
New York Journal of Mathematics
New York J. Math. 30 (2024) 42–57.

Integral representation of angular operators
on the Bergman space over the

upper half-plane

Shubham R. Bais and D. Venku Naidu*

Abstract. Let Π denote the upper half-plane. In this article, we prove that
every angular operator on the Bergman space 𝒜2(Π) over the upper half-
plane can be uniquely represented as an integral operator of the form

(𝐴𝜑𝑓)(𝑧) =
1

2𝜋𝑧2 ∫Π
𝑓(𝑤) 𝜑

( 𝑧
𝑤

)
𝑑𝜇(𝑤), ∀𝑓 ∈ 𝒜2(Π), 𝑧 ∈ Π,

where 𝜑 is a function on ℂ− ∶= ℂ − {𝑥 ∈ ℝ ∶ 𝑥 ≥ 0} given by

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−

for some 𝜎 ∈ 𝐿∞(ℝ). Here 𝑑𝜇(𝑤) is the Lebesgue measure on Π. Later on,
with the help of above integral representation, we obtain various operator
theoretic properties of the angular operators.

Also, we give integral representation of the form 𝐴𝜑 for all the operators
in the 𝐶∗-algebra generated by Toeplitz operators 𝑇𝐚 with angular symbols
𝐚 ∈ 𝐿∞(Π).
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1. Introduction
Let Π = {𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ ∶ 𝑦 > 0} be the upper half-plane, and let 𝑑𝜇(𝑧) =

𝑑𝑥𝑑𝑦 be the standard Lebesgue planemeasure onΠ. Let𝒜2(Π) be the Bergman
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space of all analytic functions on Π. This space is a reproducing kernel Hilbert
space with the reproducing kernel given by

𝐾Π,𝑤(𝑧) = − 1
𝜋(𝑧 − 𝑤)2

, ∀𝑧, 𝑤 ∈ Π.

In [21], K. Zhu defined a class of integral operators on the Fock space 𝐹2(ℂ)
and posed the question of characterizing all the integral kernels so that the op-
erators are bounded. Cao et al. in [7] obtained a solution to this problem for the
Fock space 𝐹2(ℂ𝑛) in all the dimensions by observing that the operators com-
mute with a group of unitary operators on the Fock space. Recently, in [2, 3, 4],
analogous results are obtained for various classes of integral operators on the
Fock space 𝐹2(ℂ𝑛) and the Bergman space 𝒜2(Π).
Letℬ(𝒜2(Π)) denote the collection of all bounded linear operators on𝒜2(Π).

Since𝒜2(Π) is a reproducing kernelHilbert space, every operator𝑇 ∈ ℬ(𝒜2(Π))
can be uniquely written as an integral operator of the form

(𝑇𝑓)(𝑧) = ∫
Π
𝑓(𝑤)𝐴𝑇(𝑧, 𝑤)𝑑𝜇(𝑤), 𝑧 ∈ Π, (1.1)

where 𝐴𝑇(𝑧, 𝑤) ∶= (𝑇∗𝐾Π,𝑧)(𝑤) = ⟨𝑇∗𝐾Π,𝑧, 𝐾Π,𝑤⟩𝒜2 = ⟨𝐾Π,𝑧, 𝑇𝐾Π,𝑤⟩𝒜2 =∶
𝐴𝑇∗(𝑤, 𝑧). It can be easily seen that 𝐴𝑇(⋅, (⋅)) is defined on Π×Π and 𝐴𝑇(⋅, 𝑤),
𝐴𝑇(𝑧, (⋅)) ∈ 𝒜2(Π). Let ℂ− ∶= ℂ − {𝑥 ∈ ℝ ∶ 𝑥 ≥ 0}. For a function 𝜑 on ℂ−,
we define

𝐾𝜑(𝑧, 𝑤) ∶=
1

2𝜋𝑧2 𝜑
( 𝑧
𝑤

)
, 𝑧, 𝑤 ∈ Π.

Let 𝒢 be the collection of all analytic functions 𝜑 on ℂ− such that 𝐾𝜑(⋅, 𝑤),

𝐾𝜑(𝑧, (⋅)) ∈ 𝒜2(Π) for each 𝑧, 𝑤 ∈ Π. In this article, motivated by the works in
[2, 3, 4, 7, 21], we consider the following class of integral operators on 𝒜2(Π):
For 𝜑 ∈ 𝒢, we formally define an integral operator 𝐴𝜑 ∶ 𝒜2(Π)→ 𝒜2(Π) by

(𝐴𝜑𝑓)(𝑧) =
1

2𝜋𝑧2 ∫Π
𝑓(𝑤)𝜑

( 𝑧
𝑤

)
𝑑𝜇(𝑤), 𝑧 ∈ Π, 𝑓 ∈ 𝒜2(Π). (1.2)

We characterize all the symbols 𝜑 ∈ 𝒢 for which the operator 𝐴𝜑 is bounded.
Indeed, we prove the following theorem:

Theorem 1.1 (Main Theorem). Let 𝜑 ∈ 𝒢. Then the integral operator 𝐴𝜑 de-
fined by (1.2) is bounded on 𝒜2(Π) if and only if there exists 𝜎 ∈ 𝐿∞(ℝ) such
that

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−. (1.3)

Moreover, we have that
‖𝐴𝜑‖𝒜2→𝒜2 = ‖𝜎‖𝐿∞(ℝ).
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We prove Theorem 1.1 by observing that 𝐴𝜑 ∈ ℬ(𝒜2(Π)) commutes with a
group of unitary operators on 𝒜2(Π). Such operators are called angular opera-
tors and they are introduced in [10]. In fact, we obtain that the collection

{
𝐴𝜑 ∶ ∃𝜎 ∈ 𝐿∞(ℝ) and 𝜑(𝑧) = ∫

ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−

}

gives all angular operators in ℬ(𝒜2(Π)). In other words, we provide integral
representations of the form (1.1) for all the angular operators. Also, we prove
various operator theoretic properties for the angular operators such as compact-
ness, normality, 𝐶∗-algebra properties, etc..
Inmathematics, Toeplitz operators are one of thewidely studied operators on

holomorphic function spaces (Hardy space, Bergman space, Fock space, etc.).
For a better understanding, these operators are studied by restricting the defin-
ing symbols to a particular class (For example, see [10, 11, 12, 14, 15, 16, 17,
18, 20, 23]). In [10], 𝐶∗-algebra generated by Toeplitz operators on𝒜2(Π) with
angular symbols from 𝐿∞(Π) is described. As every Toeplitz operator 𝑇𝐚 with
angular symbol 𝐚 ∈ 𝐿∞(Π) is an angular operator on 𝒜2(Π), in Section 4, we
represent 𝑇𝐚 uniquely in the form (1.2) and give explicit representation for op-
erators in the𝐶∗-algebra generated by Toeplitz operators with angular symbols.

