New York Journal of Mathematics

New York J. Math. 30 (2024) 38-41.

Combined exponential patterns in multiplicative *IP*^{*} sets

Pintu Debnath and Sayan Goswami*

ABSTRACT. IP sets play a fundamental role in arithmetic Ramsey theory. A subset of \mathbb{N} (the set of positive integers) is called an additive *IP* set if it is of the form $FS(\langle x_n \rangle_{n \in \mathbb{N}}) = \{\sum_{t \in H} x_t : H \text{ is a nonempty finite subset of } \mathbb{N}\},\$ whereas it is called a multiplicative *IP* set if it is of the form $FP(\langle x_n \rangle_{n \in \mathbb{N}}) =$ $\{\prod_{t\in H} x_t : H \text{ is a nonempty finite subset of } \mathbb{N}\}\$ for some injective sequence $\langle x_n \rangle_{n \in \mathbb{N}}$. An additive IP^* (resp. multiplicative IP^*) set in \mathbb{N} is a set which intersects every additive IP set (resp. multiplicative IP set). In [1], V. Bergelson and N. Hindman studied how rich additive IP^{\star} sets are. They proved additive IP* sets (AIP* in short) contain finite sums and finite products of a single sequence. An analogous study was made by A. Sisto in [4], where he proved that multiplicative IP^{\star} sets (MIP^{\star} in short) contain exponential tower¹ and finite product of a single sequence. However exponential patterns can be defined in two different ways. In this article, we will prove that MIP* sets contain two different exponential patterns and finite product of a single sequence. This immediately improves the result of A. Sisto. Throughout our work we will use the machinery of the algebra of the Stone-Čech Compactification of \mathbb{N} .

CONTENTS

1.	Introduction	38
2.	Proof of Theorem 1.4	40
Acknowledgement:		41
Ref	References	

1. Introduction

The origin of *IP* sets dates back to Hindman's work [2], where he proved that for any finite coloring of the set of positive integers \mathbb{N} , there exists a monochromatic copy of an additive *IP* set. Here "coloring" means disjoint partition, and a pattern being "monochromatic" means it is included in one piece of the partition. Passing to the map $n \rightarrow 2^n$ for each $n \in \mathbb{N}$, we immediately have a

Received November 25, 2023.

²⁰²⁰ Mathematics Subject Classification. 54D35, 05D10, 54H15.

Key words and phrases. Algebra of the Stone-Čech compactification, exponential patterns, multiplicative IP^* set.

^{*}corresponding author.

monochromatic copy of a multiplicative *IP* set. Let $\beta \mathbb{N}$ be the set of all ultrafilters¹ over \mathbb{N} , and $E(\beta\mathbb{N}, +)$ (resp. $E(\beta\mathbb{N}, \cdot)$) be the collection of all idempotents in $(\beta \mathbb{N}, +)$ (resp. $(\beta \mathbb{N}, \cdot)$). One can show that a set A is additive IP (resp. multiplicative *IP* set) if and only if there exists $p \in E(\beta \mathbb{N}, +)$ (resp. $p \in E(\beta \mathbb{N}, \cdot)$) such that $A \in p$. Hence a set A is AIP^* (resp. MIP^*) if and only if $A \in p$ for all $p \in E(\beta \mathbb{N}, +)$ (resp. $p \in E(\beta \mathbb{N}, \cdot)$). Define $\mathcal{P}_f(\mathbb{N})$ to be the set of all nonempty finite subsets of N. For any IP set FS $(\langle x_n \rangle_n)$, a sum subsystem of FS $(\langle x_n \rangle_n)$ is of the form $FS(\langle y_n \rangle_n)$, where for each $n \in \mathbb{N}$, y_n is defined as follows.

- There exists a sequence $\langle H_n \rangle_n$ in $\mathcal{P}_f(\mathbb{N})$ satisfying max $H_n < \min H_{n+1}$ for all $n \in \mathbb{N}$, and
- $y_n = \sum_{t \in H_n} x_t$.

In [1], V. Bergelson and N. Hindman proved the following result, which addresses that any AIP^{*} set contains combined additive and multiplicative patterns.

Theorem 1.1. Let A be an AIP^{*} set, and $\langle x_n \rangle_{n \in \mathbb{N}}$ be any sequence. Then there exists a sum subsystem $FS(\langle y_n \rangle_{n \in \mathbb{N}})$ of $FS(\langle x_n \rangle_{n \in \mathbb{N}})$ such that

$$FS(\langle y_n \rangle_{n \in \mathbb{N}}) \cup FP(\langle y_n \rangle_{n \in \mathbb{N}}) \subset A.$$

An immediate question appears: what about MIP^{\star} sets? In [4], A. Sisto was able to show that these sets contain combined multiplicative and exponential patterns. To state his theorem explicitly, we need the following definitions.

