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Shrinking targets on square-tiled surfaces

Josh Southerland

Abstract. We study a shrinking target problem on square-tiled surfaces.
We show that the action of a subgroup of the Veech group of a regular square-
tiled surface exhibits Diophantine properties. This generalizes the work of
Finkelshtein, who studied a similar problem on the flat torus [Fi16].
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1. Introduction
In this paper we study the action of the abundant set of derivatives of affine

linearmaps on a regular square-tiled surface, which is a particular type of trans-
lation surface. The set of derivatives we study is an arithmetic group, and we
show that the action of subgroups of these arithmetic groups exhibit Diophan-
tine properties.

1.1. Definitionof a translation surface. A translation surface is a pair (𝑋,𝜔)
where 𝑋 is a compact, connected Riemann surface without boundary and 𝜔 a
non-zero holomorphic differential on 𝑋.
There is an equivalent definition of a translation surface that is more intu-

itive: a translation surface is an equivalence class of polygons or sets of polygons
in the planeℂ such that each edge is identified by translation to a parallel edge
on the opposite side of the polygon (or opposite side of a polygon in the set of
polygons). The equivalence is given by a cut-and-paste procedure that preserves
the positive imaginary direction relative to the ambient ℂ.
Note that by imposing the condition that sides are identified to opposite edges

of the polygon we ensure that the positive imaginary direction is well-defined
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Figure 1. Translation surface

globally. Translation surfaces are flat surfaces away from a finite set of singu-
lar points, and at the singular points are cone points whose angles are integer
multiples of 2𝜋.

Definition 1.1 (Square-tiled Surface [M22], [Zm11]). A square-tiled surface is
a translation surface (𝑋,𝜔) given by a (finite) branched cover over the square
torus, 𝑞 ∶ 𝑋 → 𝕋2, branched over 0. The one-form 𝜔 is given by the pullback
of 𝑑𝑧 under the covering map 𝑞, 𝜔 = 𝑞∗(𝑑𝑧).

Square-tiled surfaces are so named because they have a polygonal represen-
tation which looks like a tiling of squares (each square projects to the square
torus in the branched cover). Consequently, square-tiled surfaces come with a
natural combinatorial description: (𝑀,𝜎, 𝜏), where𝑀 denotes the degree of the
cover and 𝜎, 𝜏 ∈ 𝑆𝑀 are permutations that encode gluing information. 𝜎(𝑖) = 𝑗
means that the right edge of the 𝑖𝑡ℎ square is glued to the left edge of the 𝑗𝑡ℎ
square. 𝜏(𝑖) = 𝑗means that the top edge of the 𝑖𝑡ℎ square is glued to the bottom
edge of the 𝑗𝑡ℎ square.

Definition 1.2 (Square-tiled Surface [M22], [Zm11]). A regular square-tiled
surface is a square-tiled surface (𝑋,𝜔) whose automorphism group (automor-
phisms of the translation structure) is transitive on the set of squares, 𝑞∗((0, 1)2).

For the equivalence of the different definitions of a translation surface or
square-tiled surface, the reader is encouraged to visit [W15], [Zm11].

1.2. The 𝑺𝑳𝟐(ℝ)-action. The group 𝑆𝐿2(ℝ) acts on the moduli space of trans-
lation surfaces, where the action of a matrix is just the usual linear action on
the polygons. Since the linear action sends parallel lines to parallel lines, the
action sends a translation surface to a translation surface. In fact, the natural
action in this setting is 𝐺𝐿+2 (ℝ), but for our purposes, the action of 𝑆𝐿2(ℝ) is
more relevant since we are only interested in volume preserving maps.
For amore detailed introduction to translation surfaces, the reader is encour-

aged to consult one of the many excellent surveys on the topic [C17], [W15],
[Zor06].
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1.3. The dynamical system.

1.3.1. Action of theVeech group. The stabilizer of the action at a translation
surface (𝑋,𝜔) is called theVeech group of this surface, denoted 𝑆𝐿(𝑋,𝜔). For an
example of a stabilizing element, consider the unit square with opposite sides

identified by translation (a torus) and let 𝑔 = [1 1
0 1].

g

Figure 2. Stabilizing element of the Veech group

Using the cut-and-paste procedure pictured in Figure 2, we can reassemble
the new polygon as the old, while respecting the “north" direction on the sur-
face. This example shows us that the Veech group is not always trivial. The
action of the matrix appears related to linear maps on the surface, and in fact,
this is true. We can identify the Veech group with the collection of derivatives
of affine linear maps on the surface [V89].
There exist translation surfaces surfaces, for example, square-tiled surfaces,

whose stabilizers are lattices in 𝑆𝐿2(ℝ). Such lattices are necessarily discrete,
non-cocompact, finite covolume subgroups of 𝑆𝐿2(ℝ) [HS04]. We call these
surfaces lattice surfaces. Veech groups of lattice surfaces contain a hyperbolic
element, which can be represented as a matrix with expanding and contracting
eigenspaces. The corresponding linear action of this element, after several ap-
plications, sufficiently “mixes" the points on the surface. In fact, the map will
be ergodic (with respect to the Lebesguemeasure on the surface). The existence
of this element means that the action of the Veech group is ergodic. Hence, we
can ask questions about the density of the orbits. One way to do this is to frame
the question as a shrinking target problem. Fix a lattice surface 𝑆 with Veech
group Γ, and pick any 𝑦 ∈ 𝑆. Let 𝐵𝑔(𝑦) denote the open ball of area (or mea-
sure) 𝜙(||𝑔||) (a decreasing function of the operator norm). Does almost every
𝑥 ∈ 𝑆 have the property that 𝑔 ⋅ 𝑥 ∈ 𝐵𝑔(𝑦) for infinitely many 𝑔 ∈ Γ? How fast
can 𝜙 decrease (the target shrink) before this no longer holds?
In 2016, Finkelshtein [Fi16] studied a shrinking target problemon the square

torus. The torus is an example of a translation surface and 𝑆𝐿2(ℤ) is its Veech
group. Moreover, 𝑆𝐿2(ℤ) is a lattice subgroup of 𝑆𝐿2(ℝ), so the torus is an ex-
ample of a lattice surface. Finkelshtein showed that the action of 𝑆𝐿2(ℤ) on
the torus exhibits certain Diophantine estimates. Finkelshtein’s proof relies on
a fundamental connection between the dynamics of theVeech group action and
the Laplacian on the torus.
The action of the Veech group on the surface induces a group representation,

the Koopman representation, 𝜋 ∶ 𝑆𝐿2(ℤ) → U (𝐿2(𝕋2)), where 𝜋(𝑔)𝑓(𝑥) =
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Figure 3. Hitting the target

𝑓(𝑔−1𝑥). Recall that the eigenfunctions of the Laplacian, ∆ = −(𝜕2𝑥 + 𝜕2𝑦), are
solutions to ∆𝑓 = 𝜆𝑓. We can compute eigenfunctions: 𝑒2𝜋𝑖𝑚𝑥𝑒2𝜋𝑖𝑛𝑦, where
(𝑚, 𝑛) ∈ ℤ2. Let 𝑔 = [𝑎 𝑏

𝑐 𝑑] ∈ 𝑆𝐿2(ℤ), then

𝜋(𝑔)𝑒2𝜋𝑖𝑚𝑥𝑒2𝜋𝑖𝑛𝑦 = 𝑒2𝜋𝑖(𝑑𝑚−𝑐𝑛)𝑥𝑒2𝜋𝑖(𝑎𝑛−𝑏𝑚)𝑦.
This is significant: the Koopman representation sends eigenspaces of the

Laplacian to eigenspaces. In other words, the action of the Veech group plays
nicely with the spectral properties of the Laplacian. In fact, we can say precisely
how the eigenspaces are permuted by noting how (𝑚, 𝑛) is permuted: by mul-
tiplying on the left by the inverse transpose of 𝑔.
In what follows, we study the action of the Veech group on a square-tiled

surface. This problem is challenging for the following reason: the action of the
Veech group on a translation surface does not, in general, respect the eigenspaces
of the Laplacian.
We are able to bypass these difficulties by leveraging properties of the

branched cover over the torus. Our main result shows that the action of a sub-
group of a Veech group acting on a regular square-tiled surface exhibits similar
Diophantine properties that are governed by the critical exponent of the sub-
group. Recall the definition of critical exponent:

Definition 1.3 (Critical exponent, 𝛿Γ). Let Γ be a Fuchsian group. The critical
exponent, 𝛿Γ, is

𝛿Γ ∶= lim sup
𝑅→∞

log(#{𝑔 ∈ Γ ∶ 𝑑ℍ(𝑔.𝑥0, 𝑥0) ≤ 𝑅})
𝑅 ,

for any 𝑥0, where 𝑔.𝑥0 denotes the action of 𝑔 on 𝑥0 by Möbius transformation.
𝛿Γ is independent of the basepoint 𝑥0.
The critical exponent 𝛿Γ is the exponent required for convergence in the

Poincaré series of the group Γ [B68], [P76], which is equivalent to the expo-
nential growth rate of the number of points in the orbit of Γ acting on the upper
half-plane [S79] seen in Definition 1.3.
Patterson [P76] showed that for a finitely generated Fuchsian group Γ, the

critical exponent is precisely theHausdorff dimension of the limit set,Λ = Γ𝑥∩
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𝑆1, where 𝑆1 is the circle at infinity. Sullivan [S79] showed that in the general
case of a Fuchsian group, the critical exponent is the Hausdorff dimension of
the radial limit set, Λ𝑟 ⊂ Λ consisting of all points in the limit set such that
there exists a sequence 𝜆𝑛𝑥 → 𝑦 remaining within a bounded distance of a
geodesic ray ending at 𝑦.
These various interpretations are particularly relevant to our work since we

obtain Theorem 1.1 indirectly through spectral estimates of the boundary rep-
resentation of the subgroup Γ.

Theorem 1.1. Let (𝑋,𝜔) be a regular square-tiled surface, and let Γ be a sub-
group of the Veech group 𝑆𝐿(𝑋,𝜔) with critical exponent 𝛿Γ > 0. For any
𝑦 ∈ 𝑋, for Lebesgue a.e. 𝑥 ∈ 𝑋, the set

{𝑔 ∈ Γ ∶ |𝑔𝑥 − 𝑦| < ||𝑔||−𝛼}
is

(1) finite for every 𝛼 > 𝛿Γ
(2) infinite for every 𝛼 < 𝛿Γ

where || ⋅ || is the operator norm of 𝑔 (as a linear transformation on ℝ2).

In fact, Theorem 1.1 holds for parallelogram-tiled surfaces as well. As with
Finkelshtein’s result [Fi16], our result has the added benefit that we can deduce
Diophantine properties of thin subgroups of the Veech group.