2. Preliminaries
Letℋ be a separableHilbert space andℬ(ℋ) be the collection of all bounded

operators on ℋ. If 𝑇 ∈ ℬ(ℋ), then the spectrum of 𝑇 is defined by 𝜎(𝑇) =
{𝜆 ∈ ℂ ∶ (𝑇 − 𝜆𝐼)−1 ∉ ℬ(ℋ)} and the point spectrum of 𝑇 is given by 𝜎𝑝(𝑇) =
{𝜆 ∈ 𝜎(𝑇) ∶ (𝑇 − 𝜆𝐼) is not injective}. A number 𝜆 ∈ 𝜎(𝑇) is an approxi-
mate eigenvalue of 𝑇 if there exists a sequence (𝑥𝑛) of unit vectors such that
(𝑇 − 𝜆𝐼)𝑥𝑛 → 0 as 𝑛 → ∞. The approximate point spectrum of 𝑇, denoted
by 𝜎𝑎(𝑇), consists of all approximate eigenvalues of 𝑇. Clearly, 𝜎𝑝(𝑇) ⊆ 𝜎𝑎(𝑇).
Let ran(𝑇) = {𝑇𝑥 ∶ 𝑥 ∈ ℋ} and ker(𝑇) = {𝑥 ∈ 𝑋 ∶ 𝑇𝑥 = 0}. An operator
𝑇 ∈ ℬ(ℋ) is said to be Fredholm if

(1) ran(𝑇) is closed;
(2) ker(𝑇) and ker(𝑇∗) are finite dimensional.

The essential spectrum of 𝑇 is defined by

𝜎𝑒(𝑇) = {𝜆 ∈ ℂ ∶ 𝑇 − 𝜆𝐼 is not Fredholm}.

For more details, we refer to [6, 9].
Let (𝑋,𝑀, 𝜈) be a 𝜎−finite measure space and 𝐿2(𝑋, 𝜈) ∶= 𝐿2(𝑋) be the

Hilbert space of all 𝜈−measurable complex valued functions on 𝑋 such that

‖𝑓‖2𝐿2(𝑋) = ∫
𝑋
|𝑓|2𝑑𝜈 <∞.
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The inner product on 𝐿2(𝑋) is given by

⟨𝑓, 𝑔⟩𝐿2(𝑋) = ∫
𝑋
𝑓𝑔𝑑𝜈

for all 𝑓, 𝑔 ∈ 𝐿2(𝑋). Let 𝑓 be a 𝜈−measurable complex valued function on 𝑋.
Then the essential range of 𝑓, denoted by ess(𝑓), is given by

{
𝑎 ∈ ℂ ∶ ∀𝜖 > 0, 𝜈{𝑥 ∈ 𝑋 ∶ |𝑓(𝑥) − 𝑎| < 𝜖} > 0

}
.

Let𝐿∞(𝑋, 𝜈) ∶= 𝐿∞(𝑋) be the collection of all essentially bounded 𝜈-measurable
functions on 𝑋. It is a Banach space with the norm given by

‖𝑓‖𝐿∞(𝑋) = sup
{
|𝑎| ∶ 𝑎 ∈ ess(𝑓)

}
.

It is known that the space 𝐿∞(𝑋) is a commutative 𝐶∗-algebra.
Let 𝑚 be a 𝜈-measurable function on 𝑋 and 𝒟𝑚 ⊆ 𝐿2(𝑋) be the set of all

𝑓 ∈ 𝐿2(𝑋) such that𝑚 ⋅𝑓 ∈ 𝐿2(𝑋). The operator𝑀𝑚 ∶ 𝒟𝑚 → 𝐿2(𝑋) defined by
𝑀𝑚𝑓 = 𝑚 ⋅𝑓 for all 𝑓 ∈ 𝒟𝑚 is called amultiplication operator. It is well known
that𝑀𝑚 is bounded on 𝐿2(𝑋) if and only if𝑚 ∈ 𝐿∞(𝑋). Ifℳ(𝐿2(𝑋)) =

{
𝑀𝑚 ∶

𝑚 ∈ 𝐿∞(𝑋)
}
, then the map Λ ∶ 𝐿∞(𝑋) →ℳ(𝐿2(𝑋)) defined by Λ(𝑚) = 𝑀𝑚 is

a ⋆−isometric isomorphism.

Theorem 2.1. [6, 8, 4] For all𝑚,𝑚1, 𝑚2 ∈ 𝐿∞(𝑋,𝑀, 𝜈), we have
(1) 𝑀∗

𝑚 = 𝑀𝑚, where𝑚(𝑥) = 𝑚(𝑥) for all 𝑥 ∈ 𝑋;
(2) 𝑀𝑚1𝑀𝑚2 = 𝑀𝑚1𝑚2 = 𝑀𝑚2𝑚1 = 𝑀𝑚2𝑀𝑚1 ;
(3) The collection ℳ(𝐿2(𝑋)) is a maximal commutative 𝐶∗-subalgebra of

ℬ(𝐿2(𝑋)), whereℬ(𝐿2(𝑋)) denote the set of all bounded linear operators
on 𝐿2(𝑋);

(4) 𝜆 ∈ 𝜎𝑝(𝑀𝑚) if and only if 𝜈
(
{𝑥 ∶ 𝑚(𝑥) = 𝜆}

)
is positive;

(5) 𝜎(𝑀𝑚) = 𝜎𝑎(𝑀𝑚) = 𝜎𝑒(𝑀𝑚) = ess(𝑚);
(6) If 𝜈 is non-atomic measure on𝑋, then𝑀𝑚 is compact if and only if𝑚 = 0

𝜈−a.e. on 𝑋.

For ℎ ∈ ℝ+, let 𝐷ℎ ∶ 𝒜2(Π)→ 𝒜2(Π) be the dilation operator defined by

(𝐷ℎ𝑓)(𝑧) = ℎ𝑓(ℎ𝑧), (𝑓 ∈ 𝒜2(Π), 𝑧 ∈ Π).

It is easy to see that (𝐷ℎ)ℎ∈ℝ+ is a unitary representation of the group ℝ+ on
𝒜2(Π)). An operator 𝑇 ∈ ℬ(𝒜2(Π)) is said to be angular if it commutes with
all the dilations. That is,

𝑇𝐷ℎ = 𝐷ℎ𝑇, ∀ℎ ∈ ℝ+.

