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Integral representation of angular operators
on the Bergman space over the
upper half-plane

Shubham R. Bais and D. Venku Naidu*

ABSTRACT. Let IT denote the upper half-plane. In this article, we prove that
every angular operator on the Bergman space A%(I1) over the upper half-
plane can be uniquely represented as an integral operator of the form

400D = 3 [ @) 9( 2 )dutw), vf e 2, z e,

2mwz?

where g isa functionon C_ :=C — {x € R : x > 0} given by

o) = [ o0 ) z e
R

1—e2m

for some o € L®(R). Here du(w) is the Lebesgue measure on II. Later on,
with the help of above integral representation, we obtain various operator
theoretic properties of the angular operators.

Also, we give integral representation of the form A, for all the operators
in the C*-algebra generated by Toeplitz operators T, with angular symbols

a € L (ID).
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1. Introduction

LetIl = {z = x + iy € C : y > 0} be the upper half-plane, and let du(z) =
dxdy be the standard Lebesgue plane measure on IT. Let.4?(IT) be the Bergman
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space of all analytic functions on II. This space is a reproducing kernel Hilbert
space with the reproducing kernel given by
1
Kr1.,(2) e —) , Vz,w e Il

In [21], K. Zhu defined a class of integral operators on the Fock space F2(C)
and posed the question of characterizing all the integral kernels so that the op-
erators are bounded. Cao et al. in [7] obtained a solution to this problem for the
Fock space F2(C") in all the dimensions by observing that the operators com-
mute with a group of unitary operators on the Fock space. Recently, in [2, 3, 4],
analogous results are obtained for various classes of integral operators on the
Fock space F?(C") and the Bergman space A>(I1).

Let B(A>(I1)) denote the collection of all bounded linear operators on A%(TT).
Since A2(IT) is a reproducing kernel Hilbert space, every operator T € B(A>(I1))
can be uniquely written as an integral operator of the form

(Tf)(2) = ff(W)AT(Z,E)d,U(w), zell, (1.1
II

Where AT(Z, w) = (T*KH,Z)(LU) = <T*KH,Z’KH,LU>A2 = <KH,Z’TKH,LU>A2 =
Ar«(w, z). It can be easily seen that A7 (-, (-)) is defined on IT X IT and Ar(-, w),
AT(Z,B) € A*(TI). Let C_ :=C —{x € R : x > 0}. For a function ¢ on C_,

we define
1

K, (z,w) :=
(p( ) 27z

(é), z,w eIl
w
Let G be the collection of all analytic functions ¢ on C_ such that K, (-, w),

K, (z, 6) € A(II) for each z, w € II. In this article, motivated by the works in
[2, 3,4, 7, 21], we consider the following class of integral operators on A%(TI):
For ¢ € G, we formally define an integral operator A,, : A*(IT) — AX(II) by

1
27 z?

(Apf)(2) = f fW)p(=)duw), z €T, f A%, (12)
II

We characterize all the symbols ¢ € G for which the operator A, is bounded.

Indeed, we prove the following theorem:

Theorem 1.1 (Main Theorem). Let ¢ € G. Then the integral operator A, de-

fined by (1.2) is bounded on A*(I1) if and only if there exists € L®(R) such
that

o(z) = La(t)(l_zeﬁ)z”“dt, zeC_. (1.3)

Moreover, we have that

|[Apll 4242 = lIO]|Loo(R)-
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We prove Theorem 1.1 by observing that A, € B(A*(I1)) commutes with a
group of unitary operators on A%(IT). Such operators are called angular opera-
tors and they are introduced in [10]. In fact, we obtain that the collection

2t

A, Jo e L®(R)and ¢(z) = | o(t)| ——=)z'*dt, z € C_
4 R 1 —e2m

gives all angular operators in B(A%(IT)). In other words, we provide integral
representations of the form (1.1) for all the angular operators. Also, we prove
various operator theoretic properties for the angular operators such as compact-
ness, normality, C*-algebra properties, etc..

