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Automatic continuity of pure
mapping class groups

Ryan Dickmann

Abstract. We completely classify the orientable infinite-type surfaces 𝑆
such that PMap(𝑆), the pure mapping class group, has automatic continu-
ity. This classification includes surfaces with noncompact boundary. In the
case of surfaces with finitely many ends and no noncompact boundary com-
ponents, we prove the mapping class groupMap(𝑆) does not have automatic
continuity. We also completely classify the surfaces such that PMap𝑐(𝑆), the
subgroup of the pure mapping class group composed of elements with rep-
resentatives that can be approximated by compactly supported homeomor-
phisms, has automatic continuity. In some cases when PMap𝑐(𝑆) has auto-
matic continuity, we showanyhomomorphism fromPMap𝑐(𝑆) to a countable
group is trivial.
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1. Introduction
Asurfacewill refer to a second-countable, connected, orientable, 2-manifold,

possiblywith boundary. LetHomeo𝜕(𝑆) be the group of (orientation-preserving)
homeomorphisms of 𝑆 that fix the boundary pointwise. The mapping class
groupMap(𝑆) is defined to be

Map(𝑆) = Homeo𝜕(𝑆)∕ ∼
where two homeomorphisms are equivalent if they are isotopic relative to the
boundary of 𝑆. A degenerate endwill refer to an endwith a closed neighborhood
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homeomorphic to a diskwith boundary points removed. Throughout the paper,
we assume surfaces do not have degenerate ends, since filling in degenerate
ends does not change the underlying mapping class group.
A surface is said to be of infinite type when 𝜋1 is infinitely generated, other-

wise, it is of finite type. A Polish group is a topological group that is separable
and completely metrizable. In the finite-type case, mapping class groups of
surfaces are finitely generated and are therefore countable with no interesting
Polish group structure. Mapping class groups for infinite-type surfaces, how-
ever, are uncountable and are Polish groups when given the quotient topology
inherited from the compact-open topology on Homeo𝜕(𝑆).
Mann [7] proved that certain mapping class groups of infinite-type surfaces

without boundary have automatic continuity; i.e., every homomorphism from
these groups to a separable group is continuous. Mann also found examples
of mapping class groups that admit discontinuous homomorphisms to a finite
group and asked which mapping class groups have automatic continuity. To-
wards this question, we fully classify the pure mapping class groups that have
automatic continuity.
Pure mapping class groups. The pure mapping class group of a surface, denoted
PMap(𝑆), is the subgroup of the mapping class group consisting of elements
that fix the ends of the surface. A disk with handles will refer to any surface
that can be constructed by taking a disk, removing a closed, totally disconnected
set from the boundary (whose points become the ends of the surface), and then
attaching infinitelymany handles accumulating to some subset of the ends. See
Figure 1 for an example. The assumption of infinitely many handles is simply
to rule out finite-type cases.

Theorem A. Let 𝑆 be an infinite-type surface. Then PMap(𝑆) has automatic
continuity if and only if
(i) 𝑆 is a connected sum of finitely many disks with handles with any finite-type

surface, and
(ii) 𝑆 has finitely many ends accumulated by genus.
The finite-type surface is necessary in the first condition to capture addi-

tional caseswithfinitelymany compact boundary components andfinitelymany
punctures. The final condition is required since, for surfaces with infinitely
many ends accumulated by genus, we show there is a discontinuous homo-
morphism PMap(𝑆) → ℤ2 which factors through ℤ𝜔, the infinite countable
product. If we equip ℤ with the discrete topology, then ℤ𝜔 is a Polish group
with the product topology. The map toℤ𝜔 is given by the work of Aramayona–
Patel–Vlamis in the compact boundary case [1], and this was extended by the
author to the noncompact boundary case [5]. More precisely, their works show
PMap(𝑆) = PMap𝑐(𝑆) when 𝑆 has at most one end accumulated by genus, and
otherwise PMap(𝑆) factors into a semidirect product of a special subgroup with
ℤ𝑛 where 𝑛 is finite if and only if there are finitely many ends accumulated by
genus. We now discuss PMap𝑐(𝑆) further.
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Figure 1. A visualization of a diskwith handleswith two ends.
The handle attaching procedure in this case joins together the
bottom two ends of the disk into a single end. By Theorem
A, PMap(𝑆) has automatic continuity for this surface. Note
Map(𝑆) = PMap(𝑆) for any disk with handles since fixing the
boundary forces the ends to be fixed.

Closure of the subgroup of compactly supported maps. We say 𝑓 ∈ Map(𝑆) is
compactly supported if 𝑓 has a representative that is the identity outside of a
compact subset of 𝑆. The subgroup consisting of compactly supportedmapping
classes is denoted PMap𝑐(𝑆) since every compactly supported mapping class is
pure. The closure of this subgroup, denoted PMap𝑐(𝑆), can be described as the
subgroup composed of elements with representatives that can be approximated
by compactly supported homeomorphisms. We also fully classify the PMap𝑐(𝑆)
that have automatic continuity.

Theorem B. Let 𝑆 be an infinite-type surface. Then PMap𝑐(𝑆) has automatic
continuity if and only if 𝑆 is a connected sum of finitely many disks with handles
with any finite-type surface.

As a consequence of Mann’s result [7] of automatic continuity for the map-
ping class groups of the sphere minus the Cantor set and the plane minus the
Cantor set, Vlamis [12] showed that any homomorphism from these groups to
a countable group is trivial. Using a similar but independent proof, we show
the following.

Corollary 1.1. Let 𝑆 be a disk with handles. Then every homomorphism from
PMap𝑐(𝑆) to a countable group is trivial. Therefore, PMap𝑐(𝑆) contains no proper
normal subgroups of countable index and no proper subgroups of finite index.
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This is in stark contrast to the mapping class groups of finite-type surfaces
which are residually finite. One natural approach to studying infinite groups is
to investigate their finite quotients, but for the PMap𝑐(𝑆) of disks with handles,
we do not even have countable quotients to work with. Note that PMap(𝑆)
always has a proper normal subgroup of countable index when 𝑆 has at least
two ends accumulated by genus. In particular, when there are finitely many
ends accumulated by genus, PMap𝑐(𝑆) is the desired subgroup, and when there
are infinitelymany ends accumulated by genus, the kernel of the discontinuous
homomorphism to ℤ2 discussed above is the desired subgroup.
Mapping class groups. Using the same techniques in the proofs of the above
theorems, we are also able to comment on the automatic continuity of the full
mapping class groups.
Theorem 1.2. Suppose 𝑆 is an infinite-type surface with finitely many ends and
no noncompact boundary components. Then Map(𝑆) does not have automatic
continuity.
For example, the mapping class group of the ladder surface, the unique sur-

face with no boundary and exactly two ends each accumulated by genus, does
not have automatic continuity. We also extend the reverse direction of Theorem
A to the full mapping class group.
Theorem 1.3. Suppose 𝑆 is an infinite-type surface satisfying the conditions of
Theorem A. ThenMap(𝑆) has automatic continuity.