In [11], an integral operator 𝑅 ∶ 𝒜2(Π)→ 𝐿2(ℝ) defined by

(𝑅𝑓)(𝑡) = 1
√
2𝜋

√
2𝑡

1 − 𝑒−2𝑡𝜋 ∫Π
(𝑧)−𝑖𝑡−1𝑓(𝑧)𝑑𝜇(𝑧), 𝑓 ∈ 𝒜2(Π), 𝑡 ∈ ℝ
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is considered and with the help of this transform it was proved that the 𝐶∗-
algebra generated by Toeplitz operators on 𝒜2(Π) with angular symbols is iso-
morphic to a 𝐶∗-subalgebra of 𝐿∞(ℝ). The operator 𝑅 is shown to be an iso-
metric isomorphism from 𝒜2(Π) onto the space 𝐿2(ℝ) and its inverse is given
by

(𝑅∗𝑔)(𝑧) = (𝑅−1𝑔)(𝑧)

= 1
√
2𝜋

∫
ℝ

√
2𝑡

1 − 𝑒−2𝑡𝜋 (𝑧)𝑖𝑡−1𝑔(𝑡)𝑑𝑡, 𝑔 ∈ 𝐿2(ℝ), 𝑧 ∈ Π.

The operator 𝑅∗ is a Bargmann type transform. One can refer to [1, 2, 3, 4, 5,
13, 20, 22] and references therin for various applications of the Bargmann type
transforms.
If 𝑓 is a suitable measurable function on ℝ, then its Fourier transform is

defined by

(ℱ𝑓)(𝑥) = 1
(𝜋)1∕2

∫
ℝ
𝑓(𝑦)𝑒−2𝑖𝑥𝑦𝑑𝑦.

The transform ℱ ∶ 𝐿2(ℝ) → 𝐿2(ℝ) is a unitary operator with the inverse de-
fined by

(ℱ−1𝑓)(𝑥) = 1
(𝜋)1∕2

∫
ℝ
𝑓(𝑦)𝑒2𝑖𝑥𝑦𝑑𝑦.

Let 𝑎, 𝑏 ∈ ℝ and 𝑓 be a measurable function on ℝ𝑛. Then the translation
and modulation of 𝑓 are given respectively by

(𝜏𝑎𝑓)(𝑥) = 𝑓(𝑥 − 𝑎), (𝑀𝑒2𝜋𝑖𝑏(⋅)𝑓)(𝑥) = 𝑒2𝜋𝑖𝑏𝑥𝑓(𝑥) (2.1)

for all 𝑥 ∈ ℝ. The operators 𝜏𝑎 and𝑀𝑒2𝜋𝑖𝑏(⋅) defined above are unitary operators
on 𝐿2(ℝ).
The following theorem is well known.

Theorem 2.2 ([13]). For any real numbers 𝑎, 𝑏 ∈ ℝ, we have

ℱ𝜏𝑎ℱ−1 = 𝑀𝑒2𝜋𝑖𝑐(⋅) , ℱ𝑀𝑒2𝜋𝑖𝑏(⋅)ℱ−1 = 𝜏−𝜋𝑏,

where 𝑐 = − 𝑎
𝜋
.

3. Integral representation of angular operators
In this section, we prove Theorem 1.1. As a consequence, we obtain vari-

ous operator theoretic properties of the angular operators. We start with some
auxiliary results which will be useful in proving Theorem 1.1.

Lemma 3.1. Let 𝜎 ∈ 𝐿∞(ℝ). Then the function 𝜑 defined by (1.3) is analytic on
ℂ−.
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Proof. We are given that 𝜎 ∈ 𝐿∞(ℝ) such that

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

Let 𝑧 = |𝑧|𝑒𝑖 arg 𝑧, where arg 𝑧 ∈ (0, 2𝜋) is the principal argument of 𝑧. Then we
have

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒
(
𝑖𝑡+1

)(
ln |𝑧|+𝑖 arg 𝑧

)
𝑑𝑡

= ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒𝑖𝑡 ln |𝑧|𝑒−𝑡 arg 𝑧𝑒ln |𝑧|𝑒𝑖 arg 𝑧𝑑𝑡.

Therefore, we get

|𝜑(𝑧)|

≤ 𝑒ln |𝑧|‖𝜎‖𝐿∞ ∫
ℝ

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒−𝑡 arg 𝑧𝑑𝑡

= 𝑒ln |𝑧|‖𝜎‖𝐿∞
(
∫

∞

0

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒−𝑡 arg 𝑧𝑑𝑡 + ∫

0

−∞

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒−𝑡 arg 𝑧𝑑𝑡

)

= 𝑒ln |𝑧|‖𝜎‖𝐿∞
(
∫

∞

0

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒−𝑡 arg 𝑧𝑑𝑡 + ∫

∞

0

( 2𝑡
𝑒2𝑡𝜋 − 1

)
𝑒𝑡 arg 𝑧𝑑𝑡

)

< +∞.

Thus, the integral in the definition of 𝜑 converges for all 𝑧 ∈ ℂ−. Nowwe show
that 𝜑 is continuous.
Let 𝑧 = |𝑧|𝑒𝑖 arg 𝑧 ∈ ℂ− and let

{
𝑧𝑛 = |𝑧𝑛|𝑒𝑖 arg 𝑧𝑛

}
𝑛∈ℕ be a sequence in ℂ−

converging to 𝑧. Then for any 𝜎 ∈ 𝐿∞(ℝ),

𝜎(𝑡)2𝑡(1 − 𝑒−2𝑡𝜋)−1𝑒ln |𝑧𝑛|𝑒𝑖 arg 𝑧𝑛𝑒𝑖𝑡 ln |𝑧𝑛|𝑒−𝑡 arg 𝑧𝑛

⟶ 𝜎(𝑡)2𝑡(1 − 𝑒−2𝑡𝜋)−1𝑒ln |𝑧|𝑒𝑖 arg 𝑧𝑒𝑖𝑡 ln |𝑧|𝑒−𝑡 arg 𝑧

pointwise a.e. on ℝ. Also,
|||||𝜎(𝑡)

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧𝑛|𝑒𝑖 arg 𝑧𝑛𝑒𝑖𝑡 ln |𝑧𝑛|𝑒−𝑡 arg 𝑧𝑛 |||||

≤ ‖𝜎‖𝐿∞
2𝑡

1 − 𝑒−2𝑡𝜋 𝑒
ln |𝑧𝑛|𝑒−𝑡 arg 𝑧𝑛

Since {|𝑧𝑛|} converges to |𝑧| ≠ 0, the sequence {𝑒𝑙𝑛|𝑧𝑛|} is bounded. Let 𝑐1(𝑧) > 0
such that

𝑒ln |𝑧𝑛| ≤ 𝑐1(𝑧), ∀𝑛 ∈ ℕ.
If 𝑡 ∈ (0,∞), then

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧𝑛|𝑒−𝑡 arg 𝑧𝑛 ≤ 𝑐1(𝑧)
2𝑡

1 − 𝑒−2𝑡𝜋 𝑒
−𝑡 arg 𝑧 ∈ 𝐿1(ℝ+).
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If 𝑡 ∈ (−∞, 0) and 𝑢 = −𝑡, then
2𝑡

1 − 𝑒−2𝑡𝜋 𝑒
ln |𝑧𝑛|𝑒−𝑡 arg 𝑧𝑛 = 2𝑢

𝑒2𝑢𝜋 − 1𝑒
ln |𝑧𝑛|𝑒𝑢 arg 𝑧𝑛

≤ 𝑐2(𝑧)
2𝑢

𝑒2𝑢𝜋 − 1𝑒
𝑢 arg 𝑧 ∈ 𝐿1(ℝ+).