Remark 1.4. The spectral theory of translations surfaces and, in particular,
square-tiled surfaces, has been studied by Hillairet [H08], [H09].

1.4. Acknowledgements. The author thanks Jayadev Athreya for proposing
this project and providing guidance, and to the anonymous referee for many
helpful comments. Additionally, the author thanks Alexis Drouot, Dami Lee,
Farbod Shokrieh, and Bobby Wilson for helpful discussions, and Chris Judge
for helpful comments regarding Theorem 3.1. Additionally, the author thanks
Lior Silberman for identifying an error in an earlier version of this work, as well
as for a series of informative discussions on the representation theory of groups
of operators on singular spaces.

2. Shrinking targets
In this section, we will give a technical description of a shrinking target

problem and identify the main obstacle that we must overcome to solve one.
Throughout this section, (𝑋,B, 𝜇) is a probability space, and 𝑇 ∶ 𝑋 → 𝑋 is a
measure-preserving transformation, unless otherwise indicated.

2.1. Set-up. First, recall Poincaré recurrence.

Theorem 2.1 (Poincaré recurrence). Let (𝑋,B, 𝜇) be a probability space, let
𝑇 ∶ 𝑋 → 𝑋 be a measure preserving transformation, and let 𝐸 ∈ B. Define a
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semigroup action on𝑋 by the groupℕ as follows: 𝑛 ⋅𝑥 ∶= 𝑇𝑛(𝑥) for any 𝑛 ∈ ℕ,
where 𝑇0 = Id. Then for almost every point 𝑥 ∈ 𝐸, the set

{𝑛 ∈ ℕ ∶ 𝑛 ⋅ 𝑥 ∈ 𝐸}
is infinite. (In other words, the set of points in 𝐸 that return to 𝐸 infinitely often
has full measure in 𝐸.)
Given the additional hypothesis of ergodicity, we can strengthen Poincaré

recurrence. If 𝑇 ∶ 𝑋 → 𝑋 is ergodic, then for any measurable set 𝐸 ∈ B
almost every 𝑥 ∈ 𝑋will land in𝐸 infinitely often. In otherwords, 𝑇𝑛(𝑥) ∈ 𝐸 for
infinitely many 𝑛 ∈ ℕ. And, in fact, we know how often the point returns. As
𝑛 →∞, the ratio of 𝑥 landing in 𝐸 and 𝑥 landing outside of 𝐸 converges to the
measure of the set𝐸. However, we can not deduce any quantitative information
about the density of the orbits. If we were interested in such information, we
could ask the following: given a measurable set 𝐸, how quickly can we shrink
the set 𝐸 (shrink the set for each application of the transformation 𝑇) and still
have almost every 𝑥 ∈ 𝑋 land in the shrinking sequence of sets infinitely often?
More concretely, assume 𝑋 is a metric space, let 𝑦 ∈ 𝑋, and let 𝐵𝜙(𝑛)(𝑦) be a
ball centered at 𝑦 with measure 𝜙(𝑛), where 𝜙 ∶ ℤ≥0 → ℝ>0 is a decreasing
function. How quickly can we decrease the function 𝜙 so that 𝑇𝑛(𝑥) ∈ 𝐵𝜙(𝑛)(𝑦)
infinitely often for almost every 𝑥 ∈ 𝑋?

Figure 4. Hitting the target

Historically, the key to solving such shrinking target problems has been to
use the Borel-Cantelli lemma and its partial converse.
Lemma 2.2 (Borel-Cantelli lemma and partial converse). Let (𝑋,B, 𝜇) be a
probability space and let 𝐸𝑛 be a sequence of measurable sets.

(1) (Borel-Cantelli lemma) If
∑

𝑛 𝜇(𝐸𝑛) < ∞, then the set of points 𝑥 ∈ 𝑋
such that 𝑥 occurs infinitely often has measure 0 (lim sup𝑛→∞ 𝐸𝑛 has
measure 0).

(2) Conversely, if the 𝐸𝑛 are pairwise independent, and
∑

𝑛 𝜇(𝐸𝑛) = ∞,
then the set 𝑥 ∈ 𝑋 such that 𝑥 occurs infinitely often has full measure
(lim sup𝑛→∞ 𝐸𝑛 has full measure).

To see how the lemma helps us solve a shrinking target problem, consider
the following. If 𝑇𝑛(𝑥) lands in the target 𝐵𝜙(𝑛)(𝑦), then 𝑇−𝑛(𝐵𝜙(𝑛)(𝑦)) must
contain 𝑥. See Figure 5.
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Figure 5. Will hit the target (Application of 𝑇−1 to target)

Now consider the following sum, assuming 𝑇 is measure-preserving:

∞∑

𝑛=0
𝜇(𝑇−𝑛(𝐵𝜙(𝑛)(𝑦))) =

∞∑

𝑛=0
𝜇(𝐵𝜙(𝑛)(𝑦)).

The first part of Lemma 2.2 tells us that if this sum converges, then the set of
𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝑇−𝑛(𝐵𝜙(𝑛)(𝑦)) infinitely often has measure zero. In other
words, for almost every 𝑥 ∈ 𝑋, there are at most finitely many 𝑛 ∈ ℕ such that
𝑇𝑛(𝑥) ∈ 𝐵𝜙(𝑛)(𝑦).
Similarly, if the sum above diverges, and we have that the sets 𝐵𝜙(𝑛)(𝑦) are

pairwise independent, then we can conclude that the set of points 𝑥 ∈ 𝑋 such
that 𝑥 ∈ 𝑇−𝑛(𝐵𝜙(𝑛)(𝑦)) infinitely often has full measure. In other words, for
almost every 𝑥 ∈ 𝑋, 𝑇𝑛(𝑥) ∈ 𝐵𝜙(𝑛)(𝑦) for infinitely many 𝑛 ∈ ℕ.
By observing convergence or divergence of this sum, we can determine how

fast 𝜙(𝑛) can decrease, or rather, how fast we can shrink the target. But, there
is a catch. We often cannot say much regarding pairwise independence of the
sets. In fact, this property is often absent, which is what makes a shrinking
problem both interesting and challenging. We must look for a way to replace
this hypothesis.

2.2. A brief history. In 1966, Philipp used the Borel-Cantelli lemma in order
to prove certain Diophantine estimates. He did this by formulating a quantita-
tive version of the Borel-Cantelli lemma and used it to show that not only does
the 2𝑥-map on the circle exhibit a shrinking target property, but so does the
continued fraction map and the 𝜃-adic expansion map [Ph67].

Theorem 2.3 (Quantitative Borel-Cantelli lemma). Let 𝐸𝑛 be a sequence of
measurable sets in an arbitrary probability space (𝑋, 𝜇). Denote 𝐴(𝑁, 𝑥) the
number of integers 𝑛 ≤ 𝑁 such that 𝑥 ∈ 𝐸𝑛. Define

𝜙(𝑁) =
∑

𝑛≤𝑁
𝜇(𝐸𝑛)

Suppose that there exists a convergent series
∑𝐶𝑘 with 𝐶𝑘 ≥ 0 such that for all

integers 𝑛 > 𝑚 we have
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𝜇(𝐸𝑛 ∩ 𝐸𝑚) ≤ 𝜇(𝐸𝑛)𝜇(𝐸𝑚) + 𝜇(𝐸𝑛)𝐶𝑛−𝑚.

Then

𝐴(𝑁, 𝑥) = 𝜙(𝑁) + 𝑂(𝜙
1
2 (𝑁) log

3
2
+𝜖(𝜙(𝑁)))

for any 𝜖 > 0, for almost every 𝑥 ∈ 𝑋.

Notice how this quantitative version gives an error estimate so that we can
understand just how “far" from pairwise independence the sequence of mea-
surable sets is allowed to be.
In 1982, Sullivan used a similar idea to prove a logarithm law that describes

the cusp excursions of generic geodesics on noncompact, finite volume hyper-
bolic spaces [S82]. Sullivan constructed a quantitative Borel-Cantelli lemma
by replacing the pairwise independence condition with a geometric condition
imposed on shrinking sets in the cusps. In 1995, Hill and Velani coined the
term "shrinking target" in their fundamental work on the subject [HV95]. Their
work begins with an elegant description of the set-up (whichwe have expanded
to include other formulations of shrinking target questions above), then they
study theHausdorff dimensions of the sets of points that hit a target (a Julia set)
infinitely often for certain expanding rational maps on the Riemann sphere.
Hill and Velani have also studied an analogous shrinking target problem cor-
responding to ℤ-actions of affine linear (not necessarily measure preserving)
maps on tori [HV95].
Kleinbock and Margulis [KM99] used a Borel-Cantelli argument to prove a

far-reaching result that generalizes Sullivan’s logarithm law to noncompact, fi-
nite volume locally symmetric spaces. They replace the pairwise independence
condition with exponential decay of correlations of smooth functions on the
space. Athreya and Margulis proved that unipotent flows satisfy an analogous
logarithm law, using probabilistic methods, techniques from the geometry of
numbers, and the exponential decay of correlations of smooth functions on the
space [AM09], [AM17].
Following the literature on shrinking targets, we give the following defini-

tion.

Definition 2.4 (Borel-Cantelli [A09], [F06]). Suppose 𝐺 is a group acting by
measure-preserving transformations on a probability space (𝑋,B, 𝜇) and Γ is a
subgroup. We say that a sequence of measurable sets {𝐸𝑔}𝑔∈Γ is Borel-Cantelli,
(BC), if

∑
𝑔∈Γ 𝜇(𝐸𝑔) = ∞ and

𝜇({𝑥 ∈ 𝑋 ∶ 𝑔𝑥 ∈ 𝐸𝑔 infinitely often}) = 1.

Theorem 3.12 and Theorem 3.14 in Section 3 identify conditions for our tar-
get sets to be BC.
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For the interested reader, Athreya has provided an expository article on the
relationship between shrinking targets, logarithm laws, and Diophantine esti-
mates. The article also speaks to how shrinking target properties can manifest
in the various types of dynamical systems [A09].

3. Application to square-tiled surfaces
The goal of this section is to prove Theorem 1.1. We begin by reviewing

known properties of the Veech group of square-tiled surfaces, and then intro-
duce a representation of the Veech group of the torus. Themain contribution is
in Section 3.3: we can use a geometric (covering) argument to yield spectral es-
timates for the representation of the Veech group of a square-tiled surface that
can be used to run a Borel-Cantelli argument. Further, we will show that the
results extend to parallelogram-tiled surfaces.