Outline. In Section 2, we discuss some background on surfaces with noncom-
pact boundary, and in Section 3, we discuss the tools needed to prove the reverse
directions of Theorems A and B. In Section 4.1, we prove the reverse directions
as well as Theorem 1.3 using adaptations Mann’s techniques [7] and tools from
the author for working with surfaces with noncompact boundary [5]. We also
use a new extension to a classical lemma of Sierpiński; see Section 3.2. In Sec-
tion 4.2, we prove the forward directions of Theorems A and B, and in Section
4.3, we prove Corollary 1.1 and Theorem 1.2.
Automatic continuity proofs largely rely on some form of self-similarity in a

given group, and in particular, we take advantage of the self-similarity of the
mapping class groups of the sliced Loch Ness monsters. A sliced Loch Ness
monster is any surface with nonempty boundary, no compact boundary com-
ponents, infinite genus, and one end. See Figure 3. The key idea is that any
sliced Loch Ness monster contains closed proper copies of itself, and therefore,
the mapping class group does as well; see Section 2.1. On the other hand, the
Loch Ness monster, the unique surface with one end, infinite genus, and empty
boundary, does not contain a closed proper copy of itself,1 and Domat and the
author showed its mapping class group does not have automatic continuity [6].

1It is unknownwhether the mapping class group of the Loch Ness monster contains a proper
copy of itself. A group that does not contain a proper copy of itself is known as co-Hopfian.
Aramayona–Leininger–McLeay [2] have studied the co-Hopfian property for mapping class
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Once we have found examples of surfaces such that PMap(𝑆) and PMap𝑐(𝑆)
have automatic continuity, the main difficulty in proving Theorems A and B
is ruling out the zoo of remaining surfaces. Note these theorems consider all
surfaces including those with complicated end spaces such as large countable
ordinals. Using the tools developed by the author for decomposing surfaces
into simpler pieces, we can reduce the complexity of the problem significantly.

Figure 2. Two subsurfaces 𝐾 and 𝐾′ in the same PMap𝑐(𝑆) orbit.

To find discontinuous homomorphisms in the remaining cases, we use the
work of Domat [6] who showed PMap𝑐(𝑆) admits uncountably many discon-
tinuous homomorphisms to ℚ with the discrete topology when 𝑆 contains a
certain infinite sequence of nondisplaceable subsurfaces. A nondisplaceable
subsurface in this case refers to a surface that cannot be mapped off of itself by
anymap inPMap𝑐(𝑆). Domat’s proof relies on subsurface projections ofMasur–
Minksy [8] to construct projection complexes of Bestvina–Bromberg–Fujiwara
[3]. For a given finite-type nondisplaceable subsurface 𝐾, a projection com-
plex is built using subsurface projections between subsurfaces in the orbit of 𝐾
under the action of PMap𝑐(𝑆) on the isotopy classes of subsurfaces in 𝑆. The
subsurface projection to 𝐾 is a map that takes a subsurface 𝐾′ (distinct from𝐾)
in the orbit of 𝐾 and outputs an element of the power set of the vertex set of
the curve graph of 𝐾. The vertex set of the curve graph is defined as the set of
isotopy classes of essential simple closed curves. Recall a curve is trivial when
it bounds a disk, peripheral when it bounds an annulus, and essential when it
is neither trivial nor peripheral. The subsurface projection to𝐾 is defined using

groups of infinite-type surfaces, and in particular they found uncountably many examples of
pure mapping class groups that are not co-Hopfian.
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the fact that 𝜕𝐾′ ∩𝐾 is a collection of curves and arcs in 𝐾. The arcs are turned
into curves by surgering on intervals in 𝜕𝐾. The issue for surfaces with non-
compact boundary is that there can exist nondisplaceable subsurfaces 𝐾 and
𝐾′ in the same PMap𝑐(𝑆) orbit such that 𝜕𝐾′ ∩ 𝐾 is the union of trivial arcs in
𝐾 (a trivial arc is one that bounds a disk). Trivial arcs yield trivial or peripheral
curves after surgery using the boundary of 𝐾, so the subsurface projection is
not well-defined. See Figure 2 for an example. We will see that the surfaces
from Theorem B are exactly those that do not have the special sequences of
nondisplaceable subsurfaces needed by Domat.

Acknowledgments. The author would like to thankKathrynMann for intro-
ducing him to automatic continuity and the many techniques used in Section
3. Thank you to the organizers of the 2019 AIM workshop for surfaces of infi-
nite type. Thank you toDanMargalit, Roberta Shapiro, and SanghoonKwak for
comments on an earlier draft. Thank you to an anonymous referee for carefully
reading this paper.

2. Surfaces with noncompact boundary
Here we discuss some background on surfaces with noncompact boundary

needed for the proofs of Theorems A and B. We will assume the reader is fa-
miliar with the Richards classification of infinite-type surfaces without bound-
ary [9] as well as the definition of the ends space of a surface, planar ends,
and ends accumulated by genus. These definitions apply without adaptation to
surfaces with noncompact boundary. The first adaptation needed for noncom-
pact boundary is that we must consider ends accumulated by compact bound-
ary, ends for which every closed neighborhood contains infinitely many com-
pact boundary components, then we must consider the noncompact boundary
components.