Therefore, by the dominated convergence theorem, it follows that 𝜑 is contin-
uous at each 𝑧 ∈ ℂ−. Finally, we now prove that 𝜑 is analytic on ℂ−.
Let 𝛾 be a simple closed contour in ℂ−. Then

∫
𝛾
∫
ℝ

|||||𝜎(𝑡)
2𝑡

1 − 𝑒−2𝑡𝜋 𝑒
ln |𝑧|𝑒𝑖 arg 𝑧𝑒𝑖𝑡 ln |𝑧|𝑒−𝑡 arg 𝑧|||||𝑑𝑡|𝑑𝛾(𝑧)|

≤ ‖𝜎‖𝐿∞ ∫
𝛾
∫
ℝ

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧|𝑒−𝑡 arg 𝑧𝑑𝑡|𝑑𝛾(𝑧)|

= ‖𝜎‖𝐿∞
(
∫
𝛾
∫

∞

0

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧|𝑒−𝑡 arg 𝑧𝑑𝑡|𝑑𝛾(𝑧)|

+ ∫
𝛾
∫

0

−∞

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧|𝑒−𝑡 arg 𝑧𝑑𝑡|𝑑𝛾(𝑧)|
)
.

Since 𝛾 is compact and the functions

∫
0

−∞

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧|𝑒−𝑡 arg 𝑧𝑑𝑡 and ∫
∞

0

2𝑡
1 − 𝑒−2𝑡𝜋 𝑒

ln |𝑧|𝑒−𝑡 arg 𝑧𝑑𝑡

are continuous functions of 𝑧, it follows that

∫
𝛾
∫
ℝ

|||||𝜎(𝑡)
2𝑡

1 − 𝑒−2𝑡𝜋 𝑒
ln |𝑧|𝑒𝑖 arg 𝑧𝑒𝑖𝑡 ln |𝑧|𝑒−𝑡 arg 𝑧|||||𝑑𝑡|𝑑𝛾(𝑧)| < +∞.

Therefore, by Fubini’s theorem, we get

∫
𝛾
∫
ℝ
𝜎(𝑡) 2𝑡

1 − 𝑒−2𝑡𝜋 𝑒
ln |𝑧|𝑒𝑖 arg 𝑧𝑒𝑖𝑡 ln |𝑧|𝑒−𝑡 arg 𝑧𝑑𝑡𝑑𝛾(𝑧)

= ∫
ℝ

2𝑡
1 − 𝑒−2𝑡𝜋 ∫𝛾

𝑧𝑖𝑡+1𝑑𝛾(𝑧)𝑑𝑡 = ∫
ℝ

2𝑡
1 − 𝑒−2𝑡𝜋 (0)𝑑𝑡 = 0.

Since 𝛾 is arbitrary simple closed contour inℂ−, byMorera’s theorem, it follows
that the function 𝜑 is analytic on ℂ−. This proves the lemma. □

Lemma 3.2. Let 𝜎 ∈ 𝐿∞(ℝ) and

𝐹𝜎(𝑧, 𝑤) =
1

2𝜋𝑧2 ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)( 𝑧
𝑤

)1+𝑖𝑡
𝑑𝑡, 𝑧, 𝑤 ∈ Π.

Then 𝐹𝜎(⋅, 𝑤), 𝐹𝜎(𝑧, (⋅)) ∈ 𝒜2(Π) for each 𝑧, 𝑤 ∈ Π.
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Proof. Let 𝑧, 𝑤 ∈ Π. Then
( 𝑧
𝑤

)
∈ ℂ− and

𝐹𝜎(𝑧, 𝑤) =
1

2𝜋𝑧2 𝜑
( 𝑧
𝑤

)
,

where the function 𝜑 is given by (1.3). By Lemma 3.1, we get

|𝐹𝜎(⋅, 𝑤)| < +∞, 𝑧, 𝑤 ∈ Π.

Again by Lemma 3.1, it follows that the functions 𝐹𝜎(⋅, 𝑤), 𝐹𝜎(𝑧, (⋅)) are prod-
ucts of analytic functions onΠ and hence they are analytic. Now, we show that
𝐹𝜎(⋅, 𝑤) ∈ 𝒜2(Π) for each 𝑤 ∈ Π. Fix 𝑤 ∈ Π and consider

∫
Π
|𝐹𝜎(𝑧, 𝑤)|2𝑑𝜇(𝑧) = ∫

Π

|||||
1

2𝜋𝑧2 ∫ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)( 𝑧
𝑤

)𝑖𝑡+1
𝑑𝑡|||||

2
𝑑𝜇(𝑧).

Let 𝑤 = 𝜌𝑒𝑖𝜂, 𝑧 = 𝑟𝑒𝑖𝜃, where 𝑟, 𝜌 ∈ (0,∞) and 𝜂, 𝜃 ∈ (0, 𝜋). Then we have

∫
Π
|𝐹𝜎(𝑧, 𝑤)|2𝑑𝜇(𝑧)

= ∫
𝜋

0
∫

∞

0
|𝐹𝜎(𝑟𝑒𝑖𝜃, 𝜌𝑒−𝑖𝜂)|2 𝑟𝑑𝑟𝑑𝜃

= ∫
𝜋

0
∫

∞

0

1
4𝜋2𝑟4

||||| ∫ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)( 𝑟𝑒𝑖𝜃
𝜌𝑒−𝑖𝜂

)𝑖𝑡+1
𝑑𝑡|||||

2
𝑟𝑑𝑟𝑑𝜃.

Using the change of variable 𝑟 = 𝑒𝑢, we get

∫
Π
|𝐹𝜎(𝑧, 𝑤)|2𝑑𝜇(𝑧)

= ∫
𝜋

0
∫
ℝ

1
4𝜋2𝑒4𝑢

||||| ∫ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)(𝑒𝑢
𝜌
)𝑖𝑡+1

𝑒𝑖(𝜃+𝜂)(𝑖𝑡+1)𝑑𝑡|||||
2
𝑒2𝑢𝑑𝑢𝑑𝜃

= 1
4𝜋2𝜌2 ∫

𝜋

0
∫
ℝ

||||| ∫ℝ
𝜎(𝑡)
𝜌𝑖𝑡

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒−𝑡(𝜃+𝜂)𝑒𝑖𝑡𝑢𝑑𝑡|||||

2
𝑑𝑢𝑑𝜃.

