New York Journal of Mathematics

New York J. Math. 30 (2024) 1056–1078.

Weight ergodic theorems for power bounded measures on locally compact groups

Heybetkulu Mustafayev

ABSTRACT. A complex sequence $\{a_n\}_{n \in \mathbb{N}}$ is called *good weight for the mean ergodic theorem* (briefly *good weight*) if for every Hilbert space \mathcal{H} and every contraction T on \mathcal{H} the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i T^i x \text{ exists in norm for every } x \in \mathcal{H}.$$

Let *G* be a locally compact group and let μ be a power bounded regular Borel measure on *G*. We study the behavior of the limit

$$\mathbf{w}^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n a_i \mu^i$$

for the good weights $\{a_n\}$. Some related problems are also discussed.

CONTENTS

1056
1057
1060
1063
1068
1075
1077

1. Introduction

Let *G* be a locally compact group with the left Haar measure m_G (in the case when *G* is compact, m_G will denote normalized Haar measure on *G*) and let M(G) be the convolution measure algebra of *G*. As usual, $C_0(G)$ will denote the space of all complex valued continuous functions on *G* vanishing at infinity. Since $C_0(G)^* = M(G)$, the space M(G) carries the weak* topology $\sigma(M(G), C_0(G))$. In the following, the w*-topology on M(G) always means

Received April 20, 2024.

²⁰¹⁰ Mathematics Subject Classification. 28A33, 43A10, 43A77, 47A35.

Key words and phrases. Mean ergodic theorem, locally compact group, power bounded measure, convergence.

this topology. Thus, a sequence $\{\mu_n\}_{n \in \mathbb{N}}$ in M(G) weak* converges to $\mu \in M(G)$ or w*-lim_{$n \to \infty$} $\mu_n = \mu$ if:

$$\lim_{n \to \infty} \int_{G} f d\mu_{n} = \int_{G} f d\mu, \ \forall f \in C_{0}(G).$$

For a subset *S* of *G*, by [*S*] we will denote the closed subgroup of *G* generated by *S*. A probability measure μ on *G* is said to be *adapted* if $[supp\mu] = G$. Also, a probability measure μ on *G* is said to be *strictly aperiodic* if the support of μ is not contained in a proper closed left cosets gH ($H \neq G$, $g \in G \setminus H$) of *G*. For example, if $\mu \in M(G)$ is a probability measure with $e \in supp\mu$, then μ is strictly aperiodic, where *e* is the unit element of *G*.

Recall that the convolution product $\mu * \nu$ of two measures $\mu, \nu \in M(G)$ is defined by

$$(\mu * \nu)(B) = \int_{G} \mu(g^{-1}B) d\nu(g)$$
 for every Borel subset *B* of *G*.

For $n \in \mathbb{N}$, by μ^n we will denote *n*-th convolution power of $\mu \in M(G)$, where $\mu^0 := \delta_e$ is the Dirac measure concentrated at the unit element of *G*. The classical Kawada-Itô theorem [14, Theorem 7] asserts that if μ is an adapted measure on a compact metrisable group *G*, then the sequence of probability measures $\left\{\frac{1}{n}\sum_{i=1}^{n}\mu^i\right\}_{n\in\mathbb{N}}$ weak* converges to the Haar measure on *G* (see also [11, Theorem 3.2.4]). If μ is an adapted and strictly aperiodic measure on a compact metrisable group *G*, then w*-lim $_{n\to\infty}\mu^n = m_G$ [14, Theorem 8]. If μ is an adapted measure on a second countable non-compact locally compact group *G*, then w*-lim $_{n\to\infty}\mu^n = 0$ [18, Theorem 2]. In [4, Théorème 8], it was proved that if μ is a strictly aperiodic measure on a non-compact locally compact group *G*, then w*-lim $_{n\to\infty}\mu^n = 0$. For related results see, [1, 2, 9, 11, 19, 20, 21].

Let $\mu \in M(G)$ be a power bounded measure, that is, $\sup_{n \in \mathbb{N}_0} \|\mu^n\|_1 < \infty$. We study the behavior of the limit

$$\mathbf{w}^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n a_i \mu^i$$

for the good weights $\{a_n\}$.

2. Weighted ergodic theorems

Let *X* be a complex Banach space and let B(X) be the algebra of all bounded linear operators on *X*. An operator $T \in B(X)$ is said to be *mean ergodic* if the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} T^{i} x \text{ exists in norm for every } x \in X.$$

If *T* is mean ergodic, then

$$P_T x := \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n T^i x \ (x \in X)$$

is the projection onto ker (T - I). The projection P_T will be called *mean ergodic* projection associated with T.

If *T* is a mean ergodic operator, then *T* is Cesàro bounded, that is,

$$\sup_{n\in\mathbb{N}}\left\|\frac{1}{n}\sum_{i=1}^{n}T^{i}\right\|<\infty.$$

It follows from the spectral mapping theorem that if *T* is mean ergodic, then $r(T) \le 1$, where r(T) is the spectral radius of *T*.

The following result is a consequence of the Mean Ergodic Theorem [15, Ch.2, Theorem 1.1].

Proposition 2.1. Let $T \in B(X)$ be Cesàro bounded and assume that $\frac{||T^n x||}{n} \to 0$ for all $x \in X$. If $u, v \in X$ and $\frac{1}{n} \sum_{i=1}^{n} T^i u \to v$ weakly, then

$$\frac{1}{n}\sum_{i=1}^{n}T^{i}u \rightarrow v \text{ in norm, as } n \rightarrow \infty.$$

We will need also the following subsequential ergodic theorem [8, Theorem 21.14].

Theorem 2.2. For a subsequence $(k_i)_{i \in \mathbb{N}}$ of \mathbb{N} , the following assertions are equivalent:

(a) For every contraction T on a Hilbert space H, the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} T^{k_i} x \text{ exists in norm for every } x \in H.$$

(b) The limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \xi^{k_i} \text{ exists for every } \xi \in \mathbb{T}.$$

An operator $T \in B(X)$ is said to be *power bounded* if

$$C_T := \sup_{n \in \mathbb{N}_0} ||T^n|| < \infty.$$

A power bounded operator *T* on a Banach space *X* is mean ergodic if and only if

$$X = \ker (T - I) \oplus \overline{\operatorname{ran} (T - I)}.$$
(2.1)

Recall [15, Chapter 2] that a power bounded operator on a reflexive Banach space is mean ergodic.

The following result is an immediate consequence of the identity (2.1).

Proposition 2.3. Let T be a power bounded operator on a Banach space X and assume that $\lim_{n\to\infty} ||T^{n+1}x - T^nx|| = 0$ for all $x \in X$. If T is mean ergodic (so if X is reflexive), then $T^n \to P_T$ in the strong operator topology, where P_T is the mean ergodic projection associated with T.

As usual, by $\sigma(T)$ and $\sigma_p(T)$ respectively, we denote the spectrum and the point spectrum of $T \in B(X)$. The open unit disc and the unit circle in the complex plane will be denoted by \mathbb{D} and \mathbb{T} respectively. If $T \in B(X)$ is power bounded then clearly, $\sigma(T) \subseteq \overline{\mathbb{D}}$. The classical Katznelson-Tzafriri theorem [13] states that if $T \in B(X)$ is power bounded, then $\lim_{n\to\infty} ||T^{n+1} - T^n|| = 0$ if and only if $\sigma(T) \cap \mathbb{T} \subseteq \{1\}$. For the normal operators on a Hilbert space, this fact is an immediate consequence of the Spectral Theorem.

Recall from [8, Section 21] that a sequence $\{a_n\}_{n \in \mathbb{N}}$ in \mathbb{C} is called *good weight* for the mean ergodic theorem (briefly good weight) if for every (complex) Hilbert space \mathcal{H} and every contraction T on \mathcal{H} the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i T^i x \text{ exists in norm for every } x \in \mathcal{H}.$$

Let (Ω, Σ, m) be a probability space and let $\varphi : \Omega \to \Omega$ be a measure-preserving transformation. It follows from the Wiener-Wintner theorem [8, Corollary 21.6] that the sequence $(f(\varphi^n(\omega)))_{n\in\mathbb{N}}$ is a bounded good weight for all almost every $\omega \in \Omega$ and $f \in L^{\infty}(\Omega)$.

By [8, Theorem 21.2], a bounded sequence $\{a_n\}_{n \in \mathbb{N}}$ is a good weight if and only if the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i \xi^i =: a(\xi) \text{ exists for every } \xi \in \mathbb{T}.$$

If $\{a_n\}_{n\in\mathbb{N}}$ is a bounded good weight, then for every contraction *T* on a Hilbert space \mathcal{H} and $x \in \mathcal{H}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i T^i x = \sum_{\xi \in \sigma_p(T) \cap \mathbb{T}} a(\xi) P_{\xi} x \text{ in norm,}$$
(2.2)

where P_{ξ} are orthogonal projections onto the mutually orthogonal eigenspaces ker $(T - \xi I)$ for $\xi \in \sigma_p(T) \cap \mathbb{T}$ [8, Theorem 21.2] (it follows that $a(\xi) \neq 0$ for at most countably many $\xi \in \mathbb{T}$).

