New York Journal of Mathematics

Correction to "On $B T_{1}$ group schemes and Fermat curves"

Rachel Pries and Douglas Ulmer

Abstract

We correct an error in Proposition 5.6(3) of [PU21] and revise other statements in the paper accordingly.

1. Corrected $\boldsymbol{u}_{1,1}$-numbers

The calculation of $u_{1,1}$-numbers in part (3) of Proposition 5.6 in Section 5.3 of [PU21] is incorrect. In this section, we give more details on part (2) of Proposition 5.6 and a corrected statement and proof of part (3).

Before stating the result, we make the following definitions. Assume that w is a primitive word of length $\lambda>2$, and rotate w so that it begins with f and ends with v. Define $d(w)$ and $u(w)$ as follows: each subword of w of the form $f^{2}(\nu f)^{e} v^{2}$ (where $e \geq 0$) contributes 1 to $d(w)$ and $e+1$ to $u(w)$. Examples:

$$
\begin{gathered}
d\left(f^{3} v^{2}\right)=1, \quad u\left(f^{3} v^{2}\right)=1, \quad d\left(f^{4} v f^{2} v\right)=0, \quad u\left(f^{4} v f^{2} v\right)=0, \\
d\left(f v f^{2} v f v^{3} f v\right)=1, \quad u\left(f v f^{2} v f v^{3} f v\right)=2, \\
d\left(f^{2} v^{2} f^{2} v f v^{2}\right)=2, \quad u\left(f^{2} v^{2} f^{2} v f v^{2}\right)=3 .
\end{gathered}
$$

The invariant d defined here turns out to be the same as the u of Proposition 5.6.
Also, as in Subsection 3.2, let r be the integer such that (up to rotation) w can be written in the form

$$
w=v^{n_{r}} f^{m_{r}} \cdots v^{n_{1}} f^{m_{1}}
$$

where all m_{i} and n_{i} are ≥ 1.
The following replaces parts (2) and (3) of [PU21, Proposition 5.6].
Proposition. Let w be a primitive word of length $\lambda>2$.
(1) There is a bijection

$$
\operatorname{Hom}_{\mathbb{D}_{k}}\left(M(w), M_{1,1}\right) \cong k^{d(w)+r} .
$$

(2) The $u_{1,1}$-number of $M(w)$ is $u(w)$.

Proof. For (1), we use Lemma 3.1 to present $M(w)$ with generators E_{0}, \ldots, E_{r-1} (with indices taken modulo r) and relations $V^{n_{i}} E_{i}=F^{m_{i}} E_{i-1}$. Let z_{0}, z_{1} be a k basis of $M_{1,1}$ with $F z_{0}=V z_{0}=z_{1}$ and $F z_{1}=V z_{1}=0$. Then a homomorphism $\psi: M(w) \rightarrow M_{1,1}$ is determined by its values on the generators E_{i}. Write

$$
\psi\left(E_{i}\right)=a_{i, 0} z_{0}+a_{i, 1} z_{1} .
$$

Received July 8, 2024.

Then ψ is a \mathbb{D}_{k}-module homomorphism if and only if $V^{n_{i}} \psi\left(E_{i}\right)=F^{m_{i}} \psi\left(E_{i-1}\right)$ for $i=1, \ldots, r$.

This leads to the system of equations:

$$
\left.\begin{array}{ll}
a_{i, 0}^{1 / p} & \text { if } n_{i}=1 \tag{*}\\
0 & \text { if } n_{i}>1
\end{array}\right\}= \begin{cases}a_{i-1,0}^{p} & \text { if } m_{i}=1 \\
0 & \text { if } m_{i}>1\end{cases}
$$

for $i \in \mathbb{Z} / r \mathbb{Z}$. Note that the $a_{i, 1}$ are all unconstrained, and this accounts for the factor k^{r} on the right hand side of the display in part (1).

Since w is primitive of length >2, we may rotate w so that $m_{1}>1$ or $n_{r}>1$ (or both). First we deal with the case where all of the $m_{i}=1$ and $n_{r}>1$. The definitions above give $d(w)=u(w)=0$ in this case. On the other hand, the system of equations for the $a_{i, 0}$ reads

$$
\left.\begin{array}{rl}
& 0
\end{array} \begin{array}{rl}
& a_{r-1,0}^{p} \\
\left.\begin{array}{ll}
a_{r-1,0}^{1 / p} & \text { if } n_{r-1}=1 \\
0 & \text { if } n_{r-1}>1
\end{array}\right\} & =a_{r-2,0}^{p} \\
\vdots \\
\left.\begin{array}{cl}
a_{1,0}^{1 / p} & \text { if } n_{1}=1 \\
0 & \text { if } n_{1}>1
\end{array}\right\}
\end{array}\right\}=a_{0,0}^{p} .
$$

Clearly the only solution is $a_{0,0}=\cdots=a_{r-1,0}=0$, and this shows that $\operatorname{Hom}_{\mathbb{D}_{k}}\left(M(w), M_{1,1}\right) \cong k^{r}$ and that none of these homomorphisms are surjective, in agreement with the calculations $d(w)=u(w)=0$.

