph complex with
bridges decomposes into direct summands of complexes of the form

⊗Λ
𝐺𝐁𝐶𝑜𝑚 ≅ (Λ⊗⊗𝑣∈𝑉𝐺(𝐁𝐶𝑜𝑚)((𝑟𝑣)))𝐴𝑢𝑡(𝐺)

for meta-graphs 𝐺, and Λ a one-dimensional representation of 𝐴𝑢𝑡(𝐺) taking
care of signs and degree shifts.
To pass to the bridgeless version, let us consider a metagraph 𝐺 and one

meta-vertex 𝑣 in 𝐺, with incident half-edges ℎ1,… , ℎ𝑟. Deleting 𝑣 the graph
decomposes 𝐺 into a union of say 𝑁 connected components. We color the half-
edge ℎ𝑗 by the connected component they belong to (after deleting 𝑣). The
bridgeless forested graph complex then decomposes into summand of the form(

Λ⊗⊗𝑣∈𝑉𝐺𝑉𝑟𝑣 ,𝑝𝑣

)
𝐴𝑢𝑡(𝐺)

,

for bridgeless metagraphs 𝐺, with 𝑝
𝑣
the partition corresponding to the above

coloring of the half-edges at 𝑣. To apply the Lemma above and conclude, we
hence just have to check that the coloring 𝑝

𝑣
is such that at least two half-edges

have the same color, for each vertex 𝑣. Assume there was some 𝑣 such that
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each of the 𝑟 half-edges has its own color, i.e., 𝐺 decomposes into 𝑟 connected
components after deleting 𝑣. Then necessarily each of the half-edges must be
an external leg, since if one belonged to an internal edge, that edge would be a
bridge. But not each half-edge can be an external leg, since otherwise 𝐺 would
be of loop order 0, contradicting our assumption 𝑔 ≥ 1. Hence Lemma A.3 is
applicable and the Proposition follows. □
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