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Combined exponential patterns in
multiplicative 𝑰𝑷⋆ sets

Pintu Debnath and Sayan Goswami*

Abstract. 𝐼𝑃 sets play a fundamental role in arithmetic Ramsey theory. A
subset of ℕ (the set of positive integers) is called an additive 𝐼𝑃 set if it is
of the form 𝐹𝑆 (⟨𝑥𝑛⟩𝑛∈ℕ) =

{∑
𝑡∈𝐻 𝑥𝑡 ∶ 𝐻 is a nonempty finite subset of ℕ},

whereas it is called a multiplicative 𝐼𝑃 set if it is of the form 𝐹𝑃 (⟨𝑥𝑛⟩𝑛∈ℕ) ={∏
𝑡∈𝐻 𝑥𝑡 ∶ 𝐻 is a nonempty finite subset of ℕ} for some injective sequence

⟨𝑥𝑛⟩𝑛∈ℕ. An additive 𝐼𝑃⋆ (resp. multiplicative 𝐼𝑃⋆) set in ℕ is a set which
intersects every additive 𝐼𝑃 set (resp. multiplicative 𝐼𝑃 set). In [1], V. Bergel-
son and N. Hindman studied how rich additive 𝐼𝑃⋆ sets are. They proved
additive 𝐼𝑃⋆ sets (𝐴𝐼𝑃⋆ in short) contain finite sums and finite products of
a single sequence. An analogous study was made by A. Sisto in [4], where
he proved that multiplicative 𝐼𝑃⋆ sets (𝑀𝐼𝑃⋆ in short) contain exponential
tower1 and finite product of a single sequence. However exponential patterns
can be defined in two different ways. In this article, we will prove that𝑀𝐼𝑃⋆
sets contain two different exponential patterns and finite product of a single
sequence. This immediately improves the result of A. Sisto. Throughout our
work we will use the machinery of the algebra of the Stone-Čech Compacti-
fication of ℕ.
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1. Introduction
The origin of 𝐼𝑃 sets dates back to Hindman’s work [2], where he proved that

for any finite coloring of the set of positive integersℕ, there exists a monochro-
matic copy of an additive 𝐼𝑃 set. Here “coloring” means disjoint partition, and
a pattern being “monochromatic” means it is included in one piece of the par-
tition. Passing to the map 𝑛 → 2𝑛 for each 𝑛 ∈ ℕ, we immediately have a
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monochromatic copy of a multiplicative 𝐼𝑃 set. Let 𝛽ℕ be the set of all ultrafil-
ters1 over ℕ, and 𝐸 (𝛽ℕ,+) (resp. 𝐸 (𝛽ℕ, ⋅)) be the collection of all idempotents
in (𝛽ℕ,+) (resp. (𝛽ℕ, ⋅)). One can show that a set 𝐴 is additive 𝐼𝑃 (resp. mul-
tiplicative 𝐼𝑃 set) if and only if there exists 𝑝 ∈ 𝐸 (𝛽ℕ,+) (resp. 𝑝 ∈ 𝐸 (𝛽ℕ, ⋅))
such that𝐴 ∈ 𝑝.Hence a set𝐴 is𝐴𝐼𝑃⋆ (resp. 𝑀𝐼𝑃⋆) if and only if𝐴 ∈ 𝑝 for all
𝑝 ∈ 𝐸 (𝛽ℕ,+) (resp. 𝑝 ∈ 𝐸 (𝛽ℕ, ⋅)). Define 𝒫𝑓(ℕ) to be the set of all nonempty
finite subsets of ℕ. For any 𝐼𝑃 set 𝐹𝑆 (⟨𝑥𝑛⟩𝑛), a sum subsystem of 𝐹𝑆 (⟨𝑥𝑛⟩𝑛) is
of the form 𝐹𝑆 (⟨𝑦𝑛⟩𝑛), where for each 𝑛 ∈ ℕ, 𝑦𝑛 is defined as follows.

∙ There exists a sequence ⟨𝐻𝑛⟩𝑛 in 𝒫𝑓(ℕ) satisfyingmax𝐻𝑛 < min𝐻𝑛+1
for all 𝑛 ∈ ℕ, and

∙ 𝑦𝑛 =
∑

𝑡∈𝐻𝑛
𝑥𝑡.

In [1], V. Bergelson and N. Hindman proved the following result, which ad-
dresses that any 𝐴𝐼𝑃⋆ set contains combined additive and multiplicative pat-
terns.

Theorem 1.1. Let 𝐴 be an 𝐴𝐼𝑃⋆ set, and ⟨𝑥𝑛⟩𝑛∈ℕ be any sequence. Then there
exists a sum subsystem 𝐹𝑆 (⟨𝑦𝑛⟩𝑛∈ℕ) of 𝐹𝑆 (⟨𝑥𝑛⟩𝑛∈ℕ) such that

𝐹𝑆 (⟨𝑦𝑛⟩𝑛∈ℕ) ∪ 𝐹𝑃 (⟨𝑦𝑛⟩𝑛∈ℕ) ⊂ 𝐴.

