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Characteristic polynomials and finite
dimensional representations of

simple Lie algebras

Amin Geng, Shoumin Liu and XuminWang

Abstract. In this paper, we prove the correspondence between finite di-
mensional representations of a simple Lie algebra and their associated char-
acteristic polynomials. We will also define a monoid structure on these char-
acteristic polynomials related to the tensor products of the representations.
Furthermore, the factorization of characteristic polynomials sheds new light
on the structure of simple Lie algebras and their Borel subalgebras.
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1. Introduction
For several matrices 𝐴1,… , 𝐴𝑛 of equal size, their characteristic polynomial

is defined as

𝑓𝐴(𝑧) = 𝑑𝑒𝑡(𝑧0𝐼 + 𝑧1𝐴1 +⋯ + 𝑧𝑛𝐴𝑛), 𝑧 = (𝑧0,… , 𝑧𝑛) ∈ ℂ𝑛+1,

which has been investigated since the late 19th and early 20th century in prob-
lems related to group determinant and determinantal representations. We refer
to [4, 5, 8, 6, 7, 9] for some illustrations of this topic. However, studying charac-
teristic polynomial for several general matrices is a new frontier in linear alge-
bra. In [18], the notion of projective spectrum of operators is defined by R. Yang

Received August 22, 2023.
2020Mathematics Subject Classification. 17B05,17B10.
Key words and phrases. Lie algebra, characteristic polynomial, finite dimensional represen-

tation, monoid.
Liu is funded by the NSFC (Grant No. 11971181, Grant No.12271298).

ISSN 1076-9803/2024

24

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm


SIMPLE LIE ALGEBRAS 25

through the multiparameter pencil, and multivariable homogeneous charac-
teristic polynomials have been studied. Fruitful results have been obtained in
[2, 10, 11, 13, 1]. It is natural to consider similar topics for finite dimensional
Lie algebras. For a Lie algebra 𝔤with a basis {𝑥1,… , 𝑥𝑛}, the characteristic poly-
nomial of its adjoint representation

𝑓𝔤 = det(𝑧0𝐼 + 𝑧1ad𝑥1 +⋯ + 𝑧𝑛ad𝑥𝑛)

is investigated in [1]. It is shown that 𝑓𝔤 is invariant under the automorphism
group 𝐴𝑢𝑡(𝔤). Let 𝜙 ∶ 𝔰𝔩(2,ℂ) → 𝔤𝔩(𝑉) be an irreducible representation of
𝔰𝔩(2,ℂ), which 𝔰𝔩(2,ℂ) is Lie algebra of all 2-by-2 matrices with zero trace over
ℂ and 𝑉 is a (𝑚 + 1)-dimensional complex vector space. The characteristic
polynomial

𝑓𝜙(𝑧0, 𝑧1, 𝑧2, 𝑧3) =
⎧

⎨
⎩

𝑧0
∏𝑚∕2

𝑙=1
(
𝑧20 − 4𝑙2(𝑧21 + 𝑧2𝑧3)

)
2 ∣ 𝑚

∏(𝑚−1)∕2
𝑙=0

(
𝑧20 − (2𝑙 + 1)2(𝑧21 + 𝑧2𝑧3)

)
2 ∤ 𝑚

(1.1)

is obtained in [3, 14, 12]. When the homomorphism 𝜙 is an arbitrary finite
dimensional representation of 𝔰𝔩(2,ℂ), we let 𝑑𝑛,𝜙 denote the dimension of the
eigenspace of 𝜙(ℎ) for the eigenvalue 𝑛, 𝑛 ∈ ℤ. The characteristic polynomial

𝑓𝜙(𝑧0, 𝑧1, 𝑧2, 𝑧3) = 𝑧
𝑑0,𝜙
0

∏

𝑛≥1

(
𝑧20 − 𝑛2(𝑧21 + 𝑧2𝑧3)

)𝑑𝑛,𝜙 (1.2)

is obtained in [16], where the authors proved that there is one to one correspon-
dence between finite dimensional representations of 𝔰𝔩(2,ℂ) and their charac-
teristic polynomials. One wonders whether similar results hold for simple Lie
algebra.
The paper is sketched as the following. Section 2 presents the definition of

the characteristic polynomials with respect to finite dimensional representa-
tions of a simple Lie algebra. It is shown that the latter can be reconstructed
through its characteristic polynomials. In Section 3, similar to [16, Section 5],
we show that the characteristic polynomials of a simple Lie algebra can be en-
dowed with a commutative monoid structure compatible with the tensor prod-
uct of representations. In Section 4, some results about the characteristic poly-
nomials of 𝔰𝔩(2,ℂ) acting on the classical simple Lie algebras are obtained. In
Section 5.3, we calculate the rank of the spectral matrices for the Borel subal-
gebras of simple Lie algebras.

2. Decomposition of the representations of simple Lie algebra
through characteristic polynomials
We first recall some basics for Lie algebras which can be found in [15]. Let

𝔤 be a finite dimensional complex simple Lie algebra, Φ be the root system of
𝔤, and Π={𝛼1, … ,𝛼𝑛} be simple roots of Φ. Let 𝔥 be a Cartan subalgebra of 𝔤,
{ℎ𝛼1 ,… , ℎ𝛼𝑛 } be a basis of 𝔥 corresponding to Π, and 𝐸𝛼 be the root vector for
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each 𝛼 ∈ Φ. It is well known that the set 𝒜={ℎ𝛼1 ,… , ℎ𝛼𝑛 , 𝐸𝛼(𝛼 ∈ Φ)} is a
canonical basis of 𝔤, and we have the Cartan decomposition

𝔤 = 𝔥⊕
∑

𝛼∈Φ
ℂ𝐸𝛼.

