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Rapid decay for principal étale groupoids

AlexWeygandt

Abstract. This work concerns a generalization of property (RD) from dis-
crete groups to twisted étale groupoids equipped with a length function. We
show that, under the assumption that the étale groupoid is principal, twisted
property (RD) is equivalent to polynomial growth. This generalizes a result
of Chen and Wei concerning rapid decay for metric spaces with bounded ge-
ometry. Additionally, some permanence properties of groupoid (RD) are es-
tablished.
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1. Introduction
Let Γ be a discrete group, and let 𝓁 be a length function on Γ. Thismeans that

𝓁 is a mapping from Γ to the closed half-line [0,∞)which is subadditive, maps
the identity of Γ to 0, and is inverse-invariant. We then say that Γ has property
(RD) (short for rapid decay) with respect to 𝓁 if there exist constants 𝐶, 𝑡 ≥ 0
such that for all finitely supported 𝑓 ∶ Γ → ℂ, we have ‖𝑓‖𝐶∗𝑟 Γ ≤ 𝐶‖𝑓‖𝓁,𝑡.
Here, ‖ ⋅ ‖𝐶∗𝑟 Γ is the operator norm on 𝓁2Γ given by convolution, and ‖𝑓‖𝓁,𝑡 =
(∑𝛾∈Γ |𝑓(𝛾)|

2(1 + 𝓁(𝛾))2𝑡)1∕2 is the weighted 𝓁2-norm.
First shown to hold for free groups by Haagerup in [5], property (RD) for

groups was formally defined by Jolissaint in [9]. In that paper, they showed
that property (RD) is preserved under taking subgroups and extensions, and is
implied by polynomial growth and groups acting geometrically on hyperbolic
spaces. Building on the latter, de la Harpe showed [6] that property (RD) is
enjoyed by all Gromov hyperbolic groups. Hence property (RD) is satisfied by
a large class of groups, and in the past 30+ years many other classes of groups
have been shown to satisfy property (RD). For a more thorough survey of the
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history, and of classes of groups for which property (RD) is known, unknown,
or conjectured, we refer the reader to [1].
One of the first major applications of property (RD) to noncommutative ge-

ometry came in [4], where they used it to show that hyperbolic groups satisfy
the Novikov conjecture. They noted that property (RD) for a finitely generated
group Γ (with the word length function) gave a means of generating trace-like
maps on the 𝐾-theory of 𝐶∗𝑟 Γ from well-behaved cocycles on Γ (for a groupoid
generalization see proposition 6.4 in [7]). The next substantial application of
property (RD) came from Lafforgue in [12], whose analysis showed the Baum-
Connes conjecture holds for a large class of groups satisfying property (RD).
Here, it was important that property (RD) for Γ provides a Banach subalgebra
𝐴 of 𝐶∗𝑟 Γ containing ℂΓ such that (i) the inclusion map 𝐴 ↪ 𝐶∗𝑟 Γ induces an
isomorphism on 𝐾-theory, and (ii) the𝐴-norm of elements ofℂΓ depends only
on the magnitude of its coefficients (see [11]).
Several generalizations and analogues of rapid decay have appeared. Consid-

ering only functions on the group which are constant on spheres, one obtains
what is called radial rapid decay, as considered by Valette in [22]. In the ap-
pendix of [15], Chatterji defines a rapid decay property for groups with a given
2-cocycle. In another direction, one can consider rapid decay for representa-
tions of groups on 𝐿𝑝 spaces for 𝑝 ≠ 2, as done in [13].
Leaving the realm of groups, one can study a rapid decay property for metric

spaces, as done in [3] and [8] (also considered below). In another direction,
(RD) was also generalized to the setting of quantum groups, as in [23]. In [7],
property (RD) was extended to the setting of étale groupoids. In their work, it
is shown that several useful consequences of the group rapid decay property
extend to this generalized setting, and give some examples of groupoids admit-
ting (RD). Aside from groups, all examples of groupoids with the (RD) property
satisfy the polynomial growth condition, defined below. In the present work,
we show that for a large class of étale groupoids, this is about as much as one
can expect.
The goal of the present work is to introduce a rapid decay type property for

twisted étale groupoids, as introduced in [17]. This simultaneously generalizes
the results of [7] and the appendix of [15]. We show that, under mild topologi-
cal assumptions, principality conditions on the étale groupoid imply that rapid
decay (with or without twists) is equivalent to polynomial growth of the length
function (see Theorems 3.2 and 3.3).
The rest of the paper is organized as follows. In section 2, we provide some

background information on groupoids, twists, and their operator algebras, then
define property (RD) and list someknown consequences. Section 3 contains the
main results of the paper, where we show that for continuous length functions
and principal groupoids, property (RD) is equivalent to polynomial growth.
The last section is devoted to studying some permanence properties of prop-
erty (RD).
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2. Preliminaries
2.1. Groupoids, twists, and their algebras. In this sectionwe recall the def-
initions of groupoids, twists, and the (reduced) 𝐶∗-algebras associated to such
data. For additional background information, we refer the reader to [16, 24, 20].
By a groupoid we mean a small category in which every morphism is in-

vertible. We will typically denote groupoids by the calligraphic letters 𝒢 and
ℋ. Given a groupoid 𝒢, the set of objects of 𝒢 (considered a subset of 𝒢 by
identifying an object with its identity morphism) is called the unit space of 𝒢,
and is denoted by 𝒢(0). Additionally, we denote the source and range maps by
𝑠, 𝑟 ∶ 𝒢 → 𝒢(0), respectively, we denote the inverse map 𝒢 → 𝒢 by 𝛾 ↦ 𝛾−1,
and consider composition in the category to be a map from 𝒢(2) ∶= {(𝛾, 𝜎) ∈
𝒢 × 𝒢 ∶ 𝑠(𝛾) = 𝑟(𝜎)} to 𝒢, and write it (𝛾, 𝜎) ↦ 𝛾𝜎. Given two groupoids 𝒢,ℋ,
a groupoid homomorphism from 𝒢 toℋ is a map 𝜑 ∶ 𝒢 → ℋ that is compatible
with the source, range, product, and inversion maps.
Let 𝒢 be a groupoid. Given 𝑥 ∈ 𝒢(0), the source fiber of 𝑥 is the subset 𝒢𝑥 ∶=

{𝛾 ∈ 𝒢 ∶ 𝑠(𝛾) = 𝑥}, the range fiber at 𝑥 is 𝒢𝑥 ∶= {𝛾 ∈ 𝒢 ∶ 𝑟(𝛾) = 𝑥}, and
the isotropy group at 𝑥 is 𝒢𝑥𝑥 = 𝒢𝑥 ∩ 𝒢𝑥. The isotropy subgroupoid of 𝒢 is the
subgroupoid Iso(𝒢) = ⊔𝑥∈𝒢(0)𝒢𝑥𝑥. Note that there are inclusions 𝒢(0) ⊂ Iso(𝒢) ⊂
𝒢. We say that 𝒢 is a group bundle if Iso(𝒢) = 𝒢, and we say that 𝒢 is principal
if Iso(𝒢) = 𝒢(0).
In this paper, a topological groupoid is a groupoid 𝒢 equipped with a locally

compact and Hausdorff topology such that all the structure maps are continu-
ous, where the domain of the composition map, 𝒢(2), is given the relative prod-
uct topology.1 A topological groupoid is said to be étale if the source map is a
local homeomorphism. A subset 𝐾 of 𝒢 is a bisection if it is contained in an
open set𝑈 of 𝒢 such that the restrictions of the source and range maps to𝑈 are
homeomorphisms onto open subsets of 𝒢(0).
We now list some of the basic facts about étale groupoids which will be used

in the sequel. For proofs, one can consult the references listed at the beginning
of this section.

Proposition 2.1. Let 𝒢 be an étale groupoid.
(i) The unit space 𝒢(0) is a clopen subset of 𝒢.
(ii) For each 𝑥 ∈ 𝒢(0), the source and range fibres 𝒢𝑥 and 𝒢𝑥 are discrete

subspaces of 𝒢.
(iii) The collection of open bisections of 𝒢 forms a basis for the topology of 𝒢.
(iv) The product map 𝒢(2) → 𝒢, (𝛾, 𝜎) ↦ 𝛾𝜎 is an open map.

A rich source of examples for groupoids come from the notion of an action of
a groupoid on a space. Before defining groupoid actions, we recall the notion of
a fibered product: If 𝑌1, 𝑌2, 𝑍 are sets and 𝑓𝑖 ∶ 𝑌𝑖 → 𝑍 are surjective functions,

1Our assumptions that the topology be locally compact andHausdorff are common, although
not universal.
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the fibered product of 𝑌1 and 𝑌2 over 𝑍 relative to the maps 𝑓1, 𝑓2 is the space

𝑌1 ∗𝑓1 𝑓2
𝑌2 ∶= {(𝑦1, 𝑦2) ∈ 𝑌1 × 𝑌2 ∶ 𝑓1(𝑦1) = 𝑓2(𝑦2)}.

When𝑌1, 𝑌2, 𝑍 are topological spaces and 𝑓1 and 𝑓2 are continuous, we endow
𝑌1 ∗𝑓1 𝑓2

𝑌2 with the relative product topology it inherits from being a subspace
of the product space 𝑌1 × 𝑌2.

Definition 2.2. Let 𝒢 be a groupoid and let 𝑌 be a set. An action of 𝒢 on 𝑌2 is
the data of a surjective map 𝑝 ∶ 𝑌 → 𝒢(0), called the anchor map for the action,
and a map

𝒢 ∗𝑠 𝑝 𝑌 → 𝑌, (𝛾, 𝑦) ↦ 𝛾 ⋅ 𝑦,

such that the following conditions are satisfied:
∙ If 𝑦 ∈ 𝑌 and (𝛾, 𝑦) ∈ 𝒢 ∗𝑠 𝑝 𝑌, then 𝑝(𝛾 ⋅ 𝑦) = 𝑟(𝛾) and 𝑝(𝑦) ⋅ 𝑦 = 𝑦.
∙ If (𝜂, 𝑦) ∈ 𝒢 ∗𝑠 𝑝 𝑌 and (𝛾, 𝜂) ∈ 𝒢(2), then 𝛾 ⋅ (𝜂 ⋅ 𝑦) = (𝛾𝜂) ⋅ 𝑦.

When 𝒢 is a topological groupoid 𝑌 is a locally compact Hausdorff space, an
action of 𝒢 on 𝑌 is said to be continuous if the anchor map 𝑝 ∶ 𝑌 → 𝒢(0) and
the product map 𝒢 ∗𝑠 𝑝 𝑌 → 𝑌 are continuous.

Let 𝒢 be a groupoid, let 𝑌 be a set, and suppose 𝒢 acts on 𝑌 with anchor map
𝑝. We define the transformation groupoid, denoted 𝒢 ⋉ 𝑌, associated to this
action, as follows: as a set, 𝒢 ⋉ 𝑌 = 𝒢 ∗𝑠 𝑝 𝑌. The source, range, and inverse
maps are given, for (𝛾, 𝑦) ∈ 𝒢 ⋉ 𝑌, as follows:

𝑠(𝛾, 𝑦) = (𝑝(𝑦), 𝑦),
𝑟(𝛾, 𝑦) = (𝑝(𝛾 ⋅ 𝑦), 𝛾 ⋅ 𝑦),
(𝛾, 𝑦)−1 = (𝛾−1, 𝛾 ⋅ 𝑦).