An immediate question appears: what about𝑀𝐼𝑃⋆ sets? In [4], A. Sisto was
able to show that these sets contain combined multiplicative and exponential
patterns. To state his theorem explicitly, we need the following definitions.

Definition 1.2. For any sequences ⟨𝑥𝑡⟩∞𝑡=1, define

(1) (a) 𝐸𝑋𝑃1(⟨𝑥𝑡⟩1𝑡=1 = {𝑥1},
(b) for 𝑛 ∈ ℕ, 𝐸𝑋𝑃1(⟨𝑥𝑡⟩𝑛+1𝑡=1 ) =

{𝑦𝑥𝑛+1 ∶ 𝑦 ∈ 𝐸𝑋𝑃1(⟨𝑥𝑡⟩𝑛𝑡=1)} ∪ 𝐸𝑋𝑃1(⟨𝑥𝑡⟩
𝑛
𝑡=1) ∪ {𝑥𝑛+1}

(c) 𝐸𝑋𝑃1(⟨𝑥𝑡⟩∞𝑡=1) = ∪∞𝑛=1𝐸𝑋𝑃1(⟨𝑥𝑡⟩
𝑛
𝑡=1).

(2) (a) 𝐸𝑋𝑃2(⟨𝑥𝑡⟩1𝑡=1 = {𝑥1},
(b) for 𝑛 ∈ ℕ, 𝐸𝑋𝑃2(⟨𝑥𝑡⟩𝑛+1𝑡=1 ) =

{𝑥𝑦𝑛+1 ∶ 𝑦 ∈ 𝐸𝑋𝑃2(⟨𝑥𝑡⟩𝑛𝑡=1)} ∪ 𝐸𝑋𝑃2(⟨𝑥𝑡⟩
𝑛
𝑡=1) ∪ {𝑥𝑛+1}

(c) 𝐸𝑋𝑃1(⟨𝑥𝑡⟩∞𝑡=1) = ∪∞𝑛=1𝐸𝑋𝑃1(⟨𝑥𝑡⟩
𝑛
𝑡=1).

The following Corollary of Sisto’s addresses exponential properties of𝑀𝐼𝑃⋆
sets.

Theorem 1.3. [4, Corollary 16] Let 𝐴 be a𝑀𝐼𝑃⋆set. Then there exist sequences
⟨𝑥𝑛⟩∞𝑛=1 and ⟨𝑦𝑛⟩

∞
𝑛=1 such that

(1) 𝐹𝑆
(
⟨𝑦𝑛⟩∞𝑛=1

)
∪ 𝐸𝑋𝑃1

(
⟨𝑦𝑛⟩∞𝑛=1

)
⊆ 𝐴, and

(2) 𝐹𝑃
(
⟨𝑥𝑛⟩∞𝑛=1

)
∪ 𝐸𝑋𝑃2

(
⟨𝑥𝑛⟩∞𝑛=1

)
⊆ 𝐴.

A natural question appears whether it is possible to provide a joint extension
of both (1) and (2) in Theorem 1.3. That means, for each 𝑛 ∈ ℕ, can we choose

1For details on the algebra of ultrafilters we refer the book [3] of N. Hindman and D. Strauss.
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𝑥𝑛 = 𝑦𝑛 in Theorem 1.3. In this article, we provide a partial answer to this
question by proving the following theorem.

Theorem 1.4. Let𝐴 be a𝑀𝐼𝑃⋆ set. Then there exist sequences ⟨𝑥𝑛⟩∞𝑛=1 such that

𝐹𝑃
(
⟨𝑥𝑛⟩∞𝑛=1

)
∪ 𝐸𝑋𝑃1

(
⟨𝑥𝑛⟩∞𝑛=1

)
∪ 𝐸𝑋𝑃2

(
⟨𝑥𝑛⟩∞𝑛=1

)
⊆ 𝐴.

2. Proof of Theorem 1.4
Ellis theorem [3, Theorem 2.5] tells us about the existence of idempotents

in topological semigroups. It says that every compact Hausdorff right topo-
logical semigroup contains idempotents. It is a routine exercise to prove that
𝑐𝑙 (𝐸 (𝛽ℕ,+)) is a left ideal of (𝛽ℕ, ⋅) . As left ideals contain minimal left ideals
and these are closed, we can apply Ellis theorem to conclude that

𝑐𝑙 (𝐸 (𝛽ℕ,+))
⋂

𝐸 (𝛽ℕ, ⋅) ≠ ∅.

ToproveTheorem1.4, wewill rely on the elements of 𝑐𝑙 (𝐸 (𝛽ℕ,+))
⋂
𝐸 (𝛽ℕ, ⋅) .

Proof of Theorem 1.4: Let 𝑝 ∈ 𝑐𝑙 (𝐸 (𝛽ℕ,+))
⋂
𝐸 (𝛽ℕ, ⋅), and 𝐴 be a 𝑀𝐼𝑃⋆

set. As 𝐴 ∈ 𝑝, and 𝑝 = 𝑝 ⋅ 𝑝, denote by 𝐴⋆ =
{
𝑥 ∈ 𝐴 ∶ 𝑥−1𝐴 ∈ 𝑝

}
∈ 𝑝.