Suppose 𝜙 ∶ 𝔤 → 𝔤𝔩(𝑉) is a finite dimensional linear representation of 𝔤, with
𝑉 being a 𝔤-module.

Definition 2.1. The polynomial

𝑓𝜙(𝑧0, 𝑧1,… , 𝑧𝑛, 𝑧𝛼) = det (𝑧0𝐼 +
𝑛∑

𝑖=1
𝜙(ℎ𝛼𝑖 )𝑧𝑖 +

∑

𝛼∈Φ
𝜙(𝐸𝛼)𝑧𝛼)

is called the characteristic polynomial of 𝔤 with respect to the basis 𝒜 and the
representation 𝜙, where 𝑧0, 𝑧1, … , 𝑧𝑛, 𝑧𝛼 are indeterminants.

Since the representations of a simple Lie algebra 𝔤 are closely related to its
Cartan subalgebra 𝔥, we restrict the representation 𝜙 of 𝔤 to 𝔥 and obtain a new
polynomial as follows.

Definition 2.2. Let 𝔤 and 𝜙 be as above and define

𝑓𝜙(�̃�) = det (𝑧0𝐼 +
𝑛∑

𝑖=1
𝜙(ℎ𝛼𝑖 )𝑧𝑖) = 𝑓𝜙(𝑧0, 𝑧1,… , 𝑧𝑛, 0,… , 0)

with �̃� = (𝑧0, 𝑧1,… , 𝑧𝑛). We call 𝑓𝜙(�̃�) the linearization of 𝑓𝜙(𝑧).

For convenience, the polynomials 𝑓𝜙(𝑧) and 𝑓𝜙(�̃�) are denoted as 𝑓𝜙 and 𝑓𝜙,
respectively. We gather these two kinds of polynomials in the two sets,

𝐂𝐏𝔤 = {𝑓𝜙(𝑧)}𝜙, 𝐂𝐏𝔤 = {𝑓𝜙(�̃�)}𝜙,

where 𝜙 runs over all finite dimensional representations of 𝔤. For these two
sets, analogous to the proof of [15, Section 22.5, Proposition A], the following
proposition can be obtained.

Proposition 2.3. The map

𝜌 ∶ 𝐂𝐏𝔤 → 𝐂𝐏𝔤,

𝜌(𝑓𝜙) = 𝑓𝜙,
is a bijective map.

Proof. For the representation module 𝑉 for 𝜙, we have the complete decom-
position of 𝑉 = ⊕𝑡

𝑖=1𝑉𝑖 by Weyl’s theorem [15, Theorem 6.3], where each 𝑉𝑖 is
an irreducible module of 𝔤 with highest weight 𝛽𝑖. Write 𝜙 = ⊕𝑡

𝑖=1𝜙𝑖, where 𝜙𝑖
is the representation corresponding to 𝑉𝑖. Then we have

𝑓𝜙 =
𝑡∏

𝑖=1
𝑓𝜙𝑖 . (2.1)
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By [15, Section 20], each 𝑉𝑖 can be written as 𝑉𝑖 = ⊕𝑟ℂ𝒱𝑟 with 𝑟 ∈ 𝔥∗ =
Hom(𝔥,ℂ) being a weight of 𝑉𝑖, such that ℎ(𝒱𝑟) = 𝑟(ℎ)𝒱𝑟 for any ℎ ∈ 𝔥. This
implies that 𝔥 is diagonalizable on 𝑉𝑖. We denote the set of those eigenvectors
𝒱𝑟 by Γ𝑖. It follows that

𝑓𝜙 =
𝑡∏

𝑖=1

∏

𝒱𝑟∈Γ𝑖

(
𝑧0 + 𝑟(ℎ𝛼1)𝑧1 +⋯ + 𝑟(ℎ𝛼𝑛)𝑧𝑛

)
=

𝑡∏

𝑖=1
𝑓𝜙𝑖 . (2.2)

For the module 𝑉, let Γ =
⋃𝑡

𝑖=1 Γ𝑖. Once the set Γ is known, we can find
one dominant weight eigenvector 𝒱𝛽0 in Γ for which 𝛽0 is one of the highest
weights in Γ. Therefore the 𝒱𝛽0 will generate a unique irreducible module of
𝔤, which we denote by𝑊. Then𝑊 is an irreducible component of 𝑉. Without
loss of generality, suppose the module𝑊 is isomorphic to the module𝑉1. Thus
we can consider Γ′ = Γ∖Γ1. We can repeat the above operation to determine all
the irreducible components of𝑉. Therefore, the polynomial 𝑓𝜙 can be obtained
by formula (2.1) through the algorithm on Γ.
Once the polynomial𝑓𝜙 is fixed, we canuniquelywrite it as products of linear

polynomials with the coefficient of 𝑧0 being 1 as in (2.2), and each linear factor
can determine a linear functional in 𝔥∗, because {ℎ𝛼𝑖 }

𝑛
𝑖=1 is a basis of 𝔥. Thenwe

can determine all the weights for the Γ in this way. Therefore, by the algorithm
on the set Γ, the map 𝜌 is an one to one correspondence between 𝐂𝐏𝔤 and 𝐂𝐏𝔤.

□

By the algorithm in the proof of the Proposition 2.3, the following theorem
holds.

Theorem 2.4. Let 𝜙 and 𝜓 be two finite dimensional representations of a finite
dimensional complex simpe Lie algebra 𝔤. Then 𝜙 and 𝜓 are isomorphic if and
only if 𝑓𝜙 = 𝑓𝜓.

