New York Journal of Mathematics

New York J. Math. 30 (2024) 625-648.

Canonical components of character varieties of double twist links J(2m + 1, 2m + 1)

Anh T. Tran and Nisha Yadav

ABSTRACT. We show that a certain smooth projective model of the canonical component of the $SL_2(\mathbb{C})$ -character variety of the double twist link J(2m + 1, 2m+1), where *m* is a positive integer, is the conic bundle over the projective line \mathbb{P}^1 which is isomorphic to the surface obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by repeating a one-point blow-up 6m + 3 times.

CONTENTS

2. Preliminaries6233. Proof of Theorem 16334. Blow-ups at singular points633Acknowledgements644References644	1.	Introduction	625
3. Proof of Theorem 1634. Blow-ups at singular points63Acknowledgements64References64	2.	Preliminaries	628
4. Blow-ups at singular points63'Acknowledgements64'References64'	3.	Proof of Theorem 1	631
Acknowledgements64'References64'	4.	Blow-ups at singular points	637
References 64'	Acknowledgements		647
References		647	

1. Introduction

For a complete finite-volume hyperbolic 3-manifold with cusps, the $SL_2(\mathbb{C})$ character variety of M, denoted by X(M), is a complex algebraic set associated to representations of $\pi_1(M)$ into $SL_2(\mathbb{C})$. Thurston [8] showed that any irreducible component of such a variety containing the character of a discrete faithful representation has complex dimension equal to the number of cusps of M. Such components are called canonical components and are denoted by $X_0(M)$. Character varieties have been important tools in studying the topology of M, and canonical components encode a lot of topological information about M. They contain subvarieties corresponding to Dehn fillings of M and their ideal points can be used to determine essential surfaces in M (see [1]).

Let J(k, l) denote the double twist knot/link indicated in Figure 1, where the integers k and l determine the number of half twists in the boxes; positive numbers correspond to right-handed twists and negative numbers correspond

Received June 9, 2023.

²⁰²⁰ Mathematics Subject Classification. Primary 57K31, Secondary 57K10.

Key words and phrases. Double twist link, character variety, canonical component, conic bundle, surface, blow up.

The first author has been supported by a grant from the Simons Foundation (#708778).

to left-handed twists. This is the rational knot/link C(k, -l) in the Conway's notation, which corresponds to the continued fraction [k, -l] = k - 1/l. It is a knot when kl is even and a two-component link when kl is odd. These are hyperbolic exactly when |k| and |l| are greater than one; the $J(\pm 1, l) = J(l, \pm 1)$ knot/links are torus knots/links.

FIGURE 1. The double twist knot/link J(k, l).

Character varieties of the J(k, l) knots and links were computed and analyzed in [6] and [7] respectively. For the Whitehead link 5_1^2 , which is J(3, 3), Landes [5] showed that a certain smooth projective model of the canonical component in $\mathbb{P}^2 \times \mathbb{P}^1$ is the conic bundle over the projective line \mathbb{P}^1 which is isomorphic to the surface obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by repeating a one-point blow-up nine times. Equivalently, it is isomorphic to the surface obtained from \mathbb{P}^2 by repeating a one-point blow-up ten times. Harada [2] proved similar results for the links 6_2^2 and 6_3^2 in the Rolfsen's table. Note that a blow-up of \mathbb{P}^2 at two points is isomorphic to a blow-up of $\mathbb{P}^1 \times \mathbb{P}^1$ at one point, although a blow-up of \mathbb{P}^2 at one point is not isomorphic $\mathbb{P}^1 \times \mathbb{P}^1$ (see e.g. [3, Example 7.22]).

In [7], Petersen and the first author generalized Landes' result to the double twist links J(3, 2m + 1) which contain the Whitehead link J(3, 3), and proved that a certain smooth projective model of the canonical component of J(3, 2m +1) in $\mathbb{P}^2 \times \mathbb{P}^1$ is the conic bundle over \mathbb{P}^1 which is isomorphic to the surface obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by repeating a one-point blow-up 9m times if $m \ge 1$, and -(9m + 6) times if $m \le -2$. An important step in proving this result is to show that each singular point of a certain singular projective model of the canonical component of J(3, 2m + 1) in $\mathbb{P}^2 \times \mathbb{P}^1$ requires only one blow-up to resolve. However, this step was assumed without proof in [7]. Note that Harada [2] proved that for the link 6_3^2 , which is not a double twist link, a certain singular projective model of the canonical component in $\mathbb{P}^2 \times \mathbb{P}^1$ has singular points which require more than one blow-up to resolve.

In this paper, we consider the hyperbolic double twist links J(2m + 1, 2m + 1) which also contain the Whitehead link J(3, 3), and identify their canonical components topologically. Since J(-(2m + 1), -(2m + 1)) is the mirror image

of J(2m + 1, 2m + 1), we only need to consider the case $m \ge 1$. We will show the following.

Theorem 1. The smooth projective model of the canonical component of the $SL_2(\mathbb{C})$ -character variety of the double twist link J(2m + 1, 2m + 1), $m \ge 1$, is the conic bundle over the projective line \mathbb{P}^1 which is isomorphic to the surface obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by repeating a one-point blow-up 6m + 3 times. Equivalently, it is isomorphic to the surface obtained from \mathbb{P}^2 by repeating a one-point blow-up 6m + 4 times.

Let us explain the meaning of the smooth projective model in Theorem 1 and sketch the proof. An affine model of the canonical component of the $SL_2(\mathbb{C})$ -character variety of the double twist link J(2m + 1, 2m + 1) is given by the zero set of a single polynomial in three complex variables, and it is known to be an affine surface birational to $\mathbb{C} \times \mathbb{C}$. (This fact actually holds true for all double twist links J(2m + 1, 2n + 1), by [7].) For affine complex surfaces, choosing the right projective completion is not obvious since different projective completions might result in non-isomorphic smooth projective models. In the case of the canonical component of the double twist link J(2m + 1, 2m + 1), choosing the projective completion in \mathbb{P}^3 seems natural. However, this projective model has infinitely many singular points. Following [5], we will choose the projective completion in $\mathbb{P}^2 \times \mathbb{P}^1$ which turns out to have finitely many singular points.

By compactifying the above affine model of the canonical component of J(2m + 1, 2m + 1) in $\mathbb{P}^2 \times \mathbb{P}^1$, we obtain a projective model, denoted by *S*, birational to $\mathbb{P}^1 \times \mathbb{P}^1$. This projective model is not smooth; it has singular points. By resolving singular points of the surface *S* (using one-point blow-ups), we obtain a smooth projective model, denoted by \tilde{S} . In this paper we refer to \tilde{S} as the smooth projective model of the canonical component of the SL₂(\mathbb{C})-character variety of J(2m + 1, 2m + 1).

The smooth projective model \tilde{S} is also birational to $\mathbb{P}^1 \times \mathbb{P}^1$. It is known that for two birational varieties the birational equivalence between them can be written as a sequence of blow-ups and blow-downs, see e.g. [4, Chapter 5]. Since $\mathbb{P}^1 \times \mathbb{P}^1$ is a minimal smooth projective surface (in the sense that it is not a blow-up of any smooth projective surface), we conclude that \tilde{S} is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ blown up at *N* points. Moreover, this isomorphism (i.e. this number *N*) can be determined from the Euler characteristic of \tilde{S} which, in turn, depends on the Euler characteristic and singular points of *S*.

An important part of the proof of Theorem 1 is to prove that each singular point of the singular projective model *S* requires only one blow-up to resolve, namely, the blow-up of *S* at each singular point is smooth everywhere except at the preimages of other singular points of *S*. A similar proof also works for J(3, 2m + 1) and therefore fixes the gap in [7]. The remaining of the proof is in the same line as those of [5, 7].

The paper is organized as follows. In Section 2 we review Chebyshev polynomials, character varieties of double twist links, and blowing up surfaces. In Section 3, we give a proof of Theorem 1 with the assumption that each singular

point of the projective model *S* of the canonical component of J(2m+1, 2m+1) requires only one blow-up to resolve (Proposition 3.4). Finally, we prove Proposition 3.4 in Section 4 and therefore complete the proof of Theorem 1.

2. Preliminaries

In this section, we first recall the definition of $SL_2(\mathbb{C})$ -character varieties of 3-manifolds. Then, we define Chebychev polynomials of the second kind and prove some of their properties. Next, we review character varieties of twocomponent double twist links from [7]. Finally, we recall the definition of blowing up varieties at a point.

2.1. Character varieties. Let *M* be a complete finite-volume hyperbolic 3manifold with cusps. The $SL_2(\mathbb{C})$ -character variety of *M* is the set of all characters of representations $\rho : \pi_1(M) \to SL_2(\mathbb{C})$. The character associated to ρ is $\chi_{\rho} : \pi_1(M) \to \mathbb{C}$ defined by $\chi_{\rho}(\gamma) = \operatorname{tr} \rho(\gamma)$.

Let X(M) denote the $SL_2(\mathbb{C})$ -character variety, that is

$$X(M) = \{ \chi_{\rho} \mid \rho : \pi_1(M) \to \mathrm{SL}_2(\mathbb{C}) \}.$$

The characters of reducible representations themselves form an algebraic set, which is a subset of X(M). The closure of the set of characters of irreducible representations will be denoted by $X_{irr}(M)$. Any irreducible component of X(M) which contains the character of a discrete faithful representation is contained in $X_{irr}(M)$ and is called a canonical component and denoted by $X_0(M)$.

Character varieties have been important tools in studying the topology of M, and canonical components encode a lot of topological information about M. They contain subvarieties corresponding to Dehn fillings of M and their ideal points can be used to determine essential surfaces in M (see [1]).

2.2. Chebychev polynomials. Let $S_k(z)$ be the Chebyshev polynomials of the second kind defined by $S_0(z) = 1$, $S_1(z) = z$ and $S_{k+1}(z) = zS_k(z) - S_{k-1}(z)$ for all integers k.

It is elementary to verify the following lemma by induction.

Lemma 2.1. (1) With $z = a + a^{-1}$ we have

$$S_k(z) = \frac{a^{k+1} - a^{-k-1}}{a - a^{-1}}$$

(2) For $k \ge 1$, the polynomial $S_k(z)$ has degree k and leading term z^k .

The following two lemmas can be verified by using Lemma 2.1.

