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The spectral geometry of hyperbolic and
spherical manifolds: analogies and

open problems

Emilio A. Lauret and Benjamin Linowitz

Abstract. The spectral geometry of negatively curved manifolds has re-
ceived more attention than its positive curvature counterpart. In this paper
we will survey a variety of spectral geometry results that are known to hold
in the context of hyperbolic manifolds and discuss the extent to which anal-
ogous results hold in the setting of spherical manifolds. We conclude with a
number of open problems.
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1. Introduction
Let (𝑀, 𝑔) be a compact Riemannian manifold. The eigenvalues of the

Laplace-Beltrami operator acting on the space 𝐿2(𝑀, 𝑔) form a discrete sub-
set of the non-negative real numbers in which every value occurs with a finite
multiplicity. This collection of eigenvalues is called the spectrum of (𝑀, 𝑔) and
is denoted by Spec(𝑀, 𝑔). Two Riemannian manifolds are said to be isospectral
if their spectra coincide.
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Inverse Spectral Geometry studies to what extent the geometry and topol-
ogy of (𝑀, 𝑔) are determined by Spec(𝑀, 𝑔). It is well known, for example, that
dim𝑀 and vol(𝑀, 𝑔) are both spectral invariants; that is, their values are both
determined by Spec(𝑀, 𝑔). Isometry class is not a spectral invariant, however.
Indeed, the literature is full of interesting examples of Riemannian manifolds
that are isospectral but not isometric. Alluding to Kac’s famous “Can one hear
the shape of a drum” article [Ka66], spectral invariants are called audible. Part
of the importance of examples of isospectral Riemannianmanifolds is their abil-
ity to show that certain properties are inaudible. For amore detailed discussion
we refer the reader to the survey [Go00] by Gordon.
Locally symmetric spaces arise frequently in the construction of isospectral

manifolds. In fact, the first three classes of examples of isospectral manifolds
were all locally symmetric spaces: flat tori byMilnor [Mi64], Riemann surfaces
by Vignéras [Vi80], and lens spaces by Ikeda [Ik80a]. Subsequently, compact
locally symmetric spaces of non-compact type (that is, compact manifolds cov-
ered by non-compact symmetric spaces; e.g. compact hyperbolic manifolds)
have attracted more attention than locally symmetric spaces of compact type
(e.g. spherical space forms).
The main goal of this article is to discuss possible extensions to the compact

type setting of several results in inverse spectral geometry of locally symmetric
spaces of non-compact type. We introduce each of these results individually in
Subsections 1.2–1.5 and address them in Sections 4–7, respectively. The article
ends in Section 8 with further open questions and problems.
Before discussing this paper’s results, we introduce themain actors. A spher-

ical space form is a Riemannian manifold of the form 𝑆𝑑∕Γ where 𝑆𝑑 denotes
the 𝑑-dimensional sphere endowed with its constant sectional curvature one
Riemannianmetric and where Γ is a discrete (hence finite) subgroup of Iso(𝑆𝑑)
acting freely on 𝑆𝑑. An important subclass of spherical space forms are those of
odd dimension with Γ cyclic. These spaces are called lens spaces. Lens spaces
have long played an important role in inverse spectral geometry, beginningwith
Ikeda’s aforementioned examples [Ik80b] of isospectral lens spaces. For more
recent work on the spectral geometry of lens spaces, see e.g. [LMR21] and the
references therein. Rather than working with manifolds, we will often con-
sider instead (good) orbifolds. These spaces, when defined as above, though
with the free-action condition omitted, will be called spherical orbifolds and
lens orbifolds respectively. See §2 for more details.

1.1. Eigenvalue equivalence. In 1911 Weyl derived an asymptotic expres-
sion for the sequence of Laplace eigenvalues of a compact Riemannian man-
ifold (𝑀, 𝑔) which implied that vol(𝑀, 𝑔) is a spectral invariant. In particu-
lar, isospectral manifolds necessarily have the same volume. Recall, however,
that the spectrum of (𝑀, 𝑔) is the set of eigenvalues of the Laplace-Beltrami
operator acting on 𝐿2(𝑀, 𝑔), counted with multiplicity. It is therefore natural
to ask whether Riemannian manifolds which have the same set of Laplace-
Beltrami eigenvalues (disregarding multiplicities) necessarily have the same
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volume. Call two Riemannianmanifolds eigenvalue equivalent if they have the
same set of Laplace-Beltrami eigenvalues. The question is therefore whether
eigenvalue equivalent manifolds must have the same volume.
In 2007, Leininger, McReynolds, Neumann and Reid [LMNR07] proved that

this is false by constructing examples of hyperbolic 𝑛-manifolds (for any dimen-
sion 𝑛 ≥ 2) which are eigenvalue equivalent and whose volumes differ.

Question 1.1. Do there exist examples of eigenvalue equivalent spherical orb-
ifolds whose volumes differ?

In Section 3 we will answer this question in the affirmative in every dimen-
sion 𝑛 ≥ 9 by proving the following theorem.

Theorem 1.2. Let 𝑛 ≥ 9. There exist 𝑛-dimensional spherical orbifolds 𝑀1
and 𝑀2 which are eigenvalue equivalent yet whose volumes satisfy vol(𝑀2) =
3 ⋅ vol(𝑀1).

We also give a second construction of eigenvalue equivalent spherical orb-
ifolds (lens spaces) whose volumes differ. This construction does not rely on
the work of Leininger, McReynolds, Neumann and Reid [LMNR07] but rather
makes use of an explicit formula for the Laplace eigenvalues of an arbitrary lens
space.

Theorem 1.3. For every odd integer 𝑑 ≥ 3, there exists an infinite family 𝔏 of
𝑑-dimensional lens spaces that are mutually eigenvalue equivalent and such that

sup
𝐿1,𝐿2∈𝔏

vol(𝐿1)
vol(𝐿2)

= ∞. (1)

We conclude Section 3 by showing that the eigenvalue spectrum (withmulti-
plicities disregarded) cannot detect singularities in lens orbifolds (Example 3.5)
and that it does not determine the dimension (Theorem 3.6) of homogeneous
Riemannian manifolds of compact type.

1.2. Isospectral pairs of largest volume. The first pairs of isospectral hyper-
bolic surfaces were constructed by Vignéras [Vi80] and had enormous area. A
decade later Buser [Bu] used Sunada’s method [Su85], a powerful method that
can be used to construct isospectral Riemannian manifolds in many different
contexts, in order to construct isospectral hyperbolic surfaces of genus 5 and of
genus 𝑔 for all 𝑔 ≥ 7. Examples with genus 4 and 6 were later constructed by
Brooks andTse [BT87]. There are no knownexamples of non-isometric isospec-
tral hyperbolic surfaces with genus 2 or 3, and it is suspected that in genus 2
such surfaces cannot exist.
In the arithmetic realm, JohnVoight and the second author constructed pairs

of non-isometric (strongly) isospectral 2-dimensional and 3-dimensional arith-
metic hyperbolic orbifolds and manifolds of minimal volume among certain
nice classes of arithmetic orbifolds (see [LV15]). It is not knownwhat the small-
est area of a pair of arithmetic hyperbolic 2-orbifolds is, but one may suspect
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that it is the area of a particularly simple pair of isospectral hyperbolic poly-
gons found by Doyle and Rossetti [DR, Section 2].
In this paper we will discuss spherical analogs of the above results. The vol-

ume of a spherical orbifold 𝑆𝑑∕Γ is given by

vol(𝑆𝑑∕Γ) =
vol(𝑆𝑑)
|Γ|

. (2)

In particular, the volume of any 𝑑-dimensional spherical orbifold is bounded by
above by vol(𝑆𝑑). This makes it clear that the spherical analog of the problem
of finding the isospectral hyperbolic manifolds of smallest volume is to find the
isospectral spherical manifolds of largest volume.

Question1.4. What is the largest volumeof an isospectral pair of𝑑-dimensional
non-isometric spherical orbifolds?

A pair of almost conjugate (and non-conjugate) subgroups in SO(6) con-
structed by Rossetti, Schueth andWeilandt [RSW08] immediately provides the
following quite good lower bound.

Theorem 1.5. The largest volume of an isospectral and non-isometric pair of
spherical orbifolds of dimension 𝑑 ≥ 5 is at most 1

8
vol(𝑆𝑑).

As in the hyperbolic setting, the difficulty increases when we consider man-
ifolds instead of orbifolds. In the spherical context, this situation is explained
because the condition of acting freely on 𝑆𝑑 is a great obstruction for a finite sub-
group of SO(𝑑 + 1). Indeed, although every finite group can be embedded into
an special orthogonal group, the classification of spherical space forms done by
Wolf [Wo] shows that the groups acting freely on spheres are very particular.

Question 1.6. What is the largest volume of an isospectral and non-isometric
pair of 𝑑-dimensional spherical space forms?

It is well known that there do not exist isospectral pairs of spherical space
forms when 𝑑 is even or when 𝑑 = 3. For all other values of 𝑑 we have the
following statement.

Theorem 1.7. If 𝑛 ≥ 3, then any pair of isospectral and non-isometric (2𝑛 − 1)-
dimensional spherical space forms of largest volume are lens spaces provided that

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑛 ≡ 1 (mod 4), or
𝑛 ≡ 1, 2, 3 (mod 5), or
𝑛 ≡ 1, 2, 3, 4 (mod 6), or
𝑛 ≡ 2, 3, 4, 5, 6 (mod 8), or
𝑛 ≡ 2, 3, 4, 5, 6, 7 (mod 9), or
𝑛 ≡ 2, 3, 4, 5, 6, 7, 8, 9 (mod 11).

(3)

In particular, this holds for all 3 ≤ 𝑛 ≤ 1000 with the sole exceptions of 𝑛 = 144
and 𝑛 = 935.
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The authors conjecture that the above statement in fact holds for all 𝑛 ≥ 3.
See Tables 1 and 2 for an explicit upper bound for the volume of a pair of (2𝑛−1)-
dimensional isospectral and non-isometric lens spaces, for each 𝑛 satisfying (3).

1.3. Finite part spectrum. In some situations, only a finite part of the spec-
trum is necessary to determine isospectrality. This is the case for Riemann sur-
faces under some geometric obstructions.

Theorem 1.8 (Buser, Courtois [BC90]). Given an integer 𝑔 ≥ 2 and 𝜀 > 0, there
is𝑁 = 𝑁(𝑔, 𝜀) such that two compact Riemann surfaces of genus 𝑔 and injectivity
radius ≥ 𝜀 are isospectral if and only if they have the same first 𝑁 eigenvalues
(counted with multiplicities).

Dai and Wei [DW94] obtained a nice extension valid for the moduli space of
Einstein metrics under some geometric conditions.
We discuss in Section 5 some extensions of Theorem 1.8 among quotients of

compact symmetric spaces. Indeed, we will observe that a CROSS (Compact
Rank One Symmetric Space) is a very adequate choice for this sort of question.
The proofs will follow (more or less immediately) from Lie theoretical results
in [LM20] by Miatello and the first named author; in fact, [LM21, Rem. 3.8]
predicted such a situation though without providing details.
We realize simply connected CROSSes as quotients of compact Lie groups as

follows:
𝑆𝑛 = SO(𝑛+1)

SO(𝑛)
, 𝑃𝑛(ℂ) = SU(𝑛+1)

S(U(𝑛)×U(1))
,

𝑃𝑛(ℍ) = Sp(𝑛+1)
Sp(𝑛)×Sp(1)

, 𝑃2(𝕆) = F4
Spin(9)

.
(4)

The only non-simply connected CROSSes are real projective spaces that we
write 𝑃𝑛(ℝ) = SO(𝑛 + 1)∕O(𝑛). Note that 𝐺 acts almost effectively and by
isometries on 𝑋 = 𝐺∕𝐾 in every case.

Theorem 1.9. Let 𝑋 be a compact rank one symmetric space realized as 𝐺∕𝐾 as
in (4). Given 𝜀 > 0, there is 𝑁 = 𝑁(𝑋, 𝜀) such that, for Γ1,Γ2 finite subgroups of
𝐺 with |Γ𝑖|−1 =

vol(Γ𝑖∖𝑋)
vol(𝑋)

> 𝜀, the orbifolds Γ1∖𝑋 and Γ2∖𝑋 are isospectral if and
only if they have the same first𝑁 eigenvalues (counted with multiplicities).

We note that the condition |Γ𝑖|−1 > 𝜀 cannot be omitted from Theorem 1.9,
as Example 5.3 shows.

1.4. Isospectral towers of lens spaces. In order to state our results on isospec-
tral towers we will need the following definitions.

Definition 1.10. Adescending (respectively, ascending) tower of covers is a set
of Riemannianmanifolds {𝑀𝐼} indexed by a poset𝒮 such that if 𝐼 < 𝐽, then there
is a finite degree Riemannian covering𝑀𝐼 ⟶ 𝑀𝐽 (respectively,𝑀𝐽 ⟶ 𝑀𝐼).

Towers of Riemannian manifolds appear frequently in the literature. As an
example, seminal work of Buser and Sarnak [BS94] studied the growth of the
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systole along towers of arithmetic hyperbolic surfaces. This work was gen-
eralized to towers of arithmetic hyperbolic 3-manifolds by Katz, Schaps and
Vishne [KSV07], and to arbitrary arithmetic locally symmetric spaces by La-
pan, Linowitz, and Meyer [LLM23].

Definition 1.11. If {𝑀𝐼} and {𝑁𝐼} are two towers of Riemannian manifolds in-
dexed by a poset𝒮, thenwe say that {𝑀𝐼} and {𝑁𝐼} are a pair of isospectral towers
if, for all 𝐼, the manifolds𝑀𝐼 and 𝑁𝐼 are isospectral and not isometric.

In [Mc14], McReynolds used a variant of Sunada’s method in order to con-
struct pairs of isospectral (ascending) towers of Riemannian manifolds com-
prised ofmanifold quotients of symmetric spaces associated to non-compact Lie
groups. Additional examples, which are not derivable from Sunada’s method,
were obtained by Linowitz in [Li12], in the context of quotients of products
𝐇𝑎
2𝐇

𝑏
3 of hyperbolic upper-half planes and upper-half spaces by discrete groups

of isometries obtained via orders in quaternion algebras.
The following is the natural spherical analog of the aforementioned results.

Question 1.12. Do there exist isospectral towers of spherical manifolds?

In Section 6wewill completely answer this question by constructing isospec-
tral towers of lens spaces.

Theorem 1.13. There exist infinitelymany pairs of descending isospectral towers
of lens spaces in every odd dimension 𝑛 ≥ 5.

1.5. Isospectrality between quotients of symmetric spaces. In the arti-
cle [BGG98], Brooks, Gornet, and Gustafson used Sunada’s method in order to
construct arbitrarily large families of pairwise isospectral, non-isometric Rie-
mann surfaces. More generally, Spatzier [Sp89] proved that every compact ir-
reducible locally symmetric space admits a pair of isospectral finite covers pro-
vided its universal cover 𝑋 = 𝐺∕𝐾 satisfies that 𝐺 is of type A𝑛 for 𝑛 ≥ 26,
B𝑛 or D𝑛 for 𝑛 ≥ 13, or C𝑛 for 𝑛 ≥ 27. After several more examples appeared,
McReynolds [Mc14, Cor. 1.2] established the following result.

Theorem 1.14 (McReynolds). Every non-compact irreducible simply connected
symmetric space𝑋 admits isospectral and non-isometric locally symmetric spaces
covered by 𝑋.

Actually, McReynolds proved that for any 𝑛 there exist 𝑛 closed isospectral
non-isometric manifolds with universal cover 𝑋.
The aim of Section 7 is to discuss the analogous situation for locally symmet-

ric spaces of compact type, which turns out to be very different from the non-
compact type setting described above. For instance, there are many compact
irreducible symmetric spaces that do not cover any manifold at all. Therefore,
a natural question is the following.