Remark 2.5. In fact, the characteristic polynomials might differ if we choose
different bases for the Lie algebra. For the adjoint representation of a finite
dimensional Lie algebra, it is proved that the characteristic polynomial is in-
variant under the automorphism of the Lie algebra in [1, Theorem 2.3]. But
it does not hold for arbitrary finite dimensional representations, especially for
the outer automorphisms, which can produce non-trivial actions on their rep-
resentations.

3. Monoid structures on 𝐂𝐏𝖌 and 𝐂𝐏𝖌
In this section, we mainly study the algebraic structure of 𝐂𝐏𝔤 and 𝐂𝐏𝔤 de-

fined through tensor products of the representations of 𝔤.
Let 𝔤 be a simple Lie algebra with simple roots Π = {𝛼𝑖}𝑛𝑖=1 and Cartan sub-

algebra 𝔥, having a basis {ℎ𝛼𝑖 }
𝑛
𝑖=1. Let rep(𝔤) be the monoidal category of finite

dimensional representations of 𝔤. Let 𝜙 be an object in rep(𝔤), Γ𝜙 be all weights
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of 𝜙 with |Γ𝜙| being its size. For each 𝜆 ∈ Γ𝜙, we let 𝑑𝜆 denote the multiplicity
of 𝜆 in 𝜙, which is the dimension of the eigenspace of 𝜙 for 𝜆.
The set 𝐂𝐏𝔤 can be endowed with the monoid structure by a multiplication

defined below.

Definition 3.1. Let𝜙, 𝜑 be two objects in rep(𝔤), and𝑓𝜙 and𝑓𝜑 be their charac-
teristic polynomials with 𝑓𝜙 = 𝜌(𝑓𝜙) and 𝑓𝜑 = 𝜌(𝑓𝜑) being their linearizations,
respectively. Suppose that Γ𝜙 = {𝜆𝑗}, Γ𝜑 = {𝜇𝑘} are all weights of 𝜙, 𝜑, respec-
tively, and 𝑑𝜆𝑗 , 𝑑𝜇𝑘 are their multiplicities in 𝜙, 𝜑, respectively. Let

𝜆𝑗𝑖 = 𝜆𝑗(ℎ𝛼𝑖 ), 𝜇𝑘𝑖 = 𝜇𝑘(ℎ𝛼𝑖 )

for 𝑗 = 1,… , |Γ𝜙|, 𝑘 = 1,… , |Γ𝜑|, 𝑖 = 1,… , 𝑛. It can be seen that

𝑓𝜙 =
∏

𝜆𝑗∈Γ𝜙

⎛
⎜
⎝
𝑧0 +

∑

𝛼𝑖∈Π
𝜆𝑗(ℎ𝛼𝑖 )𝑧𝑖

⎞
⎟
⎠

𝑑𝜆𝑗

=
∏

𝜆𝑗∈Γ𝜙

(𝑧0 +
𝑛∑

𝑖=1
𝜆𝑗𝑖𝑧𝑖)

𝑑𝜆𝑗

,

𝑓𝜑 =
∏

𝜇𝑘∈Γ𝜑

⎛
⎜
⎝
𝑧0 +

∑

𝛼𝑖∈Π
𝜇𝑘(ℎ𝛼𝑖 )𝑧𝑖

⎞
⎟
⎠

𝑑𝜇𝑘

=
∏

𝜇𝑘∈Γ𝜑

(𝑧0 +
𝑛∑

𝑖=1
𝜇𝑘𝑖𝑧𝑖)

𝑑𝜇𝑘

.

Define 𝑓𝜙 ∗ 𝑓𝜑 ∈ ℂ[𝑧0, 𝑧1,… , 𝑧𝑛] for 𝑓𝜙 and 𝑓𝜑 by the formula

𝑓𝜙 ∗ 𝑓𝜑 =
∏

𝜆𝑗∈Γ𝜙,𝜇𝑘∈Γ𝜑

(𝑧0 +
𝑛∑

𝑖=1
(𝜆𝑗𝑖 + 𝜇𝑘𝑖)𝑧𝑖)

𝑑𝜆𝑗𝑑𝜇𝑘

. (3.1)

Here, we call the polynomial 𝑓𝜙 ∗ 𝑓𝜑 the resolution product of 𝑓𝜙 and 𝑓𝜑.

Proposition 3.2. Let 𝑓𝜙, 𝑓𝜑 be two polynomials in 𝐂𝐏𝔤. Then

𝑓𝜙 ∗ 𝑓𝜑 = 𝑓𝜙⊗𝜑.

Proof. Suppose that {𝑣𝑡𝜆𝑗 }𝜆𝑗∈Γ𝜙 with 𝑡 = 1,… , 𝑑𝜆𝑗 , {𝑤
𝑠
𝜇𝑘 }𝜇𝑘∈Γ𝜑 with 𝑠 = 1,… , 𝑑𝜇𝑘

are bases of representation 𝜙 and 𝜑, respectively, such that each ℎ𝛼𝑖 ∈ 𝔥 is
diagonalizable under these two bases for 𝜙 and 𝜑, respectively. This implies
that

𝜙(ℎ𝛼𝑖 )(𝑣
𝑡
𝜆𝑗
) = 𝜆𝑗𝑖𝑣𝑡𝜆𝑗 , 𝜑(ℎ𝛼𝑖 )(𝑤

𝑠
𝜇𝑘 ) = 𝜇𝑘𝑖𝑤𝑠

𝜇𝑘 .