The product in 𝐺 ⋉ 𝑌 is defined as follows: if ((𝛾, 𝑦), (𝜂, 𝑧)) ∈ (𝒢 ⋉ 𝑌)(2), then
𝑦 = 𝜂 ⋅ 𝑧 and

(𝛾, 𝜂 ⋅ 𝑧)(𝜂, 𝑧) = (𝛾𝜂, 𝑧).

When 𝒢 is a topological groupoid, 𝑌 is a locally compact Hausdorff space, and
the action is continuous, 𝒢⋉ 𝑌 is a topological groupoid. Moreover, when 𝒢 is
étale, so is 𝒢 ⋉ 𝑌.
We now lay out our notation for the various vector spaces and algebras asso-

ciated to groupoids we use in our analysis. Fix an étale groupoid 𝒢. The space
𝐶𝑐(𝒢) of continuous and compactly supported functions 𝒢 → ℂ is a priori a vec-
tor space. We give it the structure of a ∗-algebra, with product and involution

2What we define here is sometimes called a left action. Right actions are defined analogously,
but there is no need to consider them here, so we omit the details.
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given by the formulas

(𝑓 ∗ 𝑔)(𝛾) =
∑

𝛼𝛽=𝛾
𝑓(𝛼)𝑔(𝛽)

𝑓∗(𝛾) = 𝑓(𝛾)

for 𝑓, 𝑔 ∈ 𝐶𝑐(𝒢) and 𝛾 ∈ 𝒢.3
For 𝑓 ∈ 𝐶𝑐(𝒢), the sup-norm is denoted ‖𝑓‖∞ = sup𝛾∈𝒢 |𝑓(𝛾)|. While this is

a 𝐶∗-norm for the pointwise operations, it fails to be submultiplicative for the
product and involution defined above. In order to define a 𝐶∗-norm on 𝐶𝑐(𝒢),
we look at a natural class of representations of this algebra on Hilbert spaces.
For each 𝑥 ∈ 𝒢(0), let ℂ𝒢𝑥 denote the space of functions 𝒢𝑥 → ℂ with finite
support, and let 𝓁2𝒢𝑥 denote the Hilbert space of square summable functions
𝒢𝑥 → ℂ. We define a representation 𝜆𝑥 ∶ 𝐶𝑐(𝒢) → 𝔹(𝓁2𝒢𝑥), called the (left)
regular representation at 𝑥 as follows: for 𝑓 ∈ 𝐶𝑐(𝒢), the operator 𝜆𝑥(𝑓) ∈
𝔹(𝓁2𝒢𝑥) acts on 𝜉 ∈ 𝓁2𝒢𝑥 via the formula

[𝜆𝑥(𝑓)𝜉](𝛾) =
∑

𝜂∈𝒢𝑥
𝑓(𝛾𝜂−1)𝜉(𝜂)

for all 𝛾 ∈ 𝒢𝑥. We then define the reduced 𝐶∗-norm on 𝐶𝑐(𝒢) by the formula
‖𝑓‖𝐶∗𝑟 𝒢 = sup

𝑥∈𝒢(0)
‖𝜆𝑥(𝑓)‖𝔹(𝓁2𝒢𝑥).

The reduced𝐶∗-algebra of 𝒢, denoted 𝐶∗𝑟 𝒢, is then the completion of 𝐶𝑐(𝒢)with
respect to this norm.
We now proceed to define twists over étale groupoids. Our notation will fol-

low that of [20].

Definition 2.3. Let 𝒢 be an étale groupoid. By a twist over 𝒢 we mean a se-
quence

𝒢(0) × 𝕋 ℰ 𝒢𝑖 𝜋

of topological groupoids, where 𝒢(0) × 𝕋 is considered as a trivial group bundle
over 𝒢(0), and 𝑖 and 𝜋 are continuous groupoid homomorphisms which restrict
to homeomorphisms on unit spaces (we identify ℰ(0) with 𝒢(0) via 𝜋), such that

∙ the sequence is short-exact, meaning that 𝑖 is injective, 𝜋−1(𝒢(0)) =
𝑖(𝒢(0) × 𝕋), and 𝜋 is surjective,

∙ for all 𝜀 ∈ ℰ and 𝑧 ∈ 𝕋, we have 𝑖(𝑟(𝜀), 𝑧)𝜀 = 𝜀𝑖(𝑠(𝜀), 𝑧), and
∙ every 𝛾 ∈ 𝒢 admits an open neighborhood𝑈 ⊂ 𝒢 and a continuous sec-
tion 𝑆 ∶ 𝑈 → ℰ for the map 𝜋 (meaning 𝜋◦𝑆 = id𝑈), such that the map
𝑈 ×𝕋 → 𝜋−1(𝑈) given by (𝜂, 𝑧) ↦ 𝑖(𝑟(𝜂), 𝑧)𝑆(𝜂) is a homeomorphism.

The second condition is often seen as requiring that the image of 𝑖 is “central"
in ℰ, and the third condition means that we can view the map 𝜋 as a “locally
trivial 𝒢-bundle." As we have no need to consider multiple twists over the same

3Proving that 𝑓 ∗ 𝑔 defined above lies in 𝐶𝑐(𝒢)makes use of the étale condition.
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groupoid, in the sequel we shall simply refer to the groupoid ℰ as a “twist" over
𝒢, leaving the maps 𝑖 and 𝜋 implicit, or we shall say “let ℰ

𝜋
→ 𝒢 be a twist", if

the bundle map 𝜋 need be made explicit.
Let ℰ be a twist over an étale groupoid 𝒢. For 𝜀 ∈ ℰ and 𝑧 ∈ 𝕋, we denote

by 𝑧 ⋅ 𝜀 the element of ℰ given by 𝑖(𝑟(𝜀), 𝑧)𝜀. Similarly, let 𝜀 ⋅ 𝑧 = 𝜀𝑖(𝑠(𝜀), 𝑧), so
that 𝑧 ⋅ 𝜀 = 𝜀 ⋅ 𝑧 by the second condition in Definition 2.3. If 𝜀1, 𝜀2 ∈ ℰ and
𝜋(𝜀1) = 𝜋(𝜀2), then by [20, Lemma 11.1.3] there is a unique [𝜀1, 𝜀2] ∈ 𝕋 such
that 𝜀1 = [𝜀1, 𝜀2] ⋅ 𝜀2.
Let Σ𝑐(𝒢, ℰ) = {𝑓 ∈ 𝐶𝑐(ℰ) ∶ 𝑓(𝑧 ⋅ 𝜀) = 𝑧𝑓(𝜀) for all 𝑧 ∈ 𝕋, 𝜀 ∈ ℰ}. With

pointwise addition and scalar multiplication, this is a ℂ-vector space. It is a
∗-vector space, with involution given by (𝑓∗)(𝜀) = 𝑓(𝜀−1) for 𝑓 ∈ Σ𝑐(𝒢, ℰ) and
𝜀 ∈ ℰ. To define a multiplication on Σ𝑐(𝒢, ℰ), fix a (not necessarily continuous)
section 𝜌 ∶ 𝒢 → ℰ for themap𝜋, and for 𝑓, 𝑔 ∈ Σ𝑐(𝒢, ℰ) define 𝑓 ∗ 𝑔 ∈ Σ𝑐(𝒢, ℰ)
by

(𝑓 ∗ 𝑔)(𝜀) =
∑

𝛾∈𝒢𝑠(𝜀)
𝑓(𝜀𝜌(𝛾)−1)𝑔(𝜌(𝛾)).

By the 𝕋-equivariance of functions in Σ𝑐(𝒢, ℰ), the above formula is indepen-
dent of the chosen section 𝜌.
For each 𝑥 ∈ 𝒢(0), define a representation 𝜆𝜌𝑥 ofΣ𝑐(𝒢, ℰ) on 𝓁2𝒢𝑥 by extension

of the above convolution formula:

[𝜆𝜌𝑥(𝑓)𝜉](𝛾) =
∑

𝜂∈𝒢𝑥
𝑓
(
𝜌(𝛾)𝜌(𝜂)−1

)
𝜉(𝜂).

Up to unitary equivalence, this representation is independent of the chosen
section 𝜌. We define 𝐶∗𝑟 (𝒢, ℰ) to be the completion of Σ𝑐(𝒢, ℰ) with respect to
the norm

‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) = sup
𝑥∈𝒢(0)

‖𝜆𝜌𝑥(𝑓)‖𝔹(𝓁2𝒢𝑥).

Example 2.4. Let 𝒢 be an étale groupoid. If we consider 𝒢×𝕋 as a topological
groupoid, with the product topology and pointwise operations, then

𝒢(0) × 𝕋 𝒢 × 𝕋 𝒢𝑖 𝜋

where 𝑖 is the inclusion map and 𝜋(𝛾, 𝑧) = 𝛾, defines a twist over 𝒢, called the
trivial twist over 𝒢. There is a natural identification Σ𝑐(𝒢, 𝒢 × 𝕋) with 𝐶𝑐(𝒢),
sending 𝑓 ∈ Σ𝑐(𝒢, 𝒢 × 𝕋) to the map 𝒢 ∋ 𝛾 ↦ 𝑓(𝛾, 1) ∈ ℂ, which extends to an
isomorphism from 𝐶∗𝑟 (𝒢, 𝒢 × 𝕋) onto 𝐶∗𝑟 𝒢.

2.2. Rapid decay for twisted étale groupoids. In this subsection, we de-
scribe the basic properties of length functions on groupoids, and give a defi-
nition of property (RD) for twisted étale groupoids. We begin by recalling the
definition of a length function on 𝒢, as given in [7].

Definition 2.5. Let 𝒢 be a groupoid. By a length function on 𝒢 be we mean a
map 𝓁 ∶ 𝒢 → [0,∞) satisfying the following conditions:
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∙ 𝓁(𝑥) = 0 for any 𝑥 ∈ 𝒢(0),
∙ 𝓁(𝛾−1) = 𝓁(𝛾) for any 𝛾 ∈ 𝒢, and
∙ 𝓁(𝛾𝜂) ≤ 𝓁(𝛾) + 𝓁(𝜂) for any (𝛾, 𝜂) ∈ 𝒢(2).

Now suppose that𝒢 is a topological groupoid. We say that the length function
𝓁 is continuous if it is continuous as amap from 𝒢 to [0,∞). A weaker condition
that one can ask for is that 𝓁 be locally bounded, meaning that sup𝛾∈𝐾 𝓁(𝛾) is
finite for all compact sets 𝐾. As a partial converse to this definition, following
[14] we say that 𝓁 is proper if for every subset 𝐾 ⊂ 𝒢 ⧵ 𝒢(0), finiteness of the
quantity sup𝛾∈𝐾 𝓁(𝛾) implies that 𝐾 is pre-compact.

Example 2.6.
(1) Suppose Γ is a discrete group, 𝓁 is a length function on Γ, and suppose

thatΓ acts by homeomorphisms on the locally compactHausdorff space
𝑋. On the transformation groupoid Γ⋉𝑋 one can define a length func-
tion (still denoted 𝓁) by the fomula 𝓁(𝛾, 𝑥) = 𝓁(𝛾). This induced length
function is continuous, and proper if the length on Γ is proper and 𝑋 is
assumed to be compact.

(2) More generally, suppose 𝒢 andℋ are groupoids, and that 𝜑 ∶ ℋ → 𝒢
is a groupoid homomorphism. If 𝓁 is a length function on 𝒢, then the
formula (𝜑∗𝓁)(𝜂) = 𝓁(𝜑(𝜂)) defines a length functionℋ.

