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Combined exponential patterns in
multiplicative IP* sets

Pintu Debnath and Sayan Goswami*

ABSTRACT. IP sets play a fundamental role in arithmetic Ramsey theory. A
subset of N (the set of positive integers) is called an additive IP set if it is
of the form FS ((x,),en) = {ZEH X, : H is a nonempty finite subset of N},
whereas it is called a multiplicative IP set if it is of the form FP ({(x,),en) =
11 rep X © H is a nonempty finite subset of N} for some injective sequence
(X, )nen- An additive IP* (resp. multiplicative IP*) set in N is a set which
intersects every additive IP set (resp. multiplicative IP set). In [1], V. Bergel-
son and N. Hindman studied how rich additive IP* sets are. They proved
additive IP* sets (AIP* in short) contain finite sums and finite products of
a single sequence. An analogous study was made by A. Sisto in [4], where
he proved that multiplicative IP* sets (MIP* in short) contain exponential
tower” and finite product of a single sequence. However exponential patterns
can be defined in two different ways. In this article, we will prove that MIP*
sets contain two different exponential patterns and finite product of a single
sequence. This immediately improves the result of A. Sisto. Throughout our
work we will use the machinery of the algebra of the Stone-Cech Compacti-
fication of N.
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The origin of IP sets dates back to Hindman’s work [2], where he proved that
for any finite coloring of the set of positive integers N, there exists a monochro-
matic copy of an additive IP set. Here “coloring” means disjoint partition, and
a pattern being “monochromatic” means it is included in one piece of the par-
tition. Passing to the map n — 2" for each n € N, we immediately have a

Received November 25, 2023.

2020 Mathematics Subject Classification. 54D35, 05D10, 54H15.

Key words and phrases. Algebra of the Stone-Cech compactification, exponential patterns,
multiplicative IP* set.

*corresponding author.

ISSN 1076-9803/2024

38


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm

COMBINED EXPONENTIAL PATTERNS IN MULTIPLICATIVE IP* SETS 39

monochromatic copy of a multiplicative IP set. Let SN be the set of all ultrafil-
ters' over N, and E (BN, +) (resp. E (8N, -)) be the collection of all idempotents
in (BN, +) (resp. (BN, -)). One can show that a set A is additive IP (resp. mul-
tiplicative IP set) if and only if there exists p € E (BN, +) (resp. p € E (BN, ))
such that A € p. Hence a set A is AIP* (resp. MIP*)if and only if A € p for all
p € E(BN, +) (resp. p € E (BN, -)). Define P¢(N) to be the set of all nonempty
finite subsets of N. For any IP set FS ({x,,),), a sum subsystem of F'S ((x,),) is
of the form FS ((y,,),), where for each n € N, y,, is defined as follows.

« There exists a sequence (H,), in P;(N) satisfying max H, < min H,,
foralln € N, and
*Vn= ZteHn Xt
In [1], V. Bergelson and N. Hindman proved the following result, which ad-
dresses that any AIP* set contains combined additive and multiplicative pat-
terns.

Theorem 1.1. Let A be an AIP* set, and (x,),cn be any sequence. Then there
exists a sum subsystem FS ((¥,,)nen) Of FS ((X,,),en) Such that

FS ((yn>neN) UFP ((yn>n€N) C A.

An immediate question appears: what about MIP* sets? In [4], A. Sisto was
able to show that these sets contain combined multiplicative and exponential
patterns. To state his theorem explicitly, we need the following definitions.

Definition 1.2. For any sequences (x;) ., define

=1’
(1) (@) EXPi({(xy);_, = {x1},
(b) forn € N, EXPl((xt):’:ll) =
{y*r 1y € EXP((x){_ D} U EXP({x)7_) U {Xp4a}
(C) EXP1(<xt>?i1) = U;o=1EXP1(<xt>:l=1)'
(2) (a) EXP,((xp)}_, = {x1},
(b) for n € N, EXP,((x)/*}) =

{x) | 1y € EXPy({x,)_ )} UEXP,((x)7_ ) U {Xpi1}
(¢) EXP,({(x)®,) = U EXP;({(x)")).