Let *N* be a normal operator on a Hilbert space \mathcal{H} with the spectral measure *E*. If *N* is mean ergodic, then $||N|| = r(N) \le 1$. If *N* is a normal contraction operator (a normal operator is power bounded if and only if it is a contraction), then for every $x \in \mathcal{H}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} N^{i} x = E(\{1\}) x \text{ in norm.}$$

If *N* is a normal contraction operator on a separable Hilbert space \mathcal{H} , then $\sigma_n(N) \cap \mathbb{T}$ is at most countable [3, Chapter IX] and

$$\sigma_p(N) \cap \mathbb{T} = \{ \xi \in \mathbb{T} \colon E(\{\xi\}) \neq 0 \}.$$

If $\sigma_p(N) \cap \mathbb{T} = \{\xi_1, \xi_2, ...\}$, then for every bounded good weight $\{a_n\}_{n \in \mathbb{N}}$ and $x \in \mathcal{H}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i N^i x = \sum_{i=1}^{\infty} a(\xi_i) E(\{\xi_i\}) x \text{ in norm.}$$

In particular if $\sigma_p(N) \cap \mathbb{T} = \{1\}$, then for every $x \in \mathcal{H}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i N^i x = \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\infty} a_i \right) E\left(\{1\}\right) x \text{ in norm.}$$

If $\sigma(N) \cap \mathbb{T} = \{1\}$, then as $||N^{n+1} - N^n|| \to 0$, by Proposition 2.3, $N^n x \to E(\{1\}) x$ in norm for every $x \in \mathcal{H}$.

3. Generalized convolution operators

Let *G* be a locally compact group. A *representation* π of *G* on a Banach space X_{π} (the representation space of π) is a homomorphism from *G* into the group of invertible isometries on X_{π} . We will assume that π is strongly continuous. Then, for any $\mu \in M(G)$, we can define a bounded linear operator $\hat{\mu}(\pi)$ on X_{π} , by

$$\widehat{\mu}(\pi) x = \int_{G} \pi(g) x d\mu(g), \ x \in X_{\pi}.$$

The map $\mu \to \hat{\mu}(\pi)$ is linear, multiplicative, and contractive; $\|\hat{\mu}(\pi)\| \le \|\mu\|_1$, where $\|\mu\|_1$ is the total variation norm of $\mu \in M(G)$.

By \widehat{G} we will denote unitary dual of G, the set of all equivalence classes of irreducible continuous unitary representations of G with the Fell topology. Recall that $\pi_0 \in \widehat{G}$ is a limit point of $M \subset \widehat{G}$ in the Fell topology, if the matrix function $g \to \langle \pi_0(g) x_0, x_0 \rangle (x_0 \in \mathcal{H}_{\pi_0})$ can be uniformly approximated on every compact subset of G by the matrix functions $g \to \langle \pi(g) x, x \rangle (\pi \in M, x \in \mathcal{H}_{\pi})$ (in the case when G is abelian, Fell topology coincides with the usual topology of \widehat{G} , the dual group of G).

The function $\pi \to \hat{\mu}(\pi) (\pi \in \hat{G})$ is called *Fourier-Stieltjes transform* of $\mu \in M(G)$. If $\hat{\mu}(\pi) = 0$ for all $\pi \in \hat{G}$, then $\mu = 0$ (for instance see, [6, §18]).

It is well known that if *G* is compact, then every $\pi \in \hat{G}$ is finite dimensional. Also, we know that if *G* is compact (resp. compact and metrisable), then \hat{G} is discrete (resp. countable). These facts are consequences of the Peter-Weyl theory [17, Chapter 4].

By B_X and S_X respectively, we denote the closed unit ball and the unit sphere of a Banach space X. Notice that $\operatorname{ext} B_X \subseteq S_X$, where $\operatorname{ext} B_X$ is the set of all extreme points of B_X . X will be called *rotund Banach space* if $\operatorname{ext} B_X = S_X$. For example, uniformly convex Banach spaces, in particular, Hilbert spaces and L^p (1 spaces are rotund Banach spaces.

The following result is a small variation of [5, Proposition 2.1].

Lemma 3.1. Let μ be a probability measure on a locally compact group G and let π be a Banach representation of G. If the representation space X_{π} is a rotund Banach space, then for an arbitrary $\xi \in \mathbb{T}$, we have

$$\ker\left[\widehat{\mu}\left(\pi\right)-\xi I_{\pi}\right]=\left\{x\in X_{\pi}\,:\,\pi\left(g\right)x=\xi x,\,\forall g\in supp\mu\right\}.$$

The following result was proved in [20, Lemma 2.3].

Lemma 3.2. Let μ be a strictly aperiodic measure on a locally compact group G and let π be a Banach representation of G. If the representation space of π is a rotund Banach space, then the operator $\hat{\mu}(\pi)$ cannot have unitary eigenvalues except $\xi = 1$.

As a consequence of the above results, we have the following.

Corollary 3.3. Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded good weight and let π be a unitary representation of a locally compact group G on a Hilbert space \mathcal{H}_{π} . If $\mu \in M(G)$ is an adapted and strictly aperiodic measure, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i} \widehat{\mu}(\pi)^{i} x = \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}\right) P_{\mu}^{\pi} x \text{ in norm for every } x \in \mathcal{H}_{\pi},$$

where P^{π}_{μ} is the orthogonal projection onto the subspace

$$\{x \in \mathcal{H}_{\pi} : \pi(g) \mid x = x : \forall g \in G\}.$$

If $\pi \in \widehat{G} \setminus id$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}a_{i}\widehat{\mu}\left(\pi\right)^{i}x=0 \text{ in norm for every } x\in\mathcal{H}_{\pi},$$

where id is the trivial representation of G; id(g) = I for all $g \in G$.

Proof. By Lemma 3.2, the operator $\hat{\mu}(\pi)$ cannot have unitary eigenvalues except $\xi = 1$. From the identity (2.2), we get that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i} \hat{\mu}(\pi)^{i} x = \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i} \right) P_{\mu}^{\pi} x \text{ in norm for every } x \in \mathcal{H}_{\pi},$$

where P^{π}_{μ} is the orthogonal projection onto ker $[\hat{\mu}(\pi) - I]$. On the other hand, by Lemma 3.1,

$$\ker\left[\widehat{\mu}\left(\pi\right)-I\right]=\left\{x\in\mathcal{H}_{\pi}\,:\,\pi\left(g\right)x=x\,:\,\forall g\in G\right\}.$$

Notice that

$$\{x \in \mathcal{H}_{\pi} : \pi(g) \mid x = x : \forall g \in G\}$$

is a closed π -invariant subspace. As $\pi \in \widehat{G} \setminus id$, we have $P_{\mu}^{\pi} = 0$.

As is well known, equipped with the involution given by $d\tilde{\mu}(g) = \overline{d\mu(g^{-1})}$, the algebra M(G) becomes a Banach *-algebra. If μ is a probability measure on a locally compact group G, then as $\operatorname{supp} \tilde{\mu} = (\operatorname{supp} \mu)^{-1}$, we have

$$supp(\widetilde{\mu} * \mu) = \overline{\left\{ (supp\mu)^{-1} \cdot (supp\mu) \right\}}.$$

Proposition 3.4. If μ is a probability measure on a locally compact group *G*, then the following assertions hold:

- (a) If the measure $\tilde{\mu} * \mu$ is adapted, then μ is strictly aperiodic.
- (b) If μ is adapted and strictly aperiodic, then the measure $\tilde{\mu} * \mu$ is adapted.

Proof. (a) Assume that μ is not strictly aperiodic. Then, $supp \mu \subseteq gH$ for some closed subgroup $H \neq G$ and $g \in G \setminus H$. As $(supp \mu)^{-1} \subseteq Hg^{-1}$, we have

$$(supp\mu)^{-1} \cdot (supp\mu) \subseteq gH \cdot Hg^{-1} = H,$$

which implies $[supp(\tilde{\mu} * \mu)] \subseteq H$. This shows that the measure $\tilde{\mu} * \mu$ is not adapted.

(b) Let $H := [supp(\tilde{\mu} * \mu)]$ and assume that $H \neq G$. If $supp\mu \subseteq H$, then as $G = [supp\mu] \subseteq H$, we have G = H. Hence, we may assume that $supp\mu \nsubseteq H$. Then there exists $s \in supp\mu$, but $s \notin H$. Since $s^{-1}g \in H$ for all $g \in supp\mu$, we get that $supp\mu \subseteq sH$. This show that μ is not strictly aperiodic.

Next, we have the following.

Proposition 3.5. Let π be a unitary representation of a locally compact group G and let μ be a probability meeasure on G. If one of the measures $\tilde{\mu} * \mu$ and $\mu * \tilde{\mu}$ is adapted (in particular, if μ is adapted and strictly aperiodic), then for every $\pi \in \widehat{G} \setminus id$,

 $\hat{\mu}(\pi)^n \to 0$ in the weak operator topology.