In mathematics, Toeplitz operators are one of the widely studied operators on
holomorphic function spaces (Hardy space, Bergman space, Fock space, etc.).
For a better understanding, these operators are studied by restricting the defin-
ing symbols to a particular class (For example, see [10, 11, 12, 14, 15, 16, 17,
18, 20, 23]). In [10], C*-algebra generated by Toeplitz operators on A(IT) with
angular symbols from L*(IT) is described. As every Toeplitz operator T, with
angular symbol a € L*®(II) is an angular operator on A(I1), in Section 4, we
represent T, uniquely in the form (1.2) and give explicit representation for op-
erators in the C*-algebra generated by Toeplitz operators with angular symbols.

2. Preliminaries

Let ( be a separable Hilbert space and B(H ) be the collection of all bounded
operators on . If T € B(J(), then the spectrum of T is defined by o(T) =
{AeC: (T -aD™" ¢ B(H)} and the point spectrum of T is given by o ,(T) =
{A € o(T) : (T — AI) isnot injective}. A number A € o(T) is an approxi-
mate eigenvalue of T if there exists a sequence (x,) of unit vectors such that
(T — A)x,, » 0asn — oo. The approximate point spectrum of T, denoted
by o,(T), consists of all approximate eigenvalues of T. Clearly, 0,(T) C 04(T).
Let ran(T) = {Tx : x € H}and ker(T) = {x € X : Tx = 0}. An operator
T € B(F() is said to be Fredholm if

(1) ran(T) is closed;
(2) ker(T) and ker(T*) are finite dimensional.

The essential spectrum of T is defined by
0.(T)={1 € C : T — Al is not Fredholm}.

For more details, we refer to [6, 9].
Let (X, M,v) be a o—finite measure space and L?(X,v) := L?(X) be the
Hilbert space of all v—measurable complex valued functions on X such that

1y = [ 1Pty < oo
X
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The inner product on L?(X) is given by

o) = f fadv
X

for all f,g € L?(X). Let f be a v—measurable complex valued function on X.
Then the essential range of f, denoted by ess(f), is given by

faeC:Ve>0,vixeX 1 |f(x)—a| <e}> 0}

Let L*®(X,v) := L®(X)bethecollection of all essentially bounded v-measurable
functions on X. It is a Banach space with the norm given by

| f|lzcx) = sup{lal : a € ess(f)}.

It is known that the space L*(X) is a commutative C*-algebra.

Let m be a v-measurable function on X and D,, C L?(X) be the set of all
f € L*(X) such that m- f € L?>(X). The operator M,,, : D,, — L*(X) defined by
M, f =m-fforall f € D,,iscalled a multiplication operator. It is well known
that M,,, is bounded on L*(X) if and only if m € L®(X). If M(L*(X)) = {M,, :
m e L°°(X)}, then the map A : L®(X) — M(L?*(X)) defined by A(m) = M, is
a x—isometric isomorphism.

Theorem 2.1. [6, 8, 4] Forallm, m;,m, € L*(X, M, v), we have

(1) M;, = My, where m(x) = m(x) forall x € X;

@) Mmlez = Mm1m2 = Mm2m1 = Mszml;

(3) The collection M(L*(X)) is a maximal commutative C*-subalgebra of
B(L*(X)), where B(L*(X)) denote the set of all bounded linear operators
on L*(X);

(4) 1 € 0,(M,,) if and only ifv({x : m(x) = /1}) is positive;

(5) o(My,) = 0,(My,) = 0.(M,,) = ess(m);

(6) Ifvis non-atomic measure on X, then M,, is compact if and only if m = 0
v—a.e.on X.

For h € R,, let D, : A*(I1) — A?(IT) be the dilation operator defined by
(Dpf)z) = hf(hz), (f € A1), z € 1D).

