New York Journal of Mathematics

New York J. Math. 30 (2024) 649-655.

Skew left braces and the Yang-Baxter equation

Lindsay N. Childs

Abstract

We give a self-contained, notation-friendly proof that a skew left brace yields a solution of the Yang-Baxter equation.

Contents

1. Introduction 649
2. The proof 650
References 654

1. Introduction

A skew left brace is a set $B=(B, \circ, \cdot)$ with two group operations that satisfy the single compatibility condition: for all x, y, z in B ,

$$
\text { (\#) } x \circ(y \cdot z)=(x \circ y) \cdot x^{-1} \cdot(x \circ z) \text {. }
$$

The inverse of x in (B, \circ) is denoted \bar{x} and in (B, \cdot) by x^{-1}. One easily checks from (\#) that the two groups (B, \circ) and (B, \cdot) share a common identity element, 1. (Let $x=z=1$ 。 and $y=1$. in (\#).)

Skew left braces were first defined by Guarneri and Vendramin in [GV17], generalizing the concept of left brace, a concept defined by W. Rump [Ru07] as a generalization of a radical ring.

The primary motivation behind the concept of a brace, and subsequently a skew brace, was to construct algebraic structures that yield set-theoretic solutions of the Yang-Baxter equation. Such a solution is a function $R: B \times B \rightarrow$ $B \times B$ on a set B that satisfies the equation

$$
(*): \quad(R \times i d)(i d \times R)(R \times i d)(a, b, c)=(i d \times R)(R \times i d)(i d \times R)(a, b, c) \text {. }
$$

for all a, b, c in B. This equation has been a question of considerable interest among algebraists since 1990 (motivated by [Dr92]. Solutions of the YBE have been constructed in various settings during the past 25 years (e. g. [LYZ00], [Ru07], [CJO14], [BCJ16]), but the only general descriptions of how a skew left brace yields a solution to the YBE appear in [GV17] and [Ba18].

[^0]Beyond their connection to the YBE, skew braces have also been shown in [SV18] to be very closely related to Hopf-Galois structures on Galois extensions of fields-see, for example, [CGK...21] and [ST23].

Skew braces and their role in giving solutions to the YBE were recently introduced to a broad American audience by Vendramin in [Ve24], adapted from a longer survey article [Ve23]. The latter refers only to [GV17] for the proof that a skew brace yields a solution of the YBE. But the proof in [GV17] is not self-contained-it refers to braiding operators, from [LYZ00], and does not explicitly mention Proposition 2.4, below, which is central to the proof.

The referee pointed out that [Ba16], hence [Ba18], gives a self-contained proof of the skew brace-YBE connection that includes Proposition 2.4. But the proofs in [GV17] and [Ba18] involve notation for functions of functions that require multiple layers of subscripts whose complexity obscures what is going on.
This note presents a straightforward, entirely self-contained and notationfriendly proof that a skew left brace yields a solution $R: B \times B \rightarrow B \times B$ of the form $R(x, y)=\left(\sigma_{x}(y), \tau_{y}(x)\right)$ for all x, y in B, where $\sigma_{x}(y)=x^{-1} \cdot(x \circ y)$ is the well-known λ-function (or γ-function, depending on author) associated to a skew brace, and $\tau_{y}(x)$ is defined by the equation that $\sigma_{x}(y) \circ \tau_{y}(x)=x \circ y$. Beyond this equation, the only facts needed for the proof are that $\sigma_{x}\left(\sigma_{y}(z)\right)=$ $\sigma_{x \circ y}(z)$ and $\tau_{y}\left(\tau_{x}(z)\right)=\tau_{x \circ y}(z)$ (Proposition 2.4), both of which we prove.

The proof of the σ-result is from [GV17]. The τ-result appears as Lemma 2.4 of [Ba18], but not explicitly in [GV17] and, as will be seen below, is a fundamental contributor to the proof of the main result. There is a proof of the τ result in [Ba18], but the proof below was obtained independently of [Ba18]. My thanks to the referee for the reference to [Ba16].