Proof. Recall that a contraction *T* on a Hilbert space is said to be *completely non-unitary* if it has no proper reducing subspace on which it acts as a unitary operator. By the Nagy-Foiaş theorem [7, Ch.II, Theorem 3.9], if *T* is a completely non-unitary contraction, then $T^n \to 0$ in the weak operator topology. Now, it suffices to show that $\hat{\mu}(\pi)$ is a completely non-unitary contraction. Let \mathcal{H}_{π} be the representation space of π . As $\hat{\mu}(\pi)^* = \hat{\mu}(\pi)$, we must show that the identity $\hat{\mu}(\pi)\hat{\mu}(\pi)x = x$, where $x \in \mathcal{H}_{\pi}$, implies x = 0. Since $(\widehat{\mu} * \mu)(\pi)x = x$, by Lemma 3.1, $\pi(g)x = x$ for all $g \in [supp(\widetilde{\mu} * \mu)]$. As $[supp(\widetilde{\mu} * \mu)] = G$, we have $\pi(g)x = x$ for all $g \in G$. Since

$$E_{\pi} := \{ x \in \mathcal{H}_{\pi} : \pi(g) x = x, \forall g \in G \}$$

is a closed π -invariant subspace and $\pi \in \widehat{G} \setminus id$, we get that $E_{\pi} = \{0\}$. Hence x = 0.

4. Convolution operators

Let *G* be a locally compact group. The left convolution of $\mu \in M(G)$ and $f \in L^p(G)$ $(1 \le p < \infty)$, is given by

$$(\mu * f)(g) = \int_G f(s^{-1}g) d\mu(s).$$

For $f \in L^p(G)$, we put

$$f^{\vee}(g) := f(g^{-1})$$
 and $\widetilde{f}(g) := \overline{f(g^{-1})}$.

Notice that for every $u, v \in L^2(G)$, the function $u * \tilde{v}$ is in $C_0(G)$ and

$$\langle \mu, u * \widetilde{\upsilon} \rangle = \langle \mu * \overline{\upsilon}, \overline{u} \rangle, \ \forall \mu \in M(G).$$

It follows that the set $\{u * \tilde{v} : u, v \in L^2(G)\}$ is linearly dense in $C_0(G)$. Notice also that if $f \in L^p(G)$ $(1 and <math>h \in L^q(G)$ (1/p + 1/q = 1), then $h * f^{\vee} \in C_0(G)$ and

$$\langle \mu, \ h * f^{\vee} \rangle = \langle \mu * f, h \rangle, \ \forall \mu \in M(G) .$$

It follows that the set

$$\{h * f^{\vee} : h \in L^q(G), f \in L^p(G)\}$$

is linearly dense in $C_0(G)$.

Let π be the left regular representation of *G* on $L^p(G)$ $(1 \le p < \infty)$, where

$$\pi(g) f(s) = f(g^{-1}s) := f_g(s)$$

Then, π is continuous and for an arbitrary $\mu \in M(G)$, $\hat{\mu}(\pi)$ is the left convolution operator on $L^p(G)$; $\hat{\mu}(\pi) f = \mu * f$. We will denote this operator by $\lambda_p(\mu)$. It is well known that $\lambda_p(\mu)$ is a bounded linear operator on $L^p(G)$, that is,

$$\|\lambda_p(\mu)f\| \le \|\mu\|_1 \|f\|_p$$
 and $\|\lambda_1(\mu)\| = \|\mu\|_1$. (4.1)

A measure $\mu \in M(G)$ is said to be *power bounded if*

$$C_{\mu} := \sup_{n \in \mathbb{N}_0} \left\| \mu^n \right\|_1 < \infty$$

It follows from (4.1) that if $\mu \in M(G)$ is power bounded, then so is the operator $\lambda_p(\mu)$, that is,

$$\sup_{n\in\mathbb{N}_{0}}\left\|\lambda_{p}\left(\mu\right)^{n}\right\|\leq C_{\mu}$$

The most comprehensive work on power bounded measures is Schreiber [22].

A measure $\mu \in M(G)$ is said to be *vague-ergodic* if there is a measure $\theta_{\mu} \in M(G)$ such that

$$\mathbf{w}^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mu^i = \theta_\mu$$

Probability measures are always vague-ergodic. Although, it is usually proved assuming the group is second countable [11, Theorem 3.0].

The following result was proved in [9, Theorem 3.4]. The same result for locally compact abelian groups was obtained earlier in [19, Proposition 2.5].

Proposition 4.1. If μ is a power bounded measure on a locally compact group *G*, then there exists an idempotent measure $\theta_{\mu} \in M(G)$ such that

$$w^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mu^i = \theta_{\mu}.$$

The measure θ_{μ} will be called *limit measure associated with* μ .

In [21, Theorem 7.1], it was proved that if μ is a probability measure on a locally compact group *G*, then w* $-\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \mu^i = 0$ if and only if the support of μ is not contained in a compact subgroups of *G* (see also, [20, Theorem 2.4]).

We have the following more general result.

Proposition 4.2. For a subsequence $(k_i)_{i \in \mathbb{N}}$ of \mathbb{N} , the following assertions are equivalent:

(a) The limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \xi^{k_i} \text{ exists for every } \xi \in \mathbb{T}.$$

(b) For an arbitrary power bounded measure μ on a locally compact group G, the limit

$$w^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mu^{k_i}$$
 exists.

Proof. (a) \Rightarrow (b) Notice that $\lambda_2(\mu)$ is a power bounded operator. By changing to an equivalent norm, $\lambda_2(\mu)$ can be made a contraction. If $u, v \in L^2(G)$, then by Theorem 2.2, the limit

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n \langle \lambda_2(\mu)^{k_i} u, v\rangle \text{ exists.}$$

As $u * \tilde{v} \in C_0(G)$, we can write

$$\begin{split} \lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} \mu^{k_i}, u * \widetilde{v} \rangle &= \lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} \mu^{k_i} * \overline{u}, \overline{v} \rangle \\ &= \lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} \lambda_2(\mu)^{k_i} \overline{u}, \overline{v} \rangle \end{split}$$

Therefore, the limit

$$\lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} \mu^{k_i}, u * \widetilde{v} \rangle \text{ exists for all } u, v \in L^2(G).$$

Since the sequence $\left\{\frac{1}{n}\sum_{i=1}^{n}\mu^{k_i}\right\}_{n\in\mathbb{N}}$ is bounded and the set $\{u * \tilde{v} : u, v \in L^2(G)\}$ is linearly dense in $C_0(G)$, the limit

$$w^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mu^{k_i}$$
 exists.

(b) \Rightarrow (a) Let $G = \mathbb{T}$ and let $\mu = \delta_{\lambda}$, where δ_{λ} is the Dirac measure concentrated at $\lambda \in \mathbb{T}$. Then as $\mu^n = \delta_{\lambda^n} (\forall n \in \mathbb{N})$, the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(\lambda^{k_i}) \text{ exists for every } f \in C(\mathbb{T}).$$

If we take $f \in C(\mathbb{T})$, defined by $f(\xi) = \xi$, then we get that the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \xi^{k_i}$$
 exists.

_	-	-	-	

Next, we have the following.

Proposition 4.3. Let μ be a power bounded measure on a locally compact group *G* and let θ_{μ} be the limit measure associated with μ . Then the following assertions hold:

(a) For every $f \in L^p(G)$ (1 ,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mu^i*f=\theta_\mu*f \text{ in }L^p\text{-norm,}$$

where $P_{\mu}f := \theta_{\mu} * f$ is the mean ergodic projection associated with $\lambda_{p}(\mu)$.

(b) If μ is a probability measure on G and if $[supp\mu]$ is compact, then for every $f \in L^1(G)$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\mu^{i}*f=\theta_{\mu}*f \text{ in } L^{1}\text{-norm},$$

where $P_{\mu}f := \theta_{\mu} * f$ is the mean ergodic projection associated with $\lambda_1(\mu)$.

Proof. (a) By Proposition 4.1,

$$\mathbf{w}^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mu^i = \theta_{\mu}.$$

On the other hand, by [9, Proposition 3.1], the mapping $\lambda_p : M(G) \to B(L^p(G))$ is w*-WOT continuous on norm bounded subsets of M(G) for every 1 . It follows that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mu^{i} * f = \theta_{\mu} * f \text{ weakly for every } f \in L^{p}(G).$$

Since the operator $\lambda_p(\mu)$ is mean ergodic, we get that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mu^{i} * f = \theta_{\mu} * f \text{ in } L^{p}\text{-norm.}$$

(b) By [9, Theorem 5.4], the operator $\lambda_1(\mu)$ is mean ergodic and therefore,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mu^{i} * f = P_{\mu} f \text{ in } L^{1} \text{-norm for every } f \in L^{1}(G),$$

where P_{μ} is the mean ergodic projection associated with the operator $\lambda_1(\mu)$. If $h \in C_0(G)$, then as $h * f^{\vee} \in C_0(G)$, we can write

$$\begin{aligned} \langle P_{\mu}f,h\rangle &= \lim_{n\to\infty} \langle \frac{1}{n} \sum_{i=1}^{n} \mu^{i} * f,h\rangle \\ &= \lim_{n\to\infty} \langle \frac{1}{n} \sum_{i=1}^{n} \mu^{i},h * f^{\vee}\rangle = \langle \theta_{\mu},h * f^{\vee}\rangle \\ &= \langle \theta_{\mu} * f,h\rangle. \end{aligned}$$

So we have $P_{\mu}f = \theta_{\mu} * f$.