Lemma 2.2. (1) For $k \ge 1$, the polynomial $S_k(z) - S_{k-1}(z)$ has exactly k distinct roots given by $z = 2 \cos \frac{(2j-1)\pi}{2k+1}$ where $1 \le j \le k$. (2) For $k \ge 1$, the polynomial $S_k(z) + S_{k-1}(z)$ has exactly k distinct roots given

(2) For $k \ge 1$, the polynomial $S_k(z) + S_{k-1}(z)$ has exactly k distinct roots given by $z = 2 \cos \frac{2j\pi}{2k+1}$ where $1 \le j \le k$.

Lemma 2.3. For any integer k we have

$$S_k^2(z) + S_{k-1}^2(z) - zS_k(z)S_{k-1}(z) = 1.$$

We now prove the following two lemmas.

Lemma 2.4. For $k \ge 1$, the polynomial $2z + (z^2 - 4)S_{k-1}(z)S_k(z)$ has exactly 2k + 1 distinct roots given by $z = 2\cos\frac{(2j-1)\pi}{2k}$ $(1 \le j \le k)$ and $z = 2\cos\frac{(2j-1)\pi}{2k+2}$ $(1 \le j \le k+1)$. In particular, it is a separable polynomial in $\mathbb{C}[z]$.

Proof. Let $P(z) = 2z + (z^2 - 4)S_{k-1}(z)S_k(z)$. Consider $z = a + a^{-1}$ where $a \neq \pm 1$. Since $S_j(z) = \frac{a^{j+1} - a^{-j-1}}{a - a^{-1}}$ we have

$$P = 2(a + a^{-1}) + (a^2 + a^{-2} - 2)\frac{a^k - a^{-k}}{a - a^{-1}}\frac{a^{k+1} - a^{-k-1}}{a - a^{-1}}$$

= $a + a^{-1} + a^{2k+1} + a^{-2k-1}$
= $(a^k + a^{-k})(a^{k+1} + a^{-k-1}).$

Note that P = 0 if $a^{2k} = -1$ or $a^{2k+2} = -1$. Moreover, these two equations do not have any common roots. This implies that $z = 2\cos\frac{(2j-1)\pi}{2k}$, $1 \le j \le k$, and $z = 2\cos\frac{(2j-1)\pi}{2k+2}$, $1 \le j \le k+1$, are distinct roots of *P*. Since the degree of *P* is exactly 2k + 1, these are all the roots of *P*. Therefore, *P* is separable in $\mathbb{C}[z]$.

Lemma 2.5. For any integer k we have

$$\frac{dS_k(z)}{dz} = \frac{kS_{k+1}(z) - (k+2)S_{k-1}(z)}{z^2 - 4}.$$

Proof. Write $z = a + a^{-1}$. Then $S_k(z) = \frac{a^{k+1} - a^{-k-1}}{a - a^{-1}}$ and so

$$\frac{dS_k(z)}{dz} = \frac{dS_k(z)}{da} / \frac{dz}{da}$$

$$= \frac{(k+1)(a^k + a^{-k-2})(a - a^{-1}) - (a^{k+1} - a^{-k-1})(1 + a^{-2})}{(a - a^{-1})^2(1 - a^{-2})}$$

$$= \frac{k \frac{a^{k+1} - a^{-k-3}}{1 - a^{-2}} - (k+2) \frac{a^{k-1} - a^{-k-1}}{1 - a^{-2}}}{z^2 - 4}.$$

The lemma follows, since $\frac{a^{j}-a^{-j-2}}{1-a^{-2}} = \frac{a^{j+1}-a^{-j-1}}{a-a^{-1}} = S_j(z).$

2.3. Double twist links. Recall that J(k, l) is the double twist knot/link indicated in Figure 1. It is a knot when kl is even and a two-component link when kl is odd. The knot/link J(k, l) is hyperbolic exactly when |k| and |l| are greater than one; the $J(\pm 1, l) = J(l, \pm 1)$ knot/links are torus knots/links. Let X(k, l) denote the SL₂(\mathbb{C})-character variety of $S^3 \setminus J(k, l)$ and $X_0(k, l)$ its canonical component.

Character varieties of the J(k, l) knots and links were computed in [6] and [7] respectively. We now review the computation for the J(k, l) links with two components, so both k and l are odd. Suppose k = 2m + 1 and l = 2n + 1. By [6], the link group of J(k, l) is $\pi_1(k, l) = \pi_1(S^3 \setminus J(k, l))$ and has presentation

$$\pi_1(k,l) = \langle a,b \mid aw_k^n b = w_k^{n+1} \rangle$$

where $w_k = (ab^{-1})^m ab(a^{-1}b)^m$. This is the Wirtinger presentation of a link diagram.

For a word *u* in two letters *a* and *b*, let \tilde{u} denote the word obtained from *u* by writing the letters in *u* in reversed order. By [7], the above presentation of the link group of J(k, l) can be rewritten as

$$\pi_1(k,l) = \langle a,b \mid r = \dot{r} \rangle$$

where $r = w_{k}^{n} (ab^{-1})^{m}$.

For a representation $\rho : \pi_1(k,l) \to SL_2(\mathbb{C})$, we let $x = \operatorname{tr} \rho(a), y = \operatorname{tr} \rho(b)$ and $z = \operatorname{tr} \rho(ab^{-1})$. Then, by [9, Thm. 1] the algebraic set X(k,l) is exactly the zero set of $\phi(x, y, z) = \operatorname{tr} \rho(rab) - \operatorname{tr} \rho(\bar{r}ab) \in \mathbb{C}[x, y, z]$. Moreover, by [7], this polynomial can be written in terms of Chebyshev polynomials as

$$\phi(x, y, z) = (xyz + 4 - x^2 - y^2 - z^2)(S_n(t)S_{m-1}(z) - S_{n-1}(t)S_m(z)),$$

where

$$t = \operatorname{tr} \rho(w_k) = xy - z + (xyz + 4 - x^2 - y^2 - z^2)S_m(z)S_{m-1}(z).$$

The character variety X(k, l) is clearly reducible. The vanishing set of $xyz + 4-x^2-y^2-z^2 \in \mathbb{C}[x, y, z]$ is the set of characters of reducible representations of $\pi_1(k, l)$ into $SL_2(\mathbb{C})$. An affine model for the algebraic set $X_{irr}(k, l)$ is the vanishing set of $S_n(t)S_{m-1}(z) - S_{n-1}(t)S_m(z) \in \mathbb{C}[x, y, z]$. Then we have the following.

Theorem 2.6. [7] Let k = 2m + 1 and l = 2n + 1. The algebraic set $X_{irr}(k, l)$ is birational to $C(k, l) \times \mathbb{C}$ where the curve C(k, l) is given by

$$C(k,l) = \{(t,z) \in \mathbb{C}^2 \mid S_n(t)S_{m-1}(z) - S_{n-1}(t)S_m(z) = 0\}.$$

If $k \neq l$ then C(k, l) is irreducible and $X_0(k, l) = X_{irr}(k, l)$ is birational to $C(k, l) \times \mathbb{C}$.

The curve C(3,3) = C(-3,-3) is given by t = z. If k = l and |l| > 3 then C(l, l) is the union of exactly two irreducible components: $C_0(l, l)$, given by t = z, and $C_1(l, l)$, the scheme-theoretic complement of $C_0(l, l)$ in C(l, l). The algebraic set $X_{irr}(l, l)$ is given by the union $X_0(l, l) \cup X_1(l, l)$, where $X_0(l, l)$ is birational to $C_0(l, l) \times \mathbb{C}$ and $X_1(l, l)$ is birational to $C_1(l, l) \times \mathbb{C}$.

2.4. One-point blow-ups. Blowing up varieties is a standard tool for resolving singular points of surfaces. Since blowing up is a local process, it can be done in affine neighborhoods. For our purpose, understanding blowing up subvarieties of \mathbb{A}^n at a point should be sufficient. For more details about blow-ups, see [3] and [4].

Blowing up \mathbb{A}^n at a point $p \in \mathbb{A}^n$ can be described as replacing p by a copy of \mathbb{P}^{n-1} . To be precise, by taking x_1, \dots, x_n as affine coordinates for \mathbb{A}^n and y_1, \dots, y_n as projective coordinates for \mathbb{P}^{n-1} , the blow-up of \mathbb{A}^n at a point $p = (p_1, \dots, p_n)$ is the closed subvariety

$$Y = \{((x_1, \dots, x_n), [y_1: \dots: y_n]) \mid (x_i - p_i)y_j = (x_j - p_j)y_i \text{ for all } 1 \le i, j \le n\}$$

of $\mathbb{A}^n \times \mathbb{P}^{n-1}$. This blow-up comes with a natural map $\gamma : Y \to \mathbb{A}^n$ which is simply the projection onto the first factor. The preimage of any point $(x_1, \dots, x_n) \neq (p_1, \dots, p_n) \in \mathbb{A}^n$ is precisely one point in *Y*. However, the preimage of $(x_1, \dots, x_n) = (p_1, \dots, p_n)$ is the subset set $\{(p_1, \dots, p_n)\} \times \mathbb{P}^{n-1}$ of *Y*. Since $\gamma|_{Y\setminus\gamma^{-1}(p)} : Y\setminus\gamma^{-1}(p) \to \mathbb{A}^n\setminus\{p\}$ is an isomorphism, γ is a birational map and \mathbb{A}^n is birational to *Y*.

To blow up a subvariety $X \subset \mathbb{A}^n$ at a point *p*, we first take the blow-up *Y* of \mathbb{A}^n at *p*. Then the blow-up of *X* at *p* is the Zariski closure of $\gamma^{-1}(X \setminus p)$ in *Y*.

In this paper, we obtain smooth projective models of singular projective surfaces by blowing them up at their singular points.

3. Proof of Theorem 1

Let *m* be a positive integer and l = 2m+1. By Theorem 2.6, an affine model of the canonical component $X_0(l, l)$ of the $SL_2(\mathbb{C})$ -character variety of the double twist link J(l, l) is the zero set of the polynomial $t - z \in \mathbb{C}[x, y, z]$, where

$$t = xy - z + (xyz + 4 - x^{2} - y^{2} - z^{2})S_{m}(z)S_{m-1}(z).$$

Moreover, it is birational to $C_0(l, l) \times \mathbb{C}$ where $C_0(l, l) = \{(t, z) \in \mathbb{C}^2 \mid t = z\}$. In particular, $X_0(l, l)$ is birational to $\mathbb{C} \times \mathbb{C}$.

3.1. Projective model. We begin by homogenizing the defining polynomial for $X_0(l, l)$.

Let
$$T_k = T_k(z, w) = w^k S_k(\frac{z}{w})$$
 for $k \ge 0$.