Now we assume that at least one of the $m_{i}>1$, we rotate w so that m_{1} is one of them, and we write $1=i_{1}<i_{2}<\cdots$ for the set of indices such that $m_{i_{j}}>1$. Then the system (*) breaks up into subsystems involving the variables $a_{i_{j}, 0}, \ldots, a_{i_{j+1}-1,0}$ and "controlled" by the subwords $s=v^{n_{i_{j+1}-1}} f \ldots v^{n_{i j}} f^{m_{i_{j}}}$. (All the exponents of f in this subword except $m_{i_{j}}$ are 1.) If none of the exponents of v are >1, then an argument similar to that in the previous paragraph shows that the only solution has $a_{i_{j}, 0}=\cdots=a_{i_{j+1}-1,0}=0$.

For the main case, continue to focus on a subword

$$
s=v^{n_{i j+1}-1} \cdots f^{m_{i_{j}}}
$$

and assume that some exponent of v in s is >1. To streamline notation, rewrite s in the form

$$
s=v^{\nu_{t}} \cdots f^{\mu_{1}}=(v f)^{e} v^{v_{t-e}} \cdots f^{\mu_{1}}
$$

where $e \geq 0$ and we write ν. for $n_{i_{j}+--1}$ and μ. for $m_{i_{j}+--1}$. Note that we have assumed that $\nu_{t-e}>1$ and all $\mu_{i}=1$ except μ_{1}. Writing a. for $a_{m_{i_{j}+-1,0}}$, the
relevant part of $(*)$ reads

$$
\begin{aligned}
& a_{t}^{1 / p}=a_{t-1}^{p} \\
& a_{t-1}^{1 / p}=a_{t-2}^{p} \\
& \vdots \\
& a_{m_{t-c+1}}^{1 / p}=a_{t-e}^{p} \\
& 0=a_{t-e-1}^{p} \\
& \left.\begin{array}{ll}
a_{t-e-1}^{1 / p} & \text { if } v_{t-e-1}=1 \\
0 & \text { if } v_{t-e-1}>1
\end{array}\right\}=a_{t-e-2,0}^{p} \\
& \left.\begin{array}{ll}
a_{t-e-2}^{1 / p} & \text { if } v_{t-e-1}=1 \\
0 & \text { if } v_{t-e-1}>1
\end{array}\right\}=a_{t-e-3,0}^{p} \\
& \left.\begin{array}{ll}
a_{1}^{1 / p} & \text { if } \nu_{1}=1 \\
0 & \text { if } \nu_{1}>1
\end{array}\right\}=0 .
\end{aligned}
$$

The general solution of this system is given by choosing a_{t} arbitrarily in k and letting

$$
\begin{equation*}
a_{t}=a_{t-1}^{p^{2}}=\cdots=a_{t-e}^{p^{2 e}} \quad \text { and } \quad a_{t-e-1}=\cdots=a_{1}=0 . \tag{**}
\end{equation*}
$$

This shows that there is one free parameter in the general solution of (*) for each subword s satisfying the hypotheses of this paragraph, and the general solution involves (a highly non-linear!) combination of $e+1$ non-zero values.

To make the connection with the definitions of $d(w)$ and $u(w)$, note that the number of subwords of $w=v^{n_{r}} \cdots f^{m_{1}}$ of the form ($\left.v f\right)^{e} v^{>1} \cdots f^{>1}$ is the same as the number of subwords of the rotation $f^{m_{1}} v^{n_{r}} \cdots v^{n_{1}}$ of the form $f^{2}(v f)^{e} v^{2}$. Thus the general solution of $(*)$ depends on exactly $d(w)+r$ free parameters from k. This completes the proof of part (1) of the proposition.

Turning to part (2), take an element $\phi \in \operatorname{Hom}_{\mathbb{D}_{k}}\left(M(w), M_{1,1}^{\mathfrak{u}}\right)$ for some integer $\mathfrak{u}>0$. The proof of part (1) gives explicit information about the matrix of ϕ (as a k-linear map) with respect to a suitable basis which we now record. For an ordered basis of $M(w)$, we take

$$
E_{1}, \ldots, E_{r}, F E_{1}, \ldots, F E_{r}, V E_{1}, \ldots, V E_{r}, \ldots
$$

where we omit $V E_{i}$ if $m_{i}=n_{i}=1$ (since in this case this element has already appeared as $F E_{i}$) and the final ... stands for higher powers of F or V applied to the E_{i}. As a basis of $M_{1,1}^{\mathfrak{u}}$, we use $\mathfrak{u t}$ copies of z_{0} followed by \mathfrak{u} copies of z_{1}.

Let A be the matrix of ϕ with respect to these bases, and let A_{0} be the first \mathfrak{u} rows of A. Then A_{0} is zero outside its first r columns, and its rows consist of zeroes and sequences $a, a^{p^{2}}, a^{p^{4}}, \ldots, a^{p^{2 e}}$ as described at (**) above. In particular, only $u(w)$ of the columns of A_{0} may be non-zero. This implies that $u_{1,1}(M(w)) \leq u(w)$.