Boundary chains. Deleting the noncompact boundary components of a surface
induces a map 𝜋 from the ends space of the surface to the ends space of the
interior surface (for more details see [5], Section 4.2). For example, in Figure
3 deleting the noncompact boundary components induces a map sending the
two ends to the single end of the interior. Suppose 𝑒 is an end of the surface
that a noncompact boundary component points to, and let 𝑒o = 𝜋(𝑒) be the
corresponding end of the interior surface. Then we refer to 𝜋−1(𝑒o) as a bound-
ary chain, and we refer to any end in 𝜋−1(𝑒o) as a boundary end. Note any disk
with handles has a single boundary chain, and every end is a boundary end.
Other examples of surfaces with a single boundary chain can be constructed
by taking a disk, deleting a set from the boundary, and then attaching surfaces
without noncompact boundary componentswhere these attached surfacesmay
be infinite-type and may accumulate to the set of deleted points. An end that is
not a boundary end will be called an interior end. Though the boundary chain
is formally defined as a set of ends, we can also think of a boundary chain as
the corresponding union of noncompact boundary components.
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Brown–Messer classification of surfaces. The classification of infinite-type sur-
faces with boundary is due to Brown and Messer [4]. Roughly speaking, their
theorem states that surfaces with boundary are classified up to homeomor-
phism by the Richards classification data, the ends accumulated by compact
boundary, and additional data describing the boundary chains. The major
achievement of Brown and Messer was finding a way to represent this bound-
ary chain data, though it is fairly technical. Thus we will not state the actual
classification theorem, and instead, we will use tools of the author developed
for working with surfaces with boundary [5]. More examples of surfaces with
boundary can be found in Section 3 of the previous paper of the author.
Recall a sliced Loch Ness monster is any surface with nonempty boundary,

no compact boundary components, infinite genus, and one end. One immedi-
ate application of the classification of surfaces is that a sliced LochNessmonster
is determined by the number of boundary components. We will refer to an 𝑛-
sliced Loch Ness monster to emphasize the number of boundary components.
Note that 𝑛may be infinite.
Recall a disk with handles is a surface that can be constructed by taking a

disk, removing a closed, totally disconnected set from the boundary, and then
attaching infinitely many handles accumulating to some subset of the ends.
Sliced Loch Ness monsters are examples of disks with handles since we can
construct any sliced Loch Ness monster by attaching handles to a disk with
points removed from the boundary in a way that joins every end to a single
end.

Remark 2.1. We could have equivalently defined a sliced Loch Ness monster
as a disk with handles with exactly one end. There are other constructions of
sliced Loch Ness monsters that do not start with a single disk which will be
useful for the proof of Theorem A. We will discuss these in Section 2.1. See
Figure 3 for some examples.

Figure 3. A 1-sliced, a 2-sliced, and an ∞-sliced Loch Ness
monster with the noncompact boundary components repre-
sented by the bold lines. The blue shading represents a given
compact exhaustion {𝐾𝑖} for each surface.
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Cutting up a surfacewith boundary. The following result of the author [5] shows
that any surface with only ends accumulated by genus can be decomposed in
some sense into sliced Loch Ness monsters and Loch Ness monsters.

Lemma 2.2. Every disk with handles with every end accumulated by genus can
be cut along a collection of disjoint essential arcs into sliced Loch Ness monsters.
Furthermore, any infinite-type surface with every end accumulated by genus

can be cut along disjoint separating curves into components that are either
(i) Loch Ness monsters with compact boundary components added, or
(ii) disks with handles with compact boundary components added.

Cutting a surface 𝑆 along a curve or arc 𝛼 yields a possibly disconnected sur-
face with an identification map between subsets of the boundary such that the
quotient is 𝑆 and the image of the identified subsets under the quotient is 𝛼.
When we say compact boundary components are added, we mean open balls
with disjoint closures are removed. These components may have any number
of compact boundary components added, and if we add infinitely many we as-
sume they accumulate to some end of the original surface.
Recall a planar end is simply one that is not accumulated by genus. Due to

the assumption on degenerate ends in the introduction, a disk with handles
automatically has no planar ends, so we can apply the first part of Lemma 2.2
to any disk with handles. Note the second part of Lemma 2.2 does not imme-
diately extend to surfaces with planar ends since filling in a planar boundary
end may not be possible; for example, if it is accumulated by compact bound-
ary components or accumulated by boundary chains. For other decomposition
results concerning general surfaces, see Section 4 of the work of the author [5].
We will need the following result to justify the forward directions of Theo-

rems A and B.

Lemma 2.3. An infinite-type surface with nonempty boundary, finitely many
boundary chains, no compact boundary components, and no interior ends is a
connected sum of disks with handles.

Proof. By the assumption on interior ends, the only planar endsmust be bound-
ary ends. Since there are no compact boundary components and finitely many
boundary chains, these planar ends must be degenerate. Since we assumed in
the introduction that surfaces do not have degenerate ends, every end must be
accumulated by genus and we can apply the second part of Lemma 2.2 to cut
the surface along curves into disks with handles with compact boundary com-
ponents added and Loch Ness monsters with compact boundary added. Note
none of the components can be the second type since then there would be in-
terior ends, so we are done. □

2.1. Standard pieces of sliced Loch Ness monsters. Now we discuss cer-
tainmodels of the sliced Loch Ness monsters and a standard way to break them
into self-similar pieces. We represent the 1-sliced LochNessmonster as a closed
upper half-planewith a handle attached in a small ball about each integer point.
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Let𝑀𝑖 be the subsurface bounded by the lines 𝑥 = 𝑖− 1
2
and 𝑥 = 𝑖+ 1

2
for 𝑖 ∈ ℤ.

We refer to each𝑀𝑖 as a standard piece of the 1-sliced Loch Ness monster.

Figure 4. Shown in the shaded regions are disjoint represen-
tatives of the standard pieces for the 2-sliced Loch Ness mon-
ster.

Let 𝐾𝑛 denote a compact surface with zero genus and 𝑛 boundary compo-
nents when 𝑛 is finite. Let𝐾∞ denote the surface with 0 genus, no noncompact
boundary components, and exactly two ends that are accumulated by compact
boundary components. To construct an 𝑛-sliced Loch Ness monster with 𝑛 ≥ 2
and possibly infinite, first start with a disjoint union of 𝑛 copies of the closed
upper half-plane. Now for each interior integer point in the closed upper half-
plane apply the following construction: first, remove a small open ball about
the integer point in each of the𝑛 copies, then take a copy of𝐾𝑛 and attach 𝜕𝐾𝑛 to
the resulting boundary components. When 𝑛 is infinite, we arrange the closed
upper half-planes according to a ℤ-index. We then equip the components of
𝜕𝐾∞ with the natural ℤ-index and apply the attaching procedure respecting
the two indexes.
To construct the standard pieces in these cases, let 𝑀𝑖 be the subsurface

bounded by the 𝑛 copies of the lines 𝑥 = 𝑖 − 1
2
and 𝑥 = 𝑖 + 1

2
for 𝑖 ∈ ℤ.

See Figure 4 for an example where a small open neighborhood of the boundary
has been removed from each𝑀𝑖 to emphasize the standard pieces.

3. Tools
Wenow discuss the various tools needed in Section 4.1 to show that PMap(𝑆)

and PMap𝑐(𝑆) have automatic continuity for certain surfaces with noncompact
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boundary. These groups are related by the work of Aramayona–Patel–Vlamis
in the compact boundary case [1], and this was extended by the author to the
noncompact boundary case [5]:

Lemma 3.1. Let 𝑆 be an infinite-type surface.
PMap(𝑆) = PMap𝑐(𝑆) ⋊ 𝐻

where𝐻 ≅ ℤ𝑛−1 when there is a finite number 𝑛 > 1 of ends of 𝑆 accumulated by
genus, 𝐻 ≅ ℤ𝜔 when there are infinitely many ends accumulated by genus, and
𝐻 trivial otherwise.

