New York Journal of Mathematics

New York J. Math. 30 (2024) 1029-1031

Erratum to "Higher-rank graph C^{*}-algebras"

Alex Kumjian, David Pask and Adian Sims

Abstract

We fix a longstanding error in [KP, Proposition 4.9] and provide a correct version of the result in the original generality.

1. A counterexample, the correct definition and the correct arguments

Some time ago the first two authors received the following advice from Aidan Sims: Consider the 2-graph from [PRRS, Figure 4] whose 1-skeleton determines its commuting squares

The 2-graph satisfies the hypothesis of [KP, Proposition 4.9], which would then say that the C^{*}-algebra of this graph is purely infinite. Yet the C^{*}-algebra of the above graph is Morita-Rieffel equivalent to the Bunce-Dendens algebra of type 2^{∞} which is an $A \mathbb{T}$-algebra and hence not purely infinite, [PRRS, Example 6.1]. Hence this graph is a counterexample to [KP, Proposition 4.9]. This is due to an incorrect definition of loop with an entrance given in the statement.

The correct definition of loop with an entrance is to be found in [S, Definition 8.7] and is given below.

Definition 1. Let Λ be a locally convex, row-finite k-graph. A loop with an entrance is an element $\mu \in \Lambda$ such that $r(\mu)=s(\mu)$ such that there exists $\alpha \in s(\mu) \Lambda$ such that $d(\mu) \geq d(\alpha)$ and $\mu(0, d(\alpha)) \neq \alpha$.

If the above definition had been used, then the proof in [KP, Proposition 4.9], using the results of [A-D], would have been correct. The condition originally used does not imply the groupoid is locally contracting as stated in the first sentence.

[^0]A correct published version of the result, is to be found in [S , Proposition 8.8]. The proof follows the one given in [BPRSz].

Theorem 2. Let Λ be an aperiodic, row-finite k-graph with no sources, such that every vertex can be reached from a loop with an entrance. Then every hereditary subalgebra has an infinite projection. Hence, if Λ is cofinal then $C^{*}(\Lambda)$ is purely infinite.

Remark 3. The condition (C) used in [S, Proposition 8.8], is a version of aperiodicity for k-graphs which are not necessarily row-finite. We briefly show that condition (C) reduces to condition (A) described in Definition [KP, Definition 4.3] under the hypotheses used in [KP, Proposition 4.9] and completes the description of the relationship between between the two results.

As Λ is row-finite with no sinks many of the hypotheses in condition (C) are trivial: Λ is finitely aligned, $F E(\Lambda)=\left\{v \Lambda^{n}: v \in \Lambda^{0}\right.$ and $\left.n \in \mathbb{N}^{k}\right\}$, and is equal to the satiation of this set in the sense of [S0, Definition 4.1], so

- $\partial(\Lambda ; F E(\Lambda))=\partial(\Lambda)$ where $\partial(\Lambda ; F E(\Lambda))$ is defined in [S0, Definition 4.3] and $\partial \Lambda$ is defined in [FMY, Definition 5.10].
- $\partial \Lambda=\Lambda^{\leq \infty}$ where $\Lambda^{\leq \infty}$ is defined in [RSY, Definition 2.8].
- $\Lambda^{\leq \infty}=\Lambda^{\infty}$ where Λ^{∞} is defined in [KP, Definitions 2.1].

By [LS, Proposition 3.6] one may then see that condition (C) reduces to condition (A) in [KP].

References

[A-D] ANANTHARAMAN-DELAROCHE, C. Purely infinite C^{*}-algebras arising from dynamical systems, Bull. Soc. Math. France 125 (1997), 199-225. MR1478030, Zbl 0896.46044. 1029
[BPRSz] BATES, T., PASK, D., RAEBURN, I., AND SZYMAŃSKI, W., The C^{*}-algebras of row-finite graphs, New York J. Math. 6 (2000), 307-324. MR1478030, Zbl 0976.46041. 1030
[FMY] FARTHING, C., MUHLY, P.S., AND YEEND, T., Higher-rank graph C^{*}-algebras: An inverse semigroup and groupoid approach, Semigroup Forum 71 (2005), 159-187. MR2184052, Zbl 1099.46036. 1030
[KP] KumJian, A. AND Pask, D., Higher rank graph C^{*}-algebras, New York J. Math. 6 (2000), 1-20. MR1745529, Zbl 0946.46044. 1029, 1030
[LS] LEWIN, P. AND SIMS, A., Aperiodicity and cofinality for finitely aligned higher-rank graphs, Math. Proc. Cambridge Philos. Soc. 149 (2010), 333-350. MR2670219, Zbl 1213.46047. 1030
[PRRS] Pask, D., RaEburn, I., RøRdam, M., And Sims, A., Rank-Two Graphs whose C^{*} algebras are direct limits of Circle Algebras, J. Funct. Anal. 239 (2006), 137-178. MR2258220, Zbl 1112.46042. 1029
[RSY] RAEBURN, I., SIMS, A., AND YEEND, T., The C*-algebras of finitely aligned higher rank graphs, J. Funct. Anal. 213 (2004), 206—240. MR2069786, Zbl 1063.46041. 1030
[S0] SIMS, A., Relative Cuntz-Krieger algebras of finitely aligned higher-rank graphs, Indiana Univ. Math. J. 55 (2006), 849-868. MR2225454. 1030
[S] SIMS, A., Gauge-invariant ideals in the C^{*}-algebras of finitely aligned higher-rank graphs, Canad. J. Math. 58 (2006), 1268-1290. MR2270926, Zbl 1115.46050. 1029, 1030
(Alex Kumjian) Department of Mathematics (084), University of Nevada, Reno, NV 89557-0084, USA
alex@unr.edu
(David Pask) School of Mathematics \& Applied Statistics, University of WollonGONG, NSW 2522, AUSTRALIA
david.a.pask@gmail.com
(Adian Sims) School of Mathematics \& Applied Statistics, University of WollonGONG, NSW 2522, AUSTRALIA
asims@uow.edu.au
This paper is available via http://nyjm.albany.edu/j/2024/30-46.html.

[^0]: Received July 13, 2024.
 2020 Mathematics Subject Classification. 46L05, 46L35 (primary) 18A10 (secondary).
 Key words and phrases. Pure infiniteness, aperiodicity, higher-rank graph C^{*}-algebras.