Let μ be a power bounded measure on a locally compact group *G*. For $\xi \in \mathbb{T}$, by θ_{μ}^{ξ} we will denote the limit measure associated with $\xi\mu$. By Proposition 4.1, θ_{μ}^{ξ} is an idempotent measure and

$$\mathbf{w}^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \xi^i \mu^i = \theta_{\mu}^{\xi}.$$

Theorem 4.4. Let G be a second countable locally compact group and let μ be a power bounded measure on G. Then the following assertions hold:

(a) $\sigma_p(\lambda_2(\mu)) \cap \mathbb{T}$ is at most countable.

(b) If $\{a_n\}_{n\in\mathbb{N}}$ is a bounded good weight and $\sigma_p(\lambda_2(\mu)) \cap \mathbb{T} = \{\xi_1, \xi_2, ...\}$, then

$$w^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n a_i \mu^i = \sum_{i=1}^\infty a\left(\xi_i\right) \theta_{\mu}^{\xi_i},$$

where $\theta_{\mu}^{\xi_i}$ is the limit measure associated with $\xi_i\mu$ and

$$a(\xi_i) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n a_k \xi_i^k.$$

Proof. (a) Notice that $\lambda_2(\mu)$ is a power bounded operator on $L^2(G)$. It is no restriction to assume that $\lambda_2(\mu)$ is a contraction. Since $L^2(G)$ is separable, by the Jamison theorem [12], $\sigma_p(\lambda_2(\mu)) \cap \mathbb{T}$ is at most countable set.

(b) Let $f \in L^2(G)$ and $\xi \in \mathbb{T}$ be given. By Proposition 4.3,

$$\frac{1}{n}\sum_{i=1}^{n}\xi^{i}\lambda_{2}\left(\mu\right)^{i}f\rightarrow\theta_{\mu}^{\xi}*f \text{ in }L^{2}\text{-norm.}$$

On the other hand, by the identity (2.2),

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_i \lambda_2(\mu)^i f = \sum_{i=1}^{\infty} a(\xi_i) P_{\xi_i} f \text{ in } L^2 \text{-norm,}$$

where P_{ξ_i} is the orthogonal projection onto ker $[\lambda_2(\mu) - \xi_i I]$. Since $P_{\xi_i} f = \theta_{\mu}^{\xi_i} * f$ (see, Proposition 4.3), for every $u, v \in L^2(G)$, we can write

$$\begin{split} \lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} a_{i} \mu^{i}, u * \widetilde{v} \rangle &= \lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} a_{i} \lambda_{2} (\mu)^{i} \overline{u}, \overline{v} \rangle \\ &= \langle \sum_{i=1}^{\infty} a (\xi_{i}) P_{\xi_{i}} \overline{u}, \overline{v} \rangle \\ &= \langle \sum_{i=1}^{\infty} a (\xi_{i}) \theta_{\mu}^{\xi_{i}} * \overline{u}, \overline{v} \rangle \\ &= \langle \sum_{i=1}^{\infty} a (\xi_{i}) \theta_{\mu}^{\xi_{i}}, u * \widetilde{v} \rangle. \end{split}$$

Since the sequence $\{a_n\}_{n\in\mathbb{N}}$ is bounded and the set $\{u * \tilde{v} : u, v \in L^2(G)\}$ is linearly dense in $C_0(G)$, we get that

$$w^{*} - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i} \mu^{i} = \sum_{i=1}^{\infty} a(\xi_{i}) \theta_{\mu}^{\xi_{i}}.$$

If μ is a strictly aperiodic measure on a locally compact group *G*, then by Lemma 3.2, the operator $\lambda_2(\mu)$ cannot have unitary eigenvalues except $\xi = 1$.

The following result remains true without "second countability" condition.

Corollary 4.5. If μ is a strictly aperiodic measure on a locally compact group *G*, then for a bounded good weight $\{a_n\}_{n \in \mathbb{N}^n}$, we have

$$w^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n a_i \mu^i = \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^\infty a_i \right) \theta_{\mu},$$

where θ_{μ} is the limit measure associated with μ .

Remark 4.6. Let *G* be a locally compact abelian group and let $\mu \in M(G)$. The Fourier-Plancherel transform estabilishes unitary equivalence between convolution operator $\lambda_2(\mu)$ and the multiplication operator $M_{\hat{\mu}}$ on $L^2(\widehat{G})$, where $\widehat{\mu}$ is the Fourier-Stieltjes transform of μ . It follows that $\sigma(\lambda_2(\mu)) = \overline{\{\widehat{\mu}(\gamma) : \gamma \in \widehat{G}\}}$.

HEYBETKULU MUSTAFAYEV

5. The sequence $\{\mu^n\}_{n \in \mathbb{N}}$

Recall that a linear operator *T* on a Banach space *X* is said to be *weakly almost periodic* if for every $x \in X$, the orbit $O_T(x) := \{T^n x : n \in \mathbb{N}_0\}$ is relatively weakly compact. Clearly, weakly almost periodic operator is power bounded. If *T* is a weakly almost periodic operator on a Banach space *X*, then by the Jacobs-Glicksberg-de Leeuw (JGdL) Decomposition Theorem [7, Ch.I, Theorem 1.15], there exist two *T*-invariant subspaces X_r and X_s such that $X = X_r \oplus X_s$, where

$$X_r = \overline{\text{span}} \{ x \in X : \exists \xi \in \mathbb{T}, \ Tx = \xi x \}$$
(5.1)

and

$$X_s = \left\{ x \in X : 0 \in \overline{\{T^n x : n \in \mathbb{N}_0\}}^{\text{weak}} \right\}.$$
(5.2)

The following result is a consequence of the JGdL Decomposition Theorem [7, Ch.II, Theorem 4.1].

Proposition 5.1. Let T be a weakly almost periodic operator on a Banach space X and assume that T has no unitary eigenvalues. If X^* is separable, then there exists a subsequence $\{n_j\}_{j=1}^{\infty}$ of \mathbb{N} such that $\lim_{j\to\infty} T^{n_j} = 0$ in the weak operator topology.

As an application of Proposition 5.1, we have the following.

Proposition 5.2. Let *T* be a weakly almost periodic operator on a Banach space *X* and assume that *T* has no unitary eigenvalues except $\xi = 1$. If X^* is separable, then there exists a subsequence $\{n_j\}_{j=1}^{\infty}$ of \mathbb{N} such that $\lim_{j\to\infty} T^{n_j} = P$ in the weak operator topology, where *P* is the projection onto ker (T - I).

Proof. By the JGdL Decomposition Theorem, $X = X_r \oplus X_s$, where the subspaces X_r and X_s are defined as in (5.1) and (5.2), respectively. Therefore, every $x \in X$ can be written as $x = x_r + x_s$, where $Tx_r = x_r$ for all $x_r \in X_r$ and

$$0 \in \overline{\{T^n x_s : n \in \mathbb{N}_0\}}^{\text{weak}} \text{ for all } x_s \in X_s.$$

Let $S := T |_{X_s}$ be the restriction of T to X_s . Notice that S has no unitary eigenvalues. Since X_s^* is separable, by Proposition 5.1, there exists a subsequence $\{n_j\}_{j=1}^{\infty}$ of \mathbb{N} such that $\lim_{j\to\infty} S^{n_j} = 0$ in the weak operator topology. Now, for an arbitrary $\varphi \in X^*$, from the identity $T^{n_j}x = x_r + S^{n_j}x_s$, we can write

$$\langle \varphi, T^{n_j} x \rangle = \langle \varphi, x_r \rangle + \langle \varphi, S^{n_j} x_s \rangle \to \langle \varphi, x_r \rangle = \langle \varphi, P x \rangle \ (j \to \infty).$$

This shows that $T^{n_j} \to P(j \to \infty)$ in the weak operator topology.

Next, we have the following.

Proposition 5.3. Let *G* be a second countable locally compact group and let μ be a strictly aperiodic measure on *G*. Then there exists a subsequence $\{n_j\}_{j=1}^{\infty}$ of \mathbb{N} such that

$$w^*$$
- $\lim_{j\to\infty}\mu^{n_j}= heta_{\mu},$

where θ_{μ} is the limit measure associated with μ .