Note this implies PMap𝑐(𝑆) = PMap(𝑆) for a one-ended surface such as a
sliced Loch Ness monster. Since PMap(𝑆) = Map(𝑆) in this case as well, we
will always use the latter notation for one-ended surfaces or subsurfaces.

3.1. Automatic continuity. The standard approach to proving automatic con-
tinuity is to prove a stronger but more tractable condition due to Rosendal–
Solecki [11]. We say a subset of a group is countably syndetic if countably many
left translates cover the entire group. A topological group is Steinhaus if there
exists an integer 𝑘 such that, for every countably syndetic symmetric subset𝑊
of 𝐺,𝑊𝑘 contains an open neighborhood of the identity.

Proposition 3.2 (Rosendal–Solecki). A Steinhaus Polish group has automatic
continuity.

We will also need a common fact used in automatic continuity proofs. This
result, as well as the result of Rosendal and Solecki, follows from the Baire cat-
egory theorem.

Proposition 3.3. Let 𝐺 be a Polish group and𝑊 ⊂ 𝐺 a countably syndetic sym-
metric set. Then there exists a neighborhood 𝑈 of the identity in 𝐺 such that𝑊2

is dense in𝑈.
In some cases, we will rule out automatic continuity by ruling out a weaker

property. A topological group is said to have the small index propertywhen any
countable index subgroup is open. The following is well-known.

Proposition 3.4. A Polish group that has automatic continuity has the small
index property.

Proof. Let 𝑆𝜔 denote the symmetric group on a countably infinite set. This is a
Polish group with the compact-open topology. Any countable index subgroup
𝐻 determines a homomorphism 𝜙 to 𝑆𝜔 by the left multiplication action on left
cosets. The subset of 𝑆𝜔 corresponding to permutations that fix𝐻 is open. The
pullback of this subset via 𝜙 is𝐻, which is open by automatic continuity. □

3.2. Sierpiński lemmas. To apply the same techniques used byMann [7], we
need the following result of Sierpiński.

Lemma 3.5 (Sierpiński). For an infinite countable setΛ, there is an uncountable
collection of infinite subsets {Ω𝛼}𝛼∈Γ ofΛ such that anyΩ𝛼∩Ω𝛽 is finite for 𝛼 ≠ 𝛽.
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Proof. Identify Λ with ℚ via a bijection, and let Γ = ℝ ⧵ ℚ. For any given
𝛼 ∈ Γ, let Ω𝛼 be any sequence of rational numbers converging to 𝛼. □

We also need an extension that allows us to apply the techniques to infinite
unions.

Lemma 3.6. For any product of infinite countable sets Λ × Λ′, there is an un-
countable collection of infinite subsets {Ω𝛼}𝛼∈Γ of Λ × Λ′ such that
(i) Ω𝛼 ∩ Ω𝛽 is finite for all 𝛼 ≠ 𝛽.
(ii) Ω𝛼 ∩ ({𝜆} × Λ′) is infinite for all 𝜆 ∈ Λ.
Proof. Let 𝛾1, 𝛾2, ... be an infinite sequence of irrationals independent over ℚ.
Now {𝛾𝑛ℚ}∞𝑛=1 is a collection of pairwise disjoint dense subsets of the reals.
Identify Λ via a bijection with ℕ, and then identify each {𝑛} × Λ′ by a bijection
with 𝛾𝑛ℚ. Let Γ = ℝ ⧵ (⋃∞

𝑛=1 𝛾𝑛ℚ). For any given 𝛼 ∈ Γ, choose any sequence
of numbers in

⋃∞
𝑛=1 𝛾𝑛ℚ converging to 𝛼 that includes infinitely many entries

of 𝛾𝑛ℚ for all 𝑛, and then let Ω𝛼 be the corresponding set of tuples (𝑛, 𝛾𝑛𝑞𝑛)
where 𝑞𝑛 ∈ ℚ. □

3.3. Tools of Mann. Using the previously discussed tools, we will now intro-
duce the main lemmas for our automatic continuity proofs, Lemmas 3.9 and
3.10. The proofs of these lemmas follow an argument from Section 4 of the pa-
per of Mann [7], and rely on a modified version of Lemma 3.2 from the same
paper. The original lemmawas applied to the homeomorphism group of aman-
ifold, but the proof can be adapted to work in the mapping class group setting.
We say a collection of disjoint subsurfaces {𝑆𝑖} of 𝑆 is admissible when any

product
∏

𝑖 𝑓𝑖 is a well-defined homeomorphism of 𝑆 for 𝑓𝑖 supported in 𝑆𝑖.
This condition is required in the statement of the following lemma sinceMann’s
proof uses infinite products of homeomorphisms, and these may not always
be well-defined. For example, consider a sequence of disjoint essential annuli
which all essentially intersect some compact subsurface. An infinite product
of Dehn twists about these annuli is not a well-defined mapping class of the
surface since, even after isotopy, the annuli accumulate at some point of the
compact subsurface, and there is no continuous extension of the infinite twist
to this point.

Lemma 3.7 (Mann). Let 𝑆 be an infinite-type surface, and 𝑊 ⊂ PMap𝑐(𝑆) a
countably syndetic symmetric set. Let 𝒜 be an infinite admissible collection of
disjoint closed subsurfaces of 𝑆 satisfying:

(1) There exists an infinite admissible collection of disjoint subsurfaces 𝑈𝑖 of
𝑆 such that each𝑈𝑖 contains an infinite family of disjoint subsurfaces be-
longing to𝒜.

(2) There exists 𝑝 ∈ ℕ such that, for each 𝐴 ∈ 𝒜, the subgroup of PMap𝑐(𝑆)
consisting of maps with support in𝐴, denoted PMap(𝐴), has commutator
length bounded by 𝑝.

Then there exists 𝐴 ∈ 𝒜 such that PMap(𝐴) is contained in𝑊8𝑝.
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We will also use the following result of the author [5].

Lemma 3.8. Let 𝑆 be a disk with handles. Then every element in PMap𝑐(𝑆) can
be written as the product of two commutators.

