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Weight ergodic theorems for power bounded
measures on locally compact groups

Heybetkulu Mustafayev

ABSTRACT. A complex sequence {a,}, . is called good weight for the mean
ergodic theorem (briefly good weight) if for every Hilbert space # and every

contraction T on H the limit
n

.1 ; o
lim > Z a;T'x exists in norm for every x € H.

n—oo .
i=1

Let G be a locally compact group and let x be a power bounded regular Borel
measure on G. We study the behavior of the limit

1 n
w* — lim n Z; a; i
i

n—oco

for the good weights {a,}. Some related problems are also discussed.
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1. Introduction

Let G be a locally compact group with the left Haar measure mg (in the case
when G is compact, mg will denote normalized Haar measure on G) and let
M (G) be the convolution measure algebra of G. As usual, Cy (G) will denote
the space of all complex valued continuous functions on G vanishing at in-
finity. Since C,(G)" = M (G), the space M (G) carries the weak* topology
o (M (G),Cy(G)). In the following, the w*-topology on M (G) always means
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this topology. Thus, a sequence {,}, oy in M (G) weak™ converges to u € M (G)
or w*-lim,,_, o, i, = m if:

lim fd,unszd,u, VfeCy(G).
n—oo G G

For a subset S of G, by [S] we will denote the closed subgroup of G generated
by S. A probability measure u on G is said to be adapted if [suppu] = G. Also,
a probability measure y on G is said to be strictly aperiodic if the support of
u is not contained in a proper closed left cosets gH (H # G, g € G\\H) of G.
For example, if 4 € M (G) is a probability measure with e € supppu, then u is
strictly aperiodic, where e is the unit element of G.

Recall that the convolution product u * v of two measures y, v € M (G) is
defined by

(u*v)(B) = f u(g™'B)dv (g) for every Borel subset B of G.
G

For n € N, by u" we will denote n-th convolution power of 4 € M (G), where
u® := &, is the Dirac measure concentrated at the unit element of G. The classi-
cal Kawada-It6 theorem [14, Theorem 7] asserts that if u is an adapted measure
on a compact metrisable group G, then the sequence of probability measures

{% Z?zl ,u‘} . weak™* converges to the Haar measure on G (see also [11, The-
orem 3.2.4]n). If i is an adapted and strictly aperiodic measure on a compact
metrisable group G, then w*-lim,,_,, u"* = mg [14, Theorem 8]. If u is an
adapted measure on a second countable non-compact locally compact group
G, then w*-lim,,_, , ©" = 0 [18, Theorem 2]. In [4, Théoreme 8], it was proved
that if u is a strictly aperiodic measure on a non-compact locally compact group
G, then w*-lim,,_, ., ©" = 0. For related results see, [1, 2, 9, 11, 19, 20, 21].

Let u € M (G) be a power bounded measure, that is, SUP en, |} < c0. We

study the behavior of the limit

for the good weights {a,}.

2. Weighted ergodic theorems

Let X be a complex Banach space and let B (X) be the algebra of all bounded
linear operators on X. An operator T € B (X) is said to be mean ergodic if the
limit

1
lim —

n
Z T'x exists in norm for every x € X.
n—oo N 4

i=1
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If T is mean ergodic, then

is the projection onto ker (T — I'). The projection P will be called mean ergodic
projection associated with T.
If T is a mean ergodic operator, then T is Cesaro bounded, that is,
n
1 Z Ti
i=1

sup < 0.

neN

It follows from the spectral mapping theorem that if T is mean ergodic, then
r(T) < 1, where r (T) is the spectral radius of T.

The following result is a consequence of the Mean Ergodic Theorem [15,
Ch.2, Theorem 1.1].

Proposition 2.1. Let T € B (X) be Cesaro bounded and assume that s, 0

n

1 n i
forallx € X. Ifu,v € X and - Zi=1 T'u — v weakly, then

1 n
—ZTiu — U innorm, as n — .
=
We will need also the following subsequential ergodic theorem [8, Theorem
21.14].

Theorem 2.2. For a subsequence (k;)
alent:
(a) For every contraction T on a Hilbert space H, the limit

ien Of N, the following assertions are equiv-

n
1 o
lim — Z Tkix exists in l’lOmeOV everyx € H.
n—oo N i1

(b) The limit

n
lim 1 Z £k exists for every £ € T.
n&

n—oo

An operator T € B (X) is said to be power bounded if

Cr :=sup ||T"|| < .
neN,

A power bounded operator T on a Banach space X is mean ergodic if and only
if

X =Kker(T—-1I)@®ran(T —I). (2.1)
Recall [15, Chapter 2] that a power bounded operator on a reflexive Banach

space is mean ergodic.
The following result is an immediate consequence of the identity (2.1).
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Proposition 2.3. Let T be a power bounded operator on a Banach space X and
assume that lim,,_, ||T”+1x - T"x'Lz 0 for all x € X. If T is mean ergodic (so
if X is reflexive), then T" — Pr in the strong operator topology, where Py is the
mean ergodic projection associated with T.

