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Canonical components of character varieties
of double twist links 𝑱(𝟐𝒎 + 𝟏, 𝟐𝒎 + 𝟏)

Anh T. Tran and Nisha Yadav

Abstract. We show that a certain smooth projectivemodel of the canonical
component of the SL2(ℂ)-character variety of the double twist link 𝐽(2𝑚 +
1, 2𝑚+1), where𝑚 is a positive integer, is the conic bundle over the projective
lineℙ1 which is isomorphic to the surface obtained fromℙ1×ℙ1 by repeating
a one-point blow-up 6𝑚 + 3 times.
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1. Introduction
For a complete finite-volume hyperbolic 3-manifold with cusps, the SL2(ℂ)-

character variety of𝑀, denoted by 𝑋(𝑀), is a complex algebraic set associated
to representations of 𝜋1(𝑀) into SL2(ℂ). Thurston [8] showed that any irre-
ducible component of such a variety containing the character of a discrete faith-
ful representation has complex dimension equal to the number of cusps of𝑀.
Such components are called canonical components and are denoted by 𝑋0(𝑀).
Character varieties have been important tools in studying the topology of 𝑀,
and canonical components encode a lot of topological information about 𝑀.
They contain subvarieties corresponding to Dehn fillings of𝑀 and their ideal
points can be used to determine essential surfaces in𝑀 (see [1]).
Let 𝐽(𝑘, 𝑙) denote the double twist knot/link indicated in Figure 1, where

the integers 𝑘 and 𝑙 determine the number of half twists in the boxes; positive
numbers correspond to right-handed twists and negative numbers correspond
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to left-handed twists. This is the rational knot/link 𝐶(𝑘,−𝑙) in the Conway’s
notation, which corresponds to the continued fraction [𝑘,−𝑙] = 𝑘 − 1∕𝑙. It is
a knot when 𝑘𝑙 is even and a two-component link when 𝑘𝑙 is odd. These are
hyperbolic exactly when |𝑘| and |𝑙| are greater than one; the 𝐽(±1, 𝑙) = 𝐽(𝑙,±1)
knot/links are torus knots/links.

Figure 1. The double twist knot/link 𝐽(𝑘, 𝑙).

Character varieties of the 𝐽(𝑘, 𝑙)knots and linkswere computed and analyzed
in [6] and [7] respectively. For the Whitehead link 521, which is 𝐽(3, 3), Landes
[5] showed that a certain smooth projective model of the canonical component
inℙ2×ℙ1 is the conic bundle over the projective lineℙ1 which is isomorphic to
the surface obtained fromℙ1×ℙ1 by repeating a one-point blow-up nine times.
Equivalently, it is isomorphic to the surface obtained from ℙ2 by repeating a
one-point blow-up ten times. Harada [2] proved similar results for the links
622 and 6

2
3 in the Rolfsen’s table. Note that a blow-up of ℙ2 at two points is

isomorphic to a blow-up of ℙ1 × ℙ1 at one point, although a blow-up of ℙ2 at
one point is not isomorphic ℙ1 × ℙ1 (see e.g. [3, Example 7.22]).
In [7], Petersen and the first author generalized Landes’ result to the double

twist links 𝐽(3, 2𝑚 + 1) which contain the Whitehead link 𝐽(3, 3), and proved
that a certain smooth projectivemodel of the canonical component of 𝐽(3, 2𝑚+
1) in ℙ2 × ℙ1 is the conic bundle over ℙ1 which is isomorphic to the surface
obtained from ℙ1 × ℙ1 by repeating a one-point blow-up 9𝑚 times if 𝑚 ≥ 1,
and −(9𝑚 + 6) times if 𝑚 ≤ −2. An important step in proving this result is
to show that each singular point of a certain singular projective model of the
canonical component of 𝐽(3, 2𝑚 + 1) in ℙ2 × ℙ1 requires only one blow-up to
resolve. However, this stepwas assumedwithout proof in [7]. Note that Harada
[2] proved that for the link 623, which is not a double twist link, a certain singular
projective model of the canonical component in ℙ2 × ℙ1 has singular points
which require more than one blow-up to resolve.
In this paper, we consider the hyperbolic double twist links 𝐽(2𝑚 + 1, 2𝑚 +

1) which also contain the Whitehead link 𝐽(3, 3), and identify their canonical
components topologically. Since 𝐽 (−(2𝑚 + 1),−(2𝑚 + 1)) is the mirror image
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of 𝐽(2𝑚 + 1, 2𝑚 + 1), we only need to consider the case 𝑚 ≥ 1. We will show
the following.
Theorem 1. The smooth projective model of the canonical component of the
SL2(ℂ)-character variety of the double twist link 𝐽(2𝑚 + 1, 2𝑚 + 1), 𝑚 ≥ 1, is
the conic bundle over the projective line ℙ1 which is isomorphic to the surface ob-
tained fromℙ1×ℙ1 by repeating a one-point blow-up 6𝑚+3 times. Equivalently,
it is isomorphic to the surface obtained from ℙ2 by repeating a one-point blow-up
6𝑚 + 4 times.
Let us explain themeaning of the smooth projectivemodel in Theorem 1 and

sketch the proof. An affine model of the canonical component of the SL2(ℂ)-
character variety of the double twist link 𝐽(2𝑚+1, 2𝑚+1) is given by the zero
set of a single polynomial in three complex variables, and it is known to be an
affine surface birational to ℂ × ℂ. (This fact actually holds true for all double
twist links 𝐽(2𝑚+1, 2𝑛+1), by [7].) For affine complex surfaces, choosing the
right projective completion is not obvious since different projective completions
might result in non-isomorphic smooth projective models. In the case of the
canonical component of the double twist link 𝐽(2𝑚 + 1, 2𝑚 + 1), choosing the
projective completion in ℙ3 seems natural. However, this projective model has
infinitely many singular points. Following [5], we will choose the projective
completion in ℙ2 × ℙ1 which turns out to have finitely many singular points.
By compactifying the above affine model of the canonical component of

𝐽(2𝑚 + 1, 2𝑚 + 1) in ℙ2 × ℙ1, we obtain a projective model, denoted by 𝑆, bi-
rational to ℙ1 ×ℙ1. This projective model is not smooth; it has singular points.
By resolving singular points of the surface 𝑆 (using one-point blow-ups), we
obtain a smooth projective model, denoted by 𝑆. In this paper we refer to 𝑆 as
the smooth projective model of the canonical component of the SL2(ℂ)-character
variety of 𝐽(2𝑚 + 1, 2𝑚 + 1).
The smooth projective model 𝑆 is also birational to ℙ1 × ℙ1. It is known

that for two birational varieties the birational equivalence between them can
be written as a sequence of blow-ups and blow-downs, see e.g. [4, Chapter 5].
Sinceℙ1×ℙ1 is aminimal smooth projective surface (in the sense that it is not a
blow-up of any smooth projective surface), we conclude that 𝑆 is isomorphic to
ℙ1×ℙ1 blown up at𝑁 points. Moreover, this isomorphism (i.e. this number𝑁)
can be determined from the Euler characteristic of 𝑆 which, in turn, depends
on the Euler characteristic and singular points of 𝑆.
An important part of the proof of Theorem 1 is to prove that each singular

point of the singular projective model 𝑆 requires only one blow-up to resolve,
namely, the blow-up of 𝑆 at each singular point is smooth everywhere except
at the preimages of other singular points of 𝑆. A similar proof also works for
𝐽(3, 2𝑚 + 1) and therefore fixes the gap in [7]. The remaining of the proof is in
the same line as those of [5, 7].
The paper is organized as follows. In Section 2 we review Chebyshev poly-

nomials, character varieties of double twist links, and blowing up surfaces. In
Section 3, we give a proof of Theorem 1 with the assumption that each singular
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point of the projectivemodel 𝑆 of the canonical component of 𝐽(2𝑚+1, 2𝑚+1)
requires only one blow-up to resolve (Proposition 3.4). Finally, we prove Propo-
sition 3.4 in Section 4 and therefore complete the proof of Theorem 1.

2. Preliminaries
In this section, we first recall the definition of SL2(ℂ)-character varieties

of 3-manifolds. Then, we define Chebychev polynomials of the second kind
and prove some of their properties. Next, we review character varieties of two-
component double twist links from [7]. Finally, we recall the definition of blow-
ing up varieties at a point.

2.1. Character varieties. Let 𝑀 be a complete finite-volume hyperbolic 3-
manifold with cusps. The SL2(ℂ)-character variety of 𝑀 is the set of all char-
acters of representations 𝜌∶ 𝜋1(𝑀)→ SL2(ℂ). The character associated to 𝜌 is
𝜒𝜌 ∶ 𝜋1(𝑀)→ ℂ defined by 𝜒𝜌(𝛾) = tr 𝜌(𝛾).
Let 𝑋(𝑀) denote the SL2(ℂ)-character variety, that is

𝑋(𝑀) = {𝜒𝜌 ∣ 𝜌∶ 𝜋1(𝑀)→ SL2(ℂ)}.

The characters of reducible representations themselves form an algebraic set,
which is a subset of𝑋(𝑀). The closure of the set of characters of irreducible rep-
resentations will be denoted by 𝑋irr(𝑀). Any irreducible component of 𝑋(𝑀)
which contains the character of a discrete faithful representation is contained
in 𝑋irr(𝑀) and is called a canonical component and denoted by 𝑋0(𝑀).
Character varieties have been important tools in studying the topology of𝑀,

and canonical components encode a lot of topological information about 𝑀.
They contain subvarieties corresponding to Dehn fillings of𝑀 and their ideal
points can be used to determine essential surfaces in𝑀 (see [1]).

2.2. Chebychevpolynomials. Let𝑆𝑘(𝑧) be theChebyshev polynomials of the
second kind defined by 𝑆0(𝑧) = 1, 𝑆1(𝑧) = 𝑧 and 𝑆𝑘+1(𝑧) = 𝑧𝑆𝑘(𝑧)−𝑆𝑘−1(𝑧) for
all integers 𝑘.
It is elementary to verify the following lemma by induction.

Lemma 2.1. (1)With 𝑧 = 𝑎 + 𝑎−1 we have

𝑆𝑘(𝑧) =
𝑎𝑘+1 − 𝑎−𝑘−1

𝑎 − 𝑎−1
.

(2) For 𝑘 ≥ 1, the polynomial 𝑆𝑘(𝑧) has degree 𝑘 and leading term 𝑧𝑘.

The following two lemmas can be verified by using Lemma 2.1.

Lemma 2.2. (1) For 𝑘 ≥ 1, the polynomial 𝑆𝑘(𝑧)−𝑆𝑘−1(𝑧) has exactly 𝑘 distinct
roots given by 𝑧 = 2 cos (2𝑗−1)𝜋

2𝑘+1
where 1 ≤ 𝑗 ≤ 𝑘.

(2) For 𝑘 ≥ 1, the polynomial 𝑆𝑘(𝑧) + 𝑆𝑘−1(𝑧) has exactly 𝑘 distinct roots given
by 𝑧 = 2 cos 2𝑗𝜋

2𝑘+1
where 1 ≤ 𝑗 ≤ 𝑘.
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Lemma 2.3. For any integer 𝑘 we have

𝑆2𝑘(𝑧) + 𝑆2𝑘−1(𝑧) − 𝑧𝑆𝑘(𝑧)𝑆𝑘−1(𝑧) = 1.

We now prove the following two lemmas.

Lemma 2.4. For 𝑘 ≥ 1, the polynomial 2𝑧 + (𝑧2 − 4)𝑆𝑘−1(𝑧)𝑆𝑘(𝑧) has exactly
2𝑘 + 1 distinct roots given by 𝑧 = 2 cos (2𝑗−1)𝜋

2𝑘
(1 ≤ 𝑗 ≤ 𝑘) and 𝑧 = 2 cos (2𝑗−1)𝜋

2𝑘+2
(1 ≤ 𝑗 ≤ 𝑘 + 1). In particular, it is a separable polynomial in ℂ[𝑧].

Proof. Let 𝑃(𝑧) = 2𝑧 + (𝑧2 − 4)𝑆𝑘−1(𝑧)𝑆𝑘(𝑧). Consider 𝑧 = 𝑎 + 𝑎−1 where
𝑎 ≠ ±1. Since 𝑆𝑗(𝑧) =

𝑎𝑗+1−𝑎−𝑗−1

𝑎−𝑎−1
we have

𝑃 = 2(𝑎 + 𝑎−1) + (𝑎2 + 𝑎−2 − 2)𝑎
𝑘 − 𝑎−𝑘

𝑎 − 𝑎−1
𝑎𝑘+1 − 𝑎−𝑘−1

𝑎 − 𝑎−1
= 𝑎 + 𝑎−1 + 𝑎2𝑘+1 + 𝑎−2𝑘−1

= (𝑎𝑘 + 𝑎−𝑘)(𝑎𝑘+1 + 𝑎−𝑘−1).