Lemma 3.9. Let 𝑆 be a surface containing a subsurface 𝑀 homeomorphic to
any sliced Loch Ness monster, {𝑀𝑛} the standard pieces of this sliced Loch Ness
monster, and𝑊 ⊂ PMap𝑐(𝑆) a countably syndetic symmetric set. Then there is a
finite set 𝐹 such that ∏

𝑛∉𝐹
Map(𝑀𝑛) ⊂ 𝑊80

Proof. Apply Lemma 3.7 with 𝒜 consisting of subsurfaces of the form 𝐴Λ =
∪𝑛∈Λ𝑀2𝑛 for some infinite set Λ ⊂ ℤ. Any collection of the 𝑀𝑖 is admissible
since we can extend a homeomorphism on the collection via the identity map
to 𝑆. Note 𝒜 satisfies the hypotheses of the lemma, since
(i) We can writeℤ as a countable disjoint union of infinite setsΛ𝑖, and define

𝑈𝑖 to be
⋃

𝑛∈Λ𝑖 𝑀2𝑛. Each such set contains a countable union of disjoint
elements of 𝒜.

(ii) Lemma 3.8 implies the same statement for the mapping class group of a
disjoint union of sliced LochNessmonsters. Thus, any element supported
in 𝐴Λ may be written as the product of two commutators.

We conclude that for some such subsurface 𝐴Λ ∈ 𝒜, we have Map(𝐴Λ) ⊂
𝑊16. Now we apply Lemma 3.5. Let {Ω𝛼} be an uncountable collection of infi-
nite subsets of Λ such thatΩ𝛼 ∩Ω𝛽 is finite for all 𝛼 ≠ 𝛽. Note we may assume
Λ and each Ω𝛼 contain infinitely many negative and positive integers.
Since all homeomorphisms are assumed to fix the boundary pointwise, we

first modify each 𝑀𝑖 by deleting a small regular open neighborhood of the 𝑥-
axis so that we can move them into one another with an appropriate homeo-
morphism. For each 𝛼, let 𝑓𝛼 be a homeomorphism supported in 𝑀 with the
following property. For each 𝑛 ∈ Ω𝛼, let 𝑓𝛼(𝑀2𝑛) be the smallest connected
subsurface containing the union of 𝑀2𝑛+1,𝑀2𝑛+2, ...,𝑀2𝑘−1 where 𝑘 ∈ Ω𝛼 is
the smallest element inΩ𝛼 larger than 𝑛, so that 𝑓𝛼 maps𝐴Ω𝛼 into the comple-
mentary region. Also let 𝑓𝛼 map the union of𝑀2𝑛+1,𝑀2𝑛+2, ...,𝑀2𝑘−1 into𝑀2𝑘.
Note this homeomorphism exists by the change of coordinates principle. Since
{Ω𝛼} is uncountable, there are some 𝛼 and 𝛽 such that 𝑓𝛼 and 𝑓𝛽 are in the same
left translate 𝑔𝑊 for some 𝑔 ∈ PMap𝑐(𝑆). Therefore, 𝑓−1𝛼 𝑓𝛽 and 𝑓−1𝛽 𝑓𝛼 are both
in𝑊2.
If 𝑛 ∉ Ω𝛼, then 𝑓𝛼(𝑀2𝑛) ⊆ 𝑀2𝑚 for some 𝑚 ∈ Ω𝛼. If 𝑚 ∉ Ω𝛽, then

𝑓−1𝛽 𝑓𝛼(𝑀2𝑛) is contained in some 𝑀2𝑘 where 𝑘 ∈ Ω𝛽 . Since Ω𝛼 ∩ Ω𝛽 is fi-
nite, we conclude that, with the exception of finitely many values of 𝑛 ∉ Ω𝛼,
the map 𝑓−1𝛽 𝑓𝛼 takes𝑀2𝑛 into 𝐴Ω𝛽 ⊂ 𝐴Λ.
Reversing the role of 𝛼 and 𝛽, the same argument shows that with only

finitely many exceptions of 𝑛 ∉ Ω𝛽, 𝑓−1𝛼 𝑓𝛽 takes every 𝑀2𝑛 into 𝐴Λ. Let 𝐹′
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be the union of these two exceptional sets of integers. Now write
⋃

𝑛∈ℤ𝑀2𝑛 as
the union of𝑋1 =

⋃
𝑛∉(Ω𝛼∪𝐹′)𝑀2𝑛,𝑋2 =

⋃
𝑛∉(Ω𝛽∪𝐹′)𝑀2𝑛, and𝑋3 =

⋃
𝑛∈𝐹′ 𝑀2𝑛.

𝑓−1𝛽 𝑓𝛼Map(𝑋1)(𝑓−1𝛽 𝑓𝛼)−1 ⊂ Map(𝐴Λ) ⊂ 𝑊16, and similarly
𝑓−1𝛼 𝑓𝛽Map(𝑋2)(𝑓−1𝛼 𝑓𝛽)−1 ⊂ Map(𝐴Λ) ⊂ 𝑊16.

It follows thatMap(𝑋1),Map(𝑋2) ⊂ 𝑊20, soMap(𝑋1∪𝑋2) ⊂ 𝑊40. Nowwe can
complete the proof by repeating the above argument to the union of the odd
𝑀𝑛. □

We can strengthen Lemma 3.9 using the upgraded Sierpiński lemma.

Lemma 3.10. Let 𝑆 be any surface containing a countable admissible family of
disjoint subsurfaces {𝑆𝑛} each homeomorphic to a sliced Loch Ness monster, and
𝑊 ⊂ PMap𝑐(𝑆) a countably syndetic symmetric set. Let {𝑀𝑛,𝑚}𝑚∈ℤ be the collec-
tion of standard pieces for 𝑆𝑛. Then there is a finite set 𝐹 such that∏

(𝑛,𝑚)∉𝐹
Map(𝑀𝑛,𝑚) ⊂ 𝑊80

Proof. We show the case where {𝑆𝑛}𝑛∈ℕ is infinite since the finite case is sim-
ilar. Apply Lemma 3.7 with 𝒜 consisting of subsurfaces of the form 𝐴Λ =⋃

𝑛∈ℕ,𝑚∈Λ𝑀𝑛,2𝑚 to show Map(𝐴Λ) ⊂ 𝑊16 for some infinite Λ ⊂ ℤ. Apply
Lemma 3.6 toℕ×Λ, so that {Ω𝛼}𝛼∈ℝ are infinite subsets ofℕ×Λwith the prop-
erties listed in the lemma. Note we may assume ℕ × Λ and each Ω𝛼 contain
infinitely many positive and negative integers in the second coordinate.
Modify all of the standard pieces slightly as before, then for each 𝛼, let 𝑓𝛼

be a map supported in
⋃

𝑖∈ℕ 𝑆𝑖 with the following property. For all (𝑛,𝑚) ∈
Ω𝛼, let 𝑓𝛼(𝑀𝑛,2𝑚) be the smallest connected subsurface containing the union of
𝑀𝑛,2𝑚+1,𝑀𝑛,2𝑚+2,...,𝑀𝑛,2𝑘−1 where 𝑘 is the smallest second component among
the elements of Ω𝛼 ∩ ({𝑛} × Λ) larger than 𝑚. Now the proof is completed as
before. □

3.4. Fragmentation. To work with the subgroup PMap𝑐(𝑆), we will use re-
sults of the author [5] for decomposing an element of PMap𝑐(𝑆) into simpler
pieces.