Lemma 3.1. For $k \ge 1$ we have

$$\begin{array}{l} (1) \ T_k(z,0) = z^k, \\ (2) \ T_k^2 + w^2 T_{k-1}^2 - z \ T_k T_{k-1} = w^{2k}, \\ (3) \ w^{2k} + (z \pm 2w) T_k T_{k-1} = (T_k \pm w \ T_{k-1})^2. \end{array}$$

Proof. (1) follows from Lemma 2.1(2).

(2) follows from Lemma 2.3.

(2) follows from Lemma 2.3. (3) From (2), we have $w^{2k} + z T_k T_{k-1} = T_k^2 + w^2 T_{k-1}^2$. Hence, $w^{2k} + (z \pm 2w)T_k T_{k-1} = T_k^2 + w^2 T_{k-1}^2 \pm 2w T_k T_{k-1} = (T_k \pm w T_{k-1})^2$.

The homogenization of the defining polynomial $t - z = xy - 2z + (xyz + 4 - x^2 - y^2 - z^2)S_m(z)S_{m-1}(z)$ in $\mathbb{P}^2 \times \mathbb{P}^1 = \{([x : y : u], [z : w])\}$ is

$$F = (xyw - 2u^2z)w^{2m} + (xyzw + 4u^2w^2 - x^2w^2 - y^2w^2 - u^2z^2)T_mT_{m-1}$$

3.2. Singular points. We now determine the singular points of the projective model of $X_0(l, l)$. To do this, we consider solutions $([x : y : u], [z : w]) \in \mathbb{P}^2 \times \mathbb{P}^1$ of $F = F_x = F_y = F_u = F_z = F_w = 0$.

First, we compute these partial derivatives by direct calculations.

Lemma 3.2. The first order partial derivatives of F are given by

$$\begin{split} F_x &= \left(yw^{2m} + (yz - 2xw)T_mT_{m-1}\right)w, \\ F_y &= \left(xw^{2m} + (xz - 2yw)T_mT_{m-1}\right)w, \\ F_u &= -2u\left(2zw^{2m} + (z^2 - 4w^2)T_mT_{m-1}\right), \\ F_z &= -2u^2w^{2m} + (xyw - 2u^2z)T_mT_{m-1} \\ &+ (xyzw + 4u^2w^2 - x^2w^2 - y^2w^2 - u^2z^2)(T_mT_{m-1})_z, \\ F_w &= (2m+1)xyw^{2m} - 4mu^2zw^{2m-1} + (xyz + 8u^2w - 2x^2w - 2y^2w)T_mT_{m-1} \\ &+ (xyzw + 4u^2w^2 - x^2w^2 - y^2w^2 - u^2z^2)(T_mT_{m-1})_w. \end{split}$$

We can now determine the singular points.

Proposition 3.3. The singular points $([x : y : u], [z : w]) \in \mathbb{P}^2 \times \mathbb{P}^1$ of *F* are

 $\begin{array}{l} \bullet \ s_1 = ([0:\ 1:\ 0], [1:\ 0]), \\ \bullet \ s_2 = ([1:\ 0:\ 0], [1:\ 0]), \\ \bullet \ s_3^{(k)} = \left([1:\ 1:\ 0], [z_3^{(k)}:\ 1] \right), \ where \ z_3^{(k)} = 2\cos\frac{(2k-1)\pi}{2m+1}, \ 1 \le k \le m, \\ \bullet \ s_4^{(k)} = \left([1:\ -1:\ 0], [z_4^{(k)}:\ 1] \right), \ where \ z_4^{(k)} = 2\cos\frac{2k\pi}{2m+1}, \ 1 \le k \le m. \end{array}$

The number of singular points is 2m + 2.

Proof. Consider the equations $F = F_x = F_y = F_u = F_z = F_w = 0$. We break the analysis down into two cases: w = 0 and $w \neq 0$.

<u>Case 1</u>: w = 0. We can assume z = 1. Note that $T_k(1,0) = 1$ for all $k \ge 1$. By Lemma 3.2, we have $F_x = F_y = 0$, $F = -u^2$ and $F_u = -2u$. Then $F = F_u = 0$ are equivalent to u = 0. Now we have $F_z = 0$ and $F_w = xy$. Thus $F_w = 0$ becomes xy = 0. In this case, there are two singular points ([0:1:0], [1:0]) and ([1:0:0], [1:0]).

<u>Case 2</u>: $w \neq 0$. In this case, we first solve $F_x = F_y = 0$ and then $F = F_u = 0$. Finally, we show that the equations $F_z = F_w = 0$ follow from $F = F_x = F_y = F_u = 0$.

Since $w \neq 0$, we can assume w = 1. We first claim that $(x, y) \neq (0, 0)$. Indeed, assuming (x, y) = (0, 0) we have

$$F = -2z + (4 - z^2)S_{m-1}(z)S_m(z).$$

By Lemma 2.4, this polynomial is separable in $\mathbb{C}[z]$, so the equations $F = F_z = 0$ cannot occur. Hence, $(x, y) \neq (0, 0)$.

Consider the equations $F_x = F_y = 0$. By Lemma 2.3, we have $S_m^2(z) +$ $S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$. This implies that $(z) - y(S^2(z) + S^2(z)) - 2xS_m(z)$

$$F_x = y + (yz - 2x)S_m(z)S_{m-1}(z) = y(S_m^2(z) + S_{m-1}^2(z)) - 2xS_m(z)S_{m-1}(z),$$

$$F_y = x + (xz - 2y)S_m(z)S_{m-1}(z) = x(S_m^2(z) + S_{m-1}^2(z)) - 2yS_m(z)S_{m-1}(z),$$

Hence,

$$2S_m(z)S_{m-1}(z)F_x + (S_m^2(z) + S_{m-1}^2(z))F_y = x \left(S_m^2(z) - S_{m-1}^2(z)\right)^2,$$

$$2S_m(z)S_{m-1}(z)F_y + (S_m^2(z) + S_{m-1}^2(z))F_x = y \left(S_m^2(z) - S_{m-1}^2(z)\right)^2.$$

Since x and y are not simultaneously equal to 0, the equations $F_x = F_y =$ 0 imply that $S_m^2(z) - S_{m-1}^2(z) = 0$. We now consider the subcases $S_m(z) - S_{m-1}(z) = 0$ and $S_m(z) + S_{m-1}(z) = 0$ separately.

Subcase 2a: $S_m(z) - S_{m-1}(z) = 0$. By Lemma 2.2, $z = 2 \cos \frac{(2k-1)\pi}{2m+1}$ for some $1 \le k \le m$. From $S_m^2(z) + S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$ and $S_m(z) - S_{m-1}(z) = 1$ 0, we have $S_m^2(z) = \frac{1}{2-z}$. This implies that $F_x = \frac{2(y-x)}{2-z}$ and $F_y = \frac{2(x-y)}{2-z}$. Hence, $F_x = F_y = 0$ are equivalent to x = y. Since $S_m^2(z) = \frac{1}{2-z}$, we have $F = u^2(2-z)$ and $F_u = 2u(2 - z)$. Hence, $F = F_u = 0$ are equivalent to u = 0. Then, by Lemma 3.2 we have

$$\begin{split} F_z &= \left[S_m(z) S_{m-1}(z) + (z-2) (S_m(z) S_{m-1}(z))' \right] x^2 \\ F_w &= \left[(2m+1) + (z-4) S_m(z) S_{m-1}(z) + (z-2) (T_m T_{m-1})_w \right] x^2. \end{split}$$

We claim that $F_z = F_w = 0$. Indeed, by taking derivative of the identity $S_m^2(z) + S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$ and using $S_m(z) = S_{m-1}(z)$, we get $(2-z)(S'_m(z) + S'_{m-1}(z)) = S_m(z)$. It follows that $F_z = 0$.

Similarly, by taking partial derivative w.r.t. w of the identity $T_m^2 + w^2 T_{m-1}^2 - w^2 T_m^2$ $zT_mT_{m-1} = w^{2m}$ (by Lemma 3.1(2)) and using $S_m(z) = S_{m-1}(z)$, we get

$$(2-z)((T_m)_w + (T_{m-1})_w)S_m(z) + 2S_m^2(z) = 2m.$$

It follows that

 $(2m+1) + (z-4)S_m(z)S_{m-1}(z) + (z-2)(T_mT_{m-1})_w = 1 + (z-2)S_m^2(z) = 0.$ Hence, $F_w = 0$.

We have proved that the singular points in this subcase are ([1:1:0], [z:1])

where $z = 2 \cos \frac{(2k-1)\pi}{2m+1}$ for some $1 \le k \le m$. Subcase 2b: $S_m(z) + S_{m-1}(z) = 0$. Similar to the above, singular points in this subcase are ([1: -1: 0], [z: 1]) where $z = 2 \cos \frac{2k\pi}{2m+1}$ for some $1 \le k \le m$. \Box

Let $S = \mathcal{Z}(F) \subset \mathbb{P}^2 \times \mathbb{P}^1$ be the vanishing set of *F*.

Proposition 3.4. Each singular point p of S requires only one blow-up to resolve. Namely, the blow-up of S at p is smooth everywhere except at the preimages of other singular points $q \neq p$ of S.

We will prove Proposition 3.4 in the last section.

3.3. Euler characteristic. As in [5], to compute the Euler characteristic $\chi(S)$ we observe that $F = G + u^2 H$, where G, H are polynomials independent of u. Explicitly,

$$G = xyw^{2m+1} + (xyzw - x^2w^2 - y^2w^2)T_mT_{m-1}$$

$$H = -2zw^{2m} + (4w^2 - z^2)T_mT_{m-1}.$$

Recall that $T_k = T_k(z, w) = w^k S_k(\frac{z}{w}) \in \mathbb{C}[z, w]$. By Lemma 3.1(2), we have $T_m^2 + w^2 T_{m-1}^2 - z T_m T_{m-1} = w^{2m}$. Hence, we can write

$$G = (x T_m - y w T_{m-1})(y T_m - x w T_{m-1})w.$$

Due to the special form of *F* as above, we introduce the rational map

$$\varphi: S = \mathcal{Z}(F) \hookrightarrow \mathbb{P}^2 \times \mathbb{P}^1 \dashrightarrow \mathbb{P}^1 \times \mathbb{P}^1$$

defined by $([x : y : u], [z : w]) \mapsto ([x : y], [z : w])$. This will play an important role in the computation of $\chi(S)$.