As usual, by o (T) and o, (T) respectively, we denote the spectrum and the
point spectrum of T € B (X). The open unit disc and the unit circle in the
complex plane will be denoted by D and T respectively. If T € B (X) is power
bounded then clearly, o (T) € D. The classical Katznelson-Tzafriri theorem
[13] states that if T € B (X) is power bounded, then lim,HmJT”+1 —-T"| =0
ifand only if o (T) N T C {1}. For the normal operators on a Hilbert space, this
fact is an immediate consequence of the Spectral Theorem.

Recall from [8, Section 21] that a sequence {a,}, o, in C is called good weight
for the mean ergodic theorem (briefly good weight) if for every (complex) Hilbert
space J and every contraction T on J the limit

n
.1 j o
lim - Z a;T'x exists in norm for every x € J.

n—oo N 4
i=1

Let (Q, 2, m) be a probability space and let ¢ : Q — Q be a measure-preserving
transformation. It follows from the Wiener-Wintner theorem [8, Corollary 21.6]
that the sequence (f (¢" (w))),,y is @ bounded good weight for all almost every
weQand f € L* (Q).

By [8, Theorem 21.2], a bounded sequence {a,}, oy is a good weight if and
only if the limit

n
lim % Z a;& =1 a (&) exists forevery £ € T.
i=1

n—-oo

If {a,},cn is @ bounded good weight, then for every contraction T on a Hilbert
space K and x € ¥,

n
lim %Z a;T'x = Z a (&) P¢x innorm, (2.2)
i=1

n—eo §€o,(T)NT

where P are orthogonal projections onto the mutually orthogonal eigenspaces
ker (T — &I for § € 0, (T) N T [8, Theorem 21.2] (it follows that a (§) # 0 for
at most countably many § € T).

Let N be a normal operator on a Hilbert space  with the spectral measure
E. If N is mean ergodic, then ||[N|| = r(N) < 1. If N is a normal contraction
operator (a normal operator is power bounded if and only if it is a contraction),
then for every x € H,

1<,
lim - Zle = E({1}) x in norm.
i=1

n—oo
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If N is a normal contraction operator on a separable Hilbert space J(, then
o, (N)N T is at most countable [3, Chapter IX] and

o, (N)NT ={£ € T: E({&}) # 0}.

If o,(N) N T ={£;,§,,...}, then for every bounded good weight {a,}, . and
x €,

lim —Zalle = Za(gi)E({gi})x in norm.
nme st i=1

In particular if o, (N) N T = {1}, then for every x € 7,

1w . 1 —
lim — ) a;N'x=|(1lm — ) a; |E({1})x in norm.
n—-oo N ; ! (n—»oo n ; l) ({ })

If o(N) n T ={1}, then as ||N’”H'1 —N”“ — 0, by Proposition 2.3, N"x —
E ({1}) x in norm for every x € .

3. Generalized convolution operators

Let G be a locally compact group. A representation 7 of G on a Banach space
X, (the representation space of ) is a homomorphism from G into the group
of invertible isometries on X,. We will assume that 7 is strongly continuous.
Then, for any 4 € M (G) , we can define a bounded linear operator i (7r) on X,

by
ﬁ(ﬂ)x=fﬂ(g)xdu(g), x € Xz
G

The map u — fi(7) is linear, multiplicative, and contractive; || (7)|| < [lull,
where ||u||, is the total variation norm of 4 € M (G).

By G we will denote unitary dual of G, the set of all equivalence classes of irre-
ducible continuous unitary representations of G with the Fell topology. Recall
that 7, € G is a limit pointof M C G in the Fell topology, if the matrix function
g — (1o (8) xo, Xo) (X0 € }(ﬂo) can be uniformly approximated on every com-
pact subset of G by the matrix functions g — (7 (g) x,x) (1t € M, x € H,) (in
the case when G is abelian, Fell topology coincides with the usual topology of
G, the dual group of G).

The function 7 — [ () (71’ € @) is called Fourier-Stieltjes transform of u €

M (G). Ifu(r)=0forall 7 € G, then u = 0 (for instance see, [6, §18]).

It is well known that if G is compact, then every 7 € G is finite dimensional.
Also, we know that if G is compact (resp. compact and metrisable), then G
is discrete (resp. countable). These facts are consequences of the Peter-Weyl
theory [17, Chapter 4].

By By and Sy respectively, we denote the closed unit ball and the unit sphere
of a Banach space X. Notice that extBy C Sy, where extBy is the set of all
extreme points of By. X will be called rotund Banach space if extBy = Sx. For
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example, uniformly convex Banach spaces, in particular, Hilbert spaces and L?
(1 < p < ) spaces are rotund Banach spaces.
The following result is a small variation of [5, Proposition 2.1].

Lemma 3.1. Let u be a probability measure on a locally compact group G and
let T be a Banach representation of G. If the representation space X, is a rotund
Banach space, then for an arbitrary & € T, we have

ker[i(m) —§I;] ={x € X, : w(g)x = §x, Vg € suppp}.
The following result was proved in [20, Lemma 2.3].

Lemma 3.2. Let u be a strictly aperiodic measure on a locally compact group
G and let T be a Banach representation of G. If the representation space of 7 is
a rotund Banach space, then the operator i (7r) cannot have unitary eigenvalues
except§ = 1.

As a consequence of the above results, we have the following.