Choose 𝑥1 ∈ 𝐴⋆. Then by [3, Lemma 4.14] 𝑥−11 𝐴⋆ ∈ 𝑝. As 𝐴 is a 𝑀𝐼𝑃⋆ set,
we have 𝐵1 = {𝑛 ∶ 𝑛𝑥1 ∈ 𝐴} is a 𝑀𝐼𝑃⋆ set. Also by [4, Lemma 13], the set
𝐶1 =

{
𝑚 ∶ 𝑥𝑚1 ∈ 𝐴

}
is 𝐴𝐼𝑃⋆ set. Set

𝐷1 = 𝐵1 ∩ 𝐴⋆ ∩ 𝑥−11 𝐴⋆ ∈ 𝑝.
As 𝑝 ∈ 𝑐𝑙 (𝐸 (𝛽ℕ,+)), we have 𝐶1 ∩ 𝐷1 ≠ ∅. Let 𝑥2 ∈ 𝐶1 ∩ 𝐷1. Then

𝑥2 ∈ 𝐵1 and this implies 𝑥
𝑥1
2 ∈ 𝐴. As 𝑥2 ∈ 𝐶1 and so 𝑥𝑥21 ∈ 𝐴. Again

𝑥2 ∈ 𝐴⋆ ∩ 𝑥−11 𝐴⋆, this implies {𝑥1, 𝑥2, 𝑥1𝑥2} ⊂ 𝐴. Hence {𝑥𝑥21 , 𝑥
𝑥1
2 } ⊂ 𝐴, and

{𝑥1, 𝑥2, 𝑥1𝑥2} ⊂ 𝐴⋆.
Inductively assume that for some 𝑁 ∈ ℕ, we have 𝑥1, 𝑥2,… , 𝑥𝑁 such that
(1) 𝐸𝑋𝑃1

(
⟨𝑥𝑛⟩𝑁𝑛=1

)⋃
𝐸𝑋𝑃2

(
⟨𝑥𝑛⟩𝑁𝑛=1

)
⊂ 𝐴 and

(2) 𝐹𝑃
(
⟨𝑥𝑛⟩𝑁𝑛=1

)
⊂ 𝐴⋆.

For each 𝑧 ∈ 𝐸𝑋𝑃1
(
⟨𝑥𝑛⟩𝑁𝑛=1

)
, let 𝐵𝑧 = {𝑛 ∶ 𝑧𝑛 ∈ 𝐴} is a𝑀𝐼𝑃⋆set. For each 𝑧 ∈

𝐸𝑋𝑃2
(
⟨𝑥𝑛⟩𝑁𝑛=1

)
, let𝐶𝑧 = {𝑚 ∶ 𝑚𝑧 ∈ 𝐴} is an𝐴𝐼𝑃⋆ set. Hence

⋂
𝑧∈𝐸𝑋𝑃2(⟨𝑥𝑛⟩𝑁𝑛=1) 𝐶𝑧

is an 𝐴𝐼𝑃⋆ set. So
𝐷𝑁+1 =

⋂

𝑧∈𝐸𝑋𝑃1(⟨𝑥𝑛⟩𝑁𝑛=1)
𝐵𝑧 ∩ 𝐴⋆ ∩

⋂

𝑦∈𝐹𝑃(⟨𝑥𝑛⟩𝑁𝑛=1)
𝑦−1𝐴⋆ ∈ 𝑝.

Again 𝑝 ∈ 𝑐𝑙 (𝐸 (𝛽ℕ,+)), hence

𝐸𝑁+1 =
⋂

𝑧∈𝐸𝑋𝑃2(⟨𝑥𝑛⟩𝑁𝑛=1)
𝐶𝑧 ∩ 𝐷𝑁+1 ≠ ∅,

and let 𝑥𝑛+1 ∈ 𝐸𝑁+1. Then, 𝑧𝑥𝑁+1 ∈ 𝐴 for all 𝑧 ∈ 𝐸𝑋𝑃1
(
⟨𝑥𝑖⟩𝑁𝑖=1

)
, and 𝑥𝑦𝑁+1 ∈ 𝐴

for all 𝑦 ∈ 𝐸𝑋𝑃2
(
⟨𝑥𝑖⟩𝑁𝑖=1

)
. Again 𝑥𝑁+1 ∈ 𝐴⋆ ∩

⋂
𝑦∈𝐹𝑃(⟨𝑥𝑛⟩𝑁𝑛=1) 𝑦

−1𝐴⋆ implies

𝐹𝑃
(
⟨𝑥𝑖⟩𝑁+1𝑖=1

)
⊂ 𝐴⋆.
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Hence we have
(1) 𝐸𝑋𝑃1

(
⟨𝑥𝑛⟩𝑁+1𝑛=1

)⋃
𝐸𝑋𝑃2

(
⟨𝑥𝑛⟩𝑁+1𝑛=1

)
⊂ 𝐴, and

(2) 𝐹𝑃
(
⟨𝑥𝑛⟩𝑁+1𝑛=1

)
⊂ 𝐴⋆.

This completes the induction. □
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