(3) Let 𝒢 be an étale groupoid, and assume that 𝒢 is compactly generated,
meaning that there is a pre-compact subset𝐾 ⊂ 𝒢 such that every 𝛾 ∈ 𝒢
can be written as a product of elements of 𝐾 ∪𝐾−1. Given such a 𝐾, we
define a length 𝓁 on 𝒢 by 𝓁(𝑥) = 0 for 𝑥 ∈ 𝒢(0), and by

𝓁(𝛾) = min{𝑛 ∈ ℕ ∶ 𝛾 = 𝛾1⋯𝛾𝑛 for some 𝛾𝑘 ∈ 𝐾 ∪ 𝐾−1}

for 𝛾 ∈ 𝒢 ⧵ 𝒢(0).

Given a length function 𝓁 on a groupoid 𝒢, for each 𝑥 ∈ 𝒢(0) one can define a
pseudometric 𝜌𝓁,𝑥 on the source fibre𝒢𝑥 by the formula 𝜌𝓁,𝑥(𝛾1, 𝛾2) = 𝓁(𝛾1𝛾−12 ).
For 𝛾 ∈ 𝒢𝑥, 𝑟 > 0, the closed ball of radius 𝑟 centered at 𝛾 with respect to this
metric will be denoted by 𝐵𝓁(𝛾, 𝑟) = {𝜂 ∈ 𝒢𝑥 ∶ 𝓁(𝛾𝜂−1) ≤ 𝑟}. In section 4
of [14], they study the geometric structure of a length function imposed on an
étale groupoid. One particularly nice result, which we will use, is their local
slice lemma, which we repeat below for convenience.

Lemma 2.7 ([14, Lemma 5.10]). Let 𝒢 be a 𝜎-compact, étale groupoid, and let 𝓁
be a continuous and proper length function on𝒢. For every𝑥 ∈ 𝒢(0) and every pair
of constants 𝑅, 𝜀 > 0, there exist a number 𝑅′ ∈ [𝑅, 𝑅 + 𝜀), an open neighborhood
𝑉 ⊂ 𝒢(0) of 𝑥, an open subset𝑊 of𝒢, and a homeomorphismΦ ∶ 𝐵𝓁(𝑥, 𝑅′)×𝑉 →
𝑊, satisfying the following conditions:

(i) Φ(𝑥, 𝑦) = 𝑦 for any 𝑦 ∈ 𝑉,
(ii) Φ(𝛾, 𝑥) = 𝛾 for any 𝛾 ∈ 𝐵𝓁(𝑥, 𝑅′),
(iii) Φ(𝐵𝓁(𝑥, 𝑅′) × {𝑦}) = 𝐵𝓁(𝑦, 𝑅′) for every 𝑦 ∈ 𝑉, and
(iv) |𝓁(𝛾𝜂−1)−𝓁(Φ(𝛾, 𝑦)Φ(𝜂, 𝑦)−1)| < 𝜀 for all 𝛾, 𝜂 ∈ 𝐵𝓁(𝑥, 𝑅′)andall 𝑦 ∈ 𝑉.
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This lemma is particularly useful, as it allows us to translate data fromafinite
subset of source fibres to nearby source fibres. We provide onemodest example.

Corollary 2.8. Let 𝒢 be a 𝜎-compact, étale groupoid, and let 𝓁 be a continuous
and proper length function on𝒢. For every𝑥0 ∈ 𝒢(0) and𝑅 > 0, there is some open
neighborhood 𝑉 ⊂ 𝒢(0) of 𝑥0 such that |𝐵𝓁(𝑥, 𝑅)| = |𝐵𝓁(𝑥0, 𝑅)| for all 𝑥 ∈ 𝑉.
We now define some seminorms on 𝐶𝑐(𝒢)which will be relevant for our dis-

cussion of rapid decay type properties for 𝒢.

Definition 2.9. Let 𝒢 be an étale groupoid, let ℰ
𝜋
→ 𝒢 be a twist over 𝒢, and let

𝓁 be a length function on 𝒢. Fix a section 𝜌 ∶ 𝒢 → ℰ for the map 𝜋. For each
𝑥 ∈ 𝒢(0), and 𝑡 ≥ 0, define seminorms on Σ𝑐(𝒢, ℰ) by

‖𝑓‖ℰ,𝓁,𝑡,𝑠,𝑥 =
⎛
⎜
⎝

∑

𝛾∈𝒢𝑥
|𝑓(𝜌(𝛾))|2(1 + 𝓁(𝛾)2𝑡

⎞
⎟
⎠

1∕2

,

‖𝑓‖ℰ,𝓁,𝑡,𝑠 = sup
𝑥∈𝒢(0)

‖𝑓‖ℰ,𝓁,𝑡,𝑠,𝑥,

‖𝑓‖ℰ,𝓁,𝑡 = max{‖𝑓‖ℰ,𝓁,𝑡,𝑠, ‖𝑓∗‖ℰ,𝓁,𝑡,𝑠}.
Definition 2.10. Let 𝒢 be an étale groupoid, let ℰ be a twist over 𝒢, and let 𝓁
be a length function on 𝒢. We say that 𝒢 has ℰ-twisted rapid decay (or ℰ-(RD)
for short) with respect to the length function 𝓁 if there exist constants 𝐶, 𝑡 ≥ 0
such that

‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≤ 𝐶‖𝑓‖ℰ,𝓁,𝑡
for all 𝑓 ∈ Σ𝑐(𝒢, ℰ). In the case that ℰ = 𝒢 × 𝕋 is the trivial twist, we identify
Σ𝑐(𝒢, ℰ)with 𝐶𝑐(𝒢), remove the ℰ in the subscript of the norms, and simply say
that 𝒢 has the rapid decay property, or property (RD), when it has ℰ-(RD) for
this twist.

Immediately from the definition, one can see that this generalizes the notion
of rapid decay for discrete groups: if Γ is a discrete group with a length function
𝓁, then Γ has property (RD) with respect to 𝓁 as in Definition 2.10 if and only
if it satisfies property (RD) with respect to 𝓁 as described in the first paragraph
of the present work.
We now proceed to show that, for a fixed length function, (RD) implies ℰ-

(RD) for all twists ℰ. This has been shown in the group case, but in order to
adapt the proof to this setting, we need a lemma.

Lemma 2.11. If 𝑓 ∈ Σ𝑐(𝒢, ℰ), then the map 𝒢 → ℂ, 𝛾 ↦ |𝑓(𝜌(𝛾))|, belongs to
𝐶𝑐(𝒢).
Proof. First, we show themap has compact support. Observe that if 𝛾 ∈ 𝒢 and
|𝑓(𝜌(𝛾))| ≠ 0, then 𝜌(𝛾) ∈ supp(𝑓). Thus 𝛾 = 𝜋(𝜌(𝛾)) ∈ 𝜋(supp(𝑓)). As the
latter set is compact, it follows that the set

{𝛾 ∈ 𝒢 ∶ |𝑓(𝜌(𝛾))| ≠ 0}
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has compact closure. Next, we show continuity. Fix 𝛾0 ∈ 𝒢 and 𝜀 > 0. There is
an open neighborhood𝑈 ⊂ 𝒢 of 𝛾0 and a continuous section 𝜌𝑈 ∶ 𝑈 → ℰ of 𝜋.
As 𝑓 is continuous, there is an open neighborhood 𝑉 ⊂ ℰ of 𝜌𝑈(𝛾0) such that
|𝑓(𝜌𝑈(𝛾0)) − 𝑓(𝛿)| < 𝜀 whenever 𝛿 ∈ 𝑉. Letting 𝑈0 = 𝜌−1𝑈 (𝑉) ⊂ 𝒢, we see that
𝑈0 is an open neighborhood of 𝛾0, and if 𝛾 ∈ 𝑈0, we have

||||𝑓(𝜌(𝛾0))| − |𝑓(𝜌(𝛾))|||| = ||||𝑓(𝜌𝑈(𝛾0))| − |𝑓(𝜌𝑈(𝛾))||||
≤ |𝑓(𝜌𝑈(𝛾0)) − 𝑓(𝜌𝑈(𝛾))| < 𝜀,

where the first equality follows from the fact that 𝑓(𝑧 ⋅ 𝛿) = 𝑧𝑓(𝛿) for all 𝑧 ∈ 𝕋
and 𝛿 ∈ ℰ.

□

Proposition 2.12. Let 𝒢 be an étale groupoid, and let 𝓁 be a length function on
𝒢. If 𝒢 has (RD) with respect to 𝓁, then it has ℰ-(RD) with respect to 𝓁 for any twist
ℰ over 𝒢.
Proof. With the above lemma, we can proceed as in the proof of Lemma 6.7 in
[15]. Let ℰ

𝜋
→ 𝒢 be a twist over 𝒢, and let 𝜌 ∶ 𝒢 → ℰ be a section for 𝜋. As 𝒢

has property (RD), there are constants 𝐶, 𝑡 ≥ 0 such that ‖𝑔‖𝐶∗𝑟 𝒢 ≤ 𝐶‖𝑔‖𝓁,𝑡 for
all 𝑓 ∈ 𝐶𝑐(𝒢). Fix 𝑓 ∈ Σ𝑐(𝒢, ℰ), and define 𝑔 ∈ 𝐶𝑐(𝒢) by 𝑔(𝛾) = |𝑓(𝜌(𝛾))|. If
𝑥 ∈ 𝒢(0) and 𝜉 ∈ 𝓁2𝒢𝑥, then for any 𝛾 ∈ 𝒢𝑥 we have

[𝜆𝜌𝑥(𝑓)𝜉](𝛾)| ≤
∑

𝜂∈𝒢𝑥
|𝑓(𝜌(𝛾𝜂−1))||𝜉(𝜂)| = [𝜆𝑥(𝑔)|𝜉|] (𝛾).

Summing over 𝛾 ∈ 𝒢𝑥 and taking a square root yields
‖𝜆𝜌𝑥(𝑓)𝜉‖𝓁2𝒢𝑥 ≤ ‖𝜆𝑥(𝑔)|𝜉|‖𝓁2𝒢𝑥 ≤ ‖𝑔‖𝐶∗𝑟 𝒢‖𝜉‖𝓁𝒢𝑥

≤ 𝐶‖𝑔‖𝓁,𝑡‖𝜉‖𝓁2𝒢𝑥 = 𝐶‖𝑓‖ℰ,𝓁,𝑡‖𝜉‖𝓁2𝒢𝑥 .

Taking the supremum over 𝑥 ∈ 𝒢(0), the above inequality implies ‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≤
𝐶‖𝑓‖ℰ,𝓁,𝑡.