It is easy to see that (Djy),epr, Is a unitary representation of the group R, on

A*(TD)). An operator T € B(A>(I1)) is said to be angular if it commutes with
all the dilations. That is,

TDh = DhT, Vh S R.,_.
In [11], an integral operator R : A2(IT) — L*(R) defined by

1 2t s
"0 = = = fn @ (), f € A, t € R
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is considered and with the help of this transform it was proved that the C*-
algebra generated by Toeplitz operators on .A2(IT) with angular symbols is iso-
morphic to a C*-subalgebra of L*(R). The operator R is shown to be an iso-
metric isomorphism from .42(IT) onto the space L?(R) and its inverse is given

by
(R*g)(z) = R™'g)(2)

= ; fw / N _Zet_zm (2)i1g(t)dt, g € L*(R), z € I1.
V2 Jr

The operator R* is a Bargmann type transform. One can refer to [1, 2, 3, 4, 5,
13, 20, 22] and references therin for various applications of the Bargmann type
transforms.

If f is a suitable measurable function on R, then its Fourier transform is
defined by

1
(7r)1/2

The transform ¥ : L>(R) — L?(R) is a unitary operator with the inverse de-
fined by

(FHx) = f fe~#dy.
R

1
(7)1/2

Let a,b € R and f be a measurable function on R”. Then the translation
and modulation of f are given respectively by

(T f)X) = f(x = @), Mmvo )(X) = e f(x) 2.1

for all x € R. The operators 7, and M) defined above are unitary operators
on L*(R).
The following theorem is well known.

(F1Hx) =

j Fe*™dy.
R

Theorem 2.2 ([13]). For any real numbers a,b € R, we have
fl’a?_l = M anic(), fMezm'b(-)‘rfr_l =T_;b»

a
wherec = ——.
w

3. Integral representation of angular operators

In this section, we prove Theorem 1.1. As a consequence, we obtain vari-
ous operator theoretic properties of the angular operators. We start with some
auxiliary results which will be useful in proving Theorem 1.1.

Lemma 3.1. Let 0 € L*(R). Then the function ¢ defined by (1.3) is analytic on
C_.
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Proof. We are given that o € L*(R) such that
o(z) = f a(t)( 2m) Witqr, z € C_.

Let z = |z|e!®8Z, where argz € (0, 2r) is the principal argument of z. Then we
have

¢(Z)=fc(t)( 2tﬂ)e(it+l)(ln|zl+iargz) dt

f O'(t)( 2tﬂ)eitln|Z|e—targzeln|z|eiargzdt.
R — e
Therefore, we get

lp(2)]

< eln|z|||o.|| ( —targzdt
R 1-— e~ 2[7f
oo 0
= o] o f e f (= e eemesa)
— e — e
0 —00
oo 0
— elnlzlllo.” ) —targzdy 4 ( 2t )etargzdt)
Lee e—2[7f eth[ — 1
0

< +o00.

Thus, the integral in the definition of ¢ converges for all z € C_. Now we show
that ¢ is continuous.

Letz = |z|e'®®% € C_ and let {z, = |zn|eiargzn}nEN be a sequence in C_
converging to z. Then for any o € L*(R),

O'(t)Zt(l _ e—2t7r)—1e1n |z, | ei argzneit In |zn|e—t argz,

, G(I)Zt(l _ e—2t7r)—1eln|z|eiargzeitln |z|e—targz
pointwise a.e. on R. Also,
2t In|z,|,iargz, ,itln|z,| ,—targz
O'(t)—_me nle g ne nle g2Zn

2t

eln |zn|e—t argz,
1 — e—2t7f

< [loflze

Since {|z, |} converges to |z| # 0, the sequence {1} is bounded. Letc;(z) > 0
such that

elnlznl < ¢/ (z), Vn e N.
If £ € (0, o), then

2t eln |z”|e—targzn < Cl(Z) 2t

= _ & —targz 1
1-— e—ztﬂ.’ 1-— e—ztﬂe € L (R+).
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Ift € (—o0,0) and u = —t, then

2t elnlznle—targzn — 2u eln|zn|euargzn
1—e 27 e2umr — 1
uargz 1
< cy(2) T 1e e L'(R,).