Question1.15. Which compact simply connected irreducible symmetric spaces
cover isospectral and non-isometric manifolds?
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One of our results is the following.

Theorem 1.16. Let 𝐺 be a compact connected simple Lie group of dimension at
least 4 and let 𝑔0 be a bi-invariant metric on 𝐺 (thus (𝐺, 𝑔0) is isometric to an
irreducible symmetric space of group type). Then (𝐺, 𝑔0) covers isospectral and
non-isometric manifolds, with the possible exception of 𝐺 = SU(3), Sp(2), and
G2.

The situation for compact irreducible symmetric spaces of non-group type is
less unified, so a detailed description in this case is postponed to Section 7.

Acknowledgments. The authors wishes to express their thanks to the referee
for several helpful comments. Furthermore, they are indebted to Loren Spice
by a very useful answer in Mathoverflow to a question made by the first named
author.

2. Preliminaries
In this section we introduce fundamental tools that will be used throughout

this article.

2.1. Spherical space forms. We consider the 𝑑-dimensional sphere 𝑆𝑑 with
its Riemannian metric of constant sectional curvature one. Its isometry group
Iso(𝑆𝑑) is given byO(𝑑+1) via multiplication at the left, where the elements in
𝑆𝑑 are considered as vertical vectors with 𝑑+1 entries and Euclidean norm one.
Similarly, the subgroup of preserving-orientation isometries satisfies Iso0(𝑆𝑑) =
SO(𝑑 + 1).
A spherical space form is a compact Riemannian manifold with constant

sectional curvature. Throughout this paper we will assume that the sectional
curvature is one, unless explicitly stated otherwise, so that any 𝑑-dimensional
spherical space form is covered by 𝑆𝑑. More precisely, a spherical space form
is isometric to 𝑆𝑑∕Γ, where Γ is a discrete (hence finite) subgroup of O(𝑑 + 1)
acting freely on 𝑆𝑑. Themanifold 𝑆𝑑∕Γ is orientable if and only if Γ ⊂ SO(𝑑+1).
A non-trivial element 𝛾 inO(𝑑+1) acts freely on 𝑆𝑑 (i.e. if 𝛾 ⋅𝑥 = 𝑥 for some

𝑥 ∈ 𝑆𝑑, then 𝛾 = I𝑑+1) if +1 is not an eigenvalue of 𝛾. One can see that the
only even-dimensional spherical space forms are spheres 𝑆2𝑛 and real projective
spaces 𝑃2𝑛(ℝ). The latter is not orientable since it is the quotient by {± I2𝑛+1},
which is not contained in SO(2𝑛 + 1). Every odd-dimensional spherical space
form is orientable.
The classification of spherical space formswas obtained byWolf [Wo] follow-

ing techniques due toVincent (see [Wo, §5.1] for a clear explanation). Although
we will use it several times along this article, we omit the statement because it
is quite technical and long, though any reference will be to a precise place in
[Wo] (or [Wo01, §3–5]).
Now, let Γ be an arbitrary finite subgroup ofO(𝑑+1). The quotient 𝑆𝑑∕Γ has

a structure of a (Riemannian) good orbifold and is called a spherical orbifold.
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Two spherical orbifolds 𝑆𝑑∕Γ1 and 𝑆𝑑∕Γ2 are isometric if and only if Γ1 and Γ2
are conjugate in O(𝑑 + 1).

2.2. Spectral generating functions. As usual, the spectrum of a (compact)
Riemannian manifold𝑀 is the spectrum of its associated Laplace-Beltrami op-
erator; that is, the the spectrumof𝑀 is the collection of Laplace-Beltrami eigen-
values counted with multiplicity. We denote this spectrum by Spec(𝑀, 𝑔).
The spectra of spheres have been known for a long time. The eigenfunctions

are precisely the spherical harmonics restricted to the corresponding sphere.
More precisely, by denoting byℋ𝑘 the space of harmonic (w.r.t. the euclidean
Laplacian on ℝ𝑑+1) homogeneous complex polynomials of degree 𝑘 in 𝑑 + 1
variables, the restriction of 𝑓 ∈ℋ𝑘 to 𝑆𝑑 is an eigenfunction of the Laplacian∆
of 𝑆𝑑 with eigenvalue 𝜆𝑘 ∶= 𝑘(𝑘 + 𝑑 − 1). Moreover, since 𝐿2(𝑆𝑑) ≃

⨁
𝑘≥0ℋ𝑘

because polynomials are dense in the space of continuous functions, Spec(𝑆𝑑)
is given by the multiset

Spec(𝑆𝑑) =
{{
𝜆𝑘,… , 𝜆𝑘⏟⎴⏟⎴⏟
dimℋ𝑘

∣ 𝑘 ≥ 0
}}
. (5)

There is a well defined Laplacian on every good orbifold (see e.g. [Go12]). In
this article, we will assume for simplicity that the good orbifold is of the form
𝑀∕Γwith𝑀 a compact Riemannianmanifold andΓ is a group acting effectively
and by isometries on𝑀. Thus, every Γ-invariant eigenfunction on𝑀 descends
to an eigenfunction on 𝑀∕Γ with the same eigenvalue, and moreover, every
eigenfunction on𝑀 is of this form.
We now apply the above paragraph to our case of interest. Let Γ be a finite

subgroup ofO(𝑑+1). Then Γ acts onℋ𝑘 by (𝛾 ⋅𝑓)(𝑥) = 𝑓(𝛾−1𝑥); we denote by
ℋΓ

𝑘 the subspace ofΓ-invariant elements ofℋ𝑘. Note that𝑓 ∈ℋ𝑘 isΓ-invariant
considered as a function on 𝑆𝑑 if and only if 𝑓 ∈ℋΓ

𝑘 . We obtain that

Spec(𝑆𝑑∕Γ) =
{{
𝜆𝑘,… , 𝜆𝑘⏟⎴⏟⎴⏟
dimℋΓ

𝑘

∣ 𝑘 ≥ 0
}}
. (6)

Ikeda was the first to consider inverse spectral problems for spherical space
forms. His main tool was the generating function associated to a spherical orb-
ifold 𝑆𝑑∕Γ given by

𝐹Γ(𝑧) ∶=
∑

𝑘≥0
dimℋΓ

𝑘 𝑧
𝑘. (7)

Clearly, two spherical orbifolds 𝑆𝑑∕Γ1 and 𝑆𝑑∕Γ2 are isospectral, that is,

Spec(𝑆𝑑∕Γ1) = Spec(𝑆𝑑∕Γ2),

if and only if 𝐹Γ1(𝑧) = 𝐹Γ2(𝑧).
Ikeda [Ik80b, Thm. 2.2] proved that

𝐹Γ(𝑧) =
1 − 𝑧2

|Γ|
∑

𝛾∈Γ

1
det(I𝑑 −𝛾𝑧)

, (8)
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where det(I𝑑 −𝛾𝑧) =
∏

𝜆∈Spec(𝛾)(1 − 𝜆𝑧). We note that here, Spec(𝛾) denotes
the set of eigenvalues of 𝛾, counted with multiplicities. As an immediate con-
sequence, he obtain the following result that can be considered as a precursor
of Sunada’s method ([Ik80b, Cor. 2.3]):

Let Γ1 and Γ2 be finite subgroups ofO(𝑑+1). If there is a bijection
𝜙 ∶ Γ1 → Γ2 satisfying that Spec(𝛾) = Spec(𝜙(𝛾)) for all 𝛾 ∈ Γ1,
then the spherical orbifolds 𝑆𝑑∕Γ1 and 𝑆𝑑∕Γ2 are isospectral.

Ikeda constructed examples of isospectral spherical space forms via this result
in [Ik83].
We next show a more general version obtained by Wolf [Wo01, Cor. 2.13],

which replaces the condition involving the spectra of the matrices by the fol-
lowing well-known notion.

Definition 2.1. Two subgroups Γ1,Γ2 of 𝐺 are called almost conjugate if there
is a bijection 𝜙 ∶ Γ1 → Γ2 such that ℎ and 𝜙(ℎ) are conjugate in𝐺 for all ℎ ∈ Γ1.

Theorem 2.2. Let𝑀 be a compact Riemannian manifold. If Γ1 and Γ2 are al-
most conjugate finite subgroups of Iso(𝑀), then the Riemannian good orbifolds
𝑀∕Γ1 and𝑀∕Γ2 are strongly isospectral.

Strongly isospectral manifolds satisfy the condition that, for any natural vec-
tor bundle, the natural strongly elliptic differential operators acting on square
integrable sections of the corresponding vector bundles are isospectral, that is,
they have the same spectra. Instances of these natural differential operators are
the Laplace-Beltrami operator, the Hodge-Laplace operator acting on 𝑝-forms,
the Lichnerowicz Laplacian acting on (symmetric) 𝑘-tensors, etc. For any of
these operators, its spectrum on a good orbifold 𝑀∕Γ is obtained in a similar
way as it was done for the Laplace-Beltrami operator above, namely, the eigen-
sections on𝑀∕Γ come from Γ-eigensections on𝑀.

2.3. Lens spaces. We now focus on lens spaces, which are quotients of odd-
dimensional spheres by cyclic groups under free actions. Although lens spaces
are topological spaces, we endow them with the constant sectional curvature
one Riemannian metric so that they are spherical space forms. In fact, lens
spaces are the odd-dimensional spherical space forms with cyclic fundamental
group. Any of them is isometric to one of the following: for 𝑞 ∈ ℕ and 𝑠 =
(𝑠1,… , 𝑠𝑛) ∈ ℤ𝑛 with gcd(𝑞, 𝑠𝑖) = 1 for all 𝑖, we set 𝐿(𝑞; 𝑠) = 𝑆2𝑛−1∕Γ𝑞;𝑠, where
Γ𝑞;𝑠 is the group generated by

𝛾𝑞;𝑠 ∶=
⎛
⎜
⎜
⎝

𝑅( 2𝜋𝑠1
𝑞
)

⋱
𝑅( 2𝜋𝑠𝑛

𝑞
)

⎞
⎟
⎟
⎠

, where 𝑅(𝜃) = ( cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃) . (9)

Sometimes we will write 𝐿(𝑞; 𝑠1,… , 𝑠𝑛) = 𝐿(𝑞; 𝑠).
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The condition gcd(𝑞, 𝑠𝑖) = 1 for all 𝑖 ensures that Γ𝑞;𝑠 acts freely on 𝑆2𝑛−1.
The quotient 𝐿(𝑞; 𝑠) = 𝑆2𝑛−1∕Γ𝑞;𝑠 with 𝑠 ∈ ℤ𝑛 satisfying the weaker condition
gcd(𝑞, 𝑠1,… , 𝑠𝑛) = 1 is called a lens orbifold.

Proposition 2.3. Let 𝐿 = 𝐿(𝑞; 𝑠) and 𝐿′ = 𝐿(𝑞; 𝑠′) be two lens orbifolds of di-
mension 2𝑛 − 1. The following assertions are equivalent:

(1) 𝐿(𝑞; 𝑠) and 𝐿(𝑞; 𝑠′) are homeomorphic.
(2) 𝐿(𝑞; 𝑠) and 𝐿(𝑞; 𝑠′) are diffeomorphic.
(3) 𝐿(𝑞; 𝑠) and 𝐿(𝑞; 𝑠′) are isometric.
(4) There are 𝜎 a permutation of {1,… , 𝑛}, 𝜖𝑖 ∈ {±1} for each 𝑖 = 1,… , 𝑛, and

𝑡 ∈ ℤ prime to 𝑘 such that

𝑠𝜎(𝑖) ≡ 𝜖𝑖𝑡𝑠𝑖 (mod 𝑞) for all 𝑖 = 1,… , 𝑛. (10)

Concerning the spectrum of a lens orbifold 𝐿 ∶= 𝐿(𝑞; 𝑠), it follows form (8)
that

𝐹𝐿(𝑧) ∶= 𝐹Γ𝑞,𝑠(𝑧)

= 1 − 𝑧2

𝑞

𝑞−1∑

ℎ=0

1

(𝑧 − 𝜉ℎ𝑠1𝑞 )(𝑧 − 𝜉−ℎ𝑠1𝑞 ) … (𝑧 − 𝜉ℎ𝑠𝑛𝑞 )(𝑧 − 𝜉−ℎ𝑠𝑛𝑞 )
,

(11)

where 𝜉𝑞 = 𝑒2𝜋i∕𝑞. This expression first appeared in [IY79, Thm. 3.2].
An alternative expression (see [LMR21, Thm. 3.1]) is given by

𝐹𝐿(𝑧) =
1

(1 − 𝑧2)𝑛−1
∑

𝑘≥0
𝑁ℒ(𝑘)𝑧𝑘, (12)

where ℒ is the associated congruence lattice of 𝐿(𝑞; 𝑠) given by

ℒ(𝑞; 𝑠) ∶= {(𝑎1,… , 𝑎𝑛) ∈ ℤ𝑛 ∶ 𝑎1𝑠1 +⋯ + 𝑎𝑛𝑠𝑛 ≡ 0 (mod 𝑞)} (13)

and
𝑁ℒ(𝑘) = #{(𝑎1,… , 𝑎𝑛) ∈ ℤ𝑛 ∶ |𝑎1| +⋯ + |𝑎𝑛| = 𝑘}. (14)

By expanding the right hand side of (12), one obtains

dimℋΓ
𝑘 =

⌊𝑘∕2⌋∑

𝑟=0

(𝑟 + 𝑛 − 2
𝑛 − 2

)
𝑁ℒ(𝑘 − 2𝑟), (15)

which was established in [LMR16, Thm. 3.5].

3. Eigenvalue equivalence
The eigenvalue spectrum of a closed Riemannian orbifold is its set of eigen-

values for the Laplace-Beltrami operator, ignoringmultiplicities. Two orbifolds
are said to be eigenvalue equivalent if their eigenvalue spectra coincide.
We will exhibit two different constructions of eigenvalue equivalent spheri-

cal orbifolds with different volume. The first one will closely follow the work
of Leininger, McReynolds, Neumann, andReid [LMNR07], who considered the
analogous problem for hyperbolic 𝑛-manifolds. The second one describes the
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eigenvalue spectrum of an arbitrary lens space making use of the approach in
[LMR16], which is summarized in [LMR21, §2–4]. We conclude this section
with examples of eigenvalue equivalent Riemannian manifolds of different di-
mensions.

3.1. Eigenvalue equivalent spherical orbifolds.

Definition 3.1. Let 𝐺 be a finite group. Two subgroups𝐻 and 𝐾 of 𝐺 are fixed
point equivalent if, for any finite dimensional complex representation 𝜌 of 𝐺,
the restriction 𝜌|𝐻 has a nontrivial fixed vector if and only if 𝜌|𝐾 does.

Our interest in fixed point equivalent subgroups of finite groups is the fol-
lowing refinement of Sunada’s method [LMNR07, Theorem 2.6] (note that al-
most conjugate subgroups as in Definition 2.1 are always fixed point equivalent
[LMNR07, Proposition 2.4]).

Theorem 3.2. Let𝐻 and 𝐾 be fixed point equivalent subgroups of a finite group
𝐺. If 𝑀 is a compact Riemannian manifold and 𝜋1(𝑀) admits a surjective ho-
momorphism onto 𝐺, then the covers𝑀𝐻 and𝑀𝐾 associated to the pullbacks in
𝜋1(𝑀) of 𝐻 and 𝐾 have the same sets of eigenvalues of the Laplace-Beltrami op-
erator.

We now prove the existence of spherical orbifolds whose sets of eigenvalues
of the Laplace-Beltrami operator coincide yet whose volumes are different.

