New York Journal of Mathematics

New York J. Math. 30 (2024) 38-41.

Combined exponential patterns in multiplicative $I P^{\star}$ sets

Pintu Debnath and Sayan Goswami*

Abstract

IP sets play a fundamental role in arithmetic Ramsey theory. A subset of \mathbb{N} (the set of positive integers) is called an additive $I P$ set if it is of the form $F S\left(\left\langle x_{n}\right\rangle_{n \in \mathbb{N}}\right)=\left\{\sum_{t \in H} x_{t}: H\right.$ is a nonempty finite subset of $\left.\mathbb{N}\right\}$, whereas it is called a multiplicative $I P$ set if it is of the form $F P\left(\left\langle x_{n}\right\rangle_{n \in \mathbb{N}}\right)=$ $\left\{\prod_{t \in H} x_{t}: H\right.$ is a nonempty finite subset of $\left.\mathbb{N}\right\}$ for some injective sequence $\left\langle x_{n}\right\rangle_{n \in \mathbb{N}}$. An additive $I P^{\star}$ (resp. multiplicative $I P^{\star}$) set in \mathbb{N} is a set which intersects every additive $I P$ set (resp. multiplicative $I P$ set). In [1], V. Bergelson and N. Hindman studied how rich additive $I P^{\star}$ sets are. They proved additive $I P^{\star}$ sets ($A I P^{\star}$ in short) contain finite sums and finite products of a single sequence. An analogous study was made by A. Sisto in [4], where he proved that multiplicative $I P^{\star}$ sets ($M I P^{\star}$ in short) contain exponential tower ${ }^{1}$ and finite product of a single sequence. However exponential patterns can be defined in two different ways. In this article, we will prove that $M I P^{\star}$ sets contain two different exponential patterns and finite product of a single sequence. This immediately improves the result of A. Sisto. Throughout our work we will use the machinery of the algebra of the Stone-Čech Compactification of \mathbb{N}.

Contents

1. Introduction 38
2. Proof of Theorem 1.440

Acknowledgement: 41
References 41

1. Introduction

The origin of $I P$ sets dates back to Hindman's work [2], where he proved that for any finite coloring of the set of positive integers \mathbb{N}, there exists a monochromatic copy of an additive $I P$ set. Here "coloring" means disjoint partition, and a pattern being "monochromatic" means it is included in one piece of the partition. Passing to the map $n \rightarrow 2^{n}$ for each $n \in \mathbb{N}$, we immediately have a

[^0]monochromatic copy of a multiplicative $I P$ set. Let $\beta \mathbb{N}$ be the set of all ultrafilters ${ }^{1}$ over \mathbb{N}, and $E(\beta \mathbb{N},+)$ (resp. $E(\beta \mathbb{N}, \cdot)$) be the collection of all idempotents in $(\beta \mathbb{N},+)($ resp. $(\beta \mathbb{N}, \cdot))$. One can show that a set A is additive $I P$ (resp. multiplicative $I P$ set) if and only if there exists $p \in E(\beta \mathbb{N},+)$ (resp. $p \in E(\beta \mathbb{N}, \cdot))$ such that $A \in p$. Hence a set A is $A I P^{\star}$ (resp. $M I P^{\star}$) if and only if $A \in p$ for all $p \in E\left(\beta \mathbb{N},+\right.$) (resp. $p \in E(\beta \mathbb{N}, \cdot)$). Define $\mathcal{P}_{f}(\mathbb{N})$ to be the set of all nonempty finite subsets of \mathbb{N}. For any $I P$ set $F S\left(\left\langle x_{n}\right\rangle_{n}\right)$, a sum subsystem of $F S\left(\left\langle x_{n}\right\rangle_{n}\right)$ is of the form $F S\left(\left\langle y_{n}\right\rangle_{n}\right)$, where for each $n \in \mathbb{N}, y_{n}$ is defined as follows.

- There exists a sequence $\left\langle H_{n}\right\rangle_{n}$ in $\mathcal{P}_{f}(\mathbb{N})$ satisfying max $H_{n}<\min H_{n+1}$ for all $n \in \mathbb{N}$, and
- $y_{n}=\sum_{t \in H_{n}} x_{t}$.

In [1], V. Bergelson and N . Hindman proved the following result, which addresses that any $A I P^{\star}$ set contains combined additive and multiplicative patterns.

Theorem 1.1. Let A be an $A I P^{\star}$ set, and $\left\langle x_{n}\right\rangle_{n \in \mathbb{N}}$ be any sequence. Then there exists a sum subsystem $F S\left(\left\langle y_{n}\right\rangle_{n \in \mathbb{N}}\right)$ of $F S\left(\left\langle x_{n}\right\rangle_{n \in \mathbb{N}}\right)$ such that

$$
F S\left(\left\langle y_{n}\right\rangle_{n \in \mathbb{N}}\right) \cup F P\left(\left\langle y_{n}\right\rangle_{n \in \mathbb{N}}\right) \subset A .
$$

An immediate question appears: what about $M I P^{\star}$ sets? In [4], A. Sisto was able to show that these sets contain combined multiplicative and exponential patterns. To state his theorem explicitly, we need the following definitions.