We first determine the domain of φ .

Lemma 3.5. The domain of φ is the set $U = S \setminus A$, where A is the set of points ([0:0:1], [z:1]) in $\mathbb{P}^2 \times \mathbb{P}^1$ satisfying $-2z + (4-z^2)S_m(z)S_{m-1}(z) = 0$.

Proof. The map φ is not defined at points of the set

$$A = \{ ([0:0:1], [z:w]) \in \mathbb{P}^2 \times \mathbb{P}^1 \mid F = 0 \} \subset S.$$

When (x, y, u) = (0, 0, 1) we have G = 0 and so F = H. If (z, w) = (1, 0)then $H = -T_m(1, 0)T_{m-1}(1, 0) = -1 \neq 0$. If w = 1 then $H = -2z + (4 - z^2)S_m(z)S_{m-1}(z)$. Hence, A is equal to the set of points ([0:0:1], [z:1]) in $\mathbb{P}^2 \times \mathbb{P}^1$ satisfying $-2z + (4 - z^2)S_m(z)S_{m-1}(z) = 0$.

Note that the set A has cardinality 2m + 1. We next determine the image $\varphi(U)$.

Lemma 3.6. We have

$$\varphi(U) = \mathbb{P}^1 \times \mathbb{P}^1 - B,$$

where *B* is the set of points $([x : y], [z : 1]) \in \mathbb{P}^1 \times \mathbb{P}^1$ satisfying $-2z + (4 - z^2)S_m(z)S_{m-1}(z) = 0$ and $(xS_m(z) - yS_{m-1}(z))(yS_m(z) - xS_{m-1}(z)) \neq 0$.

Proof. Note that a point $([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1$ is not in the image $\varphi(U)$ if and only if $F([x : y : u], [z : w]) \in \mathbb{C}[u]$ is a nonzero constant. This is equivalent to H = 0 and $G \neq 0$. Recall that $G = (x T_m - yw T_{m-1})(y T_m - xw T_{m-1})w$.

Since $G \neq 0$, we have $w \neq 0$. We can assume w = 1, so $H = -2z + (4 - z^2)S_m(z)S_{m-1}(z)$ and $G = (xS_m(z) - yS_{m-1}(z))(yS_m(z) - xS_{m-1}(z))$. The lemma then follows.

Lemma 3.7. We have

$$\chi(B)=0.$$

Proof. Let $P(z) = -2z + (4-z^2)S_m(z)S_{m-1}(z)$. By Lemma 2.4, P(z) is separable in $\mathbb{C}[z]$. Moreover, by Lemma 2.2, P(z) and $S_m(z) \pm S_{m-1}(z)$ do not share any common roots. Hence, if P(z) = 0 then $S_m(z) \neq \pm S_{m-1}(z)$. We have

$$B = \bigsqcup_{z \in \mathcal{Z}(P)} (\mathbb{P}^1 \setminus \{ [S_m(z) : S_{m-1}(z)], [S_{m-1}(z) : S_m(z)] \}) \times \{ [z : 1] \}$$

Since \mathbb{P}^1 with two points removed has Euler characteristic zero, we obtain $\chi(B) = 0$.

Let $C = \mathcal{Z}(G)$ be the zero set of G in $\mathbb{P}^1 \times \mathbb{P}^1$.

Lemma 3.8. We have

$$\chi(C) = 4 - 2m.$$

Proof. To compute the Euler characteristic of *C*, we write $C = C_1 \cup C_2 \cup C_3$ where C_i 's are subsets of $\mathbb{P}^1 \times \mathbb{P}^1$ defined by

$$C_1 = \mathcal{Z}(w) = \mathbb{P}^1 \times \{(1:0)\},\$$

$$C_2 = \mathcal{Z}(x T_m - yw T_{m-1}),\$$

$$C_3 = \mathcal{Z}(y T_m - xw T_{m-1}).$$

Note that $C_1 \cap C_2 = \{([1:0], [1:0])\}$ and $C_1 \cap C_3 = \{([0:1], [1:0])\}$. Moreover, $([x:y], [z:w]) \in C_2 \cap C_3$ if and only if x = y and $T_m = w T_{m-1}$, or x = -y and $T_m = -w T_{m-1}$. If (z, w) = (1, 0) then $T_k = 1$ and so $T_m \neq \pm w T_{m-1}$. If w = 1 then the equation $T_m = \pm w T_{m-1}$ is equivalent to $S_m(z) = \pm S_{m-1}(z)$. Hence,

$$\begin{split} C_2 \cap C_3 &= \{([1:1], [z:1]) \mid S_m(z) - S_{m-1}(z) = 0\} \\ & \bigcup \{([1:-1], [z:1]) \mid S_m(z) + S_{m-1}(z) = 0\}, \end{split}$$

which has cardinality 2m. Hence,

$$\chi(C) = \chi(C_1) + \chi(C_2) + \chi(C_3) - \chi(C_1 \cap C_2) - \chi(C_1 \cap C_3) - \chi(C_2 \cap C_3) + \chi(C_1 \cap C_2 \cap C_3) = 2 + 2 + 2 - 1 - 1 - 2m + 0 = 4 - 2m.$$

Note that $C_1 \cap C_2 \cap C_3 = \emptyset$.

We are now ready to compute the Euler characteristic of the surface $S = \mathcal{Z}(F)$.

Proposition 3.9. We have

$$\chi(S) = 4m + 5.$$

Proof. Recall that $F = G + u^2 H$, where G, H are polynomials independent of u, and $\varphi \colon S \hookrightarrow \mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1$ is defined by $([x \colon y \colon u], [z \colon w]) \mapsto ([x \colon y], [z \colon w])$.

Note that $\chi(S) = \chi(U) + \chi(A)$. Since *A* is a finite set of cardinality 2m + 1, we have $\chi(A) = 2m + 1$. To compute $\chi(U)$ we notice that a fixed point $([x : y], [z : w]) \in \varphi(U) = (\mathbb{P}^1 \times \mathbb{P}^1) \setminus B$ has

- a two-element preimage if $G \neq 0$ and $H \neq 0$,
- a one-element preimage if G = 0 and $H \neq 0$, and
- an infinite preimage isomorphic to the affine line \mathbb{A}^1 if G = 0 and H =0.

where $B = \{([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1 | G \neq 0, H = 0\}.$

Recall that $C = \{([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G = 0\} \subset \mathbb{P}^1 \times \mathbb{P}^1$. Let $L = \{ ([x : y], [z : w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G = 0, H = 0 \}.$ Note that

$$\{ ([x: y], [z: w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G \neq 0, H \neq 0 \} = \varphi(U) \setminus C, \\ \{ ([x: y], [z: w]) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid G = 0, H \neq 0 \} = C \setminus L.$$

Note that $\varphi(U)$ is the disjoint union of three subsets $\varphi(U) \setminus C, C \setminus L$ and L. Hence, $U = \varphi^{-1}(\varphi(U))$ can be written as the disjoint union of three subsets $\varphi^{-1}(\varphi(U) \setminus C), \varphi^{-1}(C \setminus L)$ and $\varphi^{-1}(L)$. Since

$$\begin{split} \chi(\varphi^{-1}(\varphi(U) \setminus C)) &= 2\chi(\varphi(U) \setminus C), \\ \chi(\varphi^{-1}(C \setminus L)) &= \chi(C \setminus L), \\ \chi(\varphi^{-1}(L)) &= |L|\chi(\mathbb{A}^1) = |L| = \chi(L). \end{split}$$

we have

$$\begin{split} \chi(U) &= 2\chi(\varphi(U) \setminus C) + \chi(C \setminus L) + \chi(L) \\ &= 2\chi(\mathbb{P}^1 \times \mathbb{P}^1 \setminus (B \sqcup C)) + \chi(C) \\ &= (2\chi(\mathbb{P}^1 \times \mathbb{P}^1) - 2\chi(B) - 2\chi(C)) + \chi(C) \\ &= 2\chi(\mathbb{P}^1 \times \mathbb{P}^1) - 2\chi(B) - \chi(C) \\ &= 8 - 0 - (4 - 2m) = 2m + 4. \end{split}$$

Finally, since $\chi(A) = 2m + 1$ we obtain $\chi(S) = \chi(U) + \chi(A) = 4m + 5$. \Box

3.4. Proof of Theorem 1. Recall that $S = \mathcal{Z}(F) \subset \mathbb{P}^2 \times \mathbb{P}^1$ is the vanishing set of F. Let S_{sing} be the set of singular points of S. By Proposition 3.3, its cardinality is $|S_{sing}| = 2m + 2$.

Let \tilde{S} be the smooth projective surface obtained from S by resolving all the singular points of S. By Proposition 3.4, each singular point of S requires one blow-up to resolve. Moreover, from its proof in Section 4 we see that the preimage of each singular point is locally a conic and hence locally isomorphic to \mathbb{P}^1 . This implies that

$$\chi(\tilde{S}) = \chi(S \setminus S_{\text{sing}}) + |S_{\text{sing}}| \cdot \chi(\mathbb{P}^1) = (\chi(S) - |S_{\text{sing}}|) + 2|S_{\text{sing}}| = \chi(S) + |S_{\text{sing}}|.$$

Hence,

;,

$$\chi(\tilde{S}) = \chi(S) + |S_{\text{sing}}| = (4m + 5) + (2m + 2) = 6m + 7.$$

Since S is birational to $\mathbb{P}^1 \times \mathbb{P}^1$, \tilde{S} is a smooth projective surface birational to $\mathbb{P}^1 \times \mathbb{P}^1$. It is known that $\mathbb{P}^1 \times \mathbb{P}^1$ is a minimal smooth projective surface, namely, it is not a blow-up of any smooth projective surface (see e.g. [3] and [4]). Hence, we can blow down \tilde{S} over \mathbb{P}^1 some number of times so that it becomes a fiber bundle $\mathbb{P}^1 \times \mathbb{P}^1$ over \mathbb{P}^1 .

Let *N* be such that \tilde{S} is obtained from $\mathbb{P}^1 \times \mathbb{P}^1$ by *N* one-point blow-ups. Then

$$\chi(\tilde{S}) = (\chi(\mathbb{P}^1 \times \mathbb{P}^1) - N) + N \cdot \chi(\mathbb{P}^1) = 4 + N.$$

Hence, $N = \chi(\tilde{S}) - 4 = 6m + 3$. This proves Theorem 1.