Since the Fourier transform is unitary on 𝐿2(ℝ), we get

∫
Π
|𝐹𝜎(𝑧, 𝑤)|2𝑑𝜇(𝑧) =

1
4𝜋2𝜌2 ∫

𝜋

0
∫
ℝ

|||||
𝜎(𝑡)
𝜌𝑖𝑡

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑒−𝑡(𝜃+𝜂)|||||

2
𝑑𝑡𝑑𝜃

≤
‖𝜎‖𝐿∞
4𝜋2𝜌2 ∫

𝜋

0

(
∫

∞

0

( 2𝑡
1 − 𝑒−2𝑡𝜋

)2
𝑒−2𝑡(𝜃+𝜂) 𝑑𝑡

+ ∫
0

−∞

( 2𝑡
1 − 𝑒−2𝑡𝜋

)2
𝑒−2𝑡(𝜃+𝜂) 𝑑𝑡

)
𝑑𝜃.
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Using the change of variable 𝑡 → −𝑡 in the second integral, it follows that
‖𝜎‖𝐿∞
4𝜋2𝜌2 ∫

𝜋

0

(
∫

∞

0

( 2𝑡
1 − 𝑒−2𝑡𝜋

)2
𝑒−2𝑡(𝜃+𝜂) 𝑑𝑡

+ ∫
0

−∞

( 2𝑡
1 − 𝑒−2𝑡𝜋

)2
𝑒−2𝑡(𝜃+𝜂) 𝑑𝑡

)
𝑑𝜃

=
‖𝜎‖𝐿∞
4𝜋2𝜌2 ∫

𝜋

0

(
∫

∞

0

( 2𝑡
1 − 𝑒−2𝑡𝜋

)2
𝑒−2𝑡(𝜃+𝜂) 𝑑𝑡

+ ∫
∞

0

( 2𝑡
𝑒2𝑡𝜋 − 1

)2
𝑒2𝑡(𝜃+𝜂) 𝑑𝑡

)
𝑑𝜃

< +∞.

Thus, the function 𝐹𝜎(⋅, 𝑤) ∈ 𝒜2(Π) for each 𝑤 ∈ Π. In a similar way, we can
show that 𝐹𝜎(𝑧, (⋅)) ∈ 𝒜2(Π) for each 𝑧 ∈ Π. Hence the lemma is proved. □

Lemma 3.3. For 𝜎 ∈ 𝐿∞(ℝ), the function 𝜑 defined by (1.3) belongs to 𝒢.

Proof. Let 𝜑 be a function on ℂ− and 𝜎 ∈ 𝐿∞(ℝ) such that they satisfy (1.3).
By Lemma 3.1, the function 𝜑 is analytic onℂ− and Lemma 3.2 implies that the
function

𝐾𝜑(𝑧, 𝑤) =
1

2𝜋𝑧2𝜑
( 𝑧
𝑤

)
, 𝑧, 𝑤 ∈ Π

satisfies 𝐾𝜑(𝑧, (⋅)), 𝐾𝜑(⋅, 𝑤) ∈ 𝒜2(Π) for each 𝑧, 𝑤 ∈ Π. Hence 𝜑 ∈ 𝒢. □

Lemma 3.4. Let 𝜎 ∈ 𝐿∞(ℝ). Then 𝑅∗𝑀𝜎𝑅 = 𝐴𝜓, where

𝜓(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

Proof. Let 𝜎 ∈ 𝐿∞(ℝ) and 𝒟 ∶= Span{𝐾Π,𝑧 ∶ 𝑧 ∈ Π}. It is well-known that
the set𝒟 is dense in 𝒜2(Π). Then for 𝑓 ∈ 𝒟, we have

(𝑅∗𝑀𝜎𝑅𝑓)(𝑧) =
1

√
2𝜋

∫
ℝ

√
2𝑡

1 − 𝑒−2𝑡𝜋 (𝑀𝜎𝑅𝑓)(𝑡)𝑧𝑖𝑡−1𝑑𝑡

= 1
√
2𝜋

∫
ℝ

√
2𝑡

1 − 𝑒−2𝑡𝜋 𝜎(𝑡)(𝑅𝑓)(𝑡)𝑧
𝑖𝑡−1𝑑𝑡

= 1
2𝜋 ∫

ℝ

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝜎(𝑡) ∫

Π
(𝑤)−𝑖𝑡−1𝑓(𝑤)𝑑𝜇(𝑤)𝑧𝑖𝑡−1𝑑𝑡.

We observe that for any 𝑧 ∈ Π the function (⋅)−1𝐾Π,𝑧(⋅) ∈ 𝐿1(Π). So for any
𝑓 ∈ 𝒟, the integral

∫
Π
|𝑤−1𝑓(𝑤)|𝑑𝜇(𝑤) < +∞.
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By Fubini’s theorem, we get

(𝑅∗𝑀𝜎𝑅𝑓)(𝑧) = ∫
Π
𝑓(𝑤)

( 1
2𝜋 ∫

ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

) 1
𝑧𝑤

( 𝑧
𝑤

)𝑖𝑡
𝑑𝑡
)
𝑑𝜇(𝑤)

= 1
2𝜋𝑧2 ∫Π

𝑓(𝑤)
(
∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)( 𝑧
𝑤

)𝑖𝑡+1
𝑑𝑡
)
𝑑𝜇(𝑤)

= 1
2𝜋𝑧2 ∫Π

𝑓(𝑤)𝜓
( 𝑧
𝑤

)
𝑑𝜇(𝑤)

= (𝐴𝜓𝑓)(𝑧), 𝑧 ∈ Π,
where

𝜓(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

From above, we get 𝑅∗𝑀𝜎𝑅 = 𝐴𝜓 on𝒟.
Now we show that 𝑅∗𝑀𝜎𝑅 = 𝐴𝜓 on 𝒜2(Π). Let 𝑔 ∈ 𝒜2(Π) and {𝑔𝑛}𝑛∈ℕ be a

sequence in𝒟 such that 𝑔𝑛 → 𝑔 in 𝒜2(Π). For each 𝑧 ∈ Π, let

𝑞𝑧(𝑤) ∶=
1

2𝜋𝑧2 𝜓
( 𝑧
𝑤

)
= 𝐾𝜓(𝑧, 𝑤), 𝑤 ∈ Π.