3.1. Properties of the Veech group. Let (𝑋,𝜔) be a lattice surface and let
𝑆𝐿(𝑋,𝜔) be its Veech group. 𝑆𝐿(𝑋,𝜔) is a non-cocompact lattice subgroup of
𝑆𝐿2(ℝ), which implies the following: the group contains a hyperbolic element,
hence the action of the Veech group on (𝑋,𝜔) is ergodic. For the interested
reader, proofs of these statements can be found or constructed from the follow-
ing sources: [HS04], [K92].
We will use the following fact, one direction of which was originally proven

by Veech [V89]. The equivalence was proven by Gutkin and Judge in [GJ96]
and [GJ00].
Recall that we say two subgroups Γ1 and Γ2 of 𝑆𝐿2(ℝ) are commensurate if

Γ1 ∩Γ2 has finite index in both Γ1 and Γ2. We say that two subgroups Γ1 and Γ2
of 𝑆𝐿2(ℝ) are commensurable if Γ1 is commensurate to a conjugate of Γ2.

Theorem 3.1. (𝑋,𝜔) is a square-tiled surface if and only if 𝑆𝐿(𝑋,𝜔) is com-
mensurate with 𝑆𝐿2(ℤ). Similarly, (𝑋,𝜔) is a parallelogram-tiled surface if and
only if 𝑆𝐿(𝑋,𝜔) is commensurable with 𝑆𝐿2(ℤ).

Wewill only need one direction of this statement (the one observed byVeech):
a square-tiled surface has a Veech group that is commensurate with 𝑆𝐿2(ℤ).

3.2. Spectral estimates of the Koopman representation. In this section,
we provide background for Theorem 3.6 below. Theorem 3.6 gives a description
of the exponential decay of averages for the action of any convex cocompact
subgroup of the Veech group 𝑆𝐿2(ℤ) on a torus. It was proven by Finkelshtein
in [Fi16].
Let (𝑋,B, 𝜇) be a probability space, let U (𝐿2(𝑋, 𝜇)) be the space of unitary

operators, and let Γ be a group acting by measure preserving transformations.
The Koopman representation is the representation 𝜋 ∶ Γ → U (𝐿2(𝑋, 𝜇)) de-
fined by 𝜋(𝑔)𝑓(𝑥) = 𝑓(𝑔−1𝑥). Since constant functions are invariant, we will
consider the projection 𝐿2(𝑋, 𝜇) → 𝐿20(𝑋, 𝜇) where 𝐿

2
0(𝑋, 𝜇) is the closed sub-

space of functions orthogonal to the constant functions. We denote by 𝜋0 the
representation 𝜋0 ∶ Γ→ U (𝐿20(𝑋, 𝜇)).
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Consider the action of a convex cocompact subroup of 𝑆𝐿2(ℤ) on the hyper-
bolic plane (by Möbius transformations) and recall the definition of the critical
exponent, Definition 1.3:

𝛿Γ ∶= lim sup
𝑅→∞

log(#{𝑔 ∈ Γ ∶ 𝑑ℍ(𝑔.𝑥0, 𝑥0) ≤ 𝑅})
𝑅 .

Patterson showed that the critical exponent for a finitely generated Fuchsian
group Γ is the Hausdorff dimension of the limit set,Λ = Γ𝑥∩𝑆1, where 𝑆1 is the
circle at infinity [P76]. Sullivan showed that the critical exponent of any Fuch-
sian group is the Hausdorff dimension of the radial limit set, Λ𝑟 ⊂ Λ, which
consists of all points in the limit set such that there exists a sequence 𝜆𝑛𝑥 → 𝑦
remaining within a bounded distance of a geodesic ray ending at 𝑦 [S79]. Con-
vex cocompact Fuchsian groups are precisely those groups whose limit set is
the radial limit set. Sullivan studied the radial limit set using the “density at
infinity" (the Patterson-Sullivan measure class) and used this to equate the log-
arithmic growth rate of the number of orbit points in a ball of radius 𝑅 of any
convex cocompact Fuchsian group acting on ℍ to the Hausdorff dimension of
the radial limit set. The Patterson-Sullivan measure class is a measure class
on the boundary of hyperbolic space. The measures themselves are not invari-
ant under the action of the convex cocompact subgroup. Rather, the measure
class is invariant. For background on the Patterson-Sullivan measure class and
quasiconformal measures, see the survey [Q].
In [C93], Coornaert generalized the work of Sullivan to the action of a dis-

crete group of isometries on a hyperbolic geodesicmetric space by extending the
notion of quasiconformal measures to this setting. For background on Gromov
hyperbolic spaces, the reader is encouraged to visit [BH99]. Let Γ be a convex
cocompact subgroup of 𝑆𝐿2(ℤ). If we pick a basepoint 𝑧0 ∈ ℍ, we can define
𝑑Γ(𝑔1, 𝑔2) = 𝑑ℍ(𝑔1𝑧0, 𝑔2𝑧0), and (Γ, 𝑑Γ) is an example of a Gromov hyperbolic
space. However, (Γ, 𝑑Γ) is not a geodesicmetric space. This poses a problem in
applying Coornaert’s extension of Patterson-Sullivan theory to the action of Γ
on (Γ, 𝑑Γ), or to the induced action on the Gromov boundary of the group.
Blachère, Haïssinsky, and Mathieu solve this issue by proposing the follow-

ing coarse characterization of hyperbolicity in [BHM11]. In short, they define
a quasiruled hyperbolic metric space by equipping a the space with a visual
quasiruling structure. With the assumption additional assumption that the
metric space is proper, they generalize the Patterson-Sullivan measure class to
the non-geodesic setting. In what follows, by quasiconformal measures, we
mean a measure in this measure class on the visual boundary (defined below).
See Section §2 in [BHM11] for details. An example of a hyperbolic group with a
visual quasiruling structure is a convex cocompactΓ ⊂ Isom(ℍ)with themetric
𝑑Γ.
In the remainder of this section, we will specialize to (Γ, 𝑑Γ), introduce the

visual boundary 𝜕Γ of Γ, and then state the lemma of the shadow according
to Blachère, Haïssinsky, and Mathieu. As a consequence of the lemma of the
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shadow, we will define metric balls in (Γ, 𝑑Γ) that satisfy certain asymptotics as
the radius of the ball increases. Moreover, we will observe that there is a bound
on the number of shadows that can cover any element of the boundary provided
we pick our shadows carefully. Lastly, we will state the theorem Finkelshtein
proved. We encourage the interested reader to consult [BHM11] and [Fi16] for
details.
Let (Γ, 𝑑Γ) be as above.

Definition 3.2 (Gromov product). Let 𝑔0, 𝑔, ℎ ∈ Γ. The Gromov product is

(𝑔, ℎ)𝑔0 =
1
2 (𝑑Γ(𝑔, 𝑔0) + 𝑑Γ(ℎ, 𝑔0) − 𝑑Γ(𝑔, ℎ)) .

We say that a sequence (𝑔𝑖)∞𝑖=1 ⊂ Γ is a Gromov sequence if
(
𝑔𝑖, 𝑔𝑗

)
𝑔0
→∞ as

min 𝑖, 𝑗 →∞. We say that twoGromov sequences (𝑔𝑛) and (ℎ𝑛) are equivalent if
(𝑔𝑖, ℎ𝑖)𝑔0 →∞ as 𝑖 →∞. We denote an equivalence class of Gromov sequences
by [𝑔𝑖]. The visual boundary 𝜕Γ of (Γ, 𝑑Γ, 𝑔0) is the set of equivalence classes of
Gromov sequences:

𝜕Γ = {(𝑔𝑖)∞𝑖=1 ∶ 𝑔𝑖 ∈ Γ and lim
𝑖,𝑗
(𝑔𝑖, 𝑔𝑗)𝑔0 = ∞}

/
∼ .

Moreover, as introduced in [S79] and extended in [C93], we have a notion of
shadows. Note that some authors define shadows inclusive of elements in Γ.
The shadows we need only include elements in the visual boundary 𝜕Γ. Given
an element 𝑔 ∈ Γ and a number 𝑅 > 0, the shadow 𝑆𝑔0(𝑔, 𝑅) is

𝑆𝑔0(𝑔, 𝑅) ∶= {[𝑔𝑖] ∈ 𝜕Γ ∶ lim inf
𝑗→∞

(𝑔, 𝑔𝑖)𝑔0 > 𝑑Γ(𝑔0, 𝑔) − 𝑅} .

Sullivan made a fundamental observation about the measure of the shad-
ows, see §2 in [S79], now called the lemma of the shadow. Coornaert gener-
alized the lemma of the shadow to the action of a discrete group of isometries
acting on a hyperbolic geodesicmetric space [C93], and subsequently Blachère,
Haïssinsky, and Mathieu generalized this lemma to the setting we are consid-
ering [BHM11].

Lemma 3.3 (Lemma of the shadow [BHM11]). Let 𝜌 be a quasiconformalmea-
sure based at 𝑔0 with respect to the metric 𝑑Γ on Γ. There exists 𝑅0 ≥ 0 such
that if 𝑅 > 𝑅0, for any 𝑔 ∈ Γ

𝜌(𝑆𝑔0(𝑔, 𝑅)) = 𝑒−𝛿Γ𝑑Γ(𝑔,𝑔0)+𝑂(1).

A key consequence of the lemma of the shadow is that we can count orbits
in an expanding ball. We record Coornaert’s observation about the asymptotics
of such a group here.

Lemma 3.4. [C93] Let Γ ⊂ Isom(ℍ) be convex cocompact and fix a basepoint
𝑧0 ∈ ℍ. Let 𝛿Γ denote the critical exponent of Γ. Define 𝐵𝑛 ⊂ Γ to be the set
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of elements such that 𝑑ℍ(𝑔𝑧0, 𝑧0) ≤ 𝑛, where 𝑔𝑧0 denotes the action by Möbius
transformation. Then, for Γwith 𝛿Γ > 0, we have the following asymptotics for
the number of elements in 𝐵𝑛:

|𝐵𝑛| = 𝑒𝛿Γ𝑛+𝑂(1).
Consequently, if we let 𝑆𝑛,𝑘 = 𝐵𝑛 ⧵ 𝐵𝑛−𝑘, then for fixed 𝑘, we have:

|𝑆𝑛,𝑘| = 𝑒𝛿Γ𝑛+𝑂(1).
Furthermore, Coornaert proved the following lemma in the case of a discrete

group of convex cocompact isometries acting on a geodesic metric space. The
lemma was originally observed by Sullivan in the setting of convex cocompact
groups.
Lemma 3.5. [C93] Let Γ be a discrete group of isometries acting on a geodesic
hyperbolic metric space (𝑋, 𝑑). There exists a 𝑅0 > 0 and 𝑘 ≥ 0 such that for
any 𝑅 > 𝑅0 and 𝑛 ∈ 𝑁, ⋃

𝑔∈𝑆𝑛,𝑘
𝑆𝑒(𝑔, 𝑅) ⊃ 𝜕𝑋.