4. Blow-ups at singular points

In this section, we prove Proposition 3.4 and therefore complete the proof of Theorem 1. We will show that each of the singular points s_1 and $s_3^{(k)}$ of the projective model *S* requires only one blow-up to resolve. Namely, the blow-up of *S* at $p = s_1$ (or $p = s_3^{(k)}$) is smooth everywhere except at the preimages of the singular points $q \neq p$ of *S*. The proofs for s_2 and $s_4^{(k)}$ are similar. Recall that the defining equation for *S* in $\mathbb{P}^2 \times \mathbb{P}^1 = \{([x : y : u], [z : w])\}$ is

Recall that the defining equation for *S* in $\mathbb{P}^2 \times \mathbb{P}^1 = \{([x : y : u], [z : w])\}$ is $F = (xyw - 2u^2z)w^{2m} - (x^2w^2 + y^2w^2 + u^2z^2 - xyzw - 4u^2w^2)T_mT_{m-1},$ where $T_k = T_k(z, w) = w^k S_k(\frac{z}{w}).$

4.1. Singular point s_1 . To perform the blow-up of S at $s_1 = ([0:1:0], [1:0])$, we consider the affine open set A'_1 such that $y \neq 0$ and $z \neq 0$. Since A'_1 contains the singular points $s_3^{(k)}$ and $s_4^{(k)}$ where $1 \leq k \leq m$, we actually look at the blow-up of S at s_1 in the affine open set $A_1 = A'_1 \setminus \bigcup_{1 \leq k \leq m} \{s_3^{(k)}, s_4^{(k)}\}$. The local affine coordinates for $A_1 \cong \mathbb{A}^3$ are x, u, w. So to blow up S at s_1 , we blow up $X_1 = \mathcal{Z}(F|_{y=1,z=1})$ at the point (x, u, w) = (0, 0, 0) in A_1 . Using coordinates a, b, c for \mathbb{P}^2 , the blow-up Y_1 of X_1 at (0, 0, 0) is the closed subset in $A_1 \times \mathbb{P}^2$ defined as the zero set of the following polynomials:

$$\begin{split} F_1 &= F|_{y=1,z=1} \\ &= (xw-2u^2)w^{2m} - (x^2w^2 + w^2 + u^2 - xw - 4u^2w^2)T_m(1,w)T_{m-1}(1,w), \\ e_1 &= xb - ua, \\ e_2 &= xc - wa, \\ e_3 &= wb - uc. \end{split}$$

We will determine the local model of Y_1 and check for smoothness by looking at Y_1 in the affine open sets defined by $a \neq 0, b \neq 0$, and $c \neq 0$.

Let $D(w) = T_m(1, w)T_{m-1}(1, w)$. Note that D(0) = 1 (by Lemma 3.1(1)).

4.1.1. $a \neq 0$. First we look at Y_1 in the affine open set defined by $a \neq 0$ (we can assume a = 1). In this open set, the defining equations for Y_1 become

$$F_{1} = (xw - 2u^{2})w^{2m} - (x^{2}w^{2} + w^{2} + u^{2} - xw - 4u^{2}w^{2})D(w),$$

$$e_{1} = xb - u,$$

$$e_{2} = xc - w,$$

$$e_{3} = wb - uc.$$

From equations $e_1 = 0$ and $e_2 = 0$, we have u = xb and w = xc. By replacing u with xb and w with xc in F_1 , we obtain

$$F_1 = x^2 \left[(c - 2b^2)(xc)^{2m} - (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)D(xc) \right].$$

The first factor corresponds to the exceptional plane E_1 and the other factor is the defining equation for the local model of Y_1 . Note that the preimage of s_1 is exactly the intersection of E_1 and Y_1 which is equal to the smooth conic $c^2 + b^2 - c = 0$. This local model of Y_1 is smooth in $A_1 \times \mathbb{P}^2$ if we can show that

$$R(b,c,x): = (c-2b^2)(xc)^{2m} - (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)D(xc)$$

is smooth. We now prove that the system $R = R_b = R_c = R_x = 0$ has no solutions.

By direct calculations, we have

$$\begin{split} R_b &= -2b\left(2x^{2m}c^{2m} + (1 - 4x^2c^2)D\right), \\ R_c &= (xc)^{2m} + 2m(c - 2b^2)x^{2m}c^{2m-1} - (2x^2c + 2c - 1 - 8x^2b^2c)D \\ &- (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)xD_w, \\ R_x &= 2m(c - 2b^2)x^{2m-1}c^{2m} - (2c^2x - 8xb^2c^2)D \\ &- (x^2c^2 + c^2 + b^2 - c - 4x^2b^2c^2)cD_w. \end{split}$$

Note that

$$\begin{split} R &- bR_b/2 &= c \left(x^{2m} c^{2m} - (x^2 c + c - 1)D \right), \\ xR_x &- cR_c &= c \left(-x^{2m} c^{2m} + (2c - 1)D \right). \end{split}$$

Assume that $R = R_b = R_c = R_x = 0$ at some point (b, c, x). We will consider the two cases b = 0 and $b \neq 0$ separately.

Suppose b = 0. We claim that $xc \neq 0$. Indeed, if c = 0 then $R_c = D(0) = 1 \neq 0$. If $c \neq 0$ and x = 0, then $R - bR_b/2 = 0$ implies that (c - 1)D(0) = 1. So c = 1 and $R_c = -D(0) = -1 \neq 0$. Hence, $xc \neq 0$. From $R - bR_b/2 = 0$ and $xR_x - cR_c = 0$, we have $x^{2m}c^{2m} - (x^2c + c - 1)D = 0$ and $-x^{2m}c^{2m} + (2c - 1)D = 0$. So $x^2c + c - 1 = 2c - 1$, i.e. $x = \pm 1$. Then $D = \frac{x^{2m}c^{2m}}{2c-1} = \frac{w^{2m}}{\pm 2w-1}$. Since $D = T_m(1, w)T_{m-1}(w) = w^{2m-1}S_m(\frac{1}{w})S_{m-1}(\frac{1}{w})$, we obtain $S_m(\frac{1}{w})S_{m-1}(\frac{1}{w}) = \frac{w}{\pm 2w-1}$. This is equivalent to $(\pm 2 - \frac{1}{w})S_m(\frac{1}{w})S_{m-1}(\frac{1}{w}) = 1$, i.e. $(S_m(\frac{1}{w}) \mp S_{m-1}(\frac{1}{w}))^2 = 0$ (by Lemma 2.3). Hence,

$$([x: y: u], [z: w]) = ([x: 1: u], [1: w])$$
$$= ([\pm 1: 1: 0], [1: w])$$
$$= ([1: \pm 1: 0], [\frac{1}{w}: 1]),$$

which is equal to either $s_3^{(k)}$ or $s_4^{(k)}$. This point is not in A_1 , since it has already been removed from A_1 .

Suppose $b \neq 0$. Then $R_b = 0$ implies that $2x^{2m}c^{2m} + (1 - 4x^2c^2)D = 0$. Note that $xc \neq 0$. (Otherwise $2x^{2m}c^{2m} + (1 - 4x^2c^2)D = D(0) = 1 \neq 0$.) From

 $R - bR_b/2 = 0$ and $xR_x - cR_c = 0$, we also have $x^{2m}c^{2m} - (x^2c + c - 1)D = 0$ and $-x^{2m}c^{2m} + (2c - 1)D = 0$. This implies that $x^2c + c - 1 = 2c - 1 = \frac{1}{2}(4x^2c^2 - 1)$. Hence, $x^2 = 1$ and $2c - 1 = \frac{1}{2}(4c^2 - 1)$, so c = 1/2. But then $2x^{2m}c^{2m} + (1 - 4x^2c^2)D = 2x^{2m}c^{2m} \neq 0$, a contradiction.

4.1.2. $b \neq 0$. Now we look at Y_1 in the affine open set defined by $b \neq 0$ (we can assume b = 1). In this open set, the defining equations for Y_1 become

$$F_{1} = (xw - 2u^{2})w^{2m} - (x^{2}w^{2} + w^{2} + u^{2} - xw - 4u^{2}w^{2})D(w),$$

$$e_{1} = x - ua,$$

$$e_{2} = xc - wa,$$

$$e_{3} = w - uc.$$

From equations $e_1 = 0$ and $e_3 = 0$, we have x = ua and w = uc. By replacing x with ua and w with uc in F_1 , we obtain

$$F_1 = u^2 \left[(ac - 2)(uc)^{2m} - (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)D(uc) \right].$$

The first factor corresponds to the exceptional plane E_1 and the other factor is the defining equation for the local model of Y_1 . Note that the preimage of s_1 is exactly the intersection of E_1 and Y_1 which is equal to the smooth conic $c^2 + 1 - ac = 0$. This local model of Y_1 is smooth in $A_1 \times \mathbb{P}^2$ if we can show that

$$R(a,c,u): = (ac-2)(uc)^{2m} - (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)D(uc)$$

is smooth. We now prove that the system $R = R_a = R_c = R_u = 0$ has no solutions.

By direct calculations, we have

$$\begin{split} R_a &= c \left(u^{2m} c^{2m} - (2au^2c - 1)D \right), \\ R_c &= a(uc)^{2m} + 2m(ac - 2)u^{2m}c^{2m-1} - (2a^2cu^2 + 2c - a - 8u^2c)D \\ &- (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)uD_w, \\ R_u &= 2m(ac - 2)u^{2m-1}c^{2m} - (2a^2c^2u - 8uc^2)D \\ &- (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)cD_w. \end{split}$$

Note that

$$uR_u - cR_c = c\left(-au^{2m}c^{2m} + (2c - a)D\right).$$

Assume that $R = R_a = R_c = R_u = 0$ at some point (a, c, u). If c = 0, then $R = -D(0) = -1 \neq 0$, a contradiction. Hence, $c \neq 0$. Then $R_a = 0$ implies that $u^{2m}c^{2m} - (2au^2c - 1)D = 0$. Note that $u \neq 0$. (Otherwise $u^{2m}c^{2m} - (2au^2c - 1)D = D(0) = 1 \neq 0$.) Hence, $2au^2c - 1 \neq 0$ and $D = \frac{u^{2m}c^{2m}}{2au^2c - 1}$. From $uR_u - cR_c = 0$, we get $-au^{2m}c^{2m} + (2c - a)\frac{u^{2m}c^{2m}}{2au^2c - 1} = 0$. This implies that $-a + \frac{2c - a}{2au^2c - 1} = 0$, i.e. $a^2u^2 = 1$. Similarly, from $R = (ac - 2)(uc)^{2m} - (a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2)\frac{u^{2m}c^{2m}}{2au^2c - 1} = 0$ we have $ac - 2 - \frac{a^2c^2u^2 + c^2 + 1 - ac - 4u^2c^2}{2au^2c - 1} = 0$. Since $u^2 = 1/a^2$, we obtain ac - 2 - ac = 0. $\frac{2c^2+1-ac-4c^2/a^2}{2c/a-1} = 0.$ This is equivalent to $(\frac{2c}{a}-1)^2 = 0$, i.e. 2c = a. But then $2au^2c - 1 = a^2u^2 - 1 = 0$, a contradiction.