It is known that {𝑣𝑡𝜆𝑗⊗𝑤𝑠
𝜇𝑘 }𝜆𝑗∈Γ𝜙,𝜇𝑘∈Γ𝜑 is a basis of 𝜙⊗𝜑 for 𝑡 = 1,… , 𝑑𝜆𝑗 , 𝑠 =

1,… , 𝑑𝜇𝑘 . By the definition of tensor products of the representations of Lie al-
gebra, we have

𝜙 ⊗ 𝜑(ℎ𝛼𝑖 )(𝑣
𝑡
𝜆𝑗
⊗𝑤𝑠

𝜇𝑘 )

= (𝜙(ℎ𝛼𝑖 )⊗ 𝐼 + 𝐼 ⊗ 𝜑(ℎ𝛼𝑖 ))(𝑣
𝑡
𝜆𝑗
⊗𝑤𝑠

𝜇𝑘 )

= 𝜙(ℎ𝛼𝑖 )(𝑣
𝑡
𝜆𝑗
)⊗𝑤𝑠

𝜇𝑘 + 𝑣𝑡𝜆𝑗 ⊗ 𝜑(ℎ𝛼𝑖 )(𝑤
𝑠
𝜇𝑘 ) = (𝜆𝑗𝑖 + 𝜇𝑘𝑖)(𝑣𝑡𝜆𝑗 ⊗𝑤𝑠

𝜇𝑘 ).
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Let
𝜙 ⊗ 𝜑(ℎ𝛼𝑖 )𝑣𝑡𝜆𝑗⊗𝑤

𝑠
𝜇𝑘
= 𝜆𝑗𝑖 + 𝜇𝑘𝑖 (3.2)

for 1 ≤ 𝑗 ≤ |Γ𝜙|, 1 ≤ 𝑘 ≤ |Γ𝜑|, 1 ≤ 𝑖 ≤ 𝑛, and 𝑑𝜆𝑗+̃𝜇𝑘 denote the dimension
of eigenvector space for 𝜙 ⊗ 𝜑(ℎ𝛼𝑖 ) of the eigenvalue 𝜆𝑗𝑖 + 𝜇𝑘𝑖 spanned by the
vectors 𝑣𝑡𝜆𝑗 ⊗𝑤𝑠

𝜇𝑘 , for 𝑡 = 1,… , 𝑑𝜆𝑗 and 𝑠 = 1,… , 𝑑𝜇𝑘 . Therefore, it follows that

𝑑𝜆𝑗+̃𝜇𝑘 = 𝑑𝜆𝑗𝑑𝜇𝑘 . (3.3)

By equations (3.2) and (3.3), one can rewrite the polynomials 𝑓𝜙, 𝑓𝜑 and 𝑓𝜙⊗𝜑
as the follows,

𝑓𝜙 =
∏

𝜆𝑗∈Γ𝜙,
(𝑧0 +

𝑛∑

𝑖=1
𝜆𝑗𝑖𝑧𝑖)

𝑑𝜆𝑗

,

𝑓𝜑 =
∏

𝜇𝑘∈Γ𝜑,
(𝑧0 +

𝑛∑

𝑖=1
𝜇𝑘𝑖𝑧𝑖)

𝑑𝜇𝑘

,

𝑓𝜙⊗𝜑 =
∏

𝜆𝑗∈Γ𝜙,𝜇𝑘∈Γ𝜑

(𝑧0 +
𝑛∑

𝑖=1
𝜙 ⊗ 𝜑(ℎ𝛼𝑖 )𝑣𝑡𝜆𝑗⊗𝑤

𝑠
𝜇𝑘
𝑧𝑖)

𝑑𝜆𝑗 +̃𝜇𝑘

=
∏

𝜆𝑗∈Γ𝜙,𝜇𝑘∈Γ𝜑

(𝑧0 +
𝑛∑

𝑖=1
(𝜆𝑗𝑖 + 𝜇𝑘𝑖)𝑧𝑖)

𝑑𝜆𝑗𝑑𝜇𝑘

= 𝑓𝜙 ∗ 𝑓𝜑.

□

Theorem 3.3. The set 𝐂𝐏𝔤 is a commutative monoid under the resolution prod-
uct with the unit element 𝑧0.

Proof. By Proposition 3.2, the set 𝐂𝐏𝔤 is closed under the resolution product.
For three representations 𝜙, 𝜓, 𝜑 of 𝔤, it is known that

𝜙 ⊗ (𝜓 ⊗ 𝜑) ≃ (𝜙 ⊗ 𝜓)⊗ 𝜑.
By Proposition 3.2, it follows that

𝑓𝜙 ∗ (𝑓𝜓 ∗ 𝑓𝜑) = 𝑓𝜙⊗(𝜓⊗𝜑) = 𝑓(𝜙⊗𝜓)⊗𝜑 = (𝑓𝜙 ∗ 𝑓𝜓) ∗ 𝑓𝜑.

Let 𝜑0 denote the trivial representation of dimension 1 of 𝔤, then 𝑓𝜑0 = 𝑧0. For
each representation 𝜙 of 𝔤, we have 𝜙 ≃ 𝜙 ⊗ 𝜑0 ≃ 𝜑0 ⊗ 𝜙, so it follows that
𝑓𝜙 = 𝑓𝜙 ∗ 𝑧0 = 𝑧0 ∗ 𝑓𝜙. At the end, the relation 𝑓𝜙 ∗ 𝑓𝜓 = 𝑓𝜓 ∗ 𝑓𝜙 holds for
𝜙 ⊗ 𝜓 ≃ 𝜓 ⊗ 𝜙. □

Let 𝜙 and 𝜑 be two representations of 𝔤 of finite dimension. By Proposition
2.3, there is one to one correspondence between 𝐂𝐏𝔤 and 𝐂𝐏𝔤. Define

𝑓𝜙 ∗ 𝑓𝜑 = 𝜌−1(𝑓𝜙 ∗ 𝑓𝜑) (3.4)
which is called the resolution product of 𝑓𝜙 and 𝑓𝜑. By Proposition 3.2, we have

𝑓𝜙 ∗ 𝑓𝜑 = 𝜌−1(𝑓𝜙 ∗ 𝑓𝜑) = 𝜌−1(𝑓𝜙⊗𝜑) = 𝑓𝜙⊗𝜑.