Definition 1.2. For any sequences $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$, define
(1) (a) $E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{1}=\left\{x_{1}\right\}\right.$,
(b) for $n \in \mathbb{N}, E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{n+1}\right)=$ $\left\{y^{x_{n+1}}: y \in E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)\right\} \cup E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \cup\left\{x_{n+1}\right\}$
(c) $E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)=\cup_{n=1}^{\infty} E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)$.
(2) (a) $E X P_{2}\left(\left\langle x_{t}\right\rangle_{t=1}^{1}=\left\{x_{1}\right\}\right.$,
(b) for $n \in \mathbb{N}, E X P_{2}\left(\left\langle x_{t}\right\rangle_{t=1}^{n+1}\right)=$
$\left\{x_{n+1}^{y}: y \in E X P_{2}\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)\right\} \cup E X P_{2}\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \cup\left\{x_{n+1}\right\}$
(c) $E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)=\cup_{n=1}^{\infty} E X P_{1}\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)$.

The following Corollary of Sisto's addresses exponential properties of MIP ${ }^{\star}$ sets.

Theorem 1.3. [4, Corollary 16] Let A be a $M I P^{\star}$ set. Then there exist sequences $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ and $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ such that
(1) $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \cup E X P_{1}\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$, and
(2) $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cup E X P_{2}\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$.

A natural question appears whether it is possible to provide a joint extension of both (1) and (2) in Theorem 1.3. That means, for each $n \in \mathbb{N}$, can we choose

[^1]$x_{n}=y_{n}$ in Theorem 1.3. In this article, we provide a partial answer to this question by proving the following theorem.
Theorem 1.4. Let A be $a M I P^{\star}$ set. Then there exist sequences $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that
$$
F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cup E X P_{1}\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cup E X P_{2}\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A
$$

2. Proof of Theorem 1.4

Ellis theorem [3, Theorem 2.5] tells us about the existence of idempotents in topological semigroups. It says that every compact Hausdorff right topological semigroup contains idempotents. It is a routine exercise to prove that $\operatorname{cl}(E(\beta \mathbb{N},+))$ is a left ideal of $(\beta \mathbb{N}, \cdot)$. As left ideals contain minimal left ideals and these are closed, we can apply Ellis theorem to conclude that

$$
\operatorname{cl}(E(\beta \mathbb{N},+)) \bigcap E(\beta \mathbb{N}, \cdot) \neq \emptyset .
$$

To prove Theorem 1.4, we will rely on the elements of $c l(E(\beta \mathbb{N},+)) \bigcap E(\beta \mathbb{N}, \cdot)$.
Proof of Theorem 1.4: Let $p \in \operatorname{cl}(E(\beta \mathbb{N},+)) \bigcap E(\beta \mathbb{N}, \cdot)$, and A be a $M I P^{\star}$ set. As $A \in p$, and $p=p \cdot p$, denote by $A^{\star}=\left\{x \in A: x^{-1} A \in p\right\} \in p$. Choose $x_{1} \in A^{\star}$. Then by [3, Lemma 4.14] $x_{1}^{-1} A^{\star} \in p$. As A is a $M I P^{\star}$ set, we have $B_{1}=\left\{n: n^{x_{1}} \in A\right\}$ is a MIP ${ }^{\star}$ set. Also by [4, Lemma 13], the set $C_{1}=\left\{m: x_{1}^{m} \in A\right\}$ is $A I P^{\star}$ set. Set

$$
D_{1}=B_{1} \cap A^{\star} \cap x_{1}^{-1} A^{\star} \in p .
$$

As $p \in \operatorname{cl}(E(\beta \mathbb{N},+))$, we have $C_{1} \cap D_{1} \neq \emptyset$. Let $x_{2} \in C_{1} \cap D_{1}$. Then $x_{2} \in B_{1}$ and this implies $x_{2}^{x_{1}} \in A$. As $x_{2} \in C_{1}$ and so $x_{1}^{x_{2}} \in A$. Again $x_{2} \in A^{\star} \cap x_{1}^{-1} A^{\star}$, this implies $\left\{x_{1}, x_{2}, x_{1} x_{2}\right\} \subset A$. Hence $\left\{x_{1}^{x_{2}}, x_{2}^{x_{1}}\right\} \subset A$, and $\left\{x_{1}, x_{2}, x_{1} x_{2}\right\} \subset A^{\star}$.