Therefore, by the dominated convergence theorem, it follows that ¢ is contin-
uous at each z € C_. Finally, we now prove that ¢ is analytic on C_.
Let y be a simple closed contour in C_. Then

2t . ;
/‘f‘o.(t) _2me1n|z|elargzeltln|z|e—targz dt|d)/(Z)|
R 1—e
14
S”O.”me/ — lnlzle—targzdtldy(z)l
= ||lo|lre f/ e—2t7r 1n|z|e—targzdt|dy(z)|

2t 1 | | —t
+fyf_oo e e e tdt|dy (2)])

Since y is compact and the functions

2 * 2
f t eln |z|e—targzdt and f t eln |z|e—targzdt
0

1-— e—2t71’ 1-— e—ztﬂ.’
—o0

are continuous functions of z, it follows that

O'(t) 2t eln|z|eiargzeitlnlz|e—targz
14

Therefore, by Fubini’s theorem, we get

dt|dy(z)| < +oo.

2t ; ; _
‘/"/[R;o.(t)l_e_zmeln|z|elargzelt1n|z|e targzdtdy(z)
14

2t it+1 f 2t
= —— d dt = ——(0)dt = 0.
—/I; 1 — e—2[7’[ —/}/-Z y(z) R 1 — e—ztﬂ( )

Since y is arbitrary simple closed contour in C_, by Morera’s theorem, it follows
that the function ¢ is analytic on C_. This proves the lemma. (|

Lemma 3.2. Leto € L*(R) and

z

27rlz ( )(1 _ e—zm)(a)lﬂtdt, z,w eIl

F.(z,w) =

Then F, (-, ), F,(z,(-)) € AX(II) for each z,w € TI.
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Proof. Letz,w € II. Then( ) e C_and
w

Fo(z.®) = 2 (=),

7Z2

where the function ¢ is given by (1.3). By Lemma 3.1, we get

|F,(-,w)| < +00, z,w € IL.

49

Again by Lemma 3.1, it follows that the functions F, (-, w), F,(z, 6) are prod-
ucts of analytic functions on IT and hence they are analytic. Now, we show that

F_(-,w) € A?*(II) for each w € II. Fix w € IT and consider

— l+1
[ @@= [ | [ Zm)(E) " af

Let w = pe'”, z = re'®, wherer, p € (0, 0) and 7,8 € (0, ). Then we have

f \F, (2, Pdu(z)
I1

T (e8]
:ff |F,(re’®, pe™)|2 rdrdé
2t el® \it+1 2
f/ 4ﬂ2r4’f ()1—e—2m)(pe ) dt. rdrdo.

Using the change of variable r = e%, we get

/lFa(Z,w)lsz(Z)
I
T .
1 eUNit+l ) 2
= — - (O+n)(ir+1) 2
_./ f47z'264“ f (t)(l—e Ztﬂ)(p) et dt' e“*dud6

o(t) 2t )e—t(9+77)e”“dt2dud9.
4712,02 R P! 1_6—2m

Since the Fourier transform is unitary on L(R), we get

2 O-(t) 2t _t(e )2
f ol D Pdu(a) = f j 20 (2 e arae
L )
<4ﬂzpzf0 (fo (=) e ae

[ e
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Using the change of variable t — —t in the second integral, it follows that

T (o]
llo]|ze ( ( 2t )Ze—zt(em) dt
0
2t N e
I P )

+[w(1—e—2f”) e dt)de

T o] 2

— o]z ( ( 2t ) e~ 2t6+0) 4y

+ jo ) (ezj—t_l)zezf@ﬂ) dt)d@

< +00.
Thus, the function F,(-, w) € A*(IT) for each w € II. In a similar way, we can
show that F, 0(2,6) € A*(TI) for each z € II. Hence the lemma is proved. [J
Lemma 3.3. For o € L*(R), the function ¢ defined by (1.3) belongs to G.

Proof. Let ¢ be a function on C_ and ¢ € L*(R) such that they satisfy (1.3).
By Lemma 3.1, the function ¢ is analytic on C_ and Lemma 3.2 implies that the
function

Ky(z,w) = go(%) z,w eIl

27 z?
satisfies K, (z, 6),K¢(-,E) € A*(TI) for each z,w € II. Hence ¢ € G. O

Lemma 3.4. Let g € L®(R). Then R*"M,R = Ay, where
2t :
z)b(z) = La(t)(m)zl+ltdt, A C_.