Note that 𝑃 = 0 if 𝑎2𝑘 = −1 or 𝑎2𝑘+2 = −1. Moreover, these two equations
do not have any common roots. This implies that 𝑧 = 2 cos (2𝑗−1)𝜋

2𝑘
, 1 ≤ 𝑗 ≤ 𝑘,

and 𝑧 = 2 cos (2𝑗−1)𝜋
2𝑘+2

, 1 ≤ 𝑗 ≤ 𝑘 + 1, are distinct roots of 𝑃. Since the degree
of 𝑃 is exactly 2𝑘 + 1, these are all the roots of 𝑃. Therefore, 𝑃 is separable in
ℂ[𝑧]. □

Lemma 2.5. For any integer 𝑘 we have
𝑑𝑆𝑘(𝑧)
𝑑𝑧

=
𝑘𝑆𝑘+1(𝑧) − (𝑘 + 2)𝑆𝑘−1(𝑧)

𝑧2 − 4
.

Proof. Write 𝑧 = 𝑎 + 𝑎−1. Then 𝑆𝑘(𝑧) =
𝑎𝑘+1−𝑎−𝑘−1

𝑎−𝑎−1
and so

𝑑𝑆𝑘(𝑧)
𝑑𝑧

=
𝑑𝑆𝑘(𝑧)
𝑑𝑎

/𝑑𝑧
𝑑𝑎

=
(𝑘 + 1)(𝑎𝑘 + 𝑎−𝑘−2)(𝑎 − 𝑎−1) − (𝑎𝑘+1 − 𝑎−𝑘−1)(1 + 𝑎−2)

(𝑎 − 𝑎−1)2(1 − 𝑎−2)

=
𝑘 𝑎

𝑘+1−𝑎−𝑘−3

1−𝑎−2
− (𝑘 + 2)𝑎

𝑘−1−𝑎−𝑘−1

1−𝑎−2

𝑧2 − 4
.

The lemma follows, since 𝑎𝑗−𝑎−𝑗−2

1−𝑎−2
= 𝑎𝑗+1−𝑎−𝑗−1

𝑎−𝑎−1
= 𝑆𝑗(𝑧). □

2.3. Double twist links. Recall that 𝐽(𝑘, 𝑙) is the double twist knot/link in-
dicated in Figure 1. It is a knot when 𝑘𝑙 is even and a two-component link
when 𝑘𝑙 is odd. The knot/link 𝐽(𝑘, 𝑙) is hyperbolic exactly when |𝑘| and |𝑙| are
greater than one; the 𝐽(±1, 𝑙) = 𝐽(𝑙,±1) knot/links are torus knots/links. Let
𝑋(𝑘, 𝑙) denote the SL2(ℂ)-character variety of 𝑆3 ⧵ 𝐽(𝑘, 𝑙) and 𝑋0(𝑘, 𝑙) its canon-
ical component.
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Character varieties of the 𝐽(𝑘, 𝑙) knots and links were computed in [6] and
[7] respectively. We now review the computation for the 𝐽(𝑘, 𝑙) links with two
components, so both 𝑘 and 𝑙 are odd. Suppose 𝑘 = 2𝑚 + 1 and 𝑙 = 2𝑛 + 1. By
[6], the link group of 𝐽(𝑘, 𝑙) is 𝜋1(𝑘, 𝑙) = 𝜋1(𝑆3 ⧵ 𝐽(𝑘, 𝑙)) and has presentation

𝜋1(𝑘, 𝑙) = ⟨𝑎, 𝑏 ∣ 𝑎𝑤𝑛
𝑘𝑏 = 𝑤𝑛+1

𝑘 ⟩

where 𝑤𝑘 = (𝑎𝑏−1)𝑚𝑎𝑏(𝑎−1𝑏)𝑚. This is the Wirtinger presentation of a link
diagram.
For a word 𝑢 in two letters 𝑎 and 𝑏, let �⃖� denote the word obtained from 𝑢 by

writing the letters in 𝑢 in reversed order. By [7], the above presentation of the
link group of 𝐽(𝑘, 𝑙) can be rewritten as

𝜋1(𝑘, 𝑙) = ⟨𝑎, 𝑏 ∣ 𝑟 = 𝑟⟩

where 𝑟 = 𝑤𝑛
𝑘 (𝑎𝑏

−1)𝑚.
For a representation 𝜌∶ 𝜋1(𝑘, 𝑙) → SL2(ℂ), we let 𝑥 = tr 𝜌(𝑎), 𝑦 = tr 𝜌(𝑏)

and 𝑧 = tr 𝜌(𝑎𝑏−1). Then, by [9, Thm. 1] the algebraic set 𝑋(𝑘, 𝑙) is exactly the
zero set of 𝜙(𝑥, 𝑦, 𝑧) = tr 𝜌(𝑟𝑎𝑏) − tr 𝜌(𝑟𝑎𝑏) ∈ ℂ[𝑥, 𝑦, 𝑧]. Moreover, by [7], this
polynomial can be written in terms of Chebyshev polynomials as

𝜙(𝑥, 𝑦, 𝑧) = (𝑥𝑦𝑧 + 4 − 𝑥2 − 𝑦2 − 𝑧2) (𝑆𝑛(𝑡)𝑆𝑚−1(𝑧) − 𝑆𝑛−1(𝑡)𝑆𝑚(𝑧)) ,

where

𝑡 = tr 𝜌(𝑤𝑘) = 𝑥𝑦 − 𝑧 + (𝑥𝑦𝑧 + 4 − 𝑥2 − 𝑦2 − 𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧).

The character variety 𝑋(𝑘, 𝑙) is clearly reducible. The vanishing set of 𝑥𝑦𝑧+
4−𝑥2−𝑦2−𝑧2 ∈ ℂ[𝑥, 𝑦, 𝑧] is the set of characters of reducible representations
of 𝜋1(𝑘, 𝑙) into SL2(ℂ). An affine model for the algebraic set 𝑋irr(𝑘, 𝑙) is the
vanishing set of 𝑆𝑛(𝑡)𝑆𝑚−1(𝑧) − 𝑆𝑛−1(𝑡)𝑆𝑚(𝑧) ∈ ℂ[𝑥, 𝑦, 𝑧]. Then we have the
following.

Theorem 2.6. [7] Let 𝑘 = 2𝑚 + 1 and 𝑙 = 2𝑛 + 1. The algebraic set 𝑋irr(𝑘, 𝑙) is
birational to 𝐶(𝑘, 𝑙) × ℂ where the curve 𝐶(𝑘, 𝑙) is given by

𝐶(𝑘, 𝑙) = {(𝑡, 𝑧) ∈ ℂ2 ∣ 𝑆𝑛(𝑡)𝑆𝑚−1(𝑧) − 𝑆𝑛−1(𝑡)𝑆𝑚(𝑧) = 0}.

If 𝑘 ≠ 𝑙 then 𝐶(𝑘, 𝑙) is irreducible and 𝑋0(𝑘, 𝑙) = 𝑋irr(𝑘, 𝑙) is birational to
𝐶(𝑘, 𝑙) × ℂ.
The curve 𝐶(3, 3) = 𝐶(−3,−3) is given by 𝑡 = 𝑧. If 𝑘 = 𝑙 and |𝑙| > 3 then

𝐶(𝑙, 𝑙) is the union of exactly two irreducible components: 𝐶0(𝑙, 𝑙), given by 𝑡 = 𝑧,
and 𝐶1(𝑙, 𝑙), the scheme-theoretic complement of 𝐶0(𝑙, 𝑙) in 𝐶(𝑙, 𝑙). The algebraic
set 𝑋irr(𝑙, 𝑙) is given by the union 𝑋0(𝑙, 𝑙) ∪ 𝑋1(𝑙, 𝑙), where 𝑋0(𝑙, 𝑙) is birational to
𝐶0(𝑙, 𝑙) × ℂ and 𝑋1(𝑙, 𝑙) is birational to 𝐶1(𝑙, 𝑙) × ℂ.

2.4. One-point blow-ups. Blowing up varieties is a standard tool for resolv-
ing singular points of surfaces. Since blowing up is a local process, it can be
done in affine neighborhoods. For our purpose, understanding blowing up sub-
varieties of𝔸𝑛 at a point should be sufficient. For more details about blow-ups,
see [3] and [4].
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Blowing up 𝔸𝑛 at a point 𝑝 ∈ 𝔸𝑛 can be described as replacing 𝑝 by a copy
of ℙ𝑛−1. To be precise, by taking 𝑥1,⋯ , 𝑥𝑛 as affine coordinates for 𝔸𝑛 and
𝑦1,⋯ , 𝑦𝑛 as projective coordinates for ℙ𝑛−1, the blow-up of 𝔸𝑛 at a point 𝑝 =
(𝑝1,⋯ , 𝑝𝑛) is the closed subvariety

𝑌 = {((𝑥1,⋯ , 𝑥𝑛), [𝑦1∶ ⋯ ∶ 𝑦𝑛]) ∣ (𝑥𝑖−𝑝𝑖)𝑦𝑗 = (𝑥𝑗−𝑝𝑗)𝑦𝑖 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛}

of𝔸𝑛×ℙ𝑛−1. This blow-up comeswith a naturalmap 𝛾∶ 𝑌 → 𝔸𝑛 which is sim-
ply the projection onto the first factor. The preimage of any point (𝑥1,⋯ , 𝑥𝑛) ≠
(𝑝1,⋯ , 𝑝𝑛) ∈ 𝔸𝑛 is precisely one point in 𝑌. However, the preimage of
(𝑥1,⋯ , 𝑥𝑛) = (𝑝1,⋯ , 𝑝𝑛) is the subset set {(𝑝1,⋯ , 𝑝𝑛)} × ℙ𝑛−1 of 𝑌. Since
𝛾|𝑌⧵𝛾−1(𝑝) ∶ 𝑌 ⧵𝛾−1(𝑝)→ 𝔸𝑛 ⧵ {𝑝} is an isomorphism, 𝛾 is a birational map and
𝔸𝑛 is birational to 𝑌.
To blow up a subvariety 𝑋 ⊂ 𝔸𝑛 at a point 𝑝, we first take the blow-up 𝑌 of

𝔸𝑛 at 𝑝. Then the blow-up of 𝑋 at 𝑝 is the Zariski closure of 𝛾−1(𝑋 ⧵ 𝑝) in 𝑌.
In this paper, we obtain smooth projective models of singular projective sur-

faces by blowing them up at their singular points.

3. Proof of Theorem 1
Let𝑚 be a positive integer and 𝑙 = 2𝑚+1. By Theorem2.6, an affinemodel of

the canonical component 𝑋0(𝑙, 𝑙) of the SL2(ℂ)-character variety of the double
twist link 𝐽(𝑙, 𝑙) is the zero set of the polynomial 𝑡 − 𝑧 ∈ ℂ[𝑥, 𝑦, 𝑧], where

𝑡 = 𝑥𝑦 − 𝑧 + (𝑥𝑦𝑧 + 4 − 𝑥2 − 𝑦2 − 𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧).

Moreover, it is birational to 𝐶0(𝑙, 𝑙) ×ℂ where 𝐶0(𝑙, 𝑙) = {(𝑡, 𝑧) ∈ ℂ2 ∣ 𝑡 = 𝑧}. In
particular, 𝑋0(𝑙, 𝑙) is birational to ℂ × ℂ.

3.1. Projective model. We begin by homogenizing the defining polynomial
for 𝑋0(𝑙, 𝑙).
Let 𝑇𝑘 = 𝑇𝑘(𝑧, 𝑤) = 𝑤𝑘𝑆𝑘(

𝑧
𝑤
) for 𝑘 ≥ 0.

Lemma 3.1. For 𝑘 ≥ 1 we have
(1) 𝑇𝑘(𝑧, 0) = 𝑧𝑘,
(2) 𝑇2𝑘 + 𝑤2𝑇2𝑘−1 − 𝑧 𝑇𝑘𝑇𝑘−1 = 𝑤2𝑘,
(3) 𝑤2𝑘 + (𝑧 ± 2𝑤)𝑇𝑘𝑇𝑘−1 = (𝑇𝑘 ± 𝑤𝑇𝑘−1)2.

Proof. (1) follows from Lemma 2.1(2).
(2) follows from Lemma 2.3.
(3) From (2), we have 𝑤2𝑘 + 𝑧 𝑇𝑘𝑇𝑘−1 = 𝑇2𝑘 + 𝑤2𝑇2𝑘−1. Hence, 𝑤

2𝑘 + (𝑧 ±
2𝑤)𝑇𝑘𝑇𝑘−1 = 𝑇2𝑘 + 𝑤2𝑇2𝑘−1 ± 2𝑤𝑇𝑘𝑇𝑘−1 = (𝑇𝑘 ± 𝑤𝑇𝑘−1)2. □

The homogenization of the defining polynomial 𝑡 − 𝑧 = 𝑥𝑦 − 2𝑧 + (𝑥𝑦𝑧 +
4 − 𝑥2 − 𝑦2 − 𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) in ℙ2 × ℙ1 = {([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤])} is

𝐹 = (𝑥𝑦𝑤 − 2𝑢2𝑧)𝑤2𝑚 + (𝑥𝑦𝑧𝑤 + 4𝑢2𝑤2 − 𝑥2𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧2)𝑇𝑚𝑇𝑚−1.



