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Correction to
“On 𝑩𝑻𝟏 group schemes and Fermat curves”

Rachel Pries and Douglas Ulmer

Abstract. We correct an error in Proposition 5.6(3) of [PU21] and revise
other statements in the paper accordingly.

1. Corrected 𝒖𝟏,𝟏-numbers
The calculation of 𝑢1,1-numbers in part (3) of Proposition 5.6 in Section 5.3

of [PU21] is incorrect. In this section, we give more details on part (2) of Propo-
sition 5.6 and a corrected statement and proof of part (3).
Before stating the result, we make the following definitions. Assume that 𝑤

is a primitive word of length 𝜆 > 2, and rotate 𝑤 so that it begins with 𝑓 and
ends with 𝑣. Define 𝑑(𝑤) and 𝑢(𝑤) as follows: each subword of 𝑤 of the form
𝑓2(𝑣𝑓)𝑒𝑣2 (where 𝑒 ≥ 0) contributes 1 to 𝑑(𝑤) and 𝑒 + 1 to 𝑢(𝑤). Examples:

𝑑(𝑓3𝑣2) = 1, 𝑢(𝑓3𝑣2) = 1, 𝑑(𝑓4𝑣𝑓2𝑣) = 0, 𝑢(𝑓4𝑣𝑓2𝑣) = 0,
𝑑(𝑓𝑣𝑓2𝑣𝑓𝑣3𝑓𝑣) = 1, 𝑢(𝑓𝑣𝑓2𝑣𝑓𝑣3𝑓𝑣) = 2,
𝑑(𝑓2𝑣2𝑓2𝑣𝑓𝑣2) = 2, 𝑢(𝑓2𝑣2𝑓2𝑣𝑓𝑣2) = 3.

The invariant 𝑑 defined here turns out to be the same as the 𝑢 of Proposition 5.6.
Also, as in Subsection 3.2, let 𝑟 be the integer such that (up to rotation)𝑤 can

be written in the form
𝑤 = 𝑣𝑛𝑟𝑓𝑚𝑟 ⋯𝑣𝑛1𝑓𝑚1

where all𝑚𝑖 and 𝑛𝑖 are ≥ 1.
The following replaces parts (2) and (3) of [PU21, Proposition 5.6].

Proposition. Let 𝑤 be a primitive word of length 𝜆 > 2.
(1) There is a bijection

Hom𝔻𝑘 (𝑀(𝑤),𝑀1,1) ≅ 𝑘𝑑(𝑤)+𝑟.
(2) The 𝑢1,1-number of𝑀(𝑤) is 𝑢(𝑤).

Proof. For (1), we use Lemma 3.1 to present𝑀(𝑤)with generators 𝐸0,… , 𝐸𝑟−1
(with indices taken modulo 𝑟) and relations 𝑉𝑛𝑖𝐸𝑖 = 𝐹𝑚𝑖𝐸𝑖−1. Let 𝑧0, 𝑧1 be a 𝑘-
basis of𝑀1,1 with 𝐹𝑧0 = 𝑉𝑧0 = 𝑧1 and 𝐹𝑧1 = 𝑉𝑧1 = 0. Then a homomorphism
𝜓 ∶ 𝑀(𝑤) → 𝑀1,1 is determined by its values on the generators 𝐸𝑖. Write

𝜓(𝐸𝑖) = 𝑎𝑖,0𝑧0 + 𝑎𝑖,1𝑧1.
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Then 𝜓 is a 𝔻𝑘-module homomorphism if and only if 𝑉𝑛𝑖𝜓 (𝐸𝑖) = 𝐹𝑚𝑖𝜓 (𝐸𝑖−1)
for 𝑖 = 1, … , 𝑟.
This leads to the system of equations:

𝑎1∕𝑝𝑖,0 if 𝑛𝑖 = 1
0 if 𝑛𝑖 > 1

} = {
𝑎𝑝𝑖−1,0 if𝑚𝑖 = 1
0 if𝑚𝑖 > 1

(*)

for 𝑖 ∈ ℤ∕𝑟ℤ. Note that the 𝑎𝑖,1 are all unconstrained, and this accounts for the
factor 𝑘𝑟 on the right hand side of the display in part (1).
Since 𝑤 is primitive of length > 2, we may rotate 𝑤 so that𝑚1 > 1 or 𝑛𝑟 > 1

(or both). First we deal with the case where all of the 𝑚𝑖 = 1 and 𝑛𝑟 > 1. The
definitions above give 𝑑(𝑤) = 𝑢(𝑤) = 0 in this case. On the other hand, the
system of equations for the 𝑎𝑖,0 reads

0 = 𝑎𝑝𝑟−1,0
𝑎1∕𝑝𝑟−1,0 if 𝑛𝑟−1 = 1
0 if 𝑛𝑟−1 > 1

} = 𝑎𝑝𝑟−2,0

⋮

𝑎1∕𝑝1,0 if 𝑛1 = 1
0 if 𝑛1 > 1

} = 𝑎𝑝0,0.