Moreover, there exists 𝐿 depending 𝑅 and 𝑘 such that for any 𝑛 and any 𝜉 ∈ 𝜕𝑋,
#{𝑔 ∈ 𝑆𝑛,𝑘 ∶ 𝜉 ∈ 𝑆𝑒(𝑔, 𝑅)} ≤ 𝐿.

Finkelshtein recognized that Lemma 3.5 holds for the case when the hyper-
bolic metric space is (Γ, 𝑑Γ). Using the work of Blachère, Haïssinsky, andMath-
ieu (specifically, quasigeodesic rays), proofs of the above fact can be translated
into the case where a non-elementary group Γ acts properly discontinuously
and cocompactly by isometries on a proper quasiruled hyperbolic space (such
as Γ acting on (Γ, 𝑑Γ)).
Moreover, Finkelshtein observed that one can fix the 𝑘 in 𝑆𝑛,𝑘, for all 𝑛, such

that we have both a bound 𝐿 on the number of overlaps of shadows for all el-
ements in 𝑆𝑛,𝑘 and the asymptotics in Lemma 3.4 hold as 𝑛 → ∞. He defines
the shell 𝑆𝑛 ⊂ Γ as the set 𝑆𝑛,𝑘 such that 𝑘 has this property. Further, he picks 𝑅
sufficiently large so that all of the shadows he uses in his argument satisfy both
the lemma of the shadow, Lemma 3.3, and Lemma 3.5. With this definition for
the shells and by fixing the 𝑅 parameter in the shadows, Finkelshtein proved
the following theorem by studying the induced action of Γ on its boundary. The
well-behaved harmonic analysis on the torus enabled Finkelshtein to pass from
the boundary representation back to the Koopman representation on the torus:
Theorem 3.6. [Fi16] Let 𝕋2 be a square torus, let Γ ⊂ 𝑆𝐿2(ℤ) be a convex
cocompact subgroup with critical exponent 𝛿Γ, and let 𝜋0 denote the Koopman
representation on 𝐿20(𝕋

2). Let 𝜇𝑛 be a uniform probability measure on 𝑆𝑛 ⊂ Γ.
Then

||𝜋0(𝜇𝑛)|| ≤ 𝑒−
1
2
𝛿Γ𝑛+2 log𝑛+𝑂(1),

where 𝜋0(𝜇𝑛) =
∑

𝑔∈supp𝜇𝑛
𝜇𝑛(𝑔)𝜋0(𝑔).



668 JOSH SOUTHERLAND

This result was used to solve a similar shrinking target problem on a torus. In
our set-up, the spectral estimates of convex cocompact subgroups of 𝑆𝐿2(ℤ) on
the torus play the role of the pairwise independence assumption in the Borel-
Cantelli lemma.
We require one more property of the shells for the Borel-Cantelli argument

in subsection 3.4:

Lemma 3.7. With 𝑆𝑛 as above, and letting ||⋅|| denote the operator norm of 𝑔
as a linear transformation on ℝ2, we have

max{||𝑔|| ∶ 𝑔 ∈ 𝑆2𝑛} ≤ 𝑒𝑛.

Proof. Since 𝑔 is an isometry ofℍwhich lives in a convex cocompact subgroup,
it must be either elliptic or hyperbolic. If elliptic, the operator norm is 1 and we
are finished. If hyperbolic, there is a 𝛿 < 𝑒2𝑛 such that the translation distance

of 𝑔 is 𝛿. Thus 𝑔 is conjugate in 𝑆𝐿2(ℝ) to a matrix of the form
⎡
⎢
⎣

𝑒
𝛿
2 0
0 𝑒−

𝛿
2

⎤
⎥
⎦
.

It follows that the eigenvalues are 𝑒
𝛿
2 and 𝑒−

𝛿
2 and we conclude that ||𝑔|| is

𝑒
𝛿
2 < 𝑒𝑛. Since the largest eigenvalue of a hyperbolic matrix is the operator
norm, we are done. □

3.3. A covering argument.

Lemma 3.8. Let (𝑋,𝜔) be a square-tiled surface and let 𝑆𝐿(𝑋,𝜔) be its Veech
group. Then, there exist a finite index subgroup Γ′ ⊂ 𝑆𝐿(𝑋,𝜔) and a branched
cover 𝑞 ∶ 𝑋 → 𝕋2 such that the cover is equivariant with respect to the action
of any subgroup Γ′.

This follows from Theorem 3.1, and the work in [GJ00]. A similar state-
ment holds for parallelogram-tiled surfaces, but we need to compose a cover of
a (non-square) torus with an affine map to a square torus.
Although irrelevant to our current goals, it is worth noting that we knowpre-

cisely which square-tiled surfaces (and parallelogram-tiled surfaces) for which
the full Veech group descends to an action on the square torus (or to an ac-
tion conjugate to an action on the square torus). Recall that the saddle connec-
tions of a translation surface (𝑌, 𝜈) are straight line trajectories that start at a
singular point and end at a singular point, passing through no singular points
in-between. The holonomy vectors are the values we get when we integrate the
saddle connections over the holomorphic one-form 𝜈. The period lattice is the
the lattice generated by the holonomy vectors.
For a square-tiled surface (𝑋,𝜔) (tiled by unit squares), the holonomy vectors

must be a subset ofℤ⊕𝑖ℤ. We say a square-tiled surface is reduced if the period
lattice isℤ⊕𝑖ℤ. Since the action of theVeech group preserves the period lattice,
we see that the Veech groupmust be a subgroup of 𝑆𝐿2(ℤ), and further, that for
any 𝑔 ∈ 𝑆𝐿(𝑋,𝜔), the following diagram commutes,
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𝑋 𝑋

𝕋2 𝕋2

𝑔

𝑞 𝑞

𝑔

where 𝑞(𝑥) = ∫ 𝑥𝑝 𝜔 mod ℤ ⊕ 𝑖ℤ. (Note that this map respects the choice of
north on the square-tiled surface.)
If the period lattice is not ℤ⊕ 𝑖ℤ, then there will be a parabolic element in

the Veech group with non-integral entries. Such an element cannot descend
with respect to the cover.
There is a similar picture for parallelogram-tiled surfaces, where the tiling

parallelogramhas sides 𝑎, 𝑏 ∈ ℂ and unit area. Let𝑃 denote the translation sur-
face given by identifying opposite sides of the parallelogram. Then, we say that
(𝑋,𝜔) is a reduced parallelogram-tiled surface if the period lattice is 𝑎ℤ⊕ 𝑏ℤ.
For a reduced parallelogram-tiled surface, the following diagram commutes,

𝑋 𝑋

𝑃 𝑃

𝕋2 𝕋2

𝑔

𝑞 𝑞
𝑔

ℎ ℎ

where 𝑞(𝑥) = ∫ 𝑥𝑝 𝜔 mod ℤ[𝑎]⊕ℤ[𝑏], ℎ ∈ 𝑆𝐿2(ℝ), and as above, the choice of
north on the translation surfaces is respected with the exception of the action
of ℎ.
We now turn our attention to functions on the space. Let (𝑋,𝜔) be a square-

tiled surface with probability measure 𝜈 and let 𝑞 ∶ 𝑋 → 𝕋2 be the branched
covering map. Then

𝐿2(𝑋, 𝜈) ≅ 𝐻 ⊕𝐻⟂

where𝐻 is the pullback of 𝐿2(𝕋2).

Lemma 3.9. Let 𝑞∗ ∶ 𝐿2(𝕋2) → 𝐻 denote the pullback. There exists a finite
index subgroup Γ′ ⊂ 𝑆𝐿(𝑋,𝜔) such that for every 𝑔 ∈ Γ′, the following diagram
commutes,
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𝐻 𝐻

L2(𝕋2) L2(𝕋2)

𝜋𝐻(𝑔)

𝑞∗

𝜋(𝑔)
𝑞∗

where 𝜋𝐻 ∶ Γ′ → U (𝐻) is the Koopman representation of 𝑆𝐿(𝑋,𝜔) on𝐻, and
𝜋 ∶ Γ′ → U (𝐿2(𝕋2)) is the Koopman representation of Γ′ on 𝐿2(𝕋2).
Proof. This follows from the equivariance of the covering map, Lemma 3.8. In
fact, the group representation 𝜋𝐻 is well-defined because of Lemma 3.8. □

Corollary 3.10. With hypothesis as in Lemma 3.9, for every 𝑔 ∈ Γ′,

||𝜋𝐻(𝑔)|| = ||𝜋(𝑔)||.
As a consequence, and by applying Theorem 3.6, we have the following.

Corollary 3.11. Let 𝐻0 ⊂ 𝐻 such that 𝐻0 = 𝑞∗(𝐿20(𝕋
2)), the subspace of 𝐻

orthogonal to the constant functions. Let 𝜋𝐻0 ∶ Γ′ → U (𝐻0), which is well-
defined since the space of constant functions is invariant under the representa-
tion 𝜋𝐻 defined above. Let 𝜇𝑛 be the measure from Theorem 3.6. Then

||𝜋𝐻0(𝜇𝑛)|| = ||𝜋0(𝜇𝑛)|| ≤ 𝑒−
1
2
𝛿Γ𝑛+2 log𝑛+𝑂(1).

The technique above provides a framework for lifting spectral estimates us-
ing a cover, so estimates on “primitive" translation surfaces, those that do not
cover (with finite branching) other translation surfaces, can be lifted to surfaces
covered by the primitive surface.

3.4. A Borel-Cantelli argument. In this section, we show how to use the
spectral estimates to run a Borel-Cantelli argument similar to [Fi16], but with
variations to accommodate a reduction to a finite index subgroup and the tiling
of the surface.
Theorem 3.12. Let (𝑋,𝜔) be a square-tiled (or parallelogram-tiled) surface
with 𝑀 squares in the tiling and let 𝑞 ∶ 𝑋 → 𝕋 be the branched cover over
the torus. Let 𝜇 denote the normalized Lebesgue measure so that 𝜇(𝑋) = 1
and let Γ ⊂ 𝑆𝐿(𝑋,𝜔) be a convex cocompact subgroup with critical exponent
𝛿Γ > 0. Define a sequence of measurable sets Targ𝜙(𝑟) of measure 𝜙(𝑟) where
𝜙 ∶ ℝ>0 → ℝ>0 is a non-increasing function such that if 𝑟1 > 𝑟2, we have
Targ𝜙(𝑟1) ⊂ Targ𝜙(𝑟2). Moreover, we require that there exists an 𝑅 such that
for all 𝑟 > 𝑅, the set Targ𝜙(𝑟) is saturated with respect to the cover, meaning
𝑞−1◦𝑞(Targ𝜙(𝑥)) = Targ𝜙(𝑥). Then for almost every 𝑥 ∈ 𝑋, the set

{
𝑔 ∈ Γ ∶ 𝑔𝑥 ∈ Targ𝜙(||𝑔||)

}

is
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(1) finite, if
∑∞

𝑛=1 𝑛
2𝛿Γ−1𝜙(𝑛) <∞.