□

As mentioned in the introduction, one of the main motivations for studying
rapid decay in the group setting was that it yields a nice subalgebra of the re-
duced group 𝐶∗-algebra. This was also shown to be the case for groupoids with
(RD) in [7], and in the twisted setting, we obtain a similar result. Let 𝑆𝓁(𝒢, ℰ)
denote the completion of Σ𝑐(𝒢, ℰ) with respect to the topology induced by the
family of norms {‖ ⋅ ‖∞} ∪ {‖ ⋅ ‖ℰ,𝓁,𝑡 ∶ 𝑡 ∈ ℤ≥0}. With minor modifications, the
proofs of Lemma 3.3 and Proposition 3.4 in [7] yield the following result:

Proposition 2.13. Let 𝒢 be an étale groupoid, let 𝓁 be a length function on 𝒢,
and let ℰ be a twist over 𝒢. Then 𝒢 has ℰ-(RD) with respect to 𝓁 if and only if
𝑆𝓁(𝒢, ℰ) ⊂ 𝐶∗𝑟 (𝒢, ℰ). Moreover, if the length function 𝓁 is continuous, and 𝒢 has
ℰ-(RD)with respect to𝓁, then𝑆𝓁(𝒢, ℰ) is a dense, Fréchet∗-subalgebra of𝐶∗𝑟 (𝒢, ℰ).
The proof of Theorem 4.2 in [7] also generalizes to this setting, andwe obtain

the following result.
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Proposition 2.14. Let𝒢 be an étale groupoid, letℰ be a twist over𝒢, and let𝓁 be a
continuous length function on𝒢. If𝒢has (RD)with respect to𝓁, then𝑆𝓁(𝒢, ℰ) is an
inverse closed subalgebra of 𝐶∗𝑟 (𝒢, ℰ), and the inclusion induces an isomorphism
at the level of 𝐾-theory.
We end this section by giving another class of groupoids with length func-

tions for which property (RD) holds. Let 𝒢 be an étale groupoid, and let 𝓁 be a
length on 𝒢. We say that 𝒢 has polynomial growthwith respect to 𝓁 if there exist
constants 𝐶, 𝑛 > 0 such that |𝐵𝓁(𝑥, 𝑟)| ≤ 𝐶(1 + 𝑟)𝑛 for all 𝑥 ∈ 𝒢(0) and 𝑟 > 0.
Proposition 2.15 ([7, Proposition 3.5]). Let 𝒢 be an étale groupoid, and let 𝓁 be
a length function on 𝒢. If 𝒢 has polynomial growth with respect to 𝓁, then 𝒢 has
property (RD) with respect to 𝓁, and hence has ℰ-(RD) for all twists ℰ over 𝒢.
In [7], all examples of groupoids with rapid decay have polynomial growth

with respect to the given length function. In the next section, we shall see that
under the assumption that the groupoid is principal, this is about as much as
one can expect.

3. Principal groupoids

Recall that a groupoid 𝒢 is called principal if Iso(𝒢) = 𝒢(0), or equivalently,
if the map 𝑠 × 𝑟 ∶ 𝒢 → 𝒢(0) × 𝒢(0) is injective. As a topological analogue of
principality, a topological groupoid 𝒢 is said to be topologically principal if the
set of units 𝑥 ∈ 𝒢(0) such that 𝒢𝑥𝑥 = {𝑥} is dense in 𝒢(0). In this section, we
show that (topologically) principal groupoids admit property (RD) only when
the length function has polynomial growth, and some continuity conditions.
This generalizes some known results, see [3], [8]. Our strategy is inspired by the
proof of Theorem 2.1 of [3], but details require attention in this more general
setting.

Lemma 3.1. Let𝒢 be an étale groupoid, and let𝓁 be a continuous length function
on 𝒢. Suppose that for every 𝐶 > 0,𝐷 > 0, there exist 𝑅 > 0, 𝑥 ∈ 𝒢(0), and a finite
set 𝐹 ⊂ 𝐵(𝑥, 𝑅), such that

(i) |𝐹| > 𝐶(1 + 𝑅)𝐷 , and
(ii) the restriction of the range map to 𝐹 is injective,

Then 𝒢 does not have ℰ-(RD) with respect to 𝓁 for any twist ℰ over 𝒢.

Proof. Fix 𝐶, 𝑡 > 0. By assumption, there exist 𝑅 > 0, 𝑥0 ∈ 𝒢(0), and a finite
set 𝐹 ⊂ 𝐵(𝑥0, 𝑟) such that 𝑟 ∣𝐹 is injective and

|𝐹| > 𝐶2(1 + 𝑅)6𝑡.
Without loss of generality, we may assume that 𝑥0 ∈ 𝐹. For each 𝛾 ∈ 𝐹, fix a
pre-compact open bisection neighborhood𝑊𝛾 of 𝛾 such that

∙ 𝑊𝑥0 ⊂ 𝒢(0),
∙ 𝑠(𝑊𝛾) ⊂ 𝑊𝑥0 for all 𝛾 ∈ 𝐹, and
∙ the collection {𝑟(𝑊𝛾) ∶ 𝛾 ∈ 𝐹} of subsets of 𝒢(0) is pairwise disjoint.
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Put 𝑍 = 𝐹𝐹−1. For each 𝑔 ∈ 𝑍, there exist (unique) 𝛾1, 𝛾2 ∈ 𝐹 such that
𝑔 = 𝛾1𝛾−12 . Define an open neighborhood 𝑉𝑔 of 𝑔 as follows: If 𝛾1 = 𝛾2 we
set 𝑉𝑔 = 𝑟(𝑊𝛾1), and otherwise 𝑉𝑔 = 𝑊𝛾1𝑊

−1
𝛾2 . Now fix a pre-compact open

bisectionneighborhood𝑈𝑔 of 𝑔 such that𝑈𝑔 ⊂ 𝑉𝑔, and such that |𝓁(𝛾)−𝓁(𝑔)| <
𝑅 for all 𝛾 ∈ 𝑈𝑔.

Let ℰ
𝜋
→ 𝒢 be a twist, and let 𝜌 ∶ 𝒢 → ℰ be a (not necessarily continuous)

section for 𝜋. Then we may assume that for each 𝑔 ∈ 𝑍, the open bisection 𝑈𝑔
admits a continuous section 𝜌𝑔 ∶ 𝒢 → ℰ for 𝜋, such that the map

Ψ𝑔 ∶ 𝑈𝑔 × 𝕋 → 𝜋−1(𝑈𝑔), (𝛾, 𝑧) ↦ 𝑧 ⋅ 𝜌𝑔(𝛾)

is a homeomorphism. For each 𝑔 ∈ 𝑍, fix a function 𝑓𝑔 ∈ 𝐶𝑐(𝒢) such that
0 ≤ 𝑓𝑔(𝛾) ≤ 1 for all 𝛾 ∈ 𝒢, with 𝑓𝑔(𝑔) = 1 and supp(𝑓𝑔) ⊂ 𝑈𝑔. Define
𝑓𝑔 ∈ Σ𝑐(𝒢, ℰ) for 𝑔 ∈ 𝑍 to be the function such that supp(𝑓𝑔) ⊂ 𝜋−1(𝑈𝑔), and

𝑓𝑔(𝜌𝑔(𝛾)) = [𝜌𝑔(𝑔), 𝜌(𝛾1)𝜌(𝛾2)−1]𝑓𝑔(𝛾),
whenever 𝛾 ∈ 𝑈𝑔, where 𝛾1 and 𝛾2 are the (unique) elements of 𝐹 such that
𝑔 = 𝛾1𝛾−12 . Now let 𝜉 = |𝐹|−1∕2𝜒𝐹 ∈ 𝓁2𝒢𝑥0 , where 𝜒𝐹 denotes the indicator
function for the set 𝐹 ⊂ 𝒢𝑥0 . If 𝛾 ∈ 𝒢𝑥0 , then [𝜆

𝜌
𝑥(𝑓)𝜉](𝛾) = 0 unless 𝛾 ∈ 𝔽. In

this case, we set 𝑍𝛾 = 𝑍 ∩ 𝒢𝑟(𝛾), and we have
[𝜆𝜌𝑥(𝑓)𝜉](𝛾) = |𝐹|−1∕2

∑

𝜂∈𝐹
𝑓(𝜌(𝛾)𝜌(𝜂)−1)

= |𝐹|−1∕2
∑

𝑔∈𝑍𝛾
𝑓𝑔(𝜌(𝛾)𝜌(𝑔−1𝛾)−1)

= |𝐹|−1∕2
∑

𝑔∈𝑍𝛾
𝑓𝑔(𝑔)

= |𝐹|1∕2.

Squaring and summing over 𝛾 ∈ 𝒢𝑥0 , we obtain ‖𝜆𝜌𝑥(𝑓)𝜉‖2𝓁2𝒢𝑥0
= |𝐹|2, so

‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≥ |𝐹|.
Next we estimate ‖𝑓‖ℰ,𝓁,𝑡. We claim that, for all 𝑥 ∈ 𝒢(0) we have

||||||||||

⋃

𝑔∈𝑍
𝒢𝑥 ∩ 𝑈𝑔

||||||||||
≤ |𝐹|

To see this, first note that if 𝑔 ∈ 𝑍, then 𝑠(𝑈𝑔) ⊂ 𝑟(𝑊𝜂) for some 𝜂 ∈ 𝐹. Hence
if 𝑥 ∈ 𝒢(0) and 𝑥 ∉ 𝑟(𝑊𝜂) for all 𝜂 ∈ 𝐹, then ⋃𝑔∈𝑍 𝒢𝑥 ∩ 𝑈𝑔 = ∅, and the
estimate holds. Now suppose 𝑥 ∈ 𝑟(𝑊𝜂) for some (necessarily unique) 𝜂 ∈ 𝐹.
If 𝑔 ∈ 𝑍 and 𝒢𝑥 ∩ 𝑈𝑔 is nonempty, then 𝑔 = 𝛾𝜂−1 for some 𝛾 ∈ 𝐹, so

⎛
⎜
⎝

⋃

𝑔∈𝑍
𝒢𝑥 ∩ 𝑈𝑔

⎞
⎟
⎠
⊂
⎛
⎜
⎝

⋃

𝛾∈𝐹
𝒢𝑥 ∩ 𝑈𝛾𝜂−1

⎞
⎟
⎠
.
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As each 𝑈𝑔 is a bisection, the cardinality of the set on the right-hand side is
clearly no more than |𝐹|. This proves the claim. Now for 𝑥 ∈ 𝒢(0), the claim
implies

‖𝑓‖2ℰ,𝓁,𝑡,𝑠,𝑥 =
∑

𝛾∈𝒢𝑥
|𝑓(𝛾)|2(1 + 𝓁(𝛾))2𝑡

≤
∑

𝛾∈∪𝑔∈𝑍(𝒢𝑥∩𝑈𝑔)
(1 + 𝓁(𝛾))2𝑡

< |𝐹|(1 + 2𝑅)2𝑡.

Similarly, we obtain ‖𝑓∗‖2ℰ,𝓁,𝑡,𝑠,𝑥 < |𝐹|(1 + 2𝑅)2𝑡, and it follows that

‖𝑓‖ℰ,𝓁,𝑡 ≤ |𝐹|1∕2(1 + 2𝑅)𝑡.
Combining our estimates, we obtain

‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≥ |𝐹| > 𝐶|𝐹|1∕2(1 + 𝑅)2𝑡 ≥ 𝐶|𝐹|1∕2(1 + 2𝑅)𝑡 ≥ 𝐶 ⋅ ‖𝑓‖ℰ,𝓁,𝑡.
Since𝐶, 𝑡 > 0were arbitrary, it follows that𝒢 does not have ℰ-(RD)with respect
to the length 𝓁.

□

Theorem 3.2. Let 𝒢 be a principal, étale groupoid, and let 𝓁 be a continuous
length function on 𝒢. The following are equivalent:

(1) 𝒢 has polynomial growth with respect to 𝓁.
(2) 𝒢 has ℰ-(RD) with respect to 𝓁 for all twists ℰ over 𝒢.
(3) 𝒢 has ℰ-(RD) with respect to 𝓁 for some twist ℰ over 𝒢.

Proof. If𝒢 has polynomial growth, then by [7, Proposition 3.5]𝒢 has (RD)with
respect to 𝓁. Proposition 2.12 now implies that 𝒢 has ℰ-(RD) with respect to 𝓁
for any twist ℰ over 𝒢. Thus (1) implies (2). Obviously, (2) implies (3), so we
focus on showing (3) implies (1). We prove the contrapositive, so assume that
𝒢 does not have polynomial growth with respect to 𝓁. Then for each 𝐶,𝐷 > 0
there exist 𝑥 ∈ 𝒢(0) and 𝑟 > 0 such that |𝐵(𝑥, 𝑟)| > 𝐶(1 + 𝑟)𝐷 . Letting 𝐹 =
𝐵(𝑥, 𝑟), we see that𝐹 satisfies conditions (i) and (ii) of Lemma 3.1, and therefore
𝒢 cannot have property ℰ-(RD) with respect to 𝓁 for any twist, and therefore (3)
does not hold.