Lemma 3.11. Let 𝑆 be any infinite-type surface and 𝑓 ∈ PMap𝑐(𝑆). There exist
two sequences of compact subsurfaces {𝐾𝑖} and {𝐶𝑖}, with each sequence consisting
of disjoint surfaces, and 𝑔, ℎ ∈ PMap𝑐(𝑆) such that
(i) supp(𝑔) ⊆ ⋃

𝑖 𝐶𝑖 and supp(ℎ) ⊆
⋃

𝑖 𝐾𝑖 ,
(ii) 𝑓 = ℎ𝑔.
Furthermore, if 𝑆 is a disk with handles we can assume the following:
(i) Each 𝜕𝐾𝑖 and 𝜕𝐶𝑖 is a single essential simple closed curve.
(ii) 𝑆 ↘ ∪𝑖𝐾𝑖 and 𝑆 ↘ ∪𝑖𝐶𝑖 are homeomorphic to 𝑆 with compact boundary

components added accumulating to some subset of the ends.
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We use 𝑆 ↘ 𝐾 or 𝑆𝐾 to denote the surface obtained from cutting 𝑆 along
𝐾. Similar to the definition of cutting along a curve or arc, 𝑆𝐾 is a surface with
boundary with an identification map from some subset of 𝜕𝑆𝐾 to some subset
of 𝜕𝐾 such that the quotient on 𝑆𝐾 ⊔ 𝐾 is homeomorphic to 𝑆. Note we can
realize 𝑆𝐾 as a subsurface of 𝑆, in particular the closure of the complement of
𝐾.

4. Proof of main results
Nowwe are ready to prove the results from the introduction. First, we prove

the reverse directions of the main theorems as well as Theorem 1.3 using the
tools from the previous sections. Then we prove the forward directions using
the work Domat [6] and Lemma 2.3. We prove Corollary 1.1 and Theorem 1.2
afterward.

4.1. Reverse directions of Theorems A and B. First, we will prove the re-
verse direction of Theorem B, and then we will prove the reverse direction
of Theorem A and Theorem 1.3 with a similar method. Recall the Steinhaus
property implies automatic continuity by Proposition 3.2. Let Stab(𝐾) denote
the subgroup consisting of maps that pointwise fix a subsurface 𝐾. When 𝐾 is
finite-type, Stab(𝐾) is an open neighborhood of the identity, and the collection
of all such stabilizers is a neighborhood basis of the identity.

Proposition 4.1. Let 𝑆 be a connected sum of a finite-type surface with finitely
many disks with handles. Then PMap𝑐(𝑆) is Steinhaus with constant 328.
Proof. First, we explain the details for the sliced Loch Ness monster and then
discuss how to extend the argument to the other cases.
Case 1: sliced Loch Ness monsters. Suppose 𝑆 is any sliced Loch Ness monster.
Let𝑊 be any countably syndetic symmetric subset ofMap(𝑆). By Proposition
3.3, let 𝑈 be an open neighborhood of the identity such that𝑊2 is dense in 𝑈,
and find some compact subsurface 𝐾 such that Stab(𝐾) ⊆ 𝑈. Note that any
sliced Loch Ness monster 𝑆 has a compact exhaustion {𝐾𝑖} where each 𝑆 ↘ 𝐾𝑖
is homeomorphic to 𝑆 (see Figure 3). Thus we can assume that 𝑆𝐾 = 𝑆 ↘ 𝐾 is
homeomorphic to 𝑆 by replacing 𝐾 with a large enough 𝐾𝑖 if needed. Now we
want to show thatMap(𝑆𝐾) = Stab(𝐾) ⊆ 𝑊𝑘 for some 𝑘.
Let 𝑓 ∈ Map(𝑆𝐾) be any element. Let 𝑔 be one of the maps produced by

applying Lemma 3.11 to 𝑓, and assume the conditions of the second part of
Lemma 3.11 hold for 𝑔. Note here we are using Lemma 3.1 which implies
Map(𝑆𝐾) = PMap𝑐(𝑆𝐾). Let {𝐾𝑖} be the sequence of compact subsurfaces con-
taining the support of 𝑔. Let {𝑀𝑖} be the collection of standard pieces for 𝑆𝐾 .
We can assume by applying change of coordinates that each 𝑀𝑖 contains ex-
actly one of the 𝐾𝑖, and each 𝐾𝑖 appears in some 𝑀𝑖. By Lemma 3.9, we have
some cofinite union 𝑇 = ⋃

𝑖∈ℤ⧵𝐹𝑀𝑖 with Map(𝑇) ⊂ 𝑊80. Therefore, we can
find some 𝑔′ ∈ Map(𝑇) such that 𝑔′𝑔 ∈ PMap𝑐(𝑆𝐾). Now let 𝐾′ ⊂ 𝑆𝐾 be a
compact subsurface bounded by a single curve that contains the support of 𝑔′𝑔.
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Now using the density of𝑊2 inMap(𝑆𝐾), find some element 𝜙 ∈ 𝑊2 such that
𝜙(𝐾′) ⊂ 𝑇. It follows that 𝜙𝑔′𝑔𝜙−1 ∈ 𝑊80, and therefore 𝑔′𝑔 ∈ 𝑊84. Finally,
this gives 𝑔 ∈ 𝑊164, and since the above argument also applies to the other
element from fragmentation, 𝑓 ∈ 𝑊328.