632 ANH T. TRAN AND NISHA YADAV

3.2. Singular points. We now determine the singular points of the projective
model of 𝑋0(𝑙, 𝑙). To do this, we consider solutions ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) ∈ ℙ2 ×
ℙ1 of 𝐹 = 𝐹𝑥 = 𝐹𝑦 = 𝐹𝑢 = 𝐹𝑧 = 𝐹𝑤 = 0.
First, we compute these partial derivatives by direct calculations.

Lemma 3.2. The first order partial derivatives of 𝐹 are given by

𝐹𝑥 =
(
𝑦𝑤2𝑚 + (𝑦𝑧 − 2𝑥𝑤)𝑇𝑚𝑇𝑚−1

)
𝑤,

𝐹𝑦 =
(
𝑥𝑤2𝑚 + (𝑥𝑧 − 2𝑦𝑤)𝑇𝑚𝑇𝑚−1

)
𝑤,

𝐹𝑢 = −2𝑢
(
2𝑧𝑤2𝑚 + (𝑧2 − 4𝑤2)𝑇𝑚𝑇𝑚−1

)
,

𝐹𝑧 = −2𝑢2𝑤2𝑚 + (𝑥𝑦𝑤 − 2𝑢2𝑧)𝑇𝑚𝑇𝑚−1
+ (𝑥𝑦𝑧𝑤 + 4𝑢2𝑤2 − 𝑥2𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧2)(𝑇𝑚𝑇𝑚−1)𝑧,

𝐹𝑤 = (2𝑚 + 1)𝑥𝑦𝑤2𝑚 − 4𝑚𝑢2𝑧𝑤2𝑚−1 + (𝑥𝑦𝑧 + 8𝑢2𝑤 − 2𝑥2𝑤 − 2𝑦2𝑤)𝑇𝑚𝑇𝑚−1
+ (𝑥𝑦𝑧𝑤 + 4𝑢2𝑤2 − 𝑥2𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧2)(𝑇𝑚𝑇𝑚−1)𝑤.

We can now determine the singular points.

Proposition 3.3. The singular points ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) ∈ ℙ2 × ℙ1 of 𝐹 are

∙ 𝑠1 = ([0∶ 1∶ 0], [1∶ 0]),
∙ 𝑠2 = ([1∶ 0∶ 0], [1∶ 0]),
∙ 𝑠(𝑘)3 =

(
[1∶ 1∶ 0], [𝑧(𝑘)3 ∶ 1]

)
, where 𝑧(𝑘)3 = 2 cos (2𝑘−1)𝜋

2𝑚+1
, 1 ≤ 𝑘 ≤ 𝑚,

∙ 𝑠(𝑘)4 =
(
[1∶ − 1∶ 0], [𝑧(𝑘)4 ∶ 1]

)
, where 𝑧(𝑘)4 = 2 cos 2𝑘𝜋

2𝑚+1
, 1 ≤ 𝑘 ≤ 𝑚.

The number of singular points is 2𝑚 + 2.

Proof. Consider the equations 𝐹 = 𝐹𝑥 = 𝐹𝑦 = 𝐹𝑢 = 𝐹𝑧 = 𝐹𝑤 = 0. We break
the analysis down into two cases: 𝑤 = 0 and 𝑤 ≠ 0.
Case 1: 𝑤 = 0. We can assume 𝑧 = 1. Note that 𝑇𝑘(1, 0) = 1 for all 𝑘 ≥ 1. By

Lemma 3.2, we have 𝐹𝑥 = 𝐹𝑦 = 0, 𝐹 = −𝑢2 and 𝐹𝑢 = −2𝑢. Then 𝐹 = 𝐹𝑢 = 0
are equivalent to 𝑢 = 0. Now we have 𝐹𝑧 = 0 and 𝐹𝑤 = 𝑥𝑦. Thus 𝐹𝑤 = 0
becomes 𝑥𝑦 = 0. In this case, there are two singular points ([0∶ 1∶ 0], [1∶ 0])
and ([1∶ 0∶ 0], [1∶ 0]).
Case 2: 𝑤 ≠ 0. In this case, we first solve 𝐹𝑥 = 𝐹𝑦 = 0 and then 𝐹 = 𝐹𝑢 = 0.

Finally, we show that the equations 𝐹𝑧 = 𝐹𝑤 = 0 follow from 𝐹 = 𝐹𝑥 = 𝐹𝑦 =
𝐹𝑢 = 0.
Since 𝑤 ≠ 0, we can assume 𝑤 = 1. We first claim that (𝑥, 𝑦) ≠ (0, 0).

Indeed, assuming (𝑥, 𝑦) = (0, 0) we have

𝐹 = −2𝑧 + (4 − 𝑧2)𝑆𝑚−1(𝑧)𝑆𝑚(𝑧).

By Lemma 2.4, this polynomial is separable in ℂ[𝑧], so the equations 𝐹 = 𝐹𝑧 =
0 cannot occur. Hence, (𝑥, 𝑦) ≠ (0, 0).
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Consider the equations 𝐹𝑥 = 𝐹𝑦 = 0. By Lemma 2.3, we have 𝑆2𝑚(𝑧) +
𝑆2𝑚−1(𝑧) − 𝑧𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 1. This implies that

𝐹𝑥 = 𝑦 + (𝑦𝑧 − 2𝑥)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 𝑦(𝑆2𝑚(𝑧) + 𝑆2𝑚−1(𝑧)) − 2𝑥𝑆𝑚(𝑧)𝑆𝑚−1(𝑧),
𝐹𝑦 = 𝑥 + (𝑥𝑧 − 2𝑦)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 𝑥(𝑆2𝑚(𝑧) + 𝑆2𝑚−1(𝑧)) − 2𝑦𝑆𝑚(𝑧)𝑆𝑚−1(𝑧).
Hence,

2𝑆𝑚(𝑧)𝑆𝑚−1(𝑧)𝐹𝑥 + (𝑆2𝑚(𝑧) + 𝑆2𝑚−1(𝑧))𝐹𝑦 = 𝑥
(
𝑆2𝑚(𝑧) − 𝑆2𝑚−1(𝑧)

)2
,

2𝑆𝑚(𝑧)𝑆𝑚−1(𝑧)𝐹𝑦 + (𝑆2𝑚(𝑧) + 𝑆2𝑚−1(𝑧))𝐹𝑥 = 𝑦
(
𝑆2𝑚(𝑧) − 𝑆2𝑚−1(𝑧)

)2
.

Since 𝑥 and 𝑦 are not simultaneously equal to 0, the equations 𝐹𝑥 = 𝐹𝑦 =
0 imply that 𝑆2𝑚(𝑧) − 𝑆2𝑚−1(𝑧) = 0. We now consider the subcases 𝑆𝑚(𝑧) −
𝑆𝑚−1(𝑧) = 0 and 𝑆𝑚(𝑧) + 𝑆𝑚−1(𝑧) = 0 separately.
Subcase 2a: 𝑆𝑚(𝑧) − 𝑆𝑚−1(𝑧) = 0. By Lemma 2.2, 𝑧 = 2 cos (2𝑘−1)𝜋

2𝑚+1
for some

1 ≤ 𝑘 ≤ 𝑚. From 𝑆2𝑚(𝑧)+𝑆2𝑚−1(𝑧)−𝑧𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 1 and 𝑆𝑚(𝑧)−𝑆𝑚−1(𝑧) =
0, we have 𝑆2𝑚(𝑧) =

1
2−𝑧

. This implies that 𝐹𝑥 =
2(𝑦−𝑥)
2−𝑧

and 𝐹𝑦 =
2(𝑥−𝑦)
2−𝑧

. Hence,

𝐹𝑥 = 𝐹𝑦 = 0 are equivalent to 𝑥 = 𝑦. Since 𝑆2𝑚(𝑧) =
1

2−𝑧
, we have 𝐹 = 𝑢2(2−𝑧)

and 𝐹𝑢 = 2𝑢(2 − 𝑧). Hence, 𝐹 = 𝐹𝑢 = 0 are equivalent to 𝑢 = 0. Then, by
Lemma 3.2 we have

𝐹𝑧 =
[
𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) + (𝑧 − 2)(𝑆𝑚(𝑧)𝑆𝑚−1(𝑧))′

]
𝑥2

𝐹𝑤 =
[
(2𝑚 + 1) + (𝑧 − 4)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) + (𝑧 − 2)(𝑇𝑚𝑇𝑚−1)𝑤

]
𝑥2.

We claim that 𝐹𝑧 = 𝐹𝑤 = 0. Indeed, by taking derivative of the identity
𝑆2𝑚(𝑧) + 𝑆2𝑚−1(𝑧) − 𝑧𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 1 and using 𝑆𝑚(𝑧) = 𝑆𝑚−1(𝑧), we get
(2 − 𝑧)(𝑆′𝑚(𝑧) + 𝑆′𝑚−1(𝑧)) = 𝑆𝑚(𝑧). It follows that 𝐹𝑧 = 0.
Similarly, by taking partial derivative w.r.t. 𝑤 of the identity 𝑇2𝑚 +𝑤2𝑇2𝑚−1 −

𝑧 𝑇𝑚𝑇𝑚−1 = 𝑤2𝑚 (by Lemma 3.1(2)) and using 𝑆𝑚(𝑧) = 𝑆𝑚−1(𝑧), we get
(2 − 𝑧) ((𝑇𝑚)𝑤 + (𝑇𝑚−1)𝑤) 𝑆𝑚(𝑧) + 2𝑆2𝑚(𝑧) = 2𝑚.

It follows that

(2𝑚 + 1) + (𝑧 − 4)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) + (𝑧 − 2)(𝑇𝑚𝑇𝑚−1)𝑤 = 1 + (𝑧 − 2)𝑆2𝑚(𝑧) = 0.
Hence, 𝐹𝑤 = 0.
Wehave proved that the singular points in this subcase are ([1∶ 1∶ 0], [𝑧∶ 1])

where 𝑧 = 2 cos (2𝑘−1)𝜋
2𝑚+1

for some 1 ≤ 𝑘 ≤ 𝑚.
Subcase 2b: 𝑆𝑚(𝑧)+𝑆𝑚−1(𝑧) = 0. Similar to the above, singular points in this

subcase are ([1∶ −1∶ 0], [𝑧∶ 1])where 𝑧 = 2 cos 2𝑘𝜋
2𝑚+1

for some 1 ≤ 𝑘 ≤ 𝑚. □

Let 𝑆 = 𝒵(𝐹) ⊂ ℙ2 × ℙ1 be the vanishing set of 𝐹.

Proposition 3.4. Each singular point 𝑝 of 𝑆 requires only one blow-up to resolve.
Namely, the blow-up of 𝑆 at 𝑝 is smooth everywhere except at the preimages of
other singular points 𝑞 ≠ 𝑝 of 𝑆.
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We will prove Proposition 3.4 in the last section.

3.3. Euler characteristic. As in [5], to compute the Euler characteristic 𝜒(𝑆)
we observe that 𝐹 = 𝐺 + 𝑢2𝐻, where 𝐺,𝐻 are polynomials independent of 𝑢.
Explicitly,

𝐺 = 𝑥𝑦𝑤2𝑚+1 + (𝑥𝑦𝑧𝑤 − 𝑥2𝑤2 − 𝑦2𝑤2)𝑇𝑚𝑇𝑚−1,
𝐻 = −2𝑧𝑤2𝑚 + (4𝑤2 − 𝑧2)𝑇𝑚𝑇𝑚−1.

Recall that 𝑇𝑘 = 𝑇𝑘(𝑧, 𝑤) = 𝑤𝑘𝑆𝑘(
𝑧
𝑤
) ∈ ℂ[𝑧, 𝑤]. By Lemma 3.1(2), we have

𝑇2𝑚 + 𝑤2𝑇2𝑚−1 − 𝑧 𝑇𝑚𝑇𝑚−1 = 𝑤2𝑚. Hence, we can write

𝐺 = (𝑥 𝑇𝑚 − 𝑦𝑤 𝑇𝑚−1)(𝑦 𝑇𝑚 − 𝑥𝑤 𝑇𝑚−1)𝑤.

Due to the special form of 𝐹 as above, we introduce the rational map

𝜑∶ 𝑆 = 𝒵(𝐹)↪ ℙ2 × ℙ1 ⤏ ℙ1 × ℙ1

defined by ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) ↦ ([𝑥∶ 𝑦], [𝑧∶ 𝑤]). This will play an impor-
tant role in the computation of 𝜒(𝑆).
We first determine the domain of 𝜑.