□

Amild adjustment of our assumptions allowsus to apply the local slice lemma,
and we obtain the following.

Theorem 3.3. Let 𝒢 be a 𝜎-compact, topologically principal, étale groupoid, and
let 𝓁 be a continuous and proper length function on 𝒢. The following are equiva-
lent:

(1) 𝒢 has polynomial growth with respect to 𝓁.
(2) 𝒢 has ℰ-(RD) with respect to 𝓁 for all twists ℰ over 𝒢.
(3) 𝒢 has ℰ-(RD) with respect to 𝓁 for some twist ℰ over 𝒢.
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Proof. The only part that differs from the proof of Theorem 3.2 is the proof of
(3)⇒(1). Suppose 𝒢 does not have polynomial growthwith respect to the length
function 𝓁. Fix 𝐶,𝐷 > 0. We can find some 𝑥0 ∈ 𝒢(0) and some 𝑅0 > 0 such
that

|𝐵(𝑥0, 𝑅0)| > 𝐶(1 + 𝑅0)𝐷 .

Choose 𝜀 > 0 such that

|𝐵(𝑥0, 𝑅0)| > 𝐶(1 + 𝑅0 + 𝜀)𝐷,

and moreover assume that 𝜀 is chosen small enough so that 𝐵(𝑥0, 𝑅0 + 𝜀) =
𝐵(𝑥0, 𝑅0). By the local slice lemma, we can find some 𝑅 ∈ [𝑅0, 𝑅0+𝜀) and some
open set 𝑉 ⊂ 𝒢(0) containing 𝑥0, such that |𝐵(𝑥, 𝑅)| = |𝐵(𝑥0, 𝑅0)| for all 𝑥 ∈ 𝑉.
Since 𝒢 is topologically principal, we can find some 𝑥 ∈ 𝑉 with trivial isotropy.
Then

|𝐵(𝑥, 𝑅)| = |𝐵(𝑥0, 𝑅0)| > 𝐶(1 + 𝑅0 + 𝜀)𝐷 > 𝐶(1 + 𝑅)𝐷 .

Now 𝐹 = 𝐵(𝑥, 𝑅) satisfies the conditions of Lemma 3.1, and therefore 𝒢 cannot
have property (RD).

□

Now we consider the special case of coarse groupoids. As an application
of the above result, we obtain a generalization of Theorem 2.1 from [3]. We
begin by briefly recalling their construction (for more details, one can consult
[21, 18]). Let (𝑋, 𝑑) be a discretemetric space, and assume for ease of exposition
that it has bounded geometry, meaning that for each 𝑟 > 0, there is a uniform
bound on the cardinality of the balls 𝐵(𝑥, 𝑟) as 𝑥 varies over 𝑋. For 𝑟 ≥ 0, let
𝐸𝑟 = {(𝑥, 𝑦) ∈ 𝑋×𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟} denote the tube of radius 𝑟, and let𝐸𝑟 denote
its closure in 𝛽(𝑋 × 𝑋), the Stone-Čech compactification of 𝑋 × 𝑋. As a space,
the coarse groupoid of𝑋 is𝒢(𝑋) = ∪𝑟≥0𝐸𝑟 ⊂ 𝛽𝑋×𝛽𝑋. By Theorem10.20 of [18],
the pair groupoid structure on 𝑋 × 𝑋 extends continuously to 𝒢(𝑋) , making it
a principal, 𝜎-compact, étale groupoid, with unit space homeomorphic to 𝛽𝑋,
and range and source maps respectively the unique extensions of of the first
and second factor maps 𝑋 × 𝑋 → 𝑋.
We recall the notions necessary to definemetric rapid decay for the bounded

geometry metric space (𝑋, 𝑑). First, we recall the definition of the uniform Roe
algebra associated to 𝑋. For a function 𝑘 ∶ 𝑋 × 𝑋 → ℂ, the propagation of 𝑘
is the quantity prop(𝑋) = sup{𝑑(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝑋, 𝑘(𝑥, 𝑦) ≠ 0}. ℂ𝑢(𝑋) be the
space of those functions 𝑘 that are bounded (meaning sup{|𝑘(𝑥, 𝑦)| ∶ 𝑥, 𝑦 ∈ 𝑋}
is finite) and of finite propagation. This is a ∗-algebra, which admits a canoncial
action on the Hilbert space 𝓁2(𝑋) of square-summable functions 𝑋 → ℂ. The
𝐶∗-algebra generated by ℂ𝑢(𝑋) is called the uniform Roe algebra of 𝑋, and is
denoted by 𝐶∗𝑢(𝑋).
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Definition 3.4. Let 𝑘 ∶ 𝑋×𝑋 → ℂ be given. For 𝑡 ≥ 0, we define the quantities
‖𝑘‖𝐵𝑆,𝑡, ‖𝑘‖𝐵𝑆∗,𝑡 ∈ [0,∞] by

‖𝑘‖𝐵𝑆,𝑡 = (sup
𝑦∈𝑋

∑

𝑥∈𝑋
|𝑘(𝑥, 𝑦)|2(1 + 𝑑(𝑥, 𝑦))2𝑡)

1∕2

‖𝑘‖𝐵𝑆∗,𝑡 = max{‖𝑘‖𝐵𝑆,𝑡, ‖𝑘∗‖𝐵𝑆,𝑡},

where 𝑘∗ ∶ 𝑋 × 𝑋 → ℂ is defined by 𝑘∗(𝑥, 𝑦) = 𝑘(𝑦, 𝑥). We denote by 𝐵𝑆2(𝑋)
the space of all functions 𝑘 ∶ 𝑋 × 𝑋 → ℂ such that ‖𝑘‖𝐵𝑆∗,𝑡 < ∞ for all 𝑡 ≥ 0.

Note that 𝐵𝑆2(𝑋) is a Fréchet space with the topology given by the family of
seminorms {‖ ⋅ ‖𝐵𝑆∗,𝑡 ∶ 𝑡 ∈ ℤ≥0}.

Definition 3.5. We say that𝑋 has property (MRD), or has (metric) rapid decay,
if 𝐵𝑆2(𝑋) is contained in 𝐶∗𝑢(𝑋).4

We briefly outline the construction of a canonical length function on 𝒢(𝑋)
as done in Section 5 of [14]. First, observe that for each 𝑟 ≥ 0, the restriction
of the metric 𝑑 ∶ 𝐸𝑟 → [0, 𝑟] extends to a continuous map 𝓁 ∶ 𝐸𝑟 → [0, 𝑟],
and that these extensions respect the inclusions 𝐸𝑟 ⊂ 𝐸𝑟′ for 𝑟′ ≥ 𝑟, producing
a well-defined length 𝓁 on 𝒢(𝑋), which is clearly continuous. Properness of
this length is also readily verified, as for each 𝑟 ≥ 0 we have 𝓁−1([0, 𝑟]) ⊂ 𝐸𝑟, a
compact subset of 𝒢(𝑋).

Lemma 3.6. Let 𝑋 be a discrete metric space with bounded geometry. If 𝑋 has
property (𝑀𝑅𝐷), then 𝒢(𝑋) has property (RD) with respect to the length function
defined above.

Proof. Suppose 𝑋 has (𝑀𝑅𝐷). The inclusion of 𝐵𝑆2(𝑋) into 𝐶∗𝑢(𝑋) is a closed
map, hence continuous, and there exist 𝐶, 𝑡 ≥ 0 such that ‖𝑘‖𝐶∗𝑢(𝑋) ≤ 𝐶‖𝑘‖𝐵𝑆∗,𝑡
for all 𝑘 ∈ 𝐵𝑆2(𝑋). If now 𝑓 ∈ 𝐶𝑐(𝒢(𝑋)), let 𝑘𝑓 ∶ 𝑋 × 𝑋 → ℂ denote the
restriction of 𝑓 to 𝑋 × 𝑋 ⊂ 𝒢(𝑋). Then we have the estimate

‖𝑘𝑓‖𝐵𝑆,𝑡 = sup
𝑦∈𝑋

(
∑

𝑥∈𝑋
|𝑓(𝑥, 𝑦)|(1 + 𝓁(𝑥, 𝑦))2𝑡)

1∕2

= sup
𝑦∈𝑋

‖𝑓‖𝓁,𝑡,𝑠,𝑦 ≤ ‖𝑓‖𝓁,𝑡,𝑠.

Note that (𝑘𝑓)∗ = 𝑘𝑓∗ , so ‖𝑘𝑓‖𝐵𝑆∗,𝑡 ≤ ‖𝑓‖𝓁,𝑡. By Proposition 10.29 in [18], we
have ‖𝑓‖𝐶∗𝑟 𝒢 = ‖𝑘𝑓‖𝐶∗𝑢(𝑋), and thus

‖𝑓‖𝐶∗𝑟 𝒢 ≤ 𝐶‖𝑓‖𝓁,𝑡.
□

As in Definition 1.7 of [3], we say the metric space (𝑋, 𝑑) has polynomial
growth if there exist constants 𝐶, 𝑛 > 0 such that |𝐵(𝑥, 𝑟)| ≤ 𝐶(1 + 𝑟)𝑛 for all

4Our definition differs slightly from those given in [3] and [8], to account for the self-
adjointness of the norms in Definition 2.9, which was adapted from [7]. This is only a matter of
convention; and one can easily adapt these results to that setting.
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𝑥 ∈ 𝑋 and 𝑟 ≥ 0. An application of the local slice lemma yields the following
result:

Lemma 3.7. Let𝑋 be a discrete metric space with bounded geometry. Then 𝒢(𝑋)
has polynomial growth if and only if 𝑋 has polynomial growth.

Proof. The forward implication is clear, so assume that𝑋 has polynomial growth,
and fix 𝐶 > 0, 𝑑 ∈ ℕ such that for all 𝑅 > 0, we have

sup
𝑥∈𝑋

|𝐵(𝑥, 𝑅)| ≤ 𝐶(1 + 𝑅)𝑑.

Fix an ultrafilter 𝜔0 ∈ 𝛽𝑋 and 𝑅 > 0. Choose 𝜀 > 0 such that 𝐵𝓁(𝜔, 𝑅 + 𝜀) =
𝐵𝓁(𝜔, 𝑅) for all 𝜔 ∈ 𝛽𝑋. By Corollary 2.8, there is an open neighborhood 𝑉
of 𝜔0 in 𝛽𝑋 such that |𝐵𝓁(𝜔, 𝑅)| = |𝐵𝓁(𝜔0, 𝑅)| for all 𝜔 ∈ 𝑉. Fixing some
𝑥0 ∈ 𝑉 ∩ 𝑋, we have

|𝐵𝓁(𝜔0, 𝑅)| = |𝐵𝓁(𝑥0, 𝑅)| = |𝐵(𝑥0, 𝑅)| ≤ 𝐶(1 + 𝑅)𝑑.

Therefore, 𝒢(𝑋) has polynomial growth.
□

Combining Lemmas 3.7 and 3.6, we see that Theorem 3.2 generalizes a pre-
vious theorem of Chen and Wei.

Theorem 3.8 ([3, Theorem 2.1]). Let 𝑋 be a discrete metric space with bounded
geometry. Then 𝑋 has property (𝑀𝑅𝐷) if and only if 𝑋 has polynomial growth.