Theorem 3.3. Let 𝑛 ≥ 9. There exist 𝑛-dimensional spherical orbifolds 𝑀1
and 𝑀2 which are eigenvalue equivalent yet whose volumes satisfy vol(𝑀2) =
3 ⋅ vol(𝑀1).

Proof. Theorem 3.2 of [LMNR07] shows that there exist subgroups 𝐾 < 𝐻 of
PSL2(ℤ∕9ℤ) with [𝐻 ∶ 𝐾] = 3 and which are fixed point equivalent. An easy
computation is SAGE shows that PSL2(ℤ∕9ℤ) is isomorphic to the subgroup
𝐺 = ⟨(3, 9, 4, 6)(5, 10, 8, 7), (1, 2, 4)(5, 6, 8)(7, 9, 10)⟩ of the permutation group
𝑆10. Identifying 𝑆10 with the set of 10×10 permutationmatrices inO(10) allows
us to identify𝐺 with a subgroup ofO(10) < O(𝑛+1). Wemay therefore assume
that 𝐺 < O(𝑛 + 1). Let𝑀 = 𝑆𝑛∕𝐺 and𝑀1,𝑀2 be the covers of𝑀 associated to
the pullbacks in 𝐺 of𝐻 and 𝐾 along the isomorphism 𝐺 → PSL2(ℤ∕9ℤ). That
𝑀1 and𝑀2 have the desired properties now follows from Theorem 3.2. □

3.2. Eigenvalue equivalent lens spaces. From the description (6) of the spec-
trum of the Laplace-Beltrami operator of a spherical orbifold 𝑆2𝑛−1∕Γ, it follows
immediately that the eigenvalue spectrum of 𝑆2𝑛−1∕Γ is given by

ℰ(𝑆2𝑛−1∕Γ) ∶= {𝜆𝑘 = 𝑘(𝑘 + 2𝑛 − 2) ∶ 𝑘 ∈ ℕ and dimℋΓ
𝑘 > 0}, (16)

whereℋ𝑘 denotes the space of harmonic homogeneous complex polynomials
of degree 𝑘 in 2𝑛 variables. We next focus in the particular case of lens spaces
introduced in §2.3.
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Theorem3.4. The eigenvalue spectrumof a lens space𝐿 = 𝐿(𝑞; 𝑠1,… , 𝑠𝑛) is given
by

ℰ(𝐿) = {𝜆2𝑘 ∶ 𝑘 ∈ ℕ0} ∪ {𝜆𝑘0(𝐿)+2𝑘 ∶ 𝑘 ∈ ℕ0}, (17)

where 𝜆𝑘 = 𝑘(𝑘 + 2𝑛 − 2) and

𝑘0(𝐿) = min
⎧

⎨
⎩

𝑘 ∈ ℕ ∶
𝑘 is odd and there is (𝑎1,… , 𝑎𝑛) ∈ ℤ𝑛

such that |𝑎1| +⋯ + |𝑎𝑛| = 𝑘 and
𝑎1𝑠1 +⋯ + 𝑎𝑛𝑠𝑛 ≡ 0 (mod 𝑞)

⎫

⎬
⎭

. (18)

Proof. Write 𝐿 = 𝐿(𝑞; 𝑠1,… , 𝑠𝑛) = 𝑆2𝑛−1∕Γ, with 𝑠 = (𝑠1,… , 𝑠𝑛) and Γ = Γ𝑞,𝑠.
Recall from (13) that its associated congruence lattice is given by

ℒ ∶= ℒ(𝑞; 𝑠) ∶= {(𝑎1,… , 𝑎𝑛) ∈ ℤ𝑛 ∶ 𝑎1𝑠1 +⋯ + 𝑎𝑛𝑠𝑛 ≡ 0 (mod 𝑞)}. (19)

Besides (16), the main tool in the proof will be the formula for dimℋΓ
𝑘 given

in (15):

dimℋΓ
𝑘 =

⌊𝑘∕2⌋∑

𝑟=0

(𝑟 + 𝑛 − 2
𝑛 − 2

)
𝑁ℒ(𝑘 − 2𝑟), (20)

where 𝑁ℒ(𝑘) = #{𝜇 ∈ ℒ ∶ ‖𝜇‖1 = 𝑘}. Notice dimℋΓ
𝑘 > 0 if and only if

𝑁ℒ(𝑘 − 2𝑟) > 0 for some 𝑟 ∈ {0, 1,… , ⌊𝑘∕2⌋}.
Suppose 𝑘 ∈ ℕ0 is even. By setting 𝑟 = 𝑘∕2, we obtain that 𝑁ℒ(𝑘 − 2𝑟) =

𝑁ℒ(0) = 1 since (0,… , 0) is clearly the only element in ℒ with one-norm equal
to 0. We conclude that 𝜆𝑘 ∈ ℰ(𝐿) for all 𝑘 even.
We now assume that 𝑘 ∈ ℕ is odd. The odd positive integer 𝑘0 ∶= 𝑘0(𝐿)

given in (18) satisfies 𝑁ℒ(𝑘0) > 0. Hence 𝜆𝑘 ∈ ℰ(𝐿) for every odd integer
𝑘 ≥ 𝑘0 by setting 𝑟 = 𝑘−𝑘0

2
in (20). If 𝜆𝑘 ∈ ℰ(𝐿) for some odd integer 𝑘 <

𝑘0, then 𝑁ℒ(𝑘1) > 0 for some odd integer 𝑘1 ≤ 𝑘 by (20), which implies the
contradiction 𝑘1 ≥ 𝑘0. This concludes the proof. □

Theorem 3.4 ensures that the eigenvalue spectrum of a lens space 𝐿 depends
only on 𝑘0(𝐿). This allows us to give curious examples of eigenvalue equivalent
lens spaces.

Proof of Theorem 1.3. Write 𝑑 = 2𝑛 − 1 for some 𝑛 ∈ ℕ with 𝑛 ≥ 2. Let
𝔏(𝑛, 𝑞) denote the isometry classes of (2𝑛 − 1)-dimensional lens spaces with
fundamental group of order 𝑞. For a positive odd integer 𝑘, we set

𝔏(𝑛, 𝑞)𝑘 = {𝐿 ∈ 𝔏(𝑛, 𝑞) ∶ 𝑘0(𝐿) = 𝑘}. (21)

It follows immediately from Theorem 3.4 that the elements in

𝔏∗(𝑛)𝑘 ∶=
⋃

𝑞≥3
𝔏(𝑛, 𝑞)𝑘

are pairwise non-isometric and mutually eigenvalue equivalent. It remains to
show that 𝔏∗(𝑛)𝑘 is infinite for some 𝑘.
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We pick 𝑘 = 3. One has that 𝐿𝑞 ∶= 𝐿(𝑞; 1,… , 1, 2) ∈ 𝔏(𝑛, 𝑞)3 for any positive
integer 𝑞 ≥ 3. In fact, 𝜇 ∶= (2, 0,… , 0,−1) ∈ ℒ(𝑞; 1,… , 1, 2) satisfies ‖𝜇‖1 = 3,
and it is evident that no element of one-norm 1 is contained in ℒ(𝑞; 1,… , 1, 2).
The assertion about the volume follows immediately from

vol(𝐿𝑞′)
vol(𝐿𝑞)

=
vol(𝑆2𝑛−1)

𝑞
𝑞′

vol(𝑆2𝑛−1)
=
𝑞′

𝑞 (22)

by taking 𝑞 = 3 and 𝑞′ arbitrarily large. □

Theorem 3.4 also allows us to show that the eigenvalue spectrum does not
detect singularities.

Example 3.5. For positive integers 𝑞, 𝑞′ ≥ 3, the lens orbifold 𝐿(2𝑞; 1, 2, 𝑞),
which has non-trivial singularities, is eigenvalue equivalent to the lens space
𝐿(𝑞′; 1, 1, 2) since

𝑘0
(
𝐿(2𝑞; 1, 2, 𝑞)

)
= 𝑘0

(
𝐿(𝑞′; 1, 1, 2)

)
= 3.

3.3. Eigenvalue equivalent manifolds with different dimensions. It is
known that in general, dimension is not determined by the eigenvalue spec-
trum. For instance, Miatello and Rossetti [MR03, Ex. 3.8] have observed that
the eigenvalue spectrum of the square torus ℝ𝑛∕ℤ𝑛 is ℤ≥0 for all 𝑛 ≥ 4.
We now give examples of normal homogeneous Riemannianmanifolds hav-

ing the same eigenvalue spectrum but distinct dimensions. A particularly sim-
ple example is

(
𝑆2, 1

4
𝑔round

)
and

(
𝑃3(ℝ), 𝑔round

)
, where 𝑔round denotes in both

cases the round metric with constant sectional curvature one. Indeed, on the
one hand, the eigenvalues of

(
𝑆2, 1

4
𝑔round

)
, which is isometric to the sphere in

ℝ3 of radius 1
2
endowed with the Riemannian metric induced by the canonical

Euclideanmetric inℝ3, are given by 4-times the eigenvalues of
(
𝑆2, 𝑔round

)
, that

is,
{4𝑘(𝑘 + 1) ∶ 𝑘 ∈ ℕ0} . (23)

On the other hand, the eigenvalues of the 3-dimensional real projective space(
𝑃3(ℝ), 𝑔round

)
with constant sectional curvature one are the same as those of

its 2-cover
(
𝑆3, 𝑔round

)
associated to odd-dimensional representations, that is,

{𝑘(𝑘 + 2) ∶ 𝑘 ∈ 2ℕ0} . (24)
Of course, the multiplicities do not match since 4𝑘(𝑘+1) has multiplicity 𝑘+1
in
(
𝑆2, 𝑔round

)
for any 𝑘 ∈ ℕ, while 𝑘(𝑘+2) has multiplicity 𝑘2 for any 𝑘 ∈ 2ℕ0.

Both of the above manifolds are symmetric spaces. Our next result general-
izes them and provides infinitely many examples of eigenvalue equivalent nor-
mal homogeneous Riemannian manifolds with different dimensions.

Theorem 3.6. Let𝐺 be a compact, connected, simply connected, and semisimple
Lie group. The centerless Lie group 𝐺∕𝑍(𝐺) endowed with the standard bi-
invariant metric (𝑍(𝐺) is the center of 𝐺 and the metric is induced by the Killing
form of 𝔤) has the same eigenvalue spectrum as the standard metric on the full
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flag manifold 𝐺∕𝑇 (𝑇 is a maximal torus in 𝐺 and the metric is induced by the
Killing form of the Lie algebra 𝔤 of 𝐺). Moreover, dim𝐺∕𝑍(𝐺) > dim𝐺∕𝑇.

Proof. The proof of this result makes use of objects from representation theory
of compact Lie groups that have not appeared in the rest of the article. For con-
ciseness, we will give the arguments without introducing several objects (e.g.
weight lattice) and will instead refer the interested reader to other references.
For an arbitrary compact connected Lie group 𝐾, the spectrum of the stan-

dard bi-invariant metric is given by
{{
Cas(𝜋),… ,Cas(𝜋)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

(dim𝑉𝜋)2

∶ 𝜋 ∈ 𝐾
}}
. (25)

Here, 𝐾 stands for the unitary dual of 𝐾 (the equivalent classes of irreducible
representations of 𝐾), and Cas(𝜋) denotes the scalar for which the Casimir ele-
ment of 𝔤ℂ acts on𝑉𝜋. By theHighestWeight Theorem (see e.g. [Se, Thm. 7.34]),
𝐾 is in correspondence with dominant analytically integral weights.
In our case 𝐾 = 𝐺∕𝑍(𝐺), and since 𝐾 is centerless, [Se, Thm. 6.30(a)] tells

us that the lattice of analytically integral weights coincides with the root lat-
tice ℛ ∶=

⨁
𝛼∈Φ(𝔤ℂ,𝔱ℂ)

ℤ𝛼, where Φ(𝔤ℂ, 𝔱ℂ) denotes the root system associated
to the Cartan subalgebra 𝔱ℂ of 𝔤ℂ. Therefore, the eigenvalue spectrum of the
standard bi-invariant metric on 𝐺∕𝑍(𝐺) is given by

{
Cas(𝜋Λ) ∶ Λ ∈ ℛ is dominant

}
, (26)

where 𝜋Λ denotes the corresponding irreducible representation with highest
weight Λ.
Yamaguchi [Ya79, Thm. 6] proved that the spectrum of the full flagmanifold

𝐺∕𝑇 endowed with standard (or Killing metric) is given by
{{
Cas(𝜋),… ,Cas(𝜋)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

dim𝑉𝜋 dim𝑉𝜋(0)

∶ 𝜋 ∈ 𝐺
}}
, (27)

where𝑉𝜋(0) is the weight space associated to the weight zero. It is important to
note that𝜋 ∈ 𝐺 contributesCas(𝜋) as an eigenvalue of the Laplacian if and only
if dim𝑉𝜋(0) > 0. By a result of Freudenthal (see [Ya79, Thm. 4]), dim𝑉𝜋(0) > 0
if and only if the highest weight of 𝜋 lives in the root lattice ℛ. Therefore, the
eigenvalue spectrum of 𝐺∕𝑇 is precisely (26).
The last assertion follows easily from dim𝐺∕𝑍(𝐺) = dim𝐺 since 𝑍(𝐺) is

discrete in 𝐺 and dim𝐺∕𝑇 = dim𝐺 − dim𝑇 with dim𝑇 = rank𝐺 > 0. □

Remark 3.7. The choice 𝐺 = SU(2) in Theorem 3.6 provides the eigenvalue
equivalent pair (𝑃3(ℝ), 𝑔round) and (𝑆2,

1
4
𝑔round) shown at the beginning of this

subsection.
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Remark 3.8. For any finite subgroup Γ of the group 𝐺 as in Theorem 3.6, one
can see that

Spec(Γ∖𝐺∕𝑍(𝐺)) =
{{
Cas(𝜋),… ,Cas(𝜋)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

dim𝑉Γ
𝜋 dim𝑉𝜋

∶ 𝜋 ∈ 𝐾
}}
,

Spec(Γ∖𝐺∕𝑇) =
{{
Cas(𝜋),… ,Cas(𝜋)
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

dim𝑉Γ
𝜋 dim𝑉𝜋(0)

∶ 𝜋 ∈ 𝐺
}}
,

(28)

so that in particular, they are eigenvalue equivalent.
For 𝐺 simple of type E8, F4 and G2, one has that 𝑍(𝐺) is trivial, thus any

finite subgroup Γ whose action on 𝐺∕𝑇 is not free provides new examples of
a manifold Γ∖𝐺 eigenvalue equivalent to an orbifold Γ∖𝐺∕𝑇 with non-trivial
singularities.

4. Isospectral pairs of largest volume
In this section we discuss the problem introduced in Subsection 1.2: deter-

mining the isospectral pair of spherical orbifolds/space forms of largest volume.
Recall our assumption that every spherical orbifold is endowedwith the Rie-

mannian metric with constant sectional curvature one, and that there is an
equality

vol(𝑆𝑑∕Γ) =
vol(𝑆𝑑)
|Γ|

(29)

for any finite subgroup Γ of O(𝑑 + 1).

4.1. Isospectral spherical orbifold of largest volume. The orbifold setting
is simpler than that of spherical space forms.

Proof of Theorem 1.5. Let Γ1 and Γ2 be the finite subgroups of SO(6) with
diagonal matrices whose entries are

Γ1 ∶

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

(1, 1, 1, 1, 1, 1),
(−1,−1,−1,−1,−1,−1),
(−1,−1, 1, 1, 1, 1),
(−1, 1,−1, 1, 1, 1),
(1,−1,−1, 1, 1, 1),
(−1, 1, 1,−1,−1,−1),
(1,−1, 1,−1,−1,−1),
(1, 1,−1,−1,−1,−1),

Γ2 ∶

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

(1, 1, 1, 1, 1, 1),
(−1,−1,−1,−1,−1,−1),
(−1,−1, 1, 1, 1, 1),
(1, 1,−1,−1, 1, 1),
(1, 1, 1, 1,−1,−1),
(−1,−1,−1,−1, 1, 1),
(−1,−1, 1, 1,−1,−1),
(1, 1,−1,−1,−1,−1).