(2) infinite, if
∑∞

𝑛=1 𝑛
−(2𝛿Γ+1) log4(𝑛)𝜙(𝑛)−1 <∞.

Remark 3.13. There is a gap between the finite and infinite case. If 𝜙(𝑟) =
𝐶𝑟−2𝛿Γ log1+𝜀(𝑟) for all large 𝑟, where 𝐶 is any constant and 𝜀 > 0, there will
only be finitely many solutions. If 𝜙(𝑟) = 𝐶𝑟−2𝛿Γ log5+𝜀(𝑟), for all large 𝑟, where
again 𝐶 is any constant and 𝜀 > 0, there will be infinitely many solutions. It
may be possible to strengthen this theorem.

Proof. Fix a basepoint 𝑥0, and let 𝑆𝑛 be as in Theorem 3.6 where 𝑆𝑛 = 𝑆𝑛,𝑘 for
some 𝑘 > 0. In our proof, we will not impose any constraints on the value of 𝑘,
but we will eventually use the conclusion of Theorem 3.6.
First, we show that the sum converges under the first condition, which by

Borel-Cantelli (Lemma 2.2) implies that the set is finite. Let 𝐵𝑛 = {𝑔 ∈ Γ ∶
𝑑ℍ(𝑔𝑧0, 𝑧0) ≤ 𝑛} (as in Lemma 3.4). Observe that

(1) 𝐵𝑘 ∪
(⋃∞

𝑛=𝑘+1 𝐵𝑛 ⧵ 𝐵𝑛−1
)
= Γ,

(2) (𝐵𝑛 ⧵ 𝐵𝑛−1)
⋂(𝐵𝑚 ⧵ 𝐵𝑚−1) = ∅ if and only if 𝑛 ≠ 𝑚 and 𝑛,𝑚 > 0, and

(3) 𝐵𝑘 ∩ 𝐵𝑛 ⧵ 𝐵𝑛−1 = ∅ for all 𝑛 > 𝑘.
It follows that

∑

𝑔∈Γ
𝜇(𝑔−1Targ𝜙(||𝑔||)) =

∞∑

𝑛=𝑘+1

∑

𝑔∈𝐵𝑛⧵𝐵𝑛−1
𝜙(||𝑔||) +

∑

𝑔∈𝐵𝑘
𝜙(||𝑔||),

where the second term on the right-hand side is a sum over finitely many ele-
ments. We focus on the tail of the series. Let𝑁 be sufficiently large and use the
precise asymptotics of the balls, Lemma 3.4. Moreover, observe that Lemma 3.7
implies that for any 𝑔 ∈ 𝐵𝑛, ||𝑔|| ≤ 𝑒

𝑛
2 . These observations yield

∞∑

𝑛=𝑁

∑

𝑔∈𝐵𝑛⧵𝐵𝑛−1
𝜙(||𝑔||) ≤ 𝐶1

∞∑

𝑛=𝑁
𝑒𝛿Γ𝑛𝜙(||𝑔||)

= 𝐶1
∞∑

𝑛=𝑁
𝑒𝛿Γ𝑛𝜙(𝑒

𝑛−1
2 )

= 𝐶1
∞∑

𝑛=𝑁+1
𝑒𝛿Γ𝑛𝜙(𝑒

𝑛
2 ).

for some constant 𝐶1 > 0. We apply a variation of the Cauchy condensation
test to establish the criteria for convergence. For a non-increasing function 𝑓 ∶
ℕ→ ℝ≥0,

∑
𝑛 𝑓(𝑛) converges if and only if

∑
𝑛 𝑒

𝑛𝑓(𝑒𝑛) converges. Observe that
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∞∑

𝑛=𝑁+1
𝑒𝛿Γ𝑛𝜙(𝑒

𝑛
2 ) =

∞∑

𝑛=𝑁+1
𝑒
𝑛
2 𝑒

𝑛
2
(2𝛿Γ−1)𝜙(𝑒

𝑛
2 ).

By splitting the sumover the odd and even integers greater than𝑁+1, bounding
the sum by twice the sum over the even integers, and re-indexing, we can use
Cauchy condensation to deduce that the series above converges if and only if∑∞

𝑛=1 𝑛
2𝛿Γ−1𝜙(𝑛) converges. By Borel-Cantelli, we can conclude that for almost

every 𝑥 ∈ 𝑋 the set {
𝑔 ∈ Γ ∶ 𝑔𝑥 ∈ Targ𝜙(||𝑔||)

}

is finite.
For the more difficult part of the proof, we show the set

{
𝑔 ∈ Γ ∶ 𝑔𝑥 ∈ Targ𝜙(||𝑔||)

}

is infinite when 𝜙 satisfies the condition in (2). For this part of the proof we will
use the assumption that there exists an 𝑅 such that for every 𝑟 > 𝑅,

𝑞−1◦𝑞(Targ𝜙(r)) = Targ𝜙(r)
(the target is a saturated set with respect to the cover).
In this part of the proof, a key step requires applying Theorem 3.6, so we will

use the shells 𝑆𝑛. For 𝑛 > 𝑘, let

𝐸𝑛 = 𝑋 ⧵
⋃

𝑔∈𝑆𝑛
𝑔−1Targ𝜙(||𝑔||).

𝐸𝑛 is the set of points 𝑥 such that 𝑔𝑥 is not in its target Targ𝜙(||𝑔||) for all 𝑔 ∈ 𝑆𝑛.
Let

𝐸 = lim sup
𝑛→∞

𝐸𝑛.

𝐸 consists of the points for which there are infinitely many 𝑛 such that for all
𝑔 ∈ 𝑆𝑛, 𝑔𝑥 is not in the target. The complement of this set is the set of 𝑥 ∈ 𝑋
such that there are only finitely many 𝑛 such that 𝑔𝑥 misses the target for all
𝑔 ∈ 𝑆𝑛. This is a subset of the points which hit the target infinitely often. If we
show that 𝜇(𝐸) = 0, then we will have shown that the set of 𝑥 ∈ 𝑋 which land
in the target infinitely often has full measure.
We begin by reducing to a finite index subgroup Γ′ ⊂ Γ so that we can apply

the results of Theorem 3.6. For finite index subgroups of convex cocompact
subgroups we have that 𝛿Γ′ = 𝛿Γ. Moreover, the finite index subgroup is convex
cocompact (being finitely generated without parabolic elements).
Let Targ𝑛 denote the set Targ𝜙(𝑒

𝑛
2 )
and let 𝜒Targn be the characteristic func-

tion of that set. Let 𝜒𝐸𝑛 be the characteristic of the set 𝐸𝑛. Let𝑀 be the number
of squares tiling (𝑋,𝜔) and recall that 𝑞 ∶ 𝑋 → 𝕋2 is the covering map. We will
define two bounded linear operators. First, define 𝐴 ∶ 𝐿2(𝑋)→ 𝐻 by
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𝐴(𝑓) = 𝑓
where 𝑓(𝑥) = 1

𝑀
∑

𝑦∈𝑞−1◦𝑞(𝑥) 𝑓(𝑦). Note that ∫𝑋 𝐴(𝑓)𝑑𝜇 = ∫𝑋 𝑓 𝑑𝜇.
Now define the orthogonal projection 𝑃 ∶ 𝐿2(𝑋)→ 𝐻0 by

𝑃(𝑓) = 𝐴(𝑓) − ∫
𝑋
𝑓 𝑑𝜇.

𝑃 is a self-adjoint, idempotent operator. First, ⟨𝑃𝑓, 𝑔⟩ = ⟨𝑓, 𝑃𝑔⟩:

⟨𝑃𝑓, 𝑔⟩ − ⟨𝑓, 𝑃𝑔⟩ = ∫
𝑋
(𝐴(𝑓) − ∫

𝑋
𝑓 𝑑𝜇) 𝑔 𝑑𝜇 − ∫

𝑋
(𝐴(𝑔) − ∫

𝑋
𝑔 𝑑𝜇)𝑓 𝑑𝜇

= ∫
𝑋
𝐴(𝑓)𝑔 𝑑𝜇 − ∫

𝑋
𝑓 𝑑𝜇 ∫

𝑋
𝑔 𝑑𝜇

− ∫
𝑋
𝐴(𝑔)𝑓 𝑑𝜇 + ∫

𝑋
𝑓 𝑑𝜇 ∫

𝑋
𝑔 𝑑𝜇

= ∫
𝑋
𝐴(𝑓)𝑔 𝑑𝜇 − ∫

𝑋
𝐴(𝑔)𝑓 𝑑𝜇

= 0,
where the last line follows from considering the integral over each square.
Second, 𝑃2(𝑓) = 𝑃(𝑓):

𝑃2(𝑓) = 𝑃(𝐴(𝑓) − ∫
𝑋
𝑓 𝑑𝜇)

= 𝑃(𝐴(𝑓) − ∫
𝑋
𝐴(𝑓)𝑑𝜇)

= 𝑃(𝐴(𝑓)) − 𝑃(∫
𝑋
𝐴(𝑓)𝑑𝜇)

= 𝐴(𝐴(𝑓)) − ∫
𝑋
𝐴(𝑓)𝑑𝜇 − 0

= 𝐴(𝑓) − ∫
𝑋
𝑓 𝑑𝜇

= 𝑃(𝑓).
We can project the characteristic functions 𝜒Targ𝑛 and 𝜒𝐸𝑛 to𝐻0:

𝑇𝑛 ∶= 𝑃(𝜒Targ𝑛) = 𝐴(𝜒Targ𝑛) − 𝜇(Targ𝑛)
Bad𝑛 ∶= 𝑃(𝜒𝐸𝑛) = 𝐴(𝜒𝐸𝑛) − 𝜇(𝐸𝑛).

Now observe that
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||𝑇𝑛||22 ≤ (1 − 𝜇(Targ𝑛))𝜇(Targ𝑛) ≤ 𝜇(Targ𝑛)
||Bad𝑛||22 ≤ (1 − 𝜇(𝐸𝑛))𝜇(𝐸𝑛) ≤ 𝜇(𝐸𝑛).

Indeed, consider ||𝑇𝑛||22. Define sets

𝐴𝑖 = {𝑥 ∈ 𝑋 ∶ 𝐴(𝜒Targn)(𝑥) =
𝑖
𝑀 }

for 𝑖 ∈ {0, 1, 2,⋯ ,𝑀}. Observe that 𝑋 = ⨆𝑀
𝑖=0𝐴𝑖, where the 𝐴𝑖 are disjoint,

and
∑𝑀

𝑖=1
𝑖
𝑀
𝜇(𝐴𝑖) = 𝜇(Targ𝑛):

𝜇(Targ𝑛) = ∫
𝑋
𝜒Targ𝑛 𝑑𝜇 = ∫

𝑋
𝐴(𝜒Targ𝑛)𝑑𝜇 = ∫

𝑀∑

𝑖=1

𝑖
𝑀𝜒𝐴𝑖 𝑑𝜇 =

𝑀∑

𝑖=1

𝑖
𝑀𝜇(𝐴𝑖).