4. Permanence results
In this last section, we list some permanence properties enjoyed by the rapid

decay property. We give conditions for products of (RD) groupoids to have (RD)
(see Proposition 4.2), and as a consequence we obtain examples of groupoids
which are not groups, do not have polynomial growth, and yet satisfy (RD).
Other than this, the main result is Theorem 4.5, which gives conditions on
which (RD) transfers from the domain of a groupoid homomorphism to its
codomain, and give a few corollaries to this result. But first, we give a simple
result regarding inclusions of groupoids.

Proposition 4.1. Supposeℋ is an étale groupoid, and that 𝒢 ⊂ ℋ is an open
subgroupoid. Let 𝓁 be a length function on ℋ, let ℱ

𝜋
→ ℋ be a twist over ℋ,

and let ℰ = 𝜋−1(𝒢). Then ℰ is a twist over 𝒢, and ifℋ has property ℱ-(RD) with
respect to 𝓁, then 𝒢 has property ℰ-(RD) with respect to 𝓁̃, where 𝓁̃ is the restriction
of 𝓁 to 𝒢.

Proof. It is straightforward to check that ℰ defines a twist over 𝒢. As 𝒢 ⊂ ℋ
is open, ℰ is an open subgroupoid of ℱ, so extension-by-zero yields inclusions
Σ𝑐(𝒢, ℰ) ⊂ Σ𝑐(ℋ,ℱ) and 𝓁2𝒢𝑥 ⊂ 𝓁2ℋ𝑥 for all 𝑥 ∈ 𝒢(0). Moreover these later
inclusions are isometric.
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Let 𝜌 ∶ ℋ → ℱ be a section for the bundle map 𝜋, and let 𝜌̃ denote the
restriction of 𝜌 to 𝒢. For any 𝑓 ∈ Σ𝑐(𝒢, ℰ), 𝑥 ∈ 𝒢(0), and 𝜉 ∈ 𝓁2𝒢𝑥, we have

‖𝜆𝜌̃𝑥(𝑓)𝜉‖2𝓁2𝒢𝑥 = ‖𝜆𝜌𝑥(𝑓)𝜉‖2𝓁2ℋ𝑥
≤ ‖𝜆𝜌𝑥(𝑓)‖𝔹(𝓁2ℋ𝑥)‖𝜉‖𝓁2ℋ𝑥

= ‖𝜆𝜌𝑥(𝑓)‖𝔹(𝓁2ℋ𝑥)‖𝜉‖𝓁2𝒢𝑥 .

It follows that ‖𝜆𝜌̃𝑥(𝑓)‖𝔹(𝓁2𝒢𝑥) ≤ ‖𝜆𝜌𝑥(𝑓)‖𝔹(𝓁2ℋ𝑥), and thus ‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≤ ‖𝑓‖𝐶∗𝑟 (ℋ,ℱ).
For 𝑡 ≥ 0 and 𝑓 ∈ Σ𝑐(𝒢, ℰ), we have ‖𝑓‖ℱ,𝓁,𝑡,𝑠,𝑥 = ‖𝑓‖ℰ,𝓁̃,𝑡,𝑠,𝑥 whenever

𝑥 ∈ 𝒢(0) and ‖𝑓‖ℱ,𝓁,𝑡,𝑠,𝑥 = 0 whenever 𝑥 ∈ ℋ(0) ⧵ 𝒢(0). Taking the supremum
over 𝑥 ∈ 𝒢(0), it follows that ‖𝑓‖ℱ,𝓁,𝑡,𝑠 = ‖𝑓‖ℰ,𝓁̃,𝑡,𝑠, and taking adjoints we ob-
tain ‖𝑓‖ℱ,𝓁,𝑡 = ‖𝑓‖ℰ,𝓁̃,𝑡. Assumingℋ has ℱ-(RD) with respect to 𝓁, there are
constants 𝐶, 𝑡 ≥ 0 such that ‖ℎ‖𝐶∗𝑟 (ℋ,ℱ) ≤ 𝐶‖ℎ‖ℱ,𝓁,𝑡 for all ℎ ∈ Σ𝑐(ℋ,ℱ), and
thus

‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≤ ‖𝑓‖𝐶∗𝑟 (ℋ,ℱ) ≤ 𝐶‖𝑓‖ℱ,𝓁,𝑡 = 𝐶‖𝑓‖ℰ,𝓁̃,𝑡.
□

We now consider the case of products of étale groupoids. It is known (see
Lemma 3.1 of [2] for instance) that products of (RD) groups satisfy (RD). At the
time of this writing, it is not known to the author if the same holds in this more
general setting, but we can obtain a partial result.
Before stating the result, let us note the following simple construction. Let 𝒢

andℋ be étale groupoids, and let

𝒢(0) × 𝕋 ℰ 𝒢𝑖 𝜋

be a twist over 𝒢. One can define a twist over 𝒢 ×ℋ by

𝒢(0) ×ℋ(0) × 𝕋 ℰ ×ℋ 𝒢 ×ℋ,𝑖̃ 𝜋̃

where 𝑖̃(𝑥, 𝑦, 𝑧) = (𝑖(𝑥, 𝑧), 𝑧) for 𝑥 ∈ 𝒢(0), 𝑦 ∈ ℋ(0), 𝑧 ∈ 𝕋, and where 𝜑̃(𝜀, 𝜂) =
(𝜋(𝜀), 𝜂) for 𝜀 ∈ ℰ, 𝜂 ∈ ℋ.

Proposition 4.2. Let 𝒢 and ℋ be étale groupoids, and let ℰ be a twist over 𝒢.
Suppose that ℋ is compact, and that 𝒢 has property ℰ-(RD) with respect to the
length 𝓁. Then 𝒢×ℋ has property ℰ×ℋ-(RD) with respect to the length function
𝓁̃, where 𝓁̃(𝛾, 𝜂) = 𝓁(𝛾).

Proof. Fix a finite cover {𝑈1, … ,𝑈𝑛} ofℋ by open bisections, and let (ℎ1, … , ℎ𝑛)
be a partition of unity forℋ subordinate to (𝑈1, … ,𝑈𝑛). For 𝑓 ∈ Σ𝑐(𝒢×ℋ, ℰ ×
ℋ), define 𝑓(𝑘) ∈ Σ𝑐(𝒢 × ℋ, ℰ × ℋ) for 𝑘 ∈ [𝑛] ∶= {1, … , 𝑛} by 𝑓(𝑘)(𝜀, 𝜂) =
𝑓(𝜀, 𝜂)ℎ𝑘(𝜂), and define 𝑓𝜂 ∈ Σ𝑐(𝒢, ℰ) for 𝜂 ∈ ℋ by 𝑓𝜂(𝜀) = 𝑓(𝜀, 𝜂). For 𝑥 ∈
𝒢(0), 𝑦 ∈ ℋ(0), 𝜉 ∈ 𝓁2(𝒢 × ℋ)(𝑥,𝑦), and 𝜂 ∈ ℋ𝑦, define 𝜉𝜂 ∈ 𝓁2𝒢𝑥 by 𝜉𝜂(𝛾) =
𝜉(𝛾, 𝜂).
Now fix 𝑓 ∈ Σ𝑐(𝒢 × ℋ, ℰ × ℋ), and let (𝑥, 𝑦) ∈ 𝒢(0) ×ℋ(0) and 𝜉 ∈ 𝓁2(𝒢 ×

ℋ)(𝑥,𝑦) be given. Let 𝑍 = {(𝜂, 𝑘) ∈ ℋ𝑦 × [𝑛] ∶ 𝑟(𝜂) ∈ 𝑟(𝑈𝑘)}. For (𝜂, 𝑘) ∈ 𝑍,
there is a unique 𝜁 = 𝜁(𝜂, 𝑘) ∈ ℋ𝑦 such that 𝜂𝜁−1 ∈ 𝑈𝑘. Let 𝜌 ∶ 𝒢 → ℰ be a
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section for the bundle map 𝜋, and let 𝜌̃ = 𝜌× idℋ be the corresponding section
for the bundle map 𝜋̃. Observe that for 𝛾 ∈ 𝒢𝑥 and (𝜂, 𝑘) ∈ 𝑍 we have

[𝜆𝜌̃(𝑥,𝑦)(𝑓
(𝑘))𝜉](𝛾, 𝜂) = ℎ𝑘(𝜂𝜁(𝜂2, 𝑘)−1)[𝜆

𝜌
𝑥(𝑓𝜂𝜁(𝜂,𝑘)−1)𝜉𝜁(𝜂,𝑘)](𝛾).

We estimate:

‖𝜆𝜌̃(𝑥,𝑦)(𝑓)𝜉‖
2
𝓁2(𝒢×ℋ)(𝑥,𝑦)

=
∑

𝛾∈𝒢𝑥

∑

𝜂∈ℋ𝑦

|||||||||

𝑛∑

𝑘=1
[𝜆𝜌̃(𝑥,𝑦)(𝑓

(𝑘))𝜉](𝛾, 𝜂)
|||||||||

2

≤ 𝑛
∑

(𝜂,𝑘)∈𝑍

∑

𝛾∈𝒢𝑥
|[𝜆𝜌̃(𝑥,𝑦)(𝑓

(𝑘))𝜉](𝛾, 𝜂)|2

≤ 𝑛
∑

(𝜂,𝑘)∈𝑍
‖𝜆𝜌𝑥(𝑓𝜂𝜁(𝜂,𝑘)−1)𝜉𝜁(𝜂,𝑘)‖2𝓁2𝒢𝑥

≤ 𝑛
∑

(𝜂,𝑘)∈𝑍
‖𝑓𝜂𝜁(𝜂,𝑘)−1‖2𝐶∗𝑟 𝒢‖𝜉𝜁(𝜂,𝑘)‖

2
𝓁2𝒢𝑥

.

Since 𝒢 has property ℰ-(RD) with respect to 𝓁, there exist constants 𝐶, 𝑡 ≥ 0
such that ‖𝑔‖𝐶∗𝑟 (𝒢,ℰ) ≤ 𝐶‖𝑔‖ℰ,𝓁,𝑡 for all 𝑔 ∈ Σ𝑐(𝒢, ℰ). For 𝜂 ∈ ℋ, one checks
that ‖𝑓𝜂‖ℰ,𝓁,𝑡 ≤ ‖𝑓‖ℰ×ℋ,𝓁̃,𝑡, and hence

‖𝜆𝜌̃(𝑥,𝑦)(𝑓)𝜉‖
2
𝓁2(𝒢×ℋ)(𝑥,𝑦)

≤ 𝑛𝐶2‖𝑓‖2ℰ×ℋ,𝓁̃,𝑡

∑

(𝜂,𝑘)∈𝑍
‖𝜉𝜁(𝜂,𝑘)‖2𝓁2𝒢𝑥 .

For fixed 𝑘, the map 𝜂 ↦ 𝜁(𝜂, 𝑘) is injective, and thus
∑

(𝜂,𝑘)∈𝑍
‖𝜉𝜁(𝜂,𝑘)‖2𝓁2𝒢𝑥 ≤ 𝑛‖𝜉‖2𝓁2(𝒢×ℋ)(𝑥,𝑦)

.

Combining our estimates, we obtain

‖𝜆𝜌̃(𝑥,𝑦)(𝑓)𝜉‖
2
𝓁2(𝒢×ℋ)(𝑥,𝑦)

≤ 𝑛𝐶‖𝑓‖ℰ×ℋ,𝓁̃,𝑡‖𝜉‖𝓁2(𝒢×ℋ)(𝑥,𝑦) .