Definition 1.2. For any sequences $\langle x_t \rangle_{t=1}^{\infty}$, define

- (1) (a) $EXP_1(\langle x_t \rangle_{t=1}^1 = \{x_1\},$ (b) for $n \in \mathbb{N}$, $EXP_1(\langle x_t \rangle_{t=1}^{n+1}) = \{y^{x_{n+1}} : y \in EXP_1(\langle x_t \rangle_{t=1}^n)\} \cup EXP_1(\langle x_t \rangle_{t=1}^n) \cup \{x_{n+1}\}$ (c) $EXP_1(\langle x_t \rangle_{t=1}^{\infty}) = \bigcup_{n=1}^{\infty} EXP_1(\langle x_t \rangle_{t=1}^n)$. (2) (a) $EXP_2(\langle x_t \rangle_{t=1}^1 = \{x_1\},$ (b) form = 5 between (()) (()) (b) for $n \in \mathbb{N}$, $EXP_2(\langle x_t \rangle_{t=1}^{n+1}) = \{x_{n+1}^y : y \in EXP_2(\langle x_t \rangle_{t=1}^n)\} \cup EXP_2(\langle x_t \rangle_{t=1}^n) \cup \{x_{n+1}\}$ (c) $EXP_1(\langle x_t \rangle_{t=1}^\infty) = \bigcup_{n=1}^\infty EXP_1(\langle x_t \rangle_{t=1}^n)$.

The following Corollary of Sisto's addresses exponential properties of MIP* sets.

Theorem 1.3. [4, Corollary 16] Let A be a MIP^{*} set. Then there exist sequences $\langle x_n \rangle_{n=1}^{\infty}$ and $\langle y_n \rangle_{n=1}^{\infty}$ such that

(1)
$$FS\left(\langle y_n \rangle_{n=1}^{\infty}\right) \cup EXP_1\left(\langle y_n \rangle_{n=1}^{\infty}\right) \subseteq A$$
, and
(2) $FP\left(\langle x_n \rangle_{n=1}^{\infty}\right) \cup EXP_2\left(\langle x_n \rangle_{n=1}^{\infty}\right) \subseteq A$.

A natural question appears whether it is possible to provide a joint extension of both (1) and (2) in Theorem 1.3. That means, for each $n \in \mathbb{N}$, can we choose

¹For details on the algebra of ultrafilters we refer the book [3] of N. Hindman and D. Strauss.

 $x_n = y_n$ in Theorem 1.3. In this article, we provide a partial answer to this question by proving the following theorem.

Theorem 1.4. Let A be a MIP^{*} set. Then there exist sequences $(x_n)_{n=1}^{\infty}$ such that

$$FP\left(\langle x_n \rangle_{n=1}^{\infty}\right) \cup EXP_1\left(\langle x_n \rangle_{n=1}^{\infty}\right) \cup EXP_2\left(\langle x_n \rangle_{n=1}^{\infty}\right) \subseteq A.$$

2. Proof of Theorem 1.4

Ellis theorem [3, Theorem 2.5] tells us about the existence of idempotents in topological semigroups. It says that every compact Hausdorff right topological semigroup contains idempotents. It is a routine exercise to prove that $cl(\mathcal{B}(\beta\mathbb{N},+))$ is a left ideal of $(\beta\mathbb{N},\cdot)$. As left ideals contain minimal left ideals and these are closed, we can apply Ellis theorem to conclude that

$$cl(E(\beta\mathbb{N},+))\bigcap E(\beta\mathbb{N},\cdot)\neq\emptyset.$$

To prove Theorem 1.4, we will rely on the elements of $cl(E(\beta \mathbb{N}, +)) \cap E(\beta \mathbb{N}, \cdot)$.

Proof of Theorem 1.4: Let $p \in cl(E(\beta \mathbb{N}, +)) \cap E(\beta \mathbb{N}, \cdot)$, and A be a MIP^{\star} set. As $A \in p$, and $p = p \cdot p$, denote by $A^* = \{x \in A : x^{-1}A \in p\} \in p$. Choose $x_1 \in A^*$. Then by [3, Lemma 4.14] $x_1^{-1}A^* \in p$. As A is a MIP^{*} set, we have $B_1 = \{n : n^{x_1} \in A\}$ is a *MIP*^{*} set. Also by [4, Lemma 13], the set $C_1 = \{m : x_1^m \in A\}$ is AIP^* set. Set

$$D_1 = B_1 \cap A^* \cap x_1^{-1} A^* \in p.$$

As $p \in cl(E(\beta \mathbb{N}, +))$, we have $C_1 \cap D_1 \neq \emptyset$. Let $x_2 \in C_1 \cap D_1$. Then $x_2 \in B_1$ and this implies $x_2^{x_1} \in A$. As $x_2 \in C_1$ and so $x_1^{x_2} \in A$. Again $x_2 \in A^* \cap x_1^{-1}A^*$, this implies $\{x_1, x_2, x_1x_2\} \subset A$. Hence $\{x_1^{x_2}, x_2^{x_1}\} \subset A$, and $\{x_1, x_2, x_1x_2\} \subset A^{\star}.$