Lemma 3.5. The domain of 𝜑 is the set 𝑈 = 𝑆 ⧵ 𝐴, where 𝐴 is the set of points
([0∶ 0∶ 1], [𝑧∶ 1]) in ℙ2 × ℙ1 satisfying −2𝑧 + (4 − 𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 0.

Proof. The map 𝜑 is not defined at points of the set

𝐴 = {([0∶ 0∶ 1], [𝑧∶ 𝑤]) ∈ ℙ2 × ℙ1 ∣ 𝐹 = 0} ⊂ 𝑆.

When (𝑥, 𝑦, 𝑢) = (0, 0, 1) we have 𝐺 = 0 and so 𝐹 = 𝐻. If (𝑧, 𝑤) = (1, 0)
then 𝐻 = −𝑇𝑚(1, 0)𝑇𝑚−1(1, 0) = −1 ≠ 0. If 𝑤 = 1 then 𝐻 = −2𝑧 + (4 −
𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧). Hence, 𝐴 is equal to the set of points ([0∶ 0∶ 1], [𝑧∶ 1]) in
ℙ2 × ℙ1 satisfying −2𝑧 + (4 − 𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 0. □

Note that the set 𝐴 has cardinality 2𝑚 + 1. We next determine the image
𝜑(𝑈).

Lemma 3.6. We have
𝜑(𝑈) = ℙ1 × ℙ1 − 𝐵,

where 𝐵 is the set of points ([𝑥∶ 𝑦], [𝑧∶ 1]) ∈ ℙ1 × ℙ1 satisfying −2𝑧 + (4 −
𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) = 0 and (𝑥𝑆𝑚(𝑧) − 𝑦𝑆𝑚−1(𝑧))(𝑦𝑆𝑚(𝑧) − 𝑥𝑆𝑚−1(𝑧)) ≠ 0.

Proof. Note that a point ([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ ℙ1×ℙ1 is not in the image 𝜑(𝑈) if
and only if 𝐹([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) ∈ ℂ[𝑢] is a nonzero constant. This is equiva-
lent to𝐻 = 0 and𝐺 ≠ 0. Recall that𝐺 = (𝑥 𝑇𝑚−𝑦𝑤 𝑇𝑚−1)(𝑦 𝑇𝑚−𝑥𝑤 𝑇𝑚−1)𝑤.
Since 𝐺 ≠ 0, we have 𝑤 ≠ 0. We can assume 𝑤 = 1, so 𝐻 = −2𝑧 + (4 −

𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧) and𝐺 = (𝑥𝑆𝑚(𝑧)−𝑦𝑆𝑚−1(𝑧))(𝑦𝑆𝑚(𝑧)−𝑥𝑆𝑚−1(𝑧)). The lemma
then follows. □

Lemma 3.7. We have
𝜒(𝐵) = 0.
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Proof. Let𝑃(𝑧) = −2𝑧+(4−𝑧2)𝑆𝑚(𝑧)𝑆𝑚−1(𝑧). By Lemma 2.4, 𝑃(𝑧) is separable
in ℂ[𝑧]. Moreover, by Lemma 2.2, 𝑃(𝑧) and 𝑆𝑚(𝑧) ± 𝑆𝑚−1(𝑧) do not share any
common roots. Hence, if 𝑃(𝑧) = 0 then 𝑆𝑚(𝑧) ≠ ±𝑆𝑚−1(𝑧). We have

𝐵 =
⨆

𝑧∈𝒵(𝑃)
(ℙ1 ⧵ {[𝑆𝑚(𝑧)∶ 𝑆𝑚−1(𝑧)], [𝑆𝑚−1(𝑧)∶ 𝑆𝑚(𝑧)]}) × {[𝑧∶ 1]}

Sinceℙ1with twopoints removedhasEuler characteristic zero, we obtain𝜒(𝐵) =
0. □

Let 𝐶 = 𝒵(𝐺) be the zero set of 𝐺 in ℙ1 × ℙ1.

Lemma 3.8. We have
𝜒(𝐶) = 4 − 2𝑚.

Proof. To compute the Euler characteristic of 𝐶, we write 𝐶 = 𝐶1 ∪ 𝐶2 ∪ 𝐶3
where 𝐶𝑖’s are subsets of ℙ1 × ℙ1 defined by

𝐶1 = 𝒵(𝑤) = ℙ1 × {(1∶ 0)},
𝐶2 = 𝒵(𝑥 𝑇𝑚 − 𝑦𝑤 𝑇𝑚−1),
𝐶3 = 𝒵(𝑦 𝑇𝑚 − 𝑥𝑤 𝑇𝑚−1).

Note that 𝐶1 ∩ 𝐶2 = {([1∶ 0], [1∶ 0])} and 𝐶1 ∩ 𝐶3 = {([0∶ 1], [1∶ 0])}.
Moreover, ([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ 𝐶2 ∩ 𝐶3 if and only if 𝑥 = 𝑦 and 𝑇𝑚 = 𝑤𝑇𝑚−1,
or 𝑥 = −𝑦 and 𝑇𝑚 = −𝑤𝑇𝑚−1. If (𝑧, 𝑤) = (1, 0) then 𝑇𝑘 = 1 and so 𝑇𝑚 ≠
±𝑤𝑇𝑚−1. If 𝑤 = 1 then the equation 𝑇𝑚 = ±𝑤𝑇𝑚−1 is equivalent to 𝑆𝑚(𝑧) =
±𝑆𝑚−1(𝑧). Hence,

𝐶2 ∩ 𝐶3 = {([1∶ 1], [𝑧∶ 1]) ∣ 𝑆𝑚(𝑧) − 𝑆𝑚−1(𝑧) = 0}
⋃

{([1∶ − 1], [𝑧∶ 1]) ∣ 𝑆𝑚(𝑧) + 𝑆𝑚−1(𝑧) = 0},

which has cardinality 2𝑚. Hence,
𝜒(𝐶) = 𝜒(𝐶1) + 𝜒(𝐶2) + 𝜒(𝐶3) − 𝜒(𝐶1 ∩ 𝐶2) − 𝜒(𝐶1 ∩ 𝐶3) − 𝜒(𝐶2 ∩ 𝐶3)

+𝜒(𝐶1 ∩ 𝐶2 ∩ 𝐶3)
= 2 + 2 + 2 − 1 − 1 − 2𝑚 + 0 = 4 − 2𝑚.

Note that 𝐶1 ∩ 𝐶2 ∩ 𝐶3 = ∅. □

We are now ready to compute the Euler characteristic of the surface 𝑆 =
𝒵(𝐹).

Proposition 3.9. We have
𝜒(𝑆) = 4𝑚 + 5.

Proof. Recall that 𝐹 = 𝐺 + 𝑢2𝐻, where 𝐺,𝐻 are polynomials independent
of 𝑢, and 𝜑∶ 𝑆 ↪ ℙ2 × ℙ1 ⤏ ℙ1 × ℙ1 is defined by ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) ↦
([𝑥∶ 𝑦], [𝑧∶ 𝑤]).
Note that 𝜒(𝑆) = 𝜒(𝑈) + 𝜒(𝐴). Since 𝐴 is a finite set of cardinality 2𝑚 +

1, we have 𝜒(𝐴) = 2𝑚 + 1. To compute 𝜒(𝑈) we notice that a fixed point
([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ 𝜑(𝑈) = (ℙ1 × ℙ1) ⧵ 𝐵 has
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∙ a two-element preimage if 𝐺 ≠ 0 and𝐻 ≠ 0,
∙ a one-element preimage if 𝐺 = 0 and𝐻 ≠ 0, and
∙ an infinite preimage isomorphic to the affine line 𝔸1 if 𝐺 = 0 and 𝐻 =
0,

where 𝐵 = {([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ ℙ1 × ℙ1 ∣ 𝐺 ≠ 0, 𝐻 = 0}.
Recall that 𝐶 = {([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ ℙ1 × ℙ1 ∣ 𝐺 = 0} ⊂ ℙ1 × ℙ1. Let

𝐿 = {([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ ℙ1 × ℙ1 ∣ 𝐺 = 0, 𝐻 = 0}. Note that
{([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ ℙ1 × ℙ1 ∣ 𝐺 ≠ 0, 𝐻 ≠ 0} = 𝜑(𝑈) ⧵ 𝐶,
{([𝑥∶ 𝑦], [𝑧∶ 𝑤]) ∈ ℙ1 × ℙ1 ∣ 𝐺 = 0, 𝐻 ≠ 0} = 𝐶 ⧵ 𝐿.

Note that 𝜑(𝑈) is the disjoint union of three subsets 𝜑(𝑈) ⧵ 𝐶, 𝐶 ⧵ 𝐿 and 𝐿.
Hence, 𝑈 = 𝜑−1(𝜑(𝑈)) can be written as the disjoint union of three subsets
𝜑−1(𝜑(𝑈) ⧵ 𝐶), 𝜑−1(𝐶 ⧵ 𝐿) and 𝜑−1(𝐿). Since

𝜒(𝜑−1(𝜑(𝑈) ⧵ 𝐶)) = 2𝜒(𝜑(𝑈) ⧵ 𝐶),
𝜒(𝜑−1(𝐶 ⧵ 𝐿)) = 𝜒(𝐶 ⧵ 𝐿),

𝜒(𝜑−1(𝐿)) = |𝐿|𝜒(𝔸1) = |𝐿| = 𝜒(𝐿).
we have

𝜒(𝑈) = 2𝜒(𝜑(𝑈) ⧵ 𝐶) + 𝜒(𝐶 ⧵ 𝐿) + 𝜒(𝐿)
= 2𝜒(ℙ1 × ℙ1 ⧵ (𝐵 ⊔ 𝐶)) + 𝜒(𝐶)
=

(
2𝜒(ℙ1 × ℙ1) − 2𝜒(𝐵) − 2𝜒(𝐶)

)
+ 𝜒(𝐶)

= 2𝜒(ℙ1 × ℙ1) − 2𝜒(𝐵) − 𝜒(𝐶)
= 8 − 0 − (4 − 2𝑚) = 2𝑚 + 4.

Finally, since 𝜒(𝐴) = 2𝑚 + 1 we obtain 𝜒(𝑆) = 𝜒(𝑈) + 𝜒(𝐴) = 4𝑚 + 5. □

3.4. Proof of Theorem 1. Recall that 𝑆 = 𝒵(𝐹) ⊂ ℙ2×ℙ1 is the vanishing set
of𝐹. Let 𝑆sing be the set of singular points of 𝑆. By Proposition 3.3, its cardinality
is |𝑆sing| = 2𝑚 + 2.
Let 𝑆 be the smooth projective surface obtained from 𝑆 by resolving all the

singular points of 𝑆. By Proposition 3.4, each singular point of 𝑆 requires one
blow-up to resolve. Moreover, from its proof in Section 4 we see that the preim-
age of each singular point is locally a conic and hence locally isomorphic to ℙ1.
This implies that

𝜒(𝑆) = 𝜒(𝑆 ⧵𝑆sing)+ |𝑆sing| ⋅𝜒(ℙ1) = (𝜒(𝑆)− |𝑆sing|)+2|𝑆sing| = 𝜒(𝑆)+ |𝑆sing|.
Hence,

𝜒(𝑆) = 𝜒(𝑆) + |𝑆sing| = (4𝑚 + 5) + (2𝑚 + 2) = 6𝑚 + 7.

Since 𝑆 is birational to ℙ1 ×ℙ1, 𝑆 is a smooth projective surface birational to
ℙ1×ℙ1. It is known thatℙ1×ℙ1 is aminimal smooth projective surface, namely,
it is not a blow-up of any smooth projective surface (see e.g. [3] and [4]). Hence,
we can blow down 𝑆 over ℙ1 some number of times so that it becomes a fiber
bundle ℙ1 × ℙ1 over ℙ1.
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Let𝑁 be such that 𝑆 is obtained fromℙ1×ℙ1 by𝑁 one-point blow-ups. Then

𝜒(𝑆) = (𝜒(ℙ1 × ℙ1) −𝑁) +𝑁 ⋅ 𝜒(ℙ1) = 4 +𝑁.

Hence, 𝑁 = 𝜒(𝑆) − 4 = 6𝑚 + 3. This proves Theorem 1.

4. Blow-ups at singular points
In this section, we prove Proposition 3.4 and therefore complete the proof

of Theorem 1. We will show that each of the singular points 𝑠1 and 𝑠
(𝑘)
3 of the

projective model 𝑆 requires only one blow-up to resolve. Namely, the blow-up
of 𝑆 at 𝑝 = 𝑠1 (or 𝑝 = 𝑠(𝑘)3 ) is smooth everywhere except at the preimages of the
singular points 𝑞 ≠ 𝑝 of 𝑆. The proofs for 𝑠2 and 𝑠

(𝑘)
4 are similar.