30 AMIN GENG, SHOUMIN LIU AND XUMINWANG

Combining with Theorem 3.3, the theorem below holds.

Theorem 3.4. The set 𝐂𝐏𝔤 is a commutative monoid under the resolution prod-
uct with the unit element 𝑧0. Furthermore, the monoids𝐂𝐏𝔤 and𝐂𝐏𝔤 are isomor-
phic under their resolution product structures through the linearization map.

Remark 3.5. Here we recall the definition of the formal characters ℤ[Λ] of a
simple Lie algebra 𝔤 from [15, Section 22.5]. Let Λ ⊆ 𝔥∗ be the set of integral
weight lattice, namely all 𝜆 ∈ 𝔥∗ which ⟨𝜆, 𝛼⟩ ∈ ℤ(𝛼 ∈ Φ). Let ℤ[Λ] be the
free abelian group with {𝑒(𝜇)}𝜇∈Λ being its basis. From [15, Section 22.5], the
abelian group ℤ[Λ] has a commutative ring structure through decreeing that
𝑒(𝜆)𝑒(𝜇) = 𝑒(𝜆 + 𝜇). For 𝜆 ∈ Λ+, we suppose that 𝑉(𝜆) is an irreducible finite
dimensional module of 𝔤 with the highest weight 𝜆 and Π(𝜆) denote the set of
its weights. We define the formal character for 𝑉(𝜆) as

𝑐ℎ𝜆 =
∑

𝜇∈Π(𝜆)
𝑚𝜆(𝜇)𝑒(𝜇),

where 𝑚𝜆(𝜇) is the multiplicity of 𝜇 in 𝑉(𝜆), namely the dimension of the
eigenspace corresponding to the weight 𝜇. If 𝑉 = 𝑉(𝜆1) ⊕ ⋯𝑉(𝜆𝑡), we de-
fine its formal character as

𝑐ℎ𝑉 =
𝑡∑

𝑖=1
𝑐ℎ𝜆𝑖 .

Define a map 𝜏 from 𝐂𝐏𝔤 to ℤ[Λ] by

𝜏(𝑓𝜙) = 𝑐ℎ𝑉 , 𝑓𝜙 ∈ 𝐂𝐏𝔤,

where 𝜙 is the representation of 𝔤 acting on the module 𝑉. By the Theorem 3.4
and [15, Section 22.5, Proposition B], it follows that

𝜏(𝑓𝜙)𝜏(𝑓𝜑) = 𝑐ℎ𝑉 + 𝑐ℎ𝑊 , 𝜏(𝑓𝜙) ∗ 𝜏(𝑓𝜑) = 𝑐ℎ𝑉𝑐ℎ𝑊 ,

where 𝜙 and 𝜑 are representations of 𝔤 acting on 𝑉 and𝑊, respectively.

4. The adjoint representation of 𝖘𝖑(𝟐,ℂ) on simple Lie algebras
Let 𝔤 be afinite dimensional complex simple Lie algebra, {ℎ, 𝑒1, 𝑒2} be a canon-

ical basis of 𝔰𝔩(2,ℂ), and𝜙 ∶ 𝔰𝔩(2,ℂ)→ 𝔤 be a Lie algebra embedding. Suppose
that ad◦𝜙 is the composition of 𝜙 and the adjoint representation ad of 𝔤. In this
section, our main concern is the characteristic polynomial 𝑓ad◦𝜙(𝑧0, 𝑧1, 𝑧2, 𝑧3)
of ad◦𝜙. In [16], the authors have calculated the case for simple Lie algebra
type A𝑛−1. In this section, we’re going to calculate this for other types.
In the following, a general formula in Theorem 4.1 will be presented. We

first apply the formula to the complex simple Lie algebra of typeC𝑛. Analogous
results for other types are summarized in Table 1.
Here we recall the Chevalley basis for 𝔤 from [15, Section 25.2]. Any basis

{𝐸𝛼, 𝛼 ∈ Φ, ℎ𝑖, 𝑖 = 1,… , 𝑛}

is called a Chevalley basis of 𝔤 if it satisfies:
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(i) [𝐸𝛼, 𝐸−𝛼] = ℎ𝛼.
(ii) If 𝛼, 𝛽, 𝛼 + 𝛽 ∈ Φ, [𝐸𝛼, 𝐸−𝛽] = 𝑐𝛼,𝛽𝐸𝛼+𝛽, then 𝑐𝛼,𝛽 = −𝑐−𝛼,−𝛽 .
(iii) The coefficient 𝑐𝛼,𝛽 in (ii) satisfies

𝑐2𝛼,𝛽 = 𝑞(𝑟 + 1)
(𝛼 + 𝛽, 𝛼 + 𝛽)

(𝛽, 𝛽)
,

where 𝛽 − 𝑟𝛼,… , 𝛽 + 𝑞𝛼 is the 𝛼-string through 𝛽.
In [15, Scetion 25.2, Propostion], the existence of a Chevalley basis of 𝔤 is pre-
sented. From [15, Scetion 25.2, Theorem] we know that for any 𝛼 ∈ Φ,

[ℎ𝑖, 𝐸𝛼] = ⟨𝛼, 𝛼𝑖⟩𝐸𝛼,

where ℎ𝑖 = ℎ𝛼𝑖 , {𝛼𝑖}
𝑛
𝑖=1 is a base for Φ.