Then,

||𝑇𝑛||22 = ∫
𝑋

||||𝐴(𝜒Targn) − 𝜇(Targn)
||||
2 𝑑𝜇

= ∫
𝑋

(
𝐴(𝜒Targ𝑛)

)2
𝑑𝜇 − 2𝜇(Targ𝑛) ∫

𝑋
𝐴(𝜒Targ𝑛)𝑑𝜇 + 𝜇(Targ𝑛)2

= ∫
𝑋

(
𝐴(𝜒Targ𝑛)

)2
𝑑𝜇 − 𝜇(Targ𝑛)2

=
𝑀∑

𝑖=1
∫
𝐴𝑖

( 𝑖
𝑀 )

2
𝑑𝜇 − 𝜇(Targ𝑛)2

=
𝑀∑

𝑖=1
( 𝑖
𝑀 )

2
𝜇(𝐴𝑖) − 𝜇(Targ𝑛)2

≤
𝑀∑

𝑖=1
( 𝑖
𝑀 )𝜇(𝐴𝑖) − 𝜇(Targ𝑛)2

= 𝜇(Targ𝑛) − 𝜇(Targ𝑛)2

= (1 − 𝜇(Targ𝑛))𝜇(Targ𝑛)

The computation is similar for ||Bad𝑛||22. Moreover,
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⟨𝑇𝑛,Bad𝑛⟩ = ∫
𝑋

(
𝐴(𝜒Targn) − 𝜇(Targn)

) (
𝐴(𝜒𝐸𝑛) − 𝜇(𝐸𝑛)

)
𝑑𝜇

= ∫
𝑋
𝐴(𝜒Targn)𝐴(𝜒𝐸𝑛)𝑑𝜇 − 𝜇(𝐸𝑛) ∫

𝑋
𝐴(𝜒Targn)𝑑𝜇

− 𝜇(Targ𝑛) ∫
𝑋
𝐴(𝜒𝐸𝑛)𝑑𝜇 + 𝜇(Targ𝑛)𝜇(𝐸𝑛)

= ∫
𝑋
𝐴(𝜒Targ𝑛)𝐴(𝜒𝐸𝑛)𝑑𝜇 − 𝜇(Targ𝑛)𝜇(𝐸𝑛).

We will show that provided 𝑛 > 2 log𝑅, where 𝑅 comes from our Theorem
statement, and that 𝑔 ∈ 𝑆𝑛, we have

||||⟨𝜋𝐻0(𝑔
−1)𝑇𝑛,Bad𝑛⟩

|||| = 𝜇(Targ𝑛)𝜇(𝐸𝑛)
Fix any 𝑔 ∈ 𝑆𝑛 ⊂ Γ′ and observe that 𝑔−1 ∈ 𝑆𝑛. We have
⟨𝜋𝐻0(𝑔

−1)𝑇𝑛,Bad𝑛⟩

= ∫
𝑋
𝐴(𝜒Targ𝑛 (𝑔𝑥))𝐴(𝜒𝐸𝑛 (𝑥))𝑑𝜇(𝑥) − 𝜇(Targ𝑛)𝜇(𝐸𝑛)

= ∫
𝑋
𝐴(𝜒𝑔−1Targ𝑛 (𝑥))𝐴(𝜒𝐸𝑛 (𝑥))𝑑𝜇(𝑥) − 𝜇(Targ𝑛)𝜇(𝐸𝑛)

= ∫
𝑋

⎛
⎜
⎝

1
𝑀

∑

𝑦∈𝑞−1◦𝑞(𝑥)
𝜒𝑔−1Targ𝑛 (𝑦)

⎞
⎟
⎠

⎛
⎜
⎝

1
𝑀

∑

𝑦∈𝑞−1◦𝑞(𝑥)
𝜒𝐸𝑛 (𝑦)

⎞
⎟
⎠
𝑑𝜇(𝑥) − 𝜇(Targ𝑛)𝜇(𝐸𝑛).

The integrand is zero. To be non-zero at 𝑥 ∈ 𝑋, there must exists two points
𝑦1, 𝑦2 ∈ 𝑞−1◦𝑞(𝑥) such that 𝑦1 ∈ 𝑔−1Targ𝑛 and 𝑦2 ∈ 𝐸𝑛. Given our assumption
that the target set is saturated with respect to the cover (we pick 𝑛 > 2 log𝑅),
this is not possible. If Targ𝑛 is a saturated set, then so is 𝑔−1Targ𝑛 (𝑔−1 is a
continuous map that commutes with the cover). If 𝑦1 ∈ 𝑔−1Targ𝑛, then every
𝑦 ∈ 𝑞−1◦𝑞(𝑥) is also in 𝑔−1Targ𝑛. This means that 𝑦2 must be in both 𝑔−1Targ𝑛
and 𝐸𝑛. However, if

𝑔(𝑦2) ∈ Targ𝑛
and

ℎ(𝑦2) ∉ Targ𝜙(||ℎ||)
for all ℎ ∈ 𝑆𝑛, we get a contradiction. 𝑔(𝑦2) ∈ Targ𝑛 = Targ

𝜙(𝑒
𝑛
2 )
⊂ Targ𝜙(||g||),

but 𝑔 ∈ 𝑆𝑛. Thus, we can conclude that for 𝑛 > 2 log(𝑅) and 𝑔 ∈ 𝑆𝑛,
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||||⟨𝜋𝐻0(𝑔
−1)𝑇𝑛,Bad𝑛⟩

|||| = 𝜇(Targ𝑛)𝜇(𝐸𝑛).
Moreover, if we let 𝜇𝑛 be a uniform probability distribution on 𝑆𝑛, we can con-
clude

||||⟨𝜋𝐻0(𝜇𝑛)𝑇𝑛,Bad𝑛⟩
|||| = 𝜇(Targ𝑛)𝜇(𝐸𝑛).

Using Cauchy-Schwarz on this inner product as well as the bounds on ||𝑇𝑛||22
and ||Bad𝑛||22, we can relate the operator norm of ||𝜋𝐻0(𝜇𝑛)|| to the measures
𝜇(𝐸𝑛) and 𝜇(Targ𝑛).

||||⟨(𝜋𝐻0(𝜇𝑛))𝑇𝑛,Bad𝑛⟩
|||| ≤

(
||𝜋𝐻0(𝜇𝑛)||

)
𝜇(Targ𝑛)

1
2𝜇(𝐸𝑛)

1
2

By applying the spectral estimate in Corollary 3.11 in combination with the
previous two equations, we can deduce that for some constant 𝐶2 > 0

𝜇(Targ𝑛)𝜇(𝐸𝑛) ≤
(
||𝜋𝐻0(𝜇𝑛)||

)
𝜇(Targ𝑛)

1
2𝜇(𝐸𝑛)

1
2

𝜇(𝐸𝑛) ≤
(
||𝜋𝐻0(𝜇𝑛)||

)2 𝜇(Targ𝑛)−1

≤ 𝐶2𝑛4𝑒−𝛿Γ𝑛𝜙(𝑒
𝑛
2 )−1.

Thus,

∞∑

𝑛>2 log𝑅
𝜇(𝐸𝑛) ≤ 𝐶2

∞∑

𝑛>2 log𝑅
𝑛4𝑒−𝛿Γ𝑛𝜙(𝑒

𝑛
2 )−1

In order for
∑

𝑛 𝜇(𝐸𝑛) to converge, which by the Borel-Cantelli lemma would
imply that 𝜇(𝐸) = 0, we need the following sum to converge:

∞∑

𝑛>2 log𝑅
𝑛4𝑒−2𝛿Γ𝜙(𝑒𝑛)−1.

By using the same variation of the Cauchy condensation test as we used prior,
we deduce that convergence the sum is equivalent to convergence of the fol-
lowing sum.

∞∑

𝑛=1
(log𝑛)4𝑛−(2𝛿Γ+1)𝜙(𝑛)−1

This completes the proof for target sets Targ𝜙(r) that are eventually saturated.
□

If we further assume that the square-tiled surface is a regular square-tiled
surface, then we can conclude that each sheet in a saturated target is hit infin-
itely often. This allows us to remove the assumption of a saturated set. How-
ever, to do this, we need to add the assumption that the target sets become
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sufficiently small in the sense that eventually, the projection of the target is an
evenly covered set.

Theorem3.14. Let (𝑋,𝜔) be a regular square-tiled (or parallelogram-tiled) sur-
face with𝑀 squares in the tiling and let 𝑞 ∶ 𝑋 → 𝕋 be the branched cover over
the torus. Let 𝜇 denote the normalized Lebesgue measure so that 𝜇(𝑋) = 1
and let Γ ⊂ 𝑆𝐿(𝑋,𝜔) be a convex cocompact subgroup with critical exponent
𝛿Γ > 0. Define a sequence of measurable sets Targ𝜙(𝑟) of measure 𝜙(𝑟) where
𝜙 ∶ ℝ>0 → ℝ>0 is a non-increasing function such that if 𝑟1 > 𝑟2, we have
Targ𝜙(𝑟1) ⊂ Targ𝜙(𝑟2). Moreover, we require that there exists an 𝑅 such that for
all 𝑟 > 𝑅, the set 𝑞(Targ𝜙(𝑟)) is evenly covered and that one of the sheets is
Targ𝜙(𝑟). Then for almost every 𝑥 ∈ 𝑋, the set

{
𝑔 ∈ Γ ∶ 𝑔𝑥 ∈ Targ𝜙(||𝑔||)

}

is
(1) finite, if

∑∞
𝑛=1 𝑛

2𝛿Γ−1𝜙(𝑛) <∞.
(2) infinite, if

∑∞
𝑛=1 𝑛

−(2𝛿Γ+1) log4(𝑛)𝜙(𝑛)−1 <∞.