Proof. Let o € L®(R) and D := Span{Ky;, : z € II}. It is well-known that
the set D is dense in A>(TT). Then for f € D, we have

(R*M,Rf)(z) = \/;_ f N YR O
7T
\/2_./\/ U(t)(Rf)(t)Z” Ldt
T

(1 - 2m U(t) f W) f(w)du(w)z"*~dt.

271'

We observe that for any z € II the function (')_lKn,z(') € L'(II). So for any
f € D, the integral

f | f (W) dp(w) < +oo.
I1
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By Fubini’s theorem, we get

1 2t 1 ,z\l

* P —_— —_— — —_—

@MRNE = [ f)(5 [ o0(;—im) 5 (5) ar)ducw)

ZWw

= /n fw L o1 )(5)  dr)auw)

= | ()

27z2
= (AyN2), Z €TL,

where
2t ;
'(,D(Z) = Ld(t)(m)zl+ltdt, ze C_.

From above, we get R*"M,R = A, on D.

Now we show that R*M,R = A, on A*(II). Let g € A*(IT) and {g,},en be a
sequence in D such that g, — g in A*(I1). For each z € II, let

1
27 z2
Then for each z € II, q, € A*(T1) and (Ayg,)(2) = (8. A2 = (& d)a2 =
(Ayg)(z). But Ayg, = R*M,Rg, for all n € N. This implies that

(R*"M;Rg,)(z) — (Ayg)(2)

for all z € TI. As R*M_R is bounded on A%(IT), we get R* M Rg, — R*M,Rg in
AX(T). Since A%(IT) is the reproducing kernel Hilbert space, (R*M,Rg,)(z) —
(R*M;Rg)(z) for all z € TI. Hence (R*"M;Rg)(z) = (Ayg)(z) forall z € TI
and g € A*(II). Thatis, R"M,Rg = Ayg for all g € A*(II). Thus, we get
R*M,R = Ay on A*(ID). O
Remark 3.1. In Lemma 3.4, the choice of the dense set D is useful to apply
Fubini’s theorem for interchanging the order of integration.

Remark 3.2. For h € R, we consider Ej,(x) = h* for all x € L?>(R). Then by
Lemma 3.4, we get R*Mg, R = Dj,.

Lemma 3.5. Let M € B(L*(R)) such that MMy, = Mg M forallh € R,. Then
there exists o € L*(R) such that M = M.

Proof. Let M € B(L*(R)) such that MM g, = Mg, M forall h € R,. Thatis,
MM, ixiny = MoixnwM, Yh € R,.
As the map h — In(h) is continuous from R, onto R, we have
MM vy = MpmivyM, Vb € R.

By Theorem 2.2, we get F 'MFt, = 1,5 'MF for all a € R. By [19, Chapter
2, Proposition 2], there exixts o € L*(R) such that M(F f) = M (¥ f) for all
f € L*(R). Since the Fourier transform is unitary on L*(R), we get Mf = o f
for all f € L?>(R). Hence M = M,,. O

g (w) 1= @ = Ky(z,w), w € TL.



52 SHUBHAM R. BAIS AND D. VENKU NAIDU

Theorem 3.6. Let T € B(A*(I1)). Then T is an angular operator if and only if
there exists o € L*(R) such that T = R*M4R.

Proof. Let T € B(A(II)) be angular operator. Then TD;, = D,T, for all h €
R,. By Remark 3.2, we get (RTR*)Mg, = Mg, (RTR*), forallh € R,. By
Lemma 3.5, it follows that RTR* = M, for some o € L*(R). That is,

T = R*M,R.

Conversely, if T = R*MyR for some o € L*(R), then RTR* = M, commutes
with all M E, for h € R,. Hence, by Remark 3.2, T commutes with R*M R =
D, for all h € R,. By definition of angular operators, we get that T is angular.
This proves the theorem. (]

Remark 3.3. The proof of Theorem 3.6 can also be found in [10, Theorem 2.2].

Lemma 3.7. Let ¢ € G and let A, be given by (1.2). If A, € B(A*(1D)), then
there exists o € L®(R) such that A, = R*MR.