Theorem 4.1. Let 𝔤 be as above, Φ be its root system, and 𝜆 ∈ Φ. Let 𝜙 ∶
𝔰𝔩(2,ℂ) → 𝔤 be the Lie algebra embedding defined by 𝜙(ℎ) = 𝐻𝜆, 𝜙(𝑒1) = 𝐸𝜆,
𝜙(𝑒2) = 𝐸−𝜆. Then

𝑓ad◦𝜙(𝑧0, 𝑧1, 𝑧2, 𝑧3) = 𝑧𝑘00
3∏

𝑖=1

(
𝑧20 − 𝑖2(𝑧21 + 𝑧2𝑧3)

)𝑘𝑖 , (4.1)

where 𝑘𝑖 represents the multiplicity of the eigenvalue 𝑖 of ad𝐻𝜆. Furthermore, we
have 𝑑𝑖𝑚𝔤 = 𝑘0 + 2(𝑘1 + 𝑘2 + 𝑘3).

Proof. In view of formula (1.2), we need to compute the eigenvalues of ad𝐻𝜆
and theirmultiplicities. If we choose the canonical basis to be aChevalley basis,
it is known that for 𝛽 ∈ Φ,

[𝐻𝜆, 𝐸𝛽] =< 𝛽, 𝜆 > 𝐸𝛽, 𝑤𝑖𝑡ℎ < 𝛽, 𝜆 >=
2(𝛽, 𝜆)
(𝜆, 𝜆)

,

where (𝛽, 𝜆) and (𝜆, 𝜆) are the canonical inner products. For 𝔤 is a simple Lie
algebra, the possible values for < 𝛽, 𝜆 > are 0, ±1, ±2, ±3. Since

𝔤 = 𝔥⊕
∑

𝛼∈Φ
ℂ𝐸𝛼, [𝐻𝜆, 𝔥] = 0,

for ad𝐻𝜆, we have all its possible eigenvalues being 0, ±1, ±2, ±3. Therefore,
formula (4.1) follows from formula (1.2). □

Remark 4.2. Let 𝔤, Φ be as above. For each root 𝛼, 𝛽 ∈ Φ, if 𝛼, 𝛽 have the same
length, there is an element 𝑔 of Weyl group with respect to 𝔤, such that 𝑔𝛼 = 𝛽,
which can be extended to an automorphism of 𝔤. By Corollary 2.5, we see that
the characteristic polynomial is invariant under 𝑔. Thus the tuple (𝑘0, 𝑘1, 𝑘2, 𝑘3)
of powers in (4.1) has at most two possible sets of values depending on whether
𝜆 being long or short.

Remark 4.3. Let {𝜖𝑖}𝑛𝑖=1 be the canonical basis ofℝ
𝑛. From [15], the root system

Φ of type C𝑛 can be realized in ℝ𝑛, and it consists of 2𝑛 long roots ±2𝜖𝑖 (1 ≤
𝑖 ≤ 𝑛) and 2𝑛2 − 2𝑛 short roots ±𝜖𝑖 ± 𝜖𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛), with simple roots
Π = {𝛼1,… , 𝛼𝑛} = {𝜖1 − 𝜖2,… , 𝜖𝑛−1 − 𝜖𝑛, 2𝜖𝑛}.



32 AMIN GENG, SHOUMIN LIU AND XUMINWANG

Theorem 4.4. Let 𝜙 ∶ 𝔰𝔩(2,ℂ) → 𝔤 be the Lie algebra embedding defined by
𝜙(ℎ) = 𝐻𝜆, 𝜙(𝑒1) = 𝐸𝜆, 𝜙(𝑒2) = 𝐸−𝜆 with 𝜆 ∈ Φ, where 𝔤 is the complex simple
Lie algebra of typeC𝑛. Suppose that ad◦𝜙 be the composition of 𝜙 and the adjoint
representation ad of 𝔏. Then

𝑓ad◦𝜙 = 𝑧2𝑛
2−3𝑛+2

0
(
𝑧20 − (𝑧21 + 𝑧2𝑧3)

)2𝑛−2 (
𝑧20 − 4(𝑧21 + 𝑧2𝑧3)

)
(4.2)

with 𝜆 being a long root, and

𝑓ad◦𝜙 = 𝑧2𝑛
2−7𝑛+10

0
(
𝑧20 − (𝑧21 + 𝑧2𝑧3)

)4𝑛−8 (
𝑧20 − 4(𝑧21 + 𝑧2𝑧3)

)3
(4.3)

with 𝜆 being a short root.