(30)

[RSW08, Ex. 2.4] shows that Γ1 and Γ2 are almost conjugate (but not con-
jugate) in SO(6). Consequently, 𝑆5∕Γ1 and 𝑆5∕Γ2 are (strongly) isospectral by
Theorem 2.2. That 𝑆5∕Γ1 and 𝑆5∕Γ2 are not isometric is proven in [RSW08,
Ex. 2.9].
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For any 𝑑 ≥ 5, let us denote by Γ̃𝑖 the subgroup of SO(𝑑+1) given by adding
𝑑−5 entries equal to 1 to each element in Γ𝑖. It is not difficult to see that 𝑆𝑑∕Γ̃1
and 𝑆𝑑∕Γ̃2 are again isospectral and non-isometric because Γ̃1 and Γ̃2 are almost
conjugate in SO(𝑑 + 1).
Since Γ̃1 and Γ̃2 each have 8 elements, we have that vol(𝑆𝑑+1∕Γ̃𝑖) =

vol(𝑆𝑑+1)
8

for 𝑖 = 1, 2, and the assertion follows. □

It is not known whether the above example attains the largest volume asked
in Question 1.4. The following result provides a lower bound for thementioned
highest volume.

Proposition 4.1. There are no pairs of 𝑑-dimensional isospectral and non-
isometric spherical orbifolds with volume greater than or equal to vol(𝑆𝑑)

3
.

Proof. We have to prove that two isospectral spherical orbifolds of volume
1
𝑞
vol(𝑆𝑑) are isometric for 𝑞 = 1, 2, 3. The case 𝑞 = 1 is trivial.
Let Γ be a subgroup of O(𝑑 + 1) of order 2 and let 𝛾 denote the non-trivial

element in Γ. Since 𝛾2 = I𝑑+1, the eigenvalues of 𝛾 are ±1, say −1 with multi-
plicity𝑚 and+1withmultiplicity (𝑑+1−𝑚). By (8) the corresponding spectral
generating function is given by

𝐹Γ(𝑧) =
1 − 𝑧2

2 ( 1
(𝑧 − 1)𝑑+1

+ 1
(𝑧 − 1)𝑑+1−𝑚(𝑧 + 1)𝑚

)

= − 𝑧 + 1
2(𝑧 − 1)𝑑

− 1
2(𝑧 − 1)𝑑−𝑚(𝑧 + 1)𝑚−1

.

It follows immediately that𝑚−1 is the order of the pole of 𝐹Γ(𝑧) at 𝑧 = −1, and
consequently𝑚 is determined by Spec(𝑆𝑑+1∕Γ). Since the number of times that
the eigenvalue −1 is in the spectrum of 𝛾 determines the conjugacy class of Γ
inO(𝑑+1), we conclude that any two isospectral spherical orbifolds of volume
1
2
vol(𝑆𝑑) are necessarily isometric.
Let Γ be a subgroup of O(𝑑 + 1) of order 3. Let 𝛾 denote any non-trivial ele-

ment of Γ so that Γ = {I𝑑+1, 𝛾, 𝛾2}. Since 𝛾 and 𝛾2 have order 3, their eigenvalues

are as follows: 𝑚-times 𝜉3 = 𝑒
2𝜋i
3 ,𝑚-times 𝜉23 , and (𝑑+1−2𝑚)-times 1, for some

integer𝑚 satisfying 1 ≤ 𝑚 ≤ 𝑑+1
2
. Hence,

𝐹Γ(𝑧) =
1 − 𝑧2

3 (
1

(𝑧 − 1)𝑑+1
+ 2
(𝑧 − 1)𝑑+1−2𝑚(𝑧 − 𝜉3)𝑚(𝑧 − 𝜉23)𝑚

)

= − 𝑧 + 1
3(𝑧 − 1)𝑑

− 1 − 𝑧2

3(𝑧 − 1)𝑑+1−𝑚(𝑧 − 𝜉3)𝑚(𝑧 − 𝜉23)𝑚
.

As above,𝑚 is an spectral invariant because is the order of the pole of 𝐹Γ(𝑧) at
𝑧 = 𝜉3. Furthermore, since𝑚 determines the conjugacy class of Γ in O(𝑑 + 1),
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we conclude that any two isospectral spherical orbifolds of volume 1
3
vol(𝑆𝑑+1)

are necessarily isometric. □

Remark 4.2. It is not knownwhether there exist isospectral and non-isometric
spherical orbifolds of dimension≤ 4. There are two good reasons to believe that
no such orbifolds exist. On the one hand, Bari and Hunsicker [BH19] proved
that there are no isospectral and non-isometric lens orbifolds of dimension≤ 4.
On the other hand, Vásquez [Vá18, Prop. 2.4] proved that there are no almost
conjugate, non-conjugate subgroups of the double cover Spin(4) ≃ SU(2) ×
SU(2) of SO(4).

4.2. Isospectral spherical space forms of largest volume. We now restrict
our attention to manifolds covered by round spheres. This case is much more
complicated than the previous one. In particular, we need several preliminar-
ies.
Question 1.6 is not applicable in even dimensions because in these dimen-

sions it is known that no examples of isospectral, non-isometric spherical space
forms exist.
In fact, the only spherical space forms of dimension 2𝑛 are 𝑆2𝑛 and 𝑃2𝑛(ℝ),

and they are not isospectral because there are no round metrics on them with
the same volume and total scalar curvature.
Furthermore, Ikeda [Ik80b] proved that any two isospectral 3-dimensional

spherical space forms are necessarily isometric. We will therefore restrict our
attention on spherical space forms of odd dimension ≥ 5.
The following spectral invariants, proven by Ikeda [Ik80b, Cor. 2.4, 2.8], will

be very useful.

Proposition 4.3 (Ikeda). Let 𝑆2𝑛−1∕Γ1 and 𝑆2𝑛−1∕Γ2 be isospectral spherical
space forms. Then, |Γ1| = |Γ2| and Γ1,Γ2 have the same set of orders of their
elements. In particular, Γ1 is cyclic if and only if Γ2 is cyclic.

The first goal is to classify non-cyclic finite subgroups of low order acting
freely on anodd-dimensional sphere. Thiswill allowus to show that the isospec-
tral pairs of spherical space forms of largest volume are realized by lens spaces,
at least in low dimensions.

Lemma 4.4. If the fundamental group Γ of a spherical space form 𝑆2𝑛−1∕Γ is
non-cyclic and has order strictly less than 24, then Γ is isomorphic to one of the
following groups:

∙ the quaternion group 𝑄8 ∶= ⟨𝐵, 𝑅 ∣ 𝐵4 = 𝑒, 𝑅2 = 𝐵2, 𝑅𝐵𝑅−1 = 𝐵3⟩ of
order 8,

∙ the group 𝑃12 ∶= ⟨𝐴, 𝐵 ∣ 𝐴3 = 𝐵4 = 𝑒, 𝐵𝐴𝐵−1 = 𝐴2⟩ of order 12,
∙ the generalized quaternion group
𝑄16 ∶= ⟨𝐵, 𝑅 ∣ 𝐵8 = 𝑒, 𝑅2 = 𝐵4, 𝑅𝐵𝑅−1 = 𝐵7⟩ of order 16,

∙ the group 𝑃20 ∶= ⟨𝐴, 𝐵 ∣ 𝐴5 = 𝐵4 = 𝑒, 𝐵𝐴𝐵−1 = 𝐴4⟩ of order 20.
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Moreover, for each group 𝐻 in the above list and 𝑚 ∈ ℕ, there is up to isometry
exactly one spherical space form with fundamental group isomorphic to 𝐻 and
dimension 4𝑚 + 3.

Proof. The proof is deeply based on the classification of spherical space forms
obtained by Wolf in [Wo]. We will use Wolf’s notation to facilitate the reading
and refer to the article [Wo01] which has a summary of it.
The strategy of the classification of spherical space forms is to classify ab-

stract finite groups 𝐻 admitting fixed point free real representations (i.e. 𝜌 ∶
𝐻 → SO(𝑑) such that 𝑆𝑑−1∕𝜌(𝐻) is a spherical space form), called fixed point
free groups, and then to classify, for each fixed point free group𝐻, all of its fixed
point free real representations. We first show that all non-cyclic fixed point free
groups of order less than 24 are those listed in the statement.
Fixed point free groups divide into six types: Type I,II,. . . , VI (see [Wo01,

§3]). We will show that the number of non-cyclic fixed point free groups with
at most 23 elements is 2 for Types I and II, and 0 for the rest of types.
The fixed point free groups of Type I are characterized as follows (see [Wo01,

Prop. 3.1]):

𝐻𝑑(𝑚, 𝑛, 𝑟) ∶= ⟨𝐴, 𝐵 ∣ 𝐴𝑚 = 𝐵𝑛 = 𝑒, 𝐵𝐴𝐵−1 = 𝐴𝑟⟩ (31)

for some𝑚, 𝑛, 𝑟, 𝑑 ∈ ℕ satisfying that

⎧
⎪

⎨
⎪
⎩

(I.1) gcd(𝑛(𝑟 − 1), 𝑚) = 1,
(I.2) 𝑟𝑛 ≡ 1 (mod 𝑚), 1 ≤ 𝑟 ≤ 𝑚,
(I.3) 𝑑 is the order of 𝑟 in ℤ×

𝑚,
(I.4) 𝑛∕𝑑 is divisible by every prime divisor of 𝑑.

Note |𝐻𝑑(𝑚, 𝑛, 𝑟)| = 𝑚𝑛. One can easily see that

𝐻𝑑(𝑚, 𝑛, 𝑟) is cyclic ⟺ 𝑚 = 1 ⟺ 𝑑 = 1 ⟺ 𝑟 = 1. (32)

Furthermore, 𝑚 ≠ 2 since otherwise 𝑟 = 1 by (I.2) and (32) gives a contradic-
tion. Also, 𝑛 = 1 gives 𝑑 = 1 by (I.4), so the group is trivial.

Claim 1. The only non-cyclic fixed point free groups of Type I of order< 24 are
𝐻2(3, 4, 2) ≃ 𝑃12 and𝐻2(5, 4, 4) ≃ 𝑃20.

Proof. Suppose 𝐻𝑑(𝑚, 𝑛, 𝑟) is non-cyclic and𝑚𝑛 < 24. We have 𝑑 ≥ 2,𝑚 ≥ 3
and, 𝑛 ≥ 4 by (32).
It follows from (I.4) that 𝑑 = 2 and 𝑛 = 4. In fact, 𝑑 ≥ 4 implies 𝑛 ≥ 2𝑑 = 8,

thus𝑚𝑛 ≥ 24; 𝑑 = 3 leads to 𝑛 = 9 thus𝑚𝑛 ≥ 27; 𝑑 = 2 forces 𝑛 = 2𝑛′ with 𝑛′
divisible by 2, thus 24 > 𝑚𝑛 ≥ 6𝑛′, so 𝑛′ = 2.
Now, (I.1) implies 𝑚 is odd, thus 𝑚 = 3 or 𝑚 = 5. If 𝑚 = 3 (resp. 𝑚 = 5),

then 𝑟 = 2 (resp. 𝑟 = 4) by (I.3), and the proof is complete since (I.1) and (I.2)
hold. ■



700 EMILIO A. LAURET AND BENJAMIN LINOWITZ

A group of Type II is of the form (see [Wo01, Prop. 3.1])

𝐻𝑑(𝑚, 𝑛, 𝑟, 𝑠, 𝑡) ∶=
⟨
𝐴, 𝐵, 𝑅 ∣

𝐴𝑚 = 𝐵𝑛 = 𝑒, 𝐵𝐴𝐵−1 = 𝐴𝑟,
𝑅2 = 𝐵𝑛∕2, 𝑅𝐴𝑅−1 = 𝐴𝑠,
𝑅𝐵𝑅−1 = 𝐵𝑡

⟩
(33)

for some𝑚, 𝑛, 𝑟, 𝑑, 𝑠, 𝑡 ∈ ℕ satisfying (I.1)–(I.4) and also

⎧
⎪

⎨
⎪
⎩

(II.1) 𝑠2 ≡ 1 (mod 𝑚), 1 ≤ 𝑠 ≤ 𝑚
(II.2) 𝑟𝑡−1 ≡ 1 (mod 𝑚),
(II.3) 𝑛 = 2𝑢𝑛′′ with 𝑢 ≥ 2 and gcd(𝑛′′, 2) = 1,
(II.4) 𝑡 ≡ −1 (mod 2𝑢), 𝑡2 ≡ 1 (mod 𝑛), 1 ≤ 𝑡 ≤ 𝑛

(34)

Note that ⟨𝐴, 𝐵⟩ ≃ 𝐻𝑑(𝑚, 𝑛, 𝑟) is a proper subgroup of 𝐻𝑑(𝑚, 𝑛, 𝑟, 𝑠, 𝑡) and
|𝐻𝑑(𝑚, 𝑛, 𝑟, 𝑠, 𝑡)| = 2𝑚𝑛.
Claim 2. The only non-cyclic fixed point free groups of Type II of order less
than 24 are𝐻1(1, 4, 1, 1, 3) ≃ 𝑄8 and𝐻1(1, 8, 1, 1, 7) ≃ 𝑄16.
Proof. It is clear that the subgroup ⟨𝐴, 𝐵⟩must be cyclic since otherwise𝑚𝑛 ≥
12 by Claim 1. Hence, 𝑑 = 𝑚 = 𝑟 = 1 by (32), 𝑠 = 1 by (II.1). Note (II.2) hold
trivially.
Since |𝐻𝑑(𝑚, 𝑛, 𝑟, 𝑠, 𝑡)| = 2𝑛 < 24, (II.3) forces 𝑛 = 4 or 𝑛 = 8, which give

𝑡 = 3 and 𝑡 = 7 respectively, by (II.4). The first case give 𝐻1(1, 4, 1, 1, 3) =
⟨𝐵, 𝑅 ∣ 𝐵4 = 𝑒, 𝑅2 = 𝐵2, 𝑅𝐵𝑅−1 = 𝐵3⟩, which is isomorphic to the quater-
nion group 𝑄8 = {±1,±i,±j,±k} via 𝐵 ↦ i and 𝑅 ↦ j. The second case gives
𝐻1(1, 8, 1, 1, 7) = ⟨𝐵, 𝑅 ∣ 𝐵8 = 𝑒, 𝑅2 = 𝐵4, 𝑅𝐵𝑅−1 = 𝐵7⟩, which is precisely the
usual presentation of the quaternion group 𝑄16. ■

Any group of Type III (resp. Type IV) has a proper subgroup isomorphic to
𝐻𝑑(𝑚, 𝑛, 𝑟) of coindex 8 (resp. 16) with 𝑛 odd and divisible by 3 (see [Wo01,
Prop. 3.1]). Thus, it has 8𝑚𝑛 ≥ 24 (resp. 16𝑚𝑛 ≥ 48) elements. Furthermore,
the groups of Type V and VI have at least 120 elements since SL2(𝔽5) is a sub-
group of them ([Wo01, Top of page 327]). This concludes the first part of the
proof.
Theways that a fixed point free group𝐻 embeds into SO(2𝑛) via a fixed point

free real representation 𝜌 to give all the isometry classes of (2𝑛−1)-dimensional
spherical space forms of the form 𝑆2𝑛−1∕𝜌(𝐻) is quite complicated to be ex-
plained. See [Wo01, §4–5] for a nice summary, or [Wo, §7.2–3] for their classifi-
cations. However, our claim follows immediately from [Wo01, Prop. 5.3]. More
precisely, for any of our four choices of 𝐻, any two irreducible complex fixed
point free representations of 𝐻 are related by a composition with an automor-
phism of 𝐻 (i.e. 𝜋𝑘,𝑙 ≅ 𝜋1,1◦𝙰 or 𝛼𝑘,𝑙 ≅ 𝛼1,1◦𝙰 for some 𝙰 ∈ Aut(𝐻) for all 𝑘, 𝑙
admitted, when 𝐻 is of Type I or II respectively), and have degree 𝛿(𝐻) = 2.
Hence, any spherical space form with fundamental group isomorphic to 𝐻 is
isometric to

𝑆4𝑚−1∕
(
(𝜋 ⊕ �̄�)⊕⋯⊕ (𝜋 ⊕ �̄�)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

𝑚-times

)
(𝐻) (35)
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for some 𝑚 ∈ ℕ, where 𝜋 denotes any irreducible complex fixed point free
representations of𝐻. □

Lemma 4.4 and Proposition 4.3 imply that any pair of odd-dimensional
isospectral and non-isometric spherical space forms 𝑆2𝑛−1∕Γ1, 𝑆2𝑛−1∕Γ2 with
|Γ𝑖| < 24 are necessarily lens spaces. Consequently, Γ1 and Γ2 are cyclic. There-
fore, if in a fixed odd dimension 2𝑛 − 1 there are isospectral lens spaces with
fundamental groups of order strictly less than 24, then the isospectral pairs of
(2𝑛 − 1)-dimensional spherical space forms with largest volume will be lens
spaces. For instance, this is the case for the isospectral pair

{𝐿(11; 1, 2, 3), 𝐿(11; 1, 2, 4)} (36)

of 5-dimensional lens spaces found by Ikeda [Ik80b]. See Table 1 formanymore
examples found with the computer (see e.g. [La21]). The next goal is to con-
struct higher dimensional isospectral pairs of lens spaces from such pairs in
low dimension. To facilitate the next statement, we introduce some notation.