Case 2: disks with handles. Now assume 𝑆 is a disk with handles, and let𝑊 be
a countably syndetic symmetric subset of PMap𝑐(𝑆). Let 𝑈 be an open neigh-
borhood of the identity such that 𝑊2 is dense in 𝑈, and find some compact
subsurface 𝐾 such that Stab(𝐾) ⊆ 𝑈. We now claim we can enlarge 𝐾 so that
each component of 𝑆𝐾 = 𝑆 ↘ 𝐾 has exactly one boundary chain and no com-
pact boundary components. First note that there exists a compact exhaustion
{𝐾𝑖} of 𝑆 such that each 𝜕𝐾𝑖 is a single component that intersects 𝜕𝑆 in a union
of closed intervals, and the components of 𝑆 ↘ 𝐾𝑖 are infinite-type without
compact boundary components. To build such an exhaustion, start with the
disk with boundary points removed used to construct 𝑆, call it 𝐷, and find a
compact exhaustion {𝐶𝑖} of 𝐷 such that each 𝐶𝑖 is a disk and each 𝐷 ↘ 𝐶𝑖 is a
union of disks with boundary points removed. Then we get the desired exhaus-
tion on 𝑆 by attaching handles to 𝐷 and modifying the 𝐶𝑖 accordingly. During
this last step, wemust require the attaching regions for any handle to be disjoint
from each 𝜕𝐶𝑖 and that whenever one attaching region of some handle is con-
tained in the interior of 𝐶𝑖, then then other attaching region is also contained
in the interior. Now note each 𝑆 ↘ 𝐾𝑖 has a single boundary chain since 𝑆 has
one boundary chain and all of the boundary components of 𝑆 ↘ 𝐾𝑖 point to
boundary ends of 𝑆. The claim follows by replacing 𝐾 with a large enough 𝐾𝑖
if needed. Now since 𝑆𝐾 is also infinite-type and has no interior ends, Lemma
2.3 implies 𝑆𝐾 is a disjoint union of disks with handles. The complement of any
compact subsurface necessarily has a finite number of components, so 𝑆𝐾 is a
finite disjoint union.
Let 𝑓 ∈ Map(𝑆𝐾) be any element. Let 𝑔 be one of the maps produced by

applying fragmentation to 𝑓, and assume the conditions of the second part of
Lemma 3.11 hold for 𝑔 when restricted to each component of 𝑆𝐾 . In this case,
we need to apply Lemma 3.11 to each component separately and then combine.
Let {𝐾𝑖} be the collection of compact subsurfaces containing the support of 𝑔.
Using Lemma 2.2, we can cut 𝑆𝐾 along a collection of disjoint arcs into sliced
Loch Ness monsters {𝑆𝑛}. We can also assume these arcs are chosen to miss the
𝐾𝑖.
Let {𝑀𝑛,𝑚} be the collection of standard pieces for 𝑆𝑛. By change of coordi-

nates, we can assume each𝑀𝑛,𝑚 contains exactly one𝐾𝑖, and each𝐾𝑖 appears in
some𝑀𝑛,𝑚. By Lemma 3.10, there is a finite set 𝐹 such that 𝑇 = ⋃

(𝑛,𝑚)∉𝐹𝑀𝑛,𝑚
andMap(𝑇) ⊂ 𝑊80. Proceed as before.

Case 3: connected sums. We now need to consider the general case when 𝑆 is a
connected sum of a finite-type surface with finitely many disks with handles.
Let 𝑊 be a countably syndetic symmetric subset of PMap𝑐(𝑆). Let 𝑈 be an
open neighborhood of the identity such that𝑊2 is dense in 𝑈, and find some
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finite-type subsurface𝐾 such that Stab(𝐾) ⊆ 𝑈. By choosing𝐾 large enough to
contain all the punctures and compact boundary components, we can ensure
each component of 𝑆 ↘ 𝐾 has one boundary chain, no interior ends, and no
compact boundary components. By applying Lemma2.3, we have that 𝑆 ↘ 𝐾 is
homeomorphic to a disjoint union of finitelymany disks with handles. Proceed
as in the disk with handles case. □

Now we show the reverse direction of Theorem A using similar techniques.
This will also prove Theorem 1.3, the extension to the full mapping class group.

Proposition 4.2. Let 𝑆 be a surface satisfying the conditions of Proposition 4.1
and with finitely many ends accumulated by genus. Then PMap(𝑆) andMap(𝑆)
are Steinhaus with constant 328.

Proof. Let𝑊 be a countably syndetic symmetric subset of PMap(𝑆). Let 𝑈 be
an open neighborhood of the identity such that𝑊2 is dense in𝑈, and find some
compact subsurface 𝐾 such that Stab(𝐾) ⊆ 𝑈. As before we can enlarge 𝐾 if
needed so that 𝑆 ↘ 𝐾 is homeomorphic to a disjoint union of finitely many
disks with handles. Since there are finitely many ends accumulated by genus,
we can further assume that each component of 𝑆 ↘ 𝐾 is a sliced Loch Ness
monster. This ensures that Stab(𝐾) ⊂ PMap𝑐(𝑆) so we can use fragmentation
as in the proof of Proposition 4.1 to show Stab(𝐾) ⊂ 𝑊328. The proof forMap(𝑆)
is identical. Note that wemust also use aminor adaptation of Lemma 3.7where
𝑊 is a countably syndetic symmetric subset of PMap(𝑆) or Map(𝑆) instead of
PMap𝑐(𝑆). □

4.2. Forward directions of Theorems A and B. Now we finish the proofs
of Theorems A and B using the work of Domat [6]. A nondisplaceable surface
in 𝑆 will refer to a subsurface 𝐾 disjoint from the noncompact boundary com-
ponents of 𝑆 such that 𝑓(𝐾) ∩ 𝐾 ≠ ∅ for all representatives of 𝑓 ∈ PMap𝑐(𝑆).
Note a subsurface 𝐾 is nondisplaceable if it separates ends; i.e., if 𝑆 ↘ 𝐾 is
disconnected and induces a partition of 𝐸(𝑆) into two or more sets. A subsur-
face is also nondisplaceable if it separates the ends of the interior surface, so a
subsurface that separates boundary components or separates a boundary com-
ponent from an end is also nondisplaceable. The following result is implicit
from Sections 6,7,8, and 10 of Domat’s paper.

Lemma 4.3 (Domat). Let 𝑆 be an infinite-type surface such that either
(i) 𝑆 has genus at least 3 and there exists an infinite sequence of disjoint nondis-

placeable essential annuli that eventually leaves every compact subsurface.
(ii) 𝑆 has any genus and there exists an infinite sequence of disjoint nondis-

placeable essential spheres with n punctures and b boundary components
for 𝑛 + 𝑏 ≥ 8, and the sequence eventually leaves every compact subsurface.