Recall that the defining equation for 𝑆 in ℙ2 ×ℙ1 = {([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤])} is

𝐹 = (𝑥𝑦𝑤 − 2𝑢2𝑧)𝑤2𝑚 − (𝑥2𝑤2 + 𝑦2𝑤2 + 𝑢2𝑧2 − 𝑥𝑦𝑧𝑤 − 4𝑢2𝑤2)𝑇𝑚𝑇𝑚−1,

where 𝑇𝑘 = 𝑇𝑘(𝑧, 𝑤) = 𝑤𝑘𝑆𝑘(
𝑧
𝑤
).

4.1. Singularpoint 𝒔𝟏. Toperform the blow-up of𝑆 at 𝑠1 = ([0∶ 1∶ 0], [1∶ 0]),
we consider the affine open set 𝐴′

1 such that 𝑦 ≠ 0 and 𝑧 ≠ 0. Since 𝐴′
1 con-

tains the singular points 𝑠(𝑘)3 and 𝑠(𝑘)4 where 1 ≤ 𝑘 ≤ 𝑚, we actually look at
the blow-up of 𝑆 at 𝑠1 in the affine open set 𝐴1 = 𝐴′

1 ⧵
⋃

1≤𝑘≤𝑚{𝑠
(𝑘)
3 , 𝑠(𝑘)4 }. The

local affine coordinates for 𝐴1 ≅ 𝔸3 are 𝑥, 𝑢, 𝑤. So to blow up 𝑆 at 𝑠1, we blow
up 𝑋1 = 𝒵(𝐹|𝑦=1,𝑧=1) at the point (𝑥, 𝑢, 𝑤) = (0, 0, 0) in 𝐴1. Using coordinates
𝑎, 𝑏, 𝑐 for ℙ2, the blow-up 𝑌1 of 𝑋1 at (0, 0, 0) is the closed subset in 𝐴1 × ℙ2
defined as the zero set of the following polynomials:

𝐹1 = 𝐹|𝑦=1,𝑧=1
= (𝑥𝑤 − 2𝑢2)𝑤2𝑚 − (𝑥2𝑤2 + 𝑤2 + 𝑢2 − 𝑥𝑤 − 4𝑢2𝑤2)𝑇𝑚(1, 𝑤)𝑇𝑚−1(1, 𝑤),

𝑒1 = 𝑥𝑏 − 𝑢𝑎,
𝑒2 = 𝑥𝑐 − 𝑤𝑎,
𝑒3 = 𝑤𝑏 − 𝑢𝑐.

Wewill determine the localmodel of𝑌1 and check for smoothness by looking
at 𝑌1 in the affine open sets defined by 𝑎 ≠ 0, 𝑏 ≠ 0, and 𝑐 ≠ 0.
Let 𝐷(𝑤) = 𝑇𝑚(1, 𝑤)𝑇𝑚−1(1, 𝑤). Note that 𝐷(0) = 1 (by Lemma 3.1(1)).

4.1.1. 𝒂 ≠ 𝟎. First we look at 𝑌1 in the affine open set defined by 𝑎 ≠ 0 (we
can assume 𝑎 = 1). In this open set, the defining equations for 𝑌1 become

𝐹1 = (𝑥𝑤 − 2𝑢2)𝑤2𝑚 − (𝑥2𝑤2 + 𝑤2 + 𝑢2 − 𝑥𝑤 − 4𝑢2𝑤2)𝐷(𝑤),
𝑒1 = 𝑥𝑏 − 𝑢,
𝑒2 = 𝑥𝑐 − 𝑤,
𝑒3 = 𝑤𝑏 − 𝑢𝑐.
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From equations 𝑒1 = 0 and 𝑒2 = 0, we have 𝑢 = 𝑥𝑏 and𝑤 = 𝑥𝑐. By replacing
𝑢 with 𝑥𝑏 and 𝑤 with 𝑥𝑐 in 𝐹1, we obtain

𝐹1 = 𝑥2
[
(𝑐 − 2𝑏2)(𝑥𝑐)2𝑚 − (𝑥2𝑐2 + 𝑐2 + 𝑏2 − 𝑐 − 4𝑥2𝑏2𝑐2)𝐷(𝑥𝑐)

]
.

The first factor corresponds to the exceptional plane 𝐸1 and the other factor
is the defining equation for the local model of 𝑌1. Note that the preimage of
𝑠1 is exactly the intersection of 𝐸1 and 𝑌1 which is equal to the smooth conic
𝑐2+𝑏2− 𝑐 = 0. This local model of 𝑌1 is smooth in𝐴1×ℙ2 if we can show that

𝑅(𝑏, 𝑐, 𝑥)∶ = (𝑐 − 2𝑏2)(𝑥𝑐)2𝑚 − (𝑥2𝑐2 + 𝑐2 + 𝑏2 − 𝑐 − 4𝑥2𝑏2𝑐2)𝐷(𝑥𝑐)

is smooth. We now prove that the system 𝑅 = 𝑅𝑏 = 𝑅𝑐 = 𝑅𝑥 = 0 has no
solutions.
By direct calculations, we have

𝑅𝑏 = −2𝑏
(
2𝑥2𝑚𝑐2𝑚 + (1 − 4𝑥2𝑐2)𝐷

)
,

𝑅𝑐 = (𝑥𝑐)2𝑚 + 2𝑚(𝑐 − 2𝑏2)𝑥2𝑚𝑐2𝑚−1 − (2𝑥2𝑐 + 2𝑐 − 1 − 8𝑥2𝑏2𝑐)𝐷
− (𝑥2𝑐2 + 𝑐2 + 𝑏2 − 𝑐 − 4𝑥2𝑏2𝑐2)𝑥𝐷𝑤,

𝑅𝑥 = 2𝑚(𝑐 − 2𝑏2)𝑥2𝑚−1𝑐2𝑚 − (2𝑐2𝑥 − 8𝑥𝑏2𝑐2)𝐷
−(𝑥2𝑐2 + 𝑐2 + 𝑏2 − 𝑐 − 4𝑥2𝑏2𝑐2)𝑐𝐷𝑤.

Note that

𝑅 − 𝑏𝑅𝑏∕2 = 𝑐
(
𝑥2𝑚𝑐2𝑚 − (𝑥2𝑐 + 𝑐 − 1)𝐷

)
,

𝑥𝑅𝑥 − 𝑐𝑅𝑐 = 𝑐
(
−𝑥2𝑚𝑐2𝑚 + (2𝑐 − 1)𝐷

)
.

Assume that 𝑅 = 𝑅𝑏 = 𝑅𝑐 = 𝑅𝑥 = 0 at some point (𝑏, 𝑐, 𝑥). We will consider
the two cases 𝑏 = 0 and 𝑏 ≠ 0 separately.
Suppose 𝑏 = 0. We claim that 𝑥𝑐 ≠ 0. Indeed, if 𝑐 = 0 then 𝑅𝑐 = 𝐷(0) =

1 ≠ 0. If 𝑐 ≠ 0 and 𝑥 = 0, then 𝑅 − 𝑏𝑅𝑏∕2 = 0 implies that (𝑐 − 1)𝐷(0) = 1.
So 𝑐 = 1 and 𝑅𝑐 = −𝐷(0) = −1 ≠ 0. Hence, 𝑥𝑐 ≠ 0. From 𝑅 − 𝑏𝑅𝑏∕2 = 0 and
𝑥𝑅𝑥−𝑐𝑅𝑐 = 0, we have 𝑥2𝑚𝑐2𝑚−(𝑥2𝑐+𝑐−1)𝐷 = 0 and−𝑥2𝑚𝑐2𝑚+(2𝑐−1)𝐷 = 0.
So 𝑥2𝑐 + 𝑐 − 1 = 2𝑐 − 1, i.e. 𝑥 = ±1. Then 𝐷 = 𝑥2𝑚𝑐2𝑚

2𝑐−1
= 𝑤2𝑚

±2𝑤−1
. Since 𝐷 =

𝑇𝑚(1, 𝑤)𝑇𝑚−1(𝑤) = 𝑤2𝑚−1𝑆𝑚(
1
𝑤
)𝑆𝑚−1(

1
𝑤
), we obtain 𝑆𝑚(

1
𝑤
)𝑆𝑚−1(

1
𝑤
) = 𝑤

±2𝑤−1
.

This is equivalent to (±2 − 1
𝑤
)𝑆𝑚(

1
𝑤
)𝑆𝑚−1(

1
𝑤
) = 1, i.e. (𝑆𝑚(

1
𝑤
) ∓ 𝑆𝑚−1(

1
𝑤
))2 = 0

(by Lemma 2.3). Hence,

([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) = ([𝑥∶ 1∶ 𝑢], [1∶ 𝑤])
= ([±1∶ 1∶ 0], [1∶ 𝑤])

= ([1∶ ± 1∶ 0], [ 1𝑤 ∶ 1]),

which is equal to either 𝑠(𝑘)3 or 𝑠(𝑘)4 . This point is not in 𝐴1, since it has already
been removed from 𝐴1.
Suppose 𝑏 ≠ 0. Then 𝑅𝑏 = 0 implies that 2𝑥2𝑚𝑐2𝑚 + (1 − 4𝑥2𝑐2)𝐷 = 0. Note

that 𝑥𝑐 ≠ 0. (Otherwise 2𝑥2𝑚𝑐2𝑚 + (1 − 4𝑥2𝑐2)𝐷 = 𝐷(0) = 1 ≠ 0.) From
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𝑅 − 𝑏𝑅𝑏∕2 = 0 and 𝑥𝑅𝑥 − 𝑐𝑅𝑐 = 0, we also have 𝑥2𝑚𝑐2𝑚 − (𝑥2𝑐 + 𝑐 − 1)𝐷 = 0
and −𝑥2𝑚𝑐2𝑚 + (2𝑐 − 1)𝐷 = 0. This implies that 𝑥2𝑐 + 𝑐 − 1 = 2𝑐 − 1 =
1
2
(4𝑥2𝑐2 − 1). Hence, 𝑥2 = 1 and 2𝑐 − 1 = 1

2
(4𝑐2 − 1), so 𝑐 = 1∕2. But then

2𝑥2𝑚𝑐2𝑚 + (1 − 4𝑥2𝑐2)𝐷 = 2𝑥2𝑚𝑐2𝑚 ≠ 0, a contradiction.

4.1.2. 𝒃 ≠ 𝟎. Now we look at 𝑌1 in the affine open set defined by 𝑏 ≠ 0 (we
can assume 𝑏 = 1). In this open set, the defining equations for 𝑌1 become

𝐹1 = (𝑥𝑤 − 2𝑢2)𝑤2𝑚 − (𝑥2𝑤2 + 𝑤2 + 𝑢2 − 𝑥𝑤 − 4𝑢2𝑤2)𝐷(𝑤),
𝑒1 = 𝑥 − 𝑢𝑎,
𝑒2 = 𝑥𝑐 − 𝑤𝑎,
𝑒3 = 𝑤 − 𝑢𝑐.

From equations 𝑒1 = 0 and 𝑒3 = 0, we have 𝑥 = 𝑢𝑎 and𝑤 = 𝑢𝑐. By replacing
𝑥 with 𝑢𝑎 and 𝑤 with 𝑢𝑐 in 𝐹1, we obtain

𝐹1 = 𝑢2
[
(𝑎𝑐 − 2)(𝑢𝑐)2𝑚 − (𝑎2𝑐2𝑢2 + 𝑐2 + 1 − 𝑎𝑐 − 4𝑢2𝑐2)𝐷(𝑢𝑐)

]
.

The first factor corresponds to the exceptional plane 𝐸1 and the other factor
is the defining equation for the local model of 𝑌1. Note that the preimage of
𝑠1 is exactly the intersection of 𝐸1 and 𝑌1 which is equal to the smooth conic
𝑐2+1−𝑎𝑐 = 0. This local model of 𝑌1 is smooth in𝐴1×ℙ2 if we can show that

𝑅(𝑎, 𝑐, 𝑢)∶ = (𝑎𝑐 − 2)(𝑢𝑐)2𝑚 − (𝑎2𝑐2𝑢2 + 𝑐2 + 1 − 𝑎𝑐 − 4𝑢2𝑐2)𝐷(𝑢𝑐)
is smooth. We now prove that the system 𝑅 = 𝑅𝑎 = 𝑅𝑐 = 𝑅𝑢 = 0 has no
solutions.
By direct calculations, we have

𝑅𝑎 = 𝑐
(
𝑢2𝑚𝑐2𝑚 − (2𝑎𝑢2𝑐 − 1)𝐷

)
,

𝑅𝑐 = 𝑎(𝑢𝑐)2𝑚 + 2𝑚(𝑎𝑐 − 2)𝑢2𝑚𝑐2𝑚−1 − (2𝑎2𝑐𝑢2 + 2𝑐 − 𝑎 − 8𝑢2𝑐)𝐷
− (𝑎2𝑐2𝑢2 + 𝑐2 + 1 − 𝑎𝑐 − 4𝑢2𝑐2)𝑢𝐷𝑤,

𝑅𝑢 = 2𝑚(𝑎𝑐 − 2)𝑢2𝑚−1𝑐2𝑚 − (2𝑎2𝑐2𝑢 − 8𝑢𝑐2)𝐷
−(𝑎2𝑐2𝑢2 + 𝑐2 + 1 − 𝑎𝑐 − 4𝑢2𝑐2)𝑐𝐷𝑤.