Proof. Notice that $\lambda_2(\mu)$ is a weakly almost periodic operator on a separable Hilbert space $L^2(G)$. By Lemma 3.2, the operator $\lambda_2(\mu)$ has no unitary eigenvalues except $\xi = 1$. By Proposition 5.2, there exists a subsequence $\{n_j\}_{j=1}^{\infty}$ of \mathbb{N} such that $\lambda_2(\mu)^{n_j} \to P_{\mu}(j \to \infty)$ in the weak operator topology, where P_{μ} is the projection onto ker $[\lambda_2(\mu) - I]$. On the other hand, by Proposition 4.3, $P_{\mu}f = \theta_{\mu} * f, f \in L^2(G)$, where θ_{μ} is the limit measure associated with μ . Now if $u, v \in L^2(G)$, then as $u * \tilde{v} \in C_0(G)$, we can write

$$\begin{split} \lim_{j \to \infty} \langle \mu^{n_j}, u * \widetilde{v} \rangle &= \lim_{j \to \infty} \langle \mu^{n_j} * \overline{u}, \overline{v} \rangle \\ &= \lim_{j \to \infty} \langle \lambda_2 \left(\mu \right)^{n_j} \overline{u}, \overline{v} \rangle = \langle P_\mu \overline{u}, \overline{v} \rangle \\ &= \langle \theta_\mu * \overline{u}, \overline{v} \rangle = \langle \theta_\mu, u * \widetilde{v} \rangle. \end{split}$$

Since the set $\{u * \tilde{v} : u, v \in L^2(G)\}$ is linearly dense in $C_0(G)$, we have

$$w^*-\lim_{j o\infty}\mu^{n_j}= heta_\mu.$$

As we have noted above, $\|\lambda_1(\mu)\| = \|\mu\|_1$ for all $\mu \in M(G)$. Moreover, we have $\sigma(\lambda_1(\mu)) = \sigma(\mu)$ for all $\mu \in M(G)$, where $\sigma(\mu)$ is the spectrum of μ with respect to the algebra M(G).

If *G* is a compact group, then the (normalized) Haar measure m_G is an idempotent measure on *G* with $suppm_G = G$. If *H* is a closed subgroup of *G*, then the measure m_H may be regarded as a measure on *G* by putting $\overline{m}_H(E) = m_H(E \cap H)$ for every Borel subset *E* of *G*. Notice that $supp\overline{m}_H = H$.

Theorem 5.4. (*a*) *Let* μ *be a power bounded measure on a locally compact group G.* If $\sigma(\lambda_1(\mu)) \cap \mathbb{T} = \{1\}$, then

$$w^* - \lim_{n \to \infty} \mu^n = \theta_{\mu},$$

where θ_{μ} is the limit measure associated with μ .

(b) Let μ be a probability measure on a compact group G. If $\sigma(\lambda_1(\mu)) \cap \mathbb{T} = \{1\}$, then

$$w^* - \lim_{n \to \infty} \mu^n = \overline{m}_{[supp\mu]}.$$

Proof. (a) Let us first show that the sequence $\{\mu^n\}_{n\in\mathbb{N}}$ has only one weak^{*} cluster point. Since $\sigma(\lambda_1(\mu)) \cap \mathbb{T} = \{1\}$, by the Katznelson-Tzafriri theorem,

$$\lim_{n \to \infty} \|\mu^{n+1} - \mu^n\|_1 = \lim_{n \to \infty} \|\lambda_1(\mu)^{n+1} - \lambda_1(\mu)^n\| = 0.$$

Assume that

$$\theta_1 = \mathbf{w}^* \cdot \lim_{\alpha} \mu^{n_{\alpha}}$$
 and $\theta_2 = \mathbf{w}^* \cdot \lim_{\beta} \mu^{m_{\beta}}$

for two subnets $\{\mu^{n_{\alpha}}\}_{\alpha}$ and $\{\mu^{m_{\beta}}\}_{\beta}$ of $\{\mu^{n}\}_{n \in \mathbb{N}}$. Since the multiplication on M(G) is separately w^{*}-continuous, we have

$$\mu * \theta_1 = \theta_1 * \mu = w^* - \lim_{\alpha} \mu^{n_{\alpha} + 1}$$

Consequently,

$$\left\|\mu\ast\theta_1-\theta_1\right\|_1\leq \underline{\lim}_{\alpha}\left\|\mu^{n_{\alpha}+1}-\mu^{n_{\alpha}}\right\|_1=0.$$

Hence, $\mu * \theta_1 = \theta_1 * \mu = \theta_1$. Now, passing to the limit (in the w*-topology) in the identities

$$\mu^{m_{\beta}} * \theta_1 = \theta_1 * \mu^{m_{\beta}} = \theta_1,$$

we have $\theta_2 * \theta_1 = \theta_1 * \theta_2 = \theta_1$. Similarly, we can see that $\theta_2 * \theta_1 = \theta_1 * \theta_2 = \theta_2$. If $\theta := \theta_1 = \theta_2$, then $\theta^2 = \theta$. Thus we have

$$\mathbf{w}^* - \lim_{n \to \infty} \mu^n = \theta.$$

By Proposition 4.1,

$$\mathbf{w}^* - \lim_{n \to \infty} \mu^n = \theta_{\mu},$$

where θ_{μ} is the limit measure associated with μ .

(b) Let $\pi \in \widehat{G}$ and let \mathcal{H}_{π} be the representation space of π . Since *G* is a compact group, \mathcal{H}_{π} is finite dimensional. Let dim $\mathcal{H}_{\pi} := n_{\pi}$ and let $\left\{ e_{\pi}^{(1)}, ..., e_{\pi}^{(n_{\pi})} \right\}$ be the basic vectors in \mathcal{H}_{π} . Denote by $f_{i,j}^{\pi}$ the matrix functions of π , where

$$f_{i,j}^{\pi}(g) = \langle \pi(g) e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle \ (i, j = 1, ..., n_{\pi}).$$

Notice that

$$\langle \mu^{n}, f_{i,j}^{\pi} \rangle = \int_{G} \langle \pi(g) e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle d\mu^{n}$$

$$= \langle \widehat{\mu}(\pi)^{n} e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle, \forall n \in \mathbb{N}.$$

$$(5.3)$$

As in the proof of (a),

$$\lim_{n\to\infty}\left\|\mu^{n+1}-\mu^n\right\|_1=0,$$

which implies

$$\left\|\widehat{\mu}(\pi)^{n+1} - \widehat{\mu}(\pi)^n\right\| \le \left\|\mu^{n+1} - \mu^n\right\|_1 \to 0 \ (n \to \infty).$$

By Proposition 2.2,

$$\langle \hat{\mu}(\pi)^n e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle \to \langle P_{\mu}^{\pi} e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle \ (n \to \infty),$$

where P^{π}_{μ} is an orthogonal projection onto ker $[\hat{\mu}(\pi) - I_{\pi}]$. In view of the identity (5.3), we have

$$\langle \mu^n, f_{i,j}^\pi \rangle \to \langle P_\mu^\pi e_\pi^{(i)}, e_\pi^{(j)} \rangle.$$

By the Peter-Weyl C-Theorem [17, Chapter 4], the system of matrix functions

$$\left\{f_{i,j}^{\pi}:\pi\in\widehat{G},\ i,j=1,...,n_{\pi}\right\}$$

is complete in C(G). Consequently, the limit $\lim_{n\to\infty} \langle \mu^n, f \rangle$ exists for all $f \in C(G)$. Since

$$f \to \lim_{n \to \infty} \langle \mu^n, f \rangle$$

is a bounded linear functional on C(G), there exists a measure $\vartheta_{\mu} \in M(G)$ such that

$$\lim_{n \to \infty} \langle \mu^n, f \rangle = \langle \vartheta_{\mu}, f \rangle, \ \forall f \in C(G).$$

So we have

$$\mathbf{w}^* - \lim_{n \to \infty} \mu^n = \vartheta_{\mu}.$$

By Proposition 4.1, ϑ_{μ} is the limit measure associated with μ . Therefore, ϑ_{μ} is an idempotent measure. Now let $H := [supp\mu]$. We must show that $\vartheta_{\mu} = \overline{m}_{H}$. Notice that

$$\widehat{\partial_{\mu}}(\pi) = P^{\pi}_{\mu}, \forall \pi \in \widehat{G}.$$

Further, since $\widehat{m_{H}}(\pi)$ is an orthogonal projection, by Lemma 3.2,

$$\widehat{\overline{m}_{H}}(\pi)\mathcal{H}_{\pi} = \ker [\widehat{m_{H}}(\pi) - I_{\pi}] \\ = \{x \in \mathcal{H}_{\pi} : \pi(g) \, x = x, \, \forall g \in H\}$$

For the same reasons,

$$\widehat{\vartheta_{\mu}}(\pi) \mathcal{H}_{\pi} = P_{\mu}^{\pi} \mathcal{H}_{\pi} = \ker \left[\widehat{\mu}(\pi) - I_{\pi}\right]$$
$$= \{ x \in \mathcal{H}_{\pi} : \pi(g) x = x, \forall g \in H \}.$$

Thus we have $\widehat{\vartheta_{\mu}}(\pi) = \widehat{\overline{m}_{H}}(\pi)$ for all $\pi \in \widehat{G}$. It follows that $\vartheta_{\mu} = \overline{m}_{H}$.

Remark 5.5. If *G* is a locally compact amenable group, then for an arbitrary probability measure on *G*, $1 \in \sigma(\lambda_p(\mu))$ $(1 \le p < \infty)$ [10, Theorem 3.2.2]. Recall also that compact groups are amenable.