4.1.3. $c \neq 0$. Finally we look at Y_1 in the affine open set defined by $c \neq 0$ (we can assume c = 1). In this open set, the defining equations for Y_1 become

$$F_{1} = (xw - 2u^{2})w^{2m} - (x^{2}w^{2} + w^{2} + u^{2} - xw - 4u^{2}w^{2})D(w),$$

$$e_{1} = xb - ua,$$

$$e_{2} = x - wa,$$

$$e_{3} = wb - u.$$

From equations $e_2 = 0$ and $e_2 = 0$, we have x = wa and u = wb. By replacing x with wa and u with wb in F_1 , we obtain

$$F_1 = w^2 \left[(a - 2b^2)w^{2m} - (a^2w^2 + 1 + b^2 - a - 4b^2w^2)D(w) \right]$$

The first factor corresponds to the exceptional plane E_1 and the other factor is the defining equation for the local model of Y_1 . Note that the preimage of s_1 is exactly the intersection of E_1 and Y_1 which is equal to the smooth conic $1 + b^2 - a = 0$. This local model of Y_1 is smooth in $A_1 \times \mathbb{P}^2$ if we can show that

$$R(a,b,w): = (a-2b^2)w^{2m} - (a^2w^2 + 1 + b^2 - a - 4b^2w^2)D(w),$$

is smooth. We now prove that the system $R = R_a = R_b = R_w = 0$ has no solutions.

By direct calculations, we have

$$R_{a} = w^{2m} - (2aw^{2} - 1)D,$$

$$R_{b} = -2b(2w^{2m} + (1 - 4w^{2})D),$$

$$R_{w} = 2m(a - 2b^{2})w^{2m-1} - (2a^{2}w - 8b^{2}w)D - (a^{2}w^{2} + 1 + b^{2} - a - 4b^{2}w^{2})D_{w}.$$

Note that

$$R - (a - 2b^2)R_a = (a^2w^2 - 1 + b^2 + 4b^2w^2 - 4ab^2w^2)D.$$

Assume that $R = R_a = R_b = R_w = 0$ at some point (a, b, w). We will consider the two cases b = 0 and $b \neq 0$ separately.

Suppose b = 0. Then $R - (a - 2b^2)R_a = 0$ implies that $(a^2w^2 - 1)D = 0$. If D = 0, then from $R_a = 0$ we have w = 0. This implies that $D = D(0) = 1 \neq 0$, a contradiction. Hence, $a^2w^2 - 1 = 0$, i.e. $a = \pm 1/w$. From $R_a = 0$, we have $D = \frac{w^{2m}}{\pm 2w - 1}$. This is equivalent to $(S_m(\frac{1}{w}) \mp S_{m-1}(\frac{1}{w}))^2 = 0$. Hence, ([x : y : u], [z : w]) = ([aw : 1 : bw], [1 : w]) $= ([\pm 1 : 1 : 0], [1 : w])$ $= ([1 : \pm 1 : 0], [\frac{1}{w} : 1]),$

which corresponds to either $s_3^{(k)}$ or $s_4^{(k)}$. This point is not in A_1 , since it has already been removed from A_1 .

Suppose $b \neq 0$. From $R_b = 0$, we have $2w^{2m} + (1 - 4w^2)D = 0$. This implies that $w \neq 0$ (otherwise $2w^{2m} + (1 - 4w^2)D = D(0) = 1 \neq 0$), so $4w^2 - 1 \neq 0$ and $D = \frac{2w^{2m}}{4w^2 - 1} \neq 0$. Then $R_a = 0$ becomes $1 - \frac{2(2aw^2 - 1)}{4w^2 - 1} = 0$, which means that $a = 1 + \frac{1}{4w^2}$. From $R - (a - 2b^2)R_a = 0$ and $D \neq 0$, we have $a^2w^2 - 1 + b^2 + 4b^2w^2 - 4ab^2w^2 = 0$. But $b^2 + 4b^2w^2 - 4ab^2w^2 = b^2(1 + 4w^2 - 4aw^2) = 0$, so $a^2w^2 - 1 = 0$. Hence, $a = 1 + \frac{1}{4w^2} = 1 + \frac{a^2}{4}$, i.e. a = 2. This implies that $4w^2 - 1 = 0$, which contradicts $4w^2 - 1 \neq 0$.

4.1.4. Conclusion. From the cases $a \neq 0$, $b \neq 0$, and $c \neq 0$ considered above, we conclude that the singular point s_1 requires only one blow-up to resolve.

4.2. Singular points $s_3^{(k)}$. To perform the blow-up of *S* at

$$s_3^{(k)} = (1: 1: 0, z_3^{(k)}: 1),$$

we consider the affine open set A'_3 such that $x \neq 0$ and $z \neq 0$. Since A'_3 contains all other singularities except s_1 , we actually look at the blow-up of S at s_1 in the affine open set $A_3 = A'_3 \setminus (S_{\text{sing}} \setminus \{s_1, s_3^{(k)}\})$. The local affine coordinates for $A_3 \cong \mathbb{A}^3$ are y, u, w. So to blow up S at $s_3^{(k)}$, we blow up $X_3 = \mathcal{Z}(F|_{x=1, z=z_3^{(k)}})$ at the point (y, u, w) = (1, 0, 1) in A_3 . For short, we write z_0 for $z_3^{(k)}$. Note that $S_m(z_0) - S_{m-1}(z_0) = 0$. Using coordinates a, b, c for \mathbb{P}^2 , the blow-up Y_3 of X_3 at (1, 0, 1) is the closed subset in $A_3 \times \mathbb{P}^2$ defined as the zero set of the following polynomials:

$$F_{3} = F|_{x=1, z=z_{0}}$$

= $(yw - 2u^{2}z_{0})w^{2m} + (yz_{0}w + 4u^{2}w^{2} - w^{2} - y^{2}w^{2} - u^{2}z_{0}^{2})P(w),$
 $e_{1} = ua - (y - 1)b,$
 $e_{2} = (w - 1)a - (y - 1)c,$
 $e_{3} = (w - 1)b - uc,$

where $P(w) = T_m(z_0, w)T_{m-1}(z_0, w)$. Note that $P(0) = z_0^{2m-1}$ (by Lemma 3.1(1)).

We will determine the local model of Y_3 and check for smoothness by looking at Y_3 in the affine open sets defined by $a \neq 0$, $b \neq 0$, and $c \neq 0$.

By Lemma 3.1(3), we have $w^{2m} + (z - 2w)T_mT_{m-1} = (T_m - wT_{m-1})^2$. Hence, $F_3 = yw(w^{2m} + (z_0 - 2w)P) - 2u^2z_0w^{2m} + (4u^2w^2 - (y - 1)^2w^2 - u^2z_0^2)P$ $= yw(T_m(z_0, w) - T_{m-1}(z_0, w))^2 - 2u^2z_0w^{2m} + (4u^2w^2 - (y - 1)^2w^2 - u^2z_0^2)P$.

Let

$$Q = Q(w) = \frac{T_m(z_0, w) - wT_{m-1}(z_0, w)}{w - 1}$$

Note that $Q \in \mathbb{C}[w]$, since $T_m(z_0, 1) - T_{m-1}(z_0, 1) = S_m(z_0) - S_{m-1}(z_0) = 0$. Then

$$F_3 = yw(w-1)^2 Q^2 - 2u^2 z_0 w^{2m} + (4u^2 w^2 - (y-1)^2 w^2 - u^2 z_0^2) P.$$

Lemma 4.1. We have $S_m^2(z_0) = \frac{1}{2-z_0}$ and

$$Q(1) = -\frac{(2m+1)z_0}{z_0+2}S_m(z_0).$$

Proof. Since $S_m^2(z_0) + S_{m-1}^2(z_0) - z_0 S_m(z_0) S_{m-1}(z_0) = 1$ (by Lemma 2.3) and $S_m(z_0) - S_{m-1}(z_0) = 0$, we get $S_m^2 = \frac{1}{2-z_0}$. By L'Hospital rule, we have

$$Q(1) = w^{m} \frac{S_{m}(\frac{z_{0}}{w}) - S_{m-1}(\frac{z_{0}}{w})}{w - 1}|_{w=1}$$

= $\frac{-z_{0}}{w^{2}} (S'_{m}(\frac{z_{0}}{w}) - S'_{m-1}(\frac{z_{0}}{w}))|_{w=1}$
= $-z_{0} (S'_{m}(z_{0}) - S'_{m-1}(z_{0})).$

Since $S_m(z_0) = S_{m-1}(z_0)$, we have $S_{m+1}(z) = (z_0 - 1)S_m(z_0)$ and $S_{m-2}(z) = (z_0 - 1)S_m(z_0)$. Lemma 2.5 then implies that

$$S'_{m}(z_{0}) = \frac{mS_{m+1}(z_{0}) - (m+2)S_{m-1}(z_{0})}{z_{0}^{2} - 4}$$

$$= \frac{m(z_{0} - 1) - (m+2)}{z_{0}^{2} - 4}S_{m}(z_{0}),$$

$$S'_{m-1}(z_{0}) = \frac{(m-1)S_{m}(z_{0}) - (m+1)S_{m-2}(z_{0})}{z_{0}^{2} - 4}$$

$$= \frac{m-1 - (m+1)(z_{0} - 1)}{z_{0}^{2} - 4}S_{m}(z_{0}).$$

Hence, $Q(1) = -z_0(S'_m(z_0) - S'_{m-1}(z_0)) = -\frac{(2m+1)z_0}{z_0+2}S_m(z_0).$