Then for each 𝑧 ∈ Π, 𝑞𝑧 ∈ 𝒜2(Π) and (𝐴𝜓𝑔𝑛)(𝑧) = ⟨𝑔𝑛, 𝑞𝑧⟩𝒜2 → ⟨𝑔, 𝑞𝑧⟩𝒜2 =
(𝐴𝜓𝑔)(𝑧). But 𝐴𝜓𝑔𝑛 = 𝑅∗𝑀𝜎𝑅𝑔𝑛 for all 𝑛 ∈ ℕ. This implies that

(𝑅∗𝑀𝜎𝑅𝑔𝑛)(𝑧)→ (𝐴𝜓𝑔)(𝑧)
for all 𝑧 ∈ Π. As 𝑅∗𝑀𝜎𝑅 is bounded on𝒜2(Π), we get 𝑅∗𝑀𝜎𝑅𝑔𝑛 → 𝑅∗𝑀𝜎𝑅𝑔 in
𝒜2(Π). Since 𝒜2(Π) is the reproducing kernel Hilbert space, (𝑅∗𝑀𝜎𝑅𝑔𝑛)(𝑧) →
(𝑅∗𝑀𝜎𝑅𝑔)(𝑧) for all 𝑧 ∈ Π. Hence (𝑅∗𝑀𝜎𝑅𝑔)(𝑧) = (𝐴𝜓𝑔)(𝑧) for all 𝑧 ∈ Π
and 𝑔 ∈ 𝒜2(Π). That is, 𝑅∗𝑀𝜎𝑅𝑔 = 𝐴𝜓𝑔 for all 𝑔 ∈ 𝒜2(Π). Thus, we get
𝑅∗𝑀𝜎𝑅 = 𝐴𝜓 on 𝒜2(Π). □

Remark 3.1. In Lemma 3.4, the choice of the dense set 𝒟 is useful to apply
Fubini’s theorem for interchanging the order of integration.

Remark 3.2. For ℎ ∈ ℝ+, we consider 𝐸ℎ(𝑥) = ℎ𝑖𝑥 for all 𝑥 ∈ 𝐿2(ℝ). Then by
Lemma 3.4, we get 𝑅∗𝑀𝐸ℎ𝑅 = 𝐷ℎ.
Lemma 3.5. Let𝑀 ∈ ℬ(𝐿2(ℝ)) such that𝑀𝑀𝐸ℎ = 𝑀𝐸ℎ𝑀 for all ℎ ∈ ℝ+. Then
there exists 𝜎 ∈ 𝐿∞(ℝ) such that𝑀 = 𝑀𝜎.

Proof. Let𝑀 ∈ ℬ(𝐿2(ℝ)) such that𝑀𝑀𝐸ℎ = 𝑀𝐸ℎ𝑀 for all ℎ ∈ ℝ+. That is,
𝑀𝑀𝑒𝑖𝑥 ln(ℎ) = 𝑀𝑒𝑖𝑥 ln(ℎ)𝑀, ∀ℎ ∈ ℝ+.

As the map ℎ ↦ ln(ℎ) is continuous from ℝ+ onto ℝ, we have
𝑀𝑀𝑒2𝜋𝑖𝑏(⋅) = 𝑀𝑒2𝜋𝑖𝑏(⋅)𝑀, ∀𝑏 ∈ ℝ.

By Theorem 2.2, we get ℱ−1𝑀ℱ𝜏𝑎 = 𝜏𝑎ℱ−1𝑀ℱ for all 𝑎 ∈ ℝ. By [19, Chapter
2, Proposition 2], there exixts 𝜎 ∈ 𝐿∞(ℝ) such that 𝑀(ℱ𝑓) = 𝑀𝜎(ℱ𝑓) for all
𝑓 ∈ 𝐿2(ℝ). Since the Fourier transform is unitary on 𝐿2(ℝ), we get𝑀𝑓 = 𝜎𝑓
for all 𝑓 ∈ 𝐿2(ℝ). Hence𝑀 = 𝑀𝜎. □
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Theorem 3.6. Let 𝑇 ∈ ℬ(𝒜2(Π)). Then 𝑇 is an angular operator if and only if
there exists 𝜎 ∈ 𝐿∞(ℝ) such that 𝑇 = 𝑅∗𝑀𝜎𝑅.
Proof. Let 𝑇 ∈ ℬ(𝒜2(Π)) be angular operator. Then 𝑇𝐷ℎ = 𝐷ℎ𝑇, for all ℎ ∈
ℝ+. By Remark 3.2, we get (𝑅𝑇𝑅∗)𝑀𝐸ℎ = 𝑀𝐸ℎ(𝑅𝑇𝑅

∗), for all ℎ ∈ ℝ+. By
Lemma 3.5, it follows that 𝑅𝑇𝑅∗ = 𝑀𝜎 for some 𝜎 ∈ 𝐿∞(ℝ). That is,

𝑇 = 𝑅∗𝑀𝜎𝑅.
Conversely, if 𝑇 = 𝑅∗𝑀𝜎𝑅 for some 𝜎 ∈ 𝐿∞(ℝ), then 𝑅𝑇𝑅∗ = 𝑀𝜎 commutes
with all𝑀𝐸ℎ for ℎ ∈ ℝ+. Hence, by Remark 3.2, 𝑇 commutes with 𝑅∗𝑀𝐸ℎ𝑅 =
𝐷ℎ for all ℎ ∈ ℝ+. By definition of angular operators, we get that 𝑇 is angular.
This proves the theorem. □

Remark 3.3. The proof of Theorem 3.6 can also be found in [10, Theorem 2.2].
Lemma 3.7. Let 𝜑 ∈ 𝒢 and let 𝐴𝜑 be given by (1.2). If 𝐴𝜑 ∈ ℬ(𝒜2(Π)), then
there exists 𝜎 ∈ 𝐿∞(ℝ) such that 𝐴𝜑 = 𝑅∗𝑀𝜎𝑅.
Proof. Let ℎ ∈ ℝ+. Then

(𝐷ℎ𝐴𝜑𝑓)(𝑧) = ℎ (𝐴𝜑𝑓)(ℎ𝑧) =
1

2𝜋ℎ𝑧2 ∫Π
𝑓(𝑤)𝜑

(ℎ𝑧
𝑤

)
𝑑𝜇(𝑤).

and

(𝐴𝜑𝐷ℎ𝑓)(𝑧) =
1

2𝜋𝑧2 ∫Π
(𝐷ℎ𝑓)(𝑤)𝜑

( 𝑧
𝑤

)
𝑑𝜇(𝑤)

= ℎ
2𝜋𝑧2 ∫Π

𝑓(ℎ𝑤)𝜑
( 𝑧
𝑤

)
𝑑𝜇(𝑤).

Using the change of variable 𝑤 ↦ 𝑤
ℎ , we get

(𝐴𝜑𝐷ℎ𝑓)(𝑧) =
1

2𝜋ℎ𝑧2 ∫Π
𝑓(𝑤)𝜑

(ℎ𝑧
𝑤

)
𝑑𝜇(𝑤) = (𝐷ℎ𝐴𝜑𝑓)(𝑧), ∀𝑧 ∈ Π.