Remark 5.6. Let *G* be a locally compact abelian group and let $M_{reg}(G)$ be the greatest regular subalgebra of M(G) [16, Theorem 4.3.6]. The algebra $L^1(G)$ and the discrete measure algebra $M_d(G)$ are regular subalgebras of M(G) and therefore, $L^1(G) + M_d(G) \subseteq M_{reg}(G)$ (in general, $L^1(G) + M_d(G) \neq M_{reg}(G)$ [16, Example 4.3.11]). This shows that the algebra $M_{reg}(G)$ is remarkably large. For every $\mu \in M_{reg}(G)$, we have

$$\sigma\left(\lambda_{1}\left(\mu\right)\right) = \overline{\left\{\widehat{\mu}\left(\chi\right) \, : \, \chi \in \widehat{G}\right\}}$$

[16, Chapter 4]. It follows that if μ is a probability measure on *G*, then $\sigma(\lambda_1(\mu)) \cap \mathbb{T} = \{1\}$ if and only if for an arbitrary neighborhood *U* of 1, $\sup_{\chi \in U} |\hat{\mu}(\chi)| < 1$.

As a consequence of Theorem 5.4, we have the following.

Proposition 5.7. (*a*) Let μ be a power bounded measure on a locally compact group *G*. If $1 \in \sigma(\lambda_1(\mu))$, then

$$w^* - \lim_{n \to \infty} \left(\frac{\delta_e + \mu}{2}\right)^n = \theta_{\frac{\delta_e + \mu}{2}},$$

where $\theta_{\frac{\delta_e + \mu}{2}}$ is the limit measure associated with $\frac{\delta_e + \mu}{2}$. If $1 \notin \sigma(\lambda_1(\mu))$, then

$$\lim_{n\to\infty}\left\|\left(\frac{\delta_e+\mu}{2}\right)^n\right\|_1=0.$$

(b) If μ is an adapted measure on a compact group G, then

$$w^* - \lim_{n \to \infty} \left(\frac{\delta_e + \mu}{2} \right)^n = m_G.$$

Proof. (a) Notice that the measure $\nu := \frac{\delta_e + \mu}{2}$ is power bounded, that is,

$$\sup_{n\in\mathbb{N}_0}\left\|\nu^n\right\|_1\leq C_\mu.$$

Consequently, the operator $\lambda_1(\nu)$ is power bounded and therefore, $\sigma(\lambda_1(\nu)) \subseteq \overline{\mathbb{D}}$. Notice also that if

$$h(z) := \frac{1+z}{2} \ (z \in \mathbb{C}),$$

then h(1) = 1 and |h(z)| < 1 for all $z \in \overline{\mathbb{D}} \setminus \{1\}$. Since $\lambda_1(\nu) = h(\lambda_1(\mu))$, by the spectral mapping theorem, $\sigma(\lambda_1(\nu)) \cap \mathbb{T} \subseteq \{1\}$. If $1 \in \sigma(\lambda_1(\mu))$, then $\sigma(\lambda_1(\nu)) \cap \mathbb{T} = \{1\}$ and by Theorem 5.4 (a),

$$\mathbf{w}^* - \lim_{n \to \infty} \nu^n = \theta_{\nu}.$$

If $1 \notin \sigma(\lambda_1(\mu))$, then $\sigma(\lambda_1(\nu)) \cap \mathbb{T} = \emptyset$ and therefore, $\sigma(\lambda_1(\nu)) \subset \mathbb{D}$. It follows that $\|\lambda_1(\nu)^n\| = \|\nu^n\|_1 \to 0$ as $n \to \infty$.

(b) If μ is adapted, then as $supp\mu \subseteq supp\nu$, we have $[supp\nu] = G$. By Theorem 5.4 (b),

$$\mathbf{w}^*\text{-}\lim_{n\to\infty}\nu^n=m_G.$$

Remark 5.8. If μ is a probability measure on a compact group *G*, then $\frac{\delta_e + \mu}{2}$ is a strictly aperiodic measure. Therefore, Proposition 5.6 (b) can be obtained from the Kawada-Itô theorem [14, Theorem 8].

We will need the following result.

Proposition 5.9. Let G be a compact group and let $\{\mu_n\}_{n\in\mathbb{N}}$ be a norm bounded sequence in M(G). The following conditions are equivalent:

- (a) w^* -lim_{$n\to\infty$} $\mu_n = \mu$ for some $\mu \in M(G)$.
- (b) $\lim_{n\to\infty} \mu_n * f = \mu * f$ uniformly on G for every $f \in C(G)$.

Proof. (a) \Rightarrow (b) Let \mathcal{H}_{π} be the representation space of $\pi \in \widehat{G}$ and let

$$f_{x,y}^{\pi}(g) := \langle \pi(g) x, y \rangle \ (x, y \in \mathcal{H}_{\pi})$$

be the matrix functions of π . Notice that

$$\langle \theta, f_{x,y}^{\pi} \rangle = \langle \theta(\pi) x, y \rangle$$

and

$$\left(\theta * f_{x,y}^{\pi}\right)(g) = \langle \pi(g)x, \widehat{\theta}(\pi)y \rangle, \forall \theta \in M(G).$$

Consequently, we have

$$\langle \widehat{\mu_n}(\pi) x, y \rangle = \langle \mu_n, f_{x,y}^{\pi} \rangle \to \langle \mu, f_{x,y}^{\pi} \rangle = \langle \widehat{\mu}(\pi) x, y \rangle.$$

Since \mathcal{H}_{π} is finite dimensional, $\widehat{\mu_n}(\pi) \to \widehat{\mu}(\pi)$ in the strong operator topology. Now let $f \in C(G)$ be given. Since the system of matrix functions is linearly dense in C(G), for any $\varepsilon > 0$ there exist complex numbers $\lambda_1, ..., \lambda_k$ and $\pi_1, ..., \pi_k \in \widehat{G}$ such that

$$\left|f\left(g\right)-\lambda_{1}\langle\pi_{1}\left(g\right)x_{1},\ y_{1}\rangle-\ldots-\lambda_{k}\langle\pi_{k}\left(g\right)x_{k},\ y_{k}\rangle\right|<\varepsilon \ \left(\forall g\in G\right),$$

where $x_i, y_i \in \mathcal{H}_{\pi_i}$ (i = 1, ..., k). It follows that

$$\left| (\mu_n * f)(g) - \lambda_1 \langle \pi_1(g) x_1, \widehat{\mu_n}(\pi_1) y_1 \rangle - \dots - \lambda_k \langle \pi_k(g) x_k, \widehat{\mu_n}(\pi_k) y_k \rangle \right| < \varepsilon C$$

and

$$\left| (\mu * f)(g) - \lambda_1 \langle \pi_1(g) x_1, \hat{\mu}(\pi_1) y_1 \rangle - \dots - \lambda_k \langle \pi_k(g) x_k, \hat{\mu}(\pi_k) y_k \rangle \right| < \varepsilon C,$$

where
$$C := \sup_{n \in \mathbb{N}} ||\mu_n||$$
. So we have

$$\sup_{g \in G} |(\mu_n * f)(g) - (\mu * f)(g)| \leq |\lambda_1| \|\widehat{\mu_n}(\pi_1) y_1 - \widehat{\mu}(\pi_1) y_1\| \|x_1\| + \dots + |\lambda_k| \|\widehat{\mu_n}(\pi_k) y_k - \widehat{\mu}(\pi_k) y_k\| \|x_k\| + 2\varepsilon C.$$

Since $\widehat{\mu}_n(\pi) x \to \widehat{\mu}(\pi) x$ in norm for all $\pi \in \widehat{G}$ and $x \in \mathcal{H}_{\pi}$, we have that $\mu_n * f \to \mu * f$ uniformly on *G*.

(b)⇒(a) For any $f \in C(G)$,

$$\int_G f d\mu_n - \int_G f d\mu = (\mu_n * f)(e) - (\mu * f)(e) \to 0.$$

Next, we have the following.

Corollary 5.10. (a) Let μ be a power bounded measure on a locally compact group G. If $1 \in \sigma(\lambda_p(\mu))$, then for every $f \in L^p(G) (1 ,$

$$\left(\frac{\delta_e + \mu}{2}\right)^n * f \to \theta_{\frac{\delta_e + \mu}{2}} * f \text{ in } L^p\text{-norm.}$$

(b) Let μ be a probability measure on a locally compact group G and assume that $[supp\mu]$ is compact. If $1 \in \sigma(\lambda_1(\mu))$, then for every $f \in L^1(G)$,

$$\left(\frac{\delta_e + \mu}{2}\right)^n * f \to \theta_{\frac{\delta_e + \mu}{2}} * f \text{ in } L^1\text{-norm.}$$

(c) If μ is an adapted measure on a compact group G, then for every $f \in C(G)$,

$$\left(\frac{\delta_e + \mu}{2}\right)^n * f \to \left(\int_G f dm_G\right) \mathbf{1}$$
 uniformly on G ,

where **1** is the identity one function on *G*.