Clearly the only solution is 𝑎0,0 = ⋯ = 𝑎𝑟−1,0 = 0, and this shows that
Hom𝔻𝑘 (𝑀(𝑤),𝑀1,1) ≅ 𝑘𝑟 and that none of these homomorphisms are surjec-
tive, in agreement with the calculations 𝑑(𝑤) = 𝑢(𝑤) = 0.
Now we assume that at least one of the 𝑚𝑖 > 1, we rotate 𝑤 so that 𝑚1 is

one of them, and we write 1 = 𝑖1 < 𝑖2 < ⋯ for the set of indices such that
𝑚𝑖𝑗 > 1. Then the system (∗) breaks up into subsystems involving the variables
𝑎𝑖𝑗 ,0, … , 𝑎𝑖𝑗+1−1,0 and “controlled” by the subwords 𝑠 = 𝑣𝑛𝑖𝑗+1−1𝑓 …𝑣𝑛𝑖𝑗𝑓𝑚𝑖𝑗 . (All
the exponents of 𝑓 in this subword except 𝑚𝑖𝑗 are 1.) If none of the exponents
of 𝑣 are > 1, then an argument similar to that in the previous paragraph shows
that the only solution has 𝑎𝑖𝑗 ,0 = ⋯ = 𝑎𝑖𝑗+1−1,0 = 0.
For the main case, continue to focus on a subword

𝑠 = 𝑣𝑛𝑖𝑗+1−1 ⋯𝑓𝑚𝑖𝑗

and assume that some exponent of 𝑣 in 𝑠 is> 1. To streamline notation, rewrite
𝑠 in the form

𝑠 = 𝑣𝜈𝑡 ⋯𝑓𝜇1 = (𝑣𝑓)𝑒𝑣𝜈𝑡−𝑒 ⋯𝑓𝜇1

where 𝑒 ≥ 0 and we write 𝜈∙ for 𝑛𝑖𝑗+∙−1 and 𝜇∙ for 𝑚𝑖𝑗+∙−1. Note that we have
assumed that 𝜈𝑡−𝑒 > 1 and all 𝜇𝑖 = 1 except 𝜇1. Writing 𝑎∙ for 𝑎𝑚𝑖𝑗+∙−1,0, the
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relevant part of (∗) reads

𝑎1∕𝑝𝑡 = 𝑎𝑝𝑡−1
𝑎1∕𝑝𝑡−1 = 𝑎𝑝𝑡−2

⋮

𝑎1∕𝑝𝑚𝑡−𝑒+1 = 𝑎𝑝𝑡−𝑒
0 = 𝑎𝑝𝑡−𝑒−1

𝑎1∕𝑝𝑡−𝑒−1 if 𝜈𝑡−𝑒−1 = 1
0 if 𝜈𝑡−𝑒−1 > 1

} = 𝑎𝑝𝑡−𝑒−2,0

𝑎1∕𝑝𝑡−𝑒−2 if 𝜈𝑡−𝑒−1 = 1
0 if 𝜈𝑡−𝑒−1 > 1

} = 𝑎𝑝𝑡−𝑒−3,0

⋮

𝑎1∕𝑝1 if 𝜈1 = 1
0 if 𝜈1 > 1

} = 0.

The general solution of this system is given by choosing 𝑎𝑡 arbitrarily in 𝑘 and
letting

𝑎𝑡 = 𝑎𝑝
2

𝑡−1 = ⋯ = 𝑎𝑝
2𝑒

𝑡−𝑒 and 𝑎𝑡−𝑒−1 = ⋯ = 𝑎1 = 0. (**)
This shows that there is one free parameter in the general solution of (∗) for
each subword 𝑠 satisfying the hypotheses of this paragraph, and the general
solution involves (a highly non-linear!) combination of 𝑒 + 1 non-zero values.
To make the connection with the definitions of 𝑑(𝑤) and 𝑢(𝑤), note that the

number of subwords of 𝑤 = 𝑣𝑛𝑟 ⋯𝑓𝑚1 of the form (𝑣𝑓)𝑒𝑣>1⋯𝑓>1 is the same
as the number of subwords of the rotation 𝑓𝑚1𝑣𝑛𝑟 ⋯𝑣𝑛1 of the form 𝑓2(𝑣𝑓)𝑒𝑣2.
Thus the general solution of (∗) depends on exactly 𝑑(𝑤) + 𝑟 free parameters
from 𝑘. This completes the proof of part (1) of the proposition.
Turning to part (2), take an element 𝜙 ∈ Hom𝔻𝑘 (𝑀(𝑤),𝑀𝔲

1,1) for some inte-
ger 𝔲 > 0. The proof of part (1) gives explicit information about the matrix of
𝜙 (as a 𝑘-linear map) with respect to a suitable basis which we now record. For
an ordered basis of𝑀(𝑤), we take

𝐸1, … , 𝐸𝑟, 𝐹𝐸1, … , 𝐹𝐸𝑟, 𝑉𝐸1, … , 𝑉𝐸𝑟, …
where we omit 𝑉𝐸𝑖 if 𝑚𝑖 = 𝑛𝑖 = 1 (since in this case this element has already
appeared as 𝐹𝐸𝑖) and the final … stands for higher powers of 𝐹 or 𝑉 applied to
the 𝐸𝑖. As a basis of𝑀𝔲