Corollary 3.3. Let{a,}, .y be a bounded good weight and let 7t be a unitary rep-
resentation of a locally compact group G on a Hilbert space H . If u € M (G) is
an adapted and strictly aperiodic measure, then

n n
r}l_)l’l;lo % ; ai(m) x = (;}an}o % ; al-) P x innorm for every x € I,
where Py is the orthogonal projection onto the subspace
xeH, :m(@x=x:VYgeG}.

If 7 € G\id, then

n
.1 PN .
lim — Z a;ii () x =0 in norm for every x € J,,
n-oo N i1
where id is the trivial representation of G; id(g) = I forallg € G.

Proof. By Lemma 3.2, the operator { (7r) cannot have unitary eigenvalues ex-
cept & = 1. From the identity (2.2), we get that
n

1 — i 1
lim = i =| lim — ;| PZx in norm for eve I,
nzal,u(n')x (n_}oonZal> X very x € H,

n—oo i=1
where Py is the orthogonal projection onto ker [¢ (7r) — I]. On the other hand,
by Lemma 3.1,
ker[(m)—Il={x € H, : n(g)x = x : Vg € G}.
Notice that
{xeH,  :m(@x=x:VYgeG}

is a closed 7-invariant subspace. As 7 € @\id, we have Pﬁ =0. O
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As is well known, equipped with the involution given by di (g) = du(g—1),
the algebra M (G) becomes a Banach x-algebra. If u is a probability measure on

a locally compact group G, then as suppit = (sup p/,t)_l, we have

supp (1 * pu) = {(Supp/x)_1 : (suppu)}~

Proposition 3.4. If s a probability measure on a locally compact group G, then
the following assertions hold:

(a) If the measure i * u is adapted, then u is strictly aperiodic.

(b) If u is adapted and strictly aperiodic, then the measure U * u is adapted.

Proof. (a) Assume that u is not strictly aperiodic. Then, suppu C gH for some
closed subgroup H # G and g € G\ H. As (sup p/,t)_1 C Hg™!, we have

(suppu)” - (suppu) C gH - Hg™' = H,

which implies [supp (i * )] € H. This shows that the measure i * u is not
adapted.

(b) Let H := [supp (u * w)] and assume that H # G. If suppu C H, then as
G = [suppu] C H, we have G = H. Hence, we may assume that suppu ¢ H.
Then there exists s € suppu, but s & H. Since s~'g € H for all g € suppu, we
get that suppu C sH. This show that u is not strictly aperiodic. (]

Next, we have the following.

Proposition 3.5. Let 7 be a unitary representation of a locally compact group
G and let u be a probability meeasure on G. If one of the measures fi * u and
u * U is adapted (in particular, if u is adapted and strictly aperiodic), then for
everym € @\id,

(m)" — 0 in the weak operator topology.

Proof. Recall that a contraction T on a Hilbert space is said to be completely
non-unitary if it has no proper reducing subspace on which it acts as a uni-
tary operator. By the Nagy-Foias theorem [7, Ch.II, Theorem 3.9], if T is a
completely non-unitary contraction, then T" — 0 in the weak operator topol-
ogy. Now, it suffices to show that i (7) is a completely non-unitary contrac-
tion. Let J(, be the representation space of 7. As i (7)" = ﬁ(n), we must
show that the identity ﬁ (m)u () x = x, where x € H,, implies x = 0. Since
(m) (m)x = x,by Lemma 3.1, 7 (g)x = x for all g € [supp (i * u)]. As
[supp (i * u)] = G, we have 7 (g) x = x for all g € G. Since

E, ={xeH,:n(g)x=x, Vg €G}

is a closed 7-invariant subspace and 7 € G\id, we get that E; = {0}. Hence
x =0. [l
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4. Convolution operators

Let G be a locally compact group. The left convolution of 4 € M (G) and
fe€LP(G)(1 < p< ),isgiven by

(=g = ff(S‘lg) du(s).

G
For f € L? (G), we put

Y@ :=f(g") and f(g) :=f(g™).

Notice that for every u,v € L? (G), the function u * v is in Cy (G) and
(U, u %0y =(u=*0v, u), Vvu € M (G).

It follows that the set {u *0 :u,v€lL? (G)} is linearly dense in C; (G) . Notice
also thatif f € LP(G)(1<p<oo, p#2)andh € L4(G)(1/p+1/q = 1),
then h * fV¥ € Cy(G) and

(U hox f¥)y =(u=* f,h), Yue M(G).
It follows that the set

th=fY:hell(G), feLl(G)}
is linearly dense in C,, (G).
Let 7 be the left regular representation of G on L? (G) (1 £ p < o), where
(@) =f(g"s) 1= fy(s).

Then, 7 is continuous and for an arbitrary u € M (G), i () is the left convo-
lution operator on LP (G); u(w) f = u * f. We will denote this operator by
{1 p () . Itis well known that A, (u) is a bounded linear operator on L? (G), that
is,

125 () £]] < Naall, 171, and 11, o)l = Il (4.1)
A measure u € M (G) is said to be power bounded if

C, := sup [|u"]]; < 0.
neN,
It follows from (4.1) that if © € M (G) is power bounded, then so is the operator
Ap (), that is,

sup ||/1p (/,L)nH <C,.
neN,
The most comprehensive work on power bounded measures is Schreiber [22].