Proof. By Remark 4.2, without loss of generality, suppose that 𝜆=2𝜖𝑛 for the
long root case. By Theorem 4.1, it is natural to calculate themultiplicity of each
eigenvalue, whose possible values are 0,±1,±2. Through 2(𝛽,2𝜖𝑛)

(2𝜖𝑛 ,2𝜖𝑛)
, we can find

the number of 𝐸𝛽 for the eigenvalue < 𝛽, 𝛼 > by realizing Φ as in the Remark
4.3. Hence, it follows that 𝑘0 = 2𝑛2 − 3𝑛 + 2, 𝑘1 = 2𝑛 − 2, and 𝑘2 = 1.
In a similar way, we assume 𝜆=𝜖1 − 𝜖2 for the short root case. By calculating

2(𝛽,𝜖1−𝜖2)
(𝜖1−𝜖2,𝜖1−𝜖2)

, it can be seen that 𝑘0 = 2𝑛2 − 8𝑛 + 10, 𝑘1 = 4𝑛 − 8, and 𝑘2 = 3. So
the formulas follow from Theorem 4.1. □

We list the crucial values 𝑘0(including the dimension of the Cartan subal-
gebra), 𝑘1, 𝑘2, 𝑘3 in Table 1 for all types of simple Lie algebras. We call the
quadruple (𝑘0, 𝑘1, 𝑘2, 𝑘3) the power index for the embedding 𝜙 from 𝔰𝔩(2,ℂ)
into 𝔤. In the table, the letters 𝛼 and 𝛾 stand for a long root and a short root,
respectively.
From the table, it can be seen that once we know the the dimensions of the

Cartan subalgebras of the simple Lie algebras, then the table gives us enough
information to classify them into different types. Hence the corollary below
holds.

Corollary 4.5. Let 𝔤1 and 𝔤2 be two finite dimensional complex simple Lie alge-
bras, and 𝑓𝔤1 and 𝑓𝔤2 be the corresponding characteristic polynomials associated
to their adjoint representations, respectively. Then 𝔤1 is isomorphic to 𝔤2 if and
only if 𝑓𝔤1 = 𝑓𝔤2 up to a change of basis of 𝔤2.

Proof. By the Theorem 4.4, it is sufficient to prove that finite dimensional com-
plex simple Lie algebras can be distinguished by the power indices listed in the
Table 1.
We first start from type 𝐸8, whose power index is (134, 56, 1, 0), by the values of
𝑘1, 𝑘2, 𝑘3, the only possible types are 𝐴29 and 𝐷16. But the values 𝑘0 of type 𝐴29
and 𝐷16 are different. And by verifying type 𝐺2, 𝐹4, 𝐸6, 𝐸7 in the same way, we
see that their power indices are distinct.
For the type 𝐴𝑛 and 𝐷𝑚, we obtain two equations,

2𝑛 − 2 = 4𝑚 − 8, 𝑛2 − 2𝑛 + 2 = 2𝑚2 − 9𝑚 + 14.
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Table 1. 𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑘0, 𝑘1, 𝑘2, 𝑘3

𝑘0 𝑘1 𝑘2 𝑘3
𝑇𝑦𝑝𝑒 𝑅𝑜𝑜𝑡 < 𝛽, 𝛼 >=0 < 𝛽, 𝛼 >=1 < 𝛽, 𝛼 >=2 < 𝛽, 𝛼 >=3

𝐴𝑛 𝛼 𝑛2 − 2𝑛 + 2 2𝑛 − 2 1 0

𝐵𝑛
𝛼 2𝑛2 − 7𝑛 + 10 4𝑛 − 6 1 0

𝛾 2𝑛2 − 3𝑛 + 2 0 2𝑛 − 1 0

𝐶𝑛
𝛼 2𝑛2 − 3𝑛 + 2 2𝑛 − 2 1 0

𝛾 2𝑛2 − 7𝑛 + 10 4𝑛 − 8 3 0

𝐷𝑛 𝛼 2𝑛2 − 9𝑛 + 14 4𝑛 − 8 1 0

𝐺2
𝛼 4 4 1 0

𝛾 4 2 1 2

𝐹4
𝛼 22 14 1 0

𝛾 22 8 7 0

𝐸6 𝛼 36 20 1 0

𝐸7 𝛼 67 32 1 0

𝐸8 𝛼 134 56 1 0

And the solution is 𝑛 = 𝑚 = 3. For the type 𝐵𝑛 and 𝐶𝑚, in the similar way,
we have 𝑛 = 𝑚 = 2. Therefore the results coincide with the fact that 𝐴3 ≅ 𝐷3,
𝐵2 ≅ 𝐶2. □

5. Borel subalgebras, parabolic subalgebras and spectral matrix
In this section, we focus on the rank of spectral matrices and parabolic sub-

algebras. Let𝔏 be a subalgebra of 𝔤with a basisℬ = {𝜐1,… , 𝜐𝑛}. Hu and Zhang
obtained the following theorem in [14].

Theorem 5.1. 𝔏 is solvable if and only if the characteristic polynomial of 𝔏 is
completely reduciblewith respect to anyfinite dimensional representationandany
basis.

Definition 5.2. Let 𝔏 be a solvable Lie algebra with a basis ℬ = {𝜐1,… , 𝜐𝑛}
and 𝑓𝔏(𝑧) be its characteristic polynomial for the adjoint representation. By
Theorem 5.1, one may write

𝑓𝔏(𝑧) =
𝑛∏

𝑗=1
(𝑧0 +

𝑛∑

𝑖=1
𝜆𝑖𝑗𝑧𝑖) .
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The spectral matrix for 𝔏 with respect to the basis ℬ is defined as 𝜆𝔏=(𝜆𝑖𝑗)𝑛×𝑛,
namely

𝜆𝔏 =
⎛
⎜
⎝

𝜆11 ⋯ 𝜆1𝑛
⋮ ⋱ ⋮
𝜆𝑛1 ⋯ 𝜆𝑛𝑛

⎞
⎟
⎠
.

Definition 5.3. Let 𝔤 be a simple Lie Algebra, with 𝔥 being a Cartan subalgebra
of 𝔤, and Φ+ being the positive root system of 𝔤. A Borel subalgebra of 𝔤 is a
subalgebra

𝔟 = 𝔥⊕
∑

𝛼∈Φ+
ℂ𝐸𝛼,

which is themaximal solvable subalgebra of 𝔤. Any subalgebra𝔭 of 𝔤 containing
a Borel subalgebra is called a parabolic subalgebra of 𝔤.