2. The proof

Given a skew brace $B=(B, \circ, \cdot)$, define $\sigma_{x}: B \rightarrow B$ by

$$
\sigma_{x}(y)=x^{-1} \cdot(x \circ y)
$$

for all x, y in B. Define

$$
\tau_{y}(x)=\overline{\sigma_{x}(y)} \circ x \circ y=\overline{x^{-1} \cdot(x \circ y)} \circ x \circ y .
$$

Then for all x, y in B, σ_{x} and τ_{y} are one-to-one maps from B to B, and by definition of $\tau_{y}(x), \sigma_{x}(y) \circ \tau_{y}(x)=\sigma_{x}(y) \circ\left(\overline{\sigma_{x}(y)} \circ x \circ y\right)=x \circ y$. Define

$$
R: B \times B \rightarrow B \times B
$$

by

$$
R(a, b)=\left(\sigma_{a}(b), \tau_{b}(a)\right)=\left(\sigma_{a}(b), \overline{\sigma_{a}(b)} \circ a \circ b\right) .
$$

for all a, b in B. Note that if $R(a, b)=(s, t)$, then $s \circ t=\sigma_{a}(b) \circ \tau_{b}(a)=a \circ b$.
We will prove:

Theorem 2.1. If B is a skew left brace and $R: B \times B \rightarrow B \times B$ is defined by $R(a, b)=\left(\sigma_{a}(b), \tau_{b}(a)\right)$ for a, b in B, then R is a solution of the Yang-Baxter equation: for all a, b, c in B,
$(*):(R \times i d)(i d \times R)(R \times i d)(a, b, c)=(i d \times R)(R \times i d)(i d \times R)(a, b, c)$.
Since σ_{a} and τ_{b} are one-to-one maps from B to B for all a, b in B, the solution R of the Yang-Baxter equation is nondegenerate.
Proof. Given a skew brace $B(\circ, \cdot)$, for x, y in B the maps $\sigma_{x}(y)=x^{-1} \cdot(x \circ y)$ and $\tau_{y}(x)=\overline{\sigma_{x}(y)} \circ x \circ y$ satisfy the following two properties for all x, y, z in B, as we show below:
(i): σ is a homomorphism from (B, \circ) to $\operatorname{Perm}(B)$: ,

$$
\sigma_{x \circ y}(z)=\sigma_{x}\left(\sigma_{y}(z)\right) ;
$$

(ii): τ is an anti-homomorphism from (B, o) to $\operatorname{Perm}(B)$:

$$
\tau_{z \circ y}(x)=\tau_{y}\left(\tau_{z}(x)\right) .
$$

Beside these two properties, the only other property we need is the property noted above:
(iii) if $R(u, v)=\left(\sigma_{u}(v), \tau_{v}(u)\right)=(y, z)$, then $u \circ v=y \circ z$.

These three properties suffice to show that R satisfies

$$
(R \times 1)(1 \times R)(R \times 1)(a, b, c)=(1 \times R)(R \times 1)(1 \times R)(a, b, c)(*),
$$

for all a, b, c in B, as follows.
The left side of $\left(^{*}\right)$ is:
$(R \times 1)(1 \times R)(R \times 1)(a, b, c)=(R \times 1)(1 \times R)(d, e, c)=(R \times 1)(d, f, g)=(h, k, g)$
where

$$
\begin{aligned}
& d=\sigma_{a}(b), e=\tau_{b}(a), \text { so } a \circ b=d \circ e, \\
& f=\sigma_{e}(c), g=\tau_{c}(e), \text { so } e \circ c=f \circ g,
\end{aligned}
$$

and

$$
h=\sigma_{d}(f), k=\tau_{f}(d), \text { so } d \circ f=h \circ k .
$$

The right side of $\left.{ }^{*}\right)$ is:
$(1 \times R)(R \times 1)(1 \times R)(a, b, c)=(1 \times R)(R \times 1)(a, q, r)=(1 \times R)(s, t, r)=(s, v, w)$, where

$$
\begin{aligned}
& q=\sigma_{b}(c), r=\tau_{c}(b), \text { so } b \circ c=q \circ r, \\
& s=\sigma_{a}(q), t=\tau_{q}(a), \text { so } a \circ q=s \circ t,
\end{aligned}
$$

and

$$
v=\sigma_{t}(r), w=\tau_{r}(t), \text { so } t \circ r=v \circ w \text {. }
$$