Proof. As in the proof of Theorem 3.12, the finite case follows from a direct ap-
plication of Borel-Cantelli, Lemma 2.2. The infinite case follows fromTheorem
3.12, and the fact that a regular square-tiled surface has a transitive automor-
phism group. First, observe that Theorem 3.12 implies

{
𝑔 ∈ Γ ∶ 𝑔𝑥 ∈ 𝑞−1◦𝑞

(
Targ𝜙(||𝑔||)

)}

is infinite when 𝜙 is as in the theorem. Morever, we can restrict to 𝑔 ∈ Γ such
that ‖𝑔‖ > 𝑅, and the set

{
𝑔 ∈ Γ ∶ ‖𝑔‖ > 𝑅 and 𝑔𝑥 ∈ 𝑞−1◦𝑞

(
Targ𝜙(||𝑔||)

)}

remains infinite. Indeed, the proof of Theorem 3.12 shows that for almost every
𝑥 ∈ 𝑋, there are infinitely many 𝑛 such that there exists a 𝑔 ∈ 𝑆𝑛 such that 𝑔𝑥
hits the target.
By assumption, for any 𝜖 > 0, 𝑞(Targ𝜙(𝑅+𝜀)) is evenly covered. Consider the

sheets of 𝑞(Targ𝜙(𝑅+𝜀)). Corresponding to each sheet is a sequence of measur-
able sets contained in that sheet, where eachmeasurable set is a lift of 𝑞(Targ𝜙(𝑟))
for 𝑟 > 𝑅. Since Targ𝜙(𝑟1) ⊂ Targ𝜙(𝑟2) for 𝑟1 > 𝑟2, the sequences corresponding
to each sheet satisfy the inclusion property. Further, by the pigeonhole princi-
ple, one of the sequences is hit infinitely often. If this sequence is Targ𝜙(𝑟), then
we are done. If not, call this sequence 𝑈𝑟.
The action of the automorphism group on the squares is transitive and

𝑞(Targ𝜙(‖𝑔‖)) is evenly covered, so there exists an automorphism 𝑓 ∶ 𝑋 → 𝑋
such that Targ𝜙(𝑟) is mapped to 𝑈𝑟, for all 𝑟. For almost every 𝑥 ∈ 𝑋, we know
that the set

{
𝑔 ∈ Γ ∶ ‖𝑔‖ > 𝑅 and 𝑓−1(𝑔𝑥) ∈ 𝑓−1(𝑈) = Targ𝜙(||𝑔||)

}
is infinite.
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Wemake two observations. First, recall that the Veech group 𝑆𝐿(𝑋,𝜔) is the
image of the derivative map 𝐷 ∶ Af f (𝑋,𝜔)→ 𝑆𝐿(𝑋,𝜔), where Aff (𝑋,𝜔) is the
group of affine transformations of the surface. Moreover, the kernel of this map
is the set of automorphisms of the translation structure, Aut(𝑋,𝜔), hence the
set of automorphisms is a normal subgroup of the group of affine transforma-
tions. See, for example, [HS04]. We can inject 𝑆𝐿(𝑋,𝜔) into the group of affine
transformation: an element from 𝑆𝐿(𝑋,𝜔) is an affine transformation, but with
no translation component. Since the automorphisms are a normal subgroup, if
we conjugate the automorphism 𝑓−1 by an element 𝑔 ∈ Γ, the result is another
automorphism. Call it ℎ.

𝑋 𝑋

𝑋 𝑋

ℎ

𝑔 𝑔
𝑓−1

This gives us an equivalence of the sets:
{
𝑔 ∈ Γ ∶ ‖𝑔‖ > 𝑅 and 𝑓−1(𝑔𝑥) ∈ Targ𝜙(||𝑔||)

}

=
{
𝑔 ∈ Γ ∶ ‖𝑔‖ > 𝑅 and 𝑔ℎ(𝑥) ∈ Targ𝜙(||𝑔||)

}
.

Second, let �̃� be the fullmeasure set such that
{
𝑔 ∈ Γ ∶ 𝑔(ℎ(𝑥)) ∈ Targ𝜙(||𝑔||)

}

is infinite. Observe that ℎ is not only an automorphism, but an invertible,
measure-preserving transformation. Hence, ℎ(�̃�) is a full measure set. This
second observation completes the proof. □

Theorem 1.1 follows from Theorem 3.14. Setting 𝜙(𝑟) = 𝐶𝜋𝑟−2𝛼 where 𝐶
is a constant correcting for normalization of the measure, we see that Theo-
rem 1.1 holds for convex cocompact subgroups of the Veech group of regular
square-tiled surfaces. To extend the result to all groups we employ the follow-
ing lemma.

Lemma 3.15. [Fi16] Let Γ ⊂ 𝑆𝐿2(ℤ). For any 𝜀 > 0, there exists a convex
cocompact subgroup Γ′ ⊂ Γ such that 𝛿Γ′ > 𝛿Γ − 𝜀.

Theorem 1.1. Let (𝑋,𝜔) be a regular square-tiled surface, and let Γ be a sub-
group of the Veech group 𝑆𝐿(𝑋,𝜔) with critical exponent 𝛿Γ > 0. For any
𝑦 ∈ 𝑋, for Lebesgue a.e. 𝑥 ∈ 𝑋, the set

{𝑔 ∈ Γ ∶ |𝑔𝑥 − 𝑦| < ||𝑔||−𝛼}
is

(1) finite for every 𝛼 > 𝛿Γ
(2) infinite for every 𝛼 < 𝛿Γ

where || ⋅ || is the operator norm of 𝑔 (as a linear transformation on ℝ2).
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Proof. For the first part of the proof, to show the set is finite for every 𝛼 >
𝛿Γ, use the definition of the critical exponent, Definition 1.3. Fix 𝛼, and for
sufficiently large 𝑁, the asymptotics of 𝐵𝑛 (and 𝑆𝑛) are within 𝜀 where 2𝜀 <
𝛼 − 𝛿Γ, so the same argument as in the proof of Theorem 3.12 will work:

∑

𝑔∈Γ
𝜇(𝑔−1Targ𝜙(||𝑔||)) ≤ 𝐶

∞∑

𝑛=𝑁+1
𝑒(𝛿Γ+𝜀)𝑛𝜙(𝑒

𝑛
2 )

≤ 𝐶
∞∑

𝑛=𝑁+1
𝑒(𝛼−𝜀)𝑛𝜙(𝑒

𝑛
2 ).

We can use Cauchy condensation to deduce that the tail converges if and only
if
∑∞

𝑛=𝑁+1 𝑛
2(𝛼−𝜖)−1𝜙(𝑛) converges. Pick 𝜙(𝑟) = 𝐶𝜋𝑟−2𝛼, where 𝐶 is a constant

correcting for normalization of themeasure, and by Borel-Cantelli, we can con-
clude that for almost every 𝑥 ∈ 𝑋 the set

{
𝑔 ∈ Γ ∶ 𝑔𝑥 ∈ Targ𝜙(||𝑔||)

}

is finite.
For the second part of the statement, we leverage Lemma 3.15. For any 𝜀 > 0,

there exists a convex cocompact subgroup Γ′ ⊂ Γ such that 𝛿Γ′ > 𝛿Γ − 𝜀. By
applying Theorem 3.12, we know that the set

{
𝑔 ∈ Γ′ ⊂ Γ ∶ 𝑔𝑥 ∈ Targ𝜙(||𝑔||)

}

has infinitelymany elements provided
∑∞

𝑛=1(log𝑛)
4𝑛−(2𝛿Γ′+1)𝜙(𝑛)−1 <∞. Thus,

we need

𝜙(𝑟) ≥ 𝐶𝑟−2𝛿Γ′ log5+𝜀(𝑟)
for all sufficiently large 𝑟. Recall that for our choice of 𝜀 > 0 above, and any
𝑀 ≥ 0, for all 𝑟 sufficiently large, 𝑟𝜀 > log𝑀(𝑟). Since 𝛿Γ < 𝛿Γ′ + 𝜀, for all
sufficiently large 𝑟, we have

𝑟−2𝛿Γ+3𝜀 > 𝑟−2(𝛿Γ′+𝜀)+3𝜀 = 𝑟−2𝛿Γ′+𝜀 > 𝑟−2𝛿Γ′ log5+𝜀(𝑟).
Hence, we can pick 𝜙(𝑟) = 𝐶𝜋𝑟−2𝛼 for any 𝐶 and any 𝛼 < 𝛿Γ and conclude that
there will be infinitely many elements in the set. □

References
[A09] Athreya, Jayadev. Logarithm laws and shrinking target properties. Proc. Indian Acad.

Sci. 119 (2009), no. 4, 541–557.MR2647198, Zbl 1184.37004, doi: 10.1007/s12044-009-0044-
x. 663, 664

[AM09] Athreya, Jayadev; Margulis, Gregory. Logarithm laws for unipotent flows, I.
Journal of Modern Dynamics 3 (2009), no. 3, 359–378. MR2538473, Zbl 1184.37007,
doi: 10.3934/jmd.2009.3.359. 663

http://www.ams.org/mathscinet-getitem?mr=2647198
http://www.emis.de/cgi-bin/MATH-item?1184.37004
http://dx.doi.org/10.1007/s12044-009-0044-x
http://dx.doi.org/10.1007/s12044-009-0044-x
http://www.ams.org/mathscinet-getitem?mr=2538473
http://www.emis.de/cgi-bin/MATH-item?1184.37007
http://dx.doi.org/10.3934/jmd.2009.3.359


680 REFERENCES

[AM17] Athreya, Jayadev; Margulis, Gregory. Logarithm laws for unipotent flows,
II. Journal of Modern Dynamics 11 (2017), no. 4, 1–16. MR3588521, Zbl 1402.37003,
doi: 10.3934/jmd.2017001. 663

[B68] Beardon, A.F. The exponent of convergence of Poincaré series. Proceedings of the Lon-
don Mathematical Society s3-18 (1968), no. 3, 461–483. MR0227402, Zbl 0162.38801,
doi: 10.1112/plms/s3-18.3.461. 659

[BHM11] Blachère, Sébastien; Haïssinsky, Peter; Mathieu, Pierre. Harmonic mea-
sures versus conformal measures for hyperbolic groups. Annales scientifiques de l’École
Normale Supérieure, Série 4 44 (2011), no. 4, 683–721. MR2919980, Zbl 1243.60005,
doi: 10.24033/asens.2153. 665, 666

[BH99] Bridson, Martin; Haefliger, André. Metric space of non-positive curvature.
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], 319. Springer-Verlag., Berlin, 1999. xxi+643 pp. ISBN: 3-540-64324-9.
MR1744486, Zbl 0988.53001. 665

[C17] Chen, Dawei. Teichmüller Dynamics in the eyes of an algebraic geometer. Proc. Sympos.
Pure Math. 95 (2017), 171–197. MR3727500, Zbl 1393.14021, arXiv:1602.02260. 657

[C93] Coornaert, Michel. Mesures de Patterson-Sullivan sur le bord d’un espace hyper-
bolique au sense de Gromov. Pacific Journal of Mathematics 159 (1993), no. 2, 241–270.
MR1214072, Zbl 0797.20029, doi: 10.2140/pjm.1993.159.241. 665, 666, 667

[FM12] Farb, Benson;Margalit, Dan.APrimer onMapping Class Groups. PrincetonMath-
ematical Series, 49. Princeton University Press, Princeton, NJ, 2012. xiv+472 pp. ISBN: 978-
0-691-14794-9. MR2850125, Zbl 1245.57002.