4.2.1. $a \neq 0$. First we look at Y_3 in the affine open set defined by $a \neq 0$ (we can assume a = 1). In this open set, the defining equations for Y_3 become

$$F_{3} = (yw - 2u^{2}z_{0})w^{2m} + (yz_{0}w + 4u^{2}w^{2} - w^{2} - y^{2}w^{2} - u^{2}z_{0}^{2})P(w),$$

$$e_{1} = u - (y - 1)b,$$

$$e_{2} = (w - 1) - (y - 1)c,$$

$$e_{3} = (w - 1)b - uc.$$

From equations $e_1 = 0$ and $e_2 = 0$, we have u = (y-1)b and w = (y-1)c+1. By replacing u with (y - 1)b and w with (y - 1)c + 1 in F_3 , we obtain

$$\begin{split} F_3 &= yw(w-1)^2Q^2 - 2u^2z_0w^{2m} + (4u^2w^2 - (y-1)^2w^2 - u^2z_0^2)P \\ &= (y-1)^2\left[ywc^2Q^2 - 2b^2z_0w^{2m} + (4b^2w^2 - w^2 - b^2z_0^2)P\right]. \end{split}$$

Let

$$R(b,c,y) = ywc^2Q^2 - 2b^2z_0w^{2m} + (4b^2w^2 - w^2 - b^2z_0^2)P,$$

where w = (y - 1)c + 1. Then

$$\begin{split} R|_{y=1} &= c^2 Q^2(1) - 2b^2 z_0 + (4b^2 - 1 - b^2 z_0^2) P(1) \\ &= c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} S_m^2(z_0) - 2b^2 z_0 + (4b^2 - 1 - b^2 z_0^2) S_m(z_0) S_{m-1}(z_0) \\ &= \frac{1}{2-z_0} \left(c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - 2b^2 z_0(2-z_0) + (4b^2 - 1 - b^2 z_0^2) \right) \\ &= \frac{1}{2-z_0} \left(c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} + b^2 (z_0-2)^2 - 1 \right). \end{split}$$

We have $F_3 = (y-1)^2 R$. The first factor corresponds to the exceptional plane E_3 and the other factor is the defining equation for the local model of Y_3 . Note that the preimage of $s_3^{(k)}$ is exactly the intersection of E_3 and Y_3 which is equal to the smooth conic $c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} + b^2 (z_0 - 2)^2 - 1 = 0$. This local model of Y_3 is smooth in $A_3 \times \mathbb{P}^2$ if we can show that R(b, c, y) is smooth.

We now prove that the system $R = R_b = R_c = R_y = 0$ has no solutions. By direct calculations, we have

$$\begin{split} R_b &= 2b \left(-2z_0 w^{2m} + (4w^2 - z_0^2)P \right), \\ R_c &= y(y-1)c^2Q^2 + 2ywcQ^2 + ywc^2(y-1)(Q^2)_w - 4mb^2z_0(y-1)w^{2m-1} \\ &+ (8b^2w - 2w)(y-1)P + (4b^2w^2 - w^2 - b^2z_0^2)(y-1)P_w, \\ R_y &= wc^2Q^2 + yc^3Q^2 + ywc^3(Q^2)_w - 4mb^2z_0cw^{2m-1} \\ &+ (8b^2w - 2w)cP + (4b^2w^2 - w^2 - b^2z_0^2)cP_w. \end{split}$$

Note that

$$R - bR_b/2 = w(yc^2Q^2 - wP),$$

$$cR_c - (y - 1)R_y = (y + 1)wc^2Q^2.$$

Assume that $R = R_b = R_c = R_y = 0$ at some point (b, c, y). We first claim that $w \neq 0$. Indeed, if w = 0 then R = 0 implies that $-b^2 z_0^2 P(0) = 0$. Since $P(0) = z_0^{2m-1} \neq 0$, we get b = 0. Then $R_y = 0$ implies that $yc^3Q^2(0) = 0$. Note that $c \neq 0$ (since w = (y-1)c+1 = 0) and $Q(0) = T_m^2(z_0, 0) = z_0^{2m} \neq 0$. Hence, y = 0. Then $([x : y : u], [z : w]) = ([1 : 0 : 0], [z_0 : 0]) = s_2$ which has been removed from A_3 . This proves that $w \neq 0$.

Now $cR_c - (y-1)R_y = 0$ implies y = -1 or $c^2Q^2 = 0$. If $c^2Q^2 = 0$ then $w^{2m} + (z_0 - 2w)P = (y-1)^2c^2Q^2 = 0$, which implies that $P \neq 0$. Then $R - bR_b/2 = -w^2P \neq 0$, a contradiction. Hence, y = -1.

Since
$$w^{2m} + (z_0 - 2w)P = (w - 1)^2 Q^2 = (y - 1)^2 c^2 Q^2 = 4c^2 Q^2$$
, we have $c^2 Q^2 = \frac{w^{2m} + (z_0 - 2w)P}{4}$. From $R - bR_b/2 = 0$, we get $-\frac{w^{2m} + (z_0 - 2w)P}{4} - wP = 0$,

which implies that $w^{2m} + (z_0 + 2w)P = 0$. By Lemma 3.1(3), this is equivalent to $T_m(z_0, w) + wT_{m-1}(z_0, w) = 0$, i.e. $S_m(\frac{z_0}{w}) + S_{m-1}(\frac{z_0}{w}) = 0$. So

$$([x: y: u], [z: w]) = ([1: -1: 0], [z_0: w]) = ([1: -1: 0], [\frac{z_0}{w}: 1]) = s_4^{(l)}$$

which has been removed from A_3 .

4.2.2. $b \neq 0$. Now we look at Y_3 in the affine open set defined by $b \neq 0$ (we can assume b = 1). In this open set, the defining equations for Y_3 become

$$F_{3} = (yw - 2u^{2}z_{0})w^{2m} + (yz_{0}w + 4u^{2}w^{2} - w^{2} - y^{2}w^{2} - u^{2}z_{0}^{2})P(w),$$

$$e_{1} = ua - (y - 1),$$

$$e_{2} = (w - 1)a - (y - 1)c,$$

$$e_{3} = (w - 1) - uc.$$

From equations $e_1 = 0$ and $e_3 = 0$, we have y = au + 1 and w = uc + 1. By replacing *y* with au + 1 and *w* with uc + 1 in F_3 , we obtain

$$\begin{split} F_3 &= yw(w-1)^2Q^2 - 2u^2z_0w^{2m} + \left(4u^2w^2 - (y-1)^2w^2 - u^2z_0^2\right)P \\ &= u^2\left[(au+1)wc^2Q^2 - 2z_0w^{2m} + (4w^2 - a^2w^2 - z_0^2)P\right]. \end{split}$$

Let

$$R(a,c,u) = (au+1)wc^2Q^2(w) - 2z_0w^{2m} + (4w^2 - a^2w^2 - z_0^2)P(w),$$

where w = uc + 1. Then

$$\begin{split} R|_{u=0} &= c^2 Q^2(1) - 2z_0 + (4 - a^2 - z_0^2) P(1), \\ &= c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} S_m^2(z_0) - 2z_0 + (4 - a^2 - z_0^2) S_m(z_0) S_{m-1}(z_0) \\ &= \frac{1}{2 - z_0} \left(c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - 2z_0(2 - z_0) + (4 - a^2 - z_0^2) \right) \\ &= \frac{1}{2 - z_0} \left(c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - a^2 + (z_0 - 2)^2 \right). \end{split}$$

We have $F_3 = u^2 R$. The first factor corresponds to the exceptional plane E_3 and the other factor is the defining equation for the local model of Y_3 . Note that the preimage of $s_3^{(k)}$ is exactly the intersection of E_3 and Y_3 which is equal to the smooth conic $c^2 \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - a^2 + (z_0 - 2)^2 = 0$. This local model of Y_3 is smooth in $A_3 \times \mathbb{P}^2$ if we can show that R(a, c, u) is smooth. We now prove that the system $R = R_a = R_c = R_u = 0$ has no solutions. By direct calculations, we have

$$\begin{aligned} R_a &= w(uc^2Q^2 - 2awP), \\ R_c &= (au+1)uc^2Q^2 + 2(au+1)wcQ^2 + (au+1)wc^2u(Q^2)_w - 4mz_0uw^{2m-1} \\ &+ 2(4-a^2)uwP + (4w^2 - a^2w^2 - z_0^2)uP_w, \\ R_u &= awc^2Q^2 + (au+1)c^3Q^2 + (au+1)wc^3(Q^2)_w - 4mz_0cw^{2m-1} \\ &+ 2(4-a^2)cwP + (4w^2 - a^2w^2 - z_0^2)cP_w. \end{aligned}$$

Note that

$$\begin{aligned} R &- aR_a/2 &= (au/2+1)wc^2Q^2 - 2z_0w^{2m} + (4w^2 - z_0^2)P, \\ cR_c &- uR_u &= (au+2)wc^2Q^2. \end{aligned}$$

We first claim that $w \neq 0$. Indeed, if w = 0 then R = 0 implies that $-z_0^2 P(0) = 0$. But $P(0) = z_0^{2m-1} \neq 0$, a contradiction. Hence, $w \neq 0$.

From $cR_c - uR_u = 0$ and $R - aR_a/2 = 0$, we have $(au + 2)wc^2Q^2 = 0$ and $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$. Since $z_0w^{2m} \neq 0$, we get $4w^2 - z_0^2 \neq 0$ and $P = \frac{2z_0w^{2m}}{4w^2 - z_0^2}$.

If $c^2 Q^2 = 0$, then $w^{2m} + (z_0 - 2w)P = (w - 1)^2 Q^2 = u^2 c^2 Q^2 = 0$. This implies that $2w - z_0 \neq 0$ and $P = \frac{w^{2m}}{2w - z_0}$. Together with $P = \frac{2z_0 w^{2m}}{4w^2 - z_0^2}$, we get $\frac{2z_0}{2w + z_0} = 1$. So $z_0 = 2w$, which contradicts $z_0 - 2w \neq 0$.

If au + 2 = 0, then a = -2/u. From $R_a = 0$, we have $u^2 c^2 Q + 4wP = 0$, i.e. $(w - 1)^2 Q^2 + 4wP = 0$. This is equivalent to $w^{2m} + (z_0 - 2w)P + 4wP = 0$. So $2w + z_0 \neq 0$ and $P = -\frac{w^{2m}}{2w + z_0}$. Together with $P = \frac{2z_0 w^{2m}}{4w^2 - z_0^2}$, we get $\frac{2z_0}{2w - z_0} = -1$. So $z_0 = -2w$, which contradicts $2w + z_0 \neq 0$.