Inductively assume that for some $N \in \mathbb{N}$, we have $x_{1}, x_{2}, \ldots, x_{N}$ such that
(1) $E X P_{1}\left(\left\langle x_{n}\right\rangle_{n=1}^{N}\right) \bigcup E X P_{2}\left(\left\langle x_{n}\right\rangle_{n=1}^{N}\right) \subset A$ and
(2) $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{N}\right) \subset A^{\star}$.

For each $z \in E X P_{1}\left(\left\langle x_{n}\right\rangle_{n=1}^{N}\right)$, let $B_{z}=\left\{n: z^{n} \in A\right\}$ is a MIP ${ }^{\star}$ set. For each $z \in$ $E X P_{2}\left(\left\langle x_{n}\right\rangle_{n=1}^{N}\right)$, let $C_{z}=\left\{m: m^{z} \in A\right\}$ is an $A I P^{\star}$ set. Hence $\bigcap_{z \in E X P_{2}\left(\left\langle x_{n}\right)_{n=1}^{N}\right)} C_{z}$ is an $A I P^{\star}$ set. So

$$
D_{N+1}=\bigcap_{z \in E X P_{1}\left(\left\langle x_{n}\right\rangle_{n=1}^{N}\right)} B_{z} \cap A^{\star} \cap \bigcap_{y \in F P\left(\left\langle x_{n}\right)_{n=1}^{N}\right)} y^{-1} A^{\star} \in p
$$

Again $p \in \operatorname{cl}(E(\beta \mathbb{N},+))$, hence

$$
E_{N+1}=\bigcap_{z \in E X P_{2}\left(\left(x_{n} n_{n=1}^{N}\right)\right.} C_{z} \cap D_{N+1} \neq \emptyset,
$$

and let $x_{n+1} \in E_{N+1}$. Then, $z^{x_{N+1}} \in A$ for all $z \in E X P_{1}\left(\left\langle x_{i}\right\rangle_{i=1}^{N}\right)$, and $x_{N+1}^{y} \in A$ for all $y \in E X P_{2}\left(\left\langle x_{i}\right\rangle_{i=1}^{N}\right)$. Again $x_{N+1} \in A^{\star} \cap \bigcap_{y \in F P\left(\left\langle x_{n}\right)_{n=1}^{N}\right)} y^{-1} A^{\star}$ implies $F P\left(\left\langle x_{i}\right\rangle_{i=1}^{N+1}\right) \subset A^{\star}$.

Hence we have
(1) $E X P_{1}\left(\left\langle x_{n}\right\rangle_{n=1}^{N+1}\right) \bigcup E X P_{2}\left(\left\langle x_{n}\right\rangle_{n=1}^{N+1}\right) \subset A$, and
(2) $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{N+1}\right) \subset A^{\star}$.

This completes the induction.

Acknowledgement:

We are thankful to Sourav Kanti Patra for discussions in several occasions. We are also thankful to the referee for his/her comments on the previous draft of this paper.

References

[1] Bergelson, Vitaly; Hindman, Neil. On $I P^{\star}$ sets and central sets. Combinatorica. 14 (1994), no. 3, 269-277. MR1305896, Zbl 0820.05061, doi: 10.1007/BF01212975. 38, 39
[2] Hindman, Neil. Finite sums from sequences within cells of a partition of \mathbb{N}. J. Comb. Theory (series A). 17 (1974), 1-11. MR0349574, Zbl 0285.05012, doi: 10.1016/0097-3165(74)90023-5. 38
[3] Hindman, Neil; Strauss, Dona. Algebra in the Stone-Čech Compactification: Theory and Application. Walter de Gruyter \& Co., Berlin. 2012. xviii+591 pp. ISBN: 978-3-11-025623-9. MR2893605, Zbl 1241.22001, doi: 10.1515/9783110258356. 39, 40
[4] Sisto, Alessandro. Exponential triples. Electron. J. Combin. 18 (2011), no. 147. MR2817797, Zbl 1227.05065, doi: 10.37236/634.
(Pintu Debnath) Department of Mathematics, Basirhat College, Basirhat 743412, North 24TH Parganas, West Bengal, India
pintumath1989@gmail.com
(Sayan Goswami) The Institute of Mathematical Sciences, A CI of Homi Bhabha NATIONAL Institute, CIT CAMPUS, TARAMANI, ChENNAI 600113, INDIA
sayangoswami@imsc.res.in
This paper is available via http://nyjm.albany.edu/j/2024/30-3.html.

[^0]: Received November 25, 2023.
 2020 Mathematics Subject Classification. 54D35, 05D10, 54H15.
 Key words and phrases. Algebra of the Stone-Čech compactification, exponential patterns, multiplicative $I P^{\star}$ set.
 *corresponding author.

[^1]: ${ }^{1}$ For details on the algebra of ultrafilters we refer the book [3] of N. Hindman and D. Strauss.