Note that
𝑢𝑅𝑢 − 𝑐𝑅𝑐 = 𝑐

(
−𝑎𝑢2𝑚𝑐2𝑚 + (2𝑐 − 𝑎)𝐷

)
.

Assume that 𝑅 = 𝑅𝑎 = 𝑅𝑐 = 𝑅𝑢 = 0 at some point (𝑎, 𝑐, 𝑢). If 𝑐 = 0, then
𝑅 = −𝐷(0) = −1 ≠ 0, a contradiction. Hence, 𝑐 ≠ 0. Then 𝑅𝑎 = 0 implies
that 𝑢2𝑚𝑐2𝑚 − (2𝑎𝑢2𝑐 − 1)𝐷 = 0. Note that 𝑢 ≠ 0. (Otherwise 𝑢2𝑚𝑐2𝑚 −
(2𝑎𝑢2𝑐 − 1)𝐷 = 𝐷(0) = 1 ≠ 0.) Hence, 2𝑎𝑢2𝑐 − 1 ≠ 0 and 𝐷 = 𝑢2𝑚𝑐2𝑚

2𝑎𝑢2𝑐−1
. From

𝑢𝑅𝑢 − 𝑐𝑅𝑐 = 0, we get −𝑎𝑢2𝑚𝑐2𝑚 + (2𝑐 − 𝑎) 𝑢
2𝑚𝑐2𝑚

2𝑎𝑢2𝑐−1
= 0. This implies that

−𝑎 + 2𝑐−𝑎
2𝑎𝑢2𝑐−1

= 0, i.e. 𝑎2𝑢2 = 1.

Similarly, from 𝑅 = (𝑎𝑐−2)(𝑢𝑐)2𝑚−(𝑎2𝑐2𝑢2+𝑐2+1−𝑎𝑐−4𝑢2𝑐2) 𝑢
2𝑚𝑐2𝑚

2𝑎𝑢2𝑐−1
= 0

we have 𝑎𝑐 − 2 − 𝑎2𝑐2𝑢2+𝑐2+1−𝑎𝑐−4𝑢2𝑐2

2𝑎𝑢2𝑐−1
= 0. Since 𝑢2 = 1∕𝑎2, we obtain 𝑎𝑐 − 2 −
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2𝑐2+1−𝑎𝑐−4𝑐2∕𝑎2

2𝑐∕𝑎−1
= 0. This is equivalent to ( 2𝑐

𝑎
− 1)2 = 0, i.e. 2𝑐 = 𝑎. But then

2𝑎𝑢2𝑐 − 1 = 𝑎2𝑢2 − 1 = 0, a contradiction.

4.1.3. 𝒄 ≠ 𝟎. Finally we look at 𝑌1 in the affine open set defined by 𝑐 ≠ 0 (we
can assume 𝑐 = 1). In this open set, the defining equations for 𝑌1 become

𝐹1 = (𝑥𝑤 − 2𝑢2)𝑤2𝑚 − (𝑥2𝑤2 + 𝑤2 + 𝑢2 − 𝑥𝑤 − 4𝑢2𝑤2)𝐷(𝑤),
𝑒1 = 𝑥𝑏 − 𝑢𝑎,
𝑒2 = 𝑥 − 𝑤𝑎,
𝑒3 = 𝑤𝑏 − 𝑢.

From equations 𝑒2 = 0 and 𝑒2 = 0, we have 𝑥 = 𝑤𝑎 and 𝑢 = 𝑤𝑏. By
replacing 𝑥 with 𝑤𝑎 and 𝑢 with 𝑤𝑏 in 𝐹1, we obtain

𝐹1 = 𝑤2 [(𝑎 − 2𝑏2)𝑤2𝑚 − (𝑎2𝑤2 + 1 + 𝑏2 − 𝑎 − 4𝑏2𝑤2)𝐷(𝑤)
]
.

The first factor corresponds to the exceptional plane 𝐸1 and the other factor
is the defining equation for the local model of 𝑌1. Note that the preimage of
𝑠1 is exactly the intersection of 𝐸1 and 𝑌1 which is equal to the smooth conic
1+ 𝑏2− 𝑎 = 0. This local model of 𝑌1 is smooth in𝐴1 ×ℙ2 if we can show that

𝑅(𝑎, 𝑏, 𝑤)∶ = (𝑎 − 2𝑏2)𝑤2𝑚 − (𝑎2𝑤2 + 1 + 𝑏2 − 𝑎 − 4𝑏2𝑤2)𝐷(𝑤),

is smooth. We now prove that the system 𝑅 = 𝑅𝑎 = 𝑅𝑏 = 𝑅𝑤 = 0 has no
solutions.
By direct calculations, we have

𝑅𝑎 = 𝑤2𝑚 − (2𝑎𝑤2 − 1)𝐷,
𝑅𝑏 = −2𝑏

(
2𝑤2𝑚 + (1 − 4𝑤2)𝐷

)
,

𝑅𝑤 = 2𝑚(𝑎 − 2𝑏2)𝑤2𝑚−1 − (2𝑎2𝑤 − 8𝑏2𝑤)𝐷
−(𝑎2𝑤2 + 1 + 𝑏2 − 𝑎 − 4𝑏2𝑤2)𝐷𝑤.

Note that

𝑅 − (𝑎 − 2𝑏2)𝑅𝑎 = (𝑎2𝑤2 − 1 + 𝑏2 + 4𝑏2𝑤2 − 4𝑎𝑏2𝑤2)𝐷.

Assume that𝑅 = 𝑅𝑎 = 𝑅𝑏 = 𝑅𝑤 = 0 at some point (𝑎, 𝑏, 𝑤). Wewill consider
the two cases 𝑏 = 0 and 𝑏 ≠ 0 separately.
Suppose 𝑏 = 0. Then 𝑅 − (𝑎 − 2𝑏2)𝑅𝑎 = 0 implies that (𝑎2𝑤2 − 1)𝐷 = 0. If

𝐷 = 0, then from 𝑅𝑎 = 0 we have 𝑤 = 0. This implies that 𝐷 = 𝐷(0) = 1 ≠ 0,
a contradiction. Hence, 𝑎2𝑤2 − 1 = 0, i.e. 𝑎 = ±1∕𝑤. From 𝑅𝑎 = 0, we have
𝐷 = 𝑤2𝑚

±2𝑤−1
. This is equivalent to (𝑆𝑚(

1
𝑤
) ∓ 𝑆𝑚−1(

1
𝑤
))2 = 0. Hence,

([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) = ([𝑎𝑤∶ 1∶ 𝑏𝑤], [1∶ 𝑤])
= ([±1∶ 1∶ 0], [1∶ 𝑤])

= ([1∶ ± 1∶ 0], [ 1𝑤 ∶ 1]),
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which corresponds to either 𝑠(𝑘)3 or 𝑠(𝑘)4 . This point is not in 𝐴1, since it has
already been removed from 𝐴1.
Suppose 𝑏 ≠ 0. From 𝑅𝑏 = 0, we have 2𝑤2𝑚 + (1 − 4𝑤2)𝐷 = 0. This implies

that 𝑤 ≠ 0 (otherwise 2𝑤2𝑚 + (1 − 4𝑤2)𝐷 = 𝐷(0) = 1 ≠ 0), so 4𝑤2 − 1 ≠ 0
and 𝐷 = 2𝑤2𝑚

4𝑤2−1
≠ 0. Then 𝑅𝑎 = 0 becomes 1 − 2(2𝑎𝑤2−1)

4𝑤2−1
= 0, which means that

𝑎 = 1 + 1
4𝑤2

. From 𝑅 − (𝑎 − 2𝑏2)𝑅𝑎 = 0 and 𝐷 ≠ 0, we have 𝑎2𝑤2 − 1 + 𝑏2 +
4𝑏2𝑤2 − 4𝑎𝑏2𝑤2 = 0. But 𝑏2 + 4𝑏2𝑤2 − 4𝑎𝑏2𝑤2 = 𝑏2(1 + 4𝑤2 − 4𝑎𝑤2) = 0,
so 𝑎2𝑤2 − 1 = 0. Hence, 𝑎 = 1 + 1

4𝑤2
= 1 + 𝑎2

4
, i.e. 𝑎 = 2. This implies that

4𝑤2 − 1 = 0, which contradicts 4𝑤2 − 1 ≠ 0.

4.1.4. Conclusion. From the cases 𝑎 ≠ 0, 𝑏 ≠ 0, and 𝑐 ≠ 0 considered above,
we conclude that the singular point 𝑠1 requires only one blow-up to resolve.

4.2. Singular points 𝒔(𝒌)𝟑 . To perform the blow-up of 𝑆 at

𝑠(𝑘)3 = (1∶ 1∶ 0, 𝑧(𝑘)3 ∶ 1),

we consider the affine open set𝐴′
3 such that 𝑥 ≠ 0 and 𝑧 ≠ 0. Since𝐴′

3 contains
all other singularities except 𝑠1, we actually look at the blow-up of 𝑆 at 𝑠1 in the
affine open set 𝐴3 = 𝐴′

3 ⧵ (𝑆sing ⧵ {𝑠1, 𝑠
(𝑘)
3 }). The local affine coordinates for

𝐴3 ≅ 𝔸3 are 𝑦, 𝑢, 𝑤. So to blow up 𝑆 at 𝑠(𝑘)3 , we blow up 𝑋3 = 𝒵(𝐹|𝑥=1, 𝑧=𝑧(𝑘)3
)

at the point (𝑦, 𝑢, 𝑤) = (1, 0, 1) in 𝐴3. For short, we write 𝑧0 for 𝑧
(𝑘)
3 . Note that

𝑆𝑚(𝑧0) − 𝑆𝑚−1(𝑧0) = 0. Using coordinates 𝑎, 𝑏, 𝑐 for ℙ2, the blow-up 𝑌3 of 𝑋3
at (1, 0, 1) is the closed subset in𝐴3×ℙ2 defined as the zero set of the following
polynomials:

𝐹3 = 𝐹|𝑥=1, 𝑧=𝑧0
= (𝑦𝑤 − 2𝑢2𝑧0)𝑤2𝑚 + (𝑦𝑧0𝑤 + 4𝑢2𝑤2 − 𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧20)𝑃(𝑤),

𝑒1 = 𝑢𝑎 − (𝑦 − 1)𝑏,
𝑒2 = (𝑤 − 1)𝑎 − (𝑦 − 1)𝑐,
𝑒3 = (𝑤 − 1)𝑏 − 𝑢𝑐,

where 𝑃(𝑤) = 𝑇𝑚(𝑧0, 𝑤)𝑇𝑚−1(𝑧0, 𝑤). Note that 𝑃(0) = 𝑧2𝑚−10 (by Lemma
3.1(1)).
Wewill determine the localmodel of𝑌3 and check for smoothness by looking

at 𝑌3 in the affine open sets defined by 𝑎 ≠ 0, 𝑏 ≠ 0, and 𝑐 ≠ 0.
By Lemma 3.1(3), we have𝑤2𝑚+(𝑧−2𝑤)𝑇𝑚𝑇𝑚−1 = (𝑇𝑚−𝑤𝑇𝑚−1)2. Hence,
𝐹3 = 𝑦𝑤

(
𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃

)
− 2𝑢2𝑧0𝑤2𝑚 + (4𝑢2𝑤2 − (𝑦 − 1)2𝑤2 − 𝑢2𝑧20)𝑃

= 𝑦𝑤(𝑇𝑚(𝑧0, 𝑤) − 𝑇𝑚−1(𝑧0, 𝑤))2 − 2𝑢2𝑧0𝑤2𝑚 + (4𝑢2𝑤2 − (𝑦 − 1)2𝑤2 − 𝑢2𝑧20)𝑃.

Let

𝑄 = 𝑄(𝑤) =
𝑇𝑚(𝑧0, 𝑤) − 𝑤𝑇𝑚−1(𝑧0, 𝑤)

𝑤 − 1 .
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Note that 𝑄 ∈ ℂ[𝑤], since 𝑇𝑚(𝑧0, 1) − 𝑇𝑚−1(𝑧0, 1) = 𝑆𝑚(𝑧0) − 𝑆𝑚−1(𝑧0) = 0.
Then

𝐹3 = 𝑦𝑤(𝑤 − 1)2𝑄2 − 2𝑢2𝑧0𝑤2𝑚 + (4𝑢2𝑤2 − (𝑦 − 1)2𝑤2 − 𝑢2𝑧20)𝑃.