To see the reverse inequality, we choose solutions $(* *)$ so that A_{0} has a block structure

$$
\left(\begin{array}{ccccc}
0 & B_{1} & 0 & 0 & \ldots \\
0 & 0 & 0 & B_{2} & \cdots \\
\vdots & & & &
\end{array}\right)
$$

where the B_{i} correspond to the subwords $f^{2}(v f)^{e} v^{2}$ of w and have the shape

$$
\left(\begin{array}{ccccc}
\alpha_{1} & \alpha_{1}^{p^{2}} & \alpha_{1}^{p^{4}} & \ldots & \alpha_{1}^{p^{2 e}} \\
\alpha_{2} & \alpha_{2}^{p^{2}} & \alpha_{2}^{p^{4}} & \ldots & \alpha_{2}^{p^{2 e}} \\
\ldots & & & & \\
\alpha_{e+1} & \alpha_{e+1}^{p^{2}} & \alpha_{e+1}^{p^{4}} & \ldots & \alpha_{e+1}^{p^{2 e}}
\end{array}\right)
$$

Choosing the $\alpha_{i} \in k$ generically results in each of the B_{i} having maximal rank, namely $e+1$, and A_{0} having rank $u(w)$.

With these choices of solutions of $(* *)$, the columns $r+1, \ldots, 2 r$ of the bottom half of A (corresponding to the basis elements $F E_{1}, \ldots, F E_{r}$ and copies of z_{1}) has the shape

$$
\left(\begin{array}{ccccc}
0 & B_{1}^{(p)} & 0 & 0 & \cdots \\
0 & 0 & 0 & B_{2}^{(p)} & \cdots \\
\vdots & & & &
\end{array}\right)
$$

where $B^{(p)}$ is obtained from B by taking the p-th power of each entry. It follows that A has rank $2 u(w)$, so our choices of solutions to $(* *)$ have produced a surjection $M(w) \rightarrow M_{1,1}^{u(w)}$, and this completes the proof that $u_{1,1}(M(w))=$ $u(w)$.

2. Other revisions

The correction to Proposition 5.6 requires minor revisions later in the paper:

- In Proposition 5.8 of [PU21], $u_{1,1}$ should be replaced by $\sum_{w} \mu_{w} d(w)$, where $H_{d R}^{1}(X)=\oplus_{w} M(w)^{\mu_{w}}$.
- In Proposition 5.9(4) of [PU21], the current formula for $u_{1,1}$ is

$$
\sum_{j=0}^{\lfloor(\ell-4) / 2\rfloor} \mu\left(-v^{2}(f v)^{j} f^{2}\right)
$$

and the correct formula is

$$
\sum_{j=0}^{\lfloor(\ell-4) / 2\rfloor}(j+1) \mu\left(-f^{2}(v f)^{j} v^{2}\right)
$$

- In the table of examples for $g=4$ in Section 5.6 of [PU21], the $u_{1,1^{-}}$ number in the line $[0,0,1,1]$ should be 2 .
- In part (4) of Proposition 10.3 in [PU21], one should add a coefficient $(j+1)$ to the summand in the display, so the correct formula is

$$
\sum_{j=0}^{\lfloor(\ell-4) / 2\rfloor}(j+1)\left(\frac{p+1}{2}\right)^{2}\left(\frac{p-1}{2}\right)^{2 j+1}\left(\frac{p^{\ell-3-2 j}-1}{2}\right) .
$$

- Similarly, in part (4) of Proposition 11.3 in [PU21], the correct formula is

$$
\begin{aligned}
& \sum_{j=0}^{\lfloor(\lambda-4) / 2\rfloor}(j+1)\left(\frac{p+1}{2}\right)^{2}\left(\frac{p-1}{2}\right)^{2 j+1}\left(\frac{p^{\lambda-3-2 j}+1}{2}\right) \\
&+ \begin{cases}0 & \text { if } \lambda=1 \\
\left(\frac{\lambda-1}{2}\right)\left(\frac{p+1}{2}\right)^{2}\left(\frac{p-1}{2}\right)^{\lambda-2} & \text { if } \lambda>1 \text { and odd, } \\
\left(\frac{\lambda}{2}\right)\left(\frac{p+1}{2}\right)\left(\frac{p-1}{2}\right)^{\lambda-1} & \text { if } \lambda \text { even. }\end{cases}
\end{aligned}
$$

References

[PU21] Pries, R. And Ulmer, D. On BT1 group schemes and Fermat curves, New York J. Math. 27 (2021), 705-739. MR4250272, Zbl 1471.11200. 1024, 1027, 1028
(Rachel Pries) DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523, USA
pries@colostate.edu
(Douglas Ulmer) Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
ulmer@arizona.edu
This paper is available via http://nyjm.albany.edu/j/2024/30-45.html.