A measure 4 € M (G) is said to be vague-ergodic if there is a measure 6, €
M (G) such that

n
1 .
w* — lim — t=9,.
n—>oonl,:zllu K

Probability measures are always vague-ergodic. Although, it is usually proved
assuming the group is second countable [11, Theorem 3.0].
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The following result was proved in [9, Theorem 3.4]. The same result for
locally compact abelian groups was obtained earlier in [19, Proposition 2.5].

Proposition 4.1. If u is a power bounded measure on a locally compact group
G, then there exists an idempotent measure 6, € M (G) such that

6,

1 n
* i = i
w n1—>nolo n ; H

The measure 6, will be called limit measure associated with .

In [21, Theorem 7.1], it was proved that if u is a probability measure on a
locally compact group G, then w* —1lim,,_, o, % Zl": ) u! = 0ifand only if the sup-
port of u is not contained in a compact subgroups of G (see also, [20, Theorem
2.4]).

We have the following more general result.

Proposition 4.2. For a subsequence (k;)._, of N, the following assertions are
equivalent:

(a) The limit

ieN

1 n
lim — > &5 exi T.
im — Z &% exists for every & €

n—oo :
i=1

(b) For an arbitrary power bounded measure u on a locally compact group G,
the limit

n—-oo

n
1
. ks .
w* — lim — i exists.

Proof. (a)=(b) Notice that 1, (u) is a power bounded operator. By changing to
an equivalent norm, 1, (1) can be made a contraction. If u,v € L? (G), then by
Theorem 2.2, the limit

1< ki
lim — A u,v) exists.
Hmn;<xm )
Asu %0 € Cy(G), we can write

n n
1 1 _ _
lim (= ki yx9) = lim{(= ki wu,v
fon;“ ) nm<n;/x )

. 1 z ki — —
lim (~ > 2, ()" %, ).
n—-oco N i1
Therefore, the limit

n
lim (% Z wki,u % D) exists for all u,v € L? (G).

n—oo .
i=1
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Since the sequence {% S, b }neN isbounded and the set{u * 0 : u,v € L? (G)}
is linearly dense in Cy (G), the limit
1 n
w* — lim = ki exists.

n—oo N i1

(b)=(a) Let G = T and let u = §,, where §, is the Dirac measure concentrated
at1 € T. Then as 4" = 93 (Vn € N), the limit

n
lim L D f(Ak) exists for every f € C (T).
i=1

n—>ool’l.l

If we take f € C(T), defined by f (§) = &, then we get that the limit

1w :
lim = ) &k exists.

n—oo N i1

Next, we have the following.

Proposition 4.3. Let u be a power bounded measure on a locally compact group
G and let 6, be the limit measure associated with u. Then the following assertions
hold:
(a) Forevery f e LP (G)(1 < p < o),
1 n
lim — g{ plx f =06, * f inLP-norm,
where P, f 1= 6, * f is the mean ergodic projection associated with A, (u) .

(b) If u is a probability measure on G and if [suppu] is compact, then for every
fel ©,

1w -
lim E;,u‘*f=6ﬂ*f in L -norm,

n—oo
where P, f =6, * f is the mean ergodic projection associated with A, (u) .

Proof. (a) By Proposition 4.1,

On the other hand, by [9, Proposition 3.1], the mapping 4, : M (G) — B(LP (G))
isw*-WOT continuous on norm bounded subsets of M (G) forevery1 < p < oo.
It follows that

n
i lzlui * f =0, * f weakly for every f € LP (G).
i=1

n—»ool’ll
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Since the operator 4, (1) is mean ergodic, we get that

1w
lim — E ! =0 in LP- .
n1_)ngoni:1y * f =06, * f in LP-norm
(b) By [9, Theorem 5.4], the operator 4, (1) is mean ergodic and therefore,

n—oo

n
lim %Z u' x f =P,f inL'-norm for every f € L' (G),
i=1

where P, is the mean ergodic projection associated with the operator 4, (u) . If
h € Cy(G),thenas h x fV € Cy(G), we can write

ol
(Puf.h)y = lim(=D ulxf,h)
n—oo ni=1
1 n
= r}g(;;#‘,h*ﬂ)ﬂ@wh*ﬂ)
= <ey*f9 h>
So we have P,f =0, * f. O

Let u be a power bounded measure on a locally compact group G. For £ € T,
by 65 we will denote the limit measure associated with &u. By Proposition 4.1,

Gi is an idempotent measure and

% : 1 : i,,0 §
W _r}l—{l;loﬁgglﬂl =0
Theorem 4.4. Let G be a second countable locally compact group and let u be a
power bounded measure on G. Then the following assertions hold:
(@) o, (A2 () N'T is at most countable.
(b) If {an}, is a bounded good weight and o, (A, (W) N'T ={§y, &5, ...}, then

e}

ol i
w* = lim — > aed = Y a (66},
i=1

n— oo ‘
i=1

where Gi" is the limit measure associated with &;u and

1
a(§) = lim — 37 a .
k=1
Proof. (a) Notice that A, (1) is a power bounded operator on L? (G). It is no
restriction to assume that 1, (1) is a contraction. Since L? (G) is separable, by
the Jamison theorem [12], o, (4, (1)) N T is at most countable set.
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(b) Let f € L?(G) and £ € T be given. By Proposition 4.3,