Proof. (a) As in the proof of Proposition 5.7, the measure $\nu := \frac{\delta_e + \mu}{2}$ is power bounded and $\sigma(\lambda_p(\nu)) \cap \mathbb{T} = \{1\}$. By the Katznelson-Tzafriri theorem,

$$\lim_{n \to \infty} \left\| \lambda_p \left(\nu \right)^{n+1} - \lambda_p \left(\nu \right)^n \right\| = 0$$

Since the operator $\lambda_p(\nu)$ is mean ergodic, by Proposition 2.3,

$$\lambda_p(\nu)^n f \to P_{\nu}f$$
 in L^p -norm, for every $f \in L^p(G)$,

where P_{ν} is the projection associated with the operator $\lambda_p(\nu)$. By Proposition 4.3, $P_{\nu}f = \theta_{\nu} * f$. Hence, $\nu^n * f \to \theta_{\nu} * f$ in L^p -norm.

(b) Since $\sigma(\lambda_1(\nu)) \cap \mathbb{T} = \{1\}$, by the Katznelson-Tzafriri theorem,

$$\lim_{\nu \to \infty} \left\| \lambda_1 \left(\nu \right)^{n+1} - \lambda_1 \left(\nu \right)^n \right\| = 0$$

Since the operator $\lambda_1(\nu)$ is mean ergodic [9, Theorem 5.4], by Proposition 2.3,

$$\lambda_1(\nu)^n f \to P_{\nu}f$$
 in L^1 -norm, for every $f \in L^1(G)$.

By Propositions 3.2, $P_{\nu}f = \theta_{\nu} * f$. Hence, $\nu^{n} * f \to \theta_{\nu} * f$ in L^{1} -norm. (c) follows from Propositions 5.7 (b) and 5.9 (b).

Recall from [7, Ch.IV, Proposition 2.6] that a mean ergodic operator *T* on a Banach space *X* is said to be *weakly mixing* if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left| \langle \varphi, T^{i} x \rangle - \langle \varphi, P_{T} x \rangle \right| = 0 \text{ for all } x \in X \text{ and } \varphi \in X^{*},$$

where P_T is the mean ergodic projection associated with T.

Proposition 5.11. Let T be a power bounded operator on a reflexive Banach space X and assume that T has no unitary eigenvalues except $\xi = 1$. Then T is weakly mixing.

Proof. Notice that *T* is a mean ergodic operator. Since *T* is weakly almost periodic, there exist two *T*-invariant subspaces X_r and X_s such that $X = X_r \oplus X_s$, where $Tx_r = x_r$ for all $x_r \in X_r$ and $S := T \mid_{X_s}$ has no unitary eigenvalues (see the proof of Proposition 5.2). On the other hand, it follows from the JGdL Decomposition Theorem that *S* has no unitary eigenvalues if and only

if $0 \in \overline{\{T^n x_s : n \in \mathbb{N}_0\}}^{\text{weak}}$ for all $x_s \in X_s$. By [7, Ch.II, Theorem 4.1], this is equivalent to the fact that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left| \langle \varphi, S^{i} x_{s} \rangle \right| = 0 \text{ for all } \varphi \in X^{*} \text{ and } x_{s} \in X_{s}.$$

If $x \in X$, then as $x = x_r + x_s$, $T^i x = x_r + S^i x_s$, and $P_T x = x_r$, we get that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left| \langle \varphi, T^{i} x \rangle - \langle \varphi, P_{T} x \rangle \right| = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left| \langle \varphi, S^{i} x_{s} \rangle \right| = 0 \quad (\forall \varphi \in X^{*}).$$

If μ is a strictly aperiodic measure on a locally compact group *G*, then by Lemma 3.2, the operator $\lambda_p(\mu)$ ($1) has no unitary eigenvalues except <math>\xi = 1$.

Corollary 5.12. If μ is a strictly aperiodic measure on a locally compact group *G*, then the operator $\lambda_p(\mu)$ (1) is weakly mixing.

6. Weak convergence

Let *G* be a locally compact group and let $C_b(G)$ be the space of all complex valued bounded continuous functions on *G*. A sequence $\{\mu_n\}_{n \in \mathbb{N}}$ in *M*(*G*) weak converges to $\mu \in M(G)$, denoted by w-lim_{$n \to \infty$} $\mu_n = \mu$ if

$$\lim_{n \to \infty} \int_{G} f d\mu_{n} = \int_{G} f d\mu, \ \forall f \in C_{b}(G).$$

Clearly, w-lim_{$n\to\infty$} $\mu_n = \mu$ implies w*-lim_{$n\to\infty$} $\mu_n = \mu$.

Recall that a subset \mathcal{M} of M(G) is called *uniformly tight* if for each $\varepsilon > 0$, there is a compact subset K_{ε} of G such that $|\mu|(G \setminus K_{\varepsilon}) < \varepsilon$ for all $\mu \in \mathcal{M}$.

The following result probably is known. Since we couldn't find a suitable reference, we include its proof.

Lemma 6.1. Let \mathcal{M} be a uniformly tight subset of M(G) and let $\{\mu_n\}_{n \in \mathbb{N}}$ be a sequence in \mathcal{M} . If w^* -lim_{$n \to \infty$} $\mu_n = \mu$ for some $\mu \in M(G)$, then w-lim_{$n \to \infty$} $\mu_n = \mu$.

Proof. For an arbitrary $\varepsilon > 0$, there is a compact subset K_{ε} of G such that $|\mu|(G \setminus K_{\varepsilon}) < \varepsilon$ and $|\mu_n|(G \setminus K_{\varepsilon}) < \varepsilon$ for all $n \in \mathbb{N}$. If $\nu_n := \mu_n - \mu$, then

$$|\nu_n| (G \setminus K_{\varepsilon}) < 2\varepsilon, \forall n \in \mathbb{N}.$$

Let U_{ε} be a neighborhood of K_{ε} such that $\overline{U_{\varepsilon}}$ is compact. By the Urysohn lemma, there exists a continuous function h_{ε} on G such that $h_{\varepsilon} = 1$ on K_{ε} , $h_{\varepsilon} = 0$ on $G \setminus U_{\varepsilon}$, and $0 \le h_{\varepsilon} \le 1$. Now let $f \in C_b(G)$ be given. If $f_{\varepsilon} := h_{\varepsilon}f$, then $f_{\varepsilon} \in C_0(G)$, $||f_{\varepsilon}||_{\infty} \le ||f||_{\infty}$, and $f = f_{\varepsilon}$ on K_{ε} . From the identity

$$\int_{G} f d\nu_{n} = \int_{G \setminus K_{\varepsilon}} (f - f_{\varepsilon}) d\nu_{n} + \int_{K_{\varepsilon}} (f - f_{\varepsilon}) d\nu_{n} + \int_{G} f_{\varepsilon} d\nu_{n},$$

we get

$$\begin{split} \left| \int_{G} f d\mu_{n} - \int_{G} f d\mu \right| &= \left| \int_{G} f d\nu_{n} \right| \leq 2 \left\| f \right\|_{\infty} \left| \nu_{n} \right| (G \setminus K_{\varepsilon}) + \left| \int_{G} f_{\varepsilon} d\nu_{n} \right| \\ &\leq 4 \left\| f \right\|_{\infty} \varepsilon + \left| \int_{G} f_{\varepsilon} d\mu_{n} - \int_{G} f_{\varepsilon} d\mu \right|. \end{split}$$

Since

$$\int_G f_\varepsilon d\mu_n \to \int_G f_\varepsilon d\mu_n$$

we have

$$\int_G f d\mu_n \to \int_G f d\mu.$$

For the sake of convenience, we will call $\mu \in M(G)$ weakly compact measure if the sequence $\{\mu^n\}_{n\in\mathbb{N}}$ is relatively compact in the $\sigma(M(G), C_b(G))$ topology. Clearly, weakly compact measure is power bounded.

Proposition 6.2. Let π be a representation of a second countable locally compact group G on a Banach space X_{π} . If $\mu \in M(G)$ is a weakly compact measure, then the following assertions hold:

(a) The operator $\hat{\mu}(\pi)$ is mean ergodic, that is,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(\pi)^{i} x = \widehat{\theta_{\mu}}(\pi) x \text{ in norm for all } x \in X_{\pi}.$$

(b) If $\sigma(\lambda_1(\mu)) \cap \mathbb{T} = \{1\}$, then

$$\lim_{n \to \infty} \widehat{\mu}(\pi)^n x = \widehat{\theta_{\mu}}(\pi) x \text{ in norm for all } x \in X_{\pi},$$

where θ_{μ} is the limit measure associated with μ .