The following Corollary of Sisto’s addresses exponential properties of MIP*
sets.
Theorem 1.3. [4, Corollary 16] Let A be a MIP*set. Then there exist sequences
(Xp)ye, and (y,)> | such that
(D) FS((yn),) VEXP; ((ya)>,) C A, and
(2) FP ({(x,)%,) UEXP, ({(x,)>,) C A.

A natural question appears whether it is possible to provide a joint extension
of both (1) and (2) in Theorem 1.3. That means, for each n € N, can we choose

For details on the algebra of ultrafilters we refer the book [3] of N. Hindman and D. Strauss.
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X, = Y, in Theorem 1.3. In this article, we provide a partial answer to this
question by proving the following theorem.

Theorem 1.4. Let A be a MIP™ set. Then there exist sequences (x,),> , such that

FP ((x,)® ) UEXP; ({x,),) UEXP; ((x,)=,) C A.

2. Proof of Theorem 1.4

Ellis theorem [3, Theorem 2.5] tells us about the existence of idempotents
in topological semigroups. It says that every compact Hausdorff right topo-
logical semigroup contains idempotents. It is a routine exercise to prove that
cl(E (BN, +)) is a left ideal of (BN, -). As left ideals contain minimal left ideals
and these are closed, we can apply Ellis theorem to conclude that

cL(E BN, +) [ E (BN, ") # 8.
To prove Theorem 1.4, we will rely on the elements of ¢l (E (BN, +)) (| E (BN, -).

Proof of Theorem 1.4: Let p € cl(E(BN,+))[]E (BN, ), and A be a MIP*
set. ASA € p,and p = p - p, denote by A* = {xe A: x1Aep} € p
Choose x; € A*. Then by [3, Lemma 4.14] xl‘lA* € p. As A is a MIP* set,
we have B, = {n : n*1 € A} is a MIP* set. Also by [4, Lemma 13], the set
C; ={m : x]" € A}is AIP* set. Set

Dl = Bl ﬂA* N xl_lA* (S p.

As p € cl(E(BN,+)), we have C;, N D; # §. Let x, € C; N D;. Then
X, € B and thisimplies x;q € A. Asx, € C; and so xfz € A. Again
X, € A* n x]'A*, this implies {x,, x,, X;x,} C A. Hence {x?,x,'} C A, and
{x1, %2, X1 %5} C A,

Inductively assume that for some N € N, we have x;, X,, ..., X)y such that

(1) EXPy ((x, )N ) UEXP, ((x,)Y_|) c Aand

(2) FP ((x,)N_)) c A*.
For each z € EXP; ((x,))_,),let B, = {n : z" € A}isa MIP*set. Foreachz €
EXP, ((x,)N_),letC, = {m : m* € A}isan AIP* set. Hence yCz
is an AIP* set. So

2€EXP,({xp)N_,

Dyy1 = ﬂ B,NnA* N ﬂ y~lA* € p.
2€EXP; ((x,)N_)) yeFP((x,)N_))
Again p € cl (E (BN, +)), hence
EN+1 = ﬂ CZ ﬂDN+1 ?é ﬂ,

2€EXP,({x,)N_))

andlet x,,,; € Eyy;. Then, zv+1 € Aforall z € EXP; ((x;)|),and x},, € A

forall y € EXP, ((x;)N,). Again xy.; € A* N ﬂyeFP((x,,)Q’zl) y~LA* implies

FP ((x)M*1) c A*.
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Hence we have
(1) EXPl ((xn>N+1) U EXPZ ((xn>N+1) C A, and

n=1 n=1

(2) FP ({(x,)N*1) c A*.

n=1
This completes the induction. O
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