—251/12(#) f—>6§ * f in L>-norm.

i=1
On the other hand, by the identity (2.2),

11m Zalz(,u) f= Za(é’l)ng in L?-norm,

where P, is the orthogonal projection onto ker[4, (u) — &I]. Since P f =
ij * f (see, Proposition 4.3), for every u,v € L? (G), we can write

n—oo

lim (= Z aul,ux?)y = lim (% Z a;A, (,u)i u,v)
n—-oo l:l
= (D a(&)Pyu,v)
i=1
= Qa6 «ub)
i=1

= a6y, ux0).
i=1

Since the sequence {a,,},y, is bounded and the set {u % ¥ : u,v € L?(G)}islin-
early dense in C (G), we get that

w* — lim — Zal,u —Za(é’l)egl.

n—oo
i=1

0

If u is a strictly aperiodic measure on a locally compact group G, then by
Lemma 3.2, the operator 4, (i) cannot have unitary eigenvalues except § = 1.
The following result remains true without "second countability” condition.

Corollary 4.5. If u is a strictly aperiodic measure on a locally compact group G,

then for a bounded good weight {a,,}, .\, we have
1 n 1 o0
*_ i = 2 gt = li - E X
e Pt Gl (n1—>r1;>10 n& al) O

where 6, is the limit measure associated with y.

Remark 4.6. Let G be a locally compact abelian group and let 4 € M (G). The
Fourier-Plancherel transform estabilishes unitary equivalence between convo-

lution operator 4, («) and the multiplication operator M on L*(G ( ) where i is

the Fourier-Stieltjes transform of u. It follows that o (4, (©)) = {,ZZ y):ye @}
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5. The sequence {u"},
Recall that a linear operator T on a Banach space X is said to be weakly almost
periodic if for every x € X, the orbit O (x) := {T"x . n € Ny} is relatively
weakly compact. Clearly, weakly almost periodic operator is power bounded. If
T is a weakly almost periodic operator on a Banach space X, then by the Jacobs-
Glicksberg-de Leeuw (JGAL) Decomposition Theorem [7, Ch.I, Theorem 1.15],
there exist two T-invariant subspaces X, and X such that X = X, @ X, where
X, =span{x € X : I €T, Tx =&x} (5.1)

and

— weak

XS:{xEX:Oe{T"x:neNO} } (5.2)

The following result is a consequence of the JGAL Decomposition Theorem
[7, Ch.II, Theorem 4.1].

Proposition 5.1. Let T be a weakly almost periodic operator on a Banach space
X and assume that T has no unitary eigenvalues. If X* is separable, then there

exists a subsequence {n j};il of N'such that lim;_,, T" = 0 in the weak operator
topology.
As an application of Proposition 5.1, we have the following.

Proposition 5.2. Let T be a weakly almost periodic operator on a Banach space
X and assume that T has no unitary eigenvalues except & = 1. If X* is separable,
[So]

then there exists a subsequence {n j}] L of Nsuch thatlim;_,., T" = P in the weak
operator topology, where P is the projection onto ker (T — I).

Proof. By the JGdL Decomposition Theorem, X = X, @ X, where the sub-
spaces X, and X are defined as in (5.1) and (5.2), respectively. Therefore, every
X € X can be written as x = x, + x;, where Tx, = x, for all x, € X, and
weak

0 € {Trx; : n € Ny} for all x; € X;.
Let S :=T |x, be the restriction of T to X;. Notice that S has no unitary eigen-
values. Since X is separable, by Proposition 5.1, there exists a subsequence

{n j};; of N'such that lim;_, ., "/ = 0 in the weak operator topology. Now, for

an arbitrary ¢ € X*, from the identity T" x = x, + S"i x,, we can write

(@, T"x) = (@, x,) + (@, S x5) = (@, %) = (@, PX) (j > 00).
This shows that T"% — P (j — o) in the weak operator topology. O

Next, we have the following.

Proposition 5.3. Let G be a second countable locally compact group and let u
be a strictly aperiodic measure on G. Then there exists a subsequence {n J}jo ) of N

such that -
w*- lim u" =6,

J—=©
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where 0, is the limit measure associated with y.

Proof. Notice that 1, (i) is a weakly almost periodic operator on a separable
Hilbert space L? (G) . By Lemma 3.2, the operator 1, (1) has no unitary eigen-
oo

values except £ = 1. By Proposition 5.2, there exists a subsequence {n j}j= ) of
N such that 1, (1) — P, (j — o) in the weak operator topology, where P,
is the projection onto ker [4, (u) — I]. On the other hand, by Proposition 4.3,
Pf=6,xf,f¢€ L?(G), where 0, is the limit measure associated with .
Now if u,v € L?(G), thenas u * 0 € C, (G), we can write

lim(u",u*xv) = lm{u" *u,v)
]—)00 ]—)OO

lim (4, ()" U, D) = (P,u,v)
Jj—oo
= (6, *u,v)=(6,,u * D).
Since the set {u *0 :u,v€ElL? (G)} is linearly dense in C,, (G) , we have

w*- lim ' = 6,.

j—oo
[l

As we have noted above, ||, (w)|| = ||ull, for all u € M (G) . Moreover, we
have g (4; (1)) = o (u) for all u € M (G), where o (u) is the spectrum of y with
respect to the algebra M (G).