1,1, we use 𝔲 copies of 𝑧0 followed by 𝔲 copies of 𝑧1.
Let 𝐴 be the matrix of 𝜙 with respect to these bases, and let 𝐴0 be the first

𝔲 rows of 𝐴. Then 𝐴0 is zero outside its first 𝑟 columns, and its rows consist
of zeroes and sequences 𝑎, 𝑎𝑝2 , 𝑎𝑝4 , … , 𝑎𝑝2𝑒 as described at (∗∗) above. In par-
ticular, only 𝑢(𝑤) of the columns of 𝐴0 may be non-zero. This implies that
𝑢1,1(𝑀(𝑤)) ≤ 𝑢(𝑤).



CORRECTION TO “ON 𝐵𝑇1 GROUP SCHEMES AND FERMAT CURVES” 1027

To see the reverse inequality, we choose solutions (∗∗) so that𝐴0 has a block
structure

⎛
⎜
⎝

0 𝐵1 0 0 …
0 0 0 𝐵2 …
⋮

⎞
⎟
⎠

where the 𝐵𝑖 correspond to the subwords 𝑓2(𝑣𝑓)𝑒𝑣2 of 𝑤 and have the shape

⎛
⎜
⎜
⎜
⎝

𝛼1 𝛼𝑝
2

1 𝛼𝑝
4

1 … 𝛼𝑝
2𝑒

1
𝛼2 𝛼𝑝

2

2 𝛼𝑝
4

2 … 𝛼𝑝
2𝑒

2
…
𝛼𝑒+1 𝛼𝑝

2

𝑒+1 𝛼𝑝
4

𝑒+1 … 𝛼𝑝
2𝑒

𝑒+1

⎞
⎟
⎟
⎟
⎠

Choosing the 𝛼𝑖 ∈ 𝑘 generically results in each of the 𝐵𝑖 having maximal rank,
namely 𝑒 + 1, and 𝐴0 having rank 𝑢(𝑤).
With these choices of solutions of (∗∗), the columns 𝑟+1,… , 2𝑟 of the bottom

half of𝐴 (corresponding to the basis elements𝐹𝐸1, … , 𝐹𝐸𝑟 and copies of 𝑧1) has
the shape

⎛
⎜
⎜
⎝

0 𝐵(𝑝)1 0 0 …
0 0 0 𝐵(𝑝)2 …
⋮

⎞
⎟
⎟
⎠

where 𝐵(𝑝) is obtained from 𝐵 by taking the 𝑝-th power of each entry. It fol-
lows that 𝐴 has rank 2𝑢(𝑤), so our choices of solutions to (∗∗) have produced
a surjection 𝑀(𝑤) ↠ 𝑀𝑢(𝑤)

1,1 , and this completes the proof that 𝑢1,1(𝑀(𝑤)) =
𝑢(𝑤). □

2. Other revisions
The correction to Proposition 5.6 requires minor revisions later in the paper:

∙ In Proposition 5.8 of [PU21], 𝑢1,1 should be replaced by
∑

𝑤 𝜇𝑤𝑑(𝑤),
where𝐻1

𝑑𝑅(𝑋) = ⊕𝑤𝑀(𝑤)𝜇𝑤 .
∙ In Proposition 5.9(4) of [PU21], the current formula for 𝑢1,1 is

⌊(𝓁−4)∕2⌋∑

𝑗=0
𝜇(—𝑣2(𝑓𝑣)𝑗𝑓2),

and the correct formula is
⌊(𝓁−4)∕2⌋∑

𝑗=0
(𝑗 + 1)𝜇(—𝑓2(𝑣𝑓)𝑗𝑣2).

∙ In the table of examples for 𝑔 = 4 in Section 5.6 of [PU21], the 𝑢1,1-
number in the line [0, 0, 1, 1] should be 2.
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∙ In part (4) of Proposition 10.3 in [PU21], one should add a coefficient
(𝑗 + 1) to the summand in the display, so the correct formula is

⌊(𝓁−4)∕2⌋∑

𝑗=0
(𝑗 + 1) (𝑝 + 1

2 )
2
(𝑝 − 1

2 )
2𝑗+1

(
𝑝𝓁−3−2𝑗 − 1

2 ) .

∙ Similarly, in part (4) of Proposition 11.3 in [PU21], the correct formula
is

⌊(𝜆−4)∕2⌋∑

𝑗=0
(𝑗 + 1) (𝑝 + 1

2 )
2
(𝑝 − 1

2 )
2𝑗+1

(
𝑝𝜆−3−2𝑗 + 1

2 )

+

⎧
⎪
⎨
⎪
⎩

0 if 𝜆 = 1,
(𝜆−1

2

) (𝑝+1
2

)2 (𝑝−1
2

)𝜆−2
if 𝜆 > 1 and odd,

(𝜆
2

) (𝑝+1
2

) (𝑝−1
2

)𝜆−1
if 𝜆 even.
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