Notation 4.5. We will think of the parameters 𝑠 = (𝑠1,… , 𝑠𝑛) of a (2𝑛 − 1)-
dimensional lens space 𝐿(𝑞; 𝑠) with fundamental group of order 𝑞 as a list
[𝑠1,… , 𝑠𝑛]. As usual, the concatenation of lists is given by

[𝑎1,… , 𝑎𝑚] + [𝑏1,… , 𝑏𝑛] = [𝑎1,… , 𝑎𝑚, 𝑏1,… , 𝑏𝑛]

and

𝑟 ⋅ [𝑎1,… , 𝑎𝑛] = [𝑎1,… , 𝑎𝑛] +⋯ + [𝑎1,… , 𝑎𝑛]

for 𝑟 ∈ ℕ. For 𝑞 ∈ ℕ, we set 𝑞0 = 𝜑(𝑞)∕2, where 𝜑(𝑞) = |ℤ×
𝑞 | is Euler’s

totient function, defined to be the number of units in ℤ𝑞 = ℤ∕𝑞ℤ. Let 𝑡(𝑞) =
[𝑡1,… , 𝑡𝑞0], where {±𝑡1,… ,±𝑡𝑞0} is a representative set of ℤ

×
𝑞 , i.e. for any𝑚 ∈ ℤ

prime to 𝑞 one has 𝑚 ≡ 𝑡𝑖 (mod 𝑞) or 𝑚 ≡ −𝑡𝑖 (mod 𝑞) for some (unique) 𝑖.
For instance, 𝑡(7) = [1, 2, 3] and 𝑡(12) = [1, 5].

Theorem 4.6. If the (2𝑛 − 1)-dimensional lens spaces 𝐿(𝑞; 𝑠) and 𝐿(𝑞; 𝑠′) are
isospectral and non-isometric, then the (2𝑛− 1+ 𝑟𝜑(𝑞))-dimensional lens spaces

𝐿(𝑞; 𝑠 + 𝑟 ⋅ 𝑡(𝑞)) and 𝐿(𝑞; 𝑠′ + 𝑟 ⋅ 𝑡(𝑞)) (37)

are isospectral and non-isometric for every 𝑟 ∈ ℕ.

Proof. Wefix 𝑟 ∈ ℕ andwrite 𝐿 = 𝐿(𝑞; 𝑠+𝑟⋅𝑡(𝑞)) and 𝐿′ = 𝐿(𝑞; 𝑠′+𝑟⋅𝑡(𝑞)). It is
a simple matter to check that 𝐿 and 𝐿′ are non-isometric using Proposition 2.3.
We have to show that𝐹𝐿(𝑧) = 𝐹𝐿′(𝑧). Let us denote byΦ𝑞(𝑧) the 𝑞th cyclotomic
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polynomial; notice Φ𝑞(𝑧) =
∏𝑞0

𝑗=1(𝑧 − 𝜉𝑡𝑖𝑞 )(𝑧 − 𝜉−𝑡𝑖𝑞 ). From 11, it follows that

𝐹𝐿(𝑧) =
1 − 𝑧2

𝑞

𝑞−1∑

ℎ=0

1
𝑛∏

𝑖=1
(𝑧 − 𝜉ℎ𝑠𝑖𝑞 )(𝑧 − 𝜉−ℎ𝑠𝑖𝑞 )

1
( 𝑞0∏

𝑗=1
(𝑧 − 𝜉

ℎ𝑡𝑗
𝑞 )(𝑧 − 𝜉

−ℎ𝑡𝑗
𝑞 )

)𝑟

= 1 − 𝑧2

𝑞
1

(𝑧 − 1)2𝑛+2𝑟𝑞0
+ 1
Φ𝑞(𝑧)𝑟

1 − 𝑧2

𝑞

𝑞−1∑

ℎ=1

1
𝑛∏

𝑖=1
(𝑧 − 𝜉ℎ𝑠𝑖𝑞 )(𝑧 − 𝜉−ℎ𝑠𝑖𝑞 )

= 1 − 𝑧2

𝑞
1

(𝑧 − 1)2𝑛+2𝑟𝑞0
+ 1
Φ𝑞(𝑧)𝑟

(𝐹𝐿(𝑞;𝑠)(𝑧) −
1 − 𝑧2

𝑞
1

(𝑧 − 1)2𝑛
) .

(38)
Now, using that 𝐹𝐿(𝑞;𝑠)(𝑧) = 𝐹𝐿(𝑞;𝑠′)(𝑧) because 𝐿(𝑞; 𝑠) and 𝐿(𝑞; 𝑠′) are isospec-
tral by hypothesis, and returning over the steps in (38) for 𝑠′, we obtain 𝐹𝐿(𝑧) =
𝐹𝐿′(𝑧) as required. □

This result is very useful in constructing isospectral and non-isometric pairs
of lens spaces in arbitrary large dimension and with fundamental group of a
fixed size. For instance, the pair in (36) implies the existence of (2𝑛 + 3)-
dimensional isospectral and non-isometric lens spaces of volume vol(𝑆2𝑛+3)∕11
for every 𝑛 ∈ ℕ.
We call a lens space irreducible if it cannot be constructed from a lower di-

mensional lens space by adding the coefficients 𝑡(𝑞) = [𝑡1,… , 𝑡𝑞0]. In other
words, 𝐿(𝑞; 𝑠) is irreducible if it is not isometric to 𝐿(𝑞; 𝑠0 + 𝑡(𝑞)) for any 𝑠0, or
equivalent, there is𝑚 ∈ ℤ× such that𝑚 ≢ ±𝑠𝑖 (mod 𝑞) for all 𝑖.
After a computational search, Table 1 shows, for each 3 ≤ 𝑛 ≤ 14 and 3 ≤

𝑞 ≤ 23, a pair of (2𝑛−1)-dimensional isospectral and non-isometric irreducible
lens spaces with fundamental group of order 𝑞, in case it exists. It is worth
mentioning that, for each choice of 𝑛, 𝑞 in the table, there exist more isospectral
pairs than those appearing there, and the pairmay belong to a larger isospectral
family. The convention is to show the minimal lens space with respect to the
lexicographic order that is isospectral to some other non-isometric lens space.
Combining Theorem 4.6 and Table 1, we obtain that there are pairs of (2𝑛 −

1)-dimensional isospectral and non-isometric lens spaces with volume strictly
greater than vol(𝑆2𝑛−1)∕24, for many choices of 𝑛. Such choices are precisely
encoded by condition (3) of Theorem 1.7, whose proof follows.
Table 2 summarizes the existence problem of a pair of (2𝑛 − 1)-dimensional

isospectral and non-isometric lens spaces with fundamental group of order 𝑞,
for the same values of 𝑛 and 𝑞 considered in Table 1. In particular, it gives
the largest volume of an isospectral pair of spherical space forms for every odd
dimension 5 ≤ 2𝑛 − 1 ≤ 27, i.e., vol(𝑆

2𝑛−1)
𝑞

with 𝑞 = 11, 13, 16, 17, 11, 11, 13, 13,
11, 11, 11, 13 for 𝑛 = 3,… , 14 respectively.
We conclude the section with some open questions and remarks.
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Table 1. Isospectral lens spaces for low values of 𝑞 and 𝑛.

𝑞 𝑞0 𝑛 Parameters 𝑠 of isospectral lens spaces
11 5 3 [1, 2, 3], [1, 2, 4]

7 [1, 1, 2, 2, 3, 3, 4], [1, 1, 2, 2, 3, 3, 5]
11 [1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5], [1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4]

13 6 3 [1, 2, 3], [1, 2, 4]
4 [1, 2, 3, 4], [1, 2, 3, 5]
7 [1, 1, 2, 2, 3, 3, 5], [1, 1, 2, 2, 3, 4, 4]
8 [1, 1, 2, 2, 3, 3, 4, 4], [1, 1, 2, 2, 3, 3, 5, 5]

16 4 5 [1, 1, 3, 3, 5], [1, 1, 3, 3, 7]
17 8 3 [1, 2, 5], [1, 2, 6]]

4 [1, 2, 3, 5], [1, 2, 3, 6]
5 [1, 2, 3, 4, 5], [1, 2, 3, 4, 6]
6 [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 7]
10 [1, 1, 2, 2, 3, 4, 5, 7, 7, 8], [1, 1, 2, 2, 3, 4, 6, 7, 7, 8]

19 9 3 [1, 2, 7], [1, 3, 4]
4 [1, 2, 6, 8], [1, 3, 4, 5]
5 [1, 2, 3, 4, 5], [1, 2, 3, 4, 6]
6 [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 7]
7 [1, 2, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 8]
11 [1, 1, 2, 2, 3, 3, 4, 6, 6, 7, 7], [1, 1, 2, 2, 3, 3, 4, 6, 6, 9, 9]

20 4 5 [1, 1, 3, 3, 7], [1, 1, 3, 3, 9]
21 6 4 [1, 2, 4, 5], [1, 2, 4, 8]

9 [1, 1, 2, 2, 4, 4, 5, 5, 10], [1, 1, 2, 2, 4, 4, 5, 8, 8]
14 [1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5, 10, 10],

[1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 8, 8, 8]
22 5 3 [1, 3, 5], [1, 3, 7]

7 [1, 1, 3, 3, 5, 5, 9], [1, 1, 3, 3, 5, 7, 7]
11 [1, 1, 1, 3, 3, 3, 5, 5, 5, 9, 9], [1, 1, 1, 3, 3, 3, 5, 5, 9, 9, 9]

23 11 4 [1, 2, 4, 5], [1, 2, 4, 8]
5 [1, 2, 3, 4, 11], [1, 2, 3, 5, 6]
6 [1, 2, 3, 4, 5, 10], [1, 2, 3, 4, 6, 7]
7 [1, 2, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 8]
8 [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 9]
9 [1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 10]
13 [1, 1, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10],

[1, 1, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11]
14 [1, 1, 2, 2, 3, 5, 6, 7, 8, 8, 9, 9, 10, 11],

[1, 1, 2, 2, 4, 5, 6, 7, 8, 8, 9, 9, 10, 11]
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Table 2. Existence of isospectral pairs of lens spaces for low
values of 𝑞 and 𝑛.

𝑛∖𝑞 11
𝑞0=5

13
𝑞0=6

16
𝑞0=4

17
𝑞0=8

19
𝑞0=9

20
𝑞0=4

21
𝑞0=6

22
𝑞0=5

23
𝑞0=11

3 ⊗ × − × × − − × −
4 − ⊗ − × × − × − ×
5 − − ⊗ × × × − − ×
6 − − − ⊗ × − − − ×
7 ⊗ × − − × − − × ×
8 ⊗ × − − − − − × ×
9 − ⊗ × − − × × − ×
10 − ⊗ − × − − × − −
11 ⊗ − − × × − − × −
12 ⊗ − − × × − − × −
13 ⊗ × × × × × − × ×
14 − ⊗ − × × − × − ×

References: 𝑞0 =
𝜑(𝑞)
2
, ×means that there is an isospectral pair,⊗means

that there is an isospectral pair which is known to be of largest volume, −
means there are no isospectral pairs.

There are no isospectral pairs for 𝑛 ≤ 14 and 𝑞 ≤ 10 or 𝑞 = 12, 14, 15, 18.

Question4.7. Are isospectral andnon-isometric spherical space forms of largest
volume always lens spaces?

Remark 4.8. To the best of the authors’ knowledge, the smallest size of the
fundamental groups of a pair of isospectral spherical space forms with non-
cyclic fundamental group known so far is 275 (see [Ik97, §5]). In the notation
of the proof of Lemma 4.4, this pair is realized by two irreducible fixed point
free representations of the Type I group 𝐻5(11, 25, 3) that are non-equivalent
by automorphisms of 𝐻5(11, 25, 3). The corresponding spherical space forms
have dimension 9.

Remark 4.9. In line with the previous remark, it is very feasible to improve
Lemma 4.4 by increasing the order to a number greater than 24. However, this
is not the main obstruction to prove a statement valid for all 𝑛 ≥ 3. Indeed,
the computational results in the search of isospectral lens spaces for 𝑞 ≤ 64
provided a much larger set of conditions to (3) in such a way the only values
omitted for 𝑛 ≤ 30000 are 5039, 6479, 22319, 23759, 28799.
A very curious fact in the computational results evidences a negative answer

for the question below.

Question 4.10. Are there isospectral and non-isometric lens spaces of dimen-
sion (2𝑛−1)with fundamental group of order 𝑞 satisfying 𝑛 ≡ −1 (mod 𝜑(𝑞)

2
)?
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Remark 4.11. Because of a computational search, we know the largest volume
of an (2𝑛−1)-dimensional pair of isospectral and non-isometric spherical space
forms for every 𝑛 ≤ 14. The results of our computation are recorded in Table 2.
Table 2 implies the existence of an (21 + 5𝑟)-dimensional isospectral pair

with volume vol(𝑆2(11+5𝑟)−1)
11

for every 𝑟 ∈ ℕ (i.e. 𝑛 = 11 + 5𝑟 and 𝑞 = 11), but it
is not clear whether these examples have the largest volumes possible in their
dimensions because our computational search was done only for 𝑛 ≤ 14.
It might be possible to prove the non-existence of isospectral lens spaces with

fundamental group of order 𝑞 ≤ 10 in an arbitrary odd dimension. In this case,
we obtain the largest volume in infinitelymany dimensions. More precisely, the
largest volume of an (2𝑛−1)-dimensional pair of isospectral and non-isometric
spherical space forms would be vol(𝑆2𝑛−1)

11
for all 𝑛 congruent to 1, 2 or 3modulo

5 and 𝑛 ≥ 11.