Proof. (a) By the Prokhorov theorem [2, Theorem 8.6.2], the set $\{\mu^n : n \in \mathbb{N}\}$ is uniformly tight. It follows that the set

$$\left\{\frac{1}{n}\sum_{i=1}^{n}\mu^{i}\,:\,n\in\mathbb{N}\right\}$$

is also uniformly tight. Since μ is power bounded, by Proposition 4.1,

$$\mathbf{w}^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mu^i = \theta_\mu.$$

In view of Lemma 6.1,

$$w - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mu^i = \theta_{\mu}.$$

Let an arbitrary $x \in X_{\pi}$ and $\varphi \in X_{\pi}^*$ be given. Since $g \to \varphi(\pi(g)x)$ is a bounded continuous function on *G*, we can write

$$\begin{split} \lim_{n \to \infty} \langle \varphi, \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(\pi)^{i} x \rangle &= \lim_{n \to \infty} \langle \frac{1}{n} \sum_{i=1}^{n} \mu^{i}, \varphi(\pi(g) x) \rangle \\ &= \langle \theta_{\mu}, \varphi(\pi(g) x) \rangle = \langle \varphi, \widehat{\theta_{\mu}}(\pi) x \rangle. \end{split}$$

This shows that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(\pi)^{i} x = \widehat{\theta_{\mu}}(\pi) x \text{ weakly.}$$

By Proposition 2.1,

$$\frac{1}{n}\sum_{i=1}^{n}\widehat{\mu}(\pi)^{i}x \to \widehat{\theta_{\mu}}(\pi)x \text{ in norm for all } x \in X.$$

(b) By (a), $\hat{\mu}(\pi)$ is a mean ergodic operator and $\hat{\theta}_{\mu}(\pi)$ is the mean ergodic projection associated with $\hat{\mu}(\pi)$. Since

$$\left\| \hat{\mu}(\pi)^{n+1} - \hat{\mu}(\pi)^n \right\| \le \left\| \mu^{n+1} - \mu^n \right\|_1 \to 0 \ (n \to \infty),$$

by Proposition 2.3,

$$\lim_{n \to \infty} \widehat{\mu}(\pi)^n x = \widehat{\theta}_{\mu}(\pi) x \text{ in norm for all } x \in X_{\pi}.$$

Acknowledgement. The author is grateful to the referee for his helpful remarks and suggestions.

References

- BILLINGSLEY, PATRICK. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics. *John Wiley & Sons, Inc., New York*, 1999. x+277 pp. ISBN: 0-471-19745-9. MR1700749, Zbl 0944.60003, doi: 10.1002/9780470316962. 1057
- BOGACHEV, VLADIMIR I. Measure theory. I, II. Springer-Verlag, Berlin, 2007. Vol. I: xviii+500 pp., Vol. II: xiv+575 pp. ISBN:978-3-540-34513-8, ISBN:3-540-34513-2. MR2267655, Zbl 1120.28001, doi: 10.1007/978-3-540-34514-5. 1057, 1076
- [3] CONWAY, JOHN B. A course in functional analysis. Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1985. xiv+404 pp. ISBN: 0-387-96042-2. MR0768926, Zbl 0558.46001, doi: 10.1007/978-1-4757-4383-8. 1060
- [4] DERRIENNIC, YVES. Lois "zéro ou deux" pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré, Sect. B (N.S.) 12 (1976), no. 2, 111–129. MR0423532, Zbl 0353.60075. 1057
- [5] DERRIENNIC, YVES; LIN, MICHAEL. Convergence of iterates of averages of certain operator representations and of convolution powers. J. Funct. Anal. 85 (1989), no. 1, 86–102. MR1005857, Zbl 00712.22008, doi: 10.1016/0022-1236(89)90047-5. 1061
- [6] DIXMIER, JACQUES. Les C*-algèbres et leurs représentations. Gauthier-Villars and Cie, Éditeur-Imprimeur, Paris, 1964. xi+382 pp. MR0171173, Zbl 0152.32902. 1060
- [7] EISNER, TANJA. Stability of operators and operator semigroups. Operator Theory Advances and Applications, 209. *Birkhäuser Verlag, Basel*, 2010. viii+204 pp. ISBN: 978-3-0346-0194-8. MR2681062, Zbl 1205.47002, doi: 10.1007/978-3-0346-0195-5. 1062, 1068, 1074
- [8] EISNER, TANJA; FARKAS, BÁLINT; HAASE, MARKUS; NAGEL, RAINER. Operator theoretic aspects of ergodic theory. Graduate Texts in Mathematics, 272. Springer, Cham, 2015. xviii+628 pp. ISBN: 978-3-0346-0194-8. MR3410920, Zbl 1353.37002, doi: 10.1007/978-3-319-16898-2. 1058, 1059
- [9] GALINDO, JORGE; JORDÁ, ENRIQUE. Ergodic properties of convolution operators. J. Operator Theory 86 (2021), no. 2, 469–501. MR4373146, Zbl 1524.43001, arXiv:2004.07622, doi: 10.7900/jot.2020jun25.2303. 1057, 1064, 1065, 1066, 1074
- [10] GREENLEAF, FREDERICK P. Invariant means on topological groups and their applications. Van Nostrand Mathematical Studies, No. 16. Van Nostrand Reinhold Co., New York-Toronto-London, 1969. ix+113 pp. MR0251549, Zbl 0252.43005. 1071

1077

 \Box

HEYBETKULU MUSTAFAYEV

- [11] GRENANDER, ULF. Probabilities on algebraic structures. Second edition. Almqvist and Wiksell, Stockholm; John Wiley and Sons, Inc., New York-London, 1968. 218 pp. MR0259969, Zbl 0139.33401. 1057, 1063
- [12] JAMISON, BENTON. Eigenvalues of modulus 1. Proc. Amer. Math. Soc. 16 (1965), no. 3, 375–377. MR0176332, Zbl 0133.07202, doi:10.2307/2034656.1066
- [13] KATZNELSON, YITZHAK; TZAFRIRI, LIOR. On power bounded operators. J. Funct. Anal. 68 (1986), no.3, 313–328. MR0859138, Zbl 0611.47005, doi: 10.1016/0022-1236(86)90101-1. 1059
- [14] KAWADA, YUKIYOSI; ITÔ, KIYOSI. On the probability distribution on a compact group. I. Proc. Phys.-Math. Soc. Japan 22 (1940), 977–998. MR0003462, Zbl 0026.13801. 1057, 1072
- [15] KRENGEL, ULRICH. Ergodic theorems. Gruyter Studies in Mathematics, 6. Walter de Gruyter and Co., Berlin, 1985. viii+357 pp. ISBN:3-11-008478-3. MR0797411, Zbl 0575.28009, doi: 10.1515/9783110844641. 1058
- [16] LAURSEN, KJELD B.; NEUMANN, MICHAEL M. An introduction to local spectral theory. London Mathematical Society Monographs. New Series, 20. *The Clarendon Press, Oxford University Press, New York*, 2000. xii+591 pp. ISBN:0-19-852381-5. MR1747914, Zbl 0957.47004. 1071
- [17] LYUBICH, YURII I. Introduction to the theory of Banach representations of groups. Operator Theory: Advances and Applications, 30. *Birkhäuser Verlag, Basel*, 1988. x+223 pp. ISBN:3-7643-2207-1. MR1015717, Zbl 0635.22001, doi: 10.1007/978-3-0348-9169-1. 1060, 1070
- [18] MUKHERJEA, ARUNAVA. Limit theorems for probability measures on non-compact groups and semi-groups. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1976), no. 4, 273–284. MR0400334, Zbl 0304.60004, doi: 10.1007/BF00534779. 1057
- [19] MUSTAFAYEV, HEYBETKULU. Mean ergodic theorems for multipliers on Banach algebras. J. Fourier Anal. Appl. 25 (2019), no. 2, 393–426. MR3917951, Zbl 1429.46034, doi: 10.1007/s00041-017-9587-x. 1057, 1064
- [20] MUSTAFAYEV, HEYBETKULU. A note on the Kawada-Itô theorem. *Statist. Probab. Lett.* 181 (2022), Paper No. 109261, 6 pp. MR4330970, Zbl 1481.60010, doi:10.1016/j.spl.2021.109261.1057, 1061, 1064
- [21] NEUFANG, MATTHIAS; SALMI, PEKKA; SKALSKI, ADAM; SPRONK, NICO. Fixed points and limits of convolution powers of contractive quantum measures. *Indiana Univ. Math. J.* **70** (2021), no. 5, 1971–2009. MR4340487, Zbl 1492.46066, arXiv:1907.07337, doi:10.1512/iumj.2021.70.8692.1057, 1064
- [22] SCHREIBER, BERTRAM M. Measures with bounded convolution powers. *Trans. Amer. Math. Soc.* **151** (1970), 405–431. MR0264335, Zbl 0202.14202, doi: 10.1090/S0002-9947-1970-0264335-3. 1063

(Heybetkulu Mustafayev) GENERAL AND APPLIED MATHEMATICS DEPARTMENT, AZERBAIJAN STATE OIL AND INDUSTRY UNIVERSITY, BAKU-AZERBAIJAN

MINISTRY OF SCIENCE AND EDUCATION OF AZERBAIJAN REPUBLIC, INSTITUTE OF MATHEMATICS AND MECHANICS, BAKU-AZERBAIJAN

WESTERN CASPIAN UNIVERSITY, BAKU-AZERBAIJAN hsmustafayev@yahoo.com

This paper is available via http://nyjm.albany.edu/j/2024/30-48.html.