We want to show that $(h, k, g)=(s, v, w)$.
To show that $h=s$ uses property (i): $\sigma_{y \circ z}(x)=\sigma_{y}\left(\sigma_{z}(x)\right)$, as follows:

$$
\begin{aligned}
& s=\sigma_{a}(q)=\sigma_{a}\left(\sigma_{b}(c)\right)=\sigma_{a \circ b}(c) ; \\
& h=\sigma_{d}(f)=\sigma_{d}\left(\sigma_{e}(c)\right)=\sigma_{d \circ e}(c) ;
\end{aligned}
$$

and

$$
d \circ e=\sigma_{a}(b) \circ \tau_{b}(a)=a \circ b
$$

So

$$
h=\sigma_{d o e}(c)=\sigma_{a \circ b}(c)=s .
$$

To show that $w=g$ uses property (ii): $\tau_{z \circ y}(x)=\tau_{y}\left(\tau_{z}(x)\right)$, as follows:

$$
\begin{aligned}
g & =\tau_{c}(e) \\
w & =\tau_{c}\left(\tau_{b}(a)\right)=\tau_{b o c}(a) ; \\
w & =\tau_{r}(t)=\tau_{r}\left(\tau_{q}(a)\right)=\tau_{q \circ r}(a)
\end{aligned}
$$

and

$$
q \circ r=\sigma_{b}(c) \circ \tau_{c}(b)=b \circ c .
$$

So

$$
w=\tau_{q \circ r}(a)=\tau_{b o c}(a)=g .
$$

Finally, to show that $k=v$ we just use property (iii) many times, that for any u, v, if $R(u, v)=(m, n)$, then $m \circ n=u \circ v$:

The left side of equation $\left(^{*}\right)$ is (h, k, g); the right side is (s, v, w), and using all of the equalities above, we have that

$$
\text { sovow }=a \circ b \circ c=h \circ k \circ g:
$$

For

$$
\begin{aligned}
& s \circ(v \circ w)=s \circ\left(\sigma_{t}(r) \circ \tau_{r}(t)\right)=s \circ(t \circ r) \\
&=(s \circ t) \circ r=\left(\sigma_{a}(q) \circ \tau_{q}(a)\right) \circ r=(a \circ q) \circ r \\
&=a \circ(q \circ r)=a \circ\left(\sigma_{b}(c) \circ \tau_{c}(b)\right)=a \circ(b \circ c) ;
\end{aligned}
$$

while

$$
\begin{gathered}
(a \circ b) \circ c=\left(\sigma_{a}(b) \circ \tau_{b}(a)\right) \circ c=(d \circ e) \circ c \\
=d \circ(e \circ c)=d \circ\left(\sigma_{e}(c) \circ \tau_{c}(e)\right)=d \circ(f \circ g) \\
=(d \circ f) \circ g=\left(\sigma_{d}(f) \circ \tau_{f}(d)\right) \circ g=(h \circ k) \circ g .
\end{gathered}
$$

So sovow $=$ hokog. Since $w=g$, and $h=s$ in the group (B, \circ), it follows that $k=v$. Given properties (i) and (ii), that completes the proof.

To prove properties (i) and (ii) we need the following consequence of the compatibility condition (\#) for a skew brace (c.f. [GV17], Lemma 1.7 (2)):
Lemma 2.2. For all a, b in $B, a^{-1} \cdot\left(a \circ b^{-1}\right) \cdot a^{-1}=(a \circ b)^{-1}$.
Proof. The compatibility condition (\#) for a skew brace is that for all x, y, z in B,

$$
x \circ(y \cdot z)=(x \circ y) \cdot x^{-1} \cdot(x \circ z)
$$

hence

$$
x \cdot(x \circ y)^{-1} \cdot(x \circ(y \cdot z))=x \circ z
$$

or

$$
x \circ z=x \cdot(x \circ y)^{-1} \cdot(x \circ(y \cdot z)) .
$$

Set $x=a, y=b, z=b^{-1}$ to get

$$
a \circ b^{-1}=a \cdot(a \circ b)^{-1} \cdot a,
$$

or

$$
a^{-1} \cdot\left(a \circ b^{-1}\right) \cdot a^{-1}=(a \circ b)^{-1} .
$$

Here is property (i): it is Proposition 1.9 (2) of [GV17].
Proposition 2.3. For all x, y, z in B,

$$
\sigma_{x \circ y}(z)=\sigma_{x}\left(\sigma_{y}(z)\right) .
$$

Proof. (from [GV17]) The right side of

$$
\sigma_{x \circ y}(z)=\sigma_{x}\left(\sigma_{y}(z)\right)
$$

is

$$
\begin{aligned}
\sigma_{x}\left(\sigma_{y}(z)\right) & =x^{-1} \cdot\left(x \circ \sigma_{y}(z)\right) \\
& =x^{-1} \cdot\left(x \circ\left(y^{-1} \cdot(y \circ z)\right)\right) \\
& =x^{-1} \cdot\left(x \circ y^{-1}\right) \cdot x^{-1} \cdot(x \circ y \circ z) \quad(b y(\#))
\end{aligned}
$$