Inductively assume that for some $N \in \mathbb{N}$, we have x_1, x_2, \dots, x_N such that

(1) $EXP_1(\langle x_n \rangle_{n=1}^N) \bigcup EXP_2(\langle x_n \rangle_{n=1}^N) \subset A$ and (2) $FP(\langle x_n \rangle_{n=1}^N) \subset A^*$.

For each $z \in EXP_1(\langle x_n \rangle_{n=1}^N)$, let $B_z = \{n : z^n \in A\}$ is a MIP^* set. For each $z \in EXP_2(\langle x_n \rangle_{n=1}^N)$, let $C_z = \{m : m^z \in A\}$ is an AIP^* set. Hence $\bigcap_{z \in EXP_2(\langle x_n \rangle_{n=1}^N)} C_z$ is an AIP^{\star} set. So

$$D_{N+1} = \bigcap_{z \in EXP_1(\langle x_n \rangle_{n=1}^N)} B_z \cap A^* \cap \bigcap_{y \in FP(\langle x_n \rangle_{n=1}^N)} y^{-1} A^* \in p.$$

Again $p \in cl(E(\beta \mathbb{N}, +))$, hence

$$E_{N+1} = \bigcap_{z \in EXP_2(\langle x_n \rangle_{n=1}^N)} C_z \cap D_{N+1} \neq \emptyset,$$

and let $x_{n+1} \in E_{N+1}$. Then, $z^{x_{N+1}} \in A$ for all $z \in EXP_1(\langle x_i \rangle_{i=1}^N)$, and $x_{N+1}^y \in A$ for all $y \in EXP_2(\langle x_i \rangle_{i=1}^N)$. Again $x_{N+1} \in A^* \cap \bigcap_{y \in FP(\langle x_n \rangle_{n=1}^N)} y^{-1}A^*$ implies $FP(\langle x_i \rangle_{i=1}^{N+1}) \subset A^{\star}.$

40

Hence we have

(1)
$$EXP_1\left(\langle x_n \rangle_{n=1}^{N+1}\right) \bigcup EXP_2\left(\langle x_n \rangle_{n=1}^{N+1}\right) \subset A$$
, and
(2) $FP\left(\langle x_n \rangle_{n=1}^{N+1}\right) \subset A^*$.

This completes the induction.

Acknowledgement:

We are thankful to Sourav Kanti Patra for discussions in several occasions. We are also thankful to the referee for his/her comments on the previous draft of this paper.

References

- BERGELSON, VITALY; HINDMAN, NEIL. On *IP**sets and central sets. *Combinatorica*. 14 (1994), no. 3, 269–277. MR1305896, Zbl 0820.05061, doi: 10.1007/BF01212975. 38, 39
- [2] HINDMAN, NEIL. Finite sums from sequences within cells of a partition of N. J. Comb. Theory (series A). 17 (1974), 1-11. MR0349574, Zbl 0285.05012, doi: 10.1016/0097-3165(74)90023-5.38
- [3] HINDMAN, NEIL; STRAUSS, DONA. Algebra in the Stone-Čech Compactification: Theory and Application. Walter de Gruyter & Co., Berlin. 2012. xviii+591 pp. ISBN: 978-3-11-025623-9. MR2893605, Zbl 1241.22001, doi: 10.1515/9783110258356. 39, 40
- [4] SISTO, ALESSANDRO. Exponential triples. Electron. J. Combin. 18 (2011), no. 147. MR2817797, Zbl 1227.05065, doi: 10.37236/634.

(Pintu Debnath) DEPARTMENT OF MATHEMATICS, BASIRHAT COLLEGE, BASIRHAT 743412, NORTH 24TH PARGANAS, WEST BENGAL, INDIA pintumath1989@gmail.com

(Sayan Goswami) THE INSTITUTE OF MATHEMATICAL SCIENCES, A CI OF HOMI BHABHA NATIONAL INSTITUTE, CIT CAMPUS, TARAMANI, CHENNAI 600113, INDIA sayangoswami@imsc.res.in

This paper is available via http://nyjm.albany.edu/j/2024/30-3.html.

41