Proof. Let h € R,. Then

h
(DrApf)2) = h (Apf)h2) = 5—— fn f@)p( = )duw)
and
1
(ADpf)2) = — fn (DRYw)p( = )du(w)
h z
g e )
Using the change of variable w — E, we get

h
4D = 57 [ F@o( 22 )dutw) = Dy, )@, ¥z € .
II

Therefore, DA, = A,Dy, for all h € R,. That is, the operator A, is angular.
Hence, by Theorem 3.6, there exists ¢ € L*(R) such that A, = R*M_R. O
Lemma3.8. Letp;, ¢, € Gsuch that the operators A, , A, € B(A?*(I1)). Then
Ay = Ay, ifand only if ; = @,

Proof. We are given that ¢;, ¢, € G such that the operators A, , A, €
B(A*(ID)). If ¢; = @, then A, = A, . Conversely, suppose A, = A, . Let

1

27 z2

— 1 z —
K§01(z’ w) = 2772 @1(%), K(Pz(z’ w) =

Then for all f € A?(IT), we have

(Ag, )(2) = f JW)Ky,, (z, w)du(w)
II

@2(%), z,w eIl

— [ @y @ Bauw) = (g, @), 2T
11
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That is,

ff(w)(K¢1 - Kgaz)(z’ w)d,u(lU) =0
IT

= /f(w)(K¢1 — K, )(z, w)du(w) = 0.
i

For z € II, we define ®,(w) := (K, —K,,)(z,w) for all w € II. Clearly,
®, € A*(I1). Therefore, we have (f,®,) 4. = 0 for all f € A*(II). This gives
®, = 0. Since z € Il is arbitrary, we get ®,(w) = 0 for all z, w € II. That is,

(Ky, — Ky, )(z,w) = 0 for all z, w € I1. This implies

L §01(§) ! qoz(%), Vz,w eIl

2mz? w " 222
Hence gol(é) = goz(é) for all z,w € II. That is, ¢; = ¢,. ]
w w

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ¢ € G such that A, given by (1.2) is bounded on

A%(IT). By Lemma 3.7, there exists 0 € L®(R) such that A, = R*"M R. But
Lemma 3.4 implies that R*M_ R = Ay, where

P(z) = f o(t)(L)z””dt, zeC._.
R

1 — e—2[7’[
By Lemma 3.3, we get p € G. As A, = Ay with ¢,9 € G, by Lemma 3.8, it
follows that ¢ = 1. That is,

2\
qD(Z) = ‘/Ra(t)(m)z +ltdt, zeC_.

Conversely, suppose o € L*(R) and g is given by (1.3). Then by Lemma 3.4,
it follows that A, = R*MR. Since M, is bounded operator on L2(R), we get
A, € B(A?(I1)). This completes the proof of the theorem. O

As a consequence of Theorem 1.1, we have that the every angular operator
T is of the form Ay for some ¢ € G and vice-versa. Let 2 be the collection of

all angular operators on A(IT), then we have % = {A, € B(A*(ID)) : ¢ € G}.
That is

= 2\ i
A =14, € B(A*(ID) p(z) = La(t)(l — i )z dt, z € C_ for
some o € L®(R)
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3.1. Operator theoretic properties of angular operators. In this subsec-
tion, we study various operator theoretic properties for the operator A, € B(AX(ID))
in terms of the symbol ¢.

Using Theorems 2.1, 1.1 and 3.6, one can easily prove the following results.
The proofs are left to the reader.

Theorem 3.9 (Adjoint of A,). Let ¢ be a function on C_ and o € L*(R) such
that they satisfy (1.3). Then Ay = Ag, where @ € G and it is given by

(= | (1) 2t 1+it
gO(Z) = '/R:O'(t)(l_e—_m)z L dt, ze C_.
Theorem 3.10. Let ¢ be a function on C_ and o € L®(R) such that they satisfy
(1.3). Then we have the following:

(1) A, is normal;

(2) A, is compact if and only if ¢ = 0;

(3) The collection A is a maximal commutative C*-subalgebra of B(A*(I1)).