By Lemma 2.2, this is

$$
\begin{aligned}
& =(x \circ y)^{-1} \cdot(x \circ y \circ z) \\
& =\sigma_{x \circ y}(z) .
\end{aligned}
$$

(We note that [GV17] proves that given a set B with two group operations, and \circ, and $\sigma_{x}(y)=x^{-1} \cdot(x \circ y)$, then for all x, y, z in B,

$$
\sigma_{x}\left(\sigma_{y}(z)\right)=\sigma_{x o y}(z)
$$

if and only if the compatibility condition (\#) holds, if and only if B is a skew left brace: see Proposition 1.9 of [GV17].)

Finally, we prove property (ii):
Proposition 2.4. τ is an anti-homomorphism from (B, \circ) to Perm (B) : for all x, y, z in B,

$$
\tau_{y \circ z}(x)=\tau_{z}\left(\tau_{y}(x)\right)
$$

Proof. We begin with the definition of $\sigma_{x}(q)$:

$$
x^{-1} \cdot(x \circ y)=\sigma_{x}(y)
$$

Rearrange the equation and use that $x \circ y=\sigma_{x}(y) \circ \tau_{y}(x)$, to get:

$$
\sigma_{x}(y)^{-1} \cdot x^{-1}=\left(\sigma_{x}(y) \circ \tau_{y}(x)\right)^{-1}
$$

Apply the Lemma 2.2 formula, $\left.(a \circ b)^{-1}=a^{-1} \cdot\left(a \circ b^{-1}\right) \cdot a^{-1}\right)$ to the right side, to get:

$$
\sigma_{x}(y)^{-1} \cdot x^{-1}=\sigma_{x}(y)^{-1} \cdot\left(\sigma_{x}(y) \circ \tau_{y}(x)^{-1}\right) \cdot \sigma_{x}(y)^{-1}
$$

Cancel $\sigma_{x}(y)^{-1}$ on the left and multiply both sides by $\cdot(x \circ y \circ z)$ on the right:

$$
x^{-1} \cdot(x \circ y \circ z)=\left(\sigma_{x}(y) \circ \tau_{y}(x)^{-1}\right) \cdot \sigma_{x}(y)^{-1} \cdot(x \circ y \circ z)
$$

Apply the definition of σ to the left side and use that $x \circ y=\sigma_{x}(y) \circ \tau_{y}(x)$ on the right side:

$$
\sigma_{x}(y \circ z)=\left(\sigma_{x}(y) \circ \tau_{y}(x)^{-1}\right) \cdot \sigma_{x}(y)^{-1} \cdot\left(\sigma_{x}(y) \circ\left(\tau_{y}(x) \circ z\right)\right)
$$

Apply the skew brace formula (\#) to the right side:

$$
\sigma_{x}(y \circ z)=\sigma_{x}(y) \circ\left(\tau_{y}(x)^{-1} \cdot\left(\tau_{y}(x) \circ z\right)\right)
$$

Use the definition of σ on the far right side:

$$
\sigma_{x}(y \circ z)=\sigma_{x}(y) \circ \sigma_{\tau_{y}(x)}(z)
$$

Take the o-inverse of both sides, and multiply both sides by oxoyoz:

$$
\overline{\sigma_{x}(y \circ z)} \circ x \circ y \circ z=\overline{\sigma_{\tau_{y}(x)}(z)} \circ\left(\overline{\sigma_{x}(y)} \circ x \circ y\right) \circ z
$$

Use the definition of $\tau: \tau_{b}(a)=\sigma_{a}(b) \circ a \circ b$ on the right side:

$$
\overline{\sigma_{x}(y \circ z)} \circ x \circ(y \circ z)=\overline{\sigma_{\tau_{y}(x)}(z)} \circ \tau_{y}(x) \circ z
$$

then on both sides:

$$
\tau_{y \circ z}(x)=\tau_{z}\left(\tau_{y}(x)\right)
$$

So τ is an anti-homomorphism on (B, \circ).