By computing the characteristic polynomial of the Borel subalgebra of a sim-
ple Lie algebra, the theorem below follows.

Theorem 5.4. Suppose 𝔟 is a Borel subalgebra of 𝔤. Then rank𝜆𝔟 = dim𝔥.

Proof. Take a basis of {ℎ1,… , ℎ𝑛} for 𝔥, and suppose that ht(𝛼) is the height
of 𝛼 ∈ Φ+ relative to some set of simple roots. Arrange the positive roots in
Φ+ by their heights such that Φ+ = {𝛼1,… , 𝛼𝑠} with 𝑠 ≥ 𝑗 ≥ 𝑖 ≥ 1 indicates
ht(𝛼𝑗) ≥ ht(𝛼𝑖). Let 𝐸𝛼1 ,… , 𝐸𝛼𝑠 be the corresponding roots. Since

[𝔥, 𝔥] = 0,
[ℎ𝑖, 𝐸𝛼𝑗 ] = 𝛼𝑗(ℎ𝑖)𝐸𝛼𝑗 ,∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠,

[𝐸𝛼𝑖 , 𝐸𝛼𝑗 ] = 𝑁𝑖𝑗𝐸𝛼𝑖+𝛼𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 𝛼𝑖 + 𝛼𝑗 ∈ Φ+,

[𝐸𝛼𝑖 , 𝐸𝛼𝑗 ] = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 𝛼𝑖 + 𝛼𝑗 ∉ Φ+,

we see ht(𝛼𝑖 + 𝛼𝑗) > ht(𝛼𝑖) and ht(𝛼𝑖 + 𝛼𝑗) > ht(𝛼𝑗) if 𝛼𝑖 + 𝛼𝑗 ∈ Φ+. Under the
ordered basis ℬ = {ℎ1,… , ℎ𝑛, 𝐸𝛼1 ,… , 𝐸𝛼𝑠 }, we have that

adℎ𝑖 = (0 0
0 𝐴𝑖

) 𝑤𝑖𝑡ℎ 𝐴𝑖 =
⎛
⎜
⎝

𝛼1(ℎ𝑖) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼𝑠(ℎ𝑖)

⎞
⎟
⎠
,

ad𝐸𝛼𝑗 =
⎛
⎜
⎝

0𝐼𝑛×𝑛
⋮ ⋱
∗ ⋯ 0

⎞
⎟
⎠
,

and 𝑎𝑑𝐸𝛼𝑗 is a strict lower triangular matrix. Then the characteristic polyno-
mial for the adjoint representation with the ordered basis {ℎ1,… , ℎ𝑛, 𝐸𝛼1 ,
… , 𝐸𝛼𝑠 } of 𝔟 is

𝑓𝔟(𝑧) =
|||||||
𝑧0𝐼𝑛×𝑛 0
∗ 𝐶

|||||||
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with

𝐶 =
⎛
⎜
⎜
⎝

𝑧0 +
∑𝑛

𝑖=1 𝛼1(ℎ𝑖)𝑧𝑖 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑧0 +

∑𝑛
𝑖=1 𝛼𝑠(ℎ𝑖)𝑧𝑖

⎞
⎟
⎟
⎠

,

which implies

𝑓𝔟(𝑧) = 𝑧𝑛0
𝑠∏

𝑗=1
(𝑧0 +

𝑛∑

𝑖=1
𝛼𝑗(ℎ𝑖)𝑧𝑖) .

Therefore, we have

rank𝜆𝔟 = rank
⎛
⎜
⎜
⎝

0𝐼𝑛×𝑛
𝛼1(ℎ1) ⋯ 𝛼1(ℎ𝑛)
⋮ ⋱ ⋮

𝛼𝑠(ℎ1) ⋯ 𝛼𝑠(ℎ𝑛)

⎞
⎟
⎟
⎠

= dim𝔥.

□

Remark 5.5. It also can be obtained through the formula𝑅𝑎𝑛𝑘𝜆𝔟=dim 𝔟∕𝑁𝑖𝑙(𝔟)
([1, proposition 4.5]) by proving𝑁𝑖𝑙(𝔟)=

∑
𝛼∈Φ+ ℂ𝐸𝛼, which can be done by an-

alyzing its structure. For more information about the nilpotent radical 𝑁𝑖𝑙(𝔟),
we refer the reader to [17, Chapter 5].

Theorem 5.6. Let 𝔭 be a parabolic subalgebra of a complex simple Lie algebra
𝔤. Then 𝔭 is a Borel subalgebra if and only if its characteristic polynomial of any
finite dimensional representation is a product of linear factors.

Proof. If𝔭 is a Borel subalgebra of 𝔤, then𝔭 is solvable. By Lie’s Theorem, there
exists a basis of the complex linear space 𝑉 such that the matrix of 𝔭 is upper
triangular relative to the basis. Therefore the necessity holds. On the other
hand, byTheorem5.1, if the characteristic polynomial of a linear representation
of 𝔭 is a product of linear factors, then 𝔭 is solvable. □

Remark 5.7. From this paper, we see that the characteristic polynomials of the
representations of a complex simple Lie algebra have a profound meaning for
the representation monoidal category of the Lie algebra. There are many inter-
esting topics about these polynomials, such as how to present these polynomi-
als precisely, finding the link between the coefficients and the representations,
how to factorize the tensor products through the resolution products of their
characteristic polynomials and so on. Therefore, we need more efforts to work
on these topics.
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