5. Finite part spectrum
The goal of this section is to obtain several statements ensuring that, for a

quotient of aCROSS (Compact RankOne Symmetric Space), a convenient finite
part of the spectrum (not necessarily the first eigenvalues) is sufficient to obtain
the full spectrum under some geometric conditions.
Let 𝐺 be a compact Lie group and 𝐾 a closed subgroup of it. We endow the

homogeneous space 𝑋 ∶= 𝐺∕𝐾 with a normal metric, that is, a Riemannian
metric induced by an Ad(𝐺)-invariant inner product ⟨⋅, ⋅⟩ on the Lie algebra 𝔤
of 𝐺 (e.g. minus Killing form of 𝔤 provided 𝐺 is semisimple).
For Γ a discrete (hence finite) subgroup of𝐺, the right regular representation

of 𝐺 on 𝐿2(Γ∖𝐺) decomposes as

𝐿2(Γ∖𝐺) ≃
⨁

(𝜋,𝑉𝜋)∈𝐺

𝑛Γ(𝜋)𝑉𝜋. (39)

Unlike the case of non-compact semisimple Lie groups, the multiplicity 𝑛Γ(𝜋)
of 𝜋 in 𝐿2(Γ∖𝐺) can be easily determined by 𝑛Γ(𝜋) = dim𝑉Γ

𝜋. The spectrum
Spec(Γ∖𝑋) of the Laplace-Beltrami operator ∆ on Γ∖𝑋 is determined by these
coefficients since themultiplicity of a non-negative real number 𝜆 in Spec(Γ∖𝑋)
is given by

multΓ(𝜆) ∶=
∑

(𝜋,𝑉𝜋)∈𝐺 ∣ 𝜆(𝐶,𝜋)=𝜆

𝑛Γ(𝜋) dim𝑉𝐾
𝜋 , (40)

where𝜆(𝐶, 𝜋) is the scalar forwhich theCasimir operator𝐶 associated to (𝔤, ⟨⋅, ⋅⟩)
acts on 𝑉𝜋. The value of 𝜆(𝐶, 𝜋) can be computed in terms of the highest
weight of 𝜋 via Freudenthal’s formula. Note that the sum in (40) is restricted
to 𝐺𝐾 ∶= {𝜋 ∈ 𝐺 ∶ 𝑉𝐾

𝜋 ≠ 0}, the spherical representations of the pair (𝐺,𝐾).
It follows from (40) that Spec(Γ∖𝑋) is included in Spec(𝑋) in the sense that

every eigenvalue 𝜆 in Spec(Γ∖𝑋) is necessarily in Spec(𝑋) satisfyingmultΓ(𝜆) ≤
mult(𝜆), wheremult(𝜆) stands for the multiplicity of 𝜆 in Spec(𝑋).
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From now on we assume that 𝑋 is a simply connected CROSS realized as
in (4), that is, 𝑆𝑛 = SO(𝑛 + 1)∕ SO(𝑛), 𝑃𝑛(ℂ) = SU(𝑛 + 1)∕ S(U(𝑛) × U(1)),
𝑃𝑛(ℍ) = Sp(𝑛+1)∕ Sp(𝑛) × Sp(1), 𝑃2(𝕆) = F4 ∕ Spin(9). We endow 𝑋 with the
symmetricmetric such that the sectional curvature is constantly one for spheres
and satisfies 1 ≤ sec ≤ 4 for the rest of the cases. It turns out that the spherical
representations of (𝐺,𝐾) are given by a single string of representations

𝐺𝐾 = {(𝜋𝑘, 𝑉𝑘) ∶ 𝑘 ≥ 0} (41)
with dim𝑉𝐾

𝑘 = 1 and that

𝜆𝑘 ∶= 𝜆(𝐶, 𝜋𝑘) =

⎧
⎪

⎨
⎪
⎩

𝑘(𝑘 + 𝑛 − 1) if 𝑋 = 𝑆𝑛,
𝑘(𝑘 + 𝑛) if 𝑋 = 𝑃𝑛(ℂ),
𝑘(𝑘 + 2𝑛 + 1) if 𝑋 = 𝑃𝑛(ℍ),
𝑘(𝑘 + 11) if 𝑋 = 𝑃2(𝕆),

(42)

for every 𝑘 ≥ 0. For a proof, see for instance Lemmas 4.1, 5.1, 6.2, 7.2, and
8.1 in [LM21], where 𝜏 is always the trivial representation of 𝐾, so its highest
weight is 0 (see also [La16]). It follows that the spectrum of Γ∖𝑋 is given by the
eigenvalues 𝜆𝑘 having multiplicity 𝑛Γ(𝜋𝑘), that is,

Spec(Γ∖𝑋) =
{{
𝜆𝑘,… , 𝜆𝑘⏟⎴⏟⎴⏟
𝑛Γ(𝜋𝑘)

∶ 𝑘 ≥ 0
}}
. (43)

Let |Φ+| denote the number of positive root associated to the complexified
Lie algebra 𝔤ℂ. One has

|Φ+| = 𝑛2, 𝑛(𝑛 − 1),
𝑛(𝑛 + 1)

2 , (𝑛 + 1)2, 24,

for
𝑋 = 𝑆2𝑛, 𝑆2𝑛−1, 𝑃𝑛(ℂ), 𝑃𝑛(ℍ), 𝑃2(𝕆),

respectively.
The next statement is [LM20, Thm. 1.2] applied to our case of interest.

Proposition 5.1. Let 𝐺 be a classical compact Lie group or the compact simple
Lie group F4, and let {𝜋𝑘 ∶ 𝑘 ≥ 0} denote the irreducible representations of 𝐺 as
in (41). Given a positive integer 𝑞, let𝒜 be any finite subset of ℕ0 satisfying that

|𝒜 ∩ (𝑗 + 𝑞ℤ)| ≥ |Φ+| + 1 for all 0 ≤ 𝑗 ≤ 𝑞 − 1. (44)
Then, for any finite subgroup Γ of 𝐺 with 𝑞 divisible by |Γ|, the finite set of mul-
tiplicities 𝑛Γ(𝜋𝑘) for 𝑘 ∈ 𝒜 determine 𝑛Γ(𝜋𝑘) for all 𝑘 ≥ 0. In particular, if
Γ1,Γ2 are finite subgroups of 𝐺 with 𝑞 divisible by |Γ𝑖| for 𝑖 = 1, 2 such that
𝑛Γ1(𝜋𝑘) = 𝑛Γ2(𝜋𝑘) for all 𝑘 ∈ 𝒜, then 𝑛Γ1(𝜋𝑘) = 𝑛Γ2(𝜋𝑘) for all 𝑘 ≥ 0.

The first step in the proof (see [LM20, Prop. 2.2]) is to show that there is a
polynomial 𝑝Γ(𝑧) of degree less than 𝑞(|Φ+| + 1) such that

𝐹Γ(𝑧) ∶=
∑

𝑘≥0
𝑛Γ(𝜋𝑘) 𝑧𝑘 =

𝑝Γ(𝑧)
(1 − 𝑧𝑞)|Φ+|+1

. (45)
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The second one (see [LM20, Prop. 3.1]) is to expand the right hand side of the
above identity and, from the identities corresponding to the𝑘-th term for𝑘 ∈ 𝒜,
obtain the values of all coefficients of 𝑝Γ(𝑧) in terms of 𝑛Γ(𝜋𝑘) for 𝑘 ∈ 𝒜.
Here is an immediate consequence.

Corollary 5.2. Let 𝑋 be a simply connected compact rank one symmetric space
realized as in (4). Given a positive integer 𝑞, let 𝒜 be as in Proposition 5.1. Then,
for any finite subgroup Γ of 𝐺 with 𝑞 divisible by |Γ|, the finite set of multiplicities
multΓ(𝜋𝑘) of 𝜆𝑘 in Spec(Γ∖𝑋) for each 𝑘 ∈ 𝒜 determine the spectrum Spec(Γ∖𝑋)
of the orbifoldΓ∖𝑋. In particular, ifΓ1,Γ2 are finite subgroups of𝐺with 𝑞 divisible
by |Γ𝑖| for 𝑖 = 1, 2 such that multΓ1(𝜋𝑘) = multΓ2(𝜋𝑘) for all 𝑘 ∈ 𝒜, then the
orbifolds Γ1∖𝑋 and Γ2∖𝑋 are isospectral.

We are now in position to prove the main theorem of this section.

Proof of Theorem 1.9. We set 𝑞 = ⌊ 1
𝜀
⌋! and

𝑁 = 1 +
𝑞(|Φ+|+1)∑

𝑘=0
dim𝑉𝑘. (46)

Let Γ1,Γ2 be finite subgroups of 𝐺 such that 𝑞𝑖 ∶= |Γ𝑖| ≤
1
𝜀
for 𝑖 = 1, 2, thus

𝑞𝑖 divides 𝑞 and
vol(Γ𝑖∖𝑋)
vol(𝑋)

> 𝜀. The converse is obvious, so we assume that the
first 𝑁 eigenvalues of Γ1∖𝑋 and Γ2∖𝑋 coincide.
We write Spec(Γ𝑖∖𝑋) as 0 = 𝜆0(Γ𝑖∖𝑋) < 𝜆1(Γ𝑖∖𝑋) ≤ 𝜆2(Γ𝑖∖𝑋) ≤ ⋯ ≤

𝜆𝑗(Γ𝑖∖𝑋) ≤ … counted with multiplicities. By (43), it follows that

𝜆0 = 𝜆0(Γ𝑖∖𝑋),
𝜆1 = 𝜆𝑗(Γ𝑖∖𝑋) for 1 ≤ 𝑗 ≤ 𝑛Γ𝑖 (𝜋1),
𝜆2 = 𝜆𝑗(Γ𝑖∖𝑋) for 1 ≤ 𝑗 − 𝑛Γ𝑖 (𝜋1) ≤ 𝑛Γ𝑖 (𝜋2),

⋮

𝜆𝑘 = 𝜆𝑗(Γ𝑖∖𝑋) for 1 ≤ 𝑗 −
𝑘−1∑

𝑙=1
𝑛Γ𝑖 (𝜋𝑙) ≤ 𝑛Γ𝑖 (𝜋𝑘).

(47)

Recall that 𝜆𝑘 is explicitly given in (42) for any 𝑘 ≥ 0. Now, since

𝜆𝑗(Γ1∖𝑋) = 𝜆𝑗(Γ2∖𝑋) ∀ 𝑗 = 0,… , 𝑁 − 1 =
𝑞(|Φ+|+1)∑

𝑘=0
𝑛Γ𝑖 (𝜋𝑘), (48)

we obtain that 𝑛Γ1(𝜋𝑘) = 𝑛Γ2(𝜋𝑘) for all 𝑘 = 0,… , 𝑞(|Φ+| + 1). Clearly, 𝒜 ∶=
{𝑘 ∈ ℕ0 ∶ 𝑘 ≤ 𝑞(|Φ+| + 1)} satisfies (44). Since 𝑞1 and 𝑞2 divide 𝑞, Proposi-
tion 5.1 implies that 𝑛Γ1(𝜋𝑘) = 𝑛Γ2(𝜋𝑘) for all 𝑘 ≥ 0, therefore Spec(Γ1∖𝑋) =
Spec(Γ2∖𝑋). □

The next example shows that the condition vol(Γ𝑖∖𝑋)
vol(𝑋)

> 𝜀 cannot be omitted
in Theorem 1.9.
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Example 5.3. Let 𝑁 be an arbitrary positive integer. We will show that there
are 3-dimensional lens orbifolds whose first 𝑁 eigenvalues coincide but which
are not isospectral.
We set 𝑋 = 𝑆3, thus 𝐺 = SO(4), 𝑛 = 2. Let 𝑞 be the smallest integer divisible

by 4 such that

𝑁 ≤
𝑞(𝑞 + 4)

16 =

𝑞
2
−1∑

𝑘=0

(
⌊𝑘
2
⌋ + 1

)
. (49)

For any divisor 𝑑 of 𝑞, let 𝐿𝑑 = 𝐿(𝑞; 0, 𝑑) and Γ𝑑 = Γ𝑞;(0,𝑑), so 𝐿𝑑 = 𝑆3∕Γ𝑑.
It is evident from Proposition 2.3 that these lens orbifolds are pairwise non-
isometric.
One can easily check that the associated congruence lattice ℒ𝑑 of 𝐿𝑑 (see

(13)) is given by

ℒ𝑑 = {(𝑎, 𝑏) ∈ ℤ2 ∶ 𝑞
𝑑
∣ 𝑏} = ℤ × 𝑞

𝑑
ℤ. (50)

This implies that they are mutually non-isospectral by (12).
We claim that the first𝑁 eigenvalues of the Laplacians on 𝐿1 and 𝐿2 coincide.

Since ℒ1 = ℤ × 𝑞ℤ and ℒ2 = ℤ × 𝑞
2
ℤ, it is clear that 𝑁ℒ1

(𝑘) = 𝑁ℒ2
(𝑘) = 1 for

all 𝑘 < 𝑞
2
. Now, (15) immediately implies that

𝑛Γ𝑖 (𝜋𝑘) = dim𝑉Γ𝑖
𝜋𝑘 = ⌊𝑘

2
⌋ + 1 ∀ 𝑘 < 𝑞

2
, for 𝑖 = 1, 2. (51)

The same reasoning in (47) tells us that 𝜆𝑗(𝐿1) = 𝜆𝑗(𝐿2) for all 𝑗 satisfying

0 ≤ 𝑗 ≤

𝑞
2
−1∑

𝑘=0
𝑛Γ𝑖 (𝜋𝑘) =

𝑞
2
−1∑

𝑘=0

(
⌊𝑘
2
⌋ + 1

)
(52)

and the assertion follows.

Remark 5.4. Although we have considered only the Laplace-Beltrami oper-
ator acting on functions on Γ∖𝑋, the discussion can be extended to the stan-
dard Laplacian acting on smooth sections of homogeneous vector bundles of
CROSSes. Among them,wehave theHodge-Laplace operator acting on smooth
𝑝-forms, and the Lichnerowicz Laplacian acting on (symmetric) 𝑘-tensors.

Remark 5.5. CanTheorem1.9 be extended to some (or all) compact symmetric
spaces of rank at least two? Themain difficulty for such a symmetric space𝐺∕𝐾
is that 𝐺𝐾 cannot be written as a finite union of strings, in the sense of [LM20,
Def. 2.1] (see also [LM20, Rmks. 5.3 and 5.4]).

6. Isospectral towers of lens spaces
In this sectionwewill construct isospectral towers of lens spaces in every odd

dimension ≥ 5. Our construction will make extensive use of some terminology
defined by Doyle and DeFord [DD18]. Let 𝑟 > 2, 𝑡 ≥ 1 be positive integers.

Definition 6.1. We say that 𝑎 ∈ ℤ𝑛 is
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∙ univalent mod 𝑟 if its entries are distinct mod 𝑟,
∙ reversible mod 𝑟 if there exists 𝑐 ∈ ℤ𝑟 such that 𝑎 + 𝑐 and −𝑎 are equal
as multisets mod 𝑟,

∙ good mod 𝑟 if it is univalent or reversible mod 𝑟,
∙ hereditarily good mod 𝑟 if it is good mod 𝑑 for all divisors 𝑑 of 𝑟, and
∙ useful mod 𝑟 if it is hereditarily good and irreversible mod 𝑟.

Remark 6.2. Every 𝑎 ∈ ℤ𝑛 is reversible (and hence good)mod 1, 2. So to check
whether or not 𝑎 is hereditarily good we need only consider divisors 𝑑 of 𝑟 for
which 𝑑 > 2. In particular, when 𝑟 is prime 𝑎 ∈ ℤ𝑛 is hereditarily good mod 𝑟
if and only if it is good mod 𝑟.