References

[Ba16] BACHILLER, DAVID. Study of the algebraic structure of left braces and the YangBaxter equation. Ph.D. thesis, Universitat Autonoma de Barcelona, 2016. 650
[Ba18] BACHILLER, DAVID. Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks. J. Knot Theory Ramifications 27 (2018), no. 8, 185005, 36 pp. MR3835326, Zbl 1443.16040, arXiv:1611.08138, doi: 10.1142/S0218216518500554. 649, 650
[BCJ16] Bachiller, David; Cedó, Ferran; Jespers, Eric. Solutions of the Yang-Baxter equation associated with a left brace. J. Algebra 463 (2016), 80-102. MR3527540, Zbl 1348.16027, arXiv:1503.02814, doi: 10.1016/j.jalgebra.2016.05.024. 649
[CJO14] Cedó, Ferran; Jespers, Eric; Okniński, Jan. Braces and the Yang-Baxter equation. Comm. Math. Phys. 327 (2014), no. 1, 101-116. MR3177933, Zbl 1287.81062, arXiv:1205.3587, doi: 10.1007/s00220-014-1935-y. 649
[CGK...21] Childs, Lindsay N.; Greither, Cornelius; Keating, Kevin P.; Koch, Alan; Kohl, Timothy; Truman, Paul J.; Underwood, Robert G. Hopf algebras and Galois module theory. Mathematical Surveys and Monographs, 260. American Mathematical Society, Providence, RI, 2021. vii+31 pp. ISBN:978-1-4704-6516-2. MR4390798, Zbl 1489.16001, doi: 10.1090/surv/260. 650
[Dr92] Drinfel'd, Vladimir G. On some unsolved problems in quantum group theory. Quantum Groups (Leningrad, 1990), 1-8. Lecture Notes in Math., 1510. Springer-Verlag, Berlin, 1992. ISBN:3-540-55305-3. MR1183474, Zbl 0765.17014, doi: 10.1007/BFb0101175. 649
[GV17] Guarnieri, L.; Vendramin, Leandro. Skew braces and the Yang-Baxter equation. Math. Comp 86 (2017), no. 307, 2519-2534.; MR3647970, Zbl 1371.16037, arXiv:1511.03171, doi: $10.1090 / \mathrm{mcom} / 3161.649,650,652,653$
[LYZ00] Lu, Jiang-Hua; Yan, Min; Zhu, Yong-Chang. On the set-theoretical YangBaxter equation. Duke Math. J. 104 (2000), no. 1, 1-18. MR1769723, Zbl 0960.16043, doi: 10.1215/S0012-7094-00-10411-5. 649, 650
[Ru07] RUMP, WoLFGANG. Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra 307 (2007), no. 1, 153-170. MR2278047, Zbl 1115.16022, doi: 10.1016/j.jalgebra.2006.03.040. 649
[SV18] Smoktunowicz, Agata; Vendramin, Leandro. On skew braces (with an appendix by N. Byott and L. Vendramin). J. Comb. Algebra 2 (2018), no. 1, 47-86. MR3763907, Zbl 1416.16037, arXiv:1705.06958, doi: 10.4171/JCA/2-1-3. 650
[ST23] STEFANELLO, LORENZO; TRAPPENIERS, SENNE. On the connection between HopfGalois structures and skew braces. Bull. Lond. Math. Soc. 55 (2023), no. 4, 1726-1748. MR4623681, Zbl 07738097, arXiv:2206.07610v4, doi: 10.1112/blms.12815. 650
[Ve23] VENDRAMIN, LEANDRO. Skew braces: a brief survey. Preprint, 2023. arXiv:2311.07112v2. 650
[Ve24] VENDRAMIN, LEANDRO. What is ... a skew brace?. Notices Amer. Math. Soc. 71 (2024), no. 1, 65-67. MR4693602. 650
(Lindsay N. Childs) Department of Mathematics and Statistics, University at AlBANY, ALBANY, NY 12222, USA
lchilds@albany.edu
This paper is available via http://nyjm.albany.edu/j/2024/30-29.html.

[^0]: Received February 6, 2024.
 2010 Mathematics Subject Classification. 16T25, 16-02.
 Key words and phrases. skew left brace, solution of the Yang-Baxter equation.