Therefore, 𝐷ℎ𝐴𝜑 = 𝐴𝜑𝐷ℎ for all ℎ ∈ ℝ+. That is, the operator 𝐴𝜑 is angular.
Hence, by Theorem 3.6, there exists 𝜎 ∈ 𝐿∞(ℝ) such that 𝐴𝜑 = 𝑅∗𝑀𝜎𝑅. □

Lemma 3.8. Let𝜑1, 𝜑2 ∈ 𝒢 such that the operators𝐴𝜑1 , 𝐴𝜑2 ∈ ℬ(𝒜2(Π)). Then
𝐴𝜑1 = 𝐴𝜑2 if and only if 𝜑1 = 𝜑2.
Proof. We are given that 𝜑1, 𝜑2 ∈ 𝒢 such that the operators 𝐴𝜑1 , 𝐴𝜑2 ∈
ℬ(𝒜2(Π)). If 𝜑1 = 𝜑2 then 𝐴𝜑1 = 𝐴𝜑2 . Conversely, suppose 𝐴𝜑1 = 𝐴𝜑2 . Let

𝐾𝜑1(𝑧, 𝑤) =
1

2𝜋𝑧2 𝜑1
( 𝑧
𝑤

)
, 𝐾𝜑2(𝑧, 𝑤) =

1
2𝜋𝑧2 𝜑2

( 𝑧
𝑤

)
, 𝑧, 𝑤 ∈ Π.

Then for all 𝑓 ∈ 𝒜2(Π), we have

(𝐴𝜑1𝑓)(𝑧) = ∫
Π
𝑓(𝑤)𝐾𝜑1(𝑧, 𝑤)𝑑𝜇(𝑤)

= ∫
Π
𝑓(𝑤)𝐾𝜑2(𝑧, 𝑤)𝑑𝜇(𝑤) = (𝐴𝜑2𝑓)(𝑧), 𝑧 ∈ Π.



INTEGRAL REPRESENTATION OF ANGULAR OPERATORS 53

That is,

∫
Π
𝑓(𝑤)(𝐾𝜑1 − 𝐾𝜑2)(𝑧, 𝑤)𝑑𝜇(𝑤) = 0

⟹ ∫
Π
𝑓(𝑤)(𝐾𝜑1 − 𝐾𝜑2)(𝑧, 𝑤)𝑑𝜇(𝑤) = 0.

For 𝑧 ∈ Π, we define Φ𝑧(𝑤) ∶= (𝐾𝜑1 − 𝐾𝜑2)(𝑧, 𝑤) for all 𝑤 ∈ Π. Clearly,
Φ𝑧 ∈ 𝒜2(Π). Therefore, we have ⟨𝑓,Φ𝑧⟩𝒜2 = 0 for all 𝑓 ∈ 𝒜2(Π). This gives
Φ𝑧 ≡ 0. Since 𝑧 ∈ Π is arbitrary, we get Φ𝑧(𝑤) = 0 for all 𝑧, 𝑤 ∈ Π. That is,
(𝐾𝜑1 − 𝐾𝜑2)(𝑧, 𝑤) = 0 for all 𝑧, 𝑤 ∈ Π. This implies

1
2𝜋𝑧2 𝜑1

( 𝑧
𝑤

)
= 1
2𝜋𝑧2 𝜑2

( 𝑧
𝑤

)
, ∀𝑧, 𝑤 ∈ Π.

Hence 𝜑1
( 𝑧
𝑤

)
= 𝜑2

( 𝑧
𝑤

)
for all 𝑧, 𝑤 ∈ Π. That is, 𝜑1 = 𝜑2. □

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let 𝜑 ∈ 𝒢 such that 𝐴𝜑 given by (1.2) is bounded on
𝒜2(Π). By Lemma 3.7, there exists 𝜎 ∈ 𝐿∞(ℝ) such that 𝐴𝜑 = 𝑅∗𝑀𝜎𝑅. But
Lemma 3.4 implies that 𝑅∗𝑀𝜎𝑅 = 𝐴𝜓, where

𝜓(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

By Lemma 3.3, we get 𝜓 ∈ 𝒢. As 𝐴𝜑 = 𝐴𝜓 with 𝜑, 𝜓 ∈ 𝒢, by Lemma 3.8, it
follows that 𝜑 = 𝜓. That is,

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

Conversely, suppose 𝜎 ∈ 𝐿∞(ℝ) and 𝜑 is given by (1.3). Then by Lemma 3.4,
it follows that 𝐴𝜑 = 𝑅∗𝑀𝜎𝑅. Since 𝑀𝜎 is bounded operator on 𝐿2(ℝ), we get
𝐴𝜑 ∈ ℬ(𝒜2(Π)). This completes the proof of the theorem. □

As a consequence of Theorem 1.1, we have that the every angular operator
𝑇 is of the form 𝐴𝜑 for some 𝜑 ∈ 𝒢 and vice-versa. Let 𝔄 be the collection of
all angular operators on 𝒜2(Π), then we have 𝔄 =

{
𝐴𝜑 ∈ ℬ(𝒜2(Π)) ∶ 𝜑 ∈ 𝒢

}
.

That is

𝔄 =
⎧

⎨
⎩

𝐴𝜑 ∈ ℬ(𝒜2(Π))
|||||||||||

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ− for

some 𝜎 ∈ 𝐿∞(ℝ)

⎫

⎬
⎭

.
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3.1. Operator theoretic properties of angular operators. In this subsec-
tion, we study various operator theoretic properties for the operator𝐴𝜑 ∈ ℬ(𝒜2(Π))
in terms of the symbol 𝜑.
Using Theorems 2.1, 1.1 and 3.6, one can easily prove the following results.

The proofs are left to the reader.

Theorem 3.9 (Adjoint of 𝐴𝜑). Let 𝜑 be a function on ℂ− and 𝜎 ∈ 𝐿∞(ℝ) such
that they satisfy (1.3). Then 𝐴∗

𝜑 = 𝐴𝜑, where 𝜑 ∈ 𝒢 and it is given by

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

Theorem 3.10. Let 𝜑 be a function on ℂ− and 𝜎 ∈ 𝐿∞(ℝ) such that they satisfy
(1.3). Then we have the following:

(1) 𝐴𝜑 is normal;
(2) 𝐴𝜑 is compact if and only if 𝜑 ≡ 0;
(3) The collection𝔄 is a maximal commutative 𝐶∗-subalgebra ofℬ(𝒜2(Π)).

Theorem 3.11 (Spectrum of 𝒜𝜑). Let 𝜑 be a function on ℂ− and 𝑚 ∈ 𝐿∞(ℝ)
such that they satisfy (1.3), with𝑚 instead of 𝜎. Then we have the following:

(1) 𝜎(𝐴𝜑) = 𝜎𝑎(𝐴𝜑) = 𝜎𝑒(𝐴𝜑) = ess(𝑚);
(2) 𝜆 ∈ 𝜎𝑝(𝐴𝜑) if and only if the Lebesgue measure of {𝑥 ∶ 𝑚(𝑥) = 𝜆} is

positive.