If G is a compact group, then the (normalized) Haar measure mg is an idem-
potent measure on G with suppmg = G. If H is a closed subgroup of G, then
the measure my may be regarded as a measure on G by putting my (E) =
my (E N H) for every Borel subset E of G. Notice that suppmy = H.

Theorem 5.4. (a) Let u be a power bounded measure on a locally compact group
G.Ifoc (L (W) NT ={1}, then
w*— lim u" =06

n—oo

l[,[’
where 0, is the limit measure associated with .
(b) Let u be a probability measure on a compact group G. If o (1, (u))NT ={1},
then
w* — lim ,L{n = ﬁ[supp,u]'

n—oo

Proof. (a) Let us first show that the sequence {"}, _, has only one weak* clus-
ter point. Since o (1, (1)) N T ={1}, by the Katznelson-Tzafriri theorem,

lim [l = ||, = Jim |2, 0™ = 20 )"
n—oo

n—oo

=0.

Assume that
6, = w*-lim u"« and 6, = w*- lién ume,
a
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for two subnets {u"=} and {u"# }ﬁ of {u"}
is separately w*-continuous, we have

nen - Since the multiplication on M (G)

ux 0 =0; % u=wlimu=t1,
o4

Consequently,
=0.

[l % 6 — 64l < lim ||pte*t — pre] ||
a

Hence, u *« 6, = 6, * u = 6,. Now, passing to the limit (in the w*-topology) in
the identities
Wk Oy =0y % u =6,
we have 0, x 6; = 0, * 6, = 0,. Similarly, we can see that 6, « 6, =6, % 0, =
0,.1f0 := 0, = 0,, then 62 = 6. Thus we have
w*- lim u" = 6.

n—oo

By Proposition 4.1,
w*- lim u"* =0

n—oo

where 6, is the limit measure associated with u.

l,{’

(b) Let 7 € G and let 7, be the representation space of 7. Since G is a com-
pact group, #, is finite dimensional. Let dim #(, := n, and let {eg), vy ef,"”)}

be the basic vectors in #,.. Denote by f fj the matrix functions of 7, where

L@ =(r@er ey (j=1n0).
Notice that

whff) = [ e (53)
G
= (@@" eg),eg)>, Vn e N.
As in the proof of (a),
im [+ - ], =0,
n—oo

which implies
~ 1~
@™ -a@"
By Proposition 2.2,

@D, ey 5 (Prel, ey (n - o),

<[t =, =0 0 = ).

where P}, is an orthogonal projection onto ker [i () — I;]. In view of the iden-
tity (5.3), we have

W, 1) = (Pre?, o).
By the Peter-Weyl C-Theorem [17, Chapter 4], the system of matrix functions

{ffj c1ed, i,j= 1,...,nﬂ}
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is complete in C (G). Consequently, the limit lim,,_, . (u", f) exists for all f €
C (G). Since
f = lim{u", f)
n—oo
isabounded linear functional on C (G), there exists a measure 8, € M (G) such
that
Tim (4", f) = (8, f), ¥f €C (6.

So we have
w*- lim u"* =49

L
n—-oo
By Proposition 4.1, §,, is the limit measure associated with u. Therefore, 9, is

an idempotent measure. Now let H := [suppu|. We must show that 9, = my.
Notice that .

8, () =P, Vr €G.
Further, since my; (7) is an orthogonal projection, by Lemma 3.2,

my (M) H, = ker[mg(7) —I;]
= {xeXH, :n(g)x=x,VgeHj}.
For the same reasons,
5,(0) 3, = PRI, =ker[R(n) ~ I
= {xeXH, :n(g)x=x,VgeH}.
Thus we have 5; () = ﬁ;(n‘) for all 7 € G. It follows that 8, = my. U

Remark 5.5. If G is a locally compact amenable group, then for an arbitrary
probability measure on G, 1 € ¢ (1, (1)) (1 < p < o) [10, Theorem 3.2.2]. Re-
call also that compact groups are amenable.

Remark 5.6. Let G be a locally compact abelian group and let M, (G) be the
greatest regular subalgebra of M (G) [16, Theorem 4.3.6]. The algebra L! (G)
and the discrete measure algebra M, (G) are regular subalgebras of M (G) and
therefore, L' (G) + My (G) € M, (G) (in general, L' (G) + My (G) # M4 (G)
[16, Example 4.3.11]). This shows that the algebra M., (G) is remarkably large.
For every u € M,., (G), we have

o () ={a(x) : x €6l

[16, Chapter 4]. It follows that if u is a probability measure on G, then o (4, (u))n
T ={1} if and only if for an arbitrary neighborhood U of 1, sup eU 20| < 1.

As a consequence of Theorem 5.4, we have the following.