Example 6.3. Let 𝑎 = (1, 3, 6). Then 𝑎 is
∙ univalent mod 𝑟 when 𝑟 ∉ {1, 2, 3, 5},
∙ reversible mod 𝑟 when 𝑟 ∈ {1, 2, 4, 7, 8},
∙ good mod 𝑟 when 𝑟 ≠ 3, 5,
∙ hereditarily good mod 𝑟 when 𝑟 is not divisible by 3 or 5, and
∙ useful mod 𝑟 for any 𝑟 ≥ 11 not divisible by 3 or 5.

Given 𝑟, 𝑡, 𝑎 as above, we define the lens space 𝐿(𝑟, 𝑡, 𝑎) by

𝐿(𝑟, 𝑡, 𝑎) = 𝐿(𝑟2𝑡; 𝑟𝑡𝑎1 + 1,… , 𝑟𝑡𝑎𝑛 + 1).

The main theorem of [DD18] is:

Theorem 6.4. If 𝑎 ∈ ℤ𝑛 is hereditarily goodmod 𝑟, then for any 𝑡 the lens spaces
𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡,−𝑎) are isospectral.

Remark 6.5. The lens spaces 𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡,−𝑎) in Theorem 6.4 are actu-
ally 𝑝-isospectral for all 𝑝. This means that the Hodge-Laplace operator acting
on 𝑝-forms on each of them has the same spectrum for all 𝑝 = 0,… , 2𝑛 − 1.

Proposition 2.3 tells us that 𝑎 is reversible mod 𝑟 precisely when the lens
spaces 𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡,−𝑎) are isometric and hence trivially isospectral. The
theorem is thus only interesting in the case that 𝑎 is hereditarily good and irre-
versible mod 𝑟. This is what prompted DeFord and Doyle to call such 𝑎 useful:
when 𝑎 is useful mod 𝑟 the lens spaces 𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡,−𝑎) will be isospec-
tral but not isometric.

Definition 6.6. We say that 𝑎 ∈ ℤ𝑛 is self-reversing mod 𝑟 if 𝑎 and −𝑎 are
equal as multisets mod 𝑟.

Lemma 6.7. Let 𝑛 ≥ 3 and 𝑟 > 2 be coprime positive integers and 𝑎 ∈ ℤ𝑛. If
𝑎 is not self-reversing mod 𝑟 and the sum of its entries is divisible by 𝑟, then 𝑎 is
irreversible mod 𝑟.

Proof. If𝑎 is reversible then there exists 𝑐 ∈ ℤ𝑟 such that 𝑎+𝑐 and−𝑎 are equal
as multisets mod 𝑟. In this case for every 𝑖 ∈ {1,… , 𝑚} there exists 𝑗 ∈ {1,… , 𝑚}
such that

𝑎𝑖 + 𝑐 ≡ −𝑎𝑗 (mod 𝑟).
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If we sum over all 𝑖 then we get
2𝑆 + 𝑛𝑐 ≡ 0 (mod 𝑟),

where 𝑆 =
∑𝑛

𝑖=1 𝑎𝑖. By hypothesis 𝑆 ≡ 0 (mod 𝑟), hence𝑛𝑐 ≡ 0 (mod 𝑟). Since
𝑛 is coprime to 𝑟, it is invertible modulo 𝑟 and consequently we find that 𝑐 ≡ 0
(mod 𝑟). But this means that 𝑎 is self-reversing mod 𝑟, a contradiction. □

Ikeda’s families of isospectral lens spaces show that there are isospectral lens
spaces of arbitrarily high dimension. Although it is well known to experts that
there are in fact isospectral lens spaces in every odd dimension at least 5, this
result has not, to our knowledge, ever appeared in the literature. Below we
provide a proof.

Proposition 6.8. In every odddimensionat least 5, there are pairs of non-isometric
lens spaces that are isospectral (and 𝑝-isospectral for all 𝑝).

Proof. We fix 𝑛 ≥ 3. Let 𝑟 > 𝑛2 be a prime number and observe that

𝑎 = (1, 2,… , 𝑛 − 1, 𝑟 −
𝑛(𝑛 − 1)

2 )

is not self-reversing mod 𝑟 (since 𝑎1 = 1 and no entry of 𝑎 is equal to 𝑟−1) and
satisfies that the sum of its entries is 0mod 𝑟 since this sumwill in fact be equal
to 𝑟. It follows from Theorem 6.4 that the lens spaces 𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡,−𝑎)
will be isospectral but not isometric for all 𝑡. □

It is interesting to note that when gcd(𝑛, 𝑟) = 1, all tuples 𝑎 ∈ ℤ𝑛 which are
usefulmod 𝑟 yield lens spaces isometric to those produced by tuples whose sum
of entries is congruent to 0mod 𝑟.

Lemma 6.9. Let 𝑛 ≥ 3 and 𝑟 > 2 be coprime positive integers and 𝑡 > 1 be any
positive integer. If 𝑎 ∈ ℤ𝑛 is useful mod 𝑟 then there exists 𝑏 ∈ ℤ𝑛 such that:

(1) 𝑏 is useful mod 𝑟,
(2) the sum of the entries of 𝑏 is 0mod 𝑟, and
(3) the lens spaces 𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡, 𝑏) are isometric.

Proof. Let 𝑐 ∈ ℤ𝑟. The sum of the entries of 𝑎 + 𝑐 = (𝑎1 + 𝑐,… , 𝑎𝑛 + 𝑐) is
𝑆 + 𝑛𝑐 where 𝑆 is the sum of the entries of 𝑎. Because 𝑛 is coprime to 𝑟, it is in-
vertible modulo 𝑟. Let𝑚 ∈ ℤ be such that𝑚𝑛 ≡ 0 (mod 𝑟). A straightforward
argument now shows that if 𝑐 ≡ −𝑚𝑆 (mod 𝑟) then the sum of the entries of
𝑎 + 𝑐 will be 0 mod 𝑟. Defining 𝑏 = 𝑎 + 𝑐 we see that (2) and (3) are trivially
satisfied. To prove (1), note that Lemma 6.7 shows that 𝑏 is irreversible, while 𝑏
is hereditarily good mod 𝑟 since 𝑎 is hereditarily good mod 𝑟 and 𝑏 = 𝑎+ 𝑐. □

Theorem6.10. Let𝑛 ≥ 3. There exist infinitelymanypairs of descending isospec-
tral towers of lens spaces in dimension 2𝑛 − 1.

Proof. We begin with the example from the proof of Proposition 6.8:

𝑎 = (1, 2,… , 𝑛 − 1, 𝑟 −
𝑛(𝑛 − 1)

2 ) ,
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where 𝑟 is a fixed prime greater than 𝑛2. As wasmentioned earlier, for any 𝑡 the
lens spaces 𝐿(𝑟, 𝑡, 𝑎) and 𝐿(𝑟, 𝑡,−𝑎) are isospectral but not isometric. Let 𝑘 be
any positive integer greater than 1 satisfying 𝑘 ≡ 1 (mod 𝑟) and define 𝑡𝑗 = 𝑡𝑘𝑗.
Thus 𝐿(𝑟, 𝑡𝑗, 𝑎) and 𝐿(𝑟, 𝑡𝑗,−𝑎) are isospectral and not isometric for all 𝑗 ≥ 0.

Claim. For any 𝑖 > 𝑗 ≥ 0 the lens spaces 𝐿(𝑟2𝑡𝑗; 𝑟𝑡𝑖𝑎1 + 1,… , 𝑟𝑡𝑖𝑎𝑛 + 1) and
𝐿(𝑟, 𝑡𝑗, 𝑎) are isometric.

Proof. It follows from Proposition 2.3 since 𝑟𝑡𝑖𝑎𝑠 + 1 ≡ 𝑟𝑡𝑗𝑎𝑠 + 1 (mod 𝑟2𝑡𝑗)
for 𝑠 = 1,… , 𝑛, which in turn follows from the fact that 𝑘 ≡ 1 (mod 𝑟), as we
now show. That 𝑘 ≡ 1 (mod 𝑟) and 𝑖 > 𝑗 implies 𝑘𝑖−𝑗−1 is divisible by 𝑟. Thus
there is an integer𝑚 such that 𝑘𝑖−𝑗 − 1 = 𝑟𝑚. Then

(𝑟𝑡𝑖𝑎𝑠 + 1) − (𝑟𝑡𝑗𝑎𝑠 + 1) = 𝑟𝑡𝑘𝑗𝑎𝑠(𝑘𝑖−𝑗 − 1) = 𝑟2𝑡𝑗𝑎𝑠𝑚.

In particular 𝑟2𝑡𝑗 divides (𝑟𝑡𝑖𝑎𝑠 + 1) − (𝑟𝑡𝑗𝑎𝑠 + 1) and 𝑟𝑡𝑖𝑎𝑠 + 1 ≡ 𝑟𝑡𝑗𝑎𝑠 + 1
(mod 𝑟2𝑡𝑗) as claimed. □

Wenowdefine our towers inductively. Let𝑀0 = 𝐿(𝑟, 𝑡0, 𝑎) and𝑁0 = 𝐿(𝑟, 𝑡0,−𝑎).
We have already seen that𝑀0 and𝑁0 are isospectral and not isometric. To con-
struct𝑀1 and𝑁1, we note that the claim shows that 𝐿(𝑟2𝑡0; 𝑟𝑡1𝑎1+1,… , 𝑟𝑡1𝑎𝑛+
1) and 𝐿(𝑟, 𝑡0, 𝑎) are isometric. Since the former is a finite degree cover of
𝐿(𝑟, 𝑡1, 𝑎), there is some lens space𝑀1 isometric to 𝐿(𝑟, 𝑡1, 𝑎)having 𝐿(𝑟, 𝑡0, 𝑎) as
afinite degree cover. Similarly, we obtain a lens space𝑁1 isometric to𝐿(𝑟, 𝑡1,−𝑎)
having 𝐿(𝑟, 𝑡1,−𝑎) as a finite degree cover. Since isometric manifolds are triv-
ially isospectral, the isospectrality of𝑀1 and𝑁1 follows from the isospectrality
of 𝐿(𝑟, 𝑡1, 𝑎) and 𝐿(𝑟, 𝑡1,−𝑎).
Suppose now that we have constructed𝑀𝑖−1 and𝑁𝑖−1, and note that by con-

struction they will be isometric to 𝐿(𝑟, 𝑡𝑖−1, 𝑎) and 𝐿(𝑟, 𝑡𝑖−1,−𝑎). By the claim,
the lens space 𝐿(𝑟2𝑡𝑖−1; 𝑟𝑡𝑖𝑎1+1,… , 𝑟𝑡𝑖𝑎𝑛+1) is isometric to 𝐿(𝑟, 𝑡𝑖, 𝑎) and hence
to 𝑀𝑖−1 as well. Therefore there is a lens space 𝑀𝑖 isometric to 𝐿(𝑟, 𝑡𝑖, 𝑎) hav-
ing 𝑀𝑖−1 as a finite degree cover. We similarly obtain a lens space 𝑁𝑖 isomet-
ric to 𝐿(𝑟, 𝑡𝑖,−𝑎) having 𝑁𝑖−1 as a finite degree cover. As above,𝑀𝑖 and 𝑁𝑖 are
isospectral but not isometric. Continuing in this manner yields the desired pair
of descending isospectral towers {𝑀𝑖} and {𝑁𝑖}.
It remains only to show that there are infinitely many such pairs of descend-

ing towers. This follows immediately from the fact that the above construction
holds for any positive integer 𝑡. We can therefore obtain infinitely many tow-
ers by allowing 𝑡 to range over the set of prime numbers not equal to 𝑟 and not
dividing 𝑘. □

7. Isospectrality between quotients of symmetric spaces
In this section we discuss Question 1.15, which asks for the determination of

the compact simply connected irreducible symmetric spaces that cover isospec-
tral and non-isometric manifolds. Henceforth we will omit the fact that the
isospectral covered manifolds are non-isometric, for the sake of conciseness.
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Unlike the non-compact type setting, the structure of locally symmetric
spaces of compact type is quite rigid. In particular, the classification of mani-
folds covered by spheres, the so called spherical space forms, was a long process
finished by Wolf in [Wo]. Wolf also classified in [Wo, Ch. 9] the manifolds cov-
ered by compact symmetric spaces 𝐺∕𝐾 satisfying rank(𝐺) − rank(𝐾) ≤ 1. We
will use his results throughout the section.
We now start discussing partial answers of Question 1.15, starting from the

simplest case. There are many compact irreducible symmetric spaces that can-
not cover isospectral pairs because they do not cover any manifold at all. For
instance, this is the case for even dimensional real projective spaces 𝑃2𝑛(ℝ) =
SO(2𝑛+1)
O(2𝑛)

, quaternionic Grassmannian spaces Sp(𝑚+𝑛)
Sp(𝑚)×Sp(𝑛)

for𝑚 > 𝑛 ≥ 1, complex

Grassmannian spaces SU(𝑚+𝑛)
S(U(𝑚)×U(𝑛))

for𝑚 > 𝑛 ≥ 1 with𝑚𝑛 even, E6
SU(6)⋅SU(2)

, and
E6

SO(10)⋅SO(2)
Similarly, the real Grassmannian spaces SO(𝑚+𝑛)

SO(𝑚)×SO(𝑛)
with𝑚+𝑛 odd,

cover properly exactly one manifold with fundamental group of order 2, hence
these spaces do not cover isospectral manifolds. The best known instance are
the even dimensional spheres 𝑆2𝑛 = SO(2𝑛+1)

SO(2𝑛)
which only cover properly𝑃2𝑛(ℝ).

Even dimensional Grassmannian spaces cover only finitely manymanifolds.
On the opposite side, odd dimensional Grassmannian spaces (i.e. SO(𝑚+𝑛)

SO(𝑚)×SO(𝑛)
with 𝑚𝑛 odd) cover infinitely many manifolds. Ikeda is the main contributor
to Question 1.15 for these spaces. We summarize his results [Ik80b, Thm. II],
[Ik83, Thm. 4], and [Ik97, Thm. 7], in the following statement.

Theorem 7.1 (Ikeda). Odd-dimensional spheres of dimension ≥ 5 and real
Grassmannian spaces SO(𝑚+𝑛)

SO(𝑚)×SO(𝑛)
with 𝑛 ≥ 𝑚 > 1 satisfying 𝑚𝑛 ≡ 1 (mod 2)

and 𝑚 + 𝑛 ∈ {2𝑘 ∶ 𝑘 = 5 or 𝑘 ≥ 7}, cover infinitely many isospectral and
non-isometric pairs of manifolds. Furthermore, the 3-dimensional sphere does
not cover any pair of isospectral and non-isometric manifolds.

Wolf [Wo01] extended Ikeda’s isospectral constructions by adopting a much
more general perspective.

Remark 7.2. Ikeda proved the existence of infinitelymany pairs of (non-cyclic)
almost conjugate but not conjugate subgroups of SO(2𝑑) for 𝑑 = 5 or 𝑑 ≥ 7 act-
ing freely on 𝑆2𝑑−1 = SO(2𝑑)

SO(2𝑑−1)
and SO(2𝑑)

SO(𝑚)×SO(2𝑑−𝑚)
for any 𝑚 odd. This proves

Theorem 7.1 for all cases excepting 𝑆5, 𝑆7, and 𝑆11, where he proved the ex-
istence of finitely many isospectral lens spaces covered by each of them. The
existence of infinitely many pairs of isospectral lens spaces of dimension 5, 7,
and 11 follows from [DD18] (see also Section 6).