Lemma 4.1. We have 𝑆2𝑚(𝑧0) =
1

2−𝑧0
and

𝑄(1) = −
(2𝑚 + 1)𝑧0
𝑧0 + 2 𝑆𝑚(𝑧0).

Proof. Since 𝑆2𝑚(𝑧0) + 𝑆2𝑚−1(𝑧0) − 𝑧0𝑆𝑚(𝑧0)𝑆𝑚−1(𝑧0) = 1 (by Lemma 2.3) and
𝑆𝑚(𝑧0) − 𝑆𝑚−1(𝑧0) = 0, we get 𝑆2𝑚 = 1

2−𝑧0
. By L’Hospital rule, we have

𝑄(1) = 𝑤𝑚
𝑆𝑚(

𝑧0
𝑤
) − 𝑆𝑚−1(

𝑧0
𝑤
)

𝑤 − 1 |𝑤=1

=
−𝑧0
𝑤2 (𝑆

′
𝑚(
𝑧0
𝑤 ) − 𝑆′𝑚−1(

𝑧0
𝑤 ))|𝑤=1

= −𝑧0(𝑆′𝑚(𝑧0) − 𝑆′𝑚−1(𝑧0)).
Since 𝑆𝑚(𝑧0) = 𝑆𝑚−1(𝑧0), we have 𝑆𝑚+1(𝑧) = (𝑧0 − 1)𝑆𝑚(𝑧0) and 𝑆𝑚−2(𝑧) =

(𝑧0 − 1)𝑆𝑚(𝑧0). Lemma 2.5 then implies that

𝑆′𝑚(𝑧0) =
𝑚𝑆𝑚+1(𝑧0) − (𝑚 + 2)𝑆𝑚−1(𝑧0)

𝑧20 − 4

=
𝑚(𝑧0 − 1) − (𝑚 + 2)

𝑧20 − 4
𝑆𝑚(𝑧0),

𝑆′𝑚−1(𝑧0) =
(𝑚 − 1)𝑆𝑚(𝑧0) − (𝑚 + 1)𝑆𝑚−2(𝑧0)

𝑧20 − 4

=
𝑚 − 1 − (𝑚 + 1)(𝑧0 − 1)

𝑧20 − 4
𝑆𝑚(𝑧0).

Hence, 𝑄(1) = −𝑧0(𝑆′𝑚(𝑧0) − 𝑆′𝑚−1(𝑧0)) = − (2𝑚+1)𝑧0
𝑧0+2

𝑆𝑚(𝑧0). □

4.2.1. 𝒂 ≠ 𝟎. First we look at 𝑌3 in the affine open set defined by 𝑎 ≠ 0 (we
can assume 𝑎 = 1). In this open set, the defining equations for 𝑌3 become

𝐹3 = (𝑦𝑤 − 2𝑢2𝑧0)𝑤2𝑚 + (𝑦𝑧0𝑤 + 4𝑢2𝑤2 − 𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧20)𝑃(𝑤),
𝑒1 = 𝑢 − (𝑦 − 1)𝑏,
𝑒2 = (𝑤 − 1) − (𝑦 − 1)𝑐,
𝑒3 = (𝑤 − 1)𝑏 − 𝑢𝑐.
From equations 𝑒1 = 0 and 𝑒2 = 0, we have 𝑢 = (𝑦−1)𝑏 and𝑤 = (𝑦−1)𝑐+1.

By replacing 𝑢 with (𝑦 − 1)𝑏 and 𝑤 with (𝑦 − 1)𝑐 + 1 in 𝐹3, we obtain
𝐹3 = 𝑦𝑤(𝑤 − 1)2𝑄2 − 2𝑢2𝑧0𝑤2𝑚 + (4𝑢2𝑤2 − (𝑦 − 1)2𝑤2 − 𝑢2𝑧20)𝑃

= (𝑦 − 1)2
[
𝑦𝑤𝑐2𝑄2 − 2𝑏2𝑧0𝑤2𝑚 + (4𝑏2𝑤2 − 𝑤2 − 𝑏2𝑧20)𝑃

]
.
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Let

𝑅(𝑏, 𝑐, 𝑦) = 𝑦𝑤𝑐2𝑄2 − 2𝑏2𝑧0𝑤2𝑚 + (4𝑏2𝑤2 − 𝑤2 − 𝑏2𝑧20)𝑃,
where 𝑤 = (𝑦 − 1)𝑐 + 1. Then
𝑅|𝑦=1 = 𝑐2𝑄2(1) − 2𝑏2𝑧0 + (4𝑏2 − 1 − 𝑏2𝑧20)𝑃(1)

= 𝑐2
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

𝑆2𝑚(𝑧0) − 2𝑏2𝑧0 + (4𝑏2 − 1 − 𝑏2𝑧20)𝑆𝑚(𝑧0)𝑆𝑚−1(𝑧0)

= 1
2 − 𝑧0

(𝑐2
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

− 2𝑏2𝑧0(2 − 𝑧0) + (4𝑏2 − 1 − 𝑏2𝑧20))

= 1
2 − 𝑧0

(𝑐2
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

+ 𝑏2(𝑧0 − 2)2 − 1) .

Wehave 𝐹3 = (𝑦−1)2𝑅. The first factor corresponds to the exceptional plane
𝐸3 and the other factor is the defining equation for the local model of 𝑌3. Note
that the preimage of 𝑠(𝑘)3 is exactly the intersection of 𝐸3 and 𝑌3 which is equal

to the smooth conic 𝑐2 (2𝑚+1)
2𝑧20

(𝑧0+2)2
+ 𝑏2(𝑧0 − 2)2 − 1 = 0. This local model of 𝑌3 is

smooth in 𝐴3 × ℙ2 if we can show that 𝑅(𝑏, 𝑐, 𝑦) is smooth.
We now prove that the system 𝑅 = 𝑅𝑏 = 𝑅𝑐 = 𝑅𝑦 = 0 has no solutions. By

direct calculations, we have

𝑅𝑏 = 2𝑏
(
−2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃

)
,

𝑅𝑐 = 𝑦(𝑦 − 1)𝑐2𝑄2 + 2𝑦𝑤𝑐𝑄2 + 𝑦𝑤𝑐2(𝑦 − 1)(𝑄2)𝑤 − 4𝑚𝑏2𝑧0(𝑦 − 1)𝑤2𝑚−1

+ (8𝑏2𝑤 − 2𝑤)(𝑦 − 1)𝑃 + (4𝑏2𝑤2 − 𝑤2 − 𝑏2𝑧20)(𝑦 − 1)𝑃𝑤,
𝑅𝑦 = 𝑤𝑐2𝑄2 + 𝑦𝑐3𝑄2 + 𝑦𝑤𝑐3(𝑄2)𝑤 − 4𝑚𝑏2𝑧0𝑐𝑤2𝑚−1

+ (8𝑏2𝑤 − 2𝑤)𝑐𝑃 + (4𝑏2𝑤2 − 𝑤2 − 𝑏2𝑧20)𝑐𝑃𝑤.
Note that

𝑅 − 𝑏𝑅𝑏∕2 = 𝑤(𝑦𝑐2𝑄2 − 𝑤𝑃),
𝑐𝑅𝑐 − (𝑦 − 1)𝑅𝑦 = (𝑦 + 1)𝑤𝑐2𝑄2.

Assume that 𝑅 = 𝑅𝑏 = 𝑅𝑐 = 𝑅𝑦 = 0 at some point (𝑏, 𝑐, 𝑦). We first claim
that 𝑤 ≠ 0. Indeed, if 𝑤 = 0 then 𝑅 = 0 implies that −𝑏2𝑧20𝑃(0) = 0. Since
𝑃(0) = 𝑧2𝑚−10 ≠ 0, we get 𝑏 = 0. Then 𝑅𝑦 = 0 implies that 𝑦𝑐3𝑄2(0) = 0. Note
that 𝑐 ≠ 0 (since𝑤 = (𝑦−1)𝑐+1 = 0) and𝑄(0) = 𝑇2𝑚(𝑧0, 0) = 𝑧2𝑚0 ≠ 0. Hence,
𝑦 = 0. Then ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) = ([1∶ 0∶ 0], [𝑧0∶ 0]) = 𝑠2 which has been
removed from 𝐴3. This proves that 𝑤 ≠ 0.
Now 𝑐𝑅𝑐 − (𝑦 − 1)𝑅𝑦 = 0 implies 𝑦 = −1 or 𝑐2𝑄2 = 0. If 𝑐2𝑄2 = 0 then

𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃 = (𝑦 − 1)2𝑐2𝑄2 = 0, which implies that 𝑃 ≠ 0. Then 𝑅 −
𝑏𝑅𝑏∕2 = −𝑤2𝑃 ≠ 0, a contradiction. Hence, 𝑦 = −1.
Since 𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃 = (𝑤 − 1)2𝑄2 = (𝑦 − 1)2𝑐2𝑄2 = 4𝑐2𝑄2, we have

𝑐2𝑄2 = 𝑤2𝑚+(𝑧0−2𝑤)𝑃
4

. From 𝑅 − 𝑏𝑅𝑏∕2 = 0, we get −𝑤2𝑚+(𝑧0−2𝑤)𝑃
4

− 𝑤𝑃 = 0,
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which implies that 𝑤2𝑚 + (𝑧0 + 2𝑤)𝑃 = 0. By Lemma 3.1(3), this is equivalent
to 𝑇𝑚(𝑧0, 𝑤) + 𝑤𝑇𝑚−1(𝑧0, 𝑤) = 0, i.e. 𝑆𝑚(

𝑧0
𝑤
) + 𝑆𝑚−1(

𝑧0
𝑤
) = 0. So

([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) = ([1∶ − 1∶ 0], [𝑧0∶ 𝑤]) = ([1∶ − 1∶ 0], [
𝑧0
𝑤 ∶ 1]) = 𝑠(𝑙)4

which has been removed from 𝐴3.

4.2.2. 𝒃 ≠ 𝟎. Now we look at 𝑌3 in the affine open set defined by 𝑏 ≠ 0 (we
can assume 𝑏 = 1). In this open set, the defining equations for 𝑌3 become

𝐹3 = (𝑦𝑤 − 2𝑢2𝑧0)𝑤2𝑚 + (𝑦𝑧0𝑤 + 4𝑢2𝑤2 − 𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧20)𝑃(𝑤),
𝑒1 = 𝑢𝑎 − (𝑦 − 1),
𝑒2 = (𝑤 − 1)𝑎 − (𝑦 − 1)𝑐,
𝑒3 = (𝑤 − 1) − 𝑢𝑐.

From equations 𝑒1 = 0 and 𝑒3 = 0, we have 𝑦 = 𝑎𝑢 + 1 and 𝑤 = 𝑢𝑐 + 1. By
replacing 𝑦 with 𝑎𝑢 + 1 and 𝑤 with 𝑢𝑐 + 1 in 𝐹3, we obtain

𝐹3 = 𝑦𝑤(𝑤 − 1)2𝑄2 − 2𝑢2𝑧0𝑤2𝑚 +
(
4𝑢2𝑤2 − (𝑦 − 1)2𝑤2 − 𝑢2𝑧20

)
𝑃

= 𝑢2
[
(𝑎𝑢 + 1)𝑤𝑐2𝑄2 − 2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑎2𝑤2 − 𝑧20)𝑃

]
.

Let

𝑅(𝑎, 𝑐, 𝑢) = (𝑎𝑢 + 1)𝑤𝑐2𝑄2(𝑤) − 2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑎2𝑤2 − 𝑧20)𝑃(𝑤),

where 𝑤 = 𝑢𝑐 + 1. Then

𝑅|𝑢=0 = 𝑐2𝑄2(1) − 2𝑧0 + (4 − 𝑎2 − 𝑧20)𝑃(1),

= 𝑐2
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

𝑆2𝑚(𝑧0) − 2𝑧0 + (4 − 𝑎2 − 𝑧20)𝑆𝑚(𝑧0)𝑆𝑚−1(𝑧0)

= 1
2 − 𝑧0

(𝑐2
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

− 2𝑧0(2 − 𝑧0) + (4 − 𝑎2 − 𝑧20))

= 1
2 − 𝑧0

(𝑐2
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

− 𝑎2 + (𝑧0 − 2)2) .