Proposition 5.7. (a) Let u be a power bounded measure on a locally compact
group G.If1 € o (4, (n)), then

= 65e+/¢ )
2

6€+,u>n

w —llm( >

n—oo
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where s+ is the limit measure associated with 59%. If1 & o (4; (w)), then
2
(*54)
2 1
(b) If u is an adapted measure on a compact group G, then

e (SetmY
w—hm( > )=mG.

lim

n—»oo

=0.

n—oo
Proof. (a) Notice that the measure v := 56% is power bounded, that is,

sup [[v"]]; < C,.
neN,
Consequently, the operator 4, (v) is power bounded and therefore, o (4; (v)) C

D. Notice also that if
1+2z

2
then (1) = 1and |h(z)] < 1forall z € D\, {1}. Since 1, (v) = h(4; (w)),
by the spectral mapping theorem, o (4; (v)) N T C{1}. If 1 € o (4; (u)), then
o (4, »))NT = {1} and by Theorem 5.4 (a),

w*- lim v" =0,

h(z) .=

(zeO),

n—oo
If1 ¢ o4, (w)), then o (4, (v)) N T = @ and therefore, o (1, (v)) CD. It follows
that Q/ll (v)"“ =|v"|l, > 0asn — oo.
(b) If u is adapted, then as suppu C suppv, we have [suppv] = G. By The-

orem 5.4 (b),
w*- lim v"* = mg.

n—oo
]

S+ .
T isa

Remark 5.8. If u is a probability measure on a compact group G, then
strictly aperiodic measure. Therefore, Proposition 5.6 (b) can be obtained from
the Kawada-It6 theorem [14, Theorem 8].

We will need the following result.

Proposition 5.9. Let G be a compact group and let {u,}, ., be a norm bounded

sequence in M (G). The following conditions are equivalent:
(@) w*-lim,_, o 4, = u forsome u € M (G).
(b)lim,,_, o, iy, * f = u * f uniformly on G forevery f € C (G).

Proof. (a)=(b) Let J(,, be the representation space of 7 € G and let
f;cr,y @) :=(m(@x,y) (x,y € H,)

be the matrix functions of 7. Notice that
®, fZ,y=@@x, y)
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and R
(6 * f3y) (@ =(m (@) x, 6(n)y), ¥6 € M(G).
Consequently, we have
(fn ()X, ¥) =ty [)) = (s [3)) = (H (@)X, p).

Since J(, is finite dimensional, f, (7) — i (7) in the strong operator topol-
ogy. Now let f € C (G) be given. Since the system of matrix functions is lin-
early dense in C (G), for any € > 0 there exist complex numbers 44, ..., 4, and
TT1s ey T € G such that

|f (&) — (1 (&) X1, y1) — o — il7ric (8) Xk, Yi)| <€ (Vg € G),
where x;,y; € H,, (i = 1,..., k). It follows that
|kt £ (8) — A7y (8) X1, Fin (1) Y1) — oo — ATk (8) Xpes i (701 Yi)| < €C
and
| ) (8) — Ay (8) X1, B(mwy) Y1) — - — il (8) Xper (i) Y1) < €C,
where C = sup, . ||u,ll . So we have

sugl(ﬂn * )@@ —(u=* @ < |4l @)y —7Z@)yllxll + ..
ge

+ | Ak | 17 (i) yie — B (i) el M || + 2¢C.

Since 1, (r)x — R (7)x in norm for all 7 € G and x € ¥, we have that
Uy * f = u = funiformly on G.
(b)=(a) Forany f € C(G),

/fdun—/fdﬂ=(ﬂn*f)(e)—(M*f)(e)ﬁO-
G G

Next, we have the following.

Corollary 5.10. (a) Let u be a power bounded measure on a locally compact
group G. If1 € (A, (u)), then for every f € LP (G) (1 < p < ),

8o+ 1\
( 82 M) % f — Oseru * f in LP-norm.
2

(b) Let u be a probability measure on a locally compact group G and assume
that [suppu] is compact. If 1 € o (1, (w)), then for every f € L' (G),

8o+ 1"
( 62 M) % f — Ospau * f in L -norm.
2

(c) If wis an adapted measure on a compact group G, then forevery f € C (G),

S +1\"
( e2 ﬁ‘) * f — (ffdmc)l uniformly on G,
G

where 1 is the identity one function on G.
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Proof. (a) As in the proof of Proposition 5.7, the measure v := 53% is power

bounded and o (/1p (v)) N T ={1}. By the Katznelson-Tzafriri theorem,
. 1
lim ||/1p "™ =2, )"

n—oo

Since the operator 4, (v) is mean ergodic, by Proposition 2.3,
2, )" f = P,f in LP-norm, for every f € LP (G),

where P, is the projection associated with the operator 4, (v) . By Proposition
4.3,P,f =6, * f.Hence, V" % f — 0, * f in LP-norm.
(b) Since o (4; (v)) N T ={1}, by the Katznelson-Tzafriri theorem,

lim Hal ™ -4, 0)"

=0.

=0.

Since the operator 4, (v) is mean ergodic [9, Theorem 5.4], by Proposition
2.3,
AL, )" f = P,f in L'-norm, for every f € L' (G).
By Propositions 3.2, P, f = 0, * f. Hence, v"* * f — 0, * f in L'-norm.
(c) follows from Propositions 5.7 (b) and 5.9 (b). O

Recall from [7, Ch.IV, Proposition 2.6] that a mean ergodic operator T on a
Banach space X is said to be weakly mixing if

n
lim ~ Z |(go,Tix> — (go,PTx)| =0 forall x € X and ¢ € X*,
n-oco N -1

where Pr is the mean ergodic projection associated with T

Proposition 5.11. Let T be a power bounded operator on a reflexive Banach
space X and assume that T has no unitary eigenvalues except & = 1. Then T
is weakly mixing.