Remark 7.3. Even dimensional Grassmannian spaces (i.e. SO(𝑚+𝑛)
SO(𝑚)×SO(𝑛)

with𝑚𝑛
even and all complex and quaternionic Grassmannian spaces) cover finitely
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many manifolds; see [Wo, §9.3] for the classification. Spectrally distinguish-
ing them may a feasible but tedious achievement. A similar situation should
occur with SO(2𝑛)

U(𝑛)
, Sp(𝑛)
U(𝑛)

, E7
(SU(8)∕{±𝐼})

, E7
E6 ⋅T

1 (see [Wo, §9.4]).
A more challenging problem is to decide whether the symmetric space

SU(3)∕ SO(3) covers isospectral manifolds. Its corresponding locally symmet-
ric spaces were classified by Wolf [Wo, Lem. 9.6.3] and turn out to be infinitely
many manifolds with cyclic fundamental groups.

The existence of isospectral covered manifolds is more feasible for compact
irreducible symmetric spaces of group type. These are of the form 𝐾×𝐾

diag(𝐾)
, where

𝐾 is a compact simple Lie group and diag(𝐾) = {(𝑘, 𝑘) ∈ 𝐾 × 𝐾 ∶ 𝑘 ∈ 𝐾}. We
will abbreviate 𝐾×𝐾

𝐾
= 𝐾×𝐾

diag(𝐾)
. Alternatively, 𝐾×𝐾

𝐾
is isometric to 𝐾 endowed

with a bi-invariant metric.
The following consequence of Sunada’s method provides many examples.

Proposition 7.4. Let 𝐾 be a compact connected simple Lie group and let 𝑔0 de-
note any bi-invariant metric on 𝐾 (which is unique up to a positive multiple). If
Γ1 and Γ2 are almost conjugate but non-conjugate finite subgroups of 𝐾, then
(𝐾∕Γ1, 𝑔1) and (𝐾∕Γ, 𝑔2) are isospectral and non-isometric, where 𝑔𝑖 denotes the
Riemannianmetric on𝐾∕Γ𝑖 induced by 𝑔0 (i.e. (𝐾, 𝑔0)→ (𝐾∕Γ𝑖, 𝑔𝑖) is aRiemann-
ian cover).

For a proof, see [Wo01, Prop. 2.10] and take into account that Γ𝑖 acts freely
on 𝐾.

Proof of Theorem 1.16. By Proposition 7.4, it is sufficient to show the exis-
tence of almost conjugate and non-conjugate subgroups in any simply con-
nected compact simple Lie group 𝐾 non-isomorphic to SU(2), SU(3), Sp(2) or
G2.
The pair Γ1,Γ2 ⊂ SO(6) from (30) gives almost conjugate and non-conjugate

subgroups of the universal cover Spin(6) ≃ SU(4) of SO(6). For any 𝑛 ≥ 7,
the image of Γ1,Γ2 under the canonical embedding Spin(6)↪ Spin(𝑛) are still
almost conjugate and non-conjugate in Spin(𝑛). The same occurs for the well-
known embeddings

SU(4)↪ SU(𝑛) for all 𝑛 ≥ 5,
SU(4)↪ U(4)↪ Sp(𝑛) for all 𝑛 ≥ 4,
SO(6)↪ SO(10)↪ E6 ↪ E7 ↪ E8,

Spin(6)↪ Spin(9)↪ F4,

(53)

and the proof is complete. □

The symmetric space associated to SU(2) ≃ Spin(3) ≃ Sp(1) is isometric to
𝑆3, hence it does not cover isospectral manifolds by Theorem 7.1. It is worth to
mention as a similar result that Vásquez [Vá18] proved that two almost conju-
gate subgroups in Spin(4) ≃ SU(2) × SU(2) are necessarily conjugate.
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Question 7.5. Are there almost conjugate and non-conjugate subgroups in
SU(3) (resp. Sp(2) ≃ Spin(5), Sp(3) and G2)?

Question 7.6. Which compact symmetric spaces of group type (not necessarily
simply connected) cover isospectral manifolds.

Problem 7.7. Study Question 1.15 in the context of orbifolds covered by com-
pact symmetric spaces.

8. Open problems and questions
In this section we discuss further problems and questions, in addition to

those included in the previous sections.

8.1. Constructing large families of spherical space forms. Call a set of
Riemannian manifolds an isospectral set if the manifolds in the set are pairwise
isospectral and non-isometric. In [BGG98] Brooks, Gornet, andGustafson used
Sunada’s method in order to construct isospectral sets of hyperbolic surfaces of
arbitrarily large cardinality. In particular, they constructed an infinite sequence
of natural numbers 𝑔𝑖 such that for each 𝑖 there is an isospectral set of genus 𝑔𝑖
hyperbolic surfaces of cardinality at least 𝑔𝑐 log(𝑔𝑖)𝑖 , for some constant 𝑐 which
does not depend on 𝑖. We note that these isospectral sets are the largest known
for hyperbolic surfaces.
The Brooks-Gornet-Gustafson construction was subsequently generalized

by McReynolds [Mc14] to higher dimensional real hyperbolic spaces, to the
complex hyperbolic 2-space, and to the symmetric spaces of arbitrary non-
compact simple Lie groups. Later work of Belolipetsky and the second au-
thor [BL17] extended the Brooks-Gornet-Gustafson construction to simple Lie
groups of real rank at least 2.
In light of the aforementioned work it is natural to ask for the maximal size

of an isospectral set of spherical manifolds or orbifolds. Every finite group ad-
mits an orthogonal representation, hence the results mentioned above (which
all employ Sunada’s method) can be modified so as to produce isospectral sets
of spherical orbifolds with arbitrarily large cardinalities. It should be noted
however, that the dimension of the manifolds in these isospectral sets will go
to infinity as the cardinality does.

Problem8.1. Fix a dimension𝑑. What is themaximal cardinality of an isospec-
tral set of spherical space forms of volume 𝑥 and dimension 𝑑?

This problem seems particularly tractable in the setting of lens spaces. It
seems reasonable, for example, to expect that one could modify Ikeda’s proof
[Ik80a] of the existence of pairs of isospectral non-isometric lens spaces in order
to obtain isospectral sets of larger cardinality.

8.2. Upper bounds on the cardinality of an isospectral set. In this section
we discuss a problem which serves as a natural complement to Problem 8.1.
Given a hyperbolic surface 𝑆, how many hyperbolic surfaces are there that are
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isospectral to 𝑆 but not isometric to it? In other words, what is the maximal
cardinality of an isospectral set containing 𝑆? The Brooks-Gornet-Gustafson
construction shows that in general, if 𝑆 has genus 𝑔, then there may be as many
as 𝑔𝑐 log(𝑔) other hyperbolic surfaces isospectral to 𝑆 but not isometric to it. The
first upper bound for this quantity is due to Buser [Bu], who showed that if 𝑔
denotes the genus of 𝑆, then there are at most 𝑒720𝑔2 hyperbolic surfaces that are
isospectral to 𝑆 but not isometric to it. This result was later improved to 𝑒𝑐𝑔 log(𝑔)
(for some universal constant 𝑐) by Parlier [Pa18].

Problem 8.2. Let 𝑀 be a spherical orbifold of volume 𝑉. What is an upper
bound for the cardinality of an isospectral set of spherical orbifolds which con-
tains𝑀?

8.3. Wolpert’s genericity results. Before Vignéras constructed the first ex-
amples of isospectral Riemann surfaces in [Vi80],Wolpert [Wo77,Wo79] proved
that a generic Riemann surface of genus 𝑔 ≥ 2 is spectrally unique within the
moduli spaceℳ𝑔 of isometry classes of Riemann surfaces of genus 𝑔; that is, a
generic Riemann surface is not isospectral to any non-isometric Riemann sur-
face of the same genus.

Theorem 8.3 (Wolpert [Wo79]). For each 𝑔 ∈ ℕ, there is a dense subsetℳ∙
𝑔 of

ℳ𝑔 satisfying that for any 𝑆 ∈ℳ∙
𝑔 one has that Spec(𝑆′) ≠ Spec(𝑆) for all 𝑆′ ≠ 𝑆

inℳ𝑔.

In the moduli space 𝒯𝑛 of 𝑛-dimensional flat tori, he proved the analogous
result.

Theorem 8.4 (Wolpert [Wo78]). For each 𝑛 ∈ ℕ, there is a dense subset 𝒯∙
𝑛 of

𝒯𝑛 satisfying that for any 𝑇 ∈ 𝒯∙
𝑛 one has that Spec(𝑇′) ≠ Spec(𝑇) for all 𝑇′ ≠ 𝑇

in𝒯𝑛.

It is natural to ask if a similar situation occurs for lens spaces.

Problem 8.5. Is a “generic” lens space spectrally unique?

Note that there is not a direct analogy to the case of Riemann surfaces and
flat tori due to the absence of a natural topology on the space of lens spaces. In
what follows we formulate a possible extension ofWolpert’s results and provide
numerical evidence for its validity.
For positive integers𝑛, 𝑞, let us denote by𝔏(𝑛, 𝑞) the isometry classes of (2𝑛−

1)-dimensional lens spaces with fundamental group of order 𝑞. We set

𝔏∙(𝑛, 𝑞) = {𝐿 ∈ 𝔏(𝑛, 𝑞) ∶ Spec(𝐿) ≠ Spec(𝐿′) ∀𝐿′ ≠ 𝐿 in 𝔏(𝑛, 𝑞)}. (54)

Inwords,𝔏∙(𝑛, 𝑞) is the subset of𝔏(𝑛, 𝑞) given by lens spaces that are spectrally
unique within 𝔏(𝑛, 𝑞).
The space of all (isometry classes) of (2𝑛 − 1)-dimensional lens spaces is⋃
𝑞≥1 𝔏(𝑛, 𝑞). Now, for a positive number 𝑥, it is natural to ask whether the
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density

𝒰𝑛(𝑥) ∶=

∑

𝑞≤𝑥
#𝔏∙(𝑛, 𝑞)

∑

𝑞≤𝑥
#𝔏(𝑛, 𝑞)

(55)

of the set of spectrally unique lens spaces with fundamental groups of order≤ 𝑥
into the set of lens spaces with fundamental groups of order ≤ 𝑥 is close to 1.

Conjecture 8.6. One has lim
𝑥→∞

𝒰𝑛(𝑥) = 1 for all 𝑛 ∈ ℕ.

Table 3 provides, for small values of 𝑥, numerical calculations of 𝒰𝑛(𝑥) for
3 ≤ 𝑛 ≤ 7.
A first step towards proving the above conjecture could be to show, for a fixed

dimension 2𝑛 − 1, infinitely many values of 𝑞 ∈ ℕ such that no isospectrality
can occur within 𝔏(𝑛, 𝑞), that is, 𝔏∙(𝑛, 𝑞) = 𝔏(𝑛, 𝑞).

Problem 8.7. Provide conditions on 𝑛 and 𝑞 such that 𝔏∙(𝑛, 𝑞) = 𝔏(𝑛, 𝑞);
that is, for which no (non-trivial) isospectrality is possible among (2𝑛 − 1)-
dimensional lens spaces with volume vol(𝑆2𝑛−1)

𝑞
.

8.4. The length spectra of spherical space forms. The length spectrum of
a hyperbolic manifold, or more generally of a closed Riemannian manifold, is
the set of lengths of closed geodesics on the manifold. The length spectrum has
been an extremely fruitful area of research and is closely related to the Laplace
eigenvalue spectrum. For example, the Selberg Trace Formula implies that
two hyperbolic surfaces are (Laplace) isospectral if and only if they have the
same length spectrum (see e.g. [Bu, Chapter 7]). The work of Duistermaat and
Guillemin and Duistermaat, Kolk, and Varadarajan shows that in the setting
of compact locally symmetric manifolds of nonpositive curvature, the Laplace
spectrum determines the length spectrum. (See also [PR09, Theorem 10.1].)

Question 8.8. What is the relationship between the Laplace spectrum and the
length spectrum of a spherical space form?

Some of the most interesting work concerning the length spectra of locally
symmetric spaces of nonpositive curvature has been done in the arithmetic
case and concerns the notion of commensurability. Recall that two Riemannian
manifolds are said to be commensurable if they have a common finite degree
covering space. It is a result of Reid [Re92] that arithmetic hyperbolic surfaces
with the same length spectra are necessarily commensurable. This result was
extended to arithmetic hyperbolic 3-manifolds by Chinburg, Hamilton, Long,
and Reid [CHLR08], and to a very broad class of arithmetic locally symmetric
spaces by Prasad and Rapinchuk [PR09]. More recently, the second author, to-
gether with McReynolds, Pollack and Thompson, has proven (see [LMPT18])
that two incommensurable arithmetic hyperbolic manifolds of dimension 2 or
3must have length spectra that disagree for some geodesic length bounded by
an explicit function of the manifolds’ volumes.
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Table 3. Density of spectrally unique (2𝑛 − 1)-dimensional
lens spaces for 𝑛 = 3, 4, 5, 6, 7.

𝑛 𝑥
∑

𝑞≤𝑥
#𝔏∙(𝑛, 𝑞)

∑

𝑞≤𝑥
#𝔏(𝑛, 𝑞) 𝒰𝑛(𝑥)

3 50 40 990 0.95960
100 64 6680 0.99042
150 83 21881 0.99621
200 119 51580 0.99769
250 131 97546 0.99866
300 183 167856 0.99891

4 30 47 693 0.93218
60 138 7966 0.98268
90 202 36699 0.99450
120 228 107094 0.99787
150 268 253189 0.99894

5 10 0 28 1.0000
20 23 397 0.94207
30 74 1806 0.95903
40 127 5456 0.97672
50 197 17332 0.98863
60 255 37137 0.99313
70 345 71449 0.99517

6 10 0 37 1.0000
20 14 801 0.98252
30 118 4640 0.97457
40 199 16497 0.98794
50 297 66751 0.99555
60 432 163935 0.99736

7 10 0 41 1.0000
20 9 1501 0.99400
30 174 11188 0.98445
40 358 46750 0.99234
50 466 239345 0.99805

Although all spherical space forms are trivially commensurable (they are all
covered with finite degree by the sphere 𝑆𝑑), one might instead consider the
notion of quotient commensurable manifolds. Two Riemannian manifolds are
said to be quotient commensurable if they share a common, finite degree quo-
tient manifold. If 𝑆𝑑∕Γ1 and 𝑆𝑑∕Γ2 are spherical space forms, then they are
quotient commensurable if and only if Γ1 and Γ2 both have finite index inside
the group 𝐺 = ⟨Γ1,Γ2⟩.
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Question 8.9. If two spherical space forms have the same length spectrum,
must they be quotient commensurable?

8.5. Isospectral but not strongly isospectral hyperbolic manifolds. We
end the articlewith a question that goes in the reverse direction in the sense that
it concerns a result in the compact setting which is open in the non-compact
one.
We mentioned after Theorem 2.2 that Sunada’s method always produces

strongly isospectralmanifolds. In particular, in addition to the Laplace-Beltrami
operator (acting on 0-forms), the corresponding Hodge-Laplace operators act-
ing on 𝑝-forms are isospectral, for each 𝑝.
It has been known for a while that Ikeda’s examples of lens spaces cannot

be constructed via Sunada’s method (see [Ch92]). Miatello, Rossetti and the
first author proved that strongly isospectral lens spaces are necessarily isomet-
ric (see [LMR16, Prop. 7.2]), so isospectral and non-isometric lens spaces, in-
cluding Ikeda’s examples, are not strongly isospectral.

Question 8.10. Are there isospectral hyperbolicmanifolds that are not strongly
isospectral?

Furthermore, there are lens spaces 𝑝-isospectral for all 𝑝, and not strongly
isospectral (see [LMR16] and [DD18]).

Question 8.11. Are there hyperbolic manifolds 𝑝-isospectral for all 𝑝 that are
not strongly isospectral?

Doyle and Rossetti have conjectured that the answer is negative (see [DR,
§9]).
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