We have 𝐹3 = 𝑢2𝑅. The first factor corresponds to the exceptional plane 𝐸3
and the other factor is the defining equation for the local model of 𝑌3. Note
that the preimage of 𝑠(𝑘)3 is exactly the intersection of 𝐸3 and 𝑌3 which is equal

to the smooth conic 𝑐2 (2𝑚+1)
2𝑧20

(𝑧0+2)2
− 𝑎2 + (𝑧0 − 2)2 = 0. This local model of 𝑌3 is

smooth in 𝐴3 × ℙ2 if we can show that 𝑅(𝑎, 𝑐, 𝑢) is smooth.
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We now prove that the system 𝑅 = 𝑅𝑎 = 𝑅𝑐 = 𝑅𝑢 = 0 has no solutions. By
direct calculations, we have

𝑅𝑎 = 𝑤(𝑢𝑐2𝑄2 − 2𝑎𝑤𝑃),
𝑅𝑐 = (𝑎𝑢 + 1)𝑢𝑐2𝑄2 + 2(𝑎𝑢 + 1)𝑤𝑐𝑄2 + (𝑎𝑢 + 1)𝑤𝑐2𝑢(𝑄2)𝑤 − 4𝑚𝑧0𝑢𝑤2𝑚−1

+2(4 − 𝑎2)𝑢𝑤𝑃 + (4𝑤2 − 𝑎2𝑤2 − 𝑧20)𝑢𝑃𝑤,
𝑅𝑢 = 𝑎𝑤𝑐2𝑄2 + (𝑎𝑢 + 1)𝑐3𝑄2 + (𝑎𝑢 + 1)𝑤𝑐3(𝑄2)𝑤 − 4𝑚𝑧0𝑐𝑤2𝑚−1

+2(4 − 𝑎2)𝑐𝑤𝑃 + (4𝑤2 − 𝑎2𝑤2 − 𝑧20)𝑐𝑃𝑤.

Note that

𝑅 − 𝑎𝑅𝑎∕2 = (𝑎𝑢∕2 + 1)𝑤𝑐2𝑄2 − 2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃,
𝑐𝑅𝑐 − 𝑢𝑅𝑢 = (𝑎𝑢 + 2)𝑤𝑐2𝑄2.

Wefirst claim that𝑤 ≠ 0. Indeed, if𝑤 = 0 then𝑅 = 0 implies that−𝑧20𝑃(0) =
0. But 𝑃(0) = 𝑧2𝑚−10 ≠ 0, a contradiction. Hence, 𝑤 ≠ 0.
From 𝑐𝑅𝑐 − 𝑢𝑅𝑢 = 0 and 𝑅 − 𝑎𝑅𝑎∕2 = 0, we have (𝑎𝑢 + 2)𝑤𝑐2𝑄2 = 0 and

−2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃 = 0. Since 𝑧0𝑤2𝑚 ≠ 0, we get 4𝑤2 − 𝑧20 ≠ 0 and

𝑃 = 2𝑧0𝑤2𝑚

4𝑤2−𝑧20
.

If 𝑐2𝑄2 = 0, then𝑤2𝑚+(𝑧0−2𝑤)𝑃 = (𝑤−1)2𝑄2 = 𝑢2𝑐2𝑄2 = 0. This implies
that 2𝑤 − 𝑧0 ≠ 0 and 𝑃 = 𝑤2𝑚

2𝑤−𝑧0
. Together with 𝑃 = 2𝑧0𝑤2𝑚

4𝑤2−𝑧20
, we get 2𝑧0

2𝑤+𝑧0
= 1.

So 𝑧0 = 2𝑤, which contradicts 𝑧0 − 2𝑤 ≠ 0.
If 𝑎𝑢 + 2 = 0, then 𝑎 = −2∕𝑢. From 𝑅𝑎 = 0, we have 𝑢2𝑐2𝑄 + 4𝑤𝑃 = 0, i.e.

(𝑤 − 1)2𝑄2 + 4𝑤𝑃 = 0. This is equivalent to 𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃 + 4𝑤𝑃 = 0. So
2𝑤+ 𝑧0 ≠ 0 and 𝑃 = − 𝑤2𝑚

2𝑤+𝑧0
. Together with 𝑃 = 2𝑧0𝑤2𝑚

4𝑤2−𝑧20
, we get 2𝑧0

2𝑤−𝑧0
= −1. So

𝑧0 = −2𝑤, which contradicts 2𝑤 + 𝑧0 ≠ 0.

4.2.3. 𝒄 ≠ 𝟎. Finally we look at 𝑌3 in the affine open set defined by 𝑐 ≠ 0 (we
can assume 𝑏 = 1). In this open set, the defining equations for 𝑌3 become

𝐹3 = (𝑦𝑤 − 2𝑢2𝑧0)𝑤2𝑚 + (𝑦𝑧0𝑤 + 4𝑢2𝑤2 − 𝑤2 − 𝑦2𝑤2 − 𝑢2𝑧20)𝑃(𝑤),
𝑒1 = 𝑢𝑎 − (𝑦 − 1)𝑏,
𝑒2 = (𝑤 − 1)𝑎 − (𝑦 − 1),
𝑒3 = (𝑤 − 1)𝑏 − 𝑢.

From equations 𝑒2 = 0 and 𝑒3 = 0, we have 𝑦 = 𝑎(𝑤−1)+1 and 𝑢 = 𝑏(𝑤−1).
By replacing 𝑦 with 𝑎(𝑤 − 1) + 1 and 𝑢 with 𝑏(𝑤 − 1) in 𝐹3, we obtain

𝐹3 = 𝑦𝑤(𝑤 − 1)2𝑄2 − 2𝑢2𝑧0𝑤2𝑚 +
(
4𝑢2𝑤2 − (𝑦 − 1)2𝑤2 − 𝑢2𝑧20

)
𝑃

= (𝑤 − 1)2
[
(𝑎(𝑤 − 1) + 1)𝑤𝑄2 − 2𝑏2𝑧0𝑤2𝑚 + (4𝑏2𝑤2 − 𝑎2𝑤2 − 𝑏2𝑧20)𝑃

]
.

Let

𝑅(𝑎, 𝑏, 𝑤) = (𝑎(𝑤 − 1) + 1)𝑤𝑄2(𝑤) − 2𝑏2𝑧0𝑤2𝑚 + (4𝑏2𝑤2 − 𝑎2𝑤2 − 𝑏2𝑧20)𝑃(𝑤).
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Then

𝑅|𝑤=1 = 𝑄2(1) − 2𝑏2𝑧0 + (4𝑏2 − 𝑎2 − 𝑏2𝑧20)𝑃(1),

=
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

𝑆2𝑚(𝑧0) − 2𝑏2𝑧0 + (4𝑏2 − 𝑎2 − 𝑏2𝑧20)𝑆𝑚(𝑧0)𝑆𝑚−1(𝑧0)

= 1
2 − 𝑧0

(
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

− 2𝑏2𝑧0(2 − 𝑧0) + (4𝑏2 − 𝑎2 − 𝑏2𝑧20))

= 1
2 − 𝑧0

(
(2𝑚 + 1)2𝑧20
(𝑧0 + 2)2

− 𝑎2 + 𝑏2(𝑧0 − 2)2) .

Wehave𝐹3 = (𝑤−1)2𝑅. The first factor corresponds to the exceptional plane
𝐸3 and the other factor is the defining equation for the local model of 𝑌3. Note
that the preimage of 𝑠(𝑘)3 is exactly the intersection of 𝐸3 and 𝑌3 which is equal

to the smooth conic (2𝑚+1)2𝑧20
(𝑧0+2)2

− 𝑎2 + 𝑏2(𝑧0 − 2)2 = 0. This local model of 𝑌3 is

smooth in 𝐴3 × ℙ2 if we can show that 𝑅(𝑎, 𝑏, 𝑤) is smooth.
We now prove that the system 𝑅 = 𝑅𝑎 = 𝑅𝑏 = 𝑅𝑤 = 0 has no solutions. By

direct calculations, we have

𝑅𝑎 = (𝑤 − 1)𝑤𝑄2 − 2𝑎𝑤2𝑃,
𝑅𝑏 = 2𝑏

(
−2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃

)
,

𝑅𝑤 = 𝑎𝑤𝑄2 + (𝑎(𝑤 − 1) + 1)𝑄2 + (𝑎(𝑤 − 1) + 1)𝑤(𝑄2)𝑤 − 4𝑚𝑏2𝑧0𝑤2𝑚−1

+2(4𝑏2 − 𝑎2)𝑤𝑃 + (4𝑏2𝑤2 − 𝑎2𝑤2 − 𝑏2𝑧20)𝑃𝑤.

Note that
2𝑅 − 𝑏𝑅𝑏 − 𝑎𝑅𝑎 = (𝑎(𝑤 − 1) + 2)𝑤𝑄2.

We first claim that 𝑤 ≠ 0. Indeed, if 𝑤 = 0 then 𝑅 = 0 implies that
𝑏2𝑧20𝑃(0) = 0. Since 𝑧0 ≠ 0 and 𝑃(0) = 1, we have 𝑏 = 0. Then 𝑅𝑤 = 0 becomes
(𝑎(𝑤−1)+ 1)𝑄2 = 0. Note that 𝑄(0) = 𝑧2𝑚0 ≠ 0, hence 𝑎(𝑤−1)+ 1 = 0. Then
([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) = ([1∶ 0∶ 0], [𝑧0∶ 0]) = 𝑠2 which has been removed from
𝐴3. Hence, 𝑤 ≠ 0.
From 2𝑅 − 𝑏𝑅𝑏 − 𝑎𝑅𝑎 = 0, we have 𝑎(𝑤 − 1) + 2 or 𝑄 = 0. Similarly, 𝑅𝑏 = 0

implies that 𝑏 = 0 or −2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃 = 0. There are four cases to
consider.
Case 1: Suppose 𝑏 = 0 and 𝑄 = 0. Then 𝑅𝑎 = 0 implies that 𝑎𝑃 = 0.

Note that 𝑃 ≠ 0, since 𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃 = (𝑤 − 1)2𝑄2 = 0. Hence, 𝑎 = 0.
From 𝑄 = 0, we have 𝑇𝑚(𝑧0, 𝑤) − 𝑤𝑇𝑚−1(𝑧0, 𝑤) = 0, which is equivalent to
𝑆𝑚(

𝑧0
𝑤
)−𝑆𝑚−1(

𝑧0
𝑤
) = 0, so 𝑧0

𝑤
= 𝑧(𝑙)3 for some 𝑙. Note that𝑄(1) = 1

2−𝑧0

(2𝑚+1)2𝑧20
(𝑧0+2)2

≠

0, so 𝑤 ≠ 1. This implies that 𝑧(𝑙)3 = 𝑧0
𝑤
≠ 𝑧(𝑘)3 . Since ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) =

([1∶ 1∶ 0], [𝑧(𝑙)3 ∶ 1]) = 𝑠(𝑙)3 has been removed from 𝐴3, we obtain a contradic-
tion.
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Case 2: Suppose 𝑏 = 0 and 𝑎(𝑤 − 1) + 2 = 0. Then 𝑎 = −2∕(𝑤 − 1) and
𝑦 = 𝑎(𝑤 − 1) + 1 = −1. From 𝑅 = 0, we have (𝑤 − 1)2𝑄2 + 4𝑤𝑃 = 0,
i.e. 𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃 + 4𝑤𝑃 = 0. By Lemma 3.1(3), this is equivalent to
𝑆𝑚(

𝑧0
𝑤
) + 𝑆𝑚−1(

𝑧0
𝑤
) = 0, so 𝑧0

𝑤
= 𝑧(𝑙)4 for some 𝑙. Then ([𝑥∶ 𝑦∶ 𝑢], [𝑧∶ 𝑤]) =

([1∶ − 1∶ 0], [𝑧(𝑙)4 ∶ 1]) = 𝑠(𝑙)4 which has been removed from 𝐴3.
Case 3: Suppose −2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃 = 0 and 𝑄 = 0. Then 4𝑤2 − 𝑧20 ≠ 0

and 𝑃 = 2𝑧0𝑤2𝑚

4𝑤2−𝑧20
. From 𝑄 = 0, we have 𝑤2𝑚 + (𝑧0 − 2𝑤)𝑃 = (𝑤 − 1)2𝑄2 = 0.

Hence, 1 + (𝑧0 − 2𝑤) 2𝑧0
4𝑤2−𝑧20

= 0, i.e. 1 − 2𝑧0
𝑧0+2𝑤

= 0. This implies that 𝑧0 = 2𝑤,

which contradicts 4𝑤2 − 𝑧20 ≠ 0.
Case 4: Suppose −2𝑧0𝑤2𝑚 + (4𝑤2 − 𝑧20)𝑃 = 0 and 𝑎(𝑤 − 1) + 2 = 0. From

𝑅𝑎 = 0, we have (𝑤 − 1)2𝑄2 + 4𝑤𝑃 = 0, which is equivalent to 𝑤2𝑚 + (𝑧0 −
2𝑤)𝑃 + 4𝑤𝑃 = 0. So 1 + (𝑧0 + 2𝑤) 2𝑧0

4𝑤2−𝑧20
= 0, i.e. 1 − 2𝑧0

𝑧0−2𝑤
= 0. This implies

that 𝑧0 = −2𝑤, which contradicts 4𝑤2 − 𝑧20 ≠ 0.

4.2.4. Conclusion. From the cases 𝑎 ≠ 0, 𝑏 ≠ 0, and 𝑐 ≠ 0 considered above,
we conclude that the singular point 𝑠(𝑘)3 requires only one blow-up to resolve.
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