Proof. Notice that T is a mean ergodic operator. Since T is weakly almost pe-
riodic, there exist two T-invariant subspaces X, and X such that X = X, @ X|,
where Tx, = x, forall x, € X, and S := T [, has no unitary eigenval-
ues (see the proof of Proposition 5.2). On the other hand, it follows from the

JGAL Decomposition Theorem that S has no unitary eigenvalues if and only
weak

if0 € {Trx, : n € Ny} for all x; € X,. By [7, Ch.II, Theorem 4.1], this is
equivalent to the fact that

n
lim lz |(g0,Sixs)| =0 forall p € X* and x, € Xj.
n—oo N i1
If x € X, then as x = x, + x,, T'x = x, + S'x,, and Prx = x,, we get that
1 ¢ 1<
3 — i\ — 1 - i _ %
lim — ; (. T') = (@, Prx)| = lim ; (o, S'x0)| =0 (Vo € X*).

O
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If u is a strictly aperiodic measure on a locally compact group G, then by
Lemma 3.2, the operator 4, (1) (1 < p < o) has no unitary eigenvalues except

£=1.

Corollary 5.12. If u is a strictly aperiodic measure on a locally compact group
G, then the operator 4, (1) (1 < p < o0) is weakly mixing.

6. Weak convergence

Let G be a locally compact group and let C}, (G) be the space of all complex
valued bounded continuous functions on G. A sequence {i, }, ., in M (G) weak
converges to u € M (G), denoted by w-lim,,_, , u,, = p if

lim fd,un:ffdu, VfeC,(G).
n—oo G G
Clearly, w-lim,,_, , 4, = p implies w*-lim,,_, ,, 4, = H.

Recall that a subset M of M (G) is called uniformly tight if for each ¢ > 0,
there is a compact subset K, of G such that |u| (G\K;) < ¢ for all u € M.

The following result probably is known. Since we couldn’t find a suitable
reference, we include its proof.

Lemma 6.1. Let M be a uniformly tight subset of M (G) and let {u,}, . be a
sequence in M. If w*-lim,,_,  u,, = u for some u € M (G), then w-lim,,_, o, i, =

u.
Proof. For an arbitrary ¢ > 0, there is a compact subset K, of G such that
|u| (G\K,) < e and |u,|(G\K,) <ceforalln € N. Ifv, := u, — u, then

[va| (G\K¢) < 2¢,Vn €N.

Let U, be a neighborhood of K, such that U, is compact. By the Urysohn lemma,
there exists a continuous function h; on G such that h, = 1 on K, h, = 0 on
G\U;, and 0 < h, < 1. Now let f € Cp, (G) be given. If f, := h.f, then
fe €Co(G), lIfell, <Ifll,»and f = f. on K,. From the identity

/ fdv, = f (f = fdvn + f = fdvn + f fudvy,
G G\K. K. G

we get
f Fduy - f fdﬂ‘ - f Fadv| < 211f I [va] (GNKD + f f o
G G G G
< 4llfll_ e+ f Fodity — f fsd#‘-
G G
Since

fG fody fG fed,
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Lme*LfW-

For the sake of convenience, we will call u € M (G) weakly compact measure
if the sequence {u"}, _, is relatively compact in the o (M (G), C}, (G)) topology.
Clearly, weakly compact measure is power bounded.

we have

0

Proposition 6.2. Let 7w be a representation of a second countable locally compact
group G on a Banach space X ;. If u € M (G) is a weakly compact measure, then
the following assertions hold:

(a) The operator 1 (7r) is mean ergodic, that is,

o, i A~ .
lim ” ;,u(ﬂ)l x =0, () x in norm for all x € X.

n—oo
(b)Ifo (4, (W) NT ={1}, then
lim 2(7)" x = 5; () x in norm for all x € X,
n—-oo
where 0, is the limit measure associated with u.

Proof. (a) By the Prokhorov theorem [2, Theorem 8.6.2], the set {u" : n € N}
is uniformly tight. It follows that the set

1w |
Z—Z/xl : n€N§
n

i=1

is also uniformly tight. Since u is power bounded, by Proposition 4.1,

In view of Lemma 6.1,

1w
— lim — =0,
W im0 k=6
Let an arbitrary x € X, and ¢ € X be given. Since g — ¢ (7w (g)x) is a

bounded continuous function on G, we can write
1w ; 1w
1. , = ~ 1 — 1 - i’
lim (@, l_§=1, u(m) x) lim (- i§=1; u @ (m(g)x))

(6,459 (T (2) X)) = (9,8, () x).

This shows that
n
lim % Z a(m) x = é; () x weakly.
i=1

n—oo
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By Proposition 2.1,
1w -
;Z;ﬁ(n')lx — 6, () x innorm for all x € X.
1=

(b) By (a), i () is a mean ergodic operator and é;(n) is the mean ergodic
projection associated with i (7). Since

@™ -a@"

by Proposition 2.3,

<=, =0 (a0,

lim 2 (7)" x = é; () x in norm for all x € X,.
n—-oo
O
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