Then there exists a discontinuous homomorphism 𝜙 ∶ PMap𝑐(𝑆) → ℚ.
Although Domat’s work focused on surfaces with compact boundary, the

conditions in Lemma 4.3 hold for some surfaces with noncompact boundary,
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and the proof goes through without adaptation. For surfaces with only com-
pact boundary components, Domat showed the first condition holds when the
interior of 𝑆 has at least two ends and at least one end accumulated by genus
and the second condition holds when the interior has infinitely many ends.
In the case of the Loch Ness monster, there are no finite-type nondisplaceable
subsurfaces, so this case had to be handled separately. Domat and the author
showed in the appendix of Domat’s paper thatMap(𝑆) does not have automatic
continuity when 𝑆 is a Loch Ness monster.
Proof of Theorem B. Recall the reverse direction was shown in Proposition
4.1. When 𝑆 either has infinitely many interior planar ends, infinitely many
compact boundary components, infinitely many boundary chains, or at least
one interior end accumulated by genus we will show one of the conditions of
Lemma 4.3 is satisfied so that PMap𝑐(𝑆) does not have automatic continuity.
After possibly filling in the finite number of punctures and capping the finite
number of compact boundary components, we apply Lemma 2.3 to conclude 𝑆
is a connected sum of finitely many disks with handles. The original 𝑆 can then
be obtained by connect summing with a finite-type surface with punctures and
boundary components.

Case 1: infinitely many interior planar ends. When 𝑆 has infinitely many planar
interior ends, there is a closed neighborhood 𝑈 of one of these ends such that
each component of 𝜕𝑈 is compact, and𝑈 has infinitelymany planar ends. Now
this case reduces to the cases originally considered by Domat, and the second
condition of Lemma 4.3 holds.

Case 2: infinitely many compact boundary components. When 𝑆 has infinitely
many compact boundary components, there is some end accumulated by com-
pact boundary, and every closed neighborhood of this end contains infinitely
many compact boundary components. Let {𝑈𝑖} be a system of closed neigh-
borhoods of this end such that 𝑈𝑖+1 ⊂ 𝑈𝑖 for all 𝑖, and

⋂∞
𝑖=1𝑈𝑖 = ∅. Now

the second condition of Lemma 4.3 holds by inductively choosing an essential
punctured sphere in some sufficiently small𝑈𝑖 that misses the previously cho-
sen punctured spheres.

Case 3: infinitely many boundary chains. When 𝑆 has infinitely many boundary
chains, there is some end such that every closed neighborhood has infinitely
many boundary chains. Let {𝑈𝑖} be a system of closed neighborhoods of this
end satisfying the two properties from the previous case. Since the interior of
each 𝑈𝑖 has infinitely many ends, we can use an inductive procedure as before
to show the second condition of Lemma 4.3 holds.

Case 4: at least one interior end accumulated by genus. When 𝑆 has an interior
end accumulated by genus, there is a closed neighborhood 𝑈 of this end such
that each component of 𝜕𝑈 is compact, and 𝑈 has infinite genus. We can as-
sume 𝑆 is not the Loch Ness monster since this case was ruled out by Domat
and the author, so the interior of 𝑆 has at least two ends. Now this case reduces



996 RYAN DICKMANN

to the cases considered by Domat, and the first condition of Lemma 4.3 holds.
The interior of 𝑆 having at least two ends ensures that we can find annuli that
separate ends of the interior. □

Proof of Theorem A. Recall the reverse direction was shown in Proposition
4.2. Now we consider two cases, and then we are done by using Lemma 2.3 as
in Theorem B.

Case 1: infinitely many ends accumulated by genus. First, suppose 𝑆 has infin-
itely many ends accumulated by genus. Let 𝜙1 ∶ PMap(𝑆) → ℤ𝜔 be the projec-
tion mapping given by Lemma 3.1, and let 𝜙2 ∶ ℤ𝜔 → (ℤ2)𝜔 be the mod 2 ho-
momorphism. Nowweuse the discontinuous homomorphism𝜓 ∶ (ℤ2)𝜔 → ℤ2
from Example 1.4 of Rosendal [10]. Composing all of the above homomor-
phisms yields a discontinuous homomorphism 𝜓◦𝜙2◦𝜙1 ∶ PMap(𝑆) → ℤ2.
To show that 𝜓◦𝜙2◦𝜙1 is discontinuous we use the discontinuity of 𝜓 and the
fact that the 𝜙𝑖 are surjective and thus open by the open mapping theorem for
Polish groups.

Case 2: finitely many ends accumulated by genus. Now suppose 𝑆 has finitely
many ends accumulated by genus and satisfies one of the conditions for Lemma
4.3. Note PMap𝑐(𝑆) is a countable index subgroup of PMap(𝑆) by Lemma 3.1.
By Lemma 4.3, there is a map 𝜙 ∶ PMap𝑐(𝑆) → ℚ such that ker(𝜙) is not open.
Note we also have that ker(𝜙) is not open in PMap(𝑆). Since ker(𝜙) is countable
index in PMap𝑐(𝑆), it must also be countable index in PMap(𝑆). Now PMap(𝑆)
cannot have automatic continuity by Proposition 3.4. □

4.3. Consequences. Nowwefinishwith the proofs of some additional results.

Proof of Theorem 1.2. Recall the Loch Ness monster case was shown by Do-
mat and the author [6], so we can assume the interior of 𝑆 has at least two
ends. By Lemma4.3, PMap𝑐(𝑆)has a nonopen countable index subgroup. Since
PMap(𝑆) is finite index inMap(𝑆) by the assumption of finitely many ends, we
can apply the same proof as the second case of TheoremA to showMap(𝑆) does
not have automatic continuity. □

Proof of Corollary 1.1. Suppose 𝑆 is a disk with handles. Proceeding by con-
tradiction, let𝐻 be the kernel of a nontrivial map from PMap𝑐(𝑆) to a countable
groupwith the discrete topology. By automatic continuity,𝐻 is open and closed.
Since𝐻 is closed, it suffices to show that it contains every compactly supported
mapping class since then 𝐻 is dense in PMap𝑐(𝑆), and in fact 𝐻 = PMap𝑐(𝑆).
Since𝐻 is open, it contains Stab(𝐾) for some compact subsurface 𝐾. Now let 𝜙
be any compactly supported mapping class. Since 𝜙 fixes the boundary point-
wise, we can isotope it so that it is supported in a subsurface 𝐾′ that does not
intersect the boundary. Since 𝑆 is a disk with handles, its interior is a Loch
Ness monster, and there exists some homeomorphism supported in the inte-
rior that takes 𝐾′ into the complement of 𝐾. Therefore, a conjugate of 𝜙 lies in
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Stab(𝐾) ⊂ 𝐻, and we are done since𝐻 is normal. There are no proper finite in-
dex subgroups in PMap𝑐(𝑆) since any index 𝑛 subgroup determines a nontrivial
homomorphism to the symmetric group on 𝑛 elements via the left multiplica-
tion action on the left cosets. □
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