Theorem 3.11 (Spectrum of A). Let ¢ be a function on C_ and m € L*(R)
such that they satisfy (1.3), with m instead of o. Then we have the following:
ey G(A¢)) = Ga(A¢) = O-e(Aqa) = ess(m);
(2) 4 € g,(Ay) if and only if the Lebesgue measure of {x : m(x) = A} is
positive.

Now, we give the structure of common reducing subspaces of operators in
the collection 2. Before that, we recall some basic definitions and results.

Definitions 3.12. [9, Definition 4.41] Let J be a Hilbert space and T € B(¥H).
A closed subspace M of H is an invariant subspace of T if T(M) C M and M is
said to be a reducing subspace of T if it is invariant under both T and T*.

Lemma 3.13. [9, Proposition 4.42] Let H be a Hilbert space and T € B(H).
Then M is an invariant subspace of T if and only if P5;TPy; = TPy anditisa
reducing subspace of T if and only if TPy; = Py,T, where P, is an orthogonal
projection associated to M.

Theorem 3.14 (Common reducing subspace). Let M be a closed subspace of
A*(I). Then M is a reducing subspace of all the operators in 2 if and only if
M = A, (A*(I1)), where

2t ;
gDO(Z) = ‘/RLXE(t)(m)ZLH[dt, zeC_

and xg is a characteristic function associated to a measurable set E.

Proof. Let M be a closed subspace of A%(IT). By Lemma 3.13 and Theorem
1.1, M is a reducing subspace of operators in A < A, Py = PyA, for all
A, €A <= M, (RP)R*) = (RP)R*)M,, for all m € L*(R). Since A is a
maximal commutative C*-algebra, we get (RP»R*) = M,, for some o € L*(R).
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Since M (= RP,R*) is an orthogonal projection on L?(R), there exists a
Lebesgue measurable set E C R such that o = yjy almost everywhere on R
and M, = M, . Hence Py, = RM, R*. By Theorem 1.1, we get Py, = A
where

$o°

2t .
gDO(Z) = /R:){E(t)(m)zl-l-”dt, zZ e C_.

This proves the theorem. O

4. Angular Toeplitz operators

Let P be the orthogonal projection on L2(IT) with range A(IT) and let a €
L®(IT). Then the Toeplitz operator T, : L*(IT) — L*(TI) is defined by T, f =
Paf. Leta € L*(II). Then a is said to an angular function if a(z) = a(argz)
almost everywhere on II. For a Toeplitz operator T,, a € L*(II), we have the
following results.

Theorem 4.1. [10, Proposition 3.1] Let a € L*(I1), then the Toeplitz operator
T, is angular if and only if a is an angular function.

Theorem 4.2. [10] Leta € L*(IT) be an angular function. Then T, = R*M,, R,
wherey, € L*(R) and it is given by

2t i
va(t) = l—eﬁ_/o‘ a(x)e dx, t e R. (4.1)

Let a € L*®(II) be an angular function. By Theorem 1.1 and Theorem 4.2,
we have A, = R*M, R =T,, where ¢, € G and it is given by

2t i
Pa(2) = /I; Va(t)(m)zlﬂtdt, zeC. (4.2)

and y, is given by (4.1). Let Ay, = {T, : a € L®(II) is angular}. Then from
above, it is clear that
Arop = 1{A,, + a € L™(IT) is angular and g, is given by (4.2)}.

LetT' = {y, : a € L®(II) is angular and y, is given by (4.1)}. Then the map
N T = Ap; Va = Ay, is a x-isometric isomorphism.

Let AT be the C*-algebra generated by A;,,. Let VSO(R) be the collection
of all bounded very slowly oscillating functions on R, that is the functions
which are uniformly continuous with respect to the “arcsinh-metric” p(x,y) =

|arcsinh(x)—arcsinh(y)|. From [10], we have that VSO(R) is a closed C*-algebra
subalgebra of L*(R) and it is equal to the C*-algebra generated by I'. Let

2t .
§= ® = 9 GO(Z) = Lc(t)(m)zl+ltdt,z e C_ for
some o € VSO(R)

Then it is easy to prove the following result.
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Theorem 4.3. The C*-algebra AT generated by A, , is given by

AT ={A, : ¢ € G}.
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