Now, we give the structure of common reducing subspaces of operators in
the collection𝔄. Before that, we recall some basic definitions and results.

Definitions 3.12. [9, Definition 4.41] Letℋ be a Hilbert space and 𝑇 ∈ ℬ(ℋ).
A closed subspaceℳ ofℋ is an invariant subspace of 𝑇 if 𝑇(ℳ) ⊆ ℳ andℳ is
said to be a reducing subspace of 𝑇 if it is invariant under both 𝑇 and 𝑇∗.

Lemma 3.13. [9, Proposition 4.42] Let ℋ be a Hilbert space and 𝑇 ∈ ℬ(ℋ).
Thenℳ is an invariant subspace of 𝑇 if and only if 𝑃ℳ𝑇𝑃ℳ = 𝑇𝑃ℳ and it is a
reducing subspace of 𝑇 if and only if 𝑇𝑃ℳ = 𝑃ℳ𝑇, where 𝑃ℳ is an orthogonal
projection associated toℳ.

Theorem 3.14 (Common reducing subspace). Let ℳ be a closed subspace of
𝒜2(Π). Then ℳ is a reducing subspace of all the operators in 𝔄 if and only if
ℳ = 𝐴𝜑0(𝒜

2(Π)), where

𝜑0(𝑧) = ∫
ℝ
𝜒𝐸(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−

and 𝜒𝐸 is a characteristic function associated to a measurable set 𝐸.

Proof. Let ℳ be a closed subspace of 𝒜2(Π). By Lemma 3.13 and Theorem
1.1,ℳ is a reducing subspace of operators in 𝔄 ⟺ 𝐴𝜑𝑃ℳ = 𝑃ℳ𝐴𝜑 for all
𝐴𝜑 ∈ 𝔄 ⟺ 𝑀𝑚(𝑅𝑃ℳ𝑅∗) = (𝑅𝑃ℳ𝑅∗)𝑀𝑚 for all 𝑚 ∈ 𝐿∞(ℝ). Since 𝔄 is a
maximal commutative𝐶∗-algebra, we get (𝑅𝑃ℳ𝑅∗) = 𝑀𝜎 for some 𝜎 ∈ 𝐿∞(ℝ).
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Since 𝑀𝜎(= 𝑅𝑃ℳ𝑅∗) is an orthogonal projection on 𝐿2(ℝ), there exists a
Lebesgue measurable set 𝐸 ⊆ ℝ such that 𝜎 = 𝜒𝐸 almost everywhere on ℝ
and 𝑀𝜎 = 𝑀𝜒𝐸 . Hence 𝑃ℳ = 𝑅𝑀𝜒𝐸𝑅

∗. By Theorem 1.1, we get 𝑃ℳ = 𝐴𝜑0 ,
where

𝜑0(𝑧) = ∫
ℝ
𝜒𝐸(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ−.

This proves the theorem. □

4. Angular Toeplitz operators
Let 𝑃 be the orthogonal projection on 𝐿2(Π) with range 𝒜2(Π) and let 𝐚 ∈

𝐿∞(Π). Then the Toeplitz operator 𝑇𝐚 ∶ 𝐿2(Π) → 𝐿2(Π) is defined by 𝑇𝐚𝑓 =
𝑃𝐚𝑓. Let 𝐚 ∈ 𝐿∞(Π). Then 𝐚 is said to an angular function if 𝐚(𝑧) = 𝐚(arg 𝑧)
almost everywhere on Π. For a Toeplitz operator 𝑇𝐚 , 𝐚 ∈ 𝐿∞(Π), we have the
following results.

Theorem 4.1. [10, Proposition 3.1] Let 𝐚 ∈ 𝐿∞(Π), then the Toeplitz operator
𝑇𝐚 is angular if and only if 𝐚 is an angular function.

Theorem 4.2. [10] Let 𝐚 ∈ 𝐿∞(Π) be an angular function. Then 𝑇𝐚 = 𝑅∗𝑀𝛾𝐚𝑅,
where 𝛾𝐚 ∈ 𝐿∞(ℝ) and it is given by

𝛾𝐚(𝑡) =
2𝑡

1 − 𝑒−2𝑡𝜋 ∫
𝜋

0
𝐚(𝑥)𝑒−2𝑥𝑡𝑑𝑥, 𝑡 ∈ ℝ. (4.1)

Let 𝐚 ∈ 𝐿∞(Π) be an angular function. By Theorem 1.1 and Theorem 4.2,
we have 𝐴𝜑𝐚 = 𝑅∗𝑀𝛾𝐚𝑅 = 𝑇𝐚 , where 𝜑𝐚 ∈ 𝒢 and it is given by

𝜑𝐚(𝑧) = ∫
ℝ
𝛾𝐚(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ− (4.2)

and 𝛾𝐚 is given by (4.1). Let 𝒜𝑡𝑜𝑝 =
{
𝑇𝐚 ∶ 𝐚 ∈ 𝐿∞(Π) is angular

}
. Then from

above, it is clear that

𝒜𝑡𝑜𝑝 =
{
𝐴𝜑𝐚 ∶ 𝐚 ∈ 𝐿∞(Π) is angular and 𝜑𝐚 is given by (4.2)

}
.

Let Γ = {𝛾𝐚 ∶ 𝐚 ∈ 𝐿∞(Π) is angular and 𝛾𝐚 is given by (4.1)}. Then the map
𝜂 ∶ Γ→ 𝒜𝑡𝑜𝑝; 𝛾𝐚 ↦ 𝐴𝜑𝐚 is a ∗-isometric isomorphism.
Let 𝒜𝒯 be the 𝐶∗-algebra generated by 𝒜𝑡𝑜𝑝. Let VSO(ℝ) be the collection

of all bounded very slowly oscillating functions on ℝ, that is the functions
which are uniformly continuous with respect to the “arcsinh-metric” 𝜌(𝑥, 𝑦) =
|arcsinh(𝑥)−arcsinh(𝑦)|.From [10], wehave thatVSO(ℝ) is a closed𝐶∗-algebra
subalgebra of 𝐿∞(ℝ) and it is equal to the 𝐶∗-algebra generated by Γ. Let

𝒢 =
⎧

⎨
⎩

𝜑 ∈ 𝒢
|||||||||||

𝜑(𝑧) = ∫
ℝ
𝜎(𝑡)

( 2𝑡
1 − 𝑒−2𝑡𝜋

)
𝑧1+𝑖𝑡𝑑𝑡, 𝑧 ∈ ℂ− for

some 𝜎 ∈ VSO(ℝ)

⎫

⎬
⎭

.

Then it is easy to prove the following result.
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Theorem 4.3. The 𝐶∗-algebra𝒜𝒯 generated by𝒜𝑡𝑜𝑝 is given by

𝒜𝒯 = {𝐴𝜑 ∶ 𝜑 ∈ 𝒢}.
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