4.2.3. $c \neq 0$. Finally we look at Y_3 in the affine open set defined by $c \neq 0$ (we can assume b = 1). In this open set, the defining equations for Y_3 become

$$\begin{aligned} F_3 &= (yw - 2u^2z_0)w^{2m} + (yz_0w + 4u^2w^2 - w^2 - y^2w^2 - u^2z_0^2)P(w), \\ e_1 &= ua - (y-1)b, \\ e_2 &= (w-1)a - (y-1), \\ e_3 &= (w-1)b - u. \end{aligned}$$

From equations $e_2 = 0$ and $e_3 = 0$, we have y = a(w-1)+1 and u = b(w-1). By replacing y with a(w-1) + 1 and u with b(w-1) in F_3 , we obtain

$$F_{3} = yw(w-1)^{2}Q^{2} - 2u^{2}z_{0}w^{2m} + (4u^{2}w^{2} - (y-1)^{2}w^{2} - u^{2}z_{0}^{2})P$$

= $(w-1)^{2}[(a(w-1)+1)wQ^{2} - 2b^{2}z_{0}w^{2m} + (4b^{2}w^{2} - a^{2}w^{2} - b^{2}z_{0}^{2})P]$
Let

Let

$$R(a,b,w) = (a(w-1)+1)wQ^{2}(w) - 2b^{2}z_{0}w^{2m} + (4b^{2}w^{2} - a^{2}w^{2} - b^{2}z_{0}^{2})P(w)$$

Then

$$\begin{split} R|_{w=1} &= Q^2(1) - 2b^2 z_0 + (4b^2 - a^2 - b^2 z_0^2) P(1), \\ &= \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} S_m^2(z_0) - 2b^2 z_0 + (4b^2 - a^2 - b^2 z_0^2) S_m(z_0) S_{m-1}(z_0) \\ &= \frac{1}{2 - z_0} \left(\frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - 2b^2 z_0(2 - z_0) + (4b^2 - a^2 - b^2 z_0^2) \right) \\ &= \frac{1}{2 - z_0} \left(\frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - a^2 + b^2 (z_0 - 2)^2 \right). \end{split}$$

We have $F_3 = (w-1)^2 R$. The first factor corresponds to the exceptional plane E_3 and the other factor is the defining equation for the local model of Y_3 . Note that the preimage of $s_3^{(k)}$ is exactly the intersection of E_3 and Y_3 which is equal to the smooth conic $\frac{(2m+1)^2 z_0^2}{(z_0+2)^2} - a^2 + b^2(z_0-2)^2 = 0$. This local model of Y_3 is smooth in $A_3 \times \mathbb{P}^2$ if we can show that R(a, b, w) is smooth.

We now prove that the system $R = R_a = R_b = R_w = 0$ has no solutions. By direct calculations, we have

$$\begin{split} R_a &= (w-1)wQ^2 - 2aw^2P, \\ R_b &= 2b\left(-2z_0w^{2m} + (4w^2 - z_0^2)P\right), \\ R_w &= awQ^2 + (a(w-1)+1)Q^2 + (a(w-1)+1)w(Q^2)_w - 4mb^2z_0w^{2m-1} \\ &+ 2(4b^2 - a^2)wP + (4b^2w^2 - a^2w^2 - b^2z_0^2)P_w. \end{split}$$

Note that

$$2R - bR_b - aR_a = (a(w - 1) + 2)wQ^2$$

We first claim that $w \neq 0$. Indeed, if w = 0 then R = 0 implies that $b^2 z_0^2 P(0) = 0$. Since $z_0 \neq 0$ and P(0) = 1, we have b = 0. Then $R_w = 0$ becomes $(a(w-1)+1)Q^2 = 0$. Note that $Q(0) = z_0^{2m} \neq 0$, hence a(w-1)+1 = 0. Then $([x : y : u], [z : w]) = ([1 : 0 : 0], [z_0 : 0]) = s_2$ which has been removed from A_3 . Hence, $w \neq 0$.

From $2R - bR_b - aR_a = 0$, we have a(w - 1) + 2 or Q = 0. Similarly, $R_b = 0$ implies that b = 0 or $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$. There are four cases to consider.

<u>Case 1</u>: Suppose b = 0 and Q = 0. Then $R_a = 0$ implies that aP = 0. Note that $P \neq 0$, since $w^{2m} + (z_0 - 2w)P = (w - 1)^2Q^2 = 0$. Hence, a = 0. From Q = 0, we have $T_m(z_0, w) - wT_{m-1}(z_0, w) = 0$, which is equivalent to $S_m(\frac{z_0}{w}) - S_{m-1}(\frac{z_0}{w}) = 0$, so $\frac{z_0}{w} = z_3^{(l)}$ for some l. Note that $Q(1) = \frac{1}{2-z_0} \frac{(2m+1)^2 z_0^2}{(z_0+2)^2} \neq 0$, so $w \neq 1$. This implies that $z_3^{(l)} = \frac{z_0}{w} \neq z_3^{(k)}$. Since $([x : y : u], [z : w]) = ([1 : 1 : 0], [z_3^{(l)} : 1]) = s_3^{(l)}$ has been removed from A_3 , we obtain a contradiction.

<u>Case 2</u>: Suppose b = 0 and a(w - 1) + 2 = 0. Then a = -2/(w - 1) and y = a(w - 1) + 1 = -1. From R = 0, we have $(w - 1)^2 Q^2 + 4wP = 0$, i.e. $w^{2m} + (z_0 - 2w)P + 4wP = 0$. By Lemma 3.1(3), this is equivalent to $S_m(\frac{z_0}{w}) + S_{m-1}(\frac{z_0}{w}) = 0$, so $\frac{z_0}{w} = z_4^{(l)}$ for some *l*. Then $([x : y : u], [z : w]) = ([1 : -1 : 0], [z_4^{(l)} : 1]) = s_4^{(l)}$ which has been removed from A_3 . <u>Case 3</u>: Suppose $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$ and Q = 0. Then $4w^2 - z_0^2 \neq 0$

<u>Case 3</u>: Suppose $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$ and Q = 0. Then $4w^2 - z_0^2 \neq 0$ and $P = \frac{2z_0w^{2m}}{4w^2 - z_0^2}$. From Q = 0, we have $w^{2m} + (z_0 - 2w)P = (w - 1)^2Q^2 = 0$. Hence, $1 + (z_0 - 2w)\frac{2z_0}{4w^2 - z_0^2} = 0$, i.e. $1 - \frac{2z_0}{z_0 + 2w} = 0$. This implies that $z_0 = 2w$, which contradicts $4w^2 - z_0^2 \neq 0$.

<u>Case 4</u>: Suppose $-2z_0w^{2m} + (4w^2 - z_0^2)P = 0$ and a(w - 1) + 2 = 0. From $R_a = 0$, we have $(w - 1)^2Q^2 + 4wP = 0$, which is equivalent to $w^{2m} + (z_0 - 2w)P + 4wP = 0$. So $1 + (z_0 + 2w)\frac{2z_0}{4w^2 - z_0^2} = 0$, i.e. $1 - \frac{2z_0}{z_0 - 2w} = 0$. This implies that $z_0 = -2w$, which contradicts $4w^2 - z_0^2 \neq 0$.

4.2.4. Conclusion. From the cases $a \neq 0$, $b \neq 0$, and $c \neq 0$ considered above, we conclude that the singular point $s_3^{(k)}$ requires only one blow-up to resolve.

Acknowledgements

The authors would like to thank the referee for helpful comments and suggestions which greatly improves the exposition of the paper.

References

- CULLER, MARC; SHALEN, PETER B. Varieties of group representations and splittings of 3-manifolds. Ann. of Math. (2) 117 (1983), no. 1, 109–146. MR0683804, Zbl 0529.57005, doi: https://doi.org/10.2307/2006973. 625, 628
- [2] HARADA, SHINYA. Canonical components of character varieties of arithmetic two-bridge link complements. *Eur. J. Math.* 9 (2023), no. 2, Paper No. 41, 23 pp. MR4593262, Zbl 1522.57011, arXiv:1112.3441, doi: https://doi.org/10.1007/s40879-023-00640-1. 626
- [3] HARRIS, JOE. Algebraic Geometry. Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1992. xx+328 pp. ISBN: 0-387-97716-3. MR1182558, Zbl 0779.14001, doi: 10.1007/978-1-4757-2189-8. 626, 630, 636
- [4] HARTSHORNE, ROBIN. Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp. ISBN:0-387-90244-9. MR0463157, Zbl 0367.14001, doi: 10.1007/978-1-4757-3849-0. 627, 630, 636
- [5] LANDES, EMILY. Identifying the canonical component for the Whitehead link. *Math. Res. Lett.* 18 (2011), no. 4, 715–731. MR2831837, Zbl 1271.57041, arXiv:1009.3323, doi:10.4310/MRL.2011.v18.n4.a10. 626, 627, 634
- [6] MACASIEB, MELISSA L.; PETERSEN, KATHLEEN L.; VAN LUIJK, RONALD M. On character varieties of two-bridge knot groups. *Proc. Lond. Math. Soc. (3)* **103** (2011), no. 3, 473–507. MR2827003, Zbl 1231.57013, arXiv:0902.2195, doi:10.1112/plms/pdr003.626, 630
- [7] PETERSEN, KATHLEEN L.; TRAN, ANH T. Character varieties of double twist links. Algebr. Geom. Topol. 15 (2015), no. 6, 3569–3598. MR3450771, Zbl 1360.57021, arXiv:1411.0758, doi:10.2140/agt.2015.15.3569. 626, 627, 628, 630

ANH T. TRAN AND NISHA YADAV

- [8] THURSTON, WILLIAM P. The geometry and topology of three-manifolds. IV. American Mathematical Society, Providence, RI, 2022. xvii+316 pp. ISBN:978-1-4704-6391-5, ISBN: 978-1-4704-6836-1, ISBN: 978-1-4704-5164-6. MR4554426, Zbl 1507.57005. 625
- [9] TRAN, ANH T. The universal character ring of the (-2, 2m + 1, 2n)-pretzel link. *Internat. J. Math.* 24 (2013), no. 8, 1350063, 13 pp. MR3103879, Zbl 1290.57022, arXiv:1209.0002, doi: https://doi.org/10.1142/S0129167X13500638. 630

(Anh T. Tran) DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TEXAS AT DALLAS, RICHARDSON, TX 75080, USA att140830@utdallas.edu

(Nisha Yadav) SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, CLEMSON UNIVER-SITY, CLEMSON, SC 29634, USA fnisha@clemson.edu

This paper is available via http://nyjm.albany.edu/j/2024/30-28.html.