[F06] Fayad, Bassam. Mixing in the absence of the shrinking target property. Bull.
London Math. Soc. 38 (2006), no. 5, 829–838. MR2268368, Zbl 1194.37013,
doi: 10.1112/S0024609306018546. 663

[Fi16] Finkelshtein, Vladimir. Diophantine properties of groups of toral automorphisms.
(2006). arXiv:1607.06019. 656, 658, 660, 664, 666, 667, 670, 678

[GJ96] Gutkin, Eugene; Judge, Chris. The geometry and arithmetic of translation surfaces
with applications to polygonal billiards.Mathematical Research Letters 3 (1996), 391–403.
MR1397686, Zbl 0865.30060, doi: 10.4310/MRL.1996.v3.n3.a8. 664

[GJ00] Gutkin, Eugene; Judge, Chris. Affine Mappings of Translation Surfaces: Geome-
try and Arithmetic. Duke Mathematical Journal 103 (2000), 191–213. MR1760625, Zbl
0965.30019, doi: 10.1215/S0012-7094-00-10321-3. 664, 668

[HV95] Gutkin, Eugene; Judge, Chris. The ergodic theory of shrinking targets.
Inventiones Mathematicae 119 (1995), 175–198. MR1309976, Zbl 0834.28009,
doi: 10.1007/BF01245179. 663

[H08] Hillairet, Luc. Spectral decomposition of square-tiled surfaces. Mathematische
Zeitschrift 260, no. 2, (2008), 393–408. MR2429619, Zbl 1156.58012, doi: 10.1007/s00209-
007-0280-7. 660

[H09] Hillairet, Luc. Spectral theory of translation surfaces: A short introduction. Séminaire
de théorie spectrale et géométrie 28, no. 2, (2009-2010), 51–62. MR2848211, Zbl 1404.58050.
660

[HS04] Hubert, Pascal; Schmidt, Thomas. An introduction to Veech surfaces. Handbook
of Dynamical Systems 1B, Elsevier B. V., Amsterdam, (2006), 501–526. MR2186246, Zbl
1130.37367. 658, 664, 678

[K92] Katok, Svetlana. A Primer on Mapping Class Groups. Princeton Mathematical Series,
49. The University of Chicago Press, Chicago, IL, (1992). x+175 pp. ISBN: 0-226-42582-7;
0-226-42583-5. MR1177168, Zbl 0753.30001. 664

[KM99] Kleinbock, Dimitry; Margulis, Gregory. Logarithm laws for flows on homoge-
neous spaces. Inventiones Mathematicae 138, no. 3, (1999), 451–494. MR1719827, Zbl
0934.22016, arXiv:math/9812088, doi: 10.1007/s002220050350. 663

http://www.ams.org/mathscinet-getitem?mr=3588521
http://www.emis.de/cgi-bin/MATH-item?1402.37003
http://dx.doi.org/10.3934/jmd.2017001
http://www.ams.org/mathscinet-getitem?mr=0227402
http://www.emis.de/cgi-bin/MATH-item?0162.38801
http://dx.doi.org/10.1112/plms/s3-18.3.461
http://www.ams.org/mathscinet-getitem?mr=2919980
http://www.emis.de/cgi-bin/MATH-item?1243.60005
http://dx.doi.org/10.24033/asens.2153
http://www.ams.org/mathscinet-getitem?mr=1744486
http://www.emis.de/cgi-bin/MATH-item?0988.53001
http://www.ams.org/mathscinet-getitem?mr=3727500
http://www.emis.de/cgi-bin/MATH-item?1393.14021
http://arXiv.org/abs/1602.02260
http://www.ams.org/mathscinet-getitem?mr=1214072
http://www.emis.de/cgi-bin/MATH-item?0797.20029
http://dx.doi.org/10.2140/pjm.1993.159.241
http://www.ams.org/mathscinet-getitem?mr=2850125
http://www.emis.de/cgi-bin/MATH-item?1245.57002
http://www.ams.org/mathscinet-getitem?mr=2268368
http://www.emis.de/cgi-bin/MATH-item?1194.37013
http://dx.doi.org/10.1112/S0024609306018546
http://arXiv.org/abs/1607.06019
http://www.ams.org/mathscinet-getitem?mr=1397686
http://www.emis.de/cgi-bin/MATH-item?0865.30060
http://dx.doi.org/10.4310/MRL.1996.v3.n3.a8
http://www.ams.org/mathscinet-getitem?mr=1760625
http://www.emis.de/cgi-bin/MATH-item?0965.30019
http://www.emis.de/cgi-bin/MATH-item?0965.30019
http://dx.doi.org/10.1215/S0012-7094-00-10321-3
http://www.ams.org/mathscinet-getitem?mr=1309976
http://www.emis.de/cgi-bin/MATH-item?0834.28009
http://dx.doi.org/10.1007/BF01245179
http://www.ams.org/mathscinet-getitem?mr=2429619
http://www.emis.de/cgi-bin/MATH-item?1156.58012
http://dx.doi.org/10.1007/s00209-007-0280-7
http://dx.doi.org/10.1007/s00209-007-0280-7
http://www.ams.org/mathscinet-getitem?mr=2848211
http://www.emis.de/cgi-bin/MATH-item?1404.58050
http://www.ams.org/mathscinet-getitem?mr=2186246
http://www.emis.de/cgi-bin/MATH-item?1130.37367
http://www.emis.de/cgi-bin/MATH-item?1130.37367
http://www.ams.org/mathscinet-getitem?mr=1177168
http://www.emis.de/cgi-bin/MATH-item?0753.30001
http://www.ams.org/mathscinet-getitem?mr=1719827
http://www.emis.de/cgi-bin/MATH-item?0934.22016
http://www.emis.de/cgi-bin/MATH-item?0934.22016
http://arXiv.org/abs/math/9812088
http://dx.doi.org/10.1007/s002220050350


REFERENCES 681

[M22] Matheus, Carlos. Three lectures on square-tiled surfaces. Teichmüller theory and dy-
namics, Panor. Synthèses, 58, Soc. Math. France, Paris, (2022), 77–99. MR4563316, Zbl
07754057. 657

[P76] Patterson, S.J. The exponent of convergence of Poincaré series.Monatshefte für Mathe-
matik 138, no. 3, (1999), 451–494. MR0425114, Zbl 0349.30012, doi: 10.1007/BF01540601.
659, 665

[Ph67] Philipp, Walter. Some metrical theorems in number theory. Pacific Jour-
nal of Mathematics 20, no. 1, (1967), 109–127. MR0205930, Zbl 0144.04201,
doi: 10.2140/pjm.1967.20.109. 662

[Q] Quint, J.F. An overview of Patterson-Sullivan theory. Available here. 665
[S79] Sullivan, Dennis. The density at infinity of a discrete group of hyperbolic motions. Pub-

lications mathématiques de l’I.H.É.S. 50, (1979), 171–202. MR0556586, Zbl 0439.30034,
doi: 10.1007/BF02684773. 659, 660, 665, 666

[S82] Sullivan, Dennis. Disjoint spheres, approximation by imaginary quadratic numbers,
and the logarithm law for geodesics. Acta Math. 149, no. 50 (1982), 215–237. MR0688349,
Zbl 0517.58028, doi: 10.1007/BF02392354. 663

[Th88] Thurston, William. On the geometry and dynamics of diffeomorphisms of surfaces.
Bulletin of the Amer. Math. Soc. 19, no. 2 (1988), 417–431. MR0956596, Zbl 0674.57008,
doi: 10.1090/S0273-0979-1988-15685-6.

[W15] Wright, Alex. Translation surfaces and their orbit closures. EMS Surv. Math. Sci. 2, no.
1 (2015), 63–108. MR3354955, Zbl 1372.37090, doi: 10.4171/EMSS/9. 657

[V89] Veech, William. Teichmüller curves in moduli space, Eisenstein series and an ap-
plication to triangular billiards. Inventiones Mathematicae 97, no. 3 (1989), 553–583.
MR1005006, Zbl 0676.32006, doi: 10.1007/BF01388890. 658, 664

[Zm11] Zmiaikou, David. Origamis and permutation groups. (2011). Available here. 657
[Zor06] Zorich, Anton. Flat surfaces. Frontiers in Number Theory, Physics, and Geometry. On

random matrices, zeta functions, and dynamical systems. Papers from the meeting, Les
Houches, France, March 9-21, 2003. Berlin: Springer (2006), 437–583. ISBN: 978-3-540-
23189-9/hbk. MR2261104, Zbl 1129.32012, arXiv:math/0609392. 657

(Josh Southerland)DepartmentofMathematics, IndianaUniversity, 831East 3rdStreet,
Bloomington, IN 47405-7106, USA
jwsouthe@iu.edu

This paper is available via http://nyjm.albany.edu/j/2024/30-30.html.

http://www.ams.org/mathscinet-getitem?mr=4563316
http://www.emis.de/cgi-bin/MATH-item?07754057
http://www.emis.de/cgi-bin/MATH-item?07754057
http://www.ams.org/mathscinet-getitem?mr=0425114
http://www.emis.de/cgi-bin/MATH-item?0349.30012
http://dx.doi.org/10.1007/BF01540601
http://www.ams.org/mathscinet-getitem?mr=0205930
http://www.emis.de/cgi-bin/MATH-item?0144.04201
http://dx.doi.org/10.2140/pjm.1967.20.109
https://www.math.u-bordeaux.fr/~jquint/publications/courszurich.pdf
http://www.ams.org/mathscinet-getitem?mr=0556586
http://www.emis.de/cgi-bin/MATH-item?0439.30034
http://dx.doi.org/10.1007/BF02684773
http://www.ams.org/mathscinet-getitem?mr=0688349
http://www.emis.de/cgi-bin/MATH-item?0517.58028
http://dx.doi.org/10.1007/BF02392354
http://www.ams.org/mathscinet-getitem?mr=0956596
http://www.emis.de/cgi-bin/MATH-item?0674.57008
http://dx.doi.org/10.1090/S0273-0979-1988-15685-6
http://www.ams.org/mathscinet-getitem?mr=3354955
http://www.emis.de/cgi-bin/MATH-item?1372.37090
http://dx.doi.org/10.4171/EMSS/9
http://www.ams.org/mathscinet-getitem?mr=1005006
http://www.emis.de/cgi-bin/MATH-item?0676.32006
http://dx.doi.org/10.1007/BF01388890
https://theses.hal.science/tel-00648120/document
http://www.ams.org/mathscinet-getitem?mr=2261104
http://www.emis.de/cgi-bin/MATH-item?1129.32012
http://arXiv.org/abs/math/0609392
mailto:jwsouthe@iu.edu
http://nyjm.albany.edu/j/2024/30-30.html

	1. Introduction
	2. Shrinking targets
	3. Application to square-tiled surfaces
	References