Taking the supremum over 𝜉 ∈ 𝓁2(𝒢 × ℋ)(𝑥,𝑦), then over (𝑥, 𝑦) ∈ 𝒢(0) ×ℋ(0),
we obtain

‖𝑓‖𝐶∗𝑟 (𝒢×ℋ,ℰ×ℋ ≤ 𝑛𝐶‖𝑓‖ℰ×ℋ,𝓁̃,𝑡.

□

This allows us to conclude that when 𝒢 = Γ is a (discrete) group with prop-
erty (RD),ℰ is the trivial twist, andℋ is any compact étale groupoid, we see that
Γ×ℋ admits property (RD). In particular, if 𝔽 is a finitely generated free group,
given the word length function with respect to a free generating set, and ℛ𝑛
denotes the full equivalence relation on the 𝑛-set [𝑛] = {1,⋯ , 𝑛} ,then 𝔽 × ℛ𝑛
is a property (RD) groupoid which fails to have polynomial growth. This to be
expected, as 𝐶∗𝑟 (𝔽 × ℛ𝑛) ≅ 𝑀𝑛(𝐶∗𝑟 𝔽), and in the language of Theorem 4.2 in
[7], 𝑆𝓁2 (𝔽 × ℛ𝑛) is just𝑀𝑛(𝑆𝓁2 (𝔽2)), and spectral invariance of this subalgebra is
known by Theorem 2.1 in [19].
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Next, we consider a fairly simple observation regarding the relationship be-
tween property (RD) for translation groupoids and property (RD) for the acting
group.

Proposition 4.3. Let Γ be a discrete group with a length function 𝓁, and suppose
Γ acts on a compact space𝑋. If Γ⋉𝑋 has (RD) with respect to the length function
induced by 𝓁, then Γ has (RD) with respect to 𝓁.
Proof. Let us write 𝒢 = Γ⋉ 𝑋, and define the length function 𝓁Γ↷𝑋 on Γ ⋉ 𝑋
by 𝓁Γ↷𝑋(𝛾, 𝑥) = 𝓁(𝛾) for all 𝛾 ∈ Γ and 𝑥 ∈ 𝑋. If 𝑓 ∈ ℂΓ, define 𝑓 ∈ 𝐶𝑐(𝒢) by
𝑓(𝛾, 𝑥) = 𝑓(𝛾). For any 𝑥 ∈ 𝑋 and 𝜉 ∈ 𝓁2Γ, define 𝜉̂𝑥 ∈ 𝓁2𝒢𝑥 by 𝜉̂𝑥(𝛾, 𝑥) = 𝜉(𝛾)
for all 𝛾 ∈ Γ. Moreover, one checks that

[𝜆𝑥(𝑓)𝜉̂𝑥](𝛾, 𝑥) = [𝜆(𝑓)𝜉](𝛾), ‖𝑓‖𝓁𝒢,𝑡,𝑠,𝑥 = ‖𝑓‖𝓁𝒢,𝑡,𝑠,𝑥 = ‖𝑓‖𝓁,𝑡
for all 𝑓 ∈ ℂΓ, 𝜉 ∈ 𝓁2Γ, 𝛾 ∈ Γ, 𝑥 ∈ 𝑋, and 𝑡 ≥ 0. If now𝒢 has (RD)with respect
to 𝓁Γ↷𝑋 , there exist 𝐶, 𝑡 ≥ 0 such that ‖𝑔‖𝐶∗𝑟 𝒢 ≤ 𝐶‖𝑔‖𝓁Γ↷𝑋 ,𝑡 for all 𝑔 ∈ 𝐶𝑐(𝒢). If
now 𝑓 ∈ ℂΓ, we have

‖𝑓‖𝐶∗𝑟 Γ = ‖𝑓‖𝐶∗𝑟 𝒢 ≤ 𝐶‖𝑓‖𝓁Γ↷𝑋 ,𝑡 = 𝐶‖𝑓‖𝓁,𝑡.
Since 𝐶, 𝑡 ≥ 0 do not depend on 𝑓, the result follows.

□

By Theorems 3.2 and 3.3, the converse to this result fails drastically. For the
time being, we shall attempt to generalize this result as much as possible. To
that end, let ℋ,𝒢 be groupoids, and let 𝜑 ∶ ℋ → 𝒢 be a homomorphism.
Given a twist ℰ over 𝒢, we can construct a pullback twist 𝜑∗ℰ overℋ, making
the following diagram commute:

ℋ(0) × 𝕋 𝜑∗ℰ ℋ

𝒢(0) × 𝕋 ℰ 𝒢.

𝜑∗𝑖

𝜑∗

𝜑∗𝜋

𝜑

𝑖 𝜋

Here, 𝜑∗ℰ = ℰ ∗𝜋 𝜑 ℋ is the fibered product, and all induced maps are the
obvious ones. Note that the twist ℰ ×ℋ over 𝒢 ×ℋ considered in Proposition
4.2 is just the pullback of the twist ℰ along the projection 𝒢 ×ℋ → 𝒢 onto the
first factor.
We say that 𝜑 is 𝑛-regular (for some 𝑛 ∈ ℕ) if 𝜑(ℋ(0)) = 𝒢(0), and |𝜑−1(𝛾) ∩

ℋ𝑦| = 𝑛 for all 𝑦 ∈ ℋ(0) and 𝛾 ∈ 𝒢𝜑(𝑦). Note that this also implies 𝜑 is surjec-
tive, and that |𝜑−1(𝛾) ∩ ℋ𝑦| = 𝑛 for all 𝑦 ∈ ℋ(0) and 𝛾 ∈ 𝒢𝜑(𝑦).
It is worth noting that 1-regular groupoid homomorphisms correspond to

groupoid actions. Indeed, if 𝒢 acts on a set 𝑌, then the projection map 𝜋 ∶
𝒢 ⋉ 𝑌 → 𝒢 is 1-regular. Conversely, let 𝜑 ∶ ℋ → 𝒢 be a 1-regular groupoid
homomorphism, and set 𝑝 = 𝜑(0) and 𝑌 = ℋ(0). If 𝑦 ∈ 𝑌 and 𝛾 ∈ 𝒢𝑝(𝑦), then
there is a unique 𝜂𝛾,𝑦 ∈ ℋ𝑦 such that 𝜑(𝜂𝛾,𝑦) = 𝛾, and the action of 𝒢 on 𝑌 is
given by 𝛾 ⋅ 𝑦 = 𝑟(𝜂𝛾,𝑦). Moreover, the mapℋ → 𝒢⋉ 𝑌, 𝜂 ↦ (𝜑(𝜂), 𝑠(𝜂)), is a
groupoid isomorphism.
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Lemma 4.4. Let 𝒢 andℋ be étale groupoids, let ℰ be a twist over 𝒢 with section
𝜌 ∶ 𝒢 → ℰ, and let 𝜑 ∶ ℋ → 𝒢 be an 𝑛-regular groupoid homomorphism.

(i) If 𝑦 ∈ ℋ(0) and 𝜉 ∈ ℂ𝒢𝜑(𝑦), then 𝜑̂𝑦𝜉 ∶= 𝜉◦𝜑 belongs toℂℋ𝑦 . Moreover,
the mapping 𝜉 ↦ 𝜑̂𝑦𝜉 extends to a bounded linear map 𝓁2𝒢𝜑(𝑦) → 𝓁2ℋ𝑦
such that ‖𝜑̂𝑦𝜉‖𝓁2ℋ𝑦 = 𝑛1∕2‖𝜉‖𝓁2𝒢𝜑(𝑦) for all 𝜉 ∈ 𝓁2𝒢𝜑(𝑦).

(ii) If 𝜑 is continuous and proper, then ‖𝜑̂𝑓‖𝜑∗ℰ,𝜑∗𝓁,𝑡 = 𝑛1∕2‖𝑓‖ℰ,𝓁,𝑡 for any
𝑡 ≥ 0 and 𝑓 ∈ Σ𝑐(𝒢, ℰ) and any length 𝓁 on 𝒢.

(iii) If 𝜑 is continuous and proper, then 𝜆𝜑
∗𝜌

𝑦 (𝜑̂𝑓)𝜑̂𝑦 = 𝑛𝜑̂𝑦𝜆
𝜌
𝜑(𝑦)(𝑓) for any

𝑓 ∈ Σ𝑐(𝒢, ℰ) and 𝑦 ∈ ℋ(0).

Proof. If 𝑦 ∈ ℋ(0) and 𝜉 ∈ ℂ𝒢𝜑(𝑦), then
| supp(𝜑̂𝑦𝜉)| = |𝜑−1(supp(𝜉)) ∩ ℋ𝑦| = 𝑛| supp(𝜉)|,

so 𝜑̂𝑦𝜉 ∈ ℂℋ𝑦. Moreover, we have

‖𝜑̂𝑦𝜉‖2𝓁2ℋ𝑦
=

∑

𝜂∈ℋ𝑦

|𝜑̂𝑦𝜉(𝜂)|2 =
∑

𝛾∈𝒢𝜑(𝑦)
|𝜑−1(𝛾) ∩ ℋ𝑦| ⋅ |𝜉(𝛾)|2 = 𝑛‖𝜉‖2𝓁2𝒢𝜑(𝑦) ,

and (i) follows in the familiar way. Now assume that 𝜑 is a continuous, proper,
𝑛-regular groupoid homomorphism. Fix a section 𝜌 ∶ 𝒢 → ℰ for the bundle
map ℰ → 𝒢. If 𝑓 ∈ Σ𝑐(𝒢, ℰ) and 𝑦 ∈ ℋ(0), then proceeding as in the above
calculation, one sees that

‖𝜑̂𝑓‖𝜑∗ℰ,𝜑∗𝓁,𝑡,𝑠,𝑦 = 𝑛1∕2‖𝑓‖ℰ,𝓁,𝑡,𝑠,𝜑(𝑦)
for all 𝑦 ∈ ℋ(0). Since 𝜑mapsℋ(0) onto 𝒢(0), we obtain

‖𝜑̂𝑓‖𝜑∗ℰ,𝜑∗𝓁,𝑡,𝑠 = sup
𝑦∈ℋ(0)

‖𝜑̂𝑓‖𝜑∗ℰ,𝜑∗𝓁,𝑡,𝑠,𝑦 = 𝑛1∕2 sup
𝑦∈ℋ(0)

‖𝑓‖ℰ,𝓁,𝑡,𝑠,𝜑(𝑦)

= 𝑛1∕2 sup
𝑥∈𝒢(0)

‖𝑓‖ℰ,𝓁,𝑡,𝑠,𝑥 = 𝑛1∕2‖𝑓‖ℰ,𝓁,𝑡,𝑠.

As 𝜑̂ is a ∗-homomorphism, we have
‖(𝜑̂𝑓)∗‖𝜑∗ℰ,𝜑∗𝓁,𝑡,𝑠 = ‖𝜑̂(𝑓∗)‖𝜑∗ℰ,𝜑∗𝓁,𝑡,𝑠 = 𝑛1∕2‖𝑓∗‖ℰ,𝓁,𝑡,𝑠,

and (ii) follows. To prove (iii), let 𝑓 ∈ Σ𝑐(𝒢, ℰ), 𝑦 ∈ ℋ(0), 𝜉 ∈ 𝓁2𝒢𝜑(𝑦), and
𝜂 ∈ ℋ𝑦 be given. We have

[
𝜆𝜑

∗𝜌
𝑦 (𝜑̂𝑓)(𝜑̂𝑦𝜉)

]
(𝜂) =

∑

𝜅∈ℋ𝑦

𝑓
(
𝜌(𝜑(𝜂))𝜌(𝜑(𝜅))−1

)
𝜉(𝜑(𝜅))

=
∑

𝛾∈𝒢𝜑(𝑦)
|𝜑−1(𝛾) ∩ ℋ𝑦| ⋅ 𝑓(𝜌(𝜑(𝜂))𝜌(𝛾)−1)𝜉(𝛾)

= 𝑛
∑

𝛾∈𝒢𝜑(𝑦)
𝑓(𝜌(𝜑(𝜂))𝜌(𝛾)−1)𝜉(𝛾)

= 𝑛[𝜆𝜌𝜑(𝑦)(𝑓)𝜉](𝜑(𝜂))

= 𝑛[𝜑̂𝑦𝜆
𝜌
𝑝(𝑦)(𝑓)𝜉](𝜂).
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□

Theorem 4.5. Let 𝜑 ∶ ℋ → 𝒢 be a homomorphism of étale groupoids that is
continuous, proper, and 𝑛-regular for some 𝑛 ∈ ℕ. Let ℰ be a twist over 𝒢. If 𝓁 is
a length function on 𝒢, andℋ has property 𝜑∗ℰ-(RD) with respect to the length
𝜑∗𝓁, then 𝒢 has property ℰ- (RD) with respect to 𝓁.

Proof. Let 𝑓 ∈ Σ𝑐(𝒢, ℰ), 𝑥 ∈ 𝒢(0), and 𝜉 ∈ 𝓁2𝒢𝑥 with ‖𝜉‖𝓁2𝒢𝑥 = 1 be given. Let
𝜌 ∶ 𝒢 → ℰ be a section for the bundle map ℰ → 𝒢. Fix some 𝑦 ∈ ℋ(0) such
that 𝜑(𝑦) = 𝑥. Applying (i) and (iii) of the previous lemma, we see that

‖𝜆𝜌𝑥(𝑓)𝜉‖𝓁2𝒢𝑥 = 𝑛−1∕2‖𝜑̂𝑦𝜆
𝜌
𝑥(𝑓)𝜉‖𝓁2ℋ𝑦

= 𝑛−3∕2‖𝜆𝜑
∗𝜌

𝑦 (𝜑̂𝑓)𝜑̂𝑦𝜉‖𝓁2ℋ𝑦

≤ 𝑛−3∕2‖𝜆𝜑
∗𝜌

𝑦 (𝜑̂𝑓)‖𝔹(𝓁2(ℋ𝑦)‖𝜑̂𝑦𝜉‖𝓁2ℋ𝑦

≤ 𝑛−1‖𝜑̂𝑓‖𝐶∗𝑟 (ℋ,𝜑∗ℰ)

Taking suprema, we obtain ‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≤ 𝑛−1‖𝜑̂𝑓‖𝐶∗𝑟 (ℋ,𝜑∗ℰ). Assuming ℋ has
property 𝜑∗ℰ-(RD) with respect to 𝜑∗𝓁, there exist constants 𝐶, 𝑡 ≥ 0 such that
‖ℎ‖𝐶∗𝑟 (ℋ,𝜑∗ℰ) ≤ 𝐶‖ℎ‖𝜑∗ℰ,𝜑∗𝓁,𝑡 for all ℎ ∈ Σ𝑐(ℋ, 𝜑∗ℰ). Applying (ii) from the
previous lemma, the above estimate now yields

‖𝑓‖𝐶∗𝑟 (𝒢,ℰ) ≤ 𝑛−1‖𝜑̂𝑓‖𝐶∗𝑟 (ℋ,𝜑∗ℰ ≤ 𝐶𝑛−1‖𝜑̂𝑓‖𝜑∗𝓁,𝑡 = 𝐶𝑛−1∕2‖𝑓‖𝓁,𝑡
As 𝑓 ∈ Σ𝑐(𝒢, ℰ) was arbitrary, 𝒢 has (RD) with respect to 𝓁.

□

First, observe that Proposition 4.3 is a corollary of the above result: The quo-
tient map 𝜋 ∶ Γ ⋉ 𝑋 → Γ is 1-regular for every continuous action, and proper
when the space 𝑋 is compact.
Generalizing the above corollary, we now turn our attention to groupoid

actions. Let 𝒢 be an étale groupoid, and suppose it admits a left action on
the locally compact Hausdorff space 𝑌 with anchor map 𝑝 ∶ 𝑌 → 𝒢(0). Let
ℋ = 𝒢⋉𝑌, and let 𝜋 ∶ ℋ → 𝒢 be the projection map: 𝜋(𝛾, 𝑦) = 𝛾. Then 𝜋 is a
continuous and 1-regular groupoid homomorphism, so for the above result to
apply we only need to supply conditions for 𝜋 to be a proper map. This turns
out to be the case when 𝑝 is a finite cover. To prove this, we require a lemma.

Lemma 4.6. Let 𝐼 be a directed set, and let 𝐼1, … , 𝐼𝑛 be subsets of 𝐼. If the union
∪𝑛𝑘=1𝐼𝑘 is cofinal in 𝐼, then there is some 𝑘 ∈ {1, … , 𝑛} such that 𝐼𝑘 is cofinal in 𝐼.

Proof. Write 𝐼0 = 𝐼1 ∪⋯ ∪ 𝐼𝑛. The result is trivial if 𝑛 = 1, so assume 𝑛 ≥ 2,
and suppose that 𝐼1, … , 𝐼𝑛−1 are not cofinal in 𝐼. Then for each 𝑘 ∈ {1, … , 𝑛−1},
there is some 𝑖𝑘 ∈ 𝐼 such that whenever 𝑖 ∈ 𝐼 and 𝑖 ≥ 𝑖𝑘 we must have 𝑖 ∉ 𝐼𝑘.
Fix some 𝑖0 ∈ 𝐼 such that 𝑖0 ≥ 𝑖𝑘 for each 𝑘 < 𝑛. Let 𝑖 ∈ 𝐼 be given, and let
𝑖𝑛 ∈ 𝐼 be such that 𝑖𝑛 ≥ 𝑖 and 𝑖𝑛 ≥ 𝑖0. For each 𝑘 ∈ {1, … , 𝑛−1}, we have 𝑖𝑛 ≥ 𝑖𝑘,
so 𝑖𝑛 ∉ 𝐼𝑘. This forces 𝑖𝑛 ∈ 𝐼𝑛, and it follows that 𝐼𝑛 is cofinal in 𝐼.

□
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Proposition 4.7. Let 𝒢 be an étale groupoid, and suppose 𝒢 acts on a locally
compact space 𝑋 such that the anchor map 𝑝 ∶ 𝑋 → 𝒢(0) is a finite cover. Then
the projection map 𝜋 ∶ 𝒢 ⋉ 𝑋 → 𝒢 is proper.

Proof. Let 𝐾 ⊂ 𝒢 be compact, and let (𝛾𝑖)𝑖∈𝐼 be a net in 𝜋−1(𝐾). For each 𝑖 ∈ 𝐼
write 𝛾𝑖 = (𝜎𝑖, 𝑥𝑖), where 𝜎𝑖 ∈ 𝐾 and 𝑥𝑖 ∈ 𝑋. As 𝐾 is compact, by passing to a
subnet we may assume that the net (𝜎𝑖)𝑖∈𝐼 converges to some 𝜎 ∈ 𝐾.
Let us write 𝑝−1(𝑠(𝜎)) = {𝑥1, … , 𝑥𝑛}, and fix an open neighborhood 𝑉 of

𝑠(𝜎) in 𝒢(0) that is evenly covered by the sets {𝑉1, … , 𝑉𝑛}, where for each 𝑘 ∈
{1, … , 𝑛}, 𝑉𝑘 ⊂ 𝑋 is an open neighborhood of 𝑥𝑘. For 1 ≤ 𝑘 ≤ 𝑛 let us write
𝐼𝑘 = {𝑖 ∈ 𝐼 ∶ 𝑥𝑖 ∈ 𝑉𝑘}, and 𝐼0 = 𝐼1 ⊔ ⋯ ⊔ 𝐼𝑛. As 𝐼0 = {𝑖 ∈ 𝐼 ∶ 𝑠(𝛾𝑖) ∈ 𝑉},
and 𝑠(𝛾𝑖) → 𝑠(𝛾), 𝐼0 is cofinal in 𝐼. Lemma 4.6 now implies that there is some
𝑘 ∈ {1, … , 𝑛} such that 𝐼𝑘 is cofinal in 𝐼.
Let 𝑈 ⊂ 𝑋 be an open neighborhood of 𝑥𝑘. Then 𝑝(𝑈 ∩ 𝑉𝑘) is an open

neighborhood of 𝑠(𝜎), so there is some 𝑖0 ∈ 𝐼 such that 𝑝(𝑥𝑖) ∈ 𝑝(𝑈 ∩ 𝑉𝑘)
whenever 𝑖 ≥ 𝑖0. Since 𝐼𝑘 is cofinal in 𝐼, we may assume that 𝑖0 ∈ 𝐼𝑘. Thus
𝑥𝑖 ∈ 𝑈∩𝑉𝑘 whenever 𝑖 ∈ 𝐼𝑘 and 𝑖 ≥ 𝑖0. It follows that the net (𝛾𝑖)𝑖∈𝐼𝑘 converges
to (𝜎, 𝑥𝑘) ∈ 𝜋−1(𝐾), and therefore 𝜋−1(𝐾) is compact.

□

Corollary 4.8. Let 𝒢 be an étale groupoid, and let 𝓁 be a length function on 𝒢.
Suppose that𝒢 admits an action on a locally compact space𝑌 and that the anchor
map𝑝 ∶ 𝑌 → 𝒢(0) is a finite coveringmap. If𝒢⋉𝑌 has property (RD)with respect
to the length function induced by 𝜋∗𝓁, then 𝒢 has property (RD) with respect to 𝓁.

As a last application, we consider blow ups. Let 𝒢 be an étale groupoid, let
𝑌 be a locally compact space, and let 𝑝 ∶ 𝑌 → 𝒢(0) be a surjective local home-
omorphism. We denote by 𝒢[𝑝] the blow up of 𝒢 by the map 𝑝. This is, by def-
inition, the groupoid whose underlying space is 𝑌 ∗𝑝 𝑟 𝒢 ∗𝑠 𝑝 𝑌, with the obvi-
ous groupoid operations. With the subspace topology coming from the product
topology on𝑌×𝒢×𝑌, 𝒢[𝑝] is an étale groupoid with unit space homeomorphic
to 𝑌.
Given a local homeomorphism𝑝 ∶ 𝑌 → 𝒢(0), we define amap𝑝0 ∶ 𝒢[𝑝] → 𝒢

by 𝑝0(𝑤, 𝛾, 𝑦) = 𝛾. This is a continuous groupoid homomorphism. Moreover,
we have a result similar to the above lemma for group actions and finite covers.

Proposition 4.9. Let 𝒢 be an étale groupoid, and let 𝑝 ∶ 𝑌 → 𝒢(0) be an 𝑛-fold
covering map. Then the map 𝑝0 ∶ 𝒢[𝑝] → 𝒢 is an 𝑛-regular and proper groupoid
homomorphism.

Proof. It is clear that 𝑝0 is 𝑛-regular when 𝑝 is an 𝑛-fold cover. The proof that
𝑝0 is a proper map is similar to the proof of Proposition 4.7, and will be omitted.

□

Corollary 4.10. Let 𝒢 be an étale groupoid with a length function 𝓁, and let 𝑝 ∶
𝑌 → 𝒢(0) be a finite covering map. If 𝒢[𝑝] has property (RD) with respect to the
length induced by 𝓁, then 𝒢 has (RD